
VIRUS BULLETIN www.virusbtn.com

6 JULY 2008

NEW PERSISTENCE THREATS
Eric Filiol
ESAT, France

Recent research has shown that,
contrary to popular belief, the
content of computer memories
(RAM) is not erased when a
computer is shut down. Different
kinds of data can survive even
after events that should normally
result in the RAM being erased
and reset to zero: program
termination, shutdown or
switching off the computer. The
survival of data in RAM may

not only affect the security of cryptographic applications
but may also be used effi ciently to design new, powerful
malware threats.

This article fi rst presents an in-depth analysis of computer
memory weaknesses that could enable the theft of
sensitive data via malware attacks. Most of these attacks
are made possible due to the persistence properties of
modern computer memory modules. In the second part
of the article, we present different attack methods that
have been identifi ed and tested and which could be used
maliciously. In the fi nal part we present some tools
and security policy enhancements that should greatly
contribute to preventing or limiting those attacks.

THE PROBLEM: PERSISTENCE OF
COMPUTER MEMORY MODULES (RAM)

State of the art: memory remanence

For a long time it was widely believed that computer
memory modules (aka Random Access Memory or RAM)
were erased (reset to zero) immediately after a program
terminates or a computer is shut down, thus causing
their content to disappear from the computer. However,
a number of studies have shown this assumption to
be partially wrong. A number of studies [1–3] have
identifi ed risks attached to what is known as memory
remanence:

‘...Ordinary DRAMs typically lose their contents
gradually over a period of seconds, even at standard
operating temperatures and even if the chips are removed
from the motherboard, and data will persist for minutes
or even hours if the chips are kept at low temperatures.
Residual data can be recovered using simple, non

destructive techniques that require only momentary
physical access to the machine…’ [3]

The authors of [3] observed a data remanence effect
at normal operating temperatures (between 25.5 °C
and 41.1 °C) after 2.5 to 35 seconds (depending on the
computer) with a binary error rate ranging from 41% to
50%. They managed to increase this remanence time to 60
seconds with a very negligible error rate, simply by cooling
the RAM at a temperature of -50 °C.

From those results, the researchers identifi ed a number
of security risks with respect to data remanence. In
particular, they explained how secret cryptographic keys
could illegitimately be retrieved by exploiting the RAM
remanence property. Despite the undisputed interest of
this study, its operational scope is rather limited: the
attacker must have physical access and must cool the
RAM immediately after a sensitive application has been
executed (e.g. encryption/decryption). Except in the case
of investigation by police forces, this attack remains of
theoretical interest only.

At the time of publication of [3], another team was working
on the same subject but with a broader, more operational
approach and at normal operating temperatures by
considering the concept of RAM persistence [4].

Memory data persistence

RAM data remanence considers only the physical,
electronic effects that enable data to survive temporarily
in RAM. But data disappearing from memory does not
necessarily mean that the data has disappeared from the
computer, and in many cases, memory contents remain
available inside the computer for a very long time: we call
this memory data persistence. Let us adopt the following
defi nition:

Memory data persistence [4]: the set of both physical
(remanence) and operating system effects/mechanisms that
cause data to survive in RAM and/or in a computer after a
program terminates or a computer is shut down.

Without entering into too much detail, besides the single
remanence effects that have been confi rmed and developed
further, we have identifi ed a number of other mechanisms
which preserve the content of memory modules. The main
ones can be summarized as follows:

• Swap fi les (the pagefi le.sys fi le under Windows, and the
swap partition under Linux) generally contain whole or
part of the memory.

• Hibernation fi les (the hiberfi l.sys fi le under Windows)
contain a lot of memory data.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

7JULY 2008

• The Windows memory dump fi le (MEMORY.dmp)
contains the whole RAM content.

Table 1 summarizes the level of computer security risk
attached to those mechanisms.

The different experimental results (see [4] for details)
clearly demonstrate that the operating system saves the
RAM content very frequently (wholly or partly) into
dedicated fi les, thus causing critical data to survive far
longer than expected, even after the computer has been
rebooted. All of those mechanisms, besides the RAM
remanence effect, constitute a critical risk against data
confi dentiality.

MALWARE-BASED ATTACKS AGAINST
CONFIDENTIALITY
Let us fi rst consider how a dedicated piece of malware
could exploit the RAM persistence in a computer. In other
words, we consider the different actions that a piece of
malware could take to steal critical data with respect to
memory persistence. We will present only a few of the most
illustrative examples included in [4]. We will consider a
piece of malware that is undetected by anti-virus products
as a general framework.

Eavesdropping
confi dential data

In this case, the malware will
look for sensitive data that survive
either in memory (remanence) or
in memory dump fi les. It is worth
mentioning that the malware
itself may induce the creation of
such fi les.

• Let us suppose that a secret
(inert or not) fi le is processed
(scanned by an anti-virus
engine or processed by a
dedicated application) on a
computer that is infected with

a piece of malware. A %SystemRoot%\MEMORY.DMP
fi le is created. In most cases, this fi le will contain at least
a signifi cant part of the secret data. In some cases, it is
possible to steal plain-text data during the decryption of
an encrypted document.

• A piece of malware can explore the computer’s RAM
content directly in order to fi nd secret data. Even after
a few hours, in some cases, the information remains
in memory. As an example, we plugged in a USB key
containing a secret fi le and then unplugged it. It was
still possible after the USB key has been removed
to fi nd a lot of data with respect to the fi le (the
experiment can be reproduced by using the WinHex
software which embeds a forensics function called
‘RAM editing’).

• Secret data is also saved by Windows XP in the
hibernation fi le HIBERFIL.SYS. Any piece of
malware could very easily access this fi le and
retrieve a lot of data that is contained in RAM when
the computer goes into sleep mode. If sleep mode
is not activated by default, the malware is able to
activate it.

There are also many more ways for malware to collect
sensitive data – even when it is protected by encryption – by
exploiting the data persistence.

Theft of password or encryption keys
Now let us see how a piece of malware could collect critical
data with respect to the security of the computer itself:
password and encryption keys.

Analysis of the Windows swap fi le (PAGEFILE.SYS) or of
the hibernation fi le may reveal such critical data, as well as

Figure 1: Session login password inside a PAGEFILE.SYS fi le.

Data persistence mechanisms Security risk
RAM remanence 1
Swap fi le 3 – 4
Hibernation fi le 2
Memory dump fi le 3 – 4

Table 1: Security risk with respect to data persistence

(lowest = 0 highest = 4).

VIRUS BULLETIN www.virusbtn.com

8 JULY 2008

it appearing in the %SystemRoot%\MEMORY.DMP fi le.
As an example, let us consider the PAGEFILE.SYS fi le. The
session password can survive totally or partially in that fi le,
even after a reboot. The most interesting thing is that we
can recover the passwords of different users (in multi-user
mode). Figure 1 shows the presence of a session login
password inside the PAGEFILE.SYS fi le (nine characters
out of a total of 11 are recovered).

As for encryption keys, the data persistence (including
data remanence) will depend partly on the security
enforced at the application level. Tests have been
conducted on different pieces of encryption software. For
some of them, it is possible to retrieve wholly or partly
the password used to protect private keys in public key
encryption applications, and even the private key itself
can be retrieved either in the HIBERFIL.SYS fi le or in
the MEMORY.DMP fi le. In some cases, the private key
may also be present inside the PAFEGILE.SYS fi le.
Figure 2 shows the presence of the encryption password
inside a Windows hibernation fi le after decryption with
the open-source Cryptonit [5] software. (The same applies
with various other encryption software packages.)

It is therefore essential to keep in mind that the security
provided by the operating systems (some of the same
results have been obtained under Linux) and/or the security
software (e.g. encryption application) is not watertight and
critical data such as passwords and encryption keys may
be leaked. Even if such data is only partly recovered by a
malicious attacker (most of the time the recovery rate is
higher than 80%) it will be easy to guess the remaining
part (e.g. using a reduced brute force approach).

The other essential point lies in the fact that most of the
system fi les we have considered (swap fi le, hibernation fi le,
memory dump fi le) can be created by any malware itself. It
only has to manipulate the appropriate system confi guration
fi les and access the appropriate system description tables
(e.g. ACPI tables).

NEW MALWARE CONCEPTS EXPLOITING
MEMORY PERSISTENCE
In this section we will explain how data persistence
can be exploited by a piece of malware to replicate
(self-reproducing codes) or just to operate (installation of
simple malware such as trojans, logic bombs etc.). The
payload will not be taken into account here. We will present
a very simple, yet powerful proof of concept.

Before revealing the general mechanisms operated by
our proof of concept, it is essential to make one very
important point clear. For the attacker, the main problems
with data persistence (especially the remanence part)
lie in the fact that the data can only partly be recovered
and in the fact that he a priori does not know what that
data is. For example, in the case of a obtaining secret
key, the exact location of the key and the amount of
remaining information that needs to be guessed following
data recovery may make the attack more complex than
expected [3]. Moreover, the attacker cannot initially
operate on the data that is supposed to be persistent in
memory (using error correcting techniques for example).

But in the context of a piece of malware that is going to
exploit data persistence to operate, the initial preparation

of data used for that purpose
is possible. In other words,
the malware will always know
what it is looking for and where
to fi nd it. We just have to use
error correcting techniques to
prevent data loss due to the
natural and random limitation of
data persistence (including data
remanence).

The general design of the proof
of concept combines the data
persistence effects with the most
sophisticated malware techniques
that have recently been identifi ed:

• K-ary codes [7, 8]. Instead of
having a single fi le containing
all the malicious information,
k-ary malware are composed of
k different fi les, each of which Figure 2: Cryptonit encryption password in a HIBERFIL.SYS fi le.

VIRUS BULLETIN www.virusbtn.com

9JULY 2008

 looks innocuous. A suitable combination – either
serially or in parallel – of (at least) a subset of those
k parts results in the malware operation. In [8], it was
shown that detecting k-ary malware is an intractable
problem. One very interesting approach for malware
is both to split the malicious information and to
introduce a time delay between them. In this respect,
data persistence can provide a very powerful set of
techniques to realize such codes. A signifi cant subset
of those k parts can simply be persistent data either in
memory (remanence) or in some system fi les.

• Strongly armoured codes [6, 7]. Such malware is
encrypted with strong algorithms (e.g. AES, RC6,
and Serpent), but unlike most encrypted malware
the secret key is not stored inside the code. In this
setting, the key is only available as a quantity taken
from the environment and is basically under the
attacker’s control. In our context, this key may be
taken from data that is known to be persistent in the
computer at a given time or after a given event, under
the attacker’s control.

• Cryptography-based obfuscation techniques [7, 9]. This
approach is quite similar to the previous one, however
in this case it is not the key which is the information
taken from data known to be persistent in the computer
at a given time/after a given event, but the obfuscation
algorithms themselves.

All these techniques have been tested and have proven
to be very effi cient. This shows that data persistence
represents extraordinary potential for developing existing
malicious techniques further, in a very sophisticated way.

PREVENTION

The essential question is: how can we prevent or limit
the exploitation of data persistence by malware?, since
detecting such sophisticated code is bound to be a very
complex challenge.

The following methods should greatly contribute to
preventing such attacks:

• Anti-virus software should scan the entire memory
systematically and not only the memory actually
used. Critical system fi les (hibernation fi le, swap fi le
or area, memory dump fi le) should also be checked
systematically.

• Critical confi guration fi les managing the creation
of those fi les should also be protected by a suitable
security policy. Anti-virus software should warn against
any unsuitable confi guration for those fi les with respect
to data persistence.

• Critical software (for example encryption software)
should be implemented securely. Before terminating,
the physical memory that has been used should be
erased securely in order to prevent data remanence.
Critical data (such as cryptographic keys) should be
locked into memory in order to prevent information
becoming available via the swap fi le or error fi le (e.g.
CORE fi le under Linux). Most high-level programming
languages contain suitable primitives that can be used
to achieve this.

REFERENCES

[1] Gutmann, P. (1996). Secure deletion of data from
magnetic and solid-state memory. Proceedings of the
6th USENIX Security Symposium, pp.77–90.

[2] Gutmann, P. (2001). Data remanence in
semiconductor devices. Proceedings of the 10th
USENIX Security Symposium, pp.39–54.

[3] Halderman, J.A.; Schoen, S.D.; Heninger, N.;
Clarkson, W.; Paul, W.; Calandrino, J.A.; Feldman,
A.J.; Appelbaum, J.; Felten, E.W. (2008). Lest we
remember: cold boot attacks on encryption keys.
Available at http://citp.princeton.edu/memory.

[4] Filiol, E.; Tuccelli, C.; Vuong, T. (2008). Analyse
de la mémoire RAM. Récupération de données par
le phénomène de rémanence (RAM analysis: data
forensics through data persistence). Technical Report
ESAT 2008_M2.

[5] http://sourceforge.net/projects/cryptonit/.

[6] Filiol, E. (2004). Strong cryptography armoured
computer viruses forbidding code analysis: the
BRADLEY virus. Proceedings of the 2005 EICAR
Conference. Available at http://vx.netlux.org/lib/
aef02.html.

[7] Filiol, E. (2006). Techniques virales avancées.
Springer, Collection IRIS, ISBN 978-2-287-33887-8.
(An English translation entitled Advanced malware
techniques is pending end 2008.)

[8] Filiol, E (2007). Formalisation and implementation
aspects of K-ary (malicious) codes. EICAR 2007
Special Issue, Broucek V.; Turner, P. eds. Journal in
Computer Virology, 3 (2), pp.75–86.

[9] Beaucamps, P., Filiol, E. (2006). On the possibility
of practically obfuscating programs. Towards a
unifi ed perspective of code protection. Journal in
Computer Virology, 2 (4), WTCV’06 Special Issue.
Bonfante G.; Marion J.-Y. eds.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

