IAWACS 2009

Benjamin CAILLAT

ESIEA - SI&S lab
caillat[at]esiea[dot]fr

bcaillat[at]security-labs([dot]org

«O>» «F» 4:3»7 *fzé Q>

Plan

ﬂ Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
@ Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 2/ 238

e Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
@ Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

Quick reminder. ..

The PE format (1)

@ Under Windows, executables are in the PE format (Portable
Executable)

@ Executables compounded of a header, a section table and several
sections (code, data, resources. . .)

PE headers

Section table

Section 1

Section n—1

Section n

Figure: General structure of an executable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 4 / 238

Quick reminder. ..

The PE format (2)

Headers

contain metadata used by Windows to load executable : prefered load
address, address of entry point, ...

Table of sections

array of structures, each representing one section (name, mapping address,
characteristics, .. .)
characteristics : rights (RWX), initialised or not, shared, ...

Sections
@ two types : code (RX) and data (R or RW)

o data section :

e data of the program (strings, global variables, .. .)
e metadata : importation and exportation tables

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 5/ 238

Quick reminder. ..

Imported function resolution in Windows

@ an executable generally uses/“imports” functions “exported” by a
shared library

@ importation: by name or by ordinal (index in exportation table)

@ two mechanisms to resolve imported functions:

o when process is created
e during execution (“dynamic address resolution”)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 6 / 238

Quick reminder. ..

Resolution when process is created (1)

@ resolution is done by Windows loader

@ PE file contains an “import table”: names of every imported
dll/function

e Windows loader reads table and fills another table: the IAT (Import
Address Table)

@ calls to imported functions are done through the IAT

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 7 / 238

Quick reminder. ..

Resolution when process is created (2)

0x41220A | demodll_func()

call [0x42E380]

"demodll_func"

—

0x42E000 0x80000001 |

"demodIl.dIl"

—> | |

0x42E380) 0x10011203 0x1001164A

Figure: Calling an imported function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

Code

Import table

Import Address Table

8 / 238

Quick reminder. ..

Resolution during execution

@ Resolution is done by the code by using two functions:

e “LoadLibrary”: load a library
e “GetProcAddress™: find an exported function by its name/ordinal

@ Result of “GetProcAddress” stored in a function pointer

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

9 /238

Demo : Example of “DemoPE"

<O «Fr o« o

Quick reminder. ..

Notion of shellcode

Definition (general)
Set of binary data that has the following properties:
@ executes some specific operations if execution is transfered to its firts
bytes (in general)
@ can run in any process at any address:

e must not contains any hardcoded address
e must be autonomous and not use external references

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 11 / 238

o Quick reminder. . .

@ The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
© Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

The use of shellcodes in virology

A few techniques used by malicious code . ..

«O>» «Fr «E>» «E>» P NEd

The use of shellcodes in virology A few techniques used by malicious code ...

Context definition

@ Generally, malicious codes try to do several things:

e stay undetected by antiviruses

e propagate to other hosts or executables

o execute their malicious actions (e.g. capture some private user data,
open a backdoor on the system ...)

@ Use special techniques, not always easy to implement

@ Let us illustrate this with a few specific techniques and try to see how
they can be implemented in an executable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 14 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Encryption of malicious code - Principle

Description
Malicious code is made up of two parts:
@ the real malicious payload which is encrypted

@ a decryption part

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 15 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Encryption of malicious code - Principle

Description

Malicious code is made up of two parts:
@ the real malicious payload which is encrypted
@ a decryption part

Objective
@ Protect malicious payload against an analysis

@ Could be an automatic analysis (antivirus) or a manual analysis
(disassembling code)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 15 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Encryption - protection against automatic analysis

e Malicious code is scanned by a tool that works with signature
identification
@ Each copy of malicious code must be different:
e decryption part is transformed through metamorphism
e encryption key is changed in each copy = malicious payload is different
(polymorphism)

Figure: Two copies of the same virus that implements polymorphism

@ Notes:
e Decryption key may be stored in decryption part
e Simple encryption algorithm like a XOR with 32-bits key may be used

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 16 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Encryption - protection against manual analysis

@ Aim: if malicious payload is intercepted during introduction on
targeted system, it cannot be disassembled and analysed manually
o Little differences with previous encryption:

e strong encryption algorithm like AES must be used
e decryption key must not be stored in decryption part

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 17 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Principle of execution of encrypted malware

Memory

Hard drive

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 18 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Principle of execution of encrypted malware

Memory

"Decoder" is introduced
on targeted system

Hard drive

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 19 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Principle of execution of encrypted malware

Memory

Encrypted malicious code is

on targeted system
AR RN
2%%%%% % %%
Encrypted

Decoder icious code
- XXX

AR RN

SIRHIKHKK

Hard drive

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 20 / 238

The use of shellcodes in virology

A few techniques used by malicious code ...

Principle of execution of encrypted malware

"Decoder" is executed

Figure: Principle of execution of an encrypted malware

Decoder
-

a

Memory

Decoder
-

CXIHIIIHXIX

2%% %9993 %% %

Encrypted
malicious code
O

96%%%

CXIHIIIHXIX

XK

Hard drive

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

21 / 238

The use of shellcodes in virology

A few techniques used by malicious code .

Principle of execution of encrypted malware

XRXHKHXKXXX

e

CXIHIIIHXIX

2% 0% %%

Encrypted

malicious code
Decoder

XX XXX XXX,

CHXHIHIHK
-

KIS

1
"Decoder" loads encrypted
icious code in memory

Memory

XXX
2%% %9993 %% %

Encrypted
Decoder malicious code
- XXX

CXIHIIIHXIX

XK

Hard drive

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

22 / 238

The use of shellcodes in virology

A few techniques used by malicious code ...

Principle of execution of encrypted malware

°/"Decoder" decrypts malicious code
L in memory and executes it

)

Malicious code
Decoder
-
Memory
AR RN
2%%%%% % %%
Encrypted 34
Decoder - 0
malicious code ;
- CSOIININNK
AR RN
SIRHIKHKK
Hard drive

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

23 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Encryption - protection against manual analysis

@ Of course, several ways to get malicious payload on infected computer
(dump the memory, extract encryption key and decrypt malicious
payload)

o But malicious payload is protected during introduction onto targeted
computer:

e two parts are introduced in different ways at different times
e if one introduction fails, we will intercept:

e decryption part: totally generic
e malicious payload: encrypted

=-cannot get any information on the attack

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 24 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Encryption of malicious code - Implementation

@ Encryption of each part of malicious payload in executable not a good
solution:

e complicated: all binary data characteristics of the malicious payload
must be encrypted (functions, initialised data and strings)
e not efficient: PE metadata cannot be encrypted

@ Better solution: encrypt the whole executable ~ a packer
But developing such a tool required some work

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 25 / 238

Malicious code is able to execute without being copied on hard drive

«O0>» 4F>» «=)r « =) Q>

The use of shellcodes in virology A few techniques used by malicious code ...

Execute only in memory - Principle

Description

Malicious code is able to execute without being copied on hard drive

Objective
@ Cannot be detected by local antivirus

@ Leaves few traces on targeted system
= complicates an eventual forensic analysis

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 26 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Principle of execution of malware only in memory

Memory

Hard drive

Attacker

Firewall

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 27 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Principle of execution of malware only in memory

(

"Loader" is running Loader
on targeted server

Memory

Hard drive

Attacker

Firewall

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 28 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Principle of execution of malware only in memory

Loader

Memory

Hard drive

Attacker Server

Firewall

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 29 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Principle of execution of malware only in memory

Loader

"Loader" transfers execution
on malicious payload

Memory

Hard drive

Attacker

Firewall

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 30 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Execute only in memory - Implementation (1)

o Copying executable in memory and jumping on entry point does not
work:

e sections must be mapped at the right address
e imported functions must be resolved

@ A few tricks can be used:

e use “pragma” directives to group all functions/data in one section

o play with “preferred load address” so that section is mapped in a
memory space “normally” free in process

e use dynamic address resolution

= Possible. . . but rather tedious

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 31/ 238

Demo : Example of “DemoPragma”

«Oo» «F>» DA

a

The use of shellcodes in virology A few techniques used by malicious code ...

Infect an executable - Principle

Description
@ Malicious payload is added into another executable

@ Execution flow of infected executable is modified to execute malicious
payload

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 33 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Infect an executable - Principle

Description
@ Malicious payload is added into another executable

@ Execution flow of infected executable is modified to execute malicious
payload

Objective

Create a Trojan horse; behaviour of the program must not be disrupted

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 33 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Infect an executable - Implementation

e Malicious payload added at the end of the executable, after last section
@ Several ways to redirect execution flow:

e patch the executable entry point
e patch some instructions that will probably be executed
Example: call to the function “save” in a text editor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 34 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Infect an executable - Implementation

e Malicious payload added at the end of the executable, after last section

@ Several ways to redirect execution flow:
e patch the executable entry point
e patch some instructions that will probably be executed
Example: call to the function “save” in a text editor
@ Each solution has pros and cons:
e Patching instruction requires manual analysis to find a suitable
instruction to patch
e But execution of malicious code requires action of the user
= neither executed, nor analysed by an antivirus, even with code
emulation

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 34 / 238

MyEditor.exe

MyEditor.exe

Original executable Infected executable Infected executable
entry point patched instruction patched
Figure: Principle of infection of an executable
«O0>» 4F>» «=)r « =) = Q>

The use of shellcodes in virology A few techniques used by malicious code ...

Infect an executable - Implementation

Not so easy to implement:

@ several sections might have to be added at the end of the executable
@ sections must be mapped at the right address

@ code must use dynamic address resolution

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 36 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Inject code into another process - Principle

Description
e Malicious code injects some code into another process
e Malicious code forces the execution of this injected code in the
context of the other process

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 37 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Inject code into another process - Principle

Description
e Malicious code injects some code into another process

e Malicious code forces the execution of this injected code in the
context of the other process

Objectives
@ Survive to termination of original process: malicious code injects itself
in “explorer.exe” and runs in this process
@ Intercept private data of user using infected computer:

e malicious code injects itself in a specific application
e injected code uses APl hooking to intercept calls of imported functions
e analyses parameters passed to functions and looks for interesting data

@ Bypass bad implemented personal firewalls: malicious code injects
itself in a hidden instance of a browser and access to Internet

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 37 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Inject code into another process - Principle

Code injection may be done in several ways:
@ dll injection:

e code is included in a dll
e dll is then loaded and “executed” in targeted process

e direct code injection:

e code injected directly into targeted process
o relies on standard functions of Win32 API: OpenProcess,
VirtualAllocEx, WriteProcessMemory and CreateRemoteThread

Each technique has pro and cons

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

38 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

DIl injection

Principle of dll injection
@ Many solution to inject the dll

@ One example: inject dll name and create thead on “LoadLibraryA”
with injected string as argument

Demo : Example of “DemoDllInjection”

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 39 / 238

Figure: Principle of direct code injection

DA

Figure: Principle of direct code injection

DA

gets a handle
on targeted process

Figure: Principle of direct code injection

DA

a
n}
a
8]
-
N
it
i
[y

'Injecter” allocates

‘memory in other process

Figure: Principle of direct code injection

DA

Injecter" copies malicious
code in allocated memory

Figure: Principle of direct code injection

DA

? "Injecter” creates a new thread in other

process that executes malicious code }

Figure: Principle of direct code injection

v
[y

DA

The use of shellcodes in virology A few techniques used by malicious code ...

Direct code injection

@ Encounter same problems as execution only in memory:

e sections must be mapped at the right address
e imported functions must be resolved

= Can use the same tricks

@ Note that if memory where code must be mapped is already allocated,
injection will fail!

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 46 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Summary

@ Implementation of those techniques in an executable is always
possible, but requires lots of work
o Difficulties come from several properties of the executable:
e code and data are spread in the executable;
e process requires some of initialisation normally done by Windows loader

e code contains hardcoded addresses = sections must be mapped at the
right addresses

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 47 / 238

The use of shellcodes in virology A few techniques used by malicious code ...

Summary

@ Implementation of those techniques in an executable is always
possible, but requires lots of work

o Difficulties come from several properties of the executable:
e code and data are spread in the executable;
e process requires some of initialisation normally done by Windows loader
e code contains hardcoded addresses = sections must be mapped at the

right addresses
@ Those techniques could be implemented more easily if the code:

e was constituted of only one block
e was able to initialise the address space
e contained no hardcoded address

= if the malicious code was a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 47 / 238

The use of shellcodes in virology Implementation of the techniques from a shellcode

Plan

The use of shellcodes in virology

Implementation of the techniques from a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 48 / 238

The use of shellcodes in virology Implementation of the techniques from a shellcode

Principle

Consider now that our malicious code is a shellcode:
@ constituted of only one block
@ can run at any address in any process

@ executes exactly the same operations as the normal executable if
execution transferred to its first byte

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

49 / 238

The use of shellcodes in virology Implementation of the techniques from a shellcode

Implementation of the techniques

Encryption of malicious code

Decryption part becomes a simple loop that executes decryption on
shellcode ~ array of bytes

Execution only in memory and code injection

Easy to implement since by definition shellcode is able to execute in any
process at any address

Executable infection
@ shellcode added in last section
@ few modifications done on PE header
@ entry point or instruction patched to jump on shellcode

@ jump to original instruction added at end of shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 50 / 238

The use of shellcodes in virology Implementation of the techniques from a shellcode

Summary

@ Implementation of presented techniques is greatly simplified if the
malicious code is a shellcode rather than an executable

@ Next problem is how to get a shellcode?

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 51 / 238

o Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
© Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

Writing shellcode for Windows

Properties of a shellcode

Shellcode are generally used in an exploit. Must follow several constraints :
e must be relocalisable
@ must be autonomous
@ must be small
@ must avoid some special values (null bytes for example)

Lots of constrains = generally written in assembly

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 53 / 238

Example of structure to avoid hardcoded addresses

jmp short getaddr

function:
pop esi ; Get address of string in esi
push esi ; Put address of string on stack
getaddr:
call function

shell_string:
db ’/bin/sh’

Writing shellcode for Windows

Writing a shellcode: tips

Avoid null bytes

mov eax, 0 ; b8 00 00 00 0O
Xor eax,eax ; 33 cO0

How to call functions exported by shared libraries?

@ Shared library may be not loaded in process address space

@ Even if it is loaded, how to know load address of shared library?
Solutions depend on the operating system

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 55 / 238

Writing shellcode for Windows

Calling functions exported by shared libraries: Linux case

@ System services call through int 0x80 (or sysenter); index of services
set in eax

@ Number of system services are fixed and stable across kernel versions

@ Example : starting a new process : eax=0xb

= Shellcode just has to use system services instead of functions exported
by libraries

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 56 / 238

Figure: Values of x86 registers before calling service Oxb of int 0x80
«O0>» «Fr «E>r < > Q>
Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 57 /238

Writing shellcode for Windows

Calling functions exported by shared libraries: Windows case

Problem

Number of system services change from a version of Windows to another
= cannot use system services directly; must use functions exported by
shared library

Two solutions
@ Assume that shared library are loaded at a known address and
hardcode function addresses
= small size, but not portable
@ Dynamically find addresses of required imported functions
= portable, but bigger

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 58 / 238

Writing shellcode for Windows

Calling functions exported by shared libraries: Windows case

@ Resolving an imported function implies:

e loading the library that exposes the function
o finding the function address in this library

@ Can use the functions LoadLibrary/GetProcAddress exported by
kernel32.dll

o Paradox: how to find the addresses of those functions?

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 59 / 238

Writing shellcode for Windows

Calling functions exported by shared libraries: Windows case

Common method:
@ gets address of kernel32.dll by analysing memory

@ walks through kernel32.dll exports table to find addresses of
LoadLibrary/GetProcAddress

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 60 / 238

Writing shellcode for Windows

Finding the load address of kernel32.dll

@ Several technics

e Through PEB
e Through SEH (UEF generally points in kernel32.dIl)

@ Use the first, more reliable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

61 / 238

Writing shellcode for Windows

Finding the load address of kernel32.dll

0x30

0x0c

@LOADER

LOADER

Linked list

Load order

Linked list

In mem. order

Ox1c|

Linked list

Init. order

LDR_MOD LDR_MOD
FD FD
BD BD
@Ioad ntdll @Ioad kernel32

Figure: Finding load address of kernel32.dll through the PEB

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

62 / 238

Writing shellcode for Windows

Finding address of LoadLibrary/GetProcAddress

o load address of kernel32.dIl has been found

@ addresses of LoadLibrary/GetProcAddress can be found by parsing
exports table

@ only need to know the PE format

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 63 / 238

Writing shellcode for Windows

Finding the addresses of other functions

@ Once addresses of LoadLibrary/GetProcAddress have been find, all
functions may be resolved

@ Problem: names of the functions must be included in the shellcode,
and name of Win32 API are *very* long

@ A better solution: write a function “getprocaddressbycksum” that
resolves a function from a 32-bits checksum computed from its name

@ Checksum algorithm must be well chosen to avoid collision as much as
possible

@ “getprocaddressbycksum” is not really a new function, since we already
need such a function to find the addresses of “LoadLibrary” and
“GetProcAddress”

Finally, we don’t really need the function “GetProcAddress”

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 64 / 238

Writing shellcode for Windows

Writing shellcode for windows

Demo : Using functions getk32 and getprocaddress of the Metasploit
project

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 65 / 238

o Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
© Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

Generating the shellcode

Objective of this part

Present an easy way to write the malicious code as a shellcode

In this context, shellcode are a little different: can be big (or huge), no
forbidden values

Writing shellcode directly in assembly quickly becomes tedious
= solution dismissed
@ Better solution would be:
e write code in C language
e use compiler to generate executable
e extract some part from this executable
o form shellcode by assembling them
@ First, let us have a look on the binary code generated by a normal
compilation on “simpletest”

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 67 / 238

Generating the shellcode

Presentation of simpletest

@ Very simple program that prints messages and displays the content of
a file “test.txt”
o Contains:
e definition of a new type “USER"
e two global variables;
e “g User": type “USER”
e “g szMessage": string
o five internal functions:
“DisplayMessage”: displays “g_szMessage”
“DisplayFile”: opens a file “test.txt” and displays its content
“DisplayData”: function that really executes all operations

“main”: program entry point that only calls “DisplayData”
e “PrintMsg”: displays log messages

e several strings
e several calls to imported functions: CreateFile, HeapAlloc. ..

= not really useful but contains most elements of C program

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 68 / 238

Generating the shellcode

Analysis of generated assembly

Demo : Analysis of assembly generated by the build of simpletest original
code

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 69 / 238

Generating the shellcode

Analysis of generated assembly

Binary code cannot be directly used to create a shellcode:

@ contains lots of hardcoded addresses (reference to a string or a global
variable)

@ internal functions calls are relative but distance is hardcoded
@ imported function calls rely on IAT

To obtain binary code that may be used in a shellcode, we have to:
@ force the compiler to produce code without hardcoded addresses

@ find a solution to resolve imported function dynamically

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 70 / 238

Generating the shellcode

First approach: patching assembly

@ Assembly is generated with the compiler, patched with a
transformation tool and then assembled to generate binary data
@ Several problems:

e lots of modification to do on assembly

e transformation tool has to work on assembly, which is not really a
natural language

e transformation tool will be linked to a specific assembly and then to a
specific hardware platform

= Solution dismissed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 71 / 238

Generating the shellcode

Second approach: using the stack

e C code is written in a specific way so that everything is handled in the

stack
Example 1: use of the stack to store a string
CHAR szStrUsername[] = {'U’, 's’, 'e', 'x’, 'n’', 'a’, 'm'", 'e', "', ' "', "'%", "gs'};
004130DA C645 F4 55 MOV BYTE PTR SS:[EBP-C], 55
004130DE C645 F5 73 MOV BYTE PTR SS:[EBP-B], 73
004130E2 C645 F6 65 MOV BYTE PTR SS:[EBP-A], 65
SS: [EBP-9],72

004130E6 C645 F7 72 MOV BYTE PTR S

Example 2: use of the stack to store pointer on an imported function

hLib = LoadLibrary (szStrLibraryName) ;

pFunc = (FunctionTypeDef) GetProcAddress (hLib, szStrFunctionName);
pFunc(...);

@ Problems: code is far from normal C code: tedious to write, existing
code must be adapted = Solution dismissed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 72 / 238

Generating the shellcode

Third approach: using global data

@ Use one structure that stores all global data and that is transmitted in
every internal function call
@ Structure, called later “GLOBAL DATA”", will contain:

e pointers on internal functions
e pointers on imported functions
e global variables
e strings
@ C code is modified so that every reference to a previously listed
element will be done through GLOBAL DATA

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 73 / 238

Generating the shellcode

Third approach: using global data

Original function DisplayFile

BOOL DisplayFile (IN CHAR * szFilePath)
{

CreateFile (szFilePath, ...)

pData = (UCHAR %) HeapAlloc (GetProcessHeap (), HEAP_ZERO_MEMORY, dwFileSize+1)
ReadFile (hFile, pData, ...)

PrintMsg (LOG_LEVEL_TRACE, "File successfully read: %s", pData);

Patched function DisplayFile (modifications are colorized in red)

BOOL DisplayFile (IN PGLOBAL_DATA pGlobalData, IN CHAR % szFilePath)
{

pGlobalData->CreateFile (szFilePath, ...)

pData = (UCHAR) pGlobalData->HeapAlloc (pGlobalData->GetProcessHeap (), \\
HEAP_ZERO_MEMORY, dwFileSize+l)

pGlobalData->ReadFile (hFile, pData, ...)

pGlobalData->PrintMsg (pGlobalData, LOG_LEVEL_TRACE, pGlobalData->szString_00000001, \\
pbata) ;

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 74 / 238

Generating the shellcode

Third approach: using global data

The GLOBAL DATA definition looks like the following:

Overview of structure GLOBAL_DATA

typedef struct _GLOBAL_DATA

{
/+ Internal functions */
PrintMsgTypeDef fp_PrintMsg;

/* Imported functions =/
CreateFileTypeDef fp_CreateFile;
HeapAllocTypeDef fp_HeapAlloc;
GetProcessHeapTypeDef fp_GetProcessHeap;
ReadFileTypeDef fp_ReadFile;

/* Data strings */
CHAR szString_00000001[27];

} GLOBAL_DATA, * PGLOBAL_DATA;

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 75 / 238

Generating the shellcode

Third approach: using global data

Demo : Analysis of assembly generated by the build of simpletest patched
code

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 76 / 238

Generating the shellcode

Third approach: using global data

@ Generated binary does not contain any hardcoded addresses
= binary code can be directly extracted and used to form shellcode

@ Shellcode may be created simply by concatenating the extracted
functions and adding the GLOBAL DATA structure at the end

GLOBAL_DATA

Figure: Overview of the structure of the shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 77 / 238

Generating the shellcode

Summary

@ This solution allows a shellcode to be created with little modifications
of source code

@ However, still a few problems to solve:

e writing the definition of the GLOBAL DATA structure and the
definition of macros is long

o the GLOBAL DATA structure must be initialised

e source code must be modified

e binary data must be extracted from generated executable and
assembled to create final shellcode

= A tool that executes all those operations automatically has been
developed: WiShMaster

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 78 / 238

o Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
© Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

WiShMaster in a nutshell

Versions of WiShMaster

WiShMaster in a nutshell Versions of WiShMaster

Presentation

@ WiShMaster is a tool that automatically generates shellcodes, by using
the previously described principle

@ Takes a set of C source files written “normally” in input and generates
a shellcode in output

@ Shellcode accomplishes same operations as executable produced by
compilation of original source

@ Transformation in shellcode called later “shellcodisation”

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 81 / 238

WiShMaster in a nutshell Versions of WiShMaster

Development progress - WiShMaster version 1

@ WiShMaster v1 has been available on my web site for two years
@ Grapbhical application developed in C#
@ Works but has several limitations

Most important: C code parsed with regular expressions = must
conform to a few syntax rules to be successfully analysed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 82 / 238

WiShMaster in a nutshell Versions of WiShMaster

Development progress - WiShMaster version 2

@ WiShMaster v2 is beta release
o Corrects many problems of the v1:
e WiShMaster is now a console application written in Python:
@ shellcodisation process can be scripted
@ user can intercede at any step of the shellcodisation process, view
results and correct eventual mistakes
e parsing of source code with regular expressions has been considerably
reduced = most of the constrains on C syntax have been removed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 83 / 238

WiShMaster in a nutshell

Format of source code in input

<O < Fr <= «=» DA

WiShMaster in a nutshell Format of source code in input

Format of source code in input

During development of WiShMaster v2, have to do a choice on the type of
input code:

@ either develop WiShMaster so it can operate on normal C code

@ either require that C code is written in a specific way

Each solution has pro and cons

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 85 / 238

WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Principle

@ Write a C analyser or use an existing to analyse C code and recognize
specific objects
@ Create a patched copy of source code

@ Build the patched copy

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 86 / 238

WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Analyse source code

@ gcc: option -fdump-tree-original-raw generate AST in text file
Problems:

e a parser for the AST must be written
e to debug with Microsoft Visual Studio, code must be analysed by gcc
and build by cl.exe

@ pycparser: doesn’'t manage to parse windows.h

@ write our own C analyser: very complicated to be able to parse
windows.h

@ cl.exe: use browse or debug file
Problem: doesn't give all informations (for example list of strings)
= still need to analyse C code with regular expressions

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 87 / 238

WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Create patched
copy

In some special cases, WiShMaster may generate invalid C code

Original code

printf ("test", test
(10)) 7

Patched code (invalid)

printf ("pGlobalData->test", test
(10)) 7

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

88 / 238

WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Summary

To sum up, this solution works, but :
@ requires some work to develop a code analyser
@ is not really a proper solution since all files are duplicated
@ WiShMaster needs to analyse source code with regular expressions

@ may have some problem if code is not formated “normally”:

e WiShMaster may failed to analyse source code
e patched code generated by WiShMaster may be invalid

= Solution dismissed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 89 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Objective

Objective
Force C code to be formatted in a special way, so that:

@ the same source code may generate a normal executable or relative
binary code

@ it may be analysed easily by WiShMaster with regular expression to
extract some informations

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 90 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Objective

Objective
Force C code to be formatted in a special way, so that:

@ the same source code may generate a normal executable or relative
binary code

@ it may be analysed easily by WiShMaster with regular expression to
extract some informations

Solution
@ Use C macros !

o WiShMaster defines some macros that must be used when

declaring/using internal /imported functions, global variables and
strings

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 90 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Internal functions

@ Internal functions are declared through a macro
“INTERNAL _FUNCTION"

o Calls are normal

Presentation of the macro “INTERNAL_FUNCTION”

INTERNAL_FUNCTION (ReturnType, CallConvention, Special,FunctionName, ...)

ReturnType = return type of the function

CallConvention = type of convention

Special = special keyword to add after type of convention
FunctionName = name of internal function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 91 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Internal functions

Declaration of an internal function “PrintMyMessage”

#pragma push_macro ("PrintMyMessage")
#undef PrintMyMessage
INTERNAL_FUNCTION (UINT, , ,PrintMyMessage, IN UINT i)
#pragma pop_macro ("PrintMyMessage")
{
printf ("Hello world : %.8x!", 1i);
return 0;

Call of the internal function “PrintMyMessage”

PrintMyMessage (Oxaabbccdd)

Value of macro “INTERNAL FUNCTION" is modified according to the
type of binary we want to produce

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 92 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Internal functions

Definition of macros to produce normal executable

#define INTERNAL_FUNCTION (ReturnType,CallConvention, Special, FunctionName, ...
extern "C" ReturnType CallConvention Special FunctionName (__VA_ARGS__)

Declaration of “PrintMyMessage” with those macros

UINT PrintMyMessage (IN UINT i)

{
printf ("Hello world : %.8x!", 1i);

return 0;

Call of “PrintMyMessage” with those macros

PrintMyMessage (Oxaabbccdd)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

93 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Internal functions

Definition of macros to produce relative binary code

#define INTERNAL_FUNCTION (ReturnType,CallConvention, Special,FunctionName,...) \
extern "C" ReturnType CallConvention Special FunctionName (IN PGLOBAL_DATA pGlobalData, \
__VA_ARGS__)

#undef PrintMyMessage
#define PrintMyMessage(...) pGlobalData->fp_PrintMyMessage (pGlobalData, __ VA _ARGS__)

Declaration of “PrintMyMessage” with those macros

UINT PrintMyMessage (IN PGLOBAL_DATA pGlobalData, IN UINT i)
{

printf ("Hello world : %.8x!", 1i);

return 0;

Call of “PrintMyMessage” with those macros

pGlobalData->fp_PrintMyMessage (pGlobalData, Oxaabbccdd)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 94 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Imported functions

Definition of macros to produce relative binary code

#undef printf

#define printf pGlobalData->fp_printf

#undef _vsnprintf

#define _vsnprintf pGlobalData->fp__vsnprintf
#undef CreateProcess

#define CreateProcess pGlobalData->fp_CreateProcess

Call of “printf” with those macros

pGlobalData->fp_printf ("Hello world : %.8x!", 1i);

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

95 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Global variables

@ Global variable declared through a macro

@ Use is normal

Presentation of the macro “GLOBAL_VAR”

GLOBAL_VAR (type, name, value)

type = type of the global variable
name = name of the global variable
value = initialisation value of the global variable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 96 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Global variables

Declaration of a global variable “g_uiValue”

#pragma push_macro ("g_uiValue")

#undef g_uiValue
GLOBAL_VAR (UINT, g_uiValue, Oxaabbccdd) ;
#pragma pop_macro ("g_uiValue")

Use of global variable “g_uiValue”

g_uivalue = Oxabcdabcd;

Value of macro “GLOBAL VAR is modified according to the type of
binary we want to produce

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 97 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Global variables

Definition of macros to produce normal executable

#define GLOBAL_VAR (type,name,value) type name = value;

Declaration of “g_uivValue” with those macros

UINT g_uiValue = Oxaabbccdd;

Use of “g_uiValue” with those macros

g_uivValue = Oxabcdabcd;

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 98 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Global variables

Definition of macros to produce relative binary code

#define GLOBAL_VAR (type,name,value) type name = value;
#define g_uiValue (* ((UINT «)& (pGlobalData->_g_uiValue)))

Declaration of “g_uiValue” with those macros

UINT g_uiValue = Oxaabbccdd;

Use of “g_uiValue” with those macros

(x ((UINT)& (pGlobalData->_g_uiValue))) = Oxabcdabcd;

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

99 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Strings

Strings must be included in a macro “STR”

Presentation of the macro “STR”

#define STR(s)
s = string

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 100 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Strings

Use of a string

printf (STR("Hello world : %.8x!"), 1i);

Value of macro “STR” is modified according to the type of binary we want
to produce

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 101 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Strings

Definition of macros to produce normal executable

#define STR(s) s

Use of the string with those macros

printf ("Hello world : %.8x!", 1i);

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 102 / 238

WiShMaster in a nutshell Format of source code in input

Solution 2 : work on specific code - Strings

Definition of macros to produce relative binary code

#define STRID(file_id,string_id, string) pGlobalData->szString_##file_id##_##string_id
#define STR_TEMP (file_id, string_id, string) STRID(file_id, string_id, string)
#define STR(string) STR_TEMP (FILEID,__COUNTER__, string)

Use of the string with those macros

printf (pGlobalData->szString_7_5, i);

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

103 / 238

WiShMaster in a nutshell

The shellcodisation process

WiShMaster in a nutshell The shellcodisation process

The shellcodisation process

Shellcodisation accomplished by WiShMaster is divided into 4 steps:
e Analysis: identifies code elements

e Environment creation: creates sources file like global data.h
(GLOBAL _DATA structure and macros)

@ Generation: builds sources, extracts binary data, generates the
shellcode and customize it

e Integration: (optionnal) builds an external project that may include
the generated shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 105 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 1

Principle
@ Step compounded of a chain of functions that will execute some
modifications on the shellcode and transmit the modified shellcode to
the next function
o Content of the chain is defined by the user
e Customization functions implemented in Python module = user can
easily write their own customization module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 106 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 2

Example 1: encryption

@ Customization step may be used to encrypt the shellcode

o WiShMaster comes with two “customization” modules that can
encrypt a shellcode:
e XOR encryption with a 32-bits key (polymorphism)
e AES-CBC encryption with a 256-bits key

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 107 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 2

Example 1: encryption

@ Customization step may be used to encrypt the shellcode

o WiShMaster comes with two “customization” modules that can
encrypt a shellcode:

e XOR encryption with a 32-bits key (polymorphism)
e AES-CBC encryption with a 256-bits key

Example 2: setting specific values
@ Example: shellcode that connects to a server

@ Source code contains two variables: IP address and port of the server
@ If we put real values directly in those variables:

e shellcode must be regenerated to connect to another server
e shellcode cannot be distributed in its binary form

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 107 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 3

MyProject.cpp

The developer writes source code
1P and port set to special values

Developer of the shellcode

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 108 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 3

MyProject.cpp Developer uses WiShMaster
to generate the shellcode Internal

functions.

-
GLOBAL_DATA
-

Developer of the shellcode

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 109 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 3

MyProject.cpp

Internal

functions.

v

-
GLOBAL_DATA
-

Cutomization
Developer writes a cutomization
module:
module in Python
patch values

Developer of the shellcode

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 110 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 3

MyProject.cpp Developer puts the shellcode and the
lmizal customization module on Internet

functions.

v

-
GLOBAL_DATA
-

Cutomization

module:

patch values
Developer of the shellcode

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 111 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 3

MyProject.cpp

Internal

functions.

v

-
GLOBAL_DATA
-

Cutomization
module:

patch values

Developer of the shellcode

User of the shellcode

Internal

functions.

o a
GLOBAL_DATA W A user gets the shellcode
@ and the cutomization module

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 112 / 238

WiShMaster in a nutshell

The customization step -

3

The shellcodisation process

MyProject.cpp

v

Developer of the shellcode

Internal

functions.

-
GLOBAL_DATA
@

Cutomization
module:

patch values

User of the shellcode

Internal

functions.

@
GLOBAL_DATA
@

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

‘module to patch special

Cutomization
module:

patch values

!

Values

‘The user uses the customization

values

Internal

functions.

-
GLOBAL_DATA
@

113 / 238

WiShMaster in a nutshell The shellcodisation process

The customization step - 3

MyProject.cpp
Internal

functions.

v

-
GLOBAL_DATA
-

Cutomization
module:

patch values

The user uses another customization
module to encrypt the shellcode

Internal

Internal

functions. functions.

Cutomization
module:

patch values

@ -
GLOBAL_DATA GLOBAL_DATA
@ -

! !

Encryption key Values

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 114 / 238

WiShMaster in a nutshell The shellcodisation process

Implementation of the shellcodisation in WiShMaster v2 - 1

Internally:

@ Every element discovered in the source code ~ an object
(internal /imported functions, strings. ..)

@ Every step of the shellcodisation divided into several small sub-steps

o Every sub-step implemented by one function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 115 / 238

WiShMaster in a nutshell The shellcodisation process

Implementation of the shellcodisation in WiShMaster v2 - 2

WiShMaster can be launched in three modes:
@ automatic: executes the shellcodisation process automatically

@ script: executes an external script that can call step/sub-step
functions exported by WiShMaster and manipulate objects

e interactive: starts a Python shell (same principle as in Scapy)
User can then:

o call step/sub-step functions

o execute a shellcodisation step by step by calling some functions step(),
stepi(), run(). .. (like in a debugger)

e display objects, change their properties to correct eventual mistakes

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 116 / 238

WiShMaster in a nutshell

Initialising the shellcode

WiShMaster in a nutshell Initialising the shellcode

Initialising the shellcode: objective

@ Shellcodisation process described previously creates a binary code that
may run at any address

@ However, shellcode must initialise the GLOBAL DATA structure

@ Operation executed by a function added by WiShMaster, placed at the
beginning of the shellcode:
e find address of GLOBAL DATA structure
o find addresses of internal functions and fill pointers in GLOBAL DATA
e resolve imported functions and fill pointers in GLOBAL DATA

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 118 / 238

WiShMaster in a nutshell Initialising the shellcode

Finding address of GLOBAL DATA structure

Code used by the shellcode to find its load address

UCHAR * pShellcode = NULL;

/* Use a call/pop to get load address */

__asm
{

push eax

call GetLoadAddress
GetLoadAddress:

pop eax

mov pShellcode, eax

pop eax

/* Find "push ebp"/"mov ebp, esp" instructions to get real load address */
while ((x (UINT *) (pShellcode-i) != 0x83EC8B55) && (i < 512))
i+4;
if (i == 512)
return FALSE;
pShellcode —-= i;

/* Get address of GLOBAL_DATA */
uiGlobalDataSize = % (UINT «)&pShellcode[uiShellcodeSize-8];
pGlobalData = (PGLOBAL_DATA) &pShellcode[uiShellcodeSize-uiGlobalDataSize];

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 119 / 238

WiShMaster in a nutshell Initialising the shellcode

Finding addresses of internal functions

@ During shellcodisation, WiShMaster includes size of each internal
function

@ Addresses of internal functions calculated step by step from the
shellcode load address

Code used by the shellcode to rebuild pointers on internal functions

/* Rebuild pointers on internal functions */

for (i=0; i<pGlobalDataHeader->uiNbOfInternalFunctions; i++)

{

pGlobalDataHeader->pInternalFunctionsTable[i] .pFunctionPointer = p;
p += pGlobalDataHeader->pInternalFunctionsTable[i].uiFunctionSize;

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 120 / 238

WiShMaster in a nutshell Initialising the shellcode

Finding addresses of imported functions

WiShMaster uses technics previously presented:
@ gets address of kernel32.dll by analysing memory through the PEB
(function “GetKernel32Address”)

@ resolves imported functions from a 32-bits checksum computed from
function names (“GetProcAddressByCksumlInDII”)

e checksum is computed with the Metaploit algorithm
e must support dll forwarding (example: HeapAlloc in kernel32.dIl)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 121 / 238

WiShMaster in a nutshell Initialising the shellcode

Initialising the shellcode: summary

The shellcode initialisation relies on three functions:

@ “InitialiseShellcode”: entry point of the shellcode, which initialises
GLOBAL _DATA structure

o “GetKernel32Address”: returns the load address of “kernel32.dII"

e “GetProcAddressByCksumiInDII”: finds an exported function from
the checksum of its name (supports dll forwarding)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 122 / 238

o Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
© Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

@ generation of “simpletest” as an executable

@ generation of “simpletest” as a shellcode

«Oo» «F>» DA

a

o Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
© Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

Developing applications with WiShMaster

Objectives of WiShMaster

@ Version 1 of WiShMaster: creation of monolithic shellcodes
e With version 2, objectives have been considerably extended:
e development of modular applications
user chooses output format: an executable, a dll or a shellcode
e allows code reusability
e development in the very powerful IDE Visual Studio
e projects can be distributed either in source or in binary format

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

126 / 238

Developing applications with WiShMaster

Overview of the application structure - 1

e A WiShMaster application is compounded of one or several “modules”
@ A module can be in one of the following 4 forms:
e an executable
e adll
e a shellcode
e inlined into another module
@ Each module can export some of its functions so that they can be
called by other modules
= each module contains an “export” table and an “import” table

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 127 / 238

Developing applications with WiShMaster

Overview of the application structure - 2

2 Modulel.cpp

Modl_funcl
Modl_func2
Mod2_funcl
Mod3_func2

Mod2_funcl
Mod3_funcl
Mod3_func2

2 Module3.cpp

Mod3_funcl
Mod3_func2
Modl_funcl
Mod2_funcl

Three modules importing
and exporting some functions

[tovernal function exported
[mported function

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

128 / 238

Developing applications with WiShMaster

Overview of the application structure - 2

ined in module 1

2 Modulel.cpp

Modl_funcl
Modl_func2
Mod2_funcl
Mod3_func2

2 Module2.cpp

Mod2_funcl
Mod3_funcl
Mod3_func2

2 Module3.cpp

Mod3_funcl
Mod3_func2
Modl_funcl
Mod2_funcl

Modulel.bin

Modl_funcl

Modl_func2

Mod2_funcl

Mod3_funcl

Mod3_func2

[tovernal function exported
[mported function

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

129 / 238

Developing applications with WiShMaster

Overview of the application structure - 2

2 Modulel.cpp

Modl_funcl
Modl_func2
Mod2_funcl
Mod3_func2

2 Module2.cpp

Mod2_funcl
Mod3_funcl
Mod3_func2

2 Module3.cpp

Mod3_funcl
Mod3_func2
Modl_funcl
Mod2_funcl

Modulel.bin

Modl_funcl

Modl_func2

Mod2_funcl

Mod3_funcl

Mod3_func2

3
Import and export tables
of both modules are merged

[tovernal function exported
[mported function

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

130 / 238

Developing applications with WiShMaster

Overview of the application structure - 2

2 Modulel.cpp

Modl_funcl
Modl_func2
Mod2_funcl
Mod3_func2

2 Module2.cpp

Mod2_funcl
Mod3_funcl
Mod3_func2

2 Module3.cpp

Mod3_funcl
Mod3_func2
Modl_funcl
Mod2_funcl

Figure: Structure of an application developed with WiShMaster v2

Modulel.bin

Modl_funcl

Modl_func2

Mod2_funcl

Mod3_funcl

Mod3_func2

Module3.exe

Mod3_funcl

Mod3_func2

Modl_funcl

Mod2_funcl

4
Module 3 output = executable

[tovernal function exported
[mported function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

131 / 238

Developing applications with WiShMaster

Overview of the application structure - 2

2 Modulel.cpp

Modl_funcl
Modl_func2
Mod2_funcl
Mod3_func2

2 Module2.cpp

Mod2_funcl
Mod3_funcl
Mod3_func2

2 Module3.cpp

Mod3_funcl
Mod3_func2
Modl_funcl
Mod2_funcl

Modulel.bin

Modl_funcl

Modl_func2

Mod2_funcl

Mod3_funcl

Mod3_func2

Module3.exe

During execution, imported
symbols are resolved

Modulel.bin

Modl_funel | Module3.exe
Modl_func2 SN _~|_Mod3_funcl
Mod2 funcl |~ [Mods fune2
Mod3 funel 7 ">>< : ST Modl_funcl
Mod3_func2 |}~ S~ Mod2_funcl

Mod3_funcl

Mod3_func2

Modl_funcl

Mod2_funcl

[[P——
[mponcd fncion

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

132 / 238

Developing applications with WiShMaster

Binary format of a WiShMaster module - 1

Module must be able to:
@ load without generating an error even if a required module is missing

@ call function exported by a module independently of the format of this
module (exe, dll, shellcode)

= PE format cannot be used: WiShMaster defines its own binary format

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 133 / 238

Developing applications with WiShMaster

Binary format of a WiShMaster module - 2

Structure of GLOBAL DATA is normalized and contains:

@ an export table: contains the checksum of the name of each exported
function

@ an import table: contains the names of each imported module and the
checksum of the names of each imported function
There is no difference between a function imported from a standard dll
and one imported from a module (executable, dll or shellcode)

@ an optional entry point: pointer on an internal function that must be
called after module initialisation

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 134 / 238

Developing applications with WiShMaster

Standard modules - 1

Module Description Functions
log print of formatted messages PrintMsg
- InitialiseShellcod
initsh initialise a shellcode GetProcAddressByCksuminDIl
modman | manages a set of modules AddLoadedModule
AddObjectAtHeadOfLinkedList
RemoveObject
baseobj | expose functions to manipulate | BufferAllocate
basic objects (linked list, mem- | -
ory, ...)
ManagedBufferlInitialise
. . . ManagedBufferFree
advobj expose functions to manipulate | ManagedBufferaddData
advanced objects (hash table, |
managed buffer, ...)
. SendKernelMessage
kernel eVent dISpatCher RegisterNewKernelMessageHandler

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

135 / 238

Developing applications with WiShMaster

Standard modules - 2

Module Description Functions
cryptoman | manage cryptographic keys | ReoNerkemtemonehandier
and call cryptographic modules
to try to decrypt encrypted
files
filedisp dispatch file to other modules, | RefmerpemuieriicHandier
according to the type of the file
cryptoxor | executes XOR-decryption with | XerDecryption
a 32-bits key
cryptoaes | executes AES-decryption with | AesDecryption
a 256-bits key
fileloader load a file from hard drive in | LoadFile
memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 136 / 238

Developing applications with WiShMaster

Standard modules - 3

@ Those modules can be used to create a “loader” = code that is able to
load and manage a set of modules

@ “loader” can be an executable or a shellcode
@ some special capabilities may be added through new modules (find
modules on USB key, download them from Internet, ...)

Example: Creation of an encrypted module and load from a simple loader
Demo : Creation of a new skeleton “test”

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 137 / 238

Figure: Module encryption

DA

1
Add file type and special
value for filedisp

Figure: Module encryption

DA

v

Add file type and special
value for filedisp

Add special value
for cryptoman

Figure: Module encryption

A«

DA

Add file type and special
value for filedisp

Add special value
for cryptoman

Figure: Module encryption

A«

DA

Add file type and special
value for filedisp

Add special value Enerypt module with
for cryptoman

cryptographic key }
Figure: Module encryption

DA

Add file type and special

value for filedisp

Add special value Enerypt module with
for cryptoman cryptographic key

Figure: Module encryption

DA

Demo : Module encryption

<O «Fr o« o

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

fileloader filedisp modman

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 145 / 238

cryptoxor

J—
—
fileloader filedisp ‘modman
kernel
Figure: Loading an encrypted module
<O <Fr <= «=» = 9DAQC

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes
cryptoman
fileloader filedisp modman
kernel

module.enc

o Encrypted module is
loaded in memory

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 147 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

fileloader

fileloader transmits filedisp modman

buffer to filedisp

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 148 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

module.enc

a

o filedisp sends buffer to

default handler (cryptoman)

fileloader

filedisp modman

module.enc

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 149 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

4
cryptoman can’t decrypt
the buffer => keeps

fileloader filedisp modman

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 150 / 238

cryptoxor

cryptoaes

cryptoman

fileloader

filedisp

modman

kernel

Figure: Loading an encrypted module

DA

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

module.enc

fileloader filedisp modman

Cryptographic key is kernel
key.bin loaded in memory

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 152 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

module.enc

filedisp

fileloader transmits

buffer to filedisp modman

key.bin

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 153 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

r
ﬂﬁlclm\dcr izes cry

fileloader filedisp key and sends it to cryptoman

key.bin

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

154 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

fileloader filedisp modman

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 155 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman try to decrypt pending
buffer with this new key

g#fptoman

e

fileloader filedisp modman

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

156 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

cryptoman decrypts

the encrypted buffer

fileloader filedisp modman

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

157 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

‘ 10 JNS

L cryptoman sends
buffer to filedisp

fileloader { filedisp modman

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 158 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

cryptoman

fileloader filedisp modman

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

11
fileloader recognizes a module
key and sends it to modman

159 / 238

Developing applications with WiShMaster

Loading encrypted module

cryptoxor cryptoaes

odman initialiases and

E m
G resolves the module

‘module.bin

>
>

fileloader filedisp

modman

module.bin

kernel

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

160 / 238

Demo : Loading encrypted module

<O «Fr o« o

o Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
@ Demonstration 3: rushell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

Demonstration 3: rvshell

Presentation of rvshell

«O>» «Fr «=» «E=)» o

Demonstration 3: rvshell Presentation of rvshell

Presentation of rvshell - 1

@ “rvshell” is a simple reverse shell: backdoor that establishes a
connection between a “cmd” process and a remote server
@ backdoor compound of two layers:

o the network layer that establishes the communication with the server
e the application layer that creates the “cmd"” process and uses the
services exposed by the network layer

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 164 / 238

Demonstration 3: rvshell Presentation of rvshell

Presentation of RvShell - 2

Memory

Hard drive

Attacker

Firewall

Figure: Working principle of RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 165 / 238

Demonstration 3: rvshell
Presentation of RvShell - 2

Presentation of rvshell

"RvShell" is

started on server

Attacker

Memory

Hard drive

Firewall

Figure: Working principle of RvShell

[m]

&
Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

166 / 238

Demonstration 3: rvshell Presentation of rvshell

Presentation of RvShell - 2

Memory

—
NETCAT

Hard drive

Attacker Server

Firewall

Figure: Working principle of RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 167 / 238

Demonstration 3: rvshell Presentation of rvshell

Presentation of RvShell - 2

"RvShell" spawns a hidden cmd process
L with stdin/stdout redirected in socket

NN

NN

NANNNNNNN
Memory

NETCAT D§° j
Hard drive
Attacker Server
Firewall

Figure: Working principle of RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 168 / 238

Demonstration 3: rvshell Presentation of rvshell

Implementation of rvshell

Two modules have been developed:

@ “NtStackSmpl” implements the network layer and exports two
functions:

BOOL OpenConnection (IN UINT uiServerAddressNt, IN USHORT usServerPortNt, OUT SOCKET = pSock);
BOOL CloseConnection (IN SOCKET sock);

@ “RvShell” implements the application layer:

e does not export any function
e has an entry point, the function “ExecuteShell":

@ uses “OpenConnection” to open a TCP connection on the server
o creates the “cmd” process

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 169 / 238

Demonstration 3: rvshell Presentation of rvshell

Generating RvShell as an executable

é RvShell.cpp RvShellexe

ExecuteShell ExecuteShell

OpenConnection | sm——— | OpenConnection
CloseConnection

PrintMsg

2 NiStackSmpl.cpp

OpenConnection
ConeComecion | s |

PrintMsg

CloseConnection

PrintMsg

é Log.cpp

PrintMsg

Figure: Result of the creation of the reverse shell as an executable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 170 / 238

Demonstration 3: rvshell

Generating a polymorphic rvshell - 2

Presentation of rvshell

“rvshell” is generated as a shellcode and then included in an executable that

decrypts rvshell and jumps on it

2 RvShell.cpp

ExecuteShell

OpenConnection

CloseConnection

PrintMsg

é NiStackSmpl.cpp

OpenConnection

CloseConnection

PrintMsg

2 Log.cpp

PrintMsg

2 Log.cpp

InitShellcode

GetProcAddr...

PrintMsg

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

RvShell.bin

RvShell.exe
InitShellcode
> >
ExccuteShell Decryption loop
OpenConnection
CloseConnection
PrintMsg
RuShellbin
InitShellcode
GetProcAddr...
_/ ExecuieShell
OpenConnection
CloseConnection
PrintMsg

—/

171 / 238

Demonstration 3: rvshell

Simulation of an attack with RvShell

Take control of a targeted computer with a backdoor (reverse shell)

«O0>» 4F>» «=)r « =) Q>

Demonstration 3: rvshell Simulation of an attack with RvShell

Context

Objective

Take control of a targeted computer with a backdoor (reverse shell)

Context of the attack

Malicious payload must be protected against forensic analysis:
@ malicious payload is transferred after encryption on targeted computer
@ malicious payload is decrypted only in memory

@ decryption code is introduced by another way

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 173 / 238

BER) x0R /32-bits keys

=.

Attacker generates a Trojan that

contains "Loader" (XOR encryption) }

Figure: Principle of the attack with RvShell

DA

BER) x0R /32-bits keys

- AES-CBC / 256-bits key

- ? Attacker generates shellcodes "RvShell"

and "NtStackSmpl" (AES encryption) }

Figure: Principle of the attack with RvShell

DA

Principle of the attack

Demonstration 3: rvshell

XOR / 32-bits keys

Simulation of an attack with RvShell
AES-CBC / 256-bits key

MyEditor.exe

Memory

Hard drive

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

176 / 238

Principle of the attack

Demonstration 3: rvshell

XOR / 32-bits keys

Simulation of an attack with RvShell
AES-CBC / 256-bits key

Attacker sends Trojan
to targeted user

Memory

MyEditor.exe

Figure:

Hard drive

Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

177 / 238

Demonstration 3: rvshell
Principle of the attack

Simulation of an attack with RvShell

J XOR / 32-bits keys

J AES—-CBC / 256-bits key

MyEditor.exe

A

Memory
User starts "MyEditor"
MyEditor.exe

MyEditor.exe

Figure:

Hard drive

Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

178 / 238

Principle of the attack

Demonstration 3: rvshell

XOR / 32-bits keys

Simulation of an attack with RvShell
AES-CBC / 256-bits key

MyEditor.exe

MyEditor.exe

Memory

MyEditor.exe

Hard drive

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

179 / 238

Principle of the attack

Demonstration 3: rvshell

XOR / 32-bits keys

Simulation of an attack with RvShell
AES-CBC / 256-bits key

?

User uses to trapped functionnality

"Loader" is decrypted and executed

MyEditor.exe

MyEditor.exe

Memory

MyEditor.exe

Hard drive

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

180 / 238

Principle of the attack

XOR / 32-bits keys

AES-CBC / 256-bits key

Demonstration 3: rvshell

Simulation of an attack with RvShell

Firefox.exe

Loader" starts a hidden
stance of default browser

MyEditor.exe

Memory

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

MyEditor.exe

Hard drive

=

181 / 238

Principle of the attack

Demonstration 3: rvshell

XOR / 32-bits keys
AES-CBC / 256-bits key

Simulation of an attack with RvShell

Firefox.exe

MyEditor.exe

"Loader" injects itself
in the hidden instance

Memory

MyEditor.exe

Hard drive

Figure: Principle of the attack with RvShell

[m]

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

=

DA
182 / 238

Principle of the attack

Demonstration 3: rvshell

XOR / 32-bits keys

Simulation of an attack with RvShell
AES-CBC / 256-bits key

Firefox.exe

o
l

"MyEditor" may be closed. "Loader"

stays in browser, waiting for USB key

MyEditor.exe

Memory

MyEditor.exe

Hard drive

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

183 / 238

Principle of the attack

Demonstration 3: rvshell

XOR / 32-bits keys

Simulation of an attack with RvShell
AES-CBC / 256-bits key

Firefox.exe
Memory
Attacker puts "RvShell” and
"NtStackSmpl" on a USB key
MyEditor.exe

MyEditor.exe

Hard drive

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

184 / 238

Demonstration 3: rvshell
Principle of the attack

Simulation of an attack with RvShell

OR / 32-bits keys

ES—-CBC /256-bits key

Firefox.exe

Memory
D D D MyEditor.exe
0 EXXXXXXXX)
X Attacker asks the user to plug in
Whiationee L the USB key in their computer

Figure:

Hard drive

Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

[m]

=

185 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

OR / 32-bits keys

Firefox.exe

ES—-CBC /256-bits key

"Loader" detects plug, finds the modules
loads, decrypts and executes them
VreTToT J

Lolelololvioioioie)

USB k
ey NtStackSmpl MyEditor.exe

)
MyEditor.exe :

b q
RO

USB key

Hard drive

Figure: Principle of the attack with RvShell

] = =
Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 186 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

%) XOR / 32-bits keys

Firefox.exe

ES—-CBC /256-bits key

"RvShell" connects back and gives a
L remote cmd access to attacker

NETCAT NiStackSmpl

Memory

MyEditor.exe

MyEditor.exe

Hard drive

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 187 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of secret keys

@ UsbLoader contains a master secret key

@ RvShell and NtStackSmpl are each encrypted with a different secret
key

@ the secret key of each module is encrypted by the master key

@ the two encrypted modules and the two encrypted secret keys are put
on the USB key
= The master key and the module secret key are both required to
decrypt a module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 188 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Loader

FL

Loader.pp

FL

InitSh.cpp.

FL

Logepp

Figure: Generation of Loader

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 189 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Loader

Z Initsh

Londercpy | e Log

Loader

SearchModInDir

FL
v | —]

inlined in Loader

FL

inlined in Loader

o _/

inlined in Loader

Figure: Generation of Loader

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 190 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Loader

§§ Initsh Customization: Initsh

Paich secret key

Lowdercpp | m—T Log 7_' Log

SearchModInDir SearchModInDir

FL
v | —]

inlined in Loader

‘SearchModInDir.cpp _/

inlined in Loader

o _/

inlined in Loader

Figure: Generation of Loader

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 191 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of RvShell and NtStackSmpl

RvShell.cpp

NtStackSmpl.cpp

Figure: Generation of RvShell and NtStackSmpl

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 192 / 238

Shellcodisation
RvShell.cpp

NtStackSmpl.cpp

 ——

Shellcodisation

—_—

Figure: Generation of RvShell and NtStackSmpl

DA

Shellcodisation
RvShell.cpp

NtStackSmpl.cpp

Customization:

Patch IP/port
IP address / port

Shellcodisation

—

Figure: Generation of RvShell and NtStackSmpl

DA

Shellcodisation
RvShell.cpp

 ——

Customization:

Patch IP/port

Customization:
AES encryption
IP address / port
Customization
Shellcodisation AES encryption
— >
NtStackSmpl.cpp (»

Figure: Generation of RvShell and NtStackSmpl

DA

Demonstration 3: rvshell Simulation of an attack with RvShell

The module “Injecter”

@ “Injecter is a module that injects a shellcode in another process
(OpenProcess/WriteProcessMemory/CreateRemoteThread)
@ Injection can be:

in a new hidden instance of default browser

in a new hidden instance of a specified program

in first process which name matches specified name
in all processes whose names match specified name

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

196 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Injecter

FL

Injecter.cpp

FL

InitSh.cpp

FL

Log.cpp

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 197 / 238

Demonstration 3: rvshell

Preparing attack - Generation of Injecter

Simulation of an attack with RvShell

FL

Injecter.cpp

FL

InitSh.cpp

FL

Log.cpp

InitSh

—_—

inlined in Loader

Log

—_—

inlined in Loader

Injecter

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

198 / 238

Demonstration 3: rvshell

Simulation of an attack with RvShell

Preparing attack - Generation of Injecter

FL

Injecter.cpp

FL

InitSh.cpp

FL

Log.cpp

InitSh

—_—

inlined in Loader

Log

—_—

inlined in Loader

Injecter

Customization:

Add shellcode to inject

InitSh

Loader

—

SearchModInDir

InitSh

Log

Injecter

InitSh

Log

Loader

—

SearchModInDir

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

199 / 238

Demonstration 3: rvshell

Preparing attack - Generation of Injecter

Simulation of an attack with RvShell

FL

Injecter.cpp

FL

InitSh.cpp

FL

Log.cpp

InitSh

—_—

inlined in Loader

Log

—_—

inlined in Loader

Injecter

Customization:

Add shellcode to inject

InitSh

Loader

—

SearchModInDir

InitSh

Log

Injecter

InitSh

Log

Loader

—

SearchModInDir

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

Customization:

XOR encryption

@

~InitSh
Log
Injecter.

(InitSh

Log

- SearchModInDir

200 / 238

MyEditor.exe

Figure: Generation of the Trojan

DA

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of the Trojan

—— - ——
—— Infector.exe _— MyEditor.exe
Header
Header
Section 1
Section 1
Section 2
Section 2
Section n
Section n
Decryption

Injecter _/ Injecter

Figure: Generation of the Trojan

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 202 / 238

Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of the Trojan

—— - ——
—— Infector.exe _— MyEditor.exe
Header
Header
Section 1
Section 1
Section 2
Section 2
Section n
Section n
Decryption

Injecter _/ Injecter

Figure: Generation of the Trojan

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 203 / 238

Demo : Execution of the attack

«O»r «F>» A

a

Demonstration 3: rvshell Simulation of an attack with RvShell

Attack - summary

Techniques used during this attack:
@ Encryption of malicious payload:
e “Injecter” in “MyEditor": polymorphism
o “NtStackSmpl" and “RvShell”: strong encryption (decrypted in memory)

o Code injection: “Loader” executed in a hidden process

o Executable infection: trojan created from “MyEditor”

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 205 / 238

o Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
© Demonstration 3: rvshell

@ Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

Take control of a web server; steal username/password of web site users

it
a

it

v

«O>r «Fr o« » DA

Demonstration 2: webdoor

Context

Objective

Take control of a web server; steal username/password of web site users

Description of the target
e Windows

@ Two services:
e Apache/PHP/MySQL with a phpbb (target)
e FTP server used to update web site

@ Server protected by a firewall (allows only incoming HTTP/FTP)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 207 / 238

Demonstration 2: webdoor

Context

Objective

Take control of a web server; steal username/password of web site users

Description of the target
e Windows

@ Two services:

e Apache/PHP/MySQL with a phpbb (target)
e FTP server used to update web site

@ Server protected by a firewall (allows only incoming HTTP/FTP)

Context of the attack
o Attacker found a valid user/pass for FTP server

@ File system regularly checked
= impossible to leave a backdoor on system
= Attacker decides to use a personal tool: “WebDoor"

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 207 / 238

Demonstration 2: webdoor

Presentation of WebDoor

Webdoor executes the following actions:
@ Finds a targeted process that represents a web server

@ Injects a shellcode in this process that will install a hook on function
“WSARecv”
@ Hook analyses every web request and extracts parameters:

e parameter “shell” = interpretes command in a mini-shell
Example: “shell=cmd" gives access to a remote cmd on server

e otherwise compares every name of parameter with list of keywords to
detect username/password

@ Web server work not disrupted

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 208 / 238

Demonstration 2: webdoor

Principle of web server attack

Apache

Memory

Hard drive

Attacker

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 209 / 238

Demonstration 2: webdoor

Principle of web server attack

Apache

Memory
User

i.exe

q
»

Hard drive

Attacker Server

Attacker uploads
WebDoor on server | prp

Figure: Principle of web server attack with WebDoor

Firewall

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 210 / 238

Demonstration 2: webdoor

Principle of web server attack

Apache WebDoor is started and
injects itself in Apache

Memory

Hard drive

Attacker

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 211 / 238

Demonstration 2: webdoor

Principle of web server attack

Apache

Memory

Hard drive

e ‘WebDoor can now be
deleted from hard drive

Attacker

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 212 / 238

Demonstration 2: webdoor

Principle of web server attack

Apache
—
CMD
A Memory

Hard drive

GET /index.php?shell=cmd HTTP/1.0

Attacker Server

HTTP

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 213 / 238

Demonstration 2: webdoor

Principle of web server attack

Apache

Memory
User

—
NETCAT

Hard drive

Attacker

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 214 / 238

Demonstration 2: webdoor

Principle of web server attack

—
Anf)lhcr user au&hgnnicalc e
BROWSER theirself on web site
A Memory

User POST /login.php HTTP/1.0
username=admin&password=rdp700!

Hard drive

Attacker Server

HTTP

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 215 / 238

Demonstration 2: webdoor

Principle of web server attack

BROWSER

User POST /login.php HTTP/1.0

admin
rdp_700!
6
WebDoor intercept:
username and password ry

username=admin&password=rdp700!

Attacker

Server

HTTP

Firewall

Hard drive

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

216 / 238

Demonstration 2: webdoor

Principle of web server attack

—
Apache admin
BROWSER rdp_700!
Memor

User Y

—
NETCAT
Hard drive

Attacker

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 217 / 238

Demonstration 2: webdoor

Principle of web server attack

admin
rdp_700!

Memory

Hard drive

Attacker Server

HTTP

Firewall

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 218 / 238

Demonstration 2: webdoor

Principle of API hooking

Several ways to do API hooking:
@ Patch the Import Address Table

o Replace entries in IAT of functions to hook with addresses of hook
functions

e Easy to implement but does not intercept calls to functions resolved
dynamically

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 219 / 238

Demonstration 2: webdoor

Principle of API hooking

Several ways to do API hooking:

@ Patch the Import Address Table
o Replace entries in IAT of functions to hook with addresses of hook

functions
e Easy to implement but does not intercept calls to functions resolved
dynamically

@ Patch header of function
e Patch first bytes of function to hook with a jmp to hook function
o All calls are intercepted, independently of the resolution mechanism
e But solution not so easy to implement:
@ memory rights of the section must be changed
@ instruction alignment must be computed to save the overwritten
instructions
@ stack must be rebuilt before calling real function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 219 / 238

push ebp

mov ebp, esp

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]
call [func]

Figure: API hooking by header patching

DA

8]
it
it
[y

push ebp

mov ebp, esp

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]
call [func]

Figure: API hooking by header patching

DA

8]
it
i
[y

push ebp

mov ebp, esp

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]
call [func]

Figure: API hooking by header patching

DA

8]
it
i
[y

push ebp

mov ebp, esp

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]
call [func]

Figure: API hooking by header patching

DA

8]
it
it
[y

push ebp
mov ebp, esp

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]
call [func]

Figure: API hooking by header patching

DA

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]

call [func]

Figure: API hooking by header patching

DA

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]

call [func]

Figure: API hooking by header patching

DA

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]

call [func]

Figure: API hooking by header patching

DA

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]

call [func]

Figure: API hooking by header patching

DA

mov eax, [ebp+4]
inc eax

ret

push [...]
push [...]

call [func]

Figure: API hooking by header patching

DA

a
n}
a
8]
v
N
it
i
[y

a
n}
a
v
N
it
.
a
i
-
[y

mov eax, [ebp+4]
inc eax

ret
|

push [...]
push [...]

call [func]

Figure: API hooking by header patching

DA

mov eax, [ebp+4]
inc eax

push [...]
push [...]
call [func]

Figure: API hooking by header patching

DA

a
n}
a
8]
v
N
it
.
it
[y

Demonstration 2: webdoor

Principle of API hooking

jmp [hook_code]

mov eax, [ebp+4]

inc eax

analysis code
call [header]

analysis code \

ret

/

push [...]

call [func]

push [...]

push ebp
mov ebp, esp
mov eax, [ebp+4]

jmp [function]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded)

232 / 238

Demonstration 2: webdoor

The module “Hooker”

@ “Hooker” is a module that executes API hooking by patch of function
header

@ calculation of instruction alignement based on zOmbie's LDE32 engine

@ exports one function "HookFunctions” that allows to hook a set of
functions

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 233 / 238

Demo : Web server attack

<O «Fr o« o

0 Quick reminder. . .

© The use of shellcodes in virology

© Writing shellcode for Windows

@ Generating the shellcode

© WiShMaster in a nutshell

@ Demonstration: simpletest

@ Developing applications with WiShMaster
@ Demonstration 3: rvshell

© Demonstration 2: webdoor

@ Conclusion

40> «Fr A=) (=) DA

Conclusion

Conclusion

@ Techniques implemented in tools used in two attacks are well-known

@ Interesting point : developed very quickly
Example: integration of the AES of PolarSSL in “Loader” ~ 2 hours

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 236 / 238

Conclusion

Future work

e Finalise the development of this version of WiShMaster (correct a few
bugs)

@ Try to shellcodise well-known application like netcat = polymorphic
netcat

@ Develop more funny applications with WiShMaster

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 237 / 238

Any questions?

Shellcodisation i: inl No C code was harmed during this presentation

«O>» «Fr «E>» «E>» = Q>

