
Windows Shellcode Mastery (reloaded)

iAWACS 2009

Benjamin CAILLAT

ESIEA - SI&S lab

caillat[at]esiea[dot]fr

bcaillat[at]security-labs[dot]org

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 1 / 238



Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 2 / 238



Quick reminder. . .

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 3 / 238



Quick reminder. . .

The PE format (1)

Under Windows, executables are in the PE format (Portable
Executable)
Executables compounded of a header, a section table and several
sections (code, data, resources. . . )

Section n

PE headers

Section table

Section n−1

Section 1

...

Figure: General structure of an executable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 4 / 238



Quick reminder. . .

The PE format (2)

Headers

contain metadata used by Windows to load executable : prefered load
address, address of entry point, . . .

Table of sections

array of structures, each representing one section (name, mapping address,
characteristics, . . . )
characteristics : rights (RWX), initialised or not, shared, . . .

Sections

two types : code (RX) and data (R or RW)

data section :

data of the program (strings, global variables, . . . )
metadata : importation and exportation tables

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 5 / 238



Quick reminder. . .

Imported function resolution in Windows

an executable generally uses/�imports� functions �exported� by a
shared library

importation: by name or by ordinal (index in exportation table)

two mechanisms to resolve imported functions:

when process is created
during execution (�dynamic address resolution�)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 6 / 238



Quick reminder. . .

Resolution when process is created (1)

resolution is done by Windows loader

PE �le contains an �import table�: names of every imported
dll/function

Windows loader reads table and �lls another table: the IAT (Import
Address Table)

calls to imported functions are done through the IAT

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 7 / 238



Quick reminder. . .

Resolution when process is created (2)

0x10011203

0x80000001

0x1001164A

"demodll.dll"

"demodll_func"

call [0x42E380]

Code

Import table

Import Address Table

0x41220A

0x42E000

0x42E380

demodll_func()

Figure: Calling an imported function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 8 / 238



Quick reminder. . .

Resolution during execution

Resolution is done by the code by using two functions:

�LoadLibrary�: load a library
�GetProcAddress�: �nd an exported function by its name/ordinal

Result of �GetProcAddress� stored in a function pointer

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 9 / 238



Quick reminder. . .

The PE format

Demo : Example of �DemoPE�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 10 / 238



Quick reminder. . .

Notion of shellcode

De�nition (general)

Set of binary data that has the following properties:

executes some speci�c operations if execution is transfered to its �rts
bytes (in general)

can run in any process at any address:

must not contains any hardcoded address
must be autonomous and not use external references

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 11 / 238



The use of shellcodes in virology

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 12 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Plan

The use of shellcodes in virology

�

A few techniques used by malicious code . . .

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 13 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Context de�nition

Generally, malicious codes try to do several things:

stay undetected by antiviruses
propagate to other hosts or executables
execute their malicious actions (e.g. capture some private user data,
open a backdoor on the system . . . )

Use special techniques, not always easy to implement

Let us illustrate this with a few speci�c techniques and try to see how
they can be implemented in an executable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 14 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Encryption of malicious code - Principle

Description

Malicious code is made up of two parts:

the real malicious payload which is encrypted

a decryption part

Objective

Protect malicious payload against an analysis

Could be an automatic analysis (antivirus) or a manual analysis
(disassembling code)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 15 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Encryption of malicious code - Principle

Description

Malicious code is made up of two parts:

the real malicious payload which is encrypted

a decryption part

Objective

Protect malicious payload against an analysis

Could be an automatic analysis (antivirus) or a manual analysis
(disassembling code)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 15 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Encryption - protection against automatic analysis

Malicious code is scanned by a tool that works with signature
identi�cation
Each copy of malicious code must be di�erent:

decryption part is transformed through metamorphism
encryption key is changed in each copy ⇒ malicious payload is di�erent
(polymorphism)

Decryption key 2

malicious

Decryption key 1

payload

Encrypted

Decryption part

malicious

payload

Encrypted

Decryption part

Figure: Two copies of the same virus that implements polymorphism

Notes:
Decryption key may be stored in decryption part
Simple encryption algorithm like a XOR with 32-bits key may be used

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 16 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Encryption - protection against manual analysis

Aim: if malicious payload is intercepted during introduction on
targeted system, it cannot be disassembled and analysed manually

Little di�erences with previous encryption:

strong encryption algorithm like AES must be used
decryption key must not be stored in decryption part

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 17 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of encrypted malware

Hard drive

Memory

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 18 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of encrypted malware

Hard drive

Memory

Decoder

1

"Decoder" is introduced

on targeted system

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 19 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of encrypted malware

Hard drive

Memory

Decoder
Encrypted

malicious code

introduced on targeted system

Encrypted malicious code is
2

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 20 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of encrypted malware

Hard drive

Memory

Decoder
Encrypted

malicious code

Decoder

3

"Decoder" is executed

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 21 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of encrypted malware

Hard drive

Memory

Decoder
Encrypted

malicious code

Decoder
malicious code

Encrypted

4

malicious code in memory

"Decoder" loads encrypted

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 22 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of encrypted malware

Hard drive

Memory

Decoder
Encrypted

malicious code

Decoder
malicious code

Encrypted
Malicious code

5

in memory and executes it

"Decoder" decrypts malicious code 

Figure: Principle of execution of an encrypted malware

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 23 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Encryption - protection against manual analysis

Of course, several ways to get malicious payload on infected computer
(dump the memory, extract encryption key and decrypt malicious
payload)

But malicious payload is protected during introduction onto targeted
computer:

two parts are introduced in di�erent ways at di�erent times
if one introduction fails, we will intercept:

decryption part: totally generic
malicious payload: encrypted

⇒cannot get any information on the attack

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 24 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Encryption of malicious code - Implementation

Encryption of each part of malicious payload in executable not a good
solution:

complicated: all binary data characteristics of the malicious payload
must be encrypted (functions, initialised data and strings)
not e�cient: PE metadata cannot be encrypted

Better solution: encrypt the whole executable ∼ a packer
But developing such a tool required some work

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 25 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Execute only in memory - Principle

Description

Malicious code is able to execute without being copied on hard drive

Objective

Cannot be detected by local antivirus

Leaves few traces on targeted system
⇒ complicates an eventual forensic analysis

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 26 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Execute only in memory - Principle

Description

Malicious code is able to execute without being copied on hard drive

Objective

Cannot be detected by local antivirus

Leaves few traces on targeted system
⇒ complicates an eventual forensic analysis

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 26 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of malware only in memory

Primergy

Server

Memory

Hard drive

Firewall

Attacker

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 27 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of malware only in memory

Primergy

Server

Memory

Hard drive

Firewall

Attacker

Loader"Loader" is running
1

on targeted server

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 28 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of malware only in memory

Primergy

Server

Memory

Hard drive

Firewall

Attacker

Loader

Malicious

code

payload from server

2

"Loader" gets malicious

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 29 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Principle of execution of malware only in memory

Primergy

Server

Memory

Hard drive

Firewall

Attacker

Loader

Malicious

code

3

"Loader" transfers execution

on malicious payload

Figure: Principle of execution of malware only in memory

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 30 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Execute only in memory - Implementation (1)

Copying executable in memory and jumping on entry point does not
work:

sections must be mapped at the right address
imported functions must be resolved

A few tricks can be used:

use �pragma� directives to group all functions/data in one section
play with �preferred load address� so that section is mapped in a
memory space �normally� free in process
use dynamic address resolution

⇒ Possible. . . but rather tedious

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 31 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Execute only in memory - Implementation (2)

Demo : Example of �DemoPragma�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 32 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Infect an executable - Principle

Description

Malicious payload is added into another executable

Execution �ow of infected executable is modi�ed to execute malicious
payload

Objective

Create a Trojan horse; behaviour of the program must not be disrupted

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 33 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Infect an executable - Principle

Description

Malicious payload is added into another executable

Execution �ow of infected executable is modi�ed to execute malicious
payload

Objective

Create a Trojan horse; behaviour of the program must not be disrupted

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 33 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Infect an executable - Implementation

Malicious payload added at the end of the executable, after last section

Several ways to redirect execution �ow:

patch the executable entry point
patch some instructions that will probably be executed
Example: call to the function �save� in a text editor

Each solution has pros and cons:

Patching instruction requires manual analysis to �nd a suitable
instruction to patch
But execution of malicious code requires action of the user
⇒ neither executed, nor analysed by an antivirus, even with code
emulation

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 34 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Infect an executable - Implementation

Malicious payload added at the end of the executable, after last section

Several ways to redirect execution �ow:

patch the executable entry point
patch some instructions that will probably be executed
Example: call to the function �save� in a text editor

Each solution has pros and cons:

Patching instruction requires manual analysis to �nd a suitable
instruction to patch
But execution of malicious code requires action of the user
⇒ neither executed, nor analysed by an antivirus, even with code
emulation

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 34 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Infect an executable - Implementation

Header

MyEditor.exe

Header

Section 1

Section 2

...

Section n

MyEditor.exe

Header

Section 1

Section 2

...

Section n

MyEditor.exe

Section 1

Section 2

...

Section n

Malicious code Malicious code

entry point patched

Original executable Infected executableInfected executable

instruction patched

Figure: Principle of infection of an executable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 35 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Infect an executable - Implementation

Not so easy to implement:

several sections might have to be added at the end of the executable

sections must be mapped at the right address

code must use dynamic address resolution

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 36 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Inject code into another process - Principle

Description

Malicious code injects some code into another process

Malicious code forces the execution of this injected code in the
context of the other process

Objectives

Survive to termination of original process: malicious code injects itself
in �explorer.exe� and runs in this process

Intercept private data of user using infected computer:

malicious code injects itself in a speci�c application
injected code uses API hooking to intercept calls of imported functions
analyses parameters passed to functions and looks for interesting data

Bypass bad implemented personal �rewalls: malicious code injects
itself in a hidden instance of a browser and access to Internet

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 37 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Inject code into another process - Principle

Description

Malicious code injects some code into another process

Malicious code forces the execution of this injected code in the
context of the other process

Objectives

Survive to termination of original process: malicious code injects itself
in �explorer.exe� and runs in this process

Intercept private data of user using infected computer:

malicious code injects itself in a speci�c application
injected code uses API hooking to intercept calls of imported functions
analyses parameters passed to functions and looks for interesting data

Bypass bad implemented personal �rewalls: malicious code injects
itself in a hidden instance of a browser and access to Internet

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 37 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Inject code into another process - Principle

Code injection may be done in several ways:

dll injection:

code is included in a dll
dll is then loaded and �executed� in targeted process

direct code injection:

code injected directly into targeted process
relies on standard functions of Win32 API: OpenProcess,
VirtualAllocEx, WriteProcessMemory and CreateRemoteThread

Each technique has pro and cons

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 38 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Dll injection

Principle of dll injection

Many solution to inject the dll

One example: inject dll name and create thead on �LoadLibraryA�
with injected string as argument

Demo : Example of �DemoDllInjection�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 39 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Direct code injection

Injecter Target

Injection code

Figure: Principle of direct code injection

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 40 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Direct code injection

Injecter Target

Injection code

Malicious

code

Figure: Principle of direct code injection

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 41 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Direct code injection

Injecter Target

Injection code

Malicious

code

1

"Injecter" gets a handle

on targeted process

Figure: Principle of direct code injection

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 42 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Direct code injection

Injecter Target

Injection code

Malicious

code

Free memory

memory in other process

2

"Injecter" allocates

Figure: Principle of direct code injection

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 43 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Direct code injection

Injecter Target

Injection code

Malicious

code

Malicious

code

"Injecter" copies malicious
3

code in allocated memory

Figure: Principle of direct code injection

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 44 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Direct code injection

Injecter Target

Injection code

Malicious

code

Malicious

code

Thread

4

process that executes malicious code 

"Injecter" creates a new thread in other 

Figure: Principle of direct code injection

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 45 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Direct code injection

Encounter same problems as execution only in memory:

sections must be mapped at the right address
imported functions must be resolved

⇒ Can use the same tricks

Note that if memory where code must be mapped is already allocated,
injection will fail!

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 46 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Summary

Implementation of those techniques in an executable is always
possible, but requires lots of work

Di�culties come from several properties of the executable:

code and data are spread in the executable;
process requires some of initialisation normally done by Windows loader
code contains hardcoded addresses ⇒ sections must be mapped at the
right addresses

Those techniques could be implemented more easily if the code:

was constituted of only one block
was able to initialise the address space
contained no hardcoded address

⇒ if the malicious code was a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 47 / 238



The use of shellcodes in virology A few techniques used by malicious code . . .

Summary

Implementation of those techniques in an executable is always
possible, but requires lots of work

Di�culties come from several properties of the executable:

code and data are spread in the executable;
process requires some of initialisation normally done by Windows loader
code contains hardcoded addresses ⇒ sections must be mapped at the
right addresses

Those techniques could be implemented more easily if the code:

was constituted of only one block
was able to initialise the address space
contained no hardcoded address

⇒ if the malicious code was a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 47 / 238



The use of shellcodes in virology Implementation of the techniques from a shellcode

Plan

The use of shellcodes in virology

�

Implementation of the techniques from a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 48 / 238



The use of shellcodes in virology Implementation of the techniques from a shellcode

Principle

Consider now that our malicious code is a shellcode:

constituted of only one block

can run at any address in any process

executes exactly the same operations as the normal executable if
execution transferred to its �rst byte

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 49 / 238



The use of shellcodes in virology Implementation of the techniques from a shellcode

Implementation of the techniques

Encryption of malicious code

Decryption part becomes a simple loop that executes decryption on
shellcode ∼ array of bytes

Execution only in memory and code injection

Easy to implement since by de�nition shellcode is able to execute in any
process at any address

Executable infection

shellcode added in last section

few modi�cations done on PE header

entry point or instruction patched to jump on shellcode

jump to original instruction added at end of shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 50 / 238



The use of shellcodes in virology Implementation of the techniques from a shellcode

Summary

Implementation of presented techniques is greatly simpli�ed if the
malicious code is a shellcode rather than an executable

Next problem is how to get a shellcode?

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 51 / 238



Writing shellcode for Windows

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 52 / 238



Writing shellcode for Windows

Properties of a shellcode

Shellcode are generally used in an exploit. Must follow several constraints :

must be relocalisable

must be autonomous

must be small

must avoid some special values (null bytes for example)

Lots of constrains ⇒ generally written in assembly

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 53 / 238



Writing shellcode for Windows

Writing a shellcode: tips

Example of structure to avoid hardcoded addresses

jmp short getaddr
function:

pop esi ; Get address of string in esi
push esi ; Put address of string on stack

...

getaddr:
call function

shell_string:
db ’/bin/sh’

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 54 / 238



Writing shellcode for Windows

Writing a shellcode: tips

Avoid null bytes

mov eax,0 ; b8 00 00 00 00
xor eax,eax ; 33 c0

How to call functions exported by shared libraries?

Shared library may be not loaded in process address space

Even if it is loaded, how to know load address of shared library?

Solutions depend on the operating system

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 55 / 238



Writing shellcode for Windows

Calling functions exported by shared libraries: Linux case

System services call through int 0x80 (or sysenter); index of services
set in eax

Number of system services are �xed and stable across kernel versions

Example : starting a new process : eax=0xb

⇒ Shellcode just has to use system services instead of functions exported
by libraries

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 56 / 238



Writing shellcode for Windows

Calling functions exported by shared libraries: Linux case

Figure: Values of x86 registers before calling service 0xb of int 0x80

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 57 / 238



Writing shellcode for Windows

Calling functions exported by shared libraries: Windows case

Problem

Number of system services change from a version of Windows to another
⇒ cannot use system services directly; must use functions exported by
shared library

Two solutions

Assume that shared library are loaded at a known address and
hardcode function addresses
⇒ small size, but not portable

Dynamically �nd addresses of required imported functions
⇒ portable, but bigger

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 58 / 238



Writing shellcode for Windows

Calling functions exported by shared libraries: Windows case

Resolving an imported function implies:

loading the library that exposes the function
�nding the function address in this library

Can use the functions LoadLibrary/GetProcAddress exported by
kernel32.dll

Paradox: how to �nd the addresses of those functions?

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 59 / 238



Writing shellcode for Windows

Calling functions exported by shared libraries: Windows case

Common method:

gets address of kernel32.dll by analysing memory

walks through kernel32.dll exports table to �nd addresses of
LoadLibrary/GetProcAddress

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 60 / 238



Writing shellcode for Windows

Finding the load address of kernel32.dll

Several technics

Through PEB
Through SEH (UEF generally points in kernel32.dll)

Use the �rst, more reliable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 61 / 238



Writing shellcode for Windows

Finding the load address of kernel32.dll

0x1c

LDR_MODLDR_MOD

PEB

LOADER

TEB
fs

0x30

0x0c

BD

@LOADER

@load ntdll

@PEB

Linked list

Load order

Linked list

Linked list

Init. order

In mem. order

FD

BD

@load kernel32

FD

Figure: Finding load address of kernel32.dll through the PEB

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 62 / 238



Writing shellcode for Windows

Finding address of LoadLibrary/GetProcAddress

load address of kernel32.dll has been found

addresses of LoadLibrary/GetProcAddress can be found by parsing
exports table

only need to know the PE format

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 63 / 238



Writing shellcode for Windows

Finding the addresses of other functions

Once addresses of LoadLibrary/GetProcAddress have been �nd, all
functions may be resolved

Problem: names of the functions must be included in the shellcode,
and name of Win32 API are *very* long

A better solution: write a function �getprocaddressbycksum� that
resolves a function from a 32-bits checksum computed from its name

Checksum algorithm must be well chosen to avoid collision as much as
possible

�getprocaddressbycksum� is not really a new function, since we already
need such a function to �nd the addresses of �LoadLibrary� and
�GetProcAddress�

Finally, we don't really need the function �GetProcAddress�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 64 / 238



Writing shellcode for Windows

Writing shellcode for windows

Demo : Using functions getk32 and getprocaddress of the Metasploit
project

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 65 / 238



Generating the shellcode

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 66 / 238



Generating the shellcode

Objective of this part

Present an easy way to write the malicious code as a shellcode

In this context, shellcode are a little di�erent: can be big (or huge), no
forbidden values

Writing shellcode directly in assembly quickly becomes tedious
⇒ solution dismissed

Better solution would be:

write code in C language
use compiler to generate executable
extract some part from this executable
form shellcode by assembling them

First, let us have a look on the binary code generated by a normal
compilation on �simpletest�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 67 / 238



Generating the shellcode

Presentation of simpletest

Very simple program that prints messages and displays the content of
a �le �test.txt�

Contains:

de�nition of a new type �USER�
two global variables;

�g_User� : type �USER�
�g_szMessage� : string

�ve internal functions:

�DisplayMessage� : displays �g_szMessage�
�DisplayFile� : opens a �le �test.txt� and displays its content
�DisplayData� : function that really executes all operations
�main� : program entry point that only calls �DisplayData�
�PrintMsg� : displays log messages

several strings
several calls to imported functions: CreateFile, HeapAlloc. . .

⇒ not really useful but contains most elements of C program

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 68 / 238



Generating the shellcode

Analysis of generated assembly

Demo : Analysis of assembly generated by the build of simpletest original
code

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 69 / 238



Generating the shellcode

Analysis of generated assembly

Binary code cannot be directly used to create a shellcode:

contains lots of hardcoded addresses (reference to a string or a global
variable)

internal functions calls are relative but distance is hardcoded

imported function calls rely on IAT

To obtain binary code that may be used in a shellcode, we have to:

force the compiler to produce code without hardcoded addresses

�nd a solution to resolve imported function dynamically

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 70 / 238



Generating the shellcode

First approach: patching assembly

Assembly is generated with the compiler, patched with a
transformation tool and then assembled to generate binary data

Several problems:

lots of modi�cation to do on assembly
transformation tool has to work on assembly, which is not really a
natural language
transformation tool will be linked to a speci�c assembly and then to a
speci�c hardware platform

⇒ Solution dismissed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 71 / 238



Generating the shellcode

Second approach: using the stack

C code is written in a speci�c way so that everything is handled in the
stack

Example 1: use of the stack to store a string

CHAR szStrUsername[] = {’U’, ’s’, ’e’, ’r’, ’n’, ’a’, ’m’, ’e’, ’:’, ’ ’, ’%’, ’s’};
004130DA C645 F4 55 MOV BYTE PTR SS:[EBP-C],55
004130DE C645 F5 73 MOV BYTE PTR SS:[EBP-B],73
004130E2 C645 F6 65 MOV BYTE PTR SS:[EBP-A],65
004130E6 C645 F7 72 MOV BYTE PTR SS:[EBP-9],72
...

Example 2: use of the stack to store pointer on an imported function

hLib = LoadLibrary(szStrLibraryName);
pFunc = (FunctionTypeDef) GetProcAddress(hLib, szStrFunctionName);
pFunc(...);

Problems: code is far from normal C code: tedious to write, existing
code must be adapted ⇒ Solution dismissed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 72 / 238



Generating the shellcode

Third approach: using global data

Use one structure that stores all global data and that is transmitted in
every internal function call

Structure, called later �GLOBAL_DATA�, will contain:

pointers on internal functions
pointers on imported functions
global variables
strings

C code is modi�ed so that every reference to a previously listed
element will be done through GLOBAL_DATA

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 73 / 238



Generating the shellcode

Third approach: using global data

Original function DisplayFile

BOOL DisplayFile(IN CHAR * szFilePath)
{

...
CreateFile(szFilePath, ...)
pData = (UCHAR *) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dwFileSize+1)
ReadFile(hFile, pData, ...)
PrintMsg(LOG_LEVEL_TRACE, "File successfully read: %s", pData);
...

}

Patched function DisplayFile (modifications are colorized in red)

BOOL DisplayFile(IN PGLOBAL_DATA pGlobalData, IN CHAR * szFilePath)
{

...
pGlobalData->CreateFile(szFilePath, ...)
pData = (UCHAR *) pGlobalData->HeapAlloc(pGlobalData->GetProcessHeap(), \\

HEAP_ZERO_MEMORY, dwFileSize+1)
pGlobalData->ReadFile(hFile, pData, ...)
pGlobalData->PrintMsg(pGlobalData, LOG_LEVEL_TRACE, pGlobalData->szString_00000001, \\

pData);
...

}

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 74 / 238



Generating the shellcode

Third approach: using global data

The GLOBAL_DATA de�nition looks like the following:

Overview of structure GLOBAL_DATA

typedef struct _GLOBAL_DATA
{

/* Internal functions */
PrintMsgTypeDef fp_PrintMsg;

/* Imported functions */
CreateFileTypeDef fp_CreateFile;
HeapAllocTypeDef fp_HeapAlloc;
GetProcessHeapTypeDef fp_GetProcessHeap;
ReadFileTypeDef fp_ReadFile;

/* Data strings */
CHAR szString_00000001[27];

} GLOBAL_DATA, * PGLOBAL_DATA;

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 75 / 238



Generating the shellcode

Third approach: using global data

Demo : Analysis of assembly generated by the build of simpletest patched
code

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 76 / 238



Generating the shellcode

Third approach: using global data

Generated binary does not contain any hardcoded addresses
⇒ binary code can be directly extracted and used to form shellcode

Shellcode may be created simply by concatenating the extracted
functions and adding the GLOBAL_DATA structure at the end

entrypoint

Shellcode

Internal function

Internal function

...

Internal function pointers

Internal function

Imported function

pointers

Global variables

Strings

GLOBAL_DATA

Figure: Overview of the structure of the shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 77 / 238



Generating the shellcode

Summary

This solution allows a shellcode to be created with little modi�cations
of source code

However, still a few problems to solve:

writing the de�nition of the GLOBAL_DATA structure and the
de�nition of macros is long
the GLOBAL_DATA structure must be initialised
source code must be modi�ed
binary data must be extracted from generated executable and
assembled to create �nal shellcode

⇒ A tool that executes all those operations automatically has been
developed: WiShMaster

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 78 / 238



WiShMaster in a nutshell

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 79 / 238



WiShMaster in a nutshell Versions of WiShMaster

Plan

WiShMaster in a nutshell

�

Versions of WiShMaster

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 80 / 238



WiShMaster in a nutshell Versions of WiShMaster

Presentation

WiShMaster is a tool that automatically generates shellcodes, by using
the previously described principle

Takes a set of C source �les written �normally� in input and generates
a shellcode in output

Shellcode accomplishes same operations as executable produced by
compilation of original source

Transformation in shellcode called later �shellcodisation�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 81 / 238



WiShMaster in a nutshell Versions of WiShMaster

Development progress - WiShMaster version 1

WiShMaster v1 has been available on my web site for two years

Graphical application developed in C#

Works but has several limitations
Most important: C code parsed with regular expressions ⇒ must
conform to a few syntax rules to be successfully analysed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 82 / 238



WiShMaster in a nutshell Versions of WiShMaster

Development progress - WiShMaster version 2

WiShMaster v2 is beta release

Corrects many problems of the v1:
WiShMaster is now a console application written in Python:

shellcodisation process can be scripted
user can intercede at any step of the shellcodisation process, view
results and correct eventual mistakes

parsing of source code with regular expressions has been considerably
reduced ⇒ most of the constrains on C syntax have been removed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 83 / 238



WiShMaster in a nutshell Format of source code in input

Plan

WiShMaster in a nutshell

�

Format of source code in input

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 84 / 238



WiShMaster in a nutshell Format of source code in input

Format of source code in input

During development of WiShMaster v2, have to do a choice on the type of
input code:

either develop WiShMaster so it can operate on normal C code

either require that C code is written in a speci�c way

Each solution has pro and cons

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 85 / 238



WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Principle

Write a C analyser or use an existing to analyse C code and recognize
speci�c objects

Create a patched copy of source code

Build the patched copy

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 86 / 238



WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Analyse source code

gcc: option -fdump-tree-original-raw generate AST in text �le
Problems:

a parser for the AST must be written
to debug with Microsoft Visual Studio, code must be analysed by gcc
and build by cl.exe

pycparser: doesn't manage to parse windows.h

write our own C analyser: very complicated to be able to parse
windows.h

cl.exe: use browse or debug �le
Problem: doesn't give all informations (for example list of strings)
⇒ still need to analyse C code with regular expressions

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 87 / 238



WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Create patched
copy

In some special cases, WiShMaster may generate invalid C code
Original code

printf("test", test
(10));

Patched code (invalid)

printf("pGlobalData->test", test
(10));

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 88 / 238



WiShMaster in a nutshell Format of source code in input

Solution 1 : operate on normal C code - Summary

To sum up, this solution works, but :

requires some work to develop a code analyser

is not really a proper solution since all �les are duplicated

WiShMaster needs to analyse source code with regular expressions

may have some problem if code is not formated �normally�:

WiShMaster may failed to analyse source code
patched code generated by WiShMaster may be invalid

⇒ Solution dismissed

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 89 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Objective

Objective

Force C code to be formatted in a special way, so that:

the same source code may generate a normal executable or relative
binary code

it may be analysed easily by WiShMaster with regular expression to
extract some informations

Solution

Use C macros !

WiShMaster de�nes some macros that must be used when
declaring/using internal/imported functions, global variables and
strings

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 90 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Objective

Objective

Force C code to be formatted in a special way, so that:

the same source code may generate a normal executable or relative
binary code

it may be analysed easily by WiShMaster with regular expression to
extract some informations

Solution

Use C macros !

WiShMaster de�nes some macros that must be used when
declaring/using internal/imported functions, global variables and
strings

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 90 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Internal functions

Internal functions are declared through a macro
�INTERNAL_FUNCTION�

Calls are normal
Presentation of the macro “INTERNAL_FUNCTION”

INTERNAL_FUNCTION(ReturnType,CallConvention,Special,FunctionName,...)
ReturnType = return type of the function
CallConvention = type of convention
Special = special keyword to add after type of convention
FunctionName = name of internal function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 91 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Internal functions

Declaration of an internal function “PrintMyMessage”

#pragma push_macro("PrintMyMessage")
#undef PrintMyMessage
INTERNAL_FUNCTION(UINT,,,PrintMyMessage, IN UINT i)
#pragma pop_macro("PrintMyMessage")
{

printf("Hello world : %.8x!", i);
return 0;

}

Call of the internal function “PrintMyMessage”

...
PrintMyMessage(0xaabbccdd)
...

Value of macro �INTERNAL_FUNCTION� is modi�ed according to the
type of binary we want to produce

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 92 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Internal functions

Definition of macros to produce normal executable

#define INTERNAL_FUNCTION(ReturnType,CallConvention,Special,FunctionName,...) \
extern "C" ReturnType CallConvention Special FunctionName(__VA_ARGS__)

Declaration of “PrintMyMessage” with those macros

UINT PrintMyMessage(IN UINT i)
{

printf("Hello world : %.8x!", i);
return 0;

}

Call of “PrintMyMessage” with those macros

...
PrintMyMessage(0xaabbccdd)
...

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 93 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Internal functions

Definition of macros to produce relative binary code

#define INTERNAL_FUNCTION(ReturnType,CallConvention,Special,FunctionName,...) \
extern "C" ReturnType CallConvention Special FunctionName(IN PGLOBAL_DATA pGlobalData, \
__VA_ARGS__)

#undef PrintMyMessage
#define PrintMyMessage(...) pGlobalData->fp_PrintMyMessage(pGlobalData, __VA_ARGS__)

Declaration of “PrintMyMessage” with those macros

UINT PrintMyMessage(IN PGLOBAL_DATA pGlobalData, IN UINT i)
{

printf("Hello world : %.8x!", i);
return 0;

}

Call of “PrintMyMessage” with those macros

...
pGlobalData->fp_PrintMyMessage(pGlobalData, 0xaabbccdd)
...

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 94 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Imported functions

Definition of macros to produce relative binary code

#undef printf
#define printf pGlobalData->fp_printf
#undef _vsnprintf
#define _vsnprintf pGlobalData->fp__vsnprintf
#undef CreateProcess
#define CreateProcess pGlobalData->fp_CreateProcess

Call of “printf” with those macros

...
pGlobalData->fp_printf("Hello world : %.8x!", i);
...

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 95 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Global variables

Global variable declared through a macro

Use is normal
Presentation of the macro “GLOBAL_VAR”

GLOBAL_VAR(type,name,value)
type = type of the global variable
name = name of the global variable
value = initialisation value of the global variable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 96 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Global variables

Declaration of a global variable “g_uiValue”

#pragma push_macro("g_uiValue")
#undef g_uiValue
GLOBAL_VAR(UINT,g_uiValue,0xaabbccdd);
#pragma pop_macro("g_uiValue")

Use of global variable “g_uiValue”

...
g_uiValue = 0xabcdabcd;
...

Value of macro �GLOBAL_VAR� is modi�ed according to the type of
binary we want to produce

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 97 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Global variables

Definition of macros to produce normal executable

#define GLOBAL_VAR(type,name,value) type name = value;

Declaration of “g_uiValue” with those macros

UINT g_uiValue = 0xaabbccdd;

Use of “g_uiValue” with those macros

...
g_uiValue = 0xabcdabcd;
...

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 98 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Global variables

Definition of macros to produce relative binary code

#define GLOBAL_VAR(type,name,value) type name = value;
#define g_uiValue (*((UINT *)&(pGlobalData->_g_uiValue)))

Declaration of “g_uiValue” with those macros

UINT g_uiValue = 0xaabbccdd;

Use of “g_uiValue” with those macros

...
(*((UINT *)&(pGlobalData->_g_uiValue))) = 0xabcdabcd;
...

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 99 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Strings

Strings must be included in a macro �STR�
Presentation of the macro “STR”

#define STR(s)
s = string

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 100 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Strings

Use of a string

...
printf(STR("Hello world : %.8x!"), i);
...

Value of macro �STR� is modi�ed according to the type of binary we want
to produce

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 101 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Strings

Definition of macros to produce normal executable

#define STR(s) s

Use of the string with those macros

...
printf("Hello world : %.8x!", i);
...

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 102 / 238



WiShMaster in a nutshell Format of source code in input

Solution 2 : work on speci�c code - Strings

Definition of macros to produce relative binary code

#define STRID(file_id,string_id,string) pGlobalData->szString_##file_id##_##string_id
#define STR_TEMP(file_id,string_id,string) STRID(file_id,string_id,string)
#define STR(string) STR_TEMP(FILEID,__COUNTER__,string)

Use of the string with those macros

...
printf(pGlobalData->szString_7_5, i);
...

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 103 / 238



WiShMaster in a nutshell The shellcodisation process

Plan

WiShMaster in a nutshell

�

The shellcodisation process

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 104 / 238



WiShMaster in a nutshell The shellcodisation process

The shellcodisation process

Shellcodisation accomplished by WiShMaster is divided into 4 steps:

Analysis: identi�es code elements

Environment creation: creates sources �le like global_data.h
(GLOBAL_DATA structure and macros)

Generation: builds sources, extracts binary data, generates the
shellcode and customize it

Integration: (optionnal) builds an external project that may include
the generated shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 105 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 1

Principle

Step compounded of a chain of functions that will execute some
modi�cations on the shellcode and transmit the modi�ed shellcode to
the next function

Content of the chain is de�ned by the user

Customization functions implemented in Python module ⇒ user can
easily write their own customization module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 106 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 2

Example 1: encryption

Customization step may be used to encrypt the shellcode

WiShMaster comes with two �customization� modules that can
encrypt a shellcode:

XOR encryption with a 32-bits key (polymorphism)
AES-CBC encryption with a 256-bits key

Example 2: setting speci�c values

Example: shellcode that connects to a server

Source code contains two variables: IP address and port of the server

If we put real values directly in those variables:

shellcode must be regenerated to connect to another server
shellcode cannot be distributed in its binary form

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 107 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 2

Example 1: encryption

Customization step may be used to encrypt the shellcode

WiShMaster comes with two �customization� modules that can
encrypt a shellcode:

XOR encryption with a 32-bits key (polymorphism)
AES-CBC encryption with a 256-bits key

Example 2: setting speci�c values

Example: shellcode that connects to a server

Source code contains two variables: IP address and port of the server

If we put real values directly in those variables:

shellcode must be regenerated to connect to another server
shellcode cannot be distributed in its binary form

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 107 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 3

Developer of the shellcode

MyProject.cpp

1

The developer writes source code

IP and port set to special values

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 108 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 3

Developer of the shellcode

MyProject.cpp

GLOBAL_DATA

Internal

functions

2

to generate the shellcode

Developer uses WiShMaster

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 109 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 3

Developer of the shellcode

MyProject.cpp

GLOBAL_DATA

Internal

functions

module:

patch values

Cutomization

module in Python

Developer writes a cutomization
3

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 110 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 3

Developer of the shellcode

MyProject.cpp

GLOBAL_DATA

Internal

functions

module:

patch values

Cutomization

customization module on Internet

4

Developer puts the shellcode and the

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 111 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 3

Developer of the shellcode

User of the shellcode

MyProject.cpp

GLOBAL_DATA

Internal

functions

module:

patch values

Cutomization

functions

GLOBAL_DATA

Internal

and the cutomization module

A user gets the shellcode
5

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 112 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 3

Developer of the shellcode

User of the shellcode

MyProject.cpp

GLOBAL_DATA

Internal

functions

module:

patch values

Cutomization

functions

GLOBAL_DATA

Internal

functions

GLOBAL_DATA

Values

patch values

module:

Cutomization

Internal

The user uses the customization

module to patch special values

6

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 113 / 238



WiShMaster in a nutshell The shellcodisation process

The customization step - 3

Developer of the shellcode

User of the shellcode

MyProject.cpp

GLOBAL_DATA

Internal

functions

module:

patch values

Cutomization

functions

GLOBAL_DATA

Internal

functions

GLOBAL_DATA

Values

patch values

module:

Cutomization

Internal

Encryption key

Cutomization

module:

encryption

The user uses another customization
7

module to encrypt the shellcode

Figure: Principle of the separation between developer / user of a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 114 / 238



WiShMaster in a nutshell The shellcodisation process

Implementation of the shellcodisation in WiShMaster v2 - 1

Internally:

Every element discovered in the source code ∼ an object
(internal/imported functions, strings. . . )

Every step of the shellcodisation divided into several small sub-steps

Every sub-step implemented by one function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 115 / 238



WiShMaster in a nutshell The shellcodisation process

Implementation of the shellcodisation in WiShMaster v2 - 2

WiShMaster can be launched in three modes:

automatic: executes the shellcodisation process automatically

script: executes an external script that can call step/sub-step
functions exported by WiShMaster and manipulate objects

interactive: starts a Python shell (same principle as in Scapy)
User can then:

call step/sub-step functions
execute a shellcodisation step by step by calling some functions step(),
stepi(), run(). . . (like in a debugger)
display objects, change their properties to correct eventual mistakes

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 116 / 238



WiShMaster in a nutshell Initialising the shellcode

Plan

WiShMaster in a nutshell

�

Initialising the shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 117 / 238



WiShMaster in a nutshell Initialising the shellcode

Initialising the shellcode: objective

Shellcodisation process described previously creates a binary code that
may run at any address

However, shellcode must initialise the GLOBAL_DATA structure

Operation executed by a function added by WiShMaster, placed at the
beginning of the shellcode:

�nd address of GLOBAL_DATA structure
�nd addresses of internal functions and �ll pointers in GLOBAL_DATA
resolve imported functions and �ll pointers in GLOBAL_DATA

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 118 / 238



WiShMaster in a nutshell Initialising the shellcode

Finding address of GLOBAL_DATA structure

Code used by the shellcode to find its load address

UCHAR * pShellcode = NULL;

/* Use a call/pop to get load address */
__asm
{

push eax
call GetLoadAddress

GetLoadAddress:
pop eax
mov pShellcode, eax
pop eax

}

/* Find "push ebp"/"mov ebp, esp" instructions to get real load address */
while((*(UINT *)(pShellcode-i) != 0x83EC8B55) && (i < 512))

i++;
if(i == 512)

return FALSE;
pShellcode -= i;

/* Get address of GLOBAL_DATA */
uiGlobalDataSize = *(UINT *)&pShellcode[uiShellcodeSize-8];
pGlobalData = (PGLOBAL_DATA) &pShellcode[uiShellcodeSize-uiGlobalDataSize];

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 119 / 238



WiShMaster in a nutshell Initialising the shellcode

Finding addresses of internal functions

During shellcodisation, WiShMaster includes size of each internal
function

Addresses of internal functions calculated step by step from the
shellcode load address

Code used by the shellcode to rebuild pointers on internal functions

/* Rebuild pointers on internal functions */
for(i=0;i<pGlobalDataHeader->uiNbOfInternalFunctions;i++)
{

pGlobalDataHeader->pInternalFunctionsTable[i].pFunctionPointer = p;
p += pGlobalDataHeader->pInternalFunctionsTable[i].uiFunctionSize;

}

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 120 / 238



WiShMaster in a nutshell Initialising the shellcode

Finding addresses of imported functions

WiShMaster uses technics previously presented:

gets address of kernel32.dll by analysing memory through the PEB
(function �GetKernel32Address�)

resolves imported functions from a 32-bits checksum computed from
function names (�GetProcAddressByCksumInDll�)

checksum is computed with the Metaploit algorithm
must support dll forwarding (example: HeapAlloc in kernel32.dll)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 121 / 238



WiShMaster in a nutshell Initialising the shellcode

Initialising the shellcode: summary

The shellcode initialisation relies on three functions:

�InitialiseShellcode� : entry point of the shellcode, which initialises
GLOBAL_DATA structure

�GetKernel32Address� : returns the load address of �kernel32.dll�

�GetProcAddressByCksumInDll� : �nds an exported function from
the checksum of its name (supports dll forwarding)

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 122 / 238



Demonstration: simpletest

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 123 / 238



Demonstration: simpletest

Demonstrations

generation of �simpletest� as an executable

generation of �simpletest� as a shellcode

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 124 / 238



Developing applications with WiShMaster

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 125 / 238



Developing applications with WiShMaster

Objectives of WiShMaster

Version 1 of WiShMaster: creation of monolithic shellcodes

With version 2, objectives have been considerably extended:

development of modular applications
user chooses output format: an executable, a dll or a shellcode
allows code reusability
development in the very powerful IDE Visual Studio
projects can be distributed either in source or in binary format

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 126 / 238



Developing applications with WiShMaster

Overview of the application structure - 1

A WiShMaster application is compounded of one or several �modules�

A module can be in one of the following 4 forms:

an executable
a dll
a shellcode
inlined into another module

Each module can export some of its functions so that they can be
called by other modules
⇒ each module contains an �export� table and an �import� table

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 127 / 238



Developing applications with WiShMaster

Overview of the application structure - 2

Module1.cpp

Mod3_func2

Mod1_func1

Mod1_func2

Mod2_func1

Imported function

Internal function exported

Mod3_func1

Mod3_func2

Mod2_func1

Module2.cpp

Module3.cpp

Mod3_func1

Mod3_func2

Mod1_func1

Mod2_func1

1

and exporting some functions

Three modules importing

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 128 / 238



Developing applications with WiShMaster

Overview of the application structure - 2

Module1.cpp

Mod3_func2

Mod1_func1

Mod1_func2

Mod2_func1

Imported function

Internal function exported

Mod3_func1

Mod3_func2

Mod2_func1

Module2.cpp

Module3.cpp

Mod3_func1

Mod3_func2

Mod1_func1

Mod2_func1

Mod3_func2

Module1.bin

Mod1_func1

Mod1_func2

Mod2_func1

Mod3_func1

2

Module 1 output = shellcode

Module 2 output = inlined in module 1

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 129 / 238



Developing applications with WiShMaster

Overview of the application structure - 2

Module1.cpp

Mod3_func2

Mod1_func1

Mod1_func2

Mod2_func1

Imported function

Internal function exported

Mod3_func1

Mod3_func2

Mod2_func1

Module2.cpp

Module3.cpp

Mod3_func1

Mod3_func2

Mod1_func1

Mod2_func1

Mod3_func2

Module1.bin

Mod1_func1

Mod1_func2

Mod2_func1

Mod3_func1

Import and export tables

of both modules are merged

3

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 130 / 238



Developing applications with WiShMaster

Overview of the application structure - 2

Module1.cpp

Mod3_func2

Mod1_func1

Mod1_func2

Mod2_func1

Imported function

Internal function exported

Mod3_func1

Mod3_func2

Mod2_func1

Module2.cpp

Module3.cpp

Mod3_func1

Mod3_func2

Mod1_func1

Mod2_func1

Mod3_func2

Module1.bin

Mod1_func1

Mod1_func2

Mod2_func1

Mod3_func1

Mod3_func2

Mod2_func1

Mod1_func1

Module3.exe

Mod3_func1

4

Module 3 output = executable

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 131 / 238



Developing applications with WiShMaster

Overview of the application structure - 2

Module1.cpp

Mod3_func2

Mod1_func1

Mod1_func2

Mod2_func1

Imported function

Internal function exported

Mod3_func1

Mod3_func2

Mod2_func1

Module2.cpp

Module3.cpp

Mod3_func1

Mod3_func2

Mod1_func1

Mod2_func1

Mod3_func2

Module1.bin

Mod1_func1

Mod1_func2

Mod2_func1

Mod3_func1

Mod3_func2

Mod2_func1

Mod1_func1

Module3.exe

Mod3_func1

Module3.exe

Mod1_func2

Mod2_func1

Mod1_func1

Module1.bin

Mod3_func2

Mod3_func1

Mod3_func1

Mod3_func2

Mod1_func1

Mod2_func1

During execution, imported
5

symbols are resolved

Figure: Structure of an application developed with WiShMaster v2

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 132 / 238



Developing applications with WiShMaster

Binary format of a WiShMaster module - 1

Module must be able to:

load without generating an error even if a required module is missing

call function exported by a module independently of the format of this
module (exe, dll, shellcode)

⇒ PE format cannot be used: WiShMaster de�nes its own binary format

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 133 / 238



Developing applications with WiShMaster

Binary format of a WiShMaster module - 2

Structure of GLOBAL_DATA is normalized and contains:

an export table: contains the checksum of the name of each exported
function

an import table: contains the names of each imported module and the
checksum of the names of each imported function
There is no di�erence between a function imported from a standard dll
and one imported from a module (executable, dll or shellcode)

an optional entry point: pointer on an internal function that must be
called after module initialisation

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 134 / 238



Developing applications with WiShMaster

Standard modules - 1

Module Description Functions

log print of formatted messages PrintMsg

initsh initialise a shellcode
InitialiseShellcode
GetProcAddressByCksumInDll

modman manages a set of modules AddLoadedModule

baseobj expose functions to manipulate
basic objects (linked list, mem-
ory, . . . )

AddObjectAtHeadOfLinkedList
RemoveObject
Bu�erAllocate
Bu�erFree
. . .

advobj expose functions to manipulate
advanced objects (hash table,
managed bu�er, . . . )

ManagedBu�erInitialise
ManagedBu�erFree
ManagedBu�erAddData
. . .

kernel event dispatcher
SendKernelMessage
RegisterNewKernelMessageHandler

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 135 / 238



Developing applications with WiShMaster

Standard modules - 2

Module Description Functions

cryptoman manage cryptographic keys
and call cryptographic modules
to try to decrypt encrypted
�les

RegisterCryptographicHandler
RegisterNewKernelMessageHandler

�ledisp dispatch �le to other modules,
according to the type of the �le

RegisterFileHandler
RegisterDefaultFileHandler

cryptoxor executes XOR-decryption with
a 32-bits key

XorDecryption

cryptoaes executes AES-decryption with
a 256-bits key

AesDecryption

�leloader load a �le from hard drive in
memory

LoadFile

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 136 / 238



Developing applications with WiShMaster

Standard modules - 3

Those modules can be used to create a �loader� = code that is able to
load and manage a set of modules

�loader� can be an executable or a shellcode

some special capabilities may be added through new modules (�nd
modules on USB key, download them from Internet, . . . )

Example: Creation of an encrypted module and load from a simple loader
Demo : Creation of a new skeleton �test�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 137 / 238



Developing applications with WiShMaster

Module encryption

module (raw)

Figure: Module encryption

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 138 / 238



Developing applications with WiShMaster

Module encryption

module (raw)

Add file type and special

value for filedisp

1

01 aa bb cc dd

module

Figure: Module encryption

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 139 / 238



Developing applications with WiShMaster

Module encryption

module (raw)

Add file type and special

value for filedisp

1

01 aa bb cc dd

module

2

Add special value

for cryptoman

ab cd ab cd

module

01 aa bb cc dd

Figure: Module encryption

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 140 / 238



Developing applications with WiShMaster

Module encryption

module (raw)

Add file type and special

value for filedisp

1

01 aa bb cc dd

module

2

Add special value

for cryptoman

ab cd ab cd

module

01 aa bb cc dd

key (raw)

Figure: Module encryption

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 141 / 238



Developing applications with WiShMaster

Module encryption

module (raw)

Add file type and special

value for filedisp

1

01 aa bb cc dd

module

2

Add special value

for cryptoman

ab cd ab cd

module

01 aa bb cc dd

key (raw)

3

cryptographic key

Encrypt module with

encrypted

module

Figure: Module encryption

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 142 / 238



Developing applications with WiShMaster

Module encryption

module (raw)

Add file type and special

value for filedisp

1

01 aa bb cc dd

module

2

Add special value

for cryptoman

ab cd ab cd

module

01 aa bb cc dd

key (raw)

3

cryptographic key

Encrypt module with

encrypted

module

for filedisp

Add special value
4

00 aa bb cc dd

key

Figure: Module encryption

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 143 / 238



Developing applications with WiShMaster

Module encryption

Demo : Module encryption

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 144 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 145 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 146 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

Encrypted module is

loaded in memory

1

module.enc

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 147 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

fileloader transmits

buffer to filedisp

2

module.enc

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 148 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

filedisp sends buffer to
3

default handler (cryptoman)

module.enc

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 149 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

cryptoman can’t decrypt
4

the buffer => keeps it

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 150 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

key.bin

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 151 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

key.bin loaded in memory

5

Cryptographic key is

key.bin

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 152 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

key.bin

6

buffer to filedisp

fileloader transmits

key.bin

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 153 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc

key.bin

key and sends it to cryptoman

7

fileloader recognizes cryptographic

key.bin

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 154 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc key.bin

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 155 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.enc key.bin

buffer with this new key

cryptoman try to decrypt pending
8

module.enc

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 156 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

key.bin

module.bin
cryptoman decrypts

the encrypted buffer

9

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 157 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

key.bin

module.bin

10

cryptoman sends

buffer to filedisp

module.bin

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 158 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

key.bin

module.bin

key and sends it to modman

11

fileloader recognizes a module

module.bin

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 159 / 238



Developing applications with WiShMaster

Loading encrypted module

filedisp

cryptoxor cryptoaes

cryptoman

modman

kernel

fileloader

module.bin

key.bin

module.bin

resolves the module

12

modman initialiases and

Figure: Loading an encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 160 / 238



Developing applications with WiShMaster

Loading encrypted module

Demo : Loading encrypted module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 161 / 238



Demonstration 3: rvshell

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 162 / 238



Demonstration 3: rvshell Presentation of rvshell

Plan

Demonstration 3: rvshell

�

Presentation of rvshell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 163 / 238



Demonstration 3: rvshell Presentation of rvshell

Presentation of rvshell - 1

�rvshell� is a simple reverse shell: backdoor that establishes a
connection between a �cmd� process and a remote server

backdoor compound of two layers:

the network layer that establishes the communication with the server
the application layer that creates the �cmd� process and uses the
services exposed by the network layer

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 164 / 238



Demonstration 3: rvshell Presentation of rvshell

Presentation of RvShell - 2

Primergy

Memory

Hard drive

Firewall

Attacker Server

Figure: Working principle of RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 165 / 238



Demonstration 3: rvshell Presentation of rvshell

Presentation of RvShell - 2

Primergy

Memory

Hard drive

Firewall

Attacker Server

RvShellstarted on server

"RvShell" is
1

Figure: Working principle of RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 166 / 238



Demonstration 3: rvshell Presentation of rvshell

Presentation of RvShell - 2

Primergy

Memory

Hard drive

Firewall

Attacker Server

RvShell

NETCAT

"RvShell" connects on
2

attacker’s computer

Figure: Working principle of RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 167 / 238



Demonstration 3: rvshell Presentation of rvshell

Presentation of RvShell - 2

Primergy

Memory

Hard drive

Firewall

Attacker Server

RvShell

NETCAT

CMD

with stdin/stdout redirected in socket

3
"RvShell" spawns a hidden cmd process

Figure: Working principle of RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 168 / 238



Demonstration 3: rvshell Presentation of rvshell

Implementation of rvshell

Two modules have been developed:

�NtStackSmpl� implements the network layer and exports two
functions:

BOOL OpenConnection(IN UINT uiServerAddressNt, IN USHORT usServerPortNt, OUT SOCKET * pSock);
BOOL CloseConnection(IN SOCKET sock);

�RvShell� implements the application layer:

does not export any function
has an entry point, the function �ExecuteShell�:

uses �OpenConnection� to open a TCP connection on the server
creates the �cmd� process

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 169 / 238



Demonstration 3: rvshell Presentation of rvshell

Generating RvShell as an executable

RvShell.cpp

ExecuteShell

RvShell.exe

NtStackSmpl.cpp

OpenConnection

ExecuteShell

PrintMsg

CloseConnection

CloseConnection

PrintMsg

OpenConnection

PrintMsg

CloseConnection

PrintMsg

OpenConnection

Log.cpp

Figure: Result of the creation of the reverse shell as an executable

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 170 / 238



Demonstration 3: rvshell Presentation of rvshell

Generating a polymorphic rvshell - 2

�rvshell� is generated as a shellcode and then included in an executable that
decrypts rvshell and jumps on it

RvShell.exe
RvShell.cpp

OpenConnection

ExecuteShell

OpenConnection

CloseConnection

PrintMsg

OpenConnection

CloseConnection

PrintMsg

Log.cpp

PrintMsg

Log.cpp

InitShellcode

GetProcAddr...

PrintMsg

ExecuteShell

OpenConnection

CloseConnection

PrintMsg

GetProcAddr...

InitShellcode

RvShell.bin

Decryption loop

RvShell.bin

CloseConnection

ExecuteShell

GetProcAddr...

InitShellcode

PrintMsg

NtStackSmpl.cpp

Figure: Result of the creation of a polymorphic reverse shell
Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 171 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Plan

Demonstration 3: rvshell

�

Simulation of an attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 172 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Context

Objective

Take control of a targeted computer with a backdoor (reverse shell)

Context of the attack

Malicious payload must be protected against forensic analysis:

malicious payload is transferred after encryption on targeted computer

malicious payload is decrypted only in memory

decryption code is introduced by another way

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 173 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Context

Objective

Take control of a targeted computer with a backdoor (reverse shell)

Context of the attack

Malicious payload must be protected against forensic analysis:

malicious payload is transferred after encryption on targeted computer

malicious payload is decrypted only in memory

decryption code is introduced by another way

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 173 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader Attacker generates a Trojan that

contains "Loader" (XOR encryption)

1

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 174 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

Attacker generates shellcodes "RvShell"

and "NtStackSmpl" (AES encryption)

2

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 175 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 176 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

to targeted user

3

Attacker sends Trojan

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 177 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

MyEditor.exe

Decryption

Loader

4

User starts "MyEditor"

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 178 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

MyEditor.exe

Decryption

Loader

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 179 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

MyEditor.exe

Decryption

LoaderLoader

5

"Loader" is decrypted and executed

User uses to trapped functionnality

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 180 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

MyEditor.exe

Decryption

LoaderLoader

Firefox.exe

instance of default browser

"Loader" starts a hidden
6

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 181 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

MyEditor.exe

Decryption

LoaderLoader

Firefox.exe

Loader

"Loader" injects itself
7

in the hidden instance

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 182 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

Firefox.exe

Loader

stays in browser, waiting for USB key

8

"MyEditor" may be closed. "Loader"

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 183 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

USB key

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

Firefox.exe

Loader

Attacker puts "RvShell" and

"NtStackSmpl" on a USB key

9

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 184 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

USB key

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

Firefox.exe

Loader

USB key

NtStackSmpl

RvShellthe USB key in their computer

10

Attacker asks the user to plug in

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 185 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

USB key

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

Firefox.exe

Loader

USB key

NtStackSmpl

RvShell

NtStackSmpl

RvShell

11

"Loader" detects plug, finds the modules

loads, decrypts and executes them

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 186 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Principle of the attack

USB key

Hard drive

Memory

MyEditor.exe

XOR / 32−bits keys

Decryption

Loader

AES−CBC / 256−bits key

RvShell

NtStackSmpl

MyEditor.exe

Decryption

Loader

Firefox.exe

Loader

USB key

NtStackSmpl

RvShell

NtStackSmpl

RvShell CMD

NETCAT

remote cmd access to attacker

12
"RvShell" connects back and gives a

Figure: Principle of the attack with RvShell

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 187 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of secret keys

UsbLoader contains a master secret key

RvShell and NtStackSmpl are each encrypted with a di�erent secret
key

the secret key of each module is encrypted by the master key

the two encrypted modules and the two encrypted secret keys are put
on the USB key
⇒ The master key and the module secret key are both required to
decrypt a module

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 188 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Loader

SearchModInDir.cpp

Log.cpp

Loader.cpp

InitSh.cpp

DetectUsbKey.cpp

Figure: Generation of Loader

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 189 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Loader

SearchModInDir.cpp

Log.cpp

Loader.cpp

InitSh.cpp

DetectUsbKey.cpp

InitSh

DetectUsbKey

Loader

inlined in Loader

Shellcodisation

inlined in Loader

inlined in Loader

Log

SearchModInDir

inlined in Loader

Figure: Generation of Loader

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 190 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Loader

SearchModInDir.cpp

Log.cpp

Loader.cpp

InitSh.cpp

DetectUsbKey.cpp

InitSh

DetectUsbKey

Loader

inlined in Loader

Shellcodisation

inlined in Loader

inlined in Loader

Log

SearchModInDir

inlined in Loader

InitShCustomization:

Log

Patch secret key

Loader

SearchModInDir

DetectUsbKey

Figure: Generation of Loader

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 191 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of RvShell and NtStackSmpl

NtStackSmpl.cpp

RvShell.cpp

Figure: Generation of RvShell and NtStackSmpl

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 192 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of RvShell and NtStackSmpl

NtStackSmpl.cpp

RvShell.cpp RvShell.bin

NtStackSmpl.bin

Shellcodisation

Shellcodisation

Figure: Generation of RvShell and NtStackSmpl

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 193 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of RvShell and NtStackSmpl

NtStackSmpl.cpp

RvShell.cpp RvShell.bin

NtStackSmpl.bin

Shellcodisation

Shellcodisation

RvShell.bin

Customization:

Patch IP/port

IP address / port

Figure: Generation of RvShell and NtStackSmpl

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 194 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of RvShell and NtStackSmpl

NtStackSmpl.cpp

RvShell.cpp RvShell.bin

NtStackSmpl.bin

Shellcodisation

Shellcodisation

RvShell.bin

Customization:

Patch IP/port

IP address / port

AES encryption

RvShell.bin

Customization:

AES encryption

NtStackSmpl.bin

Customization:

Figure: Generation of RvShell and NtStackSmpl

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 195 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

The module �Injecter�

�Injecter is a module that injects a shellcode in another process
(OpenProcess/WriteProcessMemory/CreateRemoteThread)

Injection can be:

in a new hidden instance of default browser
in a new hidden instance of a speci�ed program
in �rst process which name matches speci�ed name
in all processes whose names match speci�ed name

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 196 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Injecter

Injecter.cpp

InitSh.cpp

Log.cpp

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 197 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Injecter

Injecter.cpp

InitSh.cpp

Log.cpp

Log

InitSh

inlined in Loader

inlined in Loader

Shellcodisation

Injecter

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 198 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Injecter

Injecter.cpp

InitSh.cpp

Log.cpp

Log

InitSh

inlined in Loader

inlined in Loader

Shellcodisation

Injecter

SearchModInDir

Customization:

DetectUsbKey

InitSh

InitSh

Log

Log

Add shellcode to inject

Loader

DetectUsbKey

SearchModInDir

InitSh

Log

Injecter

Loader

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 199 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of Injecter

Injecter.cpp

InitSh.cpp

Log.cpp

Log

InitSh

inlined in Loader

inlined in Loader

Shellcodisation

Injecter

SearchModInDir

Customization:

DetectUsbKey

InitSh

InitSh

Log

Log

Add shellcode to inject

Loader

DetectUsbKey

SearchModInDir

InitSh

Log

Injecter

Loader

Log

Loader

SearchModInDir

Customization:

Injecter

InitSh

DetectUsbKey

XOR encryption

InitSh

Log

Figure: Generation of Injecter

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 200 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of the Trojan

Header

Section 1

Section 2

...

Section n

Injecter

MyEditor.exe

Figure: Generation of the Trojan

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 201 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of the Trojan

Header

Section 1

Section 2

...

Section n

Injecter

MyEditor.exe

Infector.exe

Section n

...

Section 2

Section 1

Decryption

Injecter

Header

MyEditor.exe

Figure: Generation of the Trojan

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 202 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Preparing attack - Generation of the Trojan

Header

Section 1

Section 2

...

Section n

Injecter

MyEditor.exe

Infector.exe

Section n

...

Section 2

Section 1

Decryption

Injecter

Header

MyEditor.exe

Figure: Generation of the Trojan

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 203 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

RvShell attack in practice

Demo : Execution of the attack

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 204 / 238



Demonstration 3: rvshell Simulation of an attack with RvShell

Attack - summary

Techniques used during this attack:

Encryption of malicious payload:

�Injecter� in �MyEditor�: polymorphism
�NtStackSmpl� and �RvShell�: strong encryption (decrypted in memory)

Code injection: �Loader� executed in a hidden process

Executable infection: trojan created from �MyEditor�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 205 / 238



Demonstration 2: webdoor

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 206 / 238



Demonstration 2: webdoor

Context

Objective

Take control of a web server; steal username/password of web site users

Description of the target

Windows

Two services:

Apache/PHP/MySQL with a phpbb (target)
FTP server used to update web site

Server protected by a �rewall (allows only incoming HTTP/FTP)

Context of the attack

Attacker found a valid user/pass for FTP server

File system regularly checked
⇒ impossible to leave a backdoor on system
⇒ Attacker decides to use a personal tool: �WebDoor�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 207 / 238



Demonstration 2: webdoor

Context

Objective

Take control of a web server; steal username/password of web site users

Description of the target

Windows

Two services:

Apache/PHP/MySQL with a phpbb (target)
FTP server used to update web site

Server protected by a �rewall (allows only incoming HTTP/FTP)

Context of the attack

Attacker found a valid user/pass for FTP server

File system regularly checked
⇒ impossible to leave a backdoor on system
⇒ Attacker decides to use a personal tool: �WebDoor�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 207 / 238



Demonstration 2: webdoor

Context

Objective

Take control of a web server; steal username/password of web site users

Description of the target

Windows

Two services:

Apache/PHP/MySQL with a phpbb (target)
FTP server used to update web site

Server protected by a �rewall (allows only incoming HTTP/FTP)

Context of the attack

Attacker found a valid user/pass for FTP server

File system regularly checked
⇒ impossible to leave a backdoor on system
⇒ Attacker decides to use a personal tool: �WebDoor�

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 207 / 238



Demonstration 2: webdoor

Presentation of WebDoor

Webdoor executes the following actions:

Finds a targeted process that represents a web server

Injects a shellcode in this process that will install a hook on function
�WSARecv�

Hook analyses every web request and extracts parameters:

parameter �shell� ⇒ interpretes command in a mini-shell
Example: �shell=cmd� gives access to a remote cmd on server
otherwise compares every name of parameter with list of keywords to
detect username/password

Web server work not disrupted

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 208 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 209 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

FTP

i.exe

WebDoor

WebDoor on server

Attacker uploads
1

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 210 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

i.exe

WebDoor

WebDoor

injects itself in Apache

WebDoor is started and
2

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 211 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

WebDoor

deleted from hard drive

WebDoor can now be
3

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 212 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

WebDoor

NETCAT

CMD

GET /index.php?shell=cmd HTTP/1.0

HTTP

cmd access

4
User gets remote

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 213 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

WebDoor

NETCAT

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 214 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

WebDoor

NETCAT

HTTP

BROWSER

POST /login.php HTTP/1.0

username=admin&password=rdp700!

5
Another user authenticate

theirself on web site

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 215 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

WebDoor

NETCAT

HTTP

BROWSER

POST /login.php HTTP/1.0

username=admin&password=rdp700!

rdp_700!

admin

WebDoor intercepts
6

username and password

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 216 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

WebDoor

NETCAT

BROWSER
rdp_700!

admin

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 217 / 238



Demonstration 2: webdoor

Principle of web server attack

Primergy

Memory

Hard drive

Firewall

Attacker Server

User

Apache

WebDoor

NETCAT

GET /index.php?shell=get_pwd HTTP/1.0

HTTP

BROWSER
rdp_700!

admin

admin

rdp_700!

captured credentials

7
Attacker gets list of

Figure: Principle of web server attack with WebDoor

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 218 / 238



Demonstration 2: webdoor

Principle of API hooking

Several ways to do API hooking:

Patch the Import Address Table

Replace entries in IAT of functions to hook with addresses of hook
functions
Easy to implement but does not intercept calls to functions resolved
dynamically

Patch header of function

Patch �rst bytes of function to hook with a jmp to hook function
All calls are intercepted, independently of the resolution mechanism
But solution not so easy to implement:

memory rights of the section must be changed
instruction alignment must be computed to save the overwritten
instructions
stack must be rebuilt before calling real function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 219 / 238



Demonstration 2: webdoor

Principle of API hooking

Several ways to do API hooking:

Patch the Import Address Table

Replace entries in IAT of functions to hook with addresses of hook
functions
Easy to implement but does not intercept calls to functions resolved
dynamically

Patch header of function

Patch �rst bytes of function to hook with a jmp to hook function
All calls are intercepted, independently of the resolution mechanism
But solution not so easy to implement:

memory rights of the section must be changed
instruction alignment must be computed to save the overwritten
instructions
stack must be rebuilt before calling real function

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 219 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 220 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 221 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 222 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 223 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

...

...

ret

analysis code

analysis code

...

...

call [header]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 224 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 225 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

jmp [function]

push ebp

mov ebp, esp

mov eax, [ebp+4]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 226 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

jmp [function]

push ebp

mov ebp, esp

mov eax, [ebp+4]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 227 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

jmp [function]

push ebp

mov ebp, esp

mov eax, [ebp+4]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 228 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

jmp [function]

push ebp

mov ebp, esp

mov eax, [ebp+4]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 229 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

jmp [function]

push ebp

mov ebp, esp

mov eax, [ebp+4]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 230 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

jmp [function]

push ebp

mov ebp, esp

mov eax, [ebp+4]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 231 / 238



Demonstration 2: webdoor

Principle of API hooking

push [...]

...

mov ebp, esp

mov eax, [ebp+4]

...

inc eax

ret

push ebp

call [func]

push [...]

jmp [hook_code]

...

...

ret

analysis code

analysis code

...

...

call [header]

jmp [function]

push ebp

mov ebp, esp

mov eax, [ebp+4]

Figure: API hooking by header patching

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 232 / 238



Demonstration 2: webdoor

The module �Hooker�

�Hooker� is a module that executes API hooking by patch of function
header

calculation of instruction alignement based on z0mbie's LDE32 engine

exports one function �HookFunctions� that allows to hook a set of
functions

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 233 / 238



Demonstration 2: webdoor

Web server attack in practice

Demo : Web server attack

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 234 / 238



Conclusion

Plan

1 Quick reminder. . .

2 The use of shellcodes in virology

3 Writing shellcode for Windows

4 Generating the shellcode

5 WiShMaster in a nutshell

6 Demonstration: simpletest

7 Developing applications with WiShMaster

8 Demonstration 3: rvshell

9 Demonstration 2: webdoor

10 Conclusion

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 235 / 238



Conclusion

Conclusion

Techniques implemented in tools used in two attacks are well-known

Interesting point : developed very quickly
Example: integration of the AES of PolarSSL in �Loader� ∼ 2 hours

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 236 / 238



Conclusion

Future work

Finalise the development of this version of WiShMaster (correct a few
bugs)

Try to shellcodise well-known application like netcat ⇒ polymorphic
netcat

Develop more funny applications with WiShMaster

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 237 / 238



Conclusion

Thank you for your attention. . .

Any questions?

Shellcodisation is painless. No C code was harmed during this presentation

Benjamin CAILLAT (ESIEA - SI&S lab) Windows Shellcode Mastery (reloaded) 238 / 238


