
On the Impact of Malware on Internet Voting

Philippe Beaucamps, Daniel Reynaud-Plantey, Jean-Yves Marion
Equipe CARTE - LORIA

Campus Scienti�que - BP 239
54506 Vandoeuvre-lès-Nancy Cedex (France)
{beaucphi,reynaudd,marionjy}_at_loria.fr

Eric Filiol
Army Signals Academy Virology and Cryptology Laboratory, Rennes (France)

eric.�liol@esat.terre.defense.gouv.fr

December 29, 2008

Abstract

Internet voting is the process of letting voters cast their vote over the Internet, at home or on public

computers. It is a way to reduce the cost associated with elections and to obtain higher participation,

but it also raises important security problems. In this paper, we study shortcomings related to this

technology, and more particularly shortcomings due to the presence of dedicated malware on the voters'

computers. Common literature usually focuses only on designing a secure voting protocol, either discarding

the malware issue or proposing prohibitive solutions, such as the use of dedicated hardware. However the

purpose of Internet voting is precisely to allow anyone to vote from home, making the use of dedicated

hardware a non conceivable solution. Therefore, we analyse the reliability of possibly malware-infected

mainstream computers. Speci�cally, we do not consider the security of the voting protocol but de�ne

the data available to the malware and the attacks that can be carried out thereby. We show that

current Internet voting implementations are vulnerable to these attacks, due to weak or irrelevant security

measures. Thus we describe reasonable solutions that aim at coping with the lack of security of current

implementations on general-purpose computers, even though some attacks cannot be prevented but can

only be mitigated. For example, it is impossible to prevent the malware from stealing the user credentials

with no hardware support, but it is easy to design a system in which user credentials are useless to

an attacker: therefore we can prevent more serious attacks such as automatic vote changing and voter

impersonation. Among other solutions, we describe and study reliability of hybrid voting mechanisms,

using a medium which can not be accessed by the malware, as well as of Human Interaction Proof

implementations to prevent automatic vote changing and the election invalidation that could result from

this class of attacks.

1 Introduction

Internet and electronic voting (e-voting) are used increasingly by businesses and organisations for their elections
(Mohen and Glidden, 2001), and some countries such as the United States, Switzerland, United Kingdom and
Estonia even start using it for local or national elections (Mohen and Glidden, 2001; Hensler, 2004; Wearden,
2002; Estonian Electoral Committee, n.d.). Electronic voting eases the counting of votes and possibly reliance
of this counting. Internet voting is a form of electronic voting that uses Internet to let voters vote from their
home or from close dedicated places. It aims to make voting simpler, possibly more accessible and thereby
to increase voter turnout. However security and certi�cation of such systems is questionned or proved to be
inappropriate for democratic elections scenarios (Enguehard, 2008). In the speci�c case of Internet voting,
the security of this process is di�cult to ensure at di�erent levels: the correctness of the client and server
voting software, resistance to man-in-the-middle attacks, anonymity and so on (Phillips and von Spakovsky,
2001). Here we focus on the security of the client computer used to pass a vote. We claim that any current
Internet voting process can be altered by compromised computers in some way.

Although the "virus and trojan threats" are usually considered an acceptable risk in studies on Internet
voting (California Internet Voting Task Force, 2000), we try to show how easy it is to exploit the current
Internet voting technologies. By merely using a browser addon, one can alter a vote � randomly or in

favour of some candidate � or deny voting. We describe such an addon which takes about 20 to 30 lines
of Javascript code to transparently alter a vote. Di�erent attacks can be carried out, that we describe in
the article. Cheating is of course the most typical purpose of such attacks. However, in an information
warfare perspective, one can imagine other motivations, such as a foreign country trying to tamper with an
election, for political or economical purpose. Totalitarian regimes may also use such attacks to alter or spy
on the voters' choices, in a pseudo-democratic election. Or hacker communities might even use such attacks
to invalidate elections they believe to be rigged. These attacks will typically rely on email infection, using
botnets1 to optimize the infection process. Our proof of concept malicious addon shows how such malware
could easily tamper with a voting process. Moreover, by relying on a botnet or simply on browser addons,
one can easily upgrade the malware for future election processes.

There already exists a very rich literature that deals with securing voting protocols, so we are mainly
concerned with the protection against targeted malware while not altering the technology accessibility and
simplicity. In particular, non-critical voting scenarios rarely implement strong security measures or these very
measures are simply not an option. Therefore we are also interested in securing as e�ciently as possible such
scenarios that are required to rely solely on Internet.

We describe how the security of common Internet voting scenarios can be jeopardized by a simple browser
oriented malware. We also survey current solutions, though they usually are not concerned with computer
compromission, and we study whether they can improve the reliability of voting machine. We �nally describe
speci�c solutions to keep Internet voting systems as simple and accessible as possible for the user, and to
mitigate the inherent lack of security and the implications on the validity of the election.

2 Security of the client computer

2.1 De�nitions

In this article, we use the expression �Internet voting� as a reference to the use of general-purpose computers
with no particular hardware on the client side during the process of an election, as opposed to e-voting which
encompasses both Internet voting and the use of dedicated voting machines.

The term �malware� refers to any sort of program with unknown or unwanted functionality, such as viruses,
rootkits, spyware, keyloggers or even legitimate software with exploitable backdoors.

The term �compromised� refers to the state of any computer infected with malware. We consider that
the malware has complete access to the user interface of the voting system, it can capture and modify the
user inputs as well as capture and modify network data. We will show that these assumptions are realistic,
even for high-level malware that does not have administrative rights and therefore no complete control of the
machine.

2.2 Speci�c attacks

The design of a secure process for elections using automatic devices is a di�cult one, as many requirements
have to be met at di�erent levels (Safevote, 2000). However, this paper focuses only on the speci�c attacks
that a malware can undertake during the vote, it does not address protocol �aws such as vote buying, coercion,
cryptographic or verifyability issues. When a compromised computer is used, we consider the following attacks:

• Automatic vote changing: the most powerful attack, allowing the malware to change the expressed vote
on the �y without the user noticing it.

• Random vote changing: a sort of denial of service attack, by changing the expressed vote on the �y to
a di�erent value without the user noticing it.

• Vote dropping: again a denial of service attack, by letting the user think his/her vote has been counted
when in fact no vote has been cast.

• Voter impersonation: by capturing the user credentials and then sending them to the attacker, it might
be possible to steal votes. This is probably one of the hardest attacks to avoid, because it is the less
intrusive and involves a human attacker.

• Vote disclosure: by logging the user identity and the expressed vote, it might be possible to disclose
publicly the vote. Since it is a passive attack it is hard to detect and easy to implement (compared to
the other attacks) and can have serious consequences on a democratic vote.

1expanding malware networks that are remotely controlled and upgraded

2

We do not mention voting denial, that is preventing the user from voting by making the service unreachable,
as it is the easiest, most obvious and most visible attack. We're mostly interested in stealthy attacks, which
are the most common ones, though voting denial is not to be disregarded.

Depending on the election protocol and on the software implementation, Internet voting systems can be
vulnerable to all or just some of the attacks de�ned above. We can now restate our claim in more accurate
terms: any current Internet voting technology relying only on general-purpose computers (i.e. that do not
use speci�c hardware devices) and that do not use side-channels (such as paper or any other medium not
accessible by the malware) are vulnerable to at least one of the attacks mentioned above.

2.3 Example: a naive but realistic Internet voting system

The most straightforward implementation of an Internet voting system that comes to mind is to:

1. setup a web server, accessible over HTTPS;

2. let voters log in via a server-side script;

3. let voters input their choice using an HTML form, a Java applet, an ActiveX component or any other
client-side executable;

4. con�rm the choice and send it to the server (the communication being encrypted with SSL).

This implementation is probably the simplest one and the only security is the encryption between the browser
and the web server. However it is realistic, since it has been encountered in commercial voting systems in
2008 for professional elections.

To demonstrate the inherent problems with this simple architecture, we have developed a client-side
malware using a Mozilla Firefox extension. Security issues arising from the use of malicious Firefox extensions
was recently detailed in (Louw et al., 2008) and (Beaucamps and Reynaud, 2008), and exposed in (Mozilla
Security Blog, 2008). We published an attack scenario in June 2008, related to the use of such malicious
extensions to tamper with an Internet voting process. Our proof-of-concept malicious Firefox extension uses
techniques that are similar in essence to those used in banker malware for instance, such as Anserin for
Microsoft Internet Explorer (Charpentier and Hamon, 2008). In particular, though we used Mozilla Firefox,
please note that this malware can be easily adapted to work with current versions of Internet Explorer.

To take control of the election process, the malware just has to complete the following steps :

1. hook the �page loaded� event in the browser (if this is not possible due to lack of APIs or security
restrictions, regularly scan the opened URLs)

2. if the current URL corresponds to the address of a targeted election, go to step 3., otherwise go back
to 1.

3. modify the webpage before it is displayed (in order to perform the random vote changing attack) or
steal the user credentials (in order to perform the voter impersonation or vote disclosure attacks)

4. modify the user input before it is sent to the server (in order to perform the automatic vote changing,
random vote changing or vote dropping attacks)

5. modify the con�rmation webpage so that the user does not see that an attack has been performed

Here are code excerpts from the proof-of-concept Mozilla Firefox extension showing how the above steps can
be completed in Javascript :

// 1 . hook the DOMContentLoaded even t
va r appcontent = window . document

. getE lementBy Id (" appcontent ") ; // browse r
i f (appcontent) {

appcontent . a ddEv en tL i s t e n e r (
"DOMContentLoaded " ,
VOTE4U. contentLoaded ,
f a l s e) ;

}

3

// 2 . check i f the c u r r e n t page co r r e s pond s to a t a r g e t page
// and behave a c c o r d i n g l y
va r u r l b a r = document . getE lementBy Id (' u r l b a r ') ;
t h i s . t a r g e t = 0 ;

i f (u r l b a r . v a l u e . match (//∗SOME_REGULAR_EXPRESSION∗//)) {
t h i s . t a r g e t = 1 ; // the c u r r e n t page i s the v o t i n g page
// hook the ' submit ' e ven t :
con t en t . document . getE lementBy Id (" form1 ")

. a ddEv en tL i s t e n e r (
" submit " ,
VOTE4U. per formPay load ,
f a l s e) ;

}

e l s e i f (u r l b a r . v a l u e . match (//∗SOME_OTHER_REGULAR_EXPRESSION∗//)) {
t h i s . t a r g e t = 2 ; // the c u r r e n t page i s the c o n f i rma t i o n page
// go to s t ep 4 .

}

// 3 . pe r fo rm pay load
// the v o t i n g page c o n t a i n s an HTML form named form1
// the c and i d a t e s a r e chosen i n a r a d i o f i e l d named FIELD1

va r form1 = conten t . document . getE lementBy Id (" form1 ") ;
// ge t c a nd i d a t e s l i s t :
va r r e s u l t s = VOTE4U. eva luateXPath (

form1 . wrappedJSObject ,
"// i npu t [@name='FIELD1 '] ") ;

// f i n d the i ndex o f the ch e a t i n g c and i d a t e :
va r cand_idx = VOTE4U. l ookFo rCand i da t e (

r e s u l t s ,
"NameOfCheater ") ;

// l ookFo rCand ida t e a l s o s e t s VOTE4U. o r i g i n a l V o t e ,
// c o r r e s p ond i n g to the vo te c a s t by the use r ,
// and changes the form name o f FIELD1 to d i s c a r d the u s e r c ho i c e .

// add ing the (h idden) bogus vo te to the form
va r new_f1 = con ten t . document . c r e a t eE l emen t (" i npu t ") ;
new_f1 . s e t A t t r i b u t e (" type " , " h idden ") ;
new_f1 . s e t A t t r i b u t e ("name" , "FIELD1 ") ;
new_f1 . v a l u e = r e s u l t s [cand_idx] . v a l u e ;
form1 . appendCh i ld (new_f1) ;

// 4 . modi fy the c o n f i rma t i o n page
// a f t e r the mod i f i c a t i o n , the u s e r w i l l submit the page h ims e l f ,
// t h i n k i n g tha t he ' s v o t i n g f o r h i s o r i g i n a l cho i ce , when i n f a c t
// he ' s c on f i rm i n g tha t he wants to vo te f o r the c h e a t e r

t a b l e . i n s e r tRow (X) . innerHTML =
"<td width=\"5%\"> ;</td><td>You have voted f o r : " +

4

VOTE4U. o r i g i n a l V o t e +
" . By c l i c k i n g the submit button , you w i l l c on f i rm your c ho i c e . " +
"</td >";

This attack implementation requires almost no e�ort, and totally bypasses the SSL encryption since all
computations are made before data encryption and communication. It is also almost not intrusive, that is
to say it performs no noisy or sensitive operation (from the security point-of-view): it does not issue system
calls, and it does not perform �le or network operations. The only requirements are the ability to monitor
webpages in real time and to modify their DOM. As a consequence, even tight security policies are likely to
permit these operations.

To design a voting process secure against compromised clients, one should bear in mind the above example:
every client computer is potentially compromised, and the malware can monitor every step of the election, it
can capture and modify user data before it is sent. Workarounds are proposed for this scenario in section 3.

3 Solutions

We argue the only reliably secure solution in the context of remote Internet voting is a hybrid one as in
(Chaum, 2001) and (Oppliger, 2002), that is using some other medium that is unavailable to a computer
malware. However, these solutions can be costly so we review previously suggested solutions and propose
other solutions that aim at making vote changing harder. Also we do not consider �security through obscurity�
solutions to be reliable in the long term, even though they allow for a partial practical security during a short
period. In particular, assuming such a solution is eventually reverse-engineered, privacy issues then arise in
case when voting data has been collected for later decryption. We �rst describe commonly proposed solutions
found in the literature and then describe solutions that are more tailored to Internet voting scenarios, taking
into account possible limitations.

3.1 Secure voting places

In cases where home computers are not trusted for Internet voting (or remote Internet voting), alternative
solutions might be considered, such as poll-site Internet voting (California Internet Voting Task Force, 2000)
if the vote takes place on a computer and the vote is cast over the Internet at an o�cial polling station. The
security of the computer is supposed to be ensured by the physical presence of poll workers. Of course, it does
not solve the problem of the client security and does not address one of the problems that Internet voting is
supposed to solve: voter participation.

A similar solution is sometimes referred to as kiosk voting, it is the same as poll-site Internet voting except
the vote takes place on dedicated computers in public places, such as schools and shopping malls. This
might address the problem of voter participation but it is probably the worst solution from the client security
perspective. Ensuring the security of a home computer is a hard problem, but ensuring the security of a public
computer is virtually impossible.

3.2 Special security devices

Special devices may be considered, especially smart card readers, because it is supposedly hard or impossible
to tamper with smart cards without destroying them (Joaquim and Ribeiro, 2007). Depending on the imple-
mentation and the use of the smart card, some attacks may be avoided, but the situation is the same as with
cryptography: incorporating it does not mean you are secure.

A good solution might be to use more sophisticated security devices, with user input capabilities (such
as a keyboard or touch pad), user output such as a screen and enough resources to perform cryptographic
computations without the help of the client processor (Zùquete et al., 2007). This solution is theoretically
secure with regards to the vulnerabilities de�ned in this paper, because the client computer is no longer used
to interact with the user but rather is turned into a communication channel. However, it seems to be hard
to achieve in practice due to the cost associated with special devices and to the fact that Internet voting is
precisely supposed to allow more people to vote in an easier way (with as few requirements as possible).

5

3.3 Trusted computing

The idea of Trusted Computing is to address the insecure platform problem by certifying that the client
platform is running a trusted operating system and the unmodi�ed voting software with the help of a a
hardware chip called the Trusted Platform Module. According to (Volkamer et al., 2006) and (Rubin, 2002),
a trusted computing solution ensures the existence of a trusted path between the user and the voting software,
so that no malware can capture the user input or modify it.

However Trusted Computing su�ers from several shortcomings. For example, it addresses the problem of
trust in remote computers and does not ensure their security, that is to say it is possible to trust a host that
has been compromised at some point in time between the boot and the actual attestation.

Another problem is that it is hard to attest complete, general-purpose operating systems and critical com-
ponents such as browsers and their con�guration information, due to the implementation based on successive
hashes.

A solution that might prove useful in the future to help gain a better trust in the security of remote systems
is the use of dedicated virtual machines. This solution addresses the former issue: while it is hard to attest
every possible con�guration of a workstation, it is easy to attest that a remote host is using a precon�gured,
� safe-for-voting � virtual machine (Joaquim and Ribeiro, 2007).

This solution o�ers in principle the same level of trust that we can achieve today with dedicated Live CDs,
with the addition that Trusted Computing can be used to prove to a remote party that a computer is really
running the unmodi�ed image.

It is also important to note that such an approach can not solve the problem of computer (in)security, but
rather give some level of con�dence that a software system has not been tampered with.

3.4 Hybrid solution

This solution was already suggested by David Chaum in 2001 with his SureVote system (Chaum, 2001). It
relies on having the voter use some medium that is not connected to his voting computer. The most obvious
medium would be sending a letter containing codes for the candidate. These codes must vary from one voter
to another, and only the back-end system should then know, when receiving the vote, which candidate was
chosen. A last step is to send the voter a code that would acknowledge his vote. This code must match a
veri�cation code in his original letter.

Such a system protects the voting process against all previous attacks. The set of valid codes should be
large enough to prevent random vote changing, and only a vote should not be iterated more than a prede�ned
number of times (in case a malware tries several codes until it's got con�rmation).

3.5 Using a known hard problem

There might be some scenarios where using a secondary medium is di�cult. In that case, we can at least
harden the voting process, since the attacker can potentially modify the webpage contents on the �y (ie
alter the voting process and modify the vote). We rely on problems that are known to be hard to solve by
automated processes but are easily solved by humans. Such problems are sometimes referred to as Turing tests
that allow to distinguish between a human and a machine. For instance, CAPTCHA images (�Completely
Automated Public Turing test to Tell Computers and Humans Apart�) (von Ahn et al., 2004, 2003) are images
with text embedded in a confused way in it: humans are supposed to be able to decipher the embedded text,
whereas programs are not. One could also use linguistic problems. We will however restrict to Captcha-based
solutions.

Please note however that such solutions are only partial and aim to strengthen the voting security in
limited scenarios. One could of course always rely on a human to resolve the CAPTCHA challenge. The
development of image recognition may also make this solution a short term one only.

3.5.1 Text Captchas

A �rst (easy but weak) solution would be to use such Captcha images to display the candidates names.
However, current Captcha algorithms are now cracked with higher and higher success rates (and with no clue
about the text to decipher). Considering also the fact that there is a limited number of candidates, and
that identifying only part of the Captcha image would be enough to identify a candidate, we can infer that
a malware with Captcha breaking capabilities will bypass the Captcha barrier with a success rate close to
100%. Basically, a malware would only need to determine which candidate's name is the most likely to be
represented in the Captcha image, without having to decipher the precise contents of the image. Note that

6

even the length of the candidates names is a discriminating factor. In the end, any low e�ciency Captcha
breaking algorithm would be appropriate.

Some litterature is covering the breaking of Captchas (Chellapilla and Simard, 2004; Mori and Malik, 2003;
Chellapilla et al., 2005) and recent implementations have been brought to light in scenarios like automatic
creation of accounts on Hotmail, Gmail, Yahoo Mail, Blogger, etc. Success rates are typically between 10%
and 35% with an optimal time of 6s (Websense - Sumeet Prasad, n.d.). Optical character recognition (OCR)
techniques can also be used in a statistical approach to determine from which candidate name an image is
the closest.

3.5.2 Image Captchas (or semantic Captchas)

Image identi�cation Image captchas can be stronger than text captchas. Common scenarios include
identifying from a list of terms what best describes the displayed image. In Internet voting, one could imagine
a scenario where several images are displayed and a text telling: �To vote for candidate A, select the picture
representing a cat. To vote for candidate B, select the picture representing a tower.�, and so on. Some
implementations exist, like Microsoft's Asirra Human Interactive Proof: given say 10 photos, the user is asked
to select all photos that represent a cat. Another implementation can be found on the Captcha Project's
website (The CAPTCHA Project, n.d.): four pictures are displayed to the user which is asked to identify in a
list a feature common to all pictures.

This �rst solution has some weaknesses. First, the number of images must be big enough to resist to
an exhaustive identi�cation. Second, unless a high number of images is displayed to the voter (which is an
unlikely scenario), a random vote attack is likely to have a high success rate.

Detail identi�cation This technique relies on the human distinction of details inside an image. So-called
3D Captcha is an implementation of such Captchas: an image is generated which assembles several features
together and annotates the di�erent parts of each feature with some text; then the user is asked to enter the
text written on some part of some feature. If each text component is one letter long and there is enough
di�erent details to cover the alphabet and the user is asked to enter the text of several components, then
there is no other way for a breaking algorithm but to identify each detail in the image. An example of such a
3D Captcha can be found at (Kaplan, n.d.).

In an Internet voting scenario, we have to make sure the choice pool is large enough to prevent random
vote. To ensure that, we could for instance propose one 3D Captcha per candidate (generating a single image
or one image per candidate). Then, to vote for candidate A, a user would be asked to enter the code sequence
corresponding to part i1 of feature j1, followed by part i2 of feature j2, and so on (the length of the resulting
code must be random and large enough to ensure protection against random vote and vote changing attacks).
We insist that the di�erent text components of the image must cover a large enough set of characters for this
technique to be strong.

Another technique can �nally be derived from this technique. Rather than annotating each detail of the
image, one could ask the user to directly click on those details (which would be identi�ed by polygonal areas
in the image). The advantage of this technique would be to have a �ner-grained control of the set of possible
inputs (by segmenting an image in a set of small enough areas). Using a sequence of clicks furthermore
increases the resistance of the algorithm against breaking. Also, one can use either computer-generated
images or real images. Computer-generated images are easier to implement but could be in the long term
easier to automatically analyse. Such images can be strengthened by adding a complex background which an
human will easily distinguish, unlike a computer algorithm. Real images on the other side are complex, relying
on the full distinguishing abilities of the human brain, but must have been previously segmented in areas.

Examples We consider 3 scenarios of voting by detail identi�cation, inspired from the previous 3D Captcha.

Input:
A computer-generated image with a standing person, a sitting person and a vase with a �ower. Each

part of each element is annotated with letters, which cover the whole alphabet.
Instructions:
To vote for candidate A, enter the characters annotating each of the following details:

1. The right hand of the sitting person;

2. The �ower stem;

7

3. The left leg of the sitting person;

4. The body of the standing person.

To vote for candidate B, enter the characters annotating each of the following details:

1. ... (Another sequence of details)

Input:
A computer-generated image with a standing person, a sitting person and a vase with a �ower.
Instructions:
To vote for candidate A, click on each one of the following details in the image:

1. The right hand of the sitting person;

2. The �ower stem;

3. The left leg of the sitting person;

4. The body of the standing person.

To vote for candidate B, click on each one of the following details in the image:

1. ... (Another sequence of details)

Input:
A real image featuring among others a tower with an antenna, a tethered dog and a window store.
Instructions:
To vote for candidate A, click on each one of the following details in the image:

1. The top of the building's antenna;

2. The dog's tail;

3. The window store;

4. The dog's leash.

To vote for candidate B, click on each one of the following details in the image:

1. ... (Another sequence of details)

Note that none of these solutions is protected against a third party resolution of the challenge, like sending
to a remote server the question along with the image. Neither are they protected against voter impersonation,
that is stealing the voter's credentials and deluding him in a fake voting process. Similarly, vote dropping
cannot be avoided either. Finally, sending to a server both the challenge and the user's response allows to
disclose the voter's choice. Actually, in a non hybrid solution, and using mainstream computers, no solution
can protect against these attacks.

4 Conclusion

Internet voting is supposed to improve participation by allowing anyone to vote in a simple way. Current
implementations however have weak protections that can be easily defeated by simple browser addons, though
they could be improved. Internet voting is certainly an e�cient step toward improving election participation,
however we argue that some attacks cannot be avoided without using a parallel medium. Denial of service,

8

vote disclosure, credentials stealing can always be achieved in pure Internet voting scenarios � when using
general-purpose computers with mainstream operating systems, where security cannot be e�ciently ensured,
such as public computers and to some extent home computers.

However, solutions relying on Human Interaction Proofs principles (as is done with CAPTCHA algorithms)
at least allow to e�ciently protect the voting process against automatic vote tampering in limited scenarios.
When hybrid solutions cannot be adopted, we highly encourage toward the use of strong solutions relying on
human capacities. Since this protection can still be circumvented, important elections should de�nitely not
rely on such solutions.

References

Beaucamps, P. and Reynaud, D. (2008), Malicious Firefox Extensions. Available at: http://lhs.loria.

fr/?p=33.

California Internet Voting Task Force (2000), A report on the feasibility of Internet voting, Technical report,
California Secretary of State, Sacramento.

Charpentier, F. and Hamon, Y. (2008), Autopsie et observations in vivo d'un banker, in `SSTIC'08 Proceed-
ings'.

Chaum, D. (2001), `SureVote, International Patent WO 01/55940 - http://www.surevote.com'.

Chellapilla, K., Larson, K., Simard, P. Y. and Czerwinski, M. (2005), Computers beat humans at single
character recognition in reading based Human Interaction Proofs (HIPs), in `CEAS'.

Chellapilla, K. and Simard, P. Y. (2004), Using machine learning to break visual human interaction proofs
(hips), in `Advances in Neural Information Processing Systems 17, Neural Information Processing Systems
(NIPS'2004)', MIT Press.

Enguehard, C. (2008), Transparency in electronic voting : the great challenge, in `IPSA - International Political
Science Association RC 10 on Electronic Democracy', Stellenbosch University, South Africa.

Estonian Electoral Committee (n.d.), `http://www.vvk.ee/engindex.html'.
URL: http://www.vvk.ee/engindex.html

Hensler, R. (2004), `http://www.coe.int/t/e/integrated_projects/democracy/Hensler%20Swiss%
20presentation.ppt - The Geneva Internet voting project'.

Joaquim, R. and Ribeiro, C. (2007), `Codevoting protection against automatic vote manipulation in an
uncontrolled environment', Lecture Notes in Computer Science 4896/2007.

Kaplan, M. (n.d.), `http://spamfizzle.com/CAPTCHA.aspx - The 3D CAPTCHA'.
URL: http://spam�zzle.com/CAPTCHA.aspx

Louw, M. T., Lim, J. S. and Venkatakrishnan, V. N. (2008), `Enhancing web browser security against malware
extensions', Journal in Computer Virology .
URL: 10.1007/s11416-007-0078-5

Mohen, J. and Glidden, J. (2001), `The case for Internet voting', Commun. ACM 44(1), 72�85.

Mori, G. and Malik, J. (2003), Recognizing objects in adversarial clutter: breaking a visual CAPTCHA, in
`Proceeding of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition',
Vol. 1, pp. I�134�I�141 vol.1.

Mozilla Security Blog (2008), `http://blog.mozilla.com/security/2008/05/07/compromised - Com-
promised �le in Vietnamese Language Pack for Firefox 2'.
URL: http://blog.mozilla.com/security/2008/05/07/compromised

Oppliger, R. (2002), How to address the secure platform problem for remote Internet voting, in `Proceedings
of the 5th Conference on �Sicherheit in Informationssystemen� (SIS 2002)'.

Phillips, D. M. and von Spakovsky, H. A. (2001), `Gauging the risks of Internet elections', Communications
of the ACM 44(1).

9

Rubin, A. D. (2002), `Security considerations for remote electronic voting', Communications of the ACM .

Safevote (2000), `Voting system requirements', The Bell 1(7), 3.
URL: http://www.thebell.net/papers/vote-req.pdf

The CAPTCHA Project (n.d.), `http://www.captcha.net/cgi-bin/esp-pix'.
URL: http://www.captcha.net/cgi-bin/esp-pix

Volkamer, M., Alkassar, A., Sadeghi, A.-R. and Schulz, S. (2006), `Enabling the application of open systems
like pcs for online voting', Frontiers in Electronic Elections .

von Ahn, L., Blum, M., Hopper, N. and Langford, J. (2003), `CAPTCHA: Using hard AI problems for security',
Advances in Cryptology � EUROCRYPT 2003 pp. 646�646.

von Ahn, L., Blum, M. and Langford, J. (2004), `Telling humans and computers apart automatically', Com-
munications of the ACM 47(2), 56�60.

Wearden, G. (2002), `http://news.zdnet.co.uk/internet/0,1000000097,2109249,00.htm - UK's �rst
online voters go to the polls'.
URL: http://news.zdnet.co.uk/internet/0,1000000097,2109249,00.htm

Websense - Sumeet Prasad (n.d.), `http://securitylabs.websense.com/content/Blogs/3063.aspx -
Microsoft Live Hotmail Under Attack by Streamlined Anti-CAPTCHA and Mass-mailing Operations'.

Zùquete, A., Costa, C. and Romao, M. (2007), An intrusion-tolerant e-voting client system, in `Workshop on
Recent Advances on Intrusion-Tolerant Systems (WRAITS 2007)'.

10

