
New type of threat: Mobile botnets on Symbian 

Cao Yang
1
, Zou Shihong

1, 2
, Li Wei

1
 

1, NetQin Mobile Inc. 

2, Beijing University of Posts and Telecommunications 

 

About Author(s) 

Cao Yang is a virus analyst in Threat Response Team, Research Center, NetQin Mobile Inc. 

Contact Details:caoyang@netqin.com 

Zou Shihong is vice president of NetQin Mobile Inc. 

Contact Details:zoushihong@netqin.com 

Li Wei is director of Research Center, NetQin Mobile Inc 

Contact Details:liwei@netqin.com 

Mail Address: No.4 Building, Heping Li East Street 11,Dongcheng District, Beijing, China 100013 

Fax: +86 10 85655518 

Keywords 

"Zombie", botnets, mobile security, Symbian worm, malicious server 



New type of threat: Mobile botnets on Symbian 

Abstract 

In last June, sets of viruses broke out on Symbian phones in China. Within one week, more 

than 1 million phones were infected, according to CNCERT. The statistics of victim has been 

climbing since then. Compared to the viruses broke out previously, these viruses bear more 

resemblance to the “botnets” virus on PC, so they are given the name “Zombie”. (The formal virus 

names are “FC.ThemeInstaller.A”, “AVK.DuMusic.A” and their variants.)  

This paper will firstly provide some background information about “Zombie”, and then 

introduce the security mechanism on Symbian OS 9, the basic assembly code and reverse 

engineering techniques, all of which are essential to understand the latter part. Next, this paper will 

explain the basic features of “Zombie” from an implementation aspect, including how they 

propagate, how they protect themselves against anti-virus, and how they spread etc. These features 

are illustrated with assembly code and regenerated standard API on Symbian. Most importantly, 

this paper will explain the new feature of “Zombie”, that remote malicious server plays an 

important, even vital role in the attack and spread of “Zombie”. It will show how the server 

commands “Zombie” to conduct malicious behaviours the hacker wants. These commands can 

range widely, from uploading sensitive information of the victim to downloading new addresses of 

the remote server for protecting “Zombie” from operator, such as China Mobile‟s blocking. This 

paper will provide these commands already known, but there will always exist new commands, 

since the high expansibility of “Zombie” allowing them to accept whatever commands defined by 

hacker. By showing and explaining these "protocol" between remote malicious server and 

„Zombie”, this paper will provide an overview of the whole process of “Zombie” attack and the 

framework of this new type of mobile threat.  

Finally, this paper will conclude on the importance of the “Zombie” and their influence to 

mobile security world widely.  

Introduction 

As is known to all, China has the largest smart-phone market around the world. Driven by 

potential huge profit, many hackers take risks producing mobile viruses. This situation is especially 

critical on Symbian, since it is the most popular platform currently in China. In 2010 alone, more 

than 1700 mobile viruses
 
(NetQin, 2010a) have been captured, which exceeds the three previous 

years combined. Besides increasing in amount, the viruses are also developing in the ability to 

attack, defend and spread. By now, they have grown strong enough to cause havocs on mobile 

platforms. 

In this paper, the “Zombie” viruses will be discussed. The word “Zombie” is an informal 

name given to viruses possessing the typical characteristic of botnets - all the victims are, at least 

partially, controlled by the hacker. In last June, “Zombie” broke out and infected more than one 

million phones within one week (CNCERT, 2010), according to CNCERT
 
(China National 

Computer network Emergency Response Technical). Although China’s largest operator-China 

Mobile, took several measures, such as blocking malicious servers, deactivating the phones which 

sends lots of featured short messages, the amount of victim was still climbing. Due to the strong 

transmissibility and robustness of “Zombie”, the direct economic losses have totalled twenty 

million Yuan
 
(NetQin 2010b). Moreover, the outbreak of “Zombie” also draws the attention of 

mainstream medias. For example, CCTV (China Central Television) gave a special coverage
 

(CCTV, 2010) on this security incident. “Zombie” was firstly captured by us in last June, with the 



name “NmapPlug.A”. Till now, dozens of variants have been found. They were given names like 

“FC.ThemeInstaller.A” and “AVK.DuMusic.A” in our virus database. 
1
 

This paper will give a detailed analysis of ThemeInstaller.A which is a classic representation 

of “Zombie”. Firstly, it provides background information about Symbian’s security mechanism and 

introduces some reverse techniques on Symbian platform. Then, the analysing procedure begins. 

Each conclusion will be illustrated with assembly code and regenerated standard API. Moreover, 

the specific protocol between “Zombie” and remote server will be provided and explained, to reveal 

the framework of this threat. Finally, based on these findings, this paper concludes on the work 

done and predicts the impact “Zombie” brings to mobile security world widely. 

Required Knowledge 

In this section, we will introduce some basic knowledge which can help to understand the 

analysis in latter part. These knowledges include three aspects: Symbian’s security mechanism, 

ARM assembly code, and some reverse techniques. 

Symbian’s security mechanism 

Since the version 9, Symbian introduces a new security mechanism, which mainly falls into 

three parts: data caging, capabilities and Symbian Signed. In general, if the application wants to 

conduct certain behaviours, it must have the corresponding capability. The capability is granted by 

Symbian through the form of certificate. Before the grant of certain certificate, Symbian will do 

checks on the software. The scale of check depends on the level of capability required. Currently, 

most viruses get certificate through Express Sign, which is enough to cause havocs on Symbian. 

Data caging is the restrictions for directory’s access. For example, every application has a private 

directory which cannot be accessed by other applications if they don’t have the “AllFiles” 

capability. The system’s directories such as “sys\bin” also have restrictions for read/write 

operations. 
2
 

ARM assembly code 

As we know, Symbian is based on ARM’s architecture, in other words, the form of code 

running on the phone is actually ARM assembly.
3
 For this paper, we only need to know a few 

instructs. 

 PUSH {r1, r2}: push the value of r1 and r2 ,to the stack of current function 

 MOV r1, r2: set r1 with the value of r2. 

 LDR r2, =off_794B0138: load the value of variable off_794B0138 to R2. 

 LDR r2, [r1]: load the byte at the address indicated by r1 

 BLX r1: call the function whose address is indicated by r1 

 CMP r1, r2: r1 minus r2 and the result will affect certain bits in flag register. 

 BLE loc_794AC48C: check the result of CMP, by accessing certain bits in flag register. 

For example, taking previous instruct into account, if the value is less than or the same to 

                                                 

1
 We have given a special coverage about “Zombie” on our website. Please refer to 

“http://www.netqin.com/market/jiangshi/” for more information. 

2
 Detailed information can be found on Nokia’s wiki

 
(Nokia, 2009). 

3
  The languages such as Java and Python are not the same. They are runtime languages, and run on a virtual platform. 

http://www.netqin.com/market/jiangshi/


the value of r2, call the function loc_794AC48C. 

 B: directly jump to an address without return 

 STR r2, [r0] : store r2 to the address indicated by r0 

Several reverse techniques 

Descriptors 

Actually, descriptor is the predefined format for strings on Symbian. The identification of 

plaintext is important during reverse engineering. There are mainly five kinds of descriptors, 

summarized in the table below. 

TBuf 3 

TBufC 0 

HBufC 0 

TPtr 4 

TPtrC 1 

Table 1: class code for descriptors 

The number is the value of their first half byte, which is reserved to identify the class of 

descriptors. It is a little more difficult to read the string for TPtr and TPtrC. The structure of TPtr is 

shown below. (The structure of TPtrC doesn’t have the max length field.) 

4bits:type 28bits:length 32bits:max 

length 

32bits:address of the real 

string 

When the descriptor is TPtr or TPtrC, we should jump to the real address to get strings. The 

other three descriptors can be directly read, and will not be discussed here. 

Function arguments 

When the system calls functions, the storage of arguments have mainly two cases. For a 

non-static member function of a class, register r0 always stores the “this” pointer of this class, and 

the augments are stored one after another in r1, r2……. For example, when we call the function 

CTelephony::GetPhoneId(TRequestStatus &,TDes8 &), the register r0 stores “this” pointer of 

CTelephony’s object, r1 stores the address of TRequestStatus’s object, r2 stores the address of an 

descriptor. But when the function to be called is a static function, then r0 will be used as ordinary 

registers. 

Class identification 

The reverse engineering of a class is the most important part, especially on Symbian. 

Because there are callbacks and virtual functions used everywhere. Without the knowledge of the 

classes’ structure, some virtual functions which are not directly called will be missed during 

analysis. Actually, they may also execute, through dynamic function calls.  



The vtable is the key to know about class, and it will be visited during the class’s construct 

period. Usually, system will allocate memories for a class before constructing it. On Symbian, the 

allocation method is usually “User::AllocZL”. After allocation, the construct procedure begins. 

Actually, the construct is a recursion period. The pseudo code is shown below.   

Alloc memory; 

Call ObjectConstructor; 

FUNC ObjectConstructor 

 WHILE has next parent class 

  Call ObjectConstructor of this parent class 

 ENDWHILE 

 Put offset 4 bytes of vtable address into first 4 bytes of object’s memory 

END FUNC 

We can see that the vtable address can be got though the construction period. 

Dynamic call 

Dynamic call supports one of the three main features of C++: polymorphism. The steps 

implemented on ARM platform is shown below.  

LDR     R0, [R4]; R4 stores “this” pointer of current class. In this step, R0 will store the 

object’s first byte. 

LDR     R1, [R0, #0xC]; 0xC is the offset of vtable, and this step is used to get address of 

related virtual function 

MOVS    R0, R4; R4 is “this” pointer, which stores the address of current class object 

BLX     R1; call the virtual function 

The analysis of “Zombie” 

Beyond all doubt, “Zombie” has earned its fame, with millions phones infected and a huge 

botnets created. Fortunately, the hacker’s aim is not attacking but earning money, otherwise this 

botnets is large enough to disable current telecommunication network.  

Symbian 9’s security mechanism is more rigorous than other OS and was once thought a 

good solution to malware problem. Even so, “Zombie” has successfully created a botnets on this 

platform. It’s believed that the special features of “Zombie”, and an elaborately-designed protocol 

with remote server, make mobile botnets comes into reality. 

The next sections are organized as follows. First, we will summarize the typical features of 

“Zombie”. Second, the static structure of ThemeInstaller.A will be introduced. Then, the concrete 

features will be analysed, illustrated with related reversed assembly code and flowchart. Finally, the 

decrypted protocol between server and ThemeInstaller.A will be provided and explained. Based on 

these results, we will illustrate the framework of this new type of threat. 



Typical features 

The typical features of “Zombie” fall into three categories: concealment, defensiveness and 

transmissibility. 
4
 

 Concealment: strategies taken to hide or disguise. 

 Clear traces in system’s log after conduct communication activities, such as connecting to 

Internet or sending messages, etc. 

 Go into self-destruction period, when certain task finishes. 

 Only start malicious tasks when the phone is not being used. 

 Conduct activity, such as making new calls, sending messages, installing software and 

connecting to Internet, in a stealthy way. 

 Only release and install new malware, when there are suitable amount of software 

installed. 

 Clear records in system’s installation log after silent installation. 

 Hide from system’s task list. 

 Defensiveness: strategies taken to defend itself against stop or elimination. 

 Attack security softwares. 

 Schedule task to launch itself. 

 Send messages via socket, which will escape the monitoring or control of other softwares. 
5
 

 Daemon process is implemented to defend against process killing. 

 Daemon package is implemented to protect itself from uninstallation. 

 Anti-uninstallation in a violent way. 

 Transmissibility: strategies taken to spread. 

 Send short messages with a download link in the text. The recipient and message text are 

customized by the hacker. 

 Download and install new malware from malicious server 

 Besides all these “local” features, “Zombie” is actually notorious for the botnets feature: all 

the viruses are controlled by the remote server. Through interactions with “Zombie”, the remote 

server can configure certain behaviours, such as messages, call, and self-protection, etc. 

Structural analysis 

This section mainly discusses the structure of ThemeInstaller.A
6
. Other variants have similar 

structure and features. 

                                                 
4
 These features are merged version of all variants, such as DuMusic.A and NmapPlug.A. 

5
 This point rectifies previous opinion

 
in (Axelle Apvrille, 2010), that Symbian has only two messaging methods. 

6
 sha1: C091665B8D48D37EA4AC4BA0FC5FF82868BFD37C. 



ThemeInstaller.A arrives as a simple package including four data files and one executable. 

Its Symbian signed and the certificate is issued to “Hangzhou Ruixi Technology Co., Ltd.” The 

defects of Symbian Signed will not be discussed here, since it has been explained in (Axelle 

Apvrille, 2010). The following script is extracted from the package using SisContents
 
(SisContents 

2010). 

"C_System\Data\Theme\0.dat"-"C:\System\Data\Theme\0.dat" 

“C_System\Data\Theme\1.dat"-"C:\System\Data\Theme\1.dat" 

"C_System\Data\Theme\2.dat"-"C:\System\Data\Theme\2.dat" 

"C_System\Data\Theme\3.dat"-"C:\System\Data\Theme\3.dat" 

"C_Resource\Apps\OviUpdate_20031C43.rsc"-"C:\Resource\Apps\OviUpdate_20031C43.rsc" 

"C_sys\bin\ThemeInstaller.exe"-"C:\sys\bin\ThemeInstaller.exe", FR, RI 

OviUpdate_20031C43.rsc is a standard resource file.ThemeInstaller.exe is an executable file. The 

flag “FR, RI” indicates it will run immediately after the installation. The four data files are actually 

encrypted version of standard installation packages: sisx or jar. They will be decrypted and installed 

by ThemeInstaller.exe. The decrypted version of 0.dat is a safe jar file, which may be hacker’s trick 

to convince the user nothing but safe software installed. Other three data files are the real “Zombie” 

viruses and their names are “Ovi Update”, “Ovi Store Installer” and “OviStore”. (Certainly, these 

packages are also Symbian Signed. The certificate is issued to “Hangzhou Ruixi Technology Co., 

Ltd.”) In latter section, we will explain the relationship between these packages. The structure of 

“Ovi Update” is as follows, with unimportant files omitted. 

"sys\bin\OviUpdate.exe"-"!:\sys\bin\OviUpdate.exe", FR, RI 

"C_sys\bin\DebugSrv.exe"-"C:\sys\bin\DebugSrv.exe" 

"C_sys\bin\TrafficD.exe"-"C:\sys\bin\TrafficD.exe" 

"C_sys\bin\OviStoreInstaller.exe"-"C:\sys\bin\OviStoreInstaller.exe" 

"C_private\101f875a\import\[20031C45].rsc"-"C:\private\101f875a\import\[20031C45].rsc" 

"C_sys\bin\AssistantProtect.exe"-"C:\sys\bin\AssistantProtect.exe" 

"C_sys\bin\RunAssistant.exe"-"C:\sys\bin\RunAssistant.exe", FR, RR, RW 

As the related flags indicate, OviUpdate.exe will run after installation and RunAssistant.exe will run 

during uninstallation. The file [20031c45].rsc will be copied into “c:\private\101f875a\import” on 

the phone, which is Symbian OS 9’s typical way to start applications on phone boot. The hex dump 

of this file shows that OviStoreInstaller.exe will be launched. 

 

The structure of “Ovi Store Installer” is much simpler, and the extracted script is shown below.  

Here, we only need to know that RunAssistantProtect.exe will run during uninstallation. What it 

handles will be discussed later. 

"sys\bin\Assistant.exe"-"!:\sys\bin\Assistant.exe" 

"sys\bin\RunAssistantProtect.exe"-"!:\sys\bin\RunAssistantProtect.exe", FR, RR, RW 



There is only one executable in Package “OviStore” and it also runs after installation. 

"sys\bin\OviStoreClient.exe"-"!:\sys\bin\OviStoreClient.exe", FR, RI 

“Local” features 

In previous section, we are acquainted with the main features of “Zombie”. Without any 

exaggeration, they can represent the most complicated strategies or technologies available 

currently.
7
 We will discuss a subset of ThemeInstaller.A’s features. The discussion will focus on 

how these features are implemented. Some will be explained with illustration; some will be 

explained with assembly code. The features not discussed here are either explained before (in other 

papers), or just too simple to be mentioned. 

Features during installation 

According to the structural analysis, we know that ThemeInstaller.exe will run automatically 

during installation. Actually, its main task is decrypting the four data files and installing them. 

However, before that, this binary will check the number of installed software on the phone. In other 

words, if the victim’s phone installs less than certain (8 here) number, it won’t install the actual 

“Zombie” viruses. Good way to disguise. 

 

Figure 1 IDA’s screenshot of ThemeInstaller.A check the num of installed software 

As shown in Figure 1, the binary will check the number here. If there are enough software, it 

will begin the installation logic, otherwise it just directly stop the active scheduler. 
8
 The required 

number is 8, which is initialized in the constructor of class CSettings.
9
 

.text:794AC5B6 STR     R1, [R0, #0x10] 

.text:794AC5B8 MOVS    R1, #8  ; initialize the required number to 8 

.text:794AC5BA LDR     R2, =off_794B0138 ; load the address of virtual table 

.text:794AC5BC STR     R1, [R0, #4] ; store r1 in offset 4 

.text:794AC5BE STR     R2, [R0]  ; initialize the first variable of class CSettings. 

                                                 
7
 What API can be used is restrained into the scope of Express Signed. 

8
 Active scheduler is a part of Symbian’s featured active object framework. Stop the active scheduler usually equals to 

exiting the program. 

9
 The name “CSettings” is got through the RTTI information right before its vtable. 



 Symbian has provided class RSisRegistrySession and RSisRegistryEntry to handle the 

information of installed softwares. Though RSisRegistrySession’s function- InstalledPackagesL, the 

hacker gets an array of installed software’s information. The length of that array is the number of 

software installed. 

Remote debugging is a nice feature supported by recent version of IDA Pro. Though remote 

debugging, we can the fetch decrypted package directly, without the need to understand specific 

decryption algorism. All we need to do is just adding breakpoints to Symbian Installation API. 

In this case, ThemeInstaller.exe will firstly decrypt the data files, then dump them into 

“C:\System\Cache\1\”, and at last, silent-install the dumped file. (Latter dumped file will overwrite 

previous file, since they all have the same name: a1d54bc2.) When the installation is finished, the 

original data files will be deleted. 

Package’s relationship 

Actually, ThemeInstaller.A’s core includes three packages: “Ovi Update”,”Ovi Store” and 

“Ovi Store Installer”. They work closely with each other in two aspects: anti-uninstallation and 

destruction of “Ovi Update” (See Figure 2). 

 

Figure 2 the interaction of ThemeInstaller.A’s main packages 

The first task is anti-uninstallation. “Ovi Store Installer” and “Ovi Store” are actually daemon 

packages. If one of them was uninstalled, the other one will help to reinstall. This realization is 

closely connected with these packages’ structure. When the user uninstalls “Ovi Store Installer”, 

RunAssistantProtect.exe will be launched. This executable will launch AssistantProtect.exe in 

package “Ovi Store”. AssistantProtect.exe will handle the silent-installation of “Ovi Store Installer”. 

This procedure is the same in reversed procedure, with RunAssistant.exe in “Ovi Store” and 

Assistant.exe in “Ovi Store Installer”.  

So, the actual effect will be this. First, the user removes “Ovi Store” or “Ovi Store Installer”, 

and the system shows uninstallation successfully complete. But later, in system’s application list, 

the uninstalled software magically appears, again! Why not remove both of them at the same time, 

someone may ask. Well, the hacker has already got precaution for that. Generally speaking, 

Symbian’s installer is in charge of installing and uninstalling softwares. But, it always operates with 

a restriction: one operation at a time. That is to say, when the installation is in progress, and the user 

wants to uninstall software, he must wait until installation complete. So, when the uninstallation of 

“Ovi Store” (or “Ovi Store Installer”) completes, the installer will be immediately occupied, which 

prevent the following uninstallation of other packages. 



 The second task is self-destruction. Actually, “Ovi Update” will detect phone’s idle state. If 

the detection shows user is beginning to using the phone, “Ovi Update” will destroy itself with the 

help of “Ovi Store”, as is shown in Figure3-2. First, OviStoreClient.exe in “Ovi Update” will 

launch DebugSrv.exe in “Ovi Store”. Then, DebugSrv.exe will silent-uninstall “Ovi Update”. This 

whole procedure is mainly realized in the assembly code below. 

1, Launch DebugSrv.exe (in binary “OviStoreClient.exe) 

.text:792E1214 BLX     _ZNK13CArrayFixBase2AtEi        ; CArrayFixBase::At(int) 

.text:792E1218 MOVS    R1, R0  ; R0 stores the name of “DebugSrv.exe” 

.text:792E121A  MOVS    R3, #0 

.text:792E121C ADD     R0, SP, #0xA8+rprocess 

.text:792E121E ADD     R2, SP, #0xA8+tdes1 

.text:792E1220 BLX     _ZN8RProcess6CreateERK7TDesC16S2_10TOwnerType  

; RProcess::Create(TDesC16  const&,TDesC16  const&,TOwnerType) 

2, DebugSrv.exe stores system installer’s UID in an array. 

.text:794AC112 BLX _ZN13CArrayFixFlatI4TUidEC1Ei 

;CArrayFixFlat<TUid>::CArrayFixFlat(int) 

.text:794AC116  STR     R0, [R4, #0x24] 

.text:794AC118  LDR     R0, =0x101F7295  ; one of system installer’s uid  

…… 

.text:794AC120  BL      cy_AddtoArray 

.text:794AC124  LDR     R0, =0x101F875A ; one of system installer’s uid 

…… 

.text:794AC12C  BL      cy_AddtoArray 

Please notice, Symbian’s installer architecture includes two parts: UI and server. So, there are two 

UIDs, 0x101f7295 and 0x101f875a. 

3, DebugSrv.exe’s logic to kill process. 

 



Figure 3 DebugSrv.exe’s logic to kill process 

The system’s installer will be killed here. So, we can deduce that, the hacker also notices the unique 

restriction of Symbian’s installer: one operation at a time. 

4, DebugSrv.exe simply calls the silent uninstallation function to remove “Ovi Store”. The UID of 

“Ovi Store” is hard-coded in its binary. 

Send short messages 

Sending short messages is ThemeInstaller.A’s propagation method. The messages are sent with 

a link in the text. This link identifies software on remote server, see Figure 4. The message’s 

content and recipient can be configured through remote server. 

 

Figure 4 short messages sent by ThemeInstaller.A 

Generally speaking, Symbian supports sending short messages in three levels. The upper level 

is easy to use, but hard to customize. The class SendAs, SendAppUi, etc are in this level. The 

middle level is MTM (message type modules), which is the most flexible way to operate messages. 

Currently, most softwares send messages via MTM framework. At the last level is, sending or 

receiving messages is actually operating on specific port of the phone. This is not widely used 

except some products with message-blocking feature. 

Why does ThemeInstaller.A send messages at this level? It is because the port is a critical 

resource, thus cannot be occupied by two process at the same time. Currently, many security 

products occupy the same port to block messages. ThemeInstaller.A will firstly stop their process, 

and then occupies this port. The attacked software’s blocking will be kept disabled, unless 

ThemeInstaller.A is recognized as a virus and killed. 

Sending messages via socket includes four procedures: initialize the RSocket class, set and bind 

message address for a socket, create short message, and write the port to send message. 

1, Initialize the RSocket class 

.text:797E85FA  MOVS    R1, R4 

.text:797E85FC ADDS    R1, #0x34;  

.text:797E85FE MOVS    R2, #0x10 ; KSMSAddrFamily 

.text:797E8600 MOVS    R0, R7  ; R0 stores address of RSocket’s instance 

.text:797E8602 MOVS    R3, #2  ; KSockDatagram 

.text:797E8604 BLX _ZN7RSocket4OpenER11RSocketServ; 



;RSocket::Open(RSocketServ &,uint,uint,uint) 

2, Set and bind the message address for a socket 

.text:797E860C ADD     R0, SP, #0x198+cy_smsaddr;  

          ; The address of 

TSmsAddr’s instance 

.text:797E860E BLX     _ZN8TSmsAddrC1Ev; TSmsAddr::TSmsAddr(void) 

.text:797E8612 MOVS    R1, #1  ; ESmsAddrSendOnly 

.text:797E8614 ADD     R0, SP, #0x198+cy_smsaddr 

.text:797E8616 BLX     _ZN8TSmsAddr16SetSmsAddrFamilyE14TSmsAddrFamily 

;TSmsAddr::SetSmsAddrFamily(TSmsAddrFamily) 

.text:797E861A MOVS    R0, R7 ; R0 stores the instance of RSocket 

.text:797E861C ADD     R1, SP, #0x198+cy_smsaddr 

.text:797E861E BLX   _ZN7RSocket4BindER9TSockAddr 

;RSocket::Bind(TSockAddr &) 

3, Create short message 

This procedure is a little complicated, so the assembly code will not be provided. Instead, a 

flow chat is provided to illustrate these steps. 

 

Figure 5 the flow chart of creating short messages 

The message text is set via CSmsBuffer and the recipient is set through SetToFromAddressL. 

4, Write the port to send message 

.text:797E86F4 ADDS    R2, R4, #4   

; R4 points to an active object which is a member variable of CMainEntry 

.text:797E86F6 LDR     R1, =0x306  ; KIoctlSendSmsMessage 

.text:797E86F8 MOVS    R0, R7 

.text:797E86FA ADD     R3, SP, #0x198+addr_string 

.text:797E86FC BLX     _ZN7RSocket5IoctlEjR14TRequestStatusP5TDes8j  

; RSocket::Ioctl(uint,TRequestStatus &,TDes8 *,uint) 



Detect phone’s idle state 

OviStoreClient.exe and OviUpdate.exe will detect phone’s idle state. The idle state mentioned 

here means whether the user is using the phone. Please separate two cases: the phone’s used and the 

user is using the phone. For example, if the phone is playing music but without user’s intervention, 

ThemeInstaller.A will continue conducting malicious behavior. As soon as the phone is picked by 

the user, this virus will stop and exit! (Don’t worry about its stop, because it will restart 

automatically later. This feature will be discussed in section3.3.5.) 

 This trick includes two aspects, backlight and key lock. Almost all the Symbian phones have 

backlight, which can be turned on by pushes of the keyboard. If the keyboard isn’t touched in 

certain time interval, Symbian will turn off the backlight to save power. Another aspect is key lock, 

which is a popular trick to avoid unconscious operations. For example, if the phone is in pocket, the 

bump of objects may activate certain operation on the phone. Similarly, the phone’s keyboard will 

be locked if certain time eclipses (Its home screen should be on the foreground). 

 The backlight detection is implemented via class CHWRMLight. The virus initialize an 

instance of CHWRMLight using CHWRMLight::NewL(MHWRMLightObserver *). The argument 

is a callback function, which will be called if the backlight state has changed. This callback function 

offers two kind of information, the first is which part of the device has a changed event, the second 

is what event has happened (light on or light off). In this case, the virus mainly cares about the state 

of primary display of the device
10

. As to the keyboard lock, Symbian offers 

RAknKeyLock::IsKeyLockEnabled to check whether it has been locked. 

Start automatically 

ThemeInstaller.A doesn’t choose daemon process as its protection method, because the effect is 

so easily to be noticed: process cannot be terminated. As an alternative, it uses Symbian’s scheduler 

framework to achieve the same goal, which is stealthier.  

Symbian has provided related interface: RScheduler. It is a client-side interface to the Task 

Scheduler, and can be used to scheduling a task running at regular interval of time. The following is 

ThemeInstaller.A’s procedure. 

1, connect to the task scheduler. 

This is simply achieved by calling the Connect function of RScheduler. 

2, register to the task scheduler. 

.text:797E8C6E BLX _ZN10TBufBase16C1ERK7TDesC16 

; TBufBase16::TBufBase16 (TDesC16 const&,int) 

.text:797E8C72 MOVS    R1, R0; R1 stores a binary’s full pathname. 

.text:797E8C74 LDR     R0, [SP, #0x388+var_28]  

;R0 stores instance of RScheduler 

.text:797E8C76 MOVS    R2, #0 

.text:797E8C78 BLX _ZN10RScheduler8RegisterERK4TBufILi256EEi 

                                                 
10

 Other parts include primary keyboard of the device, secondary display of the device, secondary keyboard of the 

device, etc. 



; RScheduler::Register(TBuf<256>  const&,int) 

.text:797E8C7C BLX    _ZN4User12LeaveIfErrorEi    ; User::LeaveIfError(int) 

3, create a time based schedule i.e., information about the start and end time. 

.text:797E8C82 BLX     _ZN7TTsTimeC1Ev            ; TTsTime::TTsTime(void) 

.text:797E8C86 ADD     R0, SP, #0x388+ttime 

.text:797E8C88 BLX     _ZN5TTime8HomeTimeEv      ; TTime::HomeTime(void) 

…… 

.text:797E8C96 BLX _ZNK5TTimeplE20TTimeIntervalMinutes 

; TTime::operator+(TTimeIntervalMinutes) 

…… 

.text:797E8C9E BLX _ZN7TTsTime12SetLocalTimeERK5TTime 

; TTsTime::SetLocalTime(TTime  const&) 

…… 

.text:797E8CB0 BLX 

_ZN19TScheduleEntryInfo2C1ERK7TTsTime13TIntervalTypei20TTimeIntervalMinutes  

;TScheduleEntryInfo2::TScheduleEntryInfo2(TTsTime 

const&,TIntervalType,int,TTimeIntervalMinutes) 

 …… 

.text:797ECAD6 LDR    R1, =_ZN8CBufFlat4NewLEi        ; CBufFlat::NewL(int) 

.text:797ECAD8 ADDS    R2, #0xD 

.text:797ECADA BLX     _ZN13CArrayFixBaseC1EPFP8CBufBaseiEii  

; CArrayFixBase::CArrayFixBase(CBufBase * (*)(int),int,int) 

 …… 

 .text:797ECB74 BLX _ZN13CArrayFixBase7InsertLEiPKv  

; CArrayFixBase::InsertL(int,void  const*) 

 …… 

 .text:797E8CDC BLX  _ZN6TDes164CopyERK7TDesC16       

; TDes16::Copy(TDesC16  const&) 

.text:797E8CE0 MOVS    R1, R4 

.text:797E8CE2 LDR     R2, [R4,#0xC] 

.text:797E8CE4 LDR     R0, [SP,#0x388+var_28] 

.text:797E8CE6 ADDS    R1, #0x10 

.text:797E8CE8  



BLX_ZN10RScheduler24CreatePersistentScheduleER17TSchedulerItemRefRK13CArrayFixF

latI19TScheduleEntryInfo2E ; RScheduler::CreatePersistentSchedule(TSchedulerItemRef 

&,CArrayFixFlat<TScheduleEntryInfo2>  const&) 

4, schedule the task i.e., add this to the Schedule. 

.text:797E8CFE BLX     _ZN10RScheduler12ScheduleTaskER9TTaskInfoR7HBufC16i  

; RScheduler::ScheduleTask(TTaskInfo &,HBufC16 &,int) 

5, disconnect to the Task Scheduler. 

Simply call the Close function of RScheduler. 

Attack other softwares 

OviStoreClient.exe and OviUpdate.exe will attack other softwares. The targets are usually 

security products in China. OviUpdate.exe attack in two aspects: silent-uninstallation and process 

killing, while OviStoreClient.exe only kills unwanted process. The information required to 

recognize the targets are provided in two sources: hard-coded in the binary or downloaded from the 

server. We will give analysis on the logic of its attack based on hard-coded data. Downloaded data 

will be provided in the Section 3.4.  

The basic design of OviStoreClient.exe and OviUpdate.exe are the same, which is attacking 

others according to black or white list, so we will only give analysis of OviStoreClient.exe here. 

The attack of OviStoreClient.exe includes two procedures: initialize recognizing information and 

kill the target process. The code below shows that it inserts several predefined UIDs into an array. 

These UIDs are mainly ThemeInstaller.A’s related UID, which can be thought as a white list. 

.text:79AFCCE8 BLX     _ZN4User7AllocZLEi              ; User::AllocZL (int) 

.text:79AFCCEC MOVS    R1, #0xA ; the size of CArrayFixFlat’s object 

.text:79AFCCEE BLX     _ZN13CArrayFixFlatI4TUidEC1Ei    

;CArrayFixFlat<TUid>::CArrayFixFlat(int) 

.text:79AFCCF2 STR     R0, [R4, #0xC] 

.text:79AFCCF4 LDR     R0, =0x20031C41  ; one of the UIDs 

.text:79AFCCF6 STR     R0, [SP, #0x10+var_10] 

.text:79AFCCF8 LDR     R0, [R4, #0xC] 

.text:79AFCCFA MOV     R1, SP 

.text:79AFCCFC BL      cy_AddtoArray ;CArrayFixBase::InsertL(int,void  const*) 

In this case, the final size of “white” list is 12. (The list’s length is variable, because new data will 

be downloaded from remote server later.) When all data are prepared, OviStoreClient.exe can start 

its attacking logic. 



 

Figure 6 OviStoreClient.exe’s attacking logic 

From figure 6, we can clearly understand the attacking logic, but there are still a few details need to 

be specified. Firstly, not like Windows or Linux, Symbian’s system executables are all burned into 

the phone’s ROM (read only memory) chip. This ROM address is represented by letter “z”, which 

is a unique drive in Symbian’s file system. The system’s executables actually run on ROM, so a 

practical way is getting the first letter of process’ filename and check whether it’s “z”. Secondly, 

procedure 5 is actually a trick to get process related UID. On Symbian, the name of process is 

composed of three parts, filename, file’s uid and instance’s number. For example, the process name 

of OviStoreClient.exe is “OviStoreClient.exe [20031c41]0001”. 

Call to order services 

Currently in China, there are many ways to order services from operator. Making calls are 

among them. First, user makes a call to the number of a service provider. Then, the provider offers 

options for user to choose. User pushes certain keys on the keyboard to interact with the remote 

provider. This procedure goes step by step, and finally the service is ordered. Obviously, this 

requires user’s high involvement. Well, ThemeInstaller.A realizes an automatic and stealthy way to 

order services. 

Actually, when user pushes keys during a call, a DTMF (Dual Tone Multi Frequency) tone will 

be generated and sent on the line. DTMF signal includes 16 coded identifications which 

corresponding to keys on the phone. The operator receives these DTMF tones and identifies the 

related number (key). In fact, certain services always correspond to fixed steps of key’s push, which 

can be simulated to a sequence of numbers. (Besides, the time interval like user’s operation time 

and the operator’s voice prompt should be taken into account.) 



Symbian provides class CTelephony to achieve these goals. The function DialNewCall is 

responsible to make calls to service provider and SendDTMFTones is used to simulate user’s 

interaction. There are not complicated procedures, but idea of the hacker is noticeable. 

Download malware 

We have mentioned that there is a communication channel between “Zombie’ and the server. 

The protocol between them is actually implemented in xml format, which will be provided in latter 

section. As to ThemeInstaller.A, its parsing capability cannot be extended, since the reversed result 

shows that all the xml’s fields are hard coded in the binary. Currently, downloading new malware is 

its main method to extend protocol.  

In this case, newly downloaded file will always be named “DB13DFD3.sis”.The download 

procedure is simply implemented using HTTP protocol. (Axelle Apvrille
,
 2010) has explained the 

procedure of connecting to Internet stealthily so we will not discussed it here. 

Botnets features 

The word “Botnet” was firstly introduced from PC. Actually, “Botnet” is not the name for 

certain virus samples, but the floorboard for a structure with client side and server side. In this 

section, we will focus on this structure and reveal how the server controls these clients.  

Related environment 

Before the specific analysis, we will discuss the problem “Zombie” faces, and this can help to 

understand its botnets feature. As we know, botnets requires two sides: control server and 

“zombies”. So, what’s basic requirement for a botnets? First, the communication shouldn’t be easily 

cut. Second, “zombie” should survive in complex situations. Third, to be botnets, spread method 

should be very effective. Ok, what is the actual environment to “Zombie”?  

On the remote side: firstly, the communication channel is via GPRS (General Packet Radio 

Service) network, which is maintained by operators, such as China Mobile and China Unicom. 

Once the malicious server is spotted, these operators can block it, which will cut the channel 

between “zombie” and server. Secondly, short messages transmitted in the telecommunication 

network can also been blocked by operators. If the message’s content doesn’t change, the operator 

can be easily attracted to the statistic of such messages when the virus breaks out. 

On the local side, the situation is more complex. Firstly, a method identifying each of the 

“zombie” should exist. Secondly, the phone types are various, for example, MMS (Multimedia 

Messaging Service) is not supported by all the phones. Finally, some phones may be equipped with 

security products, which at least, can block connections. 

There are also many other problems. As the situation always changes, the protocol should be 

extensible. To each victim, the server has to learn its environment and private information as much 

as possible. Etc. 

Protocol analysis 

In our virus-analysis lab, we have captured their networking packages, but they are encrypted. 
11

However, there are many ways to get this protocol’s plaintext, such as remote debugging. During 

                                                 
11

 The encryption algorithm will be provided in the appendix. 



the remote debugging, character set converting function and protocol parsing function should be 

added breakpoints. For example, ConvertFromUnicodeToUtf8L (TDesC16 const&) can convert 

Unicode to Utf8.Usually, the data should be converted to utf8 before sent out, and converted to 

Unicode after received. 

ThemeInstaller.A has two versions of protocol, which are used by OviStoreClient.exe and 

OviUpdate.exe separately.  

 Interaction between “OviStoreClient.exe” and the server. 

<?xml version="1.0" encoding="UTF-8"?> 

<PostData> 

<Task>3</Task> 

<IMEI>359327035551369</IMEI> 

<IMSI>460027016006646</IMSI> 

<Edition>1</Edition> 

</PostData> 

This is a request of OviStoreClient.exe. As the plaintext shows, my phone’s IMEI (International 

Mobile Equipment Identity) and IMSI (International Mobile Subscriber Identity) have been 

leaked to the server. IMEI can be used to identify the phone, while IMSI the subscriber. The 

combination of these two codes can uniquely locate one victim. The flag “Task” indicates what 

kind of service requested, and “Edition” shows the protocol’s version. 

<GetData> 

<Task>3</Task> 

<SafeTime>2</SafeTime> 

<Type_Kill> 

   <App uid="2002f8d2" Ename="Qh360Keeper_0x2002F8D2.exe"/> 

</Type_Kill> 

<TelTask Taskid="10005" number="12590649001" time="251"> 

   <DTMF value="1" time="12"/> 

   <DTMF value="1" time="10"/> 

   <DTMF value="2" time="13"/> 

   <DTMF value="1" time="12"/> 

   <DTMF value="1" time="10"/> 

   <DTMF value="2" time="13"/> 

   <DTMF value="1" time="12"/> 

   <DTMF value="1" time="10"/> 

   <DTMF value="2" time="13"/> 

</TelTask> 



</GetData> 

This is the response from remote server. As the flag indicates, “Type_Kill” includes the binary 

name of a security product and it’s UID. This is a part of its attacking features, as we discussed 

before. The virus’s blacklist is kept updated, to defend itself against newly developed security 

product. “TelTask” is tricky, which confused us for a while. Actually, this part will be parsed and 

used to order services. The flag “number” indicates the number of service provider. The flag 

“DTMF” is actually the simulation of user’s selections. It has two properties, “value” and “time”. 

Flag “value” is simulation of keys on the keyboard, and “time” may be the latency required by 

service operator. So in this case, the virus will firstly call “12590649001”, and then “push” the keys 

one by one (“112112112”). The “SafeTime” indicates the latency before next connection. 

 Interaction between “OviUpdate.exe” and the server. 

<?xml version="1.0" encoding="UTF-8"?> 

<Request> 

<Protocol>1.0.0</Protocol> 

<Command>2</Command> 

<IMEI>356044032022194</IMEI> 

<IMSI>460027016006663</IMSI> 

<SMSCenter>+8613800100500</SMSCenter> 

<AllCalls>0</AllCalls> 

<InstalledProductInfo> 

<Product uid="E0000230" name="ActiveFile" /> 

<Product uid="200170BB" name="App TRK" /> 

<Product uid="EA1E2B6C" name="Log Example for Series 60 3rd" /> 

<Product uid="20030C77" name="Nokia Maps Plug" /> 

</InstalledProductInfo> 

</Request> 

This is a request of “OviUpdate.exe”. The flags “IMEI” and “IMSI” have been explained before. 

The flag “SMSCenter” is the number of message center on the phone. It will be required when user 

sends messages. The flag “InstalledProductInfo” contains the installed software’s information, such 

as software UID and software name. From this request, we know that at least these informations 

have been leaked. 

<Reply> 

<Protocol>1.0.0</Protocol> 

<Command>2</Command> 

<NextConInterval>9970</NextConInterval> 

<MissionType>10</MissionType> 

<SendSMSInfo id="1277630477863-356044032022194-1"> 



<SendSMSContent>现免费补发一款五星级 N81 游戏，点击网址下载安装
http://nokia.sisgame.com/gm.sis </SendSMSContent> 

<SendSMSNumber>13500295087</SendSMSNumber> 

<SendSMSNumber>13500297087</SendSMSNumber> 

<SendSMSNumber>13500298155</SendSMSNumber> 

</SendSMSInfo> 

<ConnectProtect> 

<ConnectProtectProduct> 

<HandledProduct uid="2000AB0E" property="64578"  

launchfile="NetQin_Anti_Virus_12345678.exe"/> 

<HandledProduct uid="20028B0B" property="23793"/> 

launchfile="NetQin_Communication_Mast.exe"/> 

<HandledProduct uid="2002659F" property="57864"  

launchfile="NetQin_PhoneGuard_PrivateStartup_0x20024FEB.exe"/> 

</ConnectProtectProduct> 

<JudgeProperty value="56496"/> 

</ConnectProtect> 

<ProxyList> 

<Proxy url="http://zwe212.com/ms/MSServlet"/> 

<Proxy url="http://98.126.64.130/ms/MSServlet"/> 

<Proxy url="http://69.90.188.167/ms/MSServlet"/> 

<Proxy url="http://69.90.188.169/ms/MSServlet"/> 

<Proxy url="http://ddoay.com/ms/MSServlet"/> 

</ProxyList> 

</Reply> 

This is a reduced version of server’s response (the redundant part has been omitted). Flag 

“ProxyList” includes the new addresses of malicious servers. These servers are back-up for each 

other. In other words, the operator has to block all the addresses of “Zombie” to stop the server’s 

control over “Zombie”. Flag “ConnectProtectProduct” serves as the data source of black list for 

“Zombie”. Here, the remote server response the related information of NetQin’s product. There is 

also a configuration of short messages. The flag “SendSMSContent” includes the text content of 

messages and “SendSMSNumber” includes the recipient’s numbers. 

The framework of this threat 

We have discussed the main features of “Zombie” in previous sections. Now, we will put these 

pieces together. The framework of this new type of threat is shown in figure 7. 



 

Figure 7 the framework of this threat 

 There are mainly four parts in this framework: commanding center, download center, the 

virus and the hacker.  

Firstly, the hacker is the “boss”, the creator of this botnets. According to the investigation of 

police’s department, the hacker is not one single guy but several organizations. They make these 

viruses mainly for money. The profit comes in three ways: command the phone to send order 

messages to certain service providers; command the phone to make calls to order services; 

command the phone to send advertisement messages for certain companies. Besides, these hackers 

may also jeopardize phone user’s privacy. We have already known that they can upload phone’s 

IMEI, IMSI and the installation list. However, via installing new malware on the phone, they have 

the capability to steal more private information.  

Secondly, the command center is the key to botnets. It helps to defend by updating new security 

software’s information, helps to avoid operator’s blocking by updating new malicious server’s 

address. It directly configures the scale of virus’ spread through short messages. The viruses will 

also download new malware from this server to extend the protocol. Besides, the server may 

accumulate huge amount of user’s private information, which may be utilized by hacker. 

Thirdly, the download center is a relay of the infection path. Receipt of malicious messages 

doesn’t mean infection. People should click the link, download and install, to finish the whole 

infection path. So, there is also some social psychology applied in the attack of “Zombie”. But the 

download server may also be configured as a normal site, for advertisement of certain products. 

Finally, the viruses are the leading role in this framework. They acquire many techniques to hide, 

protect and spread. As to ThemeInstaller.A, everything seems perfect except one thing: the protocol 



between commanding server and viruses aren’t extensible. To extend the protocol, the alternative is 

downloading another malware automatically. 

Conclusion 

In this paper, we mainly discuss the features of “ThemeInstaller.A”. However, the “Zombie” 

includes many variants, such as “NmapPlug.A”, “NmapPlug.B”…  “Dumusic.A”… ,etc. Their 

protocol may be different, but the framework is the same. For example, the protocol of “Dumusic” 

can be directly recognized in the captured networking package. Their protocol is like: “04, 

http://uni.lyy.mobi/u.jsp?u=20912060;12, 20029080”.In this case, “04” means an website should be 

added to the browser’s bookmark; “12” means the software having this UID(0x20029080) should 

be uninstalled. This protocol is simpler, but can also be effective.  

There are still some puzzles left about “ThemeInstaller.A”. What’s the whole set of its 

protocol? How does the server harvest phone numbers, since Symbian doesn’t provide interface to 

retrieve phone number? 
12

Besides, we also found functions such as hang-up calls, which haven’t 

been activated yet. 

Due to the involvement of remote server, these viruses’ transmissibility and robustness have 

ascended to a new level. This framework is now a developing trend for mobile virus, not only on 

Symbian, but also on other platforms. On android, last November, we have captured the virus 

“Geinimi” which also has the characteristic of a botnets. Currently, the botnets is built merely for 

money. But, it can do more harm technically. In other words, botnets is just a framework, which can 

be easily added new malware. Just imagine, if the hacker downloads “Smspatch” and “Lanpackage” 

(NetQin, 2010c) to the victim, the damage will be more serious.  

During the combat with “Zombie”, we work closely with China Mobile and CNCERT, to help 

them block malicious servers and certain featured short messages. After the firstly week’s crazy 

spread, the increasing speed is kept to a lower level. 

                                                 
12

 Actually, “Dumusic” will always connect to certain site via cmwap- an internet access point in China. The 

downloaded data includes the phone’s number. But ThemeInstaller.A doesn’t choose this way. 



Appendix: The encryption algorithm 

From previous analysis, we know the protocol between “ThemeInstaller.A” and remote 

server is encrypted. However, we can get the plaintext through remote debugging，without 

knowing its encryption algorithm. The encryption algorithm will be provided here, just for 

interested analyst. 

1, Generate a key pool, which has 256 bytes and every byte is different. 

2, Every byte in the original plaintext will be encrypted. First, get the value byte by byte, from the 

plaintext. Then, this value is used as an index to get the data in key pool, which is exactly the 

encrypted version. 

3, The pseudo-code of the encryption algorithm is shown below. 

TUint keyPool[64] =  

{0xDDDC0A08,0x5C5BE4E3,0x5D636261,0x64605F5E,0x6C6B6A69,0x6766656D,0x75746E68, 

0x706F7776, 0x78737271, 0x81807F7E, 0x7C7B7A79,0x8887827D,0x838B8A89, 0x8C868584, 

0x95949392, 0xA2A1A08D, 0x1FA3A9A8,0x38331E21,0xE5E13A39, 0x1312DFDE, 

0x26090100, 0x2D242322, 0x31302F2E,0x9F9E9D02,0x9B9A9997, 0xB071103, 0xC060504, 

0x100F0E0D, 0x16201514,0x1A191817,0x271D1C1B, 0x59585756, 0x5A535251, 0x2825343B, 

0xF22B2A29,0xFAF5F4F3,0x322CFFFE, 0x3C373635, 0x3E3D4241, 0x4443403F, 

0x4D4C4645,0x4A494847,0x504F4E4B, 0x8F8E5554, 0x9C969190, 0xA6A5A498, 

0xB0ABAAA7,0xACB3B2B1,0xB4AFAEAD, 0xB6BDBCB5, 0xBAB9B8B7, 0xC4BFBEBB, 

0xC0C7C6C5,0xC8C3C2C1,0xD1D0CFC9, 0xCDCCCBCA, 0xD9D8D2CE, 0xD4D3DBDA, 

0xE0D7D6D5,0xE7EFE6E2, 0xEEEDECEB,0xF0EAE9E8,0xF9F8F7F6,0xFDFCFBF}; 

HBufC8* EncryptL(const TDesC8& aData) 

{ 

 TInt len = aData.Length(); 

 HBufC8* bufHeap = HBufC8::NewL(len); 

 TPtr8 buf(bufHeap->Des()); 

 TUint8* pKeyPool = (TUint8*) keyPool; 

 for (TInt i=0; i<len; i++) 

 { 

  TUint8 src = aData.AtC(i); 

  TUint8 dst = pKeyPool[src]; 

  buf.Append(dst); 

 } 

 return bufHeap; 

} 



References  

NetQin. (2010a). 2010 report for mobile security: 

 http://www.netqin.com/market/2010report/ 

CNCERT(2010). CNCERT’s alert for “Zombie”: 

http://www.cert.org.cn/articles/bulletin/common/2010091925129.shtml 

NetQin.(2010b). Summarization of notorious viruses: 

http://www.netqin.com/security/securityinfo.jsp?id=3584&type=2 

CCTV. (2010). CCTV’s report on “Zombie”: 

http://bugu.cntv.cn/news/talk/jiaodianfangtan/classpage/video/20101116/100907.shtml  

Nokia. (2009). Nokia’s wiki about security mechanism: 

http://wiki.forum.nokia.com/index.php/Platform_Security 

Axelle Apvrille.(2010)  Symbian worm Yxes: Towards mobile botnets? : EICAR 2010 

SisContents (2010) Unpacking, editing and signing of Symbian SIS packages: 

http://cdtools.net/symbianandev/home.html 

NetQin.(2010c). NetQin’s virus information center: http://virus.netqin.com/en/ 

http://www.netqin.com/market/2010report/
http://www.cert.org.cn/articles/bulletin/common/2010091925129.shtml
http://www.netqin.com/security/securityinfo.jsp?id=3584&type=2
http://bugu.cntv.cn/news/talk/jiaodianfangtan/classpage/video/20101116/100907.shtml
http://wiki.forum.nokia.com/index.php/Platform_Security
http://cdtools.net/symbianandev/home.html
http://virus.netqin.com/en/

