ESIEA - CVO

Test Plan GostCrypt

Author:
Sebastiaan GROOT

~

esiea

recherche (+Vy

[7,]
L
)
%
O,

pas pirate R:
Ces9d0 230V

June 13, 2014



Test Plan GostCrypt Sebastiaan Groot

Contents

[1__Introductionl 1
2 Static tests 2
13__Unit tests| 4

CONTENTS



Test Plan GostCrypt Sebastiaan Groot

1 Introduction

GostCrypt is a cryptography and steganography application based on TrueCrypt 7.1a. The
main difference between TrueCrypt 7.1a and GostCrypt is the replacement of the existing cipher
suite with the GOST 28147-89 block cipher, the removal of the SHA-512 and RIPEMD-160
hash functions and the introduction of the GOST R 34.11-94 and GOST R 34.11-2012 hash
functions.

In order to publish a stable release of GostCrypt, this document provides a number of static
code tests, as well as unit tests that can expose bugs in critical (cryptographic) parts of the
application. Bugs encountered during the testing phase can then be resolved before publishing
a first public release version of the application.

A large part of the non-cryptographic code in TrueCrypt 7.1a has already been audited by
the Open Crypto Audit Project (2014) [I]. Because of this audit, only code that was modified
or added for GostCrypt will be tested in an effort to reduce the scope of the testing phase to

only include untested code.

1 INTRODUCTION 1



Test Plan GostCrypt Sebastiaan Groot

2 Static tests

When the GostCrypt application is compiled, the compiler automatically runs various static
tests on the source code. This is mainly used to detect syntax errors and provide the program-
mer with quick feedback about potential errors in his or her code. Compilers do not run very
comprehensive static tests on the source code however, as they have to balance code testing
with compilation speed. Several tools have been developed that provide a more comprehensive
static testing environment. This class of tools is usually referred to as “lint” tools.

The application used for static analysis is the “lint” tool “splint”, a static analysis tool for
C developed by the University of Virginia, Department of Computer Science [2] with a focus
on detecting security-related errors.

The use of lint tools in static code analysis of large projects creates a problem. Lint tools give
warnings for every piece of code that can potentially be dangerous. In many cases, warnings
given by a lint tool do not translate to actual defects in the code. The following example

demonstrates this behaviour:

unsigned char x = 0;

In this example, variable x is of the type unsigned char, which can contain any value
between 0 and 255 (both inclusive) and it is initialized at 0. However, as splint interprets x as

a non-numeric variable intended to store characters, it gives the following warning:

/%
splintexample.c(3,19): Variable j initialized to type int, expects
unsigned char: 0
Types are incompatible. (Use —type to inhibit warning)

*/

Because of this, a first selection is made on the splint output by the code reviewer before
reporting potential issues in the resulting report.
Table [1] shows the source files that will be included in the static analysis phase. This

selection only includes source files that contain code that was modified for GostCrypt.

2 STATIC TESTS 2



Test Plan GostCrypt Sebastiaan Groot

Source file Description

Mount\Mount.c Main code for the GostCrypt Mount application.
Format\Format.c In place encryption algorithms.
Driver\NtDriver.c Entry point for the GostCrypt driver.

Common\ Xts.c XTS mode of operation algorithms.

Common)\ Volumes.c Code concerning volume headers.

Common\ Tests.c Built-in automatic tests for cryptographic algorithms.
Common\Random.c Pseudo-random number generator.

Common)\ Pkesb.c Key derivation algorithms.

Common\ Language.c Language-pack loading code.

Common\\ EncryptionThreadPool.c | Crypto interface for multi-threaded encryption.
Common)Dlgcode.c Windows dialog related code.

Common\Crypto.c Interface to cryptographic algorithms.
Crypto\GostCipher.c GOST 28147-89 implementation.
Crypto\GostHash.c GOST R 34.11-94 implementation.
Crypto\Stribog.c GOST R 34.11-2012 implementation.

Table 1: Source files included for static analysis

2 STATIC TESTS 3



Test Plan GostCrypt Sebastiaan Groot

3 Unit tests

This chapter describes the unit tests that will be performed during the testing phase of
GostCrypt. Unit tests are designed to test the functionality of functions or algorithms. Each
unit test prepares the required input for the function it is testing, executes the function and
then asserts that the function output is as expected. This is sometimes done by preparing
the required arguments for a function and checking its return values, but it might also in-
volve setting up global or external resources and asserting them afterwards for functions with
side-effects.

The following subsections contain the different unit tests that are part of the test phase of

GostCrypt, grouped by source file.

Common\ Xts.c

The modified encryption and decryption variant of the XTS algorithm for block ciphers with
a block size of 64-bit need to be tested.

There are two reasons why a complete unit test on the XTS encryption and decryption
functions is infeasible. First of all, the output generated by these functions is dependent on
the used block cipher. Secondly, this modified version of the XTS algorithm has no known test
vectors. As we cannot derive specific properties from the output (by design), the unit tests will
focus on small sections of the algorithm at a time, comparing the output to the output of the
same sections in the 128-bit XTS algorithms.

In order to keep the used block cipher the same when comparing the X'TS algorithm output,
the GOST 28147-89 block cipher is used in both the 64-bit and 128-bit version of the algorithm
during testing. Note that this is undesirable in normal operation, as using a 64-bit block cipher
with the 128-bit XTS mode of operation results in half the plaintext not being transformed

into ciphertext.

Setup The first four tests assert that the initial variables are set up properly before the
encryption or decryption begins. The values of the 64-bit functions use the results of the

128-bit function tests as reference.

3 UNIT TESTS 4



Test Plan GostCrypt

Sebastiaan Groot

Scope
Function EncryptBufferXTS8Byte
Lines 80 -114

Input variables

buffer

(hexidecimal) 4c 6f 72 65 6d 20 69 70 73 75 6d 20 64 2e 2e 2e

length 16

startDataUnitNo 0

startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c €5 ¢5 ¢8 ab 04 79 82
41 O0e 89 09 23 £2 c6 cd a2 d8 8c 42 4b be ef

ks2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 e7 24 20 af 9b bc 00

c3 fc 94 18 23 2¢ 21 37 ea 30 55 34 fe eb df

Expected output variables

whiteningValue Equal to the first two bytes of the whiteningValue of the 128-bit XTS
algorithm.
blockCount Double the value of blockCount of the 128-bit XTS algorithm.
endBlock blockCount - 1
Table 2: Unit Test: Setup EncryptBufferXTS8Byte
Scope
Function EncryptBufferXTSNonParallel
Lines 320 - 360

Input variables

buffer

(hexidecimal) 4c 6f 72 65 6d 20 69 70 73 75 6d 20 64 2e 2e 2e

length 16

startDataUnitNo 0

startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c eb ¢b ¢8 ab 04 79 82
41 Oe 89 09 23 2 c6 cd a2 d8 8c 42 4b be ef

ks2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 e7 24 20 af 9b bc 00

c3 fc 94 18 23 2¢ 21 37 ea 30 55 34 fe eb df

Expected output variables

whiteningValue (hexidecimal) cb 26 8 f0 39 5a 28 93 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00

blockCount 1

endBlock blockCount - 1

Table 3: Unit Test: Setup EncryptBufferXTSNonParallel

3 UNIT TESTS 5




Test Plan GostCrypt

Sebastiaan Groot

Scope
Function DecryptBufferXTS8Byte
Lines 454 - 488

Input variables

buffer

(hexidecimal) 8d ¢9 fa 9c¢ 5e 9a 45 5d 00 00 00 00 00 00 00 00

length 16

startDataUnitNo 0

startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c €5 ¢5 ¢8 ab 04 79 82
41 O0e 89 09 23 £2 c6 cd a2 d8 8c 42 4b be ef

ks2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 e7 24 20 af 9b bc 00

c3 fc 94 18 23 2¢ 21 37 ea 30 55 34 fe eb df

Expected output variables

whiteningValue Equal to the first two bytes of the whiteningValue of the 128-bit XTS
algorithm.
blockCount Double the value of blockCount of the 128-bit XTS algorithm.
endBlock blockCount - 1
Table 4: Unit Test: Setup DecryptBufferXTS8Byte
Scope
Function DecryptBufferXTSNonParallel
Lines 689 - 722

Input variables

buffer

(hexidecimal) 8d ¢9 fa 9c 5e 9a 45 5d 00 00 00 00 00 00 00 00

length 16

startDataUnitNo 0

startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c €5 ¢5 ¢8 ab 04 79 82
41 O0e 89 09 23 £2 ¢6 cd a2 d8 8c 42 4b be ef

ks2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 7 24 20 af 9b bc 00

c3 fc 94 18 23 2¢ 21 37 ea 30 55 34 fe eb df

Expected output variables

whiteningValue (hexidecimal) cb 26 8 f0 39 5a 28 93 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00

blockCount 1

endBlock blockCount - 1

Table 5: Unit Test: Setup DecryptBufferXTSNonParallel

Encryption The following two unit tests observe the encryption of a single block in the 64-

bit and 128-bit versions of the XTS algorithm. Again, the 128-bit version is used as a reference

3 UNIT TESTS 6



Test Plan GostCrypt

Sebastiaan Groot

for the 64-bit version.

Scope
Function EncryptBufferXTS8Byte
Lines 117 - 166

Input variables

buffer

(hexidecimal) 4c 6f 72 65 6d 20 69 70 73 75 6d 20 64 2e 2e 2e

length 16

startDataUnitNo 0

startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c eb cb c¢8 ab 04 79 82
41 Oe 89 09 23 2 ¢6 cd a2 d8 8c 42 4b be ef

ks2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 e7 24 20 af 9b bc 00

c3 fc 94 18 23 2¢ 21 37 ea 30 55 34 fe eb df

Expected output variables

buffer ‘ Equal to the value of buffer in the 128-bit XTS algorithm.
Table 6: Unit Test: Encryption EncryptBufferXTS8Byte

Scope

Function EncryptBufferXTSNonParallel

Lines 364 - 423

Input variables

buffer

(hexidecimal) 4c 6f 72 65 6d 20 69 70 73 75 6d 20 64 2e 2e 2e

length 16

startDataUnitNo 0

startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c €5 ¢b ¢8 ab 04 79 82
41 Oe 89 09 23 £2 c6 cd a2 d8 8c 42 4b be ef

ks2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 e7 24 20 af 9b bc 00

c3 fc 94 18 23 2¢ 21 37 ea 30 55 34 fe eb df

Expected output variables

buffer

‘ (hexidecimal) 8d c9 fa 9c 5e 9a 45 5d 73 75 6d 20 64 2e 2e 2e

Table 7: Unit Test: Encryption EncryptBufferXTSNonParallel

Decryption The following two unit tests observe the decryption of a single block in the 64-

bit and 128-bit versions of the XTS algorithm. Again, the 128-bit version is used as a reference

for the 64-bit version.

3 UNIT TESTS 7



Test Plan GostCrypt Sebastiaan Groot

Scope

Function DecryptBufferXTS8Byte

Lines 490 - 543

Input variables

buffer (hexidecimal) 8d ¢9 fa 9¢ 5e 9a 45 5d 00 00 00 00 00 00 00 00
length 16

startDataUnitNo 0
startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c €5 ¢5 ¢8 ab 04 79 82
41 Oe 89 09 23 2 c6 cd a2 d8 8c 42 4b be ef
ks2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 e7 24 20 af 9b bc 00

c3 fc 94 18 23 2¢ 21 37 ea 30 55 34 fe eb df
Expected output variables
buffer ‘ Equal to the value of buffer in the 128-bit XTS algorithm.

Table 8: Unit Test: Decryption DecryptBufferXTS8Byte

Scope

Function DecryptBufferXT'SNonParallel

Lines 726 - 785

Input variables

buffer (hexidecimal) 8d ¢9 fa 9c 5e 9a 45 5d 00 00 00 00 00 00 00 00
length 16

startDataUnitNo 0
startCipherBlockNo | 0

ks key: (hexidecimal) 54 4f d7 b6 90 b3 5a cc 9f 7c €5 cb c8 ab 04 79 82
41 0e 89 09 23 £2 ¢6 cd a2 d8 8c 42 4b be ef
ks?2 key: (hexidecimal) a2 Oe Oe f5 5b 38 52 46 Oe 57 7 24 20 af 9b be 00

c3 fc 94 8 23 2¢ 21 37 ea 30 55 34 fe eb df
Expected output variables
buffer ‘ (hexidecimal) 4c 6f 72 65 6d 20 69 70 00 00 00 00 00 00 00 00

Table 9: Unit Test: Setup DecryptBufferXTSNonParallel

Common)\ Volumes.c

No algorithmic changes were made to Common\Volumes.c. The only changes are the re-
placement of the hash functions (Crypt\GostHash.c and Crypto\Stribog.c) and key derivation
functions (Common\Pkesb.c). If the hash functions and key derivation functions pass the unit

tests, Common)\ Volumes.c is considered to work as intended.

3 UNIT TESTS 8



Test Plan GostCrypt Sebastiaan Groot

Common\Random.c

No algorithmic changes were made to Common\Random.c. Only the hash functions were
replaced. If the hash functions pass the unit tests, Common\Random.c is considered to work

as intended.

Common\Pkcs5.c

The PBKDF2 algorithm has a set of official test vectors, as defined in RFC 6070 [3]. Seeing
how the only change between the different key derivation functions in Common\Pkesb.c is
in the calls to the underlying hash functions, the unit tests will replace the underlying hash
function to SHA-1 to match the official test vectors. If the unit test succeeds, the same result
can be expected with different hash functions, given that those hash functions succeeded their

respective unit tests.

Scope

Function | derive_key_shal

Input variables

pwd “password”

pwd_len 8

salt “salt”

salt_len 4

iterations | 1

dk 0 repeated 20 times

dklen 20

Expected output variables

dk ‘ (hexidecimal) Oc 60 c8 Of 96 1f Oe 71 £3 a9 b5 24 af 60 12 06 2f e0 37 a6

Table 10: Unit Test: PBKDF2 #1

3 UNIT TESTS 9



Test Plan GostCrypt

Sebastiaan Groot

Scope

Function

derive_key_shal

Input variables

pwd “password”
pwd_len 8

salt “salt”

salt_len 4

iterations | 2

dk 0 repeated 20 times
dklen 20

Expected output variables

dk ‘ (hexidecimal) 4b 00 79 01 b7 65 48 9a be ad 49 d9 26 7 21 d0 65 a4 29 cl
Table 11: Unit Test: PBKDF2 #2

Scope

Function | derive_key_shal

Input variables

pwd “password”
pwd_len 8

salt “salt”

salt_len 4

iterations | 4096

dk 0 repeated 20 times
dklen 20

Expected output variables

dk

‘ (hexidecimal) 4b 00 79 01 b7 65 48 9a be ad 49 d9 26 {7 21 d0 65 a4 29 cl

Table 12: Unit Test: PBKDF2 #3

3 UNIT TESTS 10



Test Plan GostCrypt

Sebastiaan Groot

Scope

Function

derive_key_shal

Input variables

pwd “password”

pwd_len 8

salt “salt”

salt_len 4

iterations | 16777216

dk 0 repeated 20 times

dklen 20

Expected output variables

dk ‘ (hexidecimal) ee fe 3d 61 cd 4d a4 e4 €9 94 5b 3d 6b a2 15 8c 26 34 €9 84

Table 13: Unit Test: PBKDF2 #4

Scope

Function | derive_key_shal

Input variables

pwd “passwordPASSWORDpassword”

pwd_len 24

salt “saltSALTsaltSALTsaltSALTsaltSALTsalt”

salt_len 36

iterations | 4096

dk 0 repeated 25 times

dklen 25

Expected output variables

dk (hexidecimal) 3d 2e ec 4f e4 1c 84 9b 80 ¢8 d8 36 62 c0 e4 4a 8b 29 1a 96 4c 2
f0 70 38

Table 14: Unit Test: PBKDF2 #5

3 UNIT TESTS 11



Test Plan GostCrypt Sebastiaan Groot

Scope

Function ‘ derive_key_shal
Input variables

pwd “pass\Oword”
pwd_len 9

salt “sa\0lt”

salt_len 5

iterations | 4096

dk 0 repeated 16 times
dklen 16

Expected output variables
dk ‘ (hexidecimal) 56 fa 6a a7 55 48 09 9d cc 37 d7 f0 34 25 €0 c3

Table 15: Unit Test: PBKDF2 #6

Crypto\GostCipher.c

Testing of the GOST 28147-89 block cipher is split into two parts. Because the block cipher
uses a non-standard S-Box, namely a key-dependent S-Box, unit tests of the implementation
can’t be compared to other implementations. Therefore, Crypto\GostCipher.c is first tested
with the key-dependent nature disabled against other implementations. Secondly, the S-Box

mixing function used to generate key-dependent S-Boxes is tested independently.

Implementation comparison In order to compare the GostCrypt GOST 28147-89 imple-
mentation to other implementations, the key-dependent S-Box generation is first disabled. This
leaves the block cipher with the “GOST R 34.11-94 CryptoProParamSet” S-Box, specified in
RFC 4357 [4]. Using this same S-Box in the OpenSSL implementation and the SCV Cryp-
toManager, we can compare the output on a set of input parameters and see if the resulting
ciphertext (when encrypting) or plaintext (when decrypting) matches.

Table [16] shows the input parameters that will be used during this test.

3 UNIT TESTS 12



Test Plan GostCrypt

Sebastiaan Groot

Mode Input

Key

Encrypting | 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

Encrypting | ff ff ff {f ff ff ff ff

ff ff ff ff ff ff fF fF fF fF fF ff ff ff ff ff ff ff
T T il i i A i i

Encrypting | 5b ef 60 12 16 2 Oe 81

64 29 0d 4f 9a 03 Oe 21 6b 24 bb cc 93
25 0c 8&d 6b 5a 5e a9 52 45 23 fe 30 40
0d ae 5d 85 6a 77

Encrypting | 9d 68 ae cb ba {7 7f 25

al 46 d6 88 60 1d b0 83 d6 07 74 4e
73 48 9d 67 10 54 fc 7c ce 88 0b ad eb
df 62 99 62 5b ad &c

Decrypting | 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

Decrypting | ff ff ff ff ff ff ff ff

T aaaaaaaaaaEaaoaoaot
taaaEaaaFEEHEF

Decrypting | 5b ef 60 12 16 2 Oe 81

64 29 0d 4f 9a 03 Oe 21 6b 24 bb cc 93
25 0c &d 6b 5a be a9 52 45 23 fe 30 40
0d ae bd 85 6a 77

Decrypting | 9d 68 ae cb ba 7 7f 25

al 46 d6 88 60 1d b0 83 d6 07 74 4e
73 48 9d 67 10 54 fc 7c ce 88 0b ad eb
df 62 99 62 5b ad 8¢

Table 16: GOST 28147-89 comparison test

S-Box key mixing The S-Box key mixing algorithm mixes the 512-bit Stribog digest of the
256-bit key with the GOST S-Box, which also contains 512 bits of informations (8 boxes * 16
values * 4 bits). In the algorithm, the Stribog digest is xor-ed with the S-Box. In order to test

that each of the bits in the S-Box and digest are being used against each other, we use a digest

equal to the S-Box. After the algorithm, we would expect the entire S-Box to contain nothing

but zero’s, as a xor operation on equal values results in zero.

S-Box

Digest

GOST R 34.11-94 CryptoProParamSet [4]

1d 77 47 5a 3e 66 af 4 a4 24 Tc 45 91 4b ce
06 57 d9 09 28 b0 9c 4 d1 45 £2 21 b3 fa Oa
80 97 83 al e3 1d 6¢ 18 1b 7c 78 50 65 Ge ef
be 52 30 d6 8f d6 c9 02 ed ba e2 29 ¢3 98 ab
cb 35 3d 8f

Table 17: GOST 28147-89 xor_s_box

3 UNIT TESTS 13



Test Plan GostCrypt

Sebastiaan Groot

Crypto\ GostHash.c

The GOST R 34.11-94 hash function will be tested in two ways: using the example computa-

tions from RFC 5831 [5] as test vectors and by comparing it to other implementations.

Example computations Table shows the input parameters and the expected output

according to RFC 5831 [5].

Input message

Digest

73 65 74 79 62 20 32 33 3d 68 74 67 Ge 65 6¢
20 2¢ 65 67 61 73 73 65 6d 20 73 69 20 73 69
68 54

fa ff 37 a6 15 a8 16 69 1c ff 3e £8 b6 8c a2 47
e0 95 25 £3 9f 81 19 83 2e b8 19 75 d3 66 c4
bl

73 65 74 79 62 20 30 35 20 3D 20 68 74 67
6E 65 6C 20 73 61 68 20 65 67 61 73 73 65
6D 20 6C 61 6E 69 67 69 72 6F 20 65 68 74

08 52 F5 62 3B 89 DD 57 AE B4 78 1F Eb5
4D F1 4E EA FB C1 35 06 13 76 3A 0D 77
0A A6 57 BA 1A 47

20 65 73 6F 70 70 75 53

Table 18: GOST R 34.11-94 example computations

Implementation comparison The GOST R 34.11-94 implementation of GostCrypt is com-
pared against the OpenSSL and SCV CryptoManager implementations. Table shows the

input message used in this test.

Input message

02 b6 cc 2e 0a 46 d8 el 08 99

9f £3 58 98 cf 70 b6 ca b0 99 be ba 2b 16 63 06 €5 8f 72 35 63 3b 0d be ce 4e 8b 71 Oc dc 3d
d4 b5 32 6¢ Tb 9¢ bd 00 8b 96 61 80 ¢7 75 b8 59 e4 a7 b8 39 67 90 3b 12 a2 92 e4 2f 61 9f
e3 eb 31

5d 39 Oe 88 44 13 be 06 €2 30 85 f8 01 60 fa f0 27 Oe 1b 6¢ 7c cd 40 45 6¢ d3 ee d3 Ob 60 6b
a8 2e 16 f1 9f €5 €9 ¢2 68 d7 07 {7 b2 8c eb 27 d9 cf cc 96 d8 a7 05 be 91 36 7e 5¢ 32 25 90
cd 76 69 a0 97 b9 8b a9 a8 95 88 69 fb 95 70 72 19 03

f1 62 bl 11 5a f0 a0 68 ef 5e 19 72 88 05 dc 37 6e 68 1c bd Oc 67 e8 2f €7 61 5c f3 da ca b8
bl ec aa 5e 70 9c 70 e6 ab 06 ac 4a 61 f0 3f b £3 99 ad 74 94 61 08 4b a6 2a 6f 86 bl 5¢ d3
de f3 97 7d a7 f1 a3 8c 52 db e8 1f a4 74 0b ¢9 eb 18 85 41 04 ed 3c c4 d7 9f 70 9¢ al 84 c2
f9 38 b6 fa 4d 6b 25 01 31 6d 3c €7 23 bl 4e 50 1c be 02 8b aa bd fe 1b bl 95 53 d5 6¢ f1
12 46 ba 35

Table 19: GOST R 34.11-94 implementation comparisons

Crypto\Stribog.c

The GOST R 34.11-2012 hash function, also known as Stribog, is tested by using the example

computations from RFC 6986 as test vectors.

3 UNIT TESTS 14



Test Plan GostCrypt

Sebastiaan Groot

Input message

Digest

32 31 30 39 38 37 36 35 34 33 32 31 30 39 38
37 36 35 34 33 32 31 30 39 38 37 36 35 34 33
32 31 30 39 38 37 36 35 34 33 32 31 30 39 38
37 36 35 34 33 32 31 30 39 38 37 36 35 34 33
32 31 30

48 6f 64 c1 91 78 79 41 7f ef 08 2b 33 81 a4
e2 11 c¢3 24 f0 74 65 4c 38 82 3a 7b 76 8 30
ad 00 fa 1f ba e4 2b 12 85 c0 35 2f 22 75 24
bc 9a bl 62 54 28 8d d6 86 3d cc d5 b9 {5 4a
la d0 54 1b

fb e2 eb f0 ee e3 c8 20 fb ea fa eb ef 20 ff fb
f0 el e0 fO 5 20 €0 ed 20 e8 ec e0 eb e 0 2
f1 20 ff 0 ee ec 20 f1 20 fa f2 fe b €2 20 2¢
e8 6 £3 ed €2 20 e8 6 ee el e8 {0 2 d1 20 2¢
e8 f0 f2 eb e2 20 5 d1

28 fb ¢9 ba da 03 3b 14 60 64 2b dc dd b9 Oc
3f b3 eb 6¢ 49 7c cd 0f 62 b8 a2 ad 49 35 e8
5f 03 76 13 96 6d e4 ee 00 53 la e6 Of 3b ba
47 8 da e0 69 15 d5 2 f1 94 99 6f ca bf 26
22 e6 88 le

Table 20: GOST R 34.11-2012 example computations

3 UNIT TESTS

15




Test Plan GostCrypt Sebastiaan Groot

References

1]
2]

3]

TrueCrypt - Security Assessment. (2014). Open Crypto Audit Project.

Evans, D., & Larochelle, D. (2002). Improving security using extensible lightweight static
analysis. software, IEEE, 19(1), 42-51.

Josefsson, S. (2011). PKCS# 5: Password-Based Key Derivation Function 2 (PBKDF?2)
Test Vectors.

Popov, V., Kurepkin, I., & Leontie, S. (2006). RFC 4357: Additional Cryptographic
Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and
GOST R 34.11-94 Algorithms.

Dolmatov, V. (2010). GOST R 34.11-94: Hash Function Algorithm.

REFERENCES 16



	Introduction
	Static tests
	Unit tests

