
Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

How to compute RSA keys?
The Art of RSA: Past, Present, Future

Robert Erra & Christophe Grenier
aka the EG Group

ESIEA - Pôle SI&S
9 rue Vésale, 75 005 Paris, France

{erra,grenier}@esiea.fr

iAWACS’09

Robert ERRA & Christophe GRENIER How to compute RSA keys?

{erra,grenier}@esiea.fr

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

1 Introduction

2 So, what can we do ?

3 How to choose/compute e ?

4 How to choose d ?

5 How to choose the key length ?

6 Conclusion and future work

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Current section

1 Introduction

2 So, what can we do ?

3 How to choose/compute e ?

4 How to choose d ?

5 How to choose the key length ?

6 Conclusion and future work

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— RSA is without doubt the most famous asymmetric
cryptosystem.
In the building 10 of MIT, one can read . . .

Ronald Rivest, Adi Shamir and Leonard Adelman invented the first
workable public key cryptographic system, based on the use of very
large prime numbers, that has so far been proved unbreakable.

But:
Technically, the (red) sentence is unfortunately false!
There is no proof of "unbreakability" of RSA.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— But how does someone compute his RSA key practically ?

Generally, one simply "asks" to a software or to a Trusted Third
Party (TTP) or Certification Authority (CA) a RSA key by
specifying (for example) the binary length.

And you trust the results . . . but this can be dangerous
(OpenSSL/Debian flaw, RSA trapdoors)

So, when you compute RSA keys, how can you be sure that they are
"secure" (whatever it means)?

In fact, hélas, today you cannot be sure!

NSA (2006,[NSA09]): "During the transition to the use of elliptic
curtve cryptography, RSA can be used with a 2048-bit modulus to
protect classified information up to the SECRET level" !

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

The classical balanced RSA Algorithm

p and q: two prime numbers of equal length
N = p q: the RSA modulus they define
e: Public exponent, prime with ϕ(N) = (p − 1)(q − 1)
d : the private exponent

RSA equation:

e ∗ d − k ∗ ϕ(N) = 1 (1)

Modular RSA equations:

e ∗ d = 1 mod ϕ(N) (2)

− kϕ(N) = 1 mod e (3)

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Unsecure « scholar » mathematical RSA (textbook RSA).

Algorithm 1 : RSA key Generation
Input: – an integer k > 0;
Output: – (N, e, d) with N a k bits number and, if needed, (p, q);
Begin:

Compute randomly a prime p of k/2 bits;
Compute randomly a prime q of k/2 bits;
Compute N = p q and ϕ(N) = (p − 1)(q − 1);
Compute (or choose) an integer e with GCD(e, ϕ(n)) = 1;
Compute d = e−1 mod ϕ(N) ; /* Sometimes mod λ(N) ; */

Return (N, e, d) and, if needed, (p, q);
End.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

RSA use (without padding)

Ciphering of m ∈ Z∗N
c(m) = me mod N

Signature of m ∈ Z∗N
s(m) = md mod N.

Duality of e and d , public and private exponents:
1 A fast signature requires a small private exponent d , chosen

first and then e is computed
2 A fast encryption requires a small public exponent e, chosen

first and then d is computed

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— How can an user obtain RSA keys ?
An user U can compute by himself his RSA keys to sign or to
encipher.
U can obtain RSA keys from a TTP/CA:

1 the RSA key can be computed by the TTP/CA (alone) and
then provided to U;

2 the RSA key can be computed cooperatively by the TTP/CA
and U (shared RSA key).

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— How to compute a RSA key in practice ?
how to compute the primes p and q ?
when to choose e ? (before or after the choice of p and q ?)
how to choose/compute d ?
. . .

— Open Problem
What about RSA Public Key Validation ?

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— The problem of RSA Public Key Validation 1/2

NIST recommendations, issued in 2006 [NIS06b], contain the
following definition:

Definition
Assurance of the public key validity: assurance of the arithmetic
validity of the public key.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— The problem of RSA Public Key Validation 2/2

NIST recommendations [NIS06b]

recommendation for full public key validation for DSA and
ECDSA but emphasizes that ". . . at present, there is no
method defined for full public key validation for RSA; however
a method for partial public key validation is specified in section
5.3.3 this is to be used until an approved method for full
validation is available".
"Plausability tests can detect unintentional errors with a
reasonable probability".

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Some questions about RSA Public Key validation

Is |p − q| = O(
√

N) ?
Are p ± 1 or q ± 1 not smooth ?
Is it better for p and q to be "strong primes" (Silverman)?
Have e and d « good » security (whatever it means) ?
Is there no trapdoor in your RSA key (Anderson, Young &
Yung, Crépeau & Slakmon) ?
Are your primes really primes ? (Probable or Provable Primes?)
Is your RSA modulus hardly factorizable ?
. . .

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Current section

1 Introduction

2 So, what can we do ?

3 How to choose/compute e ?

4 How to choose d ?

5 How to choose the key length ?

6 Conclusion and future work

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— So, what can we do ?
No Full Public Key Validation for RSA (FPKV)
but, obtain the best Partial Public Key Validation for RSA (PPKV)

— Things we can do:
1 Make a partial (-> full) review of some vulner./attacks;
2 Understand the consequences from the user point of view;
3 Browse the available Recommendations from national agencies

(NSA, NIST, FIPS, DSCCI, BSI, . . .);
4 Compare Recommendations and Implementations in open

source software (OpenSSL, PolarSSL, GnuPG, libgcrypt, . . .)

Of course, today, we will not try to be exhaustive (wip).

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— A priori versus a posteriori Public Key Validation

We propose to distinguish:

a priori requirement for PKV

A mathematical assurance: when buying/obtaining/computing a
RSA key, it is secure according to the state of art.

a posteriori requirement for PKV
A legal assurance: when a RSA key has been broken, the owner is
able to prove to a judge that it is « not his fault ».

For both cases, we need a Certificate of Public Key Validation (see
later).

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Current section

1 Introduction

2 So, what can we do ?

3 How to choose/compute e ?

4 How to choose d ?

5 How to choose the key length ?

6 Conclusion and future work

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— A few questions we need to answer before obtaining e
1 Is it better to choose e or d ? (duality)
2 Is it better to choose first e or N ? (temporality)
3 Are all e a good choice ? A small or a large one ?
4 If computed, are all e obtained acceptable ?
5 If a non-acceptable e is obtained, where to start again ?

— Limitations in OpenSSL

The public exponent e has the type int and so e ≤ 231 − 1

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— From RFC 3110 in 2001 [IET01]:

A public exponent of 3 is the fastest for signature verification,
Very weak if used for different recipients (Broadcast attack,
Hastad),
Acceptable for authentification in DNSSEC;
A conservative choice is e = 65537.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Attacks against the Public Exponent e :

Cycling attack (Norris & Simmons)
1 given C = Me mod N
2 compute Ci = C e i

mod N until we find Cr = C er
= C mod N

3 then M = C er−1
mod N

Common modulus attack (Simmons): we can find M if
1 we are given {C1 = Me

1 mod N,C2 = Me
1 mod N} and N

2 gcd(e1, e2) = 1

Broadcast attack (Hastad): we can find M if
1 we are given {Ci = Me mod Ni}f

i=1
2 M f < N1N2 · · ·Nf

Small public exponent attack (based on Lattices Attacks, see
[Yan08] for a review.)

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Some Recommendations from some National Agencies

NIST [NIS06b] in 2006: quite nothing about e, it is only
recommanded that e has to be odd.
DCSSIa [DCS06] in 2006: recommands to use public exponent
strictly superior to 216 = 65536.
FIPS [FIP09] in june 2009): it is proposed (page 52) to select
e prior to generating the primes p and q, and that the
exponent e shallb be an odd positive integer such that:

216 < e < 2256. (4)
aNow ANSSI.
bFrom [FIP09]: Shall : Used to indicate a requirement of this Standard.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Algorithm used by GnuPG v1.2.3 to compute e after the
computation of p and q.

Algorithm 2 : Computation of e
. . .
If ϕ(N) 6= 0 mod [41] Then e = 41;
Else If ϕ(N) 6= 0 mod [257] Then e = 257;
Else

e = 65537;
While GCD(e, ϕ(N)) 6= 1 : e = e + 2;

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Analysis of GnuPG v1.2.3

Nguyen [Ngu] has shown that algorithm (2) creates a minor flaw:

if e ≥ 65539 then ϕ(N) = 0 mod [41 ∗ 257 ∗ 65537],
and since ϕ(N) = 0 mod [4]
we obtain a 32 bits factor of ϕ(N)!

This is not a serious threat because the probability to have
e ≥ 65539 is low (< 0.2%) and the obtained knowledge of 32 bits
of ϕ(N) is not enough to be used in known efficient factorization
algorithm. But, this can be useful for example

to improve the Wiener attacks
to improve some partial key exposure attacks.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— RSA in GnuPG v1.4.10: e ≥ 65537

Algorithm 3 : RSA key generation
Input: — an integer k > 0;
Output: — (N, e, d) with N a k bit number
Begin:

e = 65537;
While bitSize(N) 6= k

Compute randomly a prime p of k/2 bits;
Compute randomly a prime q of k/2 bits;
Compute N = p q and ϕ(N) = (p − 1)(q − 1);

While GCD(e, ϕ(N)) 6= 1 e = e + 2;
/* So, again, if e > 65537, we gain information about ϕ(N) */
Compute d = e−1 mod ϕ(N) ;

End.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— RSA in OpenSSL 0.9.8k

Algorithm 4 : RSA key generation
Input: — an integer k ;
Output: — (N, e, d , dp, dq) with N a k bit number
Begin:

e = 65537; /* e is fixed, p and q are recomputable */
While gcd(e, p − 1) 6= 1 Compute randomly a prime p of k/2 bits;
While gcd(e, q − 1) 6= 1 Compute randomly a prime q of k/2 bits;
Compute N = p q and ϕ(N) = (p − 1)(q − 1);
Compute d = e−1 mod ϕ(N) ;
Compute dp = d mod (p − 1) ;
Compute dq = d mod (q − 1) ;

End.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— RSA in libgcrypt 1.4.4: e ≥ 65537

Algorithm 5 : RSA key generation (it follows ANS X9.31)
Input: — an integer k = 1024 + 256s > 0;
Output: — (N, e, d) with N a k bit number
Begin:

e = 65537;
Compute randomly a prime p of k/2 bits;
Compute randomly a prime q of k/2 bits;
Compute N = p q and ϕ(N) = (p − 1)(q − 1);
Compute λ(N) = lcm(p − 1, q − 1) = ϕ(N)/gcd(p − 1, q − 1)
While GCD(e, λ(N)) 6= 1 e = e + 2;
/* So, again, if e > 65537, we gain information about λ(N) */
Compute d = e−1 mod f ;

End.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Current section

1 Introduction

2 So, what can we do ?

3 How to choose/compute e ?

4 How to choose d ?

5 How to choose the key length ?

6 Conclusion and future work

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— What about the private exponent d ?

The private exponent d is computed generally after e (duality).
The main point is to avoid small d .

Wiener attack (1990,[Wie90]): d < 1/4N1/3 is a sufficient condition
to find the private exponent d in a time in the order of O(log N).

Boneh and Durfee (2000,[BG00]): if d < N0.292 then we can
recover it with the help of the Coppersmith’s method
[Cop96b, Cop96a, Cop97] to solve modular equations (heuristic but
it works!).

Conjecture [BG00]: if d <
√

N then RSA is insecure.

It is recommanded in [DCS06] to use private exponents of the same
length as the RSA modulus.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— A (new) provable variant

Theorem

If k = k1 k2, where k1 is prime or not then, given N, e and a bound
K such that k1 ≤ K, if

d <
1
2

√
k1 N1/4, (5)

we can efficiently recover d using the continued fraction expansion
(CFE) of e/N in a time linear in log N and k1.

Proof roughly the same as the proof of Wiener attack:

| e
N k1

− k2

d
| = |1− k(N − ϕ(N))

d k1 N
≤ | 2k

d k1
√

N
| = | 2k2

d
√

N
| . . . (6)

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— A (new) empirical variant

If k is smooth, we can make the following modification of the
attack which becomes more powerful but empirical.

1 We choose a bound B and we compute Π(B) =
∏pi≤B

i=1 pi ,
where pi is the ith prime number.

2 We compute L = {a0/b0, · · · ar/br} the CFE of
e

N Π(B)
3 We search for d in the denominators of the elements of
L Π(B).

The method is empirical because, for y 6= 0, we have generally
CFE (x) 6= CFE (x/y) ∗ y .

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Another variant with d
Evidently we can use the same tricks when d is not prime due to
the duality between k and d in the expression

| e
N
− k

d
| (7)

So, if d = d1d2:

|ed1

N
− k

d2
| = |1− k(N − ϕ(N))

d2 N
≤ | 2k

d2
√

N
| . . . (8)

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Current section

1 Introduction

2 So, what can we do ?

3 How to choose/compute e ?

4 How to choose d ?

5 How to choose the key length ?

6 Conclusion and future work

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Key length importance.
A RSA key might be used over a period of time not necessarly
predictible, and what seemed secure during key generation might
not be true during the key lifea. So, anticipating future
improvements in calculus power (Moore’s law) is a requirement to
preserve secrets and signatures secured by RSA keys over time.

aOf course, this is true for any encipher algorithm

Definition (Cryptoperiod of a key in [NIS07]:)

The time span during which a specific key is authorized for use or
in which the keys for a given system or application may remain in
effect.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Real Example: it is difficult to anticipate future improvements in
algorithms
The most known example of a bad cryptoperiod is perhaps the 320
bits RSA key, the first RSA key used by the French GIE CAB (in
charge of the famous Carte Bleue). The length of this "weak" RSA
key, 320 bits, has been chosen in 1983 but, in 1991, RSA-100 was
factorized in less that 7 MIPSY. And, finally, in 1998, Humpich
factorizeda the 320 bits RSA key. Whatever seemed secure in 1983
was no more true in 1998.

aUsing MPQS, with a single PC!

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— How to choose/compute p and q ?

ANSI X9.31 (1998):

1 it requires that all numbers p − 1, p + 1, q − 1, and q + 1
should have primes factors randomly chosen in the range
[2100, 2120] (auxiliary primes)

2 Primes are probably primes (Miller-Rabin + Lucas test).
3 p and q have to be 6= in one at least of their first 100 bits.
4 Algorithm: from a random seed, p and q shall be the first

primes discovered in an appropriate interval, that meets the
above.

NIST (document for DSS [FIP09],2009): adds the new
requirements: the auxiliary primes of p − 1, p + 1, q − 1, and q + 1
and p and q have to be provable primes.

To our knowledge, today, no open source software totally implement this.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Some factorization algorithms:

Algorithm Complexity

p-1 O(B log B(log N)2)

ρ O(p1/2(log N)2)

Fermat O(|p−q|2
4N1/2)

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Complexities (x = p or N): L[α, c](x) = ec(log x)α(log log x)1−α).

Algorithm Complexity α c

ECM O(L[α, c](p).(log(n))2) 1/2 2

CFRAC O(L[α, c](N)) 1/2
√

2 ≈ 1, 4142

MPQS O(L[α, c](N)) 1/2
3

2
√

2
≈ 1, 0607

NFS O(L[α, c](N)) 1/3 (
64
9

)1/3 ≈ 1, 923

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Some factorisation records

N Year Algorithm
RSA-120 (399 bits) 1993 MQPS
RSA-129 (429 bits) 1994 MPQS
RSA-130 (432 bits) 1996 NFS
RSA-140 (466 bits) 1999 NFS
RSA-155 (512 bits) 1999 NFS
RSA-160 (532 bits) 2003 NFS
RSA-200 (665 bits) 2005 NFS
RSA-768 2010? NFS
RSA-1024 2030? ??

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— The notion of "Security strength" [FIP09]:

A number associated with the amount of work (that is, the number of
operations) that is required to break a cryptographic algorithm or system.
Sometimes referred to as a security level.

Algorithms security lifetime DSA,D-H RSA ECDSA

Through 2010 (80 bits of St.) (L=1024,N=160) 1024 160

Through 2030 (112 bits of St.) (L=1024,N=160) 2048 224

Through 2050 (128 bits of St.) (L=1024,N=160) 3072 256

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Some "Recommendations" about key length

DCSSI [DCS06] in 2006: we consider that the use of 1024 bits
RSA moduli is a risk incompatible with the criteria of standard
robustness.
NIST [NIS06a] in 2008:

1 Authentication keys:
Until 2014: RSA 1024 or 2048 bits
After 2014: RSA 2048 bits

2 Digital Signature and Key Establishment Keys :
Until 2014: RSA signature or key transport 1024 or 2048 bits
After 2014: RSA signature or key transport 2048 bits

3 CA: RSA 2048, 3072, or 4096 bits

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Unfortunately Silverman [Sil97] says . . .

. . . Suppose we choose our primes for our RSA key such that p ± 1,
q± 1 have no small factors and are thus inaccessible to P ± 1. This
does not guard against the existence of a small value of k , k 6= 1,
such that p ± k is divisible by only small primes. And if such a k
exists, ECM can succeed where P ± 1 fails. It is impossible to
guard against all such possible values of k.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Current section

1 Introduction

2 So, what can we do ?

3 How to choose/compute e ?

4 How to choose d ?

5 How to choose the key length ?

6 Conclusion and future work

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— The Art of RSA is hard : A RSA key can be "weak".

Security in key generation is mainly (only?) based on pseudorandom
number generators and "probabilities".

The chances to obtain a weak key are considered negligible and
often therefore no test is done, even the simplest ones.

This confidence in mathematics can still be shaken when the
randomness is not that random. That is what happened to the
Debian Random Generator. L. Bello has found that, because of a
single line of "miscommented" code, between September 2006 and
2008 the RSA key generated by OpenSSL/Debian were not random
but rather highly predictable. For RSA 1024 bits the set of possible
key has a very low cardinal of 215 = 32768.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— The Art of RSA is hard : towards a Certificate of PKV ?
There are needs for:

Approved method for full validation of RSA keys generation
Approved method for partial validation (at least) of RSA keys
generation
Cartography (reality) of how open source software (and if
possible commercial software also) compute a RSA key to
verify what partial validation of RSA keys they reach.
Certificate of Public Key Validation (and of course to define
what such a thing has to be!) a least for the a posteriori
problem of legal assurance

So, what could be such a Certificate of Public Key Validation ?

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

KEGVER

— Key Generation with Verifiable Randomness (KEGVER, [AJ02]):

How to pursuade a verifying party that the key has been generated
"securel" ?

ad hoc verifications against class of attacks,
Zero-knowledge approaches to prove a secured process was
used,
Definition of a distributed key generation protocol

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Certificate of Public Key Validation: future work
It has to contain, a minima

X509 Certificate information : a priori ownership
Information of key generation process (with zero-knowledge
proof): a posteriori control (PRNG used, seeds, primes, . . .)

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Thanks a lot for your attention and your questions are
welcomed . . .

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Fermat revisited with Coppersmith’s methods 1/2

Direct approach of Fermat method gives the equation
P(x , y) = x2 − y2 − N
Variable change x = x + R with R = d

√
Ne and normalization

gives P(x , y) = (x + 2R)2 − y2 − 4N
This is a bivariate integer polynomial equation
We can solve it with Coppersmith Lattice method
[Cop96b, Cop96a, Cop97] if |p − q| < N1/4

we can also consider the modular (x + 2R)2− y2 = 0 mod 4N

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

— Fermat revisited with Coppersmith’s methods 2/2

we can factor N in a polynomial time if |p − q| < N1/3 if we
use the Coppersmith method for the modular bivariate
equation
We have to point out that we get only an empirical method: it
works if the the classical "resultant heuristics" holds.
(Numerical experiments in progress!)
[Cop96b, Cop96a, Cop97, JM06, May07].
This bound of 1/3 corresponds for a standard balanced
RSA-1024 bits to factors p and q of 512 bits having their 171
most significant bits alike out of 512 and the gain over the
FFM is 85 bits.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

J. Guajardo A. Juels.
RSA Key generation with verifiable randomness.
Lecture notes in computer science, vol. IX:pp. 357–374, 2002.
PKC 2002.

D. Boneh and G.Durfee.
Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory, 46, 2000.

D. Coppersmith.
Finding a small root of a bivariate integer equation; factoring
with high bits known.
Lecture Notes in Computer Science, XX:178–189, 1996.

D. Coppersmith.
Finding a small root of a univariate modular equation.
Lecture Notes in Computer Science, XX:155–165, 1996.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

D. Coppersmith.
Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities.
J. Cryptology, 10(4):233–260, 1997.

DCSSI.
Règles et recommandations concernant le choix et le
dimensionnement des mécanismes cryptographiques de niveau
de robustesse standard.
Services du Premier Ministre, 2006.

FIPS PUB 186-3.
Digital signature standard (dss).
http://csrc.nist.gov/publications/fips/fips186-3, June 2009.

IETF.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System
(DNS).
http://www.ietf.org/rfc/rfc3110.txt, May 2001.

E. Jochemsz and A. May.
A Strategy for Finding Roots of Multivariate Polynomials with
New Applications in Attacking RSA Variants.
Lecture Notes in Computer Science, 4284:267, 2006.

A. May.
Using LLL-Reduction for Solving RSA and Factorization
Problems: A Survey.
In LLL+ 25 Conference in honour of the 25th birthday of the
LLL algorithm, 2007.

P. Nguyen.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

Can we trust cryptographic software? cryptographic flaws in
gnu privacy guard v1.2.3.
In EUROCRYPT 2004, pages 555–570.

NIST Special Publication 800-57.
SP 800-57, Recommendation for Key Management - Part 3:
Application-Specific Key Management Guidance (draft).
http://csrc.nist.gov/publications/drafts/800-57-part3,
November 2006.

NIST Special Publication 800-89.
Recommendation for Obtaining Assurances for Digital
Signature Applications.
http://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89,
November 2006.

NIST Special Publication 800-57.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

SP 800-57, Recommendation for Key Management - Part 1:
General (Revised).
http://csrc.nist.gov/publications/drafts/800-57-part3, March
2007.

NSA.
Fact Sheet Suite B Cryptography.
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml,
2009.

R. D. Silverman.
Fast Generation of Random, Strong RSA Primes.
Cryptobytes, 3, Spring 1997.
Number 1.

M. J. Wiener.
Cryptanalysis of short RSA secret exponent.
IEEE Trans. Information Theory, 36:553–558, 1990.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

Introduction
So, what can we do ?

How to choose/compute e ?
How to choose d ?

How to choose the key length ?
Conclusion and future work

S. Y. Yan.
Cryptanalytic attacks on RSA.
Springer, 2008.

Robert ERRA & Christophe GRENIER How to compute RSA keys?

	Introduction
	So, what can we do ?
	How to choose/compute e ?
	How to choose d ?
	How to choose the key length ?
	Conclusion and future work

