
ENTROPY
the new vision

Zdeněk Breitenbacher
zdenek.breitenbacher@avg.com

Hello,
I am a clean file!

…and I am the virus,
appended to you!

…and here are
my colleagues!

Oh no! They are
infected too!

Fortunately, here is Joe,
the Virus Fighter…

…and he has the Definition!

So he has done…

So he has done with the virus…

So he has done with the virus easily…

But what is this???

But what is this???

But what is this???

Yes, this is a new virus!

Yes, this is a new virus!

a POLYMORPHIC virus!

???

Which definition
is the proper one?

None of them!

Bad news!

The last year brought a lot of news
in the field of malware evolution.

Polymorphic malware now
becomes the standard.

The detection is getting more and
more difficult.

Good news!

Each copy of polymorphic malware is
totally different in a binary view, but
we still can find some characteristics,
which remain always the same.

We only have to forget all previous
methods of detection, especially
those which were based on searching
for some typical signatures.

forget…

everything!

OK, then we need
a new type of definition!

• Each polymorphic virus or trojan
has been created by some polymorphic generator.

• Each polymorphic virus or trojan
has been created by some polymorphic generator.

• Each polymorphic family
has its own specific generator.

• Each polymorphic virus or trojan
has been created by some polymorphic generator.

• Each polymorphic family
has its own specific generator.

• Each polymorphic generator
has some characteristics and limitations.

We don’t need to
detect the virus

We don’t need to
detect the virus

We can detect
the generator !

We can easily distinguish common compilers
like Microsoft Visual C++ or Borland Delphi

We can easily distinguish common compilers
like Microsoft Visual C++ or Borland Delphi

We can easily recognize various runtime
compressors like UPX, PECompact or ASPack

We can easily distinguish common compilers
like Microsoft Visual C++ or Borland Delphi

We can easily recognize various runtime
compressors like UPX, PECompact or ASPack

We surely we will be able to detect any
polymorphic generator…

Which characteristics
can be used?

Which characteristics
can be used?

What about…

Which characteristics
can be used?

What about…

bugs in the
generator?

• Incorrect value in a file header

• Improper resource format

• Anything else…

• Incorrect value in a file header

• Improper resource format

• Anything else…

• Palette of instructions used in the produced code

• Incorrect value in a file header

• Improper resource format

• Anything else…

• Palette of instructions used in the produced code

• Jump flow of produced code

• Incorrect value in a file header

• Improper resource format

• Anything else…

• Palette of instructions used in the produced code

• Jump flow of produced code

• Set of anti-debug and anti-disassembling tricks

• Incorrect value in a file header

• Improper resource format

• Anything else…

• Palette of instructions used in the produced code

• Jump flow of produced code

• Set of anti-debug and anti-disassembling tricks

• Amount of various illogical instructions

What else can we measure?
Any idea?

Virut (sample No.1)

Virut (sample No.2)

Virut (sample No.3)

You cannot
catch me!

You cannot
catch me!

Oh, we will see…

What about to use some
mathematics ?

What about to use some
mathematics ?

We will add a new column,
an entropy level

The entropy describes
local density of data

Forgot the real data, only
the entropy is needed

Virut (sample No.1)

Compare to the sample
No.2

Virut (sample No.2)

And also to the sample
No.3

Virut (sample No.3)

…Virut in charts

…Virut in charts

…Virut in charts

We only have to compute
an average picture and set

the allowed variance

We only have to compute
an average picture and set

the allowed variance

The detection is
easy and fast

The magic is, to find
a completely new look at data

(whatever it may be)

REGEDIT.EXE (clean)

REGEDIT.EXE (clean)

REGEDIT.EXE

REGEDIT.EXE
(infected by ZMist)

REGEDIT.EXE

REGEDIT.EXE

REGEDIT.EXE

Using entropy maps,
all of you can be
malware experts!

OK, so how can we compute
the entropy map?

1. Each sequence of 16 subsequent bytes is evaluated by local
entropy value. A function which computes it, also examines larger
surrounding than those 16 bytes only.

2. The entropy value is computed for each particular byte. The
function starts with the value 15. Then the function is stepping in
interval 1 and check adjacent bytes, whether they are the same as
this reference byte. If yes, the entropy is decreased by one. On the
first non-matching byte the function stops.

3. Then the function performs the same comparison, but in interval of
2 (i.e. it examines bytes in offset 2, 4, 6, 8 etc.), then in interval of 3
(offset 3, 6, 9, 12...), interval of 4 up to interval of 32. The lowest
entropy, which has been found, is taken as the proper entropy
value for this examined byte.

4. As the last step, we take each 16 subsequent bytes and assign the
lowest value of their entropy as the entropy of this group.

1. Each sequence of 16 subsequent bytes is evaluated by local
entropy value. A function which computes it, also examines larger
surrounding than those 16 bytes only.

2. The entropy value is computed for each particular byte. The
function starts with the value 15. Then the function is stepping in
interval 1 and check adjacent bytes, whether they are the same as
this reference byte. If yes, the entropy is decreased by one. On the
first non-matching byte the function stops.

3. Then the function performs the same comparison, but in interval of
2 (i.e. it examines bytes in offset 2, 4, 6, 8 etc.), then in interval of 3
(offset 3, 6, 9, 12...), interval of 4 up to interval of 32. The lowest
entropy, which has been found, is taken as the proper entropy
value for this examined byte.

4. As the last step, we take each 16 subsequent bytes and assign the
lowest value of their entropy as the entropy of this group.

1. Each sequence of 16 subsequent bytes is evaluated by local
entropy value. A function which computes it, also examines larger
surrounding than those 16 bytes only.

2. The entropy value is computed for each particular byte. The
function starts with the value 15. Then the function is stepping in
interval 1 and check adjacent bytes, whether they are the same as
this reference byte. If yes, the entropy is decreased by one. On the
first non-matching byte the function stops.

3. Then the function performs the same comparison, but in interval of
2 (i.e. it examines bytes in offset 2, 4, 6, 8 etc.), then in interval of 3
(offset 3, 6, 9, 12...), interval of 4 up to interval of 32. The lowest
entropy, which has been found, is taken as the proper entropy
value for this examined byte.

4. As the last step, we take each 16 subsequent bytes and assign the
lowest value of their entropy as the entropy of this group.

1. Each sequence of 16 subsequent bytes is evaluated by local
entropy value. A function which computes it, also examines larger
surrounding than those 16 bytes only.

2. The entropy value is computed for each particular byte. The
function starts with the value 15. Then the function is stepping in
interval 1 and check adjacent bytes, whether they are the same as
this reference byte. If yes, the entropy is decreased by one. On the
first non-matching byte the function stops.

3. Then the function performs the same comparison, but in interval of
2 (i.e. it examines bytes in offset 2, 4, 6, 8 etc.), then in interval of 3
(offset 3, 6, 9, 12...), interval of 4 up to interval of 32. The lowest
entropy, which has been found, is taken as the proper entropy
value for this examined byte.

4. As the last step, we take each 16 subsequent bytes and assign the
lowest value of their entropy as the entropy of this group.

Do you understand?
Not yet?

Do you understand?
Not yet?

So let us to explain the
whole algorithm in details !

HEX dump
16 x 10 bytes

Examined data (buffer of 160 Bytes)

HEX dump
16 x 10 bytes

Entropy value for each row

?For this row

RThe first byte

R ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?Entropy = 15

Step = 1, forward

R ?Entropy = 15

Step = 1, forward

R =Entropy = 14

Step = 1, forward

R = ?Entropy = 14

Step = 1, forward

R = =Entropy = 13

Step = 1, forward

R = = ?Entropy = 13

Step = 1, forward

R = = XEntropy = 13

Step = 1, forward

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
R = = XEntropy = 13

Step = 1, backward

?
R = = XEntropy = 13

Step = 1, backward

=
R = = XEntropy = 12

Step = 1, backward

? =
R = = XEntropy = 12

Step = 1, backward

X =
R = = XEntropy = 12

Step = 1, backward

X =
R = = X

Step = 1, result

Entropy[1] = 12

X =
R = = XEntropy = 15

Step = 2, forward

Entropy[1] = 12

X =
R = ? X ? ? ? ? ? ?
? ? ? ? ? ? ? ?

Entropy = 15

Step = 2, forward

Entropy[1] = 12

X =
R = ? XEntropy = 15

Step = 2, forward

Entropy[1] = 12

X =
R = = XEntropy = 14

Step = 2, forward

Entropy[1] = 12

X =
R = = X ?Entropy = 14

Step = 2, forward

Entropy[1] = 12

X =
R = = X =Entropy = 13

Step = 2, forward

Entropy[1] = 12

X =
R = = X = ?Entropy = 13

Step = 2, forward

Entropy[1] = 12

X =
R = = X = XEntropy = 13

Step = 2, forward

Entropy[1] = 12

? ? ? ? ? ? ?
? ? ? ? ? ? ? ? =
R = = X = XEntropy = 13

Step = 2, backward

Entropy[1] = 12

? =
R = = X = XEntropy = 13

Step = 2, backward

Entropy[1] = 12

X =
R = = X = XEntropy = 13

Step = 2, backward

Entropy[1] = 12

X =
R = = X = X

Step = 2, result

Entropy[1] = 12, 13

Entropy = 13

X =
R = = ? = ? ? ? ?

? ? ? ? ?
? ? ? ? ?

Entropy = 15

Step = 3, forward

Entropy[1] = 12, 13

X =
R = = X =Entropy = 15

Step = 3, forward

Entropy[1] = 12, 13

? ? ? ? ?
? ? ? ? ? X =

R = = X =Entropy = 15

Step = 3, backward

Entropy[1] = 12, 13

X = = = = X =
R = = X =Entropy = 11

Step = 3, result

Entropy[1] = 12, 13, 11

? ? ? ?
? X ? = ? = ? = X =
R = = X ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

Step = 4

Entropy[1] = 12, 13, 11

X X = = = = = X =
R = = X = = =
= = X

Step = 4, result

Entropy[1] = 12, 13, 11, 8

? ? ?
? X ? = = = ? = = X =

R = = X = ? = ? = ?
= ? X ? ?

? ? ?
? ? ?

? ? ?

Step = 5

Entropy[1] = 12, 13, 11, 8

? ? ? ?
? ? ? = = ? ? = = X =

R = = X = ? ? = ? ? ?
= ? ? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ? ? ? ?
? ?

Step = 6

Entropy[1] = 12, 13, 11, 8, 9

? ? ? ? ? ?
? ? ? ? = = ? ? ? = = X =

R = = X = ? ? ? = ? ? ? ?
= ? ? ? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ?

? ?

Step = 7

Entropy[1] = 12, 13, 11, 8, 9, 11

? ? ? ? ? ?
? ? ? ? = = ? ? ? = = X =

R = = X = ? ? ? = ? ? ? ?
= ? ? ? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ?

? ?

Step = 8 .. 48

Entropy[1] = 12, 13, 11, 8, 9, 11, …

? ? ? ? ? ?
? ? ? ? = = ? ? ? = = X =

R = = X = ? ? ? = ? ? ? ?
= ? ? ? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ?

? ?

For all steps…

Entropy[1] = min(12, 13, 11, 8, 9, 11, …)

? ? ? ? ? ?
? ? ? ? = = ? ? ? = = X =

R = = X = ? ? ? = ? ? ? ?
= ? ? ? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ?

? ?

For all steps…

Entropy[1] = 8

? ? ? ? ? ?
? ? ? ? = = ? ? ? = = X =

R R = X = ? ? ? = ? ? ? ?
= ? ? ? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ?

? ?

Continue: Step = 1 .. 48

Entropy[2] = ?

? ? ? ? ? ?
? ? ? ? = = ? ? ? = = X =

R R R X = ? ? ? = ? ? ? ?
= ? ? ? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ?

? ?

And again:

Entropy[3] = ?

? ? ? ? ? ?
? ? ? ? = = ? ? ? = = X =

R R R R R R R R R R R R R R R R
= ? ? ? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ?

? ?

To the end of the row:

Entropy[16] = ?

8…for this row

Entropy = min(Entropy[1] .. Entropy[16]) = 8

Result…

And now some
final adjustments:

Many zeroes in data

Many zeroes in data

1. Count the total number of zeroes on the line

2. Compute
Entropy[zeroes] = 15 – count(zeroes)

3. Result is
Entropy = min(Entropy[zeroes], Entropy)

Many zeroes in data

1. Count the total number of zeroes on the line

2. Compute
Entropy[zeroes] = 15 – count(zeroes)

3. Result is
Entropy = min(Entropy[zeroes], Entropy)

Many zeroes in data

1. Count the total number of zeroes on the line

2. Compute
Entropy[zeroes] = 15 – count(zeroes)

3. Result is
Entropy = min(Entropy[zeroes], Entropy)

Text characters in data

Text characters in data

1. Count the longest continuous text on the line
(including TAB, CR, LF and zero)

2. If the text is shorter than a limit (10 chars), ignore it

3. Otherwise compute
Entropy[text] = 15 – length(text)

4. Result is
Entropy = min(Entropy[text], Entropy)

Text characters in data

1. Count the longest continuous text on the line
(including TAB, CR, LF and zero)

2. If the text is shorter than a limit (10 chars), ignore it

3. Otherwise compute
Entropy[text] = 15 – length(text)

4. Result is
Entropy = min(Entropy[text], Entropy)

Text characters in data

1. Count the longest continuous text on the line
(including TAB, CR, LF and zero)

2. If the text is shorter than a limit (10 chars), ignore it

3. Otherwise compute
Entropy[text] = 15 – length(text)

4. Result is
Entropy = min(Entropy[text], Entropy)

Text characters in data

1. Count the longest continuous text on the line
(including TAB, CR, LF and zero)

2. If the text is shorter than a limit (10 chars), ignore it

3. Otherwise compute
Entropy[text] = 15 – length(text)

4. Result is
Entropy = min(Entropy[text], Entropy)

?…for this row

Entropy = min(Entropy[1] .. Entropy[16], Entropy[zeroes], Entropy[text])

Result…

That’s all, folks…

That’s all, folks…

I am looking forward to
the discussion!

What will be next?
Have you heard about

a jump map ?

Zdeněk Breitenbacher
AVG Technologies,

zdenek.breitenbacher@avg.com

