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Avant-propos

Soyez les bienvenus & ces Journées « Codage et Cryptographie ». Cet avant-propos me
donne 'occasion de remercier tous les membres du comité de programme. Nous avons recu
soixante-seize soumissions. Chacune d’entre elles a été référée par deux rapporteurs. Quarante
neuf ont été retenues. Je désire également remercier Christine Bachoc, Iwan Duursma, Eric
Filiol, Philippe Gaborit, David Haccoun, Nicolas Lagorce, Pierre Loidreau, Lancelot Pecquet,
Antoine Valembois, Patrick Solé et Ulrich Sorger pour leur aide précieuse dans le processus
d’évaluation des soumissions. Moult mercis également & Nicolas Sendrier et Claudie Thénault,
ainsi qu’a Eric Filiol, grace & qui nous avons pu organiser ces journées au « Cercle Militaire ».
Un grand merci, enfin, & Daniel Augot qui a eu la charge de ce livre de résumés.

Je vous souhaite un bon séjour & Paris!

Claude Carlet
Président du comité de programme

Foreword

I am very pleased to welcome you to this first Workshop on Coding and Cryptography in
Paris. This foreword gives me the opportunity to thank all the members of the program com-
mittee. We considered seventy-siz submissions. Each of them was reviewed by two referees.
Forty-nine have been accepted. I wish also to thank Christine Bachoc, Iwan Duursma, Eric
Filiol, Philippe Gaborit, David Haccoun, Nicolas Lagorce, Pierre Loidreau, Lancelot Pecquet,
Antoine Valembois, Patrick Solé and Ulrich Sorger for their precious help in refereeing. Many
thanks also to the organizers, and especially to Nicolas Sendrier and Claudie Thénault for
their great job, and to Eric Filiol thanks to whom we managed to organize this workshop at
the “Cercle Militaire”. And, last but not least, Daniel Augot who was in charge of this book
of abstracts.

I wish you a pleasant stay in Paris!

Claude Carlet
Program chairman
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On Self-Dual and Formally Self-Dual Codes

Vera Pless
(co-authors-W.C. Huffman, J.Fields, P.Gaborit)

Self-dual codes are an interesting class of codes. The extended Golay codes over GF(2)
and GF(3) are self-dual as is the [8,4,4] binary Hamming code and the [6,3,4] Hexacode over
GF(4). The weight enumerators of these codes are given by the Gleason polynmials which
also provide an upper bound on their minimum weights. Codes which meet this bound are
called extremal and vectors of a fixed weight in them contain t-designs where t can be 5,3
or 1 ( depending on the particular case).

In order to find the extremal codes, all self-dual codes of a particular length have been
classified for many modest lengths. This has been possible because there are formulas for
the number of self-dual codes of a fixed length.

Binary self-dual codes come in two types, Type ll-the doubly-even codes where all weights
are divisible by 4 and Type 1 where some weights are also equivalent to 2 (mod 4). The
largest length where all Type 11 codes have been classified is 32. It is impractical to do this
at longer lengths due to the large number of such codes. Attempts have been made (so far
not successfully) to classsify only the extremal codes at longer lengths even though there are
no formulas for the number of such codes.

If a binary code has the same weight distribution as its dual code, it is called formally
self-dual (f.s.d.). These codes include the self-dual codes and when they are not self-dual,
their weight enumerators are combinations of Gleason polynomials as are weight enumerators
of Type 1 codes. Extremal f.s.d. codes exist which have higher minimum weights than self-
dual codes with the same parameters. We describe recent work (as yet unpublished) which
has classified the extremal f.s.d codes through length 30.



New permutation polynomials and applications to
codes, sequences and Boolean functions

Hans Dobbertin

We present a new systematic technique to prove that certain polynomials are permutation
polynomials (PP’s) on finite fields of characteristic two. Using this method we find new PP’s
and new proofs for know PP’s. In combination with results of the work at INRIA (Pascale
Charpin, Anne Canteaut), some of these new PP’s form important ingredients for a recently
achieved progress on determining

e cross-correlation functions of binary m-sequences, or to put into other terms,

e the weight distribution of certain codes, resp. the non-linearity of certain power func-
tions.

In our talk we shall describe the state of the art and discuss lines for future reasearch.



Metrics generated by linear codes in cryptography

Ernst M. Gabidulin

Each linear code can be treated as a subspace of a metric space. We refer to this metric
as the original metric (very common case is the Hamming metric). On the other hand, a
linear code generates a metric defined on the set of its syndroms. We refer to this metric
as the generated metric. One can construct a code with syndroms as code words correcting
errors in the generated metric. The general construction of a public-key cryptosystem is as
follows. For a given linear code C}, a legal user finds an (easy decodable) code C, in the
generated metric and uses this code to modify a parity check metric of the original code.
This modified matrix is published as the public key. Secret keys are fast decoding methods
for the original metric and for the generated metric. Let the set of plaintexts be all the
correctable errors in the original metric.

Encryption: for a given plaintext calculate a syndrome using the modified parity check
matrix. This is a ciphertext.

Decryption: a ciphertext is a sum of a codeword of C; and a syndrome of a correctable
error for C;. The legal user decodes it using the generated metric and finds a syndrome of
a correctable error for C;. Then he applies the decoding algorithm for the original code C;
and finds a correctable error, i.e., a plaintex {. We discuss general properties of this scheme
and give examples.



Invited talk on cryptography

James Massey
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Construction and classification of quasicyclic codes

Kristine Lally and Patrick Fitzpatrick
Department of Mathematics
National University of Ireland, Cork
Cork, Ireland
email: k.lally@ucc.ie, fitzpat@ucc.ie

Abstract

We use the theory of Grobner bases to develop a new technique for constructing and
classifying quasicyclic codes. A number of interesting results follow from this standard
representation. For example, it is straightforward to determine the dimension of a
quasicyclic code from its reduced Grébner basis relative to a certain order.

1 Introduction

The theory of Grébner bases of modules (developed in [1, 2]) has been applied [3, 4, 5, 6, 7]
to decoding Reed-Solomon codes, to scalar rational interpolation, and to various other
problems, such as Padé approximation, that can be represented as solving systems of
polynomial congruences. In [9] the authors use the theory to develop machinery for analysis
of Hermitian codes. The essential idea is to use a cyclic group of automorphisms of the
code to represent it as a module over the polynomial ring F[z] in one variable. In this paper
we adopt the same approach to provide a new method of construction and classification
of quasicyclic codes.

We assume the reader is familiar with the elementary theory of Grobner bases. Let
A = Flz] for some finite field F, and let A’ be a free A-module. The standard basis
elements are

e; = (1,0,...,0),e2 = (0,1,0,...,0),...,e; = (0,0,...,0,1) € AL

We define a term in A' to be a vector of the form X = zfe;, 1 < j < I. We fix a term
order < in A' defined by z%e; < z¥'e; if and only if j > j/ or j = j/ and i < i'. Note that
€1 > €3 > -+ > ;. (This is the “position over term” or POT ordering.)

Once a term order has been chosen, any f € A! can be expressed as

f=a1X1+a:2X2+.--+a:rXr

11



where a; € F, X; is a term and X; > X3 > ... > X,. The leading term of f, denoted 1t(f),
is X1, and the leading coefficient of f, denoted Ic(f), is a;. By definition, 1t(0) = le(0) = 0.
The term z'e; divides z¥ejr provided j = j' and i <¢'. f M C Al is a submodule then
a set of non-zero elements G = {g1,...,&:} in M (with respect to the fixed term order)
is a Grobner basis of M if and only if for all f € M there exists 4 € {1,...,t} such that
1t(g;) divides lt(f). A Grobner basis ¢ = {g1,...,&:} is reduced if all g; are monic and
reduced with respect to G, that is, no term in g; is divisible by 1t(g;) for any j # 4. Such
a reduced Grobner basis for M is unique. If G is a Grobner basis of M then each element
f € Al has a uniquely defined normal form relative to G denoted by Ng(f), and the set of
cosets of M represented by terms which are in normal form is a vector space basis of the
quotient A!/M.

2 Quasicyclic codes

Let I = (z™ — 1) C A and denote by K the submodule of A generated by {(z™ — 1)e; |
j=1,...,1}. If M is a submodule of A! containing K then the image C of M under the
natural homomorphism modulo K is a quasicyclic code of index ! and length n = ml, and
C may be regarded as an A/I-submodule of (A/I )!. Conversely, every quasicyclic code
may be obtained in this way from a submodule of Al for suitable I, m.

Thus, a k-generator quasicyclic code C is an A/I-submodule generated by a set
{aj,a9,...,ax} C (4/] )! and its preimage (with the appropriate notational interpreta-
tion) is the A-submodule M C Al generated by {aj, as,...,a;, K}. Let G be the reduced
Grébner basis of M. Since K contains (z™ — 1)e; for each 4 and since 1t((z™ — 1)e;) is in
the " position, there exists g € § with lt(g) dividing lt((z™ — 1)e;). It follows that the
leading term of g is in the it* position and as a consequence we have

Theorem 2.1 The reduced Grobner basis G of M contains precisely | elements g;,i =
1,2,...,1 where g; has leading term in the ith position. Moreover, g; has the form g; =
(0,0,...,0,g5, g%, ...,6) € Al where gt # 0.

Thus, the elements of G have the triangular form

g1 = (o1, ¢..,0%)
g2 = (0,9%,....65)
g3 = (0,0193)“-agg)

g = (0’0101'-' 10195)'

12



where the nonzero polynomials g are called the diagonal elements of G. Some additional
properties are given in

Theorem 2.2

1. Each g¢ is monic and divides z'™ — 1.

2. If f € M has leading term in the i position then gi divides the i** component of f.
3. The degrees of non-zero off-diagonal components gl (j # i) satisfy

deg(gf) < deg(g]) < m.

4. If g; € K then g; = (g™ — 1)e;.

A generating set B for the corresponding quasicyclic code C can be found by mapping
G to AY/K = (A/I)!. Note that elements of GN K are sent to zero so B may contain fewer
than [ elements.

EXAMPLE 2.3 Let C be the quasicyclic code of index | = 3 and length n = ml = 18,
m = 6 over Fy generated by elements
a = (@P+zt4+2+2+a+lat v 4s4 1P+t a2+ )
a; = (P+rt+r+1z+23+ 1,25 + 24 +23).
The Grobner basis of M = (a3, ag, (% — 1)ey, (z® — 1)es, (z® — 1)e;3) is G = {g1,82, 83}
where
g1 = (z+Lz+1,z*+23 +241)
g = (0,22 +2+1,z+224+1)
gs = (0,0,z% —1).
Since 28 — 1 = (z + 1)%(z? + z + 1)? in Fyfz] the diagonal elements g1 = z +1,
g5 =12+ 41,93 = 25— 1 are indeed divisors of 2™ — 1. The corresponding generating
set of Cis B = {g;,g2} since g3 is mapped to zero.

O
We can determine the dimension k of the code from the diagonal elements g? as follows.

Theorem 2.4 The codimension n—k of the code C is the number of monomials z'e; € Al
in normal form modulo the Grobner basis G of M. Thus

l
ml ~ Y deg(g})

i=1

l
= Y (m — deg(g})).

=1

k

13



EXAMPLE 2.5 (Continued from example 2.3) The diagonal elements are g=z+1,¢3=
22 + 1+ 1, and g = 2% — 1 and therefore the dimension k of the code C is

l
k=ml-—2deg(g§)=18—(1+2+6)=9.

=1

EXAMPLE 2.6 Consider a quasicyclic code C of index ! = 5 and length n = ml = 60,
m = 12 over Fig . Let a be a root of the primitive polynomial z* +z +1 over Fy and let
C be generated by elements

a;, = (a®+ o102 + 22 + 23 + o928 4 o1927 + 28 + 20,
o8 4+ oz + o192 + 23 + o528 + o027 + 01028 + 20,
o 4 oo + 0Pz + o35 + Bt + o¥d + o228 + 27,
o®+ 5 +adzt + m6,
alO +m+a10x4 +$5)
a, = (of0+ o0 + 72 + 23 + o028 + o027 + 28 + 2°,
o 4z + a7 + a00® + a0zt + o104 + 28 4 oPz” + 28,
ot + o’z + Pz + a3z + ofzt + o3z® + oxb + :1:7,
o® + 2% + Bzt + ws,
1+ z%)
in (A4/I)5. The reduced Grdbner basis for M = (aj,a,(z'? - lei,...,(z'? — 1)es) is
G = {g1,82,83, 84,85} Where
g = (o+ o0 + 22 + 28 + 01028 + o027 + 28 + 2°,0,
o't + oz + Pz? + al3z® + ozt + o’ + o?2b + :v7,
of + 22 + az? + 12%,0° + &Pz + az? + o°2°)

g2 = (0,0° +z+0Pz? +al0e® + a0 + o195 4 26 + 0z’ + 25,
0,0,a!® + o’z + ozt + a°zP)
g3 = (0,0,1+ a'%z+ 0% +a’s® +0P2% + 2,

14 %% + o2 + o024 + a®2% + al?28 + aPad + 2 + o',
a'? + o’z + o'zt + o’zP) -

g4 = (0,0,0,
a1°+a5:z:+a:2+a1°m3+a5a:4+a:5+a1°:c6+a5:z:7+x8+a1°w9+a5m1°+x11,
0)

gs = (0,0,0,0,1+z+2?+z*+2° +15).

14



The polynomial z'? — 1 splits into 3 distinct factors, each of multiplicity 4 over Fig,
2 — 1= (z+1)*(z + ¥z + al0)?.

and, as a consequence, the diagonal elements also split:

@ o= a4l 42?4 2% 4 005 4 o107 4 4B+ g0
(z +1)3(z + ®)(z + o'?)?
92 = o +z+0°r? +a%3 + a2 + 01%5 + 2% + oz’ + 28
= (z+1)(z + ®)*(z + o1?)?
95 = 1+a %+ a'%* +0®z% + a®2® + 2°
= (z+1)*z+°)(z + a0
gf11 = o+ aPz+22+ 0% + Pzt + 2% + o025 + o527 + 28 + al%2° 4 &¥z10 4+ 1
= (z+1)%z+®)*(z + o'?)*
@ = l4+z+22+2*+25+45

(z +1)*(z + &®)(z + '9).

The corresponding generating set for C'is B = {g;, g2, 83, 84, 85} and the dimension % of

the code is )

k=ml—")_ deg(g}) =60 — (9 +8+9+11+6) = 17.

=1

‘We note that the formula for dimension & of C can also be written

k=Y (m - deg(g}))

g.€B

since if g; € G\ B then g; = (z™ — 1)e; and m — deg(g}) = m—m = 0. A generator matrix
for C can be constructed directly from B.

Theorem 2.7 The set
{zkgimodxm—l |gi€B,1<i<,0<k Sm—deg(gf)—l}
is a linearly independent set of 3g c5(m — deg(gt)) vectors which spans the code C.

Thus we can construct a generator matrix in the form of a | B| x I block upper triangular
matrix [A;;] with A;; =0 for <> j and fori < j
a.
zg]

Aij =

gm—deg(af)-1g9

15



The specific form of the diagonal elements is

0 il ; deg(g?
g:,o gt .. 9; g(g?) 0 o 0
0 i . deg(o!
A
0 0 - g g g:}deg(g:)

where gi(z) = g;@,o + g::’lw +-- 4 g;’dEg(g;)mdeg(gf) € A/I. The analogy with the generator
matrix of a cyclic code is apparent.

EXAMPLE 2.8 Continuing from example 2.3 and 2.5. We have I = 3, m = 6 and the
generators of C' are

gr = (z+Lz+1,2* 423 +2+1)
go = (0,22 +z+1,2%+2%+1).

The generator matrix is

110000 110000 110110
011000 011000 011011
001100 001100 101101
000110 000110 110110
000011 000011 011011

000000 111000 101010
000000 011100 010101
000000 001110 101010
000000 000111 010101

3 Structure of the Grobner basis

Given an arbitrary set of k generators for a quasicyclic code C, we have seen how to
construct a canonical generating set for C' from the reduced Grobner basis of the corre-
sponding preimage module. We now study the general structure of this representation
with the aim of constructing and classifying quasicyclic codes independently of a specific
initial generating set.

16



Theorem 3.1 The set G = {g1,82,...,8} C Al of the form

g1 = (9{79%:,95.)
g = (0,63,...,05)
g3 .= (07079317.9%)

g = (0:0)10595)

is a reduced Grobner basis for a submodule M containing K = ({(z™ — 1)e; | 1 = 1,2,...,1}),
and so corresponds to a generating set for a quasicyclic code, if and only if:

(i) the diagonal elements g} are monic polynomials

(i) deg(g)) < deg(g)) for alli <j, 1<i,j <L

(iii) (2™ —1)e; € (G) for alli=1,...,L

Conversely, every quasicyclic code can be represented in this way.

These conditions impose strong restrictions on the elements of the reduced Grébner
basis G. For example, it is immediate that g% | 2™ — 1. Further divisibility conditions on
the non-zero off-diagonal elements g7, j > 1, can also be specified. Two special cases are
described next.

Theorém 3.2 Let G = {g1,82,...,8:} be the reduced Grobner basis for the submodule
M. If some g; € G, is not contained in K but g; € K for alli < j < I, then g; has the
form

g =(0,0,...,0,4}, fi(z)g}, - -, fii(z)g})

where . _
deg(fr(z)) < m —deg(g:), 1<k <1 -1

We call G an r—level Grobner basis of M if there is an index r such that g, ¢ K and
g; € K for r < j £ 1. The corresponding generating set B of the code C is also called an
r—level generating set. It contains at most r generators

B={gicGlg¢K1<i<r}

We then have the following consequence.
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Corollary 3.3 A guasicyclic code C of indez | and length ml has a 1-level generating set
if it is generated by a single generator g of the form

g=(9,f19,---,fi-19)
where g divides z™ — 1 and deg(fx) <m —deg(g), 1 <k <1-1.

Finally, in the index 2 case we have

Theorem 3.4 Let the indez [ be 2 and suppose that G = {g1,82} is the reduced Grobner
basis for M. Then

g1 = (g%ag%)
g2 = (0793)

where gf divides z™ — 1, 1= 1,2, and

g% — flg§

ged (272, 63)

where deg(f1) < deg(g3) — deg (g%/gcd (%’—l,gg)) . If m is relatively prime to the char-
1

acteristic of the field F then the non-diagonal entry simplifies to

g} = figed (g}, 93)

‘where deg(f1) < deg(g3) — deg(ged(g1, 93))-

4 Diagonal elements of a 1-generator quasicyclic code

We now consider the particular case of a 1-generator quasicyclic code. This has been
considered by several authors including [8],(10},[11]. The following theorem gives the
structure of the diagonal elements of the Grobner basis of of the preimage module (and
hence those of the canonical generating set of the code).

Theorem 4.1 A quasicyclic code C generated by g = (91,92, --» g1) has a corresponding
preimage M = (g, (z™ — L)ey, (z™ — 1)ey, ..., (z™ — 1)e;) whose reduced Grobner basis is
G = {g1,82,...,8} where

g1 = ged(gr,2™ — 1)
i _ (@™ —1ged(g1,92,..-,9i,2™ = 1)
’ ged(g1,92,---»9i-1,2™ -1)

Coi=2...,L
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iFrom theorem 2.4 the dimension of the code is

k=m - deg(ng(glag2: s 7gl’$m - 1))

which corresponds to the formula given by Séguin and Drolet[10].

This result can be used to develop a technique for constructing good 1-generator qua-
sicyclic codes generated by an element of the form g = (fig, f29,...,fig). We end with
an analogue of the BCH bound in this case.

Theorem 4.2 Let m be relatively prime to the characteristic of F and let C be a I-
generator quasicyclic code generated by

g= (flg7f2ga"'7flg)

g"l) =1, and deg(f;) < m — deg(g(z)),1 <i<Il. Then

zm

where g | 3™ — 1, ged(fi,
[{(#ConsecutiveRoots(g) + 1) < dmin(C) < I(deg(g) + 1).
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Abstract

The problem of upper bounding the minimum norm of a binary code
is shown to be co-NP-complete, and II>-complete if the code is known
to be linear and the input consists of a parity check matrix for the code.

1 Introduction

The covering radius of a binary code C C IF} is the smallest integer R with
the property that every point in the space IF} is withing Hamming distance R
from at least one codeword. For the theory of covering codes, we refer to [2].

Fori=1,2,...,n,let C'éi) (respectively, Cf’.) ) denote the set of codewords
in which the i-th coordinate is O (respectively, 1). The integer

N® = max{d(x, C§) + d(x, C)}

is called the norm of C with respect to the i-th coordinate and
Nimin = min NG
%

is called the minimum norm of C'. This concept, introduced in [6], is important
in building covering codes using the amalgamated direct sum construction.
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The complexity of determining the minimum norm of a binary code is
mentioned as an open problem in [3]. Here, we assume that the reader is
familiar with NP-complete problems and the polynomial-time hierarchy (see,
e.g., [5] or [1] for a whole theory of complexity, or [7] for a brief introduction
to what will be necessary in the following).

We consider separately the following two variants:

NAME: NORM1

INSTANCE: A binary code C of length n (given as a list of codewords)
and an integer w

QUESTION: Is the minimum norm of C' at most w?

and

NAME: NORM2

INSTANCE: A binary linear code C of length n and dimension k with
a given parity check ¥ x n matrix H, and an integer w

QUESTION: Is the minimum norm of C' at most w?

In the former case the input consists of a list of all codewords (and therefore
the size of an instance is - |C|) whereas in the second we assume that we are
given a parity check matrix of the code and therefore the input size is essen-
tially smaller (namely, » - k = n -log, |C}). It is known that upper bounding
the covering radius in these two cases is co-NP-complete [4], respectively IIo-
complete [7]. We prove that the same is true for the minimum norm. This is
not surprising in view of the fact that it is easy to see that NORM1 belongs to
co-NP and NORM?2 belongs to Iz, and intuitively it would seem that upper
bounding the minimum norm is not easier than upper bounding the covering
radius.

2 The Nonlinear Case

Before proving the co-NP-completeness of NORM1 (Theorem 1 below), we
give the following definition and notation.

We say that a vector v = (v1,v2,...,%2,) € IF2" is doubled if and only if
Vgi—q = ug; Tor alli=1,2,...,n. If u € F}, we denote its complement 1 +u
by §; here 1 denotes the all-one vector of length n.

Let u(i) € IFZ' denote the vector (0101...01). Let Yy, = {(01fu(n —
1)), (10[u(n — 1)}, (01]u(n — 1)), (10[&(n — 1))}, where | stands for concatena-
tion, and Y, = s;(Y4,), where s; denotes the circular right shift of 2j—2 bits,
for j = 2,3,...,n. Finally, let Yon = U;‘1=1 Yzjn. Then |Yan| = 2n + 2, since
(01ju(n — 1)) and (10[T(n — 1)) are invariant under all even circular shifts.
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We are now ready to prove the following:
Theorem 1 The problem NORM1I is co-NP-complete.

Proof. We show that the complementary problem, lower bounding the min-
imum norm (co-NORM1), is NP-complete. Clearly, it belongs to NP; indeed,
given n vectors x1,Xs, ..., Xn, of length n, it is polynomial (in n - |C|, the size
of an instance of co-NORM1) to check that the n sums d(x;, CS") +d(x;, C§'))
are all greater than w,

Now we reduce 3-satisfiability, which is known to be NP-complete (see,
e.g., [5, p. 48]), to co-NORM]1, using the same code C as in [4].

NAME: 3-satisfiability (3-SAT)

INSTANCE: A boolean formula E, in conjunctive normal form, with
exactly three distinct literals in each clause

QUESTION: Can E be satisfied?

Starting from any instance of 3-SAT, we construct, in polynomial time, an
instance of co-NORM1 in such a way that the positive and negative instances
correspond in co-NORM1 and 3-SAT. Let E = C; AC3A. . .ACy, be an instance
of 3-SAT, each clause C;, defined over the set of variables {z1,z2,...,2n},
consisting of exactly three distinct literals. For each clause C;, let z(C;) =
(21y...,22n) € IF2" be the vector defined by

29i_1 = z9; = 1 if Cj contains the literal z;;
22i—1 = #2i = 0 if C; contains the literal 7;;

z9i—1 = 0 and z9; = 1 otherwise.

We then define C' C IF2"*? as follows:
C= {(Z(C_;)lOO) :1<€7<m}UY2n49.

Finally, let w = 2n 4+ 1. The code C has length 2n 4+ 2 and cardinality
m + 4+ 2n, which is polynomial in nm, the size of the instance of 3-SAT. We
now have to show that E can be satisfied if and only if C' has minimum norm
at least 2n + 2.

First suppose that F can be satisfied; a truth assignment to the variables
{z1,23,...,2n} satisfying E can be represented by a vector v = (vy,vz,...,
vn) € IF5. Let v* be the doubled vector (vy,vy,v2,vs, ..., vn,vn,0,0) €
IF§"+2. Then for all ¢ € Yan42, d(c,v*) = n+ 1. Moreover, in each clause C;
there is at least one literal which is set true by v; it is easy to see then that
d((z(C;)100),v*) <2+ 2+0+ (n—3) =n+ 1. Consequently, for allc € C,
d(c,v*) < n+ 1. This implies that d(C,v*) > 2n+2—(n+ 1) =n+1,s0
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R > n+ 1. Trivially Nmin > 2n+2, and in fact equality holds in the last
two inequalities, because the code has length 2n + 2 and contains a word-
complement pair.

We claim that conversely, if Nmin > 2n+ 2 (i.e., Nmin = 2n + 2), then B
can be satisfied. By the assumption, N(?*+2) = 2n + 2, and therefore there
exists a vector v = (v1,v2,. .., Vant1, V2nt2) Such that

d(v, O™ D) 4 d(v, Gy = 2n 4 2.

Then
Vi = U3,V3 = Ud, ..., V-1 = V2n; (2)

indeed, if for example v; =1 and vy = 0, the fact that 100101...01 and
101010...10 belong to the code would imply that

d(v, C" ) + d(v,C**?) < d(v,101010...10) + d(v, 100101 ...01) = 2n.

Assume first that van41 = vans2. Since all the codewords from C \ Yan 42
belong to C’(()2"+2), we know by (2) that d(v,CP"“)) = n+1, and d(v,
C},”"“)) =2n+2-d(v, C§2"+2)) = n + 1; consequently d(v,C) =n+ 1.

Assume now that vap1 = 0 and vang2 = 1. Then d(v, C£2"+Z)) =n and
d(v, C((,Z"+2)) = 2n+2—d(v, CP"“)) = n+2. But then the vector v’ obtained
by changing the last 1 to 0 in v satisfies the conditions d(v’, C£2"+2)) =n+1
and d(v',C((JZ""'z)) = n+ 1, and therefore d(v',C) = n + 1. The last case
Vana1 = 1 and vapng2 =0 is similar.

We have shown that in all cases there exists a vector (v or v'), which is
doubled and has distance at least n + 1 to all the codewords in C.

Complementing v or v’ yields a doubled vector v* = (W, o), Vg1
vry) € IF2"+2 guch that d(v*,c) < n+1lforallce C. In particular, for

allT, d(v (2(C5)[00)) < m + 1, which implies (e}, o, .., v, 1), 2(C;)) <
n+1. Let v/ = (vf,v4,...,v}). The structure of z(C;) shows that there
exists i € {1,2,...,n} such that z3;_; = 22 and d((v¥,v}), (z2i-1, 7)) = 0.
This means that the truth assignment defined by v” satisfies the clause C:
if z9i_1 = z9; = v/ = 1 (respectively, 0), then the variable z; is set true
(respectively, false) and z; (respectively, Z;) belongs to C;. Therefore F is
satisfied.

Together with co-NORM1€ENP, this shows that co-NORM1 is NP-complete
or, equivalently, that NORML1 is co-NP-complete. o
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3 The Linear Case
Theorem 3 The problem NORM2 is Ily-complete.

Proof. First we prove that the complementary problem (lower bounding the
minimum norm) is in co-II3. Roughly speaking, a problem is in co-Ils if it is
solvable in polynomial time by a nondeterministic algorithm with access to
an oracle providing single-step solutions to some problem in NP. To this end,
we choose the Linear Decoding {LD) problem: given a linear code, a vector
v and an integer p, is there a codeword at distance at most p from v 7 Now,
given a guess consisting of n vectors x1,xz,...,Xn, of length n, we have to
check that the n sums d(x;, C((,'))+d (%, C'y)) are all greater than w. This can
be done polynomially in n, with the help of an oracle solving LD in one step.

Next, to NORM2 we reduce the following problem, which is ITz-complete.
We use the same matrix H as in [7).

NAME: Y3-3-dimensional matching (¥3-3-DM)

INSTANCE: Two disjoint subsets M; and My of X; x X3 x X3, where
X1,X5 and X3 are three disjoint sets of the same cardinality

QUESTION: Is it true that V.5; C M;,35; C Ms, such that S, U S is
a matching?

A matching S is a subset of M) U M3 with |X;| elements such that no two
triples in § agree in any coordinate. Notice that we can assume, without loss
of generality, that every element of X; U X5 U X3 is contained in at least one
triple in M) U M3 (otherwise, the answer is trivially NO).

Starting from any instance of ¥3-3-DM, we construct, in polynomial time,
an instance of NORM2 in such a way that the positive and negative instances
correspond in ¥3-3-DM and NORM2. _

Let My, M2, X1, X2, X3 be an instance of V3-3-DM. Let M = M; U M,
(so that |M| = |My]| + |M2]), p = |Xi|, and X; = {zi1,2i2,..., @ip} for
1=1,2,3. Let w=2p+1 and

a=| o]

be a (binary) matrix of dimensions (3p+|M;|} x 8] M|, where H; and H; have
dimensions 3p x 8|M| and |M;| x 8| M|, respectively. If ¢t = (214,224, 23,k)
belongs to M, then we let H; contain one column, I—Itl(o), with exactly three
1’s in the positions corresponding to z;;,z3; and z3x, and seven columns,
HO 5@, . =, obtained from H{® by replacing 1’s by 0’s in all
possible ways. So each triple t € M is associated with eight columns in H.
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Each row in Hj corresponds to a triple in M7, with 1’s in the eight columns
associated with this triple and 0’s elsewhere.

Notice that the assumption that every element of X; UX2UX3 is contained
in at least one triple in M guarantees that the matrix H is of full rank.

This construction is polynomial in the size of the instance of ¥3-3-DM. We
now have to show that ¥S; € M;,3Ss C Ms, such that S; U Sy is a matching,
if and only if the above described matrix H is the parity check matrix of a
code ¢ with minimum norm at most w.

First suppose that for all Sy C Mj, there exists Sy C M, such that
S; U S, is a matching. Let y be any vector of length 3p + |[M1]. The last
|M3] coordinates of y correspond to the triples in M) and the 1’s in these
locations select a subset Si of M;. Choose Sa C Ma, such that S = S1 U S
is a matching. Let y’ be the vector of length 3p obtained from y by taking
its first 3p components. Let * stand for the componentwise product. Because

Yoies Htl(o) is the all-one vector of length 3p, we get: y’ = (ZtES Htl(o)) ¥y =

D tes (Hg(o) +y')). Since Htl(o) xy = Htl('” for some j between 0 and 7, this
means that y' is the sum of [S| = p columns of Hy. But the way H was
constructed and S; was chosen from y also shows that the sum of these same
p columns of H is equal to y, e, y = Hx”, with wi(x) = p. Since y
was arbitrary, we obtain, by the characterization of the covering radius of a
linear code in terms of its parity check matrix (see, e.g. [2, Th. 2.1.9]), that
R(C) <p-

Now let us consider the minimum distance of C. The first eight columns
of H, corresponding to the first triple in M, consist of the four rows

111010080
11010100
10110010
a a a a a ¢ a a

(where a = 1 or 0 according to the membership of the triple to M;), together
with all-zero rows — in a certain order, specified by the triple. Anyway, the
sum of the first, fifth, sixth and seventh columns is zero, and therefore C has
minimum distance at most four. We know that every such code is normal,
i.e., if its covering radius is R, then its minimum norm is at most 2R+1
(see, e.g., [2, Th. 4.2.2]). Here, since C has covering radius at most p, it has
minimum norm at most 2p + 1(= w).

Conversely, assume that C' has minimum norm at most 2p + 1. Then its
covering radius is at most p,ie., forally € Ing 'HM‘], there exists x € IFgIM|,
such that Hx? = y and wt(x) < p. For any set S; C My, let y be the vector
with 1’s in the first 3p coordinates and with 1’s in those coordinates among the
last | M| that correspond to triples in S1. Then H;xT is the all-one vector of
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length 3p and is the sum of at most p columns of Hy, each column containing
at most three 1’s. Thus, H;xT is the sum of exactly p columns of H;, each
column containing exactly three 1’s. So Hx” is the sum of p columns H*(®)
of H and these p columns select a matching S. Since this sum has 1’s in just
those positions among the last |M;| that correspond to triples in S, it follows
that the triples in M, that are contained in S are just those in S;. Therefore
§ = 51 US,, where Sz C M3. Thus the ¥3-3-dimensional matching property
holds.

This, together with NORM2¢ II, shows that NORM2 is II;-complete. O
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Abstract

Special components of perfect binary codes are investigated. We call such compo-
nents i-components. The existence of maximal cardinality nonisomorphic i-components
of different perfect codes of length n for all n = 2¥ — 1,k > 3, is proved. A class of
perfect codes of length n with nonextremal cardinality i-components is constructed for
all admissible n > 7.

1 Introduction

Let C be a single-error correcting perfect binary code with distance 3

(briefly a perfect code) and M be a subset of C. Exchanging the bit in the ’th coordinate
of all vectors of M with the opposite bit we obtain a new set, denoted by M @& i. We
identify with ¢ the vector having an one in the i’th coordinate and zeroes elsewhere. If
C'=(C\ M)U (M @i) is a perfect code, we call the set M an i-component of the code C
and say that C’ is obtained from C by switching of an i-component M. An i-component is
minimal if it cannot be subdivided into smaller i-components. We omit the word minimal
because we consider below only minimal i-components.

It is known [3, 4] that upper and lower bounds on the number m of i-components of an
arbitrary perfect code of length n, n = 2F — 1, are given by

2< m<23/(n). (1)

Both of these bounds can be achieved, see [1, 3, 4]. The cardinality of the minimal -
components can vary from 2(*~1/2 t0 27~1 /(n). A perfect code of length n with i-components
of different structures and cardinalities was presented in [5] for all admissible n > 7.

We prove that there exist maximal cardinality nonisomorphic s-components of different
perfect codes of length n for all n = 2% — 1,k > 3. We construct a class of nonextremal
cardinality i-components of perfect codes of length n for every such n. Constructions are
given by using simultaneously the switching [1]

and the concatenation [2] constructions of perfect codes.

*This research was supported by the Russian Foundation for Basic Research under grant 97-01-01104
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2 Construction

We further identify a vector z = (Z1, . .. ,Tn) € E™ with its block presentation (i1, ...,4) of
all those positions of coordinates of vector z, which equaled to 1.
Consider the Hamming code H™ of length n given by Vasil’ev construction [1]

H={(0,0®B,|e)) : a € E®V2 g e H-D/2) (2)

where |a| = a1 -+ - 0a_1yj2 (mod 2) for o = (au, ..., n-1)2) and H(™=1)/2 be the Hamming
code of length (n—1)/2=2F -1,k > 2.

According to Glagolev’s lemma, see in [6], for any binary linear code of length n, cardi-
nality % and distance d there exists a binary linear code with the same parameters and a
basis among codewords of weight d. Hamming codes are unique up to equivalence, therefore
there exists a basis of the Hamming code among codewords of weight 3.

We construct such a basis for the Hamming code by induction. If £ = 2 the Hamming code
H3 is generated by codeword (1,2,3). Let V, = {(4,5,k)} be a basis of the Hamming code
H®, |V,| = n—log(nl). Let Vim =VaU{(s,n,2n):5=1,..., n}. According to (2) the
vector (s, n, 2n) belongs to H**, s =1,...,n,and V;, C H?_ Therefore |Van1| = 2n—log(nl)
and the set Vs, is a basis of weight 3 codewords of the Hamming code H?". We have then,

Proposition 1. There ezists o basis of weight 3 codewords of the Hamming code of length
n for anyn=2¥—1,k > 2.

Proposition 2. There ezist Hamming codes HY' and Hy of lengthn, n = 2% -1,k > 3, with
basis intersected ezactly by one codeword.

Proposition 3. (see [7]) There exist Hamming codes H and HE of lengthn,n=2F-1,k >
3, with nonintersected basis.

Consider now a concatenation construction of perfect codes given in [2]. Let Co,Cy,. . .,
C,, and C},C:,...,C! be any partitions of the vector space E™ into perfect codes (construc-
tions of nontrivial partitions of E™ can be found in [2]). Let ¢ be a permutation on the set
{0,1,...,n}. Then the code

™ = {(z,y,lyl) : © € Ci,y € Cpzypi = 0,1,...,m} (3)

is a perfect code of length 2n.

Let H™ and H} be Hamming codes given above and ¢ be an identity permutation. Using
for the concatenation construction (3) partitions of E™ into cosets HY @ i and Hj @ i of
Hamming codes H} and HJ respectively, 1 =0,1,...,n, we obtain the perfect code, denote
it by K2 In our case HP is not equal to HY then the code K*" is not a linear code, see
(8, 2.

Using for the same construction (3) cosets Hy @ ¢ and H} © ¢ of Hamming codes HY
and Hf respectively, i = 0,1,...,n, we obtain another nonlinear perfect code of length 2n.
Denote it by R?", see [7].
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Theorem 1. Every perfect code K* and R™ is partitioned into two (2n)-components of
mazimal cardinality forn=2F -1,k > 3.

A mapping 9 between two perfect codes C' and C’ such that d(z,y) = d(¢(z), ¥ (y)) for
all codewords z,y € C is called an isometry from C to C'.
Comparing structures of perfect codes K?* and R?*® we prove Theorem 2.

Theorem 2. There exist mazimal cardinality nonisometric i-components of different perfect
codes of length n for alln =2F — 1,k > 3.

iFrom Theorem 2 one can obtain Theorem 3.

Theorem 3. There exist mazrimal cardinality nonisomophic i-components of different perfect
codes of length n for alln = 2F — 1,k > 3.

Let H" /20 H /% = HY, where H{"™/? and H{" /% are Hamming codes of length
(n—1)/2,n > 7, and H'is the Hamming code of length t,t = 2°—1,5 = 2,...,log(nl)/2—1.

Using the construction (3) for codes Hé"_l)/ ? and H{" V® we construct a class of perfect
codes of length n with nonextremal cardinality i-components for all n = 25 — 1, % > 3.

Theorem 4. There ezists a perfect code of length n with minimal i-components of cardinality
(t1)2"7t/(nl) for everyn=2¥— 1,k >3 and t = 2° — 1, where s = 2,...,log(n1)/2 — 1.

However, the question of enumerating all possible sizes of minimal i-components of perfect
binary codes remains open.
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Permutation groups of error-correcting codes

Nicolas Sendrier* Gintaras Skersys!

Introduction

t

The problem of finding the automorphism (or permutation) group of a code
(and an isomorphism (or permutation) between two equivalent codes) is difficult
(see [PRO7]). An algorithm was developed by J. Leon to address this problem
(see [Leo82], [Leo84] [Leo91], [Leo92], [Leo97]). However, in order to find the
automorphism group Aut(C) of a linear code C, this algorithm must first compute
a set W of vectors invariant under the action of Aut(C) which is “reasonably
small” but which “contains enough structure” ([Leo82], [Le092]). Often it will be
the set of minimal weight vectors of C' or of its dual. Therefore the algorithm of
Leon is limited to the codes for which one can “easily” find such a set W (for
example, in binary case to the codes of length up to 50-60 or dimension up to
25-30 — with few exceptions).

We present here an algorithm for finding the permutation group for some other
codes. Our algorithm is limited by the size of the hull of a code (the intersection
of a code with its dual), for we have to calculate its weight enumerator. The
hull of almost all linear code is small (see the note in the section 2.4), therefore,
theoretically, our algorithm can find the permutation group of almost all linear
codes. In practice we can deal with codes of length as high as a few thousands
as long as the hull has dimension less than about 25. Unfortunately, in some
important families of linear codes (for instance cyclic codes) many codes have a
big hull, so our algorithm is not applicable to them.

We begin by several notations.

1. For any finite set E, we denote |E| the cardinality of E.

2. We denote by F, the finite field with g elements.

3. We denote by € the finite set used to index the coordinates of a given code
C. We let n denote |Q] (the length of C).

4. For any integer k > 0, we denote I = {1,... ,k}.

*Projet CODES, INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay
CEDEX, FRANCE. E-mail: Nicolas.Sendrier@inria.fr
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5. Sym(£2) denotes the symmetﬁc group on £.
In this paper codes will be over the finite field ¥,.

Definition 1 e We call two codes C and C' equivalent if they are obtained
one from another by the permutation of the support, i.e. if exists such a
permutation o € Sym(Q) that C' = C°, where C° = {(z,,-1)ien | (Zi)ica €
C}.

e The permutation group of a code C, denoted by Perm(C), is the subgroup
of all the elements o of Sym(§Y) such that C° =C.

The most general form of Leon’s algorithm (see [Leo91], [Leo97]) computes a
subset K of Sym(§)) described by a property P — ie. g+ P(g) is a boolean-
valued function on Sym(€) such that P(g) is true if and only if g € K — by
use of the so-called elementary refinement processes, related to this property (see
Def 4).

The main difficulty lies precisely in the choice of these refinements, and this
is where our algorithm differs.

For a given code C we will denote A¢ the property such that Ac(g) holds
exactly when g is in the permutation group of C.

1 Partitions, refinements and backtrack search

In this section we will define the elementary P-refinement process and we will
explain its significance in the backtrack search method used in Leon’s algorithm.

1.1 Partitions

We must start with a few notations and definitions of the partitions ([McK78],
[Leo91]).

Definition 2 A partition of Q is a collection II of disjoint non-empty subsets of
QO whose union is ). The elements of I are called its cells. An ordered partition
of Q is a sequence (IIy, My, ..., ) for which {113, 1y, ..., IIx} is a partition. The
set of all ordered partitions of Q will be denoted by Partn(S).

If I1 is a partition (ordered or not), the number of cells of I is denoted by
\TI|. II is called discrete if [IT]| = n. If |IT|+1 <4 < n, II; will denote the empty
set.

We will need to compare the ordered partitions. For this we define an ordering.

Definition 3 If II = (II;,I,...,1x) and & = (51,%,...,5n) are ordered
partitions, we define II < X to mean
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1. |} =[x,
2. Hi g Ez fO’f' ] < IEI, and
3. II;, i > |X|, is contained in some cell of X.

IfII < 3 and I1 # X, we write II < X and say that I1 is finer than X.

1.2 Refinements

If G is a permutation group, then Gp will denote {g € G | P(g)}.

The purpose of Leon’s algorithm is to find a strong generating set of Sym(Q)p
— a strong generating set is a particular set of generators of a group of permuta-
tions, introduced by Sims [Sim71a], [Sim71b]. This set will be obtained by means
of the elementary P-refinement processes and by a programming technique called
backtrack search.

In practice, the solutions to our problem can be represented by a tree. The
nodes of this tree are labeled by pairs of ordered partitions. The root of the tree
is labeled by ((€), (Q2)), where (£2) is the ordered partition with one cell. As we
progress in the tree the partitions become finer and finer, in particular by use
of the elementary P-refinement processes, until we reach the leaves labeled by
(II,I1%) with II (and thus IT?) discrete and g € Sym(Q)p (i.e. there is exactly
one leave for each element of Sym(Q2)p, and we may recover this element from
the pair of partitions (II,I17)).

The tree is searched by the backtrack search method, and pruned by the
properties of the strong generating set. A

The searched tree may contain useless nodes, depending on the “power” of
the elementary P-refinement processes.

We give the formal definition of an elementary P-refinement process.

Definition 4 [Leo91, Def.8] If P is a property, an elementary P-refinement
process € on G is a pair (€., €r) of mappings of Partn(Q) into Partn(Q) such
that the following hold for every Il and % in Partn(Q):

(a) €. (IT) < II and Ex(II) < II.

(b) |€L(TD)] < |TT|+ 1 and |Ex(TD)] < |TT| + 1.

(c) If g € Gp and if II? = X, then & (II)? = Er(X).

Note [Leo91, p.542] The subscripts “L” and “R” are formal symbols chosen
to suggest left and right, corresponding to the appearance of & _and &g on the
left side and the right side, respectively, of the equation in (c) above. Note that
(a) and (b) imply that either &,(IT) = IT or |&,(IT)| = |TI| + 1 for z € {L,R};
that is, each component of an elementary P-refinement process either leaves II
unchanged or splits exactly one of its cells.
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An elementary P-refinement process is a pair of mappings; in each node of
the search tree, &_ is applied to the left partition and &g to the right partition.
But in our case (as we try to calculate the permutation group) it is simpler,
any elementary P-refinement process may be expressed as a single mapping of
Partn(2) into itself.

Definition 5 [Leo91, Def.10] An elementary P-refinement process ¢ = (€., Cg)
is symmetric if € = €g.

One result from [Leo91, Lem.6] :

Lemma 1 If Gp is a subgroup of G, then any elementary P-refinement process
8 symmetric.

In our case G = Sym(Q), P = Ac for a given code C and Gp = Perm(C).
Thus, any elementary Ac-refinement process is symmetric.

Definition 6 [Leo91, Def.11] If € = (€., &) is a symmetric elementary P-
refinement process, we will write €(IT) in place of €,(II),z=L or R. (Essentially
we are treating € as a mapping of Partn(Q) into itself, rather than a 2-tuple
whose components are such mappings.)

2 Signatures

2.1 Definitions

We begin by reminding some definitions.

Definition 7 Let C be a code and let J be a subset of Q. The code C punctured
in J, denoted Cy, consists of all codewords of C where the coordinates indezed by
J are replaced by zeroes, i.e.

Cr = {(z)icq | (@)ieq € C, where z; denotes z;, if i ¢ J, and 0 else }.

Note that this definition is different from usual definition of punctured code (for
example, see [MS78, Ch.1.§9.]). In our case C; remains in the same space Fy' as
C.

We will denote C; & Cy.

Definition 8 [Sen9d7a] A signature S over a set F' maps a code C and an element
i of Q into an element of F' and is such that for all permutations o on Q, 5(C,1) =
S(C7,19).

Signature associate a given code and each coordinate of its support with an
element of F. This allows to differentiate the coordinates of a given code. See
[Sen97a] for how to differentiate further the coordinates and for other properties
of signatures.
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2.2 Generalized signature

Let C be a code of length n, let S be a signature over a set E, let IT be an ordered
partition of €2, let L be a subset of I, and let ¢ € ().
We define

TS,L(H, C,Z) ZS(CU-ELH;‘”’:)' (].)

J

We remark one property of Tsy.

Lemma 2
TS,L(HU, C’, ia) = TS,L(H7 C, 'I,) foralo e Sym(Q)
Mappings that satisfy the lemma 2 will be called generalized signatures.

Definition 9 Let C be a code, let I1 be an ordered partition of , let E be a set
and let 1 € 2. A mapping R which associates I1,C and i to an element of E is
called generalized signature if

R(II°, C°,i°) = R(TI, C, 4) for all o € Sym(S).

Like a signature, a generalized signature also differentiates the coordinates of a
given code C, but it depends yet on a third argument — partition.

When we have some generalized signatures, we can construct other generalized
signatures in the following manner.

Proposition 1 Let P and Q be generalized ‘signatures. Then P+, defined by
PL(IL, C,i) = P(XL,C,4), and P x Q, defined by P x Q(II,C,1) = (P(IL, C, 1),
Q(II, C, 1)), are generalized signatures.

Corollary 1 IfR is a generalized signature, then R © R x R s also a general-

1zed signature.

We hope that R will be able to better differentiate the coordinates of a given code
than R.

2.3 Signature-based refinements

By means of the generalized signature we will define our elementary Ac-refine-
ment processes. But before we give one useful notation (from [Leo91, Def.15] and
[Leo97, Def.6]). To describe the action of a symmetric elementary P-refinement
process on a partition, it suffices to precise which cell is split and which elements
are moved to the new cell.

f®=(d,...,P) € Partn(Q), i € I, and " C §, then & p(P) is defined by

£r(®) = (@1,...,9;\T,...,8,® NT) providedi <kand  C &; N C &;,
HIVEITl @ otherwise.

Now we define our elementary .Aq-refinement process.
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Proposition 2 Let C be a code of length n, let I1 € Partn(Q), let i € I, let R
be a generalized signature over a set E and lete € E. The mapping QcRr,e 0f
Partn(Q) into Partn(Q), defined by

Qe Rrie(I) = & o(I1), where @ = {j € Q| R(IL,C,j) =e},

is an elementary Ac-refinement process.

2.4 Hull and related signature

We saw that one may construct an elementary Acg-refinement process from a
generalized signature, and a generalized signature from a signature (see (1)).
Now we will present one good signature that we use in our algorithm.

Definition 10 The hull of a linear code C is defined to be its intersection with
its dual. We will denote H(C) =CNC*.

Let W(C) denote the weight enumerator of C. In [Sen97a] Sendrier propose
the signature

S : (C,1) = (W(H(C))), W(H((C):))) (2)

(we puncture C and C* in i and compute the weight enumerators of the hulls of
punctured codes).

Note [Sen97b] The average dimension of the hull of a g-ary [n, k] code tends to a
small positive constant when the size of the code goes to infinity. For example, for
binary codes this constant is equal to 0.7645, for ternary 0.4041, for quaternary
0.2794, etc.

So the weight enumerator of the hull and the signature S are (rather) easy to
compute.

Let’s denote Q¢,1ie = @o/Ts oiser Therefore, we use Leon’s algorithm with the
set Q¢ of elementary Ac-refinement processes, where £ ¢ is defined by Q¢ =
{Qeorie| LCIn i €1y, €€ W2} (W, denotes the set of weight enumerators
of all codes of length n. Note that W, is a finite set).

2.5 Final notes

And now two final notes.

First, we speak about the permutation group of a code, and not about the
automorphism group. If we define codes C and C' to be eguivalent (in general
sense) [MS78, p.40] when there exist a permutation o on {2 and a sequence
(7:)icq of n permutations on F, such that C' = ¢(C) where ¢ : (Zi)ien —
(@ge-1)"t), o then the automorphism group of C consists of all such functions
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¢ with C = ¢(C). To prove that S, defined in (2), is a signature, we use the fact
that if C and C' are equivalent, then H(C) and H(C") are also equivalent. But in
general case this does not hold, i.e. if C' and C' are equivalent (in general sense),
then H(C) and H(C’) are not necessarily equivalent (in general sense). Thus
in this case we cannot define a signature using the hull, consequently we cannot
define an elementary Ac-refinement process Q¢ 1. and use Leon’s algorithm.
That’s why we can use the hull when we compute the permutation group of a
code and not the automorphism group.

Second, we can prove that if C' and C’ are two linear codes, then Qc,c' rjie =
(QcRriie:s Qe ryie) is an elementary Ag, c-refinement process, where Accr is a
property such that Accr(g) holds exactly when C' = C9. Thus we can find a
permutation between two equivalent codes or we can prove that two codes are
not equivalent. The procedure is analogous to the one described above, and uses
a version of Leon’s algorithm described in [Leo91, Fig.8].

3 Comparison with Leon’s algorithm

What do we gain in comparison with the Leon’s original algorithm ? Leon’s algo-
rithm for finding the automorphism group of a given code C uses the elementary
refinement processes for finding the automorphism group of a matrix. It takes a
set W of vectors invariant under the action of Aut(C) and treats it as a matrix.
W may be the set of all codewords of C, C* or H(C), the set of minimum weight
(or constant weight) codewords of C, C+ or H(C), the union of some of these
sets, etc. But W must be “reasonably small” (otherwise W is too large as a
matrix) and must “represent well” the code C, i.e. the automorphism group of
W must not be much bigger than Aut(C) (otherwise the search tree to process,
defined by W, will be much larger than the solution tree).

In practice, when such a set W is available, Leon’s algorithm is a little faster
than ours. But there exist many cases when such W is not available (thus Leon’s
algorithm cannot work), and our algorithm work. For instance, when C and C*
are too large to calculate the set of minimum weight codewords, and H(C) is
too small. And it occurs very often, e.g. random linear codes have, on average,
a small hull (see note in the section 2.4), all cyclic codes of length n = ¢™ + 1,
m =1,2,... have the hull reduced to {0}, etc.

4 Running time

Binary case of our algorithm was fully implemented in language C. We present an
example of the running time of our algorithm. We try all binary non degenerate
narrow sense BCH codes of length n = 2™ + 1, m = 4,5,...,10,11. In table 1,
we give for all m the number of such codes, the minimal, average and maximal
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Number | Running time (in CPU sec)

m n | of codes | minimal | average | maximal
4 17 1 0.016 0.016 0.016
5 33 2 0.027 0.028 0.029
6 65 4 0.055 0.060 0.064
7| 129 8 0.121 0.150 0.190
8| 257 15 0.253 0.400 0.586
9| 513 28 0.757 1.468 2.170
10 | 1025 50 2.619 5.795 10.152
11 | 2049 92 11.878 | 20.894 | 31.446

Table 1: The running time

running time of our algorithm on DEC Alpha EV56 500/400 (400 MHz).
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Recognition of a Binary Linear Code as a
Vector-Subspace

Antoine Valembois *#

1 Introduction

This paper deals with the following situation: someone intercepts a noisy binary
signal and wants to understand it. He knows the message has been encoded with
a linear code. He also knows the length and the dimension of this code. He
even manages to be synchronized with the (erroneous) codewords. But he just
doesn’t know which code has been used and wants to recognize the most likely
one (given the signal), not as an element of a well studied family of decodable
codes, but just as a vector subspace.

There are not many publications dealing with this problem. One can find
sketches of solutions for the convolutional codes [Pla96, Fil97] and try to adapt
it to the block codes. But this paper may fill the gap in the literature dealing
with this specific problem.

This is only an abstract of the full paper [Val99] with complete proofs, which
will be soon availiable.

First we will formalize this problem and call it the "Maximum Likelihood
Code Recognition” problem. It will lead us to another one, the *Rank Reduc-
tion” problem, which we prove to be NP-complete. Then we give a general
solution to this "Rank Reduction” problem by designing an algorithm that will
retrieve the dual code. We then evaluate the computation cost of the latter.
Finally we will give an example of implementation and the limits above which
the problem becomes intractable.

2 Presentation of the problem

2.1 The Maximum Likelihood Code Recognition Problem
Let (X;)i=1,...,w be the N received words of length n.

*INRIA, Projet CODES, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay
Cedex, France (e-mail: antoine.valembois@inria.fr)
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For every linear code C of length n, let Pr(C|X) denote the probability that
C is the linear code from which the received words (X;);=1,..., ¥ have stemmed
from.

We will calculate this probability under the assumptions that:

e All the vector-subspaces are a priori equally likely to be used,
e all the codewords are a priori equally likely to be transmitted,

e the binary channel is memoryless, symmetric and of bit error rate (b.e.r.)
T <1/2.

Let wg(.) denote the Hamming weight function, d(.,.) the Hamming distance
and for every code C, d(z, C) = min.ec(d(z, c)) the Hamming distance of a word
z to the code C, we prove [Val99] that:

. N P d(X;:,c)
e - B9 i)™

i=1 \eceC
) TiL d(X:.0)

~

Pr(C) o —dim(c)N v _T
Pr(X) A

(the term 9-dim(C)N i the probability related to the messages before encoding).

The problem of Maximum Likelihood Code Recognition (MLCR) consists in
finding the vector-subspace C for which the probability Pr(C|X) is maximum.

Thus, when the above approximation is valid (which is the case for "nor-
mal” values of 7), C has to be such that Ef;l d(X;,C) + W@-:_—l)dim(C’) is
minimum.

If the dimension dim(C) = k is known, we will then have to reduce to k the
rank of the matrix X, by changing as few of its coefficients as possible. This is
our main problem which is described specifically in the following section.

2.2 Rank Reduction

Let F5 be the field with two elements, and let M, .(F;) denote the set of r x ¢
matrices over Fs.

The Hamming weight wg (M) of a matrix M will denote the number of its
coefficients equal to 1. Its rank will be written rk(M).

Let N and n be two positive integers, and X a matriz in My n(Fz2).
Let k < rk(X) be another positive integer. The Rank Reduction
problem (RR) may be formulated this way:

RR(X,k): Find a matriz E* of minimum weight in My n(F2) such
that Tk(X + E*) = k.

if w is an integer, the associated decision problem (DRR) is:

rk(X+E%)=k ,

DRR(X, k,w):is there a matriz E* € My »(F2) such that{ wa(B*) < w
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2.3 Complexity

The DRR problem is clearly NP since, if the answer to DRR(X, k,w) is true,
given a solution E* (as a certificate), it requires only polynomial time to check
that k(X + E*) = k and that wg(E*) < w.

We will prove here that DRR is NP-complete by using the NP-completeness
[BMvT78] of the Complete-Decoding decision problem (DCD):

Letn and k be two positive integers, k < n, G o matriz in Mz n(F2).
Let x be a vector from F3, and w an integer.

T+ e* € span(G) ,

DCD(G, z,w): is there a vector e* € F} such that { wir(e*) < w

(with span(G) denoting the subspace generated by G'’s rows)

Theorem 1 Let n and k be two positive integers, k < n. Let G be a matriz in
M. n(F2). Let z be a vector from F%, and w an integer. Let X be the matriz
from Mpi1n(F2) whose first k rows are those of G, and whose last one is x.
Then the answer to DCD(G,z,w) is the same as the answer to DRR(X,k,w).
Proof: Let’s assume that the answer to DRR(X, k,w) is true.

Let (Gy,---,Gk) be the rows of G, and E* be a matrix such that:

EX+E" =k .
{ :D;E(E*) <L with rows (Ef,... ’EI:+1)-

Since 7k(X + E*) = k, there exists (A1, , A\¢) € F% such that.

k
g+ Efy =Y M(Gi+EY).
i=1
Hence 7+ Y1y MBf + By (= Ty MG:) € spen(G).

But wgy (X5, MEF + Ef.)) £ wp(E*) £ w, therefore the answer to
DCD(G, z,w) is true.

Reciprocally if the answer to DRR(X, k,w) is false, we know that:
VE € Mri1a(F2) rk(X+E)=k=>wp(E)>w

Let e € F? be such that z + e € span(G), and let E € Mpy41,.(F2) be
the matrix whose first k¥ rows are zero vectors and whose last one is e.
We have k(X + E) = k hence wy(e) = wg(E) > w. This proves that
the answer to DCD(G, z,w) is false. O

We can then affirm that DCD is not "harder” than DRR and, since DCD is
NP-complete [BMvT78] and DRR NP, that DRR is NP-complete.
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3 A method to solve the Maximum Likelihood
Code Recognition Problem in any case

In most cases, a recognition algorithm has to choose between all possible solu-
tions by applying a criterion on certain properties of these solutions.

To design such an algorithm, we have to find some significant properties
(cf. §3.1), then to find a criterion to apply on these properties which is very
unlikely to be satisfied by a wrong solution (cf. §3.2 and §3.3), and, on the
contrary, very likely to be satisfied by the good solution (cf. §3.4).

3.1 Presentation of the method

The received matrix X hides the structure of a k-dimensional subspace, the
original code C, by addition of a sparse matrix E which is the transmission
error and whose density is to be equal to the b.e.r. 7.

To retrieve the k-dimensional subspace, we will use the fact that the parity
relationship between the codewords symbols are likely to be somehow still ap-
parent: Actually if H is a parity check matrix of the original code, then HX &
is equal to HE* whose low density (< 1/2) may be deduced from E’s one.

Let = and h be rows of X and H respectively, the scalar product < h,z >
is a coefficient of X H?, it is equal to 1 if and only if z have an odd number of
transmission errors inside h’s support, which happens with probability [Val99]

Pr(< b,z >=1h€Ct) = S

1—(1-27)wsh)
: (1)

Hwr(r)-1)/2]
o (’wH(h)) T2i+1(1 _ T)wH(h)-2i—l

i=0

Hence, we can expect hX t to have a weight close to 1—'(1—_127MN , which,
for large N, would be very unlikely if X and h were not correlated (with fixed
n and a < 1/2, the probability that a random [N, n]-code comprises a word of
weight less than aN tends to zero when V tends to infinity).

Our goal will then be to find n—k independent vectors in span(X?) satisfying
some low weight criteria (to be defined), and, if yX* is such a vector, to assume
that y belongs to C*. This will allow us to reconstruct C.

3.2 False Alarm Probability

We will call false alarm the event of one (or more) of the n — k found vectors
hi,... ,hn—p not being in C'+, which would lead to a wrong decision about C.

The low weight criterion must be designed so that, if y is not in C*,then y X!
is very unlikely to satisfy it, in order to minimize the false alarm probability Py,.
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Let’s calculate the latter in terms of the weights of h; and B; Xt (i = 1,... ,n—k):

n—k
Ppo =1— ] Pr(hi € C*|(wr(hiX?) and wg(hs)))

i=1
With the approximation that the weight distributions of C+ and of span(X?)
are binomial, we find [Val99] that:
Pr(y € C*|{(wr(y) = wh and wr(yX?) = w,)) ~
k_ -1
(1s -3
(= = 2oL+ (1= 2y

which leads to:

Pfazl—

n~k 2k -1 -1
1T (++ == srpemmayestsoen 4 (o ewy=erties)

(2)

Remark 1 The False Alarm Probability we are talking about is a formal object;
the real failure probability is directly linked to the implementation and to the
context, but this approzimation will allow us to define a pertinent criterion.

3.3 A Criterion that will make the False Alarm Probabil-
ity close to zero

Definition 1 For all € > 0, we define Ty . as the function:

Nlog(l+ (1 -27)¥) +loge — log(n — k) — log(2*F — 1)
[ log(1+4 (1 —27)¥) —log(1 — (1 —27)v) J

Proposition 1 For all € > 0 we have:
(Vi e{l,...,n—k} wg(h;X*) < TN,,ye(wH(h,»))) = P, <€

Proof: From (2), we can say that:

n—k

p Z 2k 1
oS Ly (1= (1= 2r)wn)an X (1 4 (1 - 2ryen b)) N-wn(hiX)

In other respects, we can prove easily that:

ok 1 < €
(1-(1—-2r)wn)w (14 (1 =27)wr)N-w T n—k

which gives directly the proposition. O

wy < TN,-r,e(wh) s

This suggests that, if we want Py, to be less than a given value €, we should
choose the low weight criterion to be: wy (yX*) < T (wa(y))
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3.4 Detection Probability

We call the detection probability Pg the probability that the code might be
detected, that is the probability that there exists n — k independent words of
C+ satisfying the criterion.

Let PY:7¢(w) denote the probability that a word of C L of weight w satisfies
the criterion:

I

P (w) Pr(ws (yX") € Tw,re(w)l(y € C* and wa(y) =w))

5T ety ()

=0

We then have:

Pier =1— H (1 - H PcN’T,G(wH(h')))

B basis of ¢+ heB

and:

> (H PCN’T"(wH(h))) > Piet > | max (H PCN’T"(wH(h)))

B basis of 0L \h€B B basis of ¢t heB

Tt certainly is very difficult to know exactly the value of one of these three
expressions, but we can say anyway that if a systematic basis of C*+ has a
reasonable probability to satisfy the criterion, then Pg.; must be very close to
1; and since the elements of a systematic basis of C* have an average weight of
k/2, we should have:

PNTe(k[2) % > 1/2 = Py =~ 1

We should then choose N such that PN:"¢(k/2)"* > 1/2 in order to have
a chance to detect the code.

Example 1 n = 128, k = 64, 7 = 2%. We want Py, to be less than 1%.
Figure 1 indicates that in order to have Pyer =~ 1, we should choose N greater
than 2218.

With 7 = 1%, N greater than 560 should be enough; with T = 0.5%, it goes
down to 266; and N = n is OK if 7 < 0.1%.

4 Limits of the Algorithm

In theory, the presented method can solve the problem for all (n, k,7) provided
that we have enough words to put in the matrix X and enough time to run the
algorithm, which will not always be the case.

For given values of the parameters (n,k,7) of the problem, and for a given
upper bound for the False Alarm probability, the algorithm will compute the
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number NNV of needed words, make all the initializations and then start the search
for low weight vectors.

The algorithm has been implemented in language C on a 300 MHz DEC
Alpha computer, using a variant of Stern algorithm [CC98] to search for low
weight vectors in a code; and it appears (but we had already guessed it) that
this step becomes intractable when N and n grow.

4.1 Cost of the Search

The number of words to find to have n — k independent words is in average:

1 3 25 -1 gn—k~1_1

kg Fomk_gt T

n—k+ "Ton-k_9i 7" on—k—1

which we can upperbound by n — k + 2.

An algorithm to find low weight vectors in a code of length N generally
works this way: At each iteration it picks up a set of candidate codewords and
computes their weight. It is characterized by the cost Cj; of an iteration, and
by the probabilities (Ps(w))w=1,...,N that the algorithm calculates the weight of
a given word at a given iteration, if the word is of weight w.

Assuming once again that the weight distribution of C is binomial, the
average number E;; of words we will find at each iteration is [Val99]:

n n TN.f.z(wh)
(wh) PI‘('LUH(hXt) — wvl(h c C.L and wH(h) — ’wh))PS(wu) —
2k
wh=1 wy=1
n\ Tr,re(wn) " v
= ( ) NZ N 1—(1—27)“r \“" (14(1 = 27)» W
Wh 1= =27)"™ 14+(1—27)
whr=1 zk wy=1 (wv) ( 2 ) ( 2 ) Pa(UJu)

And the cost of the search will be in average less than (n — k + 2)Cit/Ei;.

4.2 An implementation

We consider here a variant of the Stern algorithm [CC98]. At each iteration,
it considers a systematic basis of the code, and computes the weight of those
of the (7) sums of 4 basis vectors that are null inside a set of o = loga(#52)
redundancy positions.

The cost of each iteration is [Val99]:

Citzﬁ_%—_"un(g_l) (HE(E_l) (1_ o )+g)

2 2\2 v-n)t1
And we have Py(wy) = 4 &) (M) (V) if4<w, SN-n—o+4,
0 else.

We have improved the algorithm in the following manner: after the com-
putation of N, the algorithm evaluates how much time it will need to run the
search, and, in case this seems impossible, suggests to make some adjustments
on Pfa or Pdet-
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5 Conclusion

There is a newcomer in the class of NP-complete problems. Its applications are
rather obvious (electronic war or any non cooperative context), but to find a
good way to solve it is not.

The solution we have given works with parameters that are commonly used
(cf. Figure 2), but could be insufficient in some case (interleavers, product
codes, concatenated codes may give rise to very long linear code) and should be
extended to non binary codes

The possible adjustment of the False Alarm probability may be very useful
when the algorithm works serially with other recognition algorithms (of mod-
ulation, of ambient space, of length, of dimension, of decodable structure, of
codewords/messages correspondence...) offering the same possibility. Actually
this should give ability to get the global process under control.

A means of recognizing codes with parameter intractable with this method
could be to use soft information; research using this approach are under progress.
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Bounds on the Sizes of Ternary
Weight-Constrained Codes

Mattias Svanstrom*
Dept. of Electrical Engineering,
Linkoping University, SE-581 83 Linkiping, Sweden
Email: mattiasQ@isy.liu.se

Abstract

‘We derive upper and lower bounds on the size of a ternary block code with
the restrictions of constant weight and constant composition. We also present
tables of the best known bounds for these two types of codes.

1 Introduction

Denote the maximal size of a g-ary block code with length » and minimum Hamming
distance d by Ag4(n,d). If every codeword has Hamming weight w, we have a
constant-weight code of weight w and we denote its maximal size by A4(n,d, w). If,
in addition, the number of occurrences of each symbol in the codeword is the same
for all codewords, we have a constant-composition code. Let the composition vector

we = [wo, Wy, ..., We—1]

be a vector containing the number of occurrences of each symbol in a codeword,
where we use subscript ¢ for denoting constant-composition. We denote the maxi-
mal size of a g-ary constant-composition code by A,4(n,d, w,).

By interchanging symbols ¢ and j everywhere they occur in a constant-composition
code, the entries w; and w; in the composition vector are swapped. Because of
this property it is enough to investigate codes in standard form, which we define as
codes with

Wo 2 W1 2 ... 2 We1.

We sometimes mention the weight of a constant-composition code, referring to the

Hamming weight
g—1

w = Zw,-.

i=1

The problem of determining upper and lower bounds on the sizes of binary un-
restricted codes and binary constant-weight codes has been investigated to some

*This work was supported by the Swedish Research Council for Engineering Sciences under
grant 271-97-532.
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extent. An excellent survey of the problem as well as a compilation of tables con-
taining the best known binary bounds has been done by Brouwer et. al. [5].

A table of results on ternary unrestricted codes first appeared in an article by
Vaessens, Aarts and van Lint [13], and recently an updated table of bounds on
As(n, d) was published in [4]. The first table of ternary constant-weight codes can
be found in the thesis by Tarnanen [12]. Further results on ternary constant-weight
and constant-composition codes have come from Fu, Vinck and Shen [6], Bogdanova
(1], [2], Bogdanova and Ocetarova (3] and the author [9], [10] and [11].

2 Tables

Tables 2 and 3 contain the results on lower and upper bounds on Az(n,d, w.) and
Asz(n,d,w) respectively. Each entry in the table is followed by a pair of subscripts
indicating the lower and upper bound used to derive the value. Keys to the in-
dices are presented in Tables 4 and 5. Wherever a dash occurs, a code with the
corresponding parameters can only have one codeword.

Some of the bounds presented by Bogdanova and Ocetarova [3] were found by
exhaustive search. We give explicit proofs of these bounds in case the proofs are
known to us. We have found several new codes, which are presented here. We
also give new descriptions of codes with the same parameters as codes that have
appeared earlier, but with more structure than has previously been indicated.

Remark: The references [2] and [3] contain some unfortunate errors. The most
important correction is that we have established the value A43(8,3, [4,2,2]) = 84,
which is greater than the upper bound stated in {3].

3 Upper Bounds

For binary constant-weight codes, the Johnson bound (7], often turns out to be the
strongest bound. For ternary constant-weight codes, we presented several forms
of the Johnson bounds in [10]. For general g-ary constant-composition codes, the
recursive version of the Johnson bound takes this form:

Theorem 1 (c. f. Theorem 3.14 in [10]) Let w denote the composition vec-
tor of a code with composition vector w. shortened with respect to the symbol i,

i)
wg) = [wo,'wl,-- < Wi—1, Wi — l;wi+1’---:'wq-1]-

The mazimal number of codewords in a g-ary constant-composition code with compo-
sition w, fulfills the inequality

Ag(n,d,we) < l%Aq(n - 1,d, wgf))J

foralli,0<i<qg—1.

Ternary constant-weight codes with d = 2w — 1 were investigated in [11]. We also
have some results on constant-composition codes with d = 2w — 1.
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Theorem 2 The mazximal number ;)f codewords in a ternary constant-composition
code withd=2w—1and w; =1 is

J%mgw—Lm—wmquD=[wfly

Proof: The upper bound follows by application of Theorem 1 with 7 = 1.

We construct a code meeting this bound by taking 0"~%1%~12 as the first codeword.
Shift this tuple cyclically w — 1 steps and take the resulting tuple as the next
codeword. Repeat this until the code contains |n/(w~—1)] codewords. The supports
of two codewords either do not overlap or overlap in exactly one position, in which
one codeword is 1 and the other codeword is 2, thus the minimum distance is
d=2w-—1. |

The codes constructed in the proof of Theorem 2 have the property that, when
considering the order in which the codewords were constructed, codewords following
each other have distance d or d+1, and codewords that do not follow each other have
distance d+1. This observation is useful in the following juxtaposition construction.

Theorem 3 For a code in standard form, if n is even, if w is even and if n >
5w — 10, the mazimal number of codewords in a ternary constant-composition code
withd =2w —1 and wy =2 is

&MJw—Lh—mw—Zm=[wiJ.

Proof: The upper bound follows by application of Theorem 1 with i = 1.

We construct codes meeting this bound with equality as follows. Take the M =
|n/(w—2)| codewords of an (n/2,w—1,[n/2—w/2,w/2—1,1]) code as constructed
in the proof of Theorem 2. Index the codewords by 0 to M —1. By their construction
as cyclic shifts, codewords whose indices differ by one (as well as codewords 1 and
M if w — 2 divides n) have distance w — 1. Codewords whose indices differ by two
or more have distance w. A code with minimum distance 2w — 1 can therefore be
constructed by juxtaposition, while making sure that codewords that differ by w—1
in one half differ by w in the other half.

If M is odd, we juxtapose a codeword with index j and a codeword with index
2j (mod M). In this way, if two codewords have adjacent indices on their left
halves, the indices of their right halves will not be adjacent.

If M is even, we divide the indices into two ordered sets, I; = {0,1,...,(M —1)/2}
and I, = {M/2,M/2+1,...,M — 1}. We take indices 0 to M — 1 in order from
low to high for the left halves. For the right halves, we alternate between taking
indices from I; and I, taking indices from low to high from index group I; and
taking alternately the lowest and the highest index left in group I». The only thing
we need to check is that index M/2 is not chosen immediately before or after index
M/2 and that index M — 1 is not chosen after index 0 or as the last index. By
assumption we have M > 6, so none of these situations occur. |

Theorem 4 The mazimal number of codewords of a ternary (n,d,w) = (6,5,5)
constant-weight code is
A3(6,5,5) = 3.
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Proof: Assume that there exists a (6,5,5) code C with M = 4 codewords. Let
column k contain vo(k) zeros, v1(k) ones and wva(k) twos. We count in two ways

ch ecC ZC2GC d(C1, Cz) to find that

zn: 2vg (k)m (k) + 21)0(]6)1)2(16) + 2u, (k‘)’Uz (k) > M(M - 1)d = 60.
k=1

The only possible distribution of symbols over the columns fulfilling this is to have
[vo(K), v1(K),va(k)] = [2,1,1], [1,2,1] or [1,1,2]. However, this implies that the
codeword matrix contains at least six zeros, whereas it can only contain four. We
have s contradiction and conclude that M < 3. ]

4 Codes from Jacobsthal Matrices

Let p be an odd prime. Consider the Galois field F;,» with elements a1, @2, ..., 0pm
and let S be the set of nonzero square elements S = {a? : a; € Fpm, a; #0}. A
p™ x p™ Jacobsthal matrix @ = (gi;) is defined by

0 ifa,-=a,-,
Qij = 1 ifai—-ajeS,
-1 ifai—ajgéSanda,-;éa,-.

Define the maps f : {—1,0,+1} - {0,1,2} and f, : {-1,0,+1} — {0,1,2} by

-1 —» 0 -1 - 1
fi: 0 = 2 and fa: 0 = 2
+1 = 1, +1 = 0.

Fu, Vinck and Shen [6, Proposition 5.3] state that

™+ 3
A3 (pm,p 2+ 7pm_1) =pm

Let C; be the code we get by applying fi to the rows of Q. It follows by the
properties of Jacobsthal matrices that C) is a ternary constant-composition code,

showing that
m pm + 3 prn -1 pm -1 m
A3 (P ’ 9 1 9 ) 9 al =p.

By interchanging zeros and twos we get the code derived by Fu, Vinck and Shen.
However, we can get more results out of the Jacobsthal matrices.

Let C, be the code we get by applying fz to the rows of the same Jacobsthal matrix.
The code C; U Cs is a constant composition code, showing that

prl [pr—1 pm—1 _
As(p’", 5 ,[pz ,p2 1)) > 2™

This code is optimal at least for p™ in the range covered by the tables. Also, the
code

{le:ceCi}U{2c:ceClu{o1P™}u {020}
is an optimal constant-weight code, showing that

™43
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5 Cyclic Codes -

The codes in Table 1 are used to obtain some of the lower bounds. The codes contain
all cyclic shifts of the orbit representatives, which are given in base-9 notation.

In some cases, sporadic single codewords can be added to the cyclic codes with-
out decreasing the minimum distance. We have A3(8,3,6) > 163 by taking the
cyclic (8,3,6) code and adding the codewords 1344, 3414 and 4134. We also get
A3(8,4,7) > 25 by taking the (8,4,[4,3,1]) code, swapping zeros and twos, and
adding the codeword 1444.

A cyclic code can also be described as a variant of a group code, with the group
generated by a cyclic shift of the coordinates, and multiple generators. Generalizing
this technique, we find that A3(8,3,[4,3,1]) = 56 from the code we get by applying
the permutation group generated by {(23 4 56 7 8),(1 4 2)(5 6 7)} to the tuple
0*132.

The (7,7,(3,2,2]) code with M = 2 and the (8,8,[3,3,2]) code with M = 2 are
trivial to construct (by cyclically shifting Q@0 1w:2w2),

A (10,8,(5,3,2]) code with M = 4 codewords is

1200 1200 01
0120 0120 10
0012 0012 01
2001 2001 10

6 Codes from Unrestricted Codes

In [10] we derived ternary constant-weight codes from ternary unrestricted codes
by taking all codewords having a certain weight. The same technique can also be
used to derive ternary constant-composition codes.

The entries in Table 2 that originate from unrestricted codes are A3(6,4, [2,2,2]) =
15 and A3(9,6,[3,3,3]) = 24 from Hadamard codes, plus a number of codes with
minimum distance 6, which we can derive from the extended Golay code.

In what follows, shortening refers to shortening in the first position. Let C;3 be the
(n,d) = (12,6) Golay code with generator matrix given in [10]. Cj2 has complete
weight enumerator

12
W (z0,21,22) = 282 +21%+2] +22(zng+zgzg+zfz§)+220(z§zfz§+zngzg+zngzg).

The codewords of composition [6,3,3] form a constant-composition code proving
A3(12,6,(6,3,3]) = 220. Let C1; be Ci2 shortened with respect to zeros. Cj; has
complete weight enumerator

W (20,21, 22) = 23" + 11(2528 + 2§28) + 55222823 + 222328) + 110282323,

Select the words of C11 having composition [2,3, 6]. After swapping zeros and twos
to put it in standard form, the resulting code proves A3(11, 6, [6, 3,2]) = 55. Shorten
this code with respect to ones. The resulting code gives us A3(10,6,[6,2,2]) = 15.
Shorten this code with respect to zeros. The code we arrive at shows us that
A3(9,6,[5,2,2)) = 9.
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The codewords of Cy; having composition [5, 3, 3] form a code that proves the value
A3(11,6,[5,3,3]) = 110. Shorten this code with respect to twos. The resulting code
gives us A3(10,6,[5,3,2]) = 30.

Let C3g be Cy; shortened with respect to zeros. Cig has complete weight enumerator
W (20,21, 22) = 28° + 5(25 28 + 2523) + 10(202} 23 + 2028 25) + 502523 23

Select the words of Cyo having composition (1,3,6]. After swapping zeros and twos
to put it in standard form, the resulting code proves A3(10, 6, [6, 3, 1]) = 10. Shorten
this code with respect to zeros. From the resulting code we have A3(9, 6, (5,3,1]) =
6.

The codewords of Cio having composition [4, 3, 3] form a code that proves the value
A3(10,6,[4,3,3]) = 50. Shorten this code with respect to twos. The resulting code
gives us As3(9,6,4,3,2]) = 15. Shorten this code with respect to twos. We get a
code proving As(8,6,[4,3,1]) = 4. By instead shortening the (9,6,[4,3,2]) code
with respect to ones we get a code proving that A3(8,6,[4,2,2]) = 5. Shorten this
code with respect to zeros. The resulting code gives us A3(7,6,(3,2,2]) = 3.

A different construction, based on binary unrestricted codes, is the one that is used
in [8] to find perfect ternary (n,d,w) = (27,3,2" — 1) constant-weight codes with
M = 92"-1 codewords. This construction is based on concatenation of cosets of
binary Hamming codes. Shortened versions of these codes are also either optimal
or very good. In this way, the entries for n = 6,7,8,9 and 10 in Table 3 are obtained.

7 Juxtaposition

We justapose, i. e. put side by side, m copies of the (n,d,w.) = (3,3,[1,1,1]) code
{012,201, 120} to get a (3m,3m, [m, m,m]) code with M = 3 codewords.

We juxtapose two (5,4, [2, 2, 1]) codes to create a code proving A3(10,8,[4,4,2]) = 5.
We also juxtapose a (5,4, [2, 2, 1]) code and a (5, 4, [2, 1, 2]) code to get a code proving
that A3(10,8,[4,3,3]) = 5. We juxtapose a (5,4,[2,2,1]) code and a (3,3,[1,1,1}])
code to get an (8,7, [3,3,2]) code with M = 3. Finally, we juxtapose a (6,5, [3,2,1])
code and a (3,3,[1,1,1]) code to get a (9,8, 4, 3,2]) code with M = 3.

8 Lexicographic Codes

In order to have lower bounds for all entries in the tables, we have extended the
lexicographic searches from [3]. All new codes presented in our tables are lexico-
graphic codes with standard lexicographic ordering of the space but using the seed
giving the best possible lexicographic code. Since only two of these codes are optimal
we present the rest without giving the details. The optimal codes prove A3(6,5,4) =
4 by a lexicographic code with seed 44 and A3(10, 5, [6, 3,1]) = 13 by a lexicographic
code with seed 54, both in base-9 notation. We expect most lexicographic codes to
be beaten by codes with more structure.
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9 Summary

We have derived some new upper bounds and constructed new optimal ternary
constant-composition and constant-weight codes. The ternary Golay code not only
gives us many optimal constant-weight codes but also several optimal constant-
composition codes.
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Table 1: Cyclic Weight-Constrained Codes

Bound | Orbit Representatives

A3(6,3,3,2,1)) =12 | 15, 71

A5(6,3,[2,2,2]) =30 | 48, 84, 125, 167, 172

A5(7,3,[4,2,1]) =21 | 17, 121, 132

45(7,3,(3,3,1]) = 28 | 45, 164, 241, 337

A3(7,3,[3,2,2]) =42 48, 84, 165, 237, 352, 367

43(8,3,5,2,1)) =24 | 15,71, 321

A4(8,3.[4,2,2]) = 84 | 57, 75, 138, 264, 325, 367, 521, 532, 635, 712, 1212
A3(8,3.[3,3,2]) > 96 | 148, 254, 355, 472, 517, 564, 724, 841, 1127, 1152,

A3(10,3,{7,2,1]) = 40

1235, 1365
15, 71, 1021, 1032

A3(6,4,[3,2,1]) =6

A3(7: 41 [31 23 2]) =21
As(8,4,(4,3,1]) =24
A3 (81 4: [45 2: 2]) = 36
A3(8,4,[3,3,2]) = 56

17

55, 264, 372

135, 214, 337

57, 235, 325, 642, 1212

177, 348, 465, 724, 841, 1235, 1422

A3(10,4,[7,2,1]) = 20 | 17, 1061
A3(7,5,3,2,2) =7 | 118
A3(8,5,[4,3,1) =8 | 115
A3(8,5,(3,3,2]) > 16 | 375, 834
45(8,6,(3,3,2) =8 | 542

A35(7,3,3) = 28 17, 68, 121, 132

A3(7a 3’4) 2 56
A3(7,3,5) > 70
As(8,3,4) = 112
A3(8,3,5) > 152

As(8,3,6) > 160

45, 57, 128, 171, 224, 252, 265, 364

145, 187, 274, 355, 377, 424, 538, 572, 675, 768

48, 84, 117, 165, 237, 252, 314, 368, 412, 505, 628,
634, 671, 821, 1212

145, 157, 274, 354, 377, 472, 568, 688, 765, 781, 824,
837, 852, 1128, 1167, 1217, 1265, 1342, 1522

445, 457, 574, 588, 777, 785, 848, 854, 1155, 1174,
1278, 1428, 1472, 1517, 1658, 1684, 2245, 2287, 2375,
2424, 2828

A3(9,3,3) = 48 15, 67, 308, 311, 632, 2062

A5(6,4,3) =8 17, 222

A3(7,4,3) = 14 34, 82

A3(8,4,3) =16 17, 322

Ag(8,4,4) > 42 57, 235, 314, 368, 821, 1111

A3(8,4,5) > 72 147, 285, 374, 468, 542, 658, 781, 1164, 2238
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Table 2: Bounds on As(n,d,w,.)

[(n,d,wc) | d=3 d=4 I d=25 d=6 d=17 Ld=8]
(4,4,[2,1,1]) 44w 24d - - - -
(5,d,[3,1,1]) Sdw 24w - - - -
(Sa d: 21 21 1 ) 1011 5j1 2dw - - -
(6,d,[4,1,1]) 6dw Sdd - - - -
(6,d,[3,2, 1]) 12,2 61 3a1 244 - -
(6,d,[2,2,2]) 3001 15,1 3ha 3zw - -
(7) d’ 5; 17 1]) 7dw 3dd - - - -
(7,d,[4,2,1]) 21 95 341 244 - -
(7,4, [3, 3, 1]) 28,1 14, Ti1 20w 24w -
(7: q,[3,2, 2]) 421 21c1 Teo 3uw 2w ~
(8: d$ 6: 11 1]) de 4dd - - - -
(8,4, [5, 2, 1]) 24, 1251 44 244 - -
(8, d, [4, 3, 1]) 561 244 8.1 4.0 241 244
(8,d,[4,2,2]) 841 36c1 124 Suw 20w 244
(8,d,[3,3,2]) 96 — 112, 56,1 16 — 18,1 8a1 3zw 24w
9,4,(7,1, 1]) 94w 444 - - - -
(9,d, [6, 2,1]) 34 — 361 1851 4n 3dd - -
(9,4d,[5,3, 1]) 65 — 7251 31 — 3641 10 - 12y 6.1 341 244
(9,d, [5,2,2]) 97 — 1081 43 — 54, 16 — 18y 91 3vo0 244
(9,d,[4,4,1]) 116 — 1264 42 — 544, 18;1 951 v 20w
9,d,[4,3,2)) 174 — 252, | 71 — 108y, 22 — 361 15,1 Spb 3zw
(9,d, [3, 3,3]) 227 — 336p; | 120 — 168;; | 29— 54, 24,4 By 3hw
(10’ d, [81 1; 1]) 1044 Sddq - - - -
(10,4, [7, 2, 1]) 40,9 20,41 Sa1 344 - -
(10,d, [6, 3, 1]) 96 — 120, 45 — 603 13n 10,1 3a 244
(10,4d,[6,2,2]) | 147 — 180 64 — 90;; 19— 205, 15,1 541 244
(10,d,[5,4,1]) | 146 — 180, 66 — 90,; 20—30; | 10-15, 5 — 6w 20w
(10,4, [5, 3, 2]) 284 — 360;; | 116 — 180;; | 35— 604 301 7 — 9w : T
(10,4, [4, 4, 2]) 399 —-630;; | 146 - 270, | 42—-90;; | 19-37;; | 10 —11,, Saw
(10,d, [4, 3,3]) | 492 —840;; | 187 — 360;;, | 53 — 120 50,1 10 — 1550 Sgw
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Table 3: Bounds on Az(n,d,w)

[(n,d,w) | d=3] d=4] d=5[d=6] d=7[d=8]
(4,d,2) 444 24q - - - -
(41 d: 3) 8’u.l 2wt - - - -
(5,d,2) 544 244 - - - -
(5,4,3) 12, Sw3 244 - - -
(5, d, 4) 1040 Sl 2wt - - -
(6,d,2) 64d 3da - - — -
(6,d,3) 18 — 203 8c1 444 | 244 - -
(6, d, 4) 3040 1541 4y 3ww - -
(6, d, 5) 2451 12]’1 Suwa 2wt - .
(7,d,2) Tad 3dd - - - -
(7,d,3) 28.1 14, 444 244 - -
(7,d,4) 56 — 70¢1 23 — 28y 7T—9%0 | 3uw 244 -
(7,d,5) 70 — 84,1 32 — 42y 9—-100 | 3uw 2wt -
(7, d, 6) 5651 14 - 20101 Tw1 2wt 2yt -
(8,d,2) 84d 444 - - - -
(8,d,3) 34— 3Ty 1651 5dd 244 - -
(8,d,4) 112, 42 — 56,1 | 12— 16y Sud 244 244
(8,d,5) | 152—2244 | 72-89 | 17—2610 | 8uo Bww | 2uws
(8,d,6) 163 — 224, 56 — 80,0 | 16 — 22,y 8u1 3ww 2wt
(8,d,7) 128, 25 — 37, 1651 41 2wt 2wt
(9,d,2) 944 444 - - - -
(9,d,3) 48,1 244, 644 344 - -
(9,d,4) 134 — 16641 56 — 72y | 18—22j 91 344 244
(9,d,5) 284 — 4031 | 100—2004 | 29—57; | 18, 5~6w0 | 3uww
(9,d,6) 385 —672;1 | 110—240; | 35—66;5 | 244 6uww | Sww
9,d,7) 357 — 576 86 — 1660 | 30—056;; | 18,0 5—06uws | Sww
9,d,8) 148 — 1800 44 — 831 | 18 — 36,1 Qw1 3 —4dys -
(10,d,2) 1044 544 - - - -
(10,d,3) 56 — 60p1 26p1 644 344 - -
(10,d,4) | 193 — 2404 84 — 1204 30,1 | 154 544 244
(10,d,5) | 481 — 6644 | 116 — 288,1 | 46 — 88 | 36, 8 — 93 43
(10,d,6) | 640 — 1343, | 187 — 600y, | 67 — 1650 | 6041 | 11 — 155 5w3
(10,d,7) | 732 — 19204, | 187 — 5530 | 71— 1860 | 6040 | 12— 171 Sws
(10,d,8) | 549 — 9004 | 146 —415,; | 55— 140y | 45, | 10 — 11,3 S5w3
(10,d,9) | 320—4005; | 66—184,; | 28—~60; | 204 5 — Buws 2wt

62




Lower bounds
From shorter code by trivial extension
Bogdanova and Ocetarova, [3]
Cyclic or permutation code
Codewithd=2word=2w-1
From code with higher minimum distance
Code from Jacobsthal matrix
Lexicographic code
Trivial or explicitly stated code
Code from unrestricted code
Juxtaposition

e es—=an o ogp

Upper bounds
Theorem 1,72 =0
Theorem 1,i =1
Theorem 1,7 =2
Code with d = 2w, + 2w [10, Theorem 3.3]
A3(TL, d, [w01w13w2]) < A3(n1 dn—w;),i=0,1,2.
Exhaustive search [3]

Mg oo

Table 4: Key to Table 2

Lower bounds

g8 0y —=m oo o

Found by Bogdanova [2]

Cyclic code

Code withd =2word=2w -1
Partitioning bound for d = 3 [9]
Code from Jacobsthal matrix
Lexicographic code

Perfect codes constructed in [8]
Shortening of longer code

Code from unrestricted code
Constant-composition code

Upper bounds

gt~ hw—o

Johnson bound [10, Theorem 3.11]

Johnson bound [10, Theorem 3.13]

Johnson bound, [10, Theorem 3.15]

Johnson bound, [10, Theorem 3.16)

Code with d = 2w [10, Theorem 3.3] or d = 2w — 1 [11]
Linear programming bound [12]

Code with As(n,d,w) =2 [10, Theorem 3.6]

A3(n: da ’UJ) < AS(nad)

Explicit proof A3(5,3,3) < 12 [10, Theorem 3.17] and A3(6,5,5) =3

Table 5: Key to Table 3
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On the Quaternary [18,9, 8] Code

Jonas Olsson *
Department of Electrical Engineering
Linképings universitet, S-581 83 Link6ping, Sweden
jonoh@isy.liu.se

Abstract

It is proved that the extremal quaternary Hermitian self-dual code of
length 18 is up to equivalence the only [18,9, 8] quaternary code. As a
by-product we give a characterization of all quaternary [14, 5, 8], [15, 6, 8],
[16, 7, 8], and [17, 8, 8] codes.

1 Introduction

Let F;* denote the n-dimensional vector space over the Galois field F;, = GF(q).
An [n, k,d; q] code C is a k-dimensional subspace of F* having minimum distance
d. The weight distribution of C will be denoted by the set {A;}o<i<n. In the
sequel all codes will be quaternary unless otherwise stated; an [n, k, d; 4] code
will be denoted [n,k,d]. The elements of the field F = F; will be denoted
0,1,w,w?, where w? = w+ 1.

MacWilliams et.al. [1] constructed an [18,9, 8] code as an extended cyclic
code. The same code was also constructed by Pless [3]. This code is of particular
interest since it is an extremal Hermitian self-dual code; it is a self-dual code
under the Hermition inner product with minimum distance d = 2|n/6] + 2
(cf. [1] and {2]). In [1] this code is denoted S5 and in [4] and [5] it was proved
that S;g is the only extremal Hermitian self-dual code which has a nontrivial
automorphism of odd order. The code Sig has also been thoroughly investigated
in [6]). In [7] Huffman proved that Sis is the only extremal Hermitian self-dual
code of length 18. It remained undecided whether there are more [18, 9, 8] codes.
If so they are certainly not Hermitian self-dual.

Definition 1 Let C; and C; be two linear codes over Fy. Then Cy and Cy are
said to be equivalent if C; can be obtained from Cy via a sequence of transfor-
mations of the following types:

(i) permutation of the coordinate positions;

(ii) multiplication of the elements in a given position by a non-zero element
of Fy;

“This work was supported by the Swedish Research Counsil for Engineering Sciences under
grant 271-97-554
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(iii) application of a field automorphism to the elements in all coordinate po-
sitions.

We note that the transformations in Definition 1 are distance preserving (with
respect to Hamming distance) and are such that linear codes are carried to
linear codes.

The support of a vector is the set of non-zero coordinates. The support of
a code is the union of supports of the codewords in the code. Let C be an
[n,k,d;q] code over Fj. The i-th generalized Hamming weight d; of C is the
minimum size of the support of an i-dimensional subcode of C (cf. [8]). In [9]
a linear [n, k, d; g] code over Fy is said to be near-MDS if d; = d=n -k and
di=n—-k+i, i =2,3,.., k. Alinear [n,k,d;q] code over Fy is said to be near-
near-MDS ifd; =d=n—-k—-1l,dy=n—k+landdi=n—-k+1i, i = 3,4,...,k
(cf. [10]).

Theorem 1 ([10]) Ifk > q¢ > 3 andn > 2q—1+k then every [n,k,n—k—1;4q]
code over Fy is near-near-MDS.

We note immediately that quaternary codes with parameters [14, 5, 8], [15, 6, 8],
[16,7,8], [17,8,8] and [18,9, 8] all are near-near-MD3 codes. Furthermore, we
have the following

Proposition 1 All quaternary codes with parameters [14,5, 8], [15, 6, 8], [16,7,8],
[17,8, 8] and [18,9,8] contain a 2-dimensional subcode which is equivalent to the
two times repeated Simplex code.

Proof: Let C bea[13+4,4+1,8],4=1,2,3,4,5 code. By Theorem 1 we have
dy = 10 and C contains a 2-dimensional subcode with support of size 10. By
deleting the coordinates not in the support we obtain a [10,2, > 8] code. Since,
by the Griesmer bound, no [10,2,9] MDS code exists the code has minimum
distance 8. Thus, C has parameters [10,2, 8] and is - by a result of Bonisoli [11]
- the two times repeated Simplex code. o

2 C(Classification result

The (unique) [10,2,8] two times repeated two-dimensional Simplex code has
one generator matrix of the form:

{1011 111110
(Izlp)—<011ww21ww201)’

where I, is the 2 x 2 identity matrix and P is a 2 x 8 matrix.

ey,

Proposition 2 Let C be a [11 44,2 +14,8],i = 1,2,..,7 code which contains
a 2-dimensional subcode which is equivalent to the two times repeated two-
dimensional Simplez code. Then one can find a generator matriz G of a code
equivalent to C of the form

P
Gi+i = (I2+z' | o7 | e ):

where T denote transposition, y is the vector (0,0,1,1,...,1) € F2+i P is the
matriz in (1) and X is a i X 8 matriz.
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Proof: By assumption, C contains a 2-dimensional subcode which is equiv-
alent to the two times repeated two-dimensional Simplex code. This proves the
first two rows of G114:. Hence, we can assume that y = (0,0, y1,¥z,...,4:). We
will prove that y; # 0 for all j = 1,2,...,4. Suppose, on the contrary, that
y; = 0 for some j € {1,2,...,4}. Then the matrix obtained by deleting the zero-
columns in the 3 x (11 + ¢) matrix consisting of the first, second and the j-th
row of Gq14: generates a [11,3, > 8] code. But, according to Brouwer [12] such
a code does not exist. Hence, y; # 0 for all j € {1,2,...,i} and by Definition 1
we can assume y; = 1 for all j € {1,2,..,,i}. o

By Proposition 1 and Proposition 2 a characterization of [18,9, 8] codes can
be accomplished by characterizing all [11+i,2+1,8],7 = 1,2, ..., 8 codes, starting
from ¢ = 1, having a generator matrix of the form Gy;4; in Proposition 2. By
Proposition 1 for ¢ = 3,4, 5,6, 7 this also provides a complete classification.

Any [12, 3, 8] code that contains (a 2-dimensional subcode which is equivalent
to) the two times repeated two-dimensional Simplex code is equivalent to a code
with generator matrix

P

0
G12 = I3 0
1 T

where P is the matrix in (1) and = = (z1, %2, ...,x3) € F?. We will search for
all solutions for z such that G2 generates a [12, 3, 8] code and then determine
the equivalence classes.

Remark 1 All searches and determinations of equivalence classes have been
accomplished using the computer package MAGMA V2.10-2.

The search for the possible vectors z can be reduced considerably using the
following observation: by Definition 1 we may assume that the first non-zero
entry in z to be a 1. Furthermore, since there can be at most two zeros in T it
suffices to consider only three cases, namely:

1. 2=1(0,0,1, %4, 25,26, T7, T3); )
2. z= (0,1,Z3,$4,1‘5,26,.’E7,Z’8);
3.z= (1’-772;553,-774:-'17513:6;1:7,178)-

The search complexity can be further reduced using the following observation:
suppose that values for x1, %2, ..., z; have been determined. Let C (i) be the code
with generator matrix having as columns the first ¢ + 4 columns of G12. If there
exists a possible solution for z;y1, %42, ..., s then n — (¢ + 4) > 8 — w must be
satisfied, where w denotes the minimum distance of C(¢). This idea will also be
used later, when we deal with other matrices than Gi3, in order to reduce the
search complexity.

These observations give 3513 possibilities for z. It turns out that there are
only 8 different weight distributions, but, in fact, 9 equivalence classes. In terms
of z one representative for each one of the 9 equivalence classes is listed in the
table below. In the last five columns we list also the corresponding weight
enumerators Ag, Ag, A10, A11 and Ajs.
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T; T2 T3 T4 Ts Tg Tr xg Ag Ag Ao An An
(I) 1 «° w 1 w* w 0 0 4 0 0 0 18
(I1) 1 v w w w 1 1 1 3 0 30 0 3
Iy 0 1 w? w 1 0 1 o 3 0 24 0 6
(Iv) 1 0 w w w? w 0 1 36 0 18 0 9
(V) 1 2@ 1 w 0 w w? 1 21 24 12 0 6
(V1) 1 0 1 1 w* 0 w* 1 3 12 6 12 3
VII) 1 w?» 0 0 w 1 1 & 27 12 12 12 O
(VIII) 1 0 w? 0 w? w w? W 24 18 12 6 3
(IX) 0 1 w o w 1 w 1 24 18 12 6 3

Similarly, we state that any [13,4,8] code that contains the two times re-
peated two-dimensional Simplex code is equivalent to a code with generator

matrix

Gu=| I

[l o e R e ]

P
z

Y

where z is one of the nine possibilities (I) — (IX) and y = (y1,%2,---,¥s) € F&.
For each one of nine possibilities we find the possibilities for y. All in all we find
5570 solutions for Gi3. These are divided into 41 equivalence classes. Hence,
there are exactly 41 [13,4,8] codes that contain the two times repeated two-
dimensional Simplex code. We find by computer that only 11 of them can be
embedded in a [14, 5,8] code. Those are given in the table below in terms of y.

In the second column the corresponding entry ((I)-(IX)) for x is given.

x 1 Y2 ¥s w4 Ys ¥e yr s As As Ao An Az A
(%) I 1 1 w 0 0 w w 1 69 48 48 48 42 0
(i4) (I 1 w? w? w 1 1 w? 1 8 0 120 O 54 0
(i5)  (IIT) 1 v 0 w w w 0 w? 81 0 120 O 54 0
(iv) (I Ww? W w W ow 1 w w 81 0 120 0 54 4]
(v) (JI11) 1 v 1 w w w 1 1 8 0 120 0O 54 0O
(vi)  (JII) w 0 1 1 1 w? 0o w? 8 0 120 O 54 0
(vii)  (III) 0 w o w! 0 w w? w 63 54 60 36 36 6
(viid) (IV) 0 w? w 1 1 0 1 w 66 51 54 42 39 3
(izy  (IV) i1 1 0 w 0 1 w? w 8 0 120 0 5 0
(z) (Iv) Ww? w w1 W w w w* 81 0 120 O 54 0
() (VII) w 1 w® w 1 w® 0 0 69 48 48 48 42 0

By Proposition 1 any [14,5,8] code contains the two times repeated two-
dimensional Simplex code. Hence, any [14,5,8] code is equivalent to a code

with generator matrix

Gu=| I

[E N = I ==

N 8 My

where z,y is one of the 11 possibilities (i) — () and z = (21,22, ..., 28) € F®.
We search for the possibilities for z and find 99 solutions for G14. Among those
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solutions there are exactly 9 generator matrices G14(1) — G14(9) yielding non-
equivalent {14, 5, 8] codes. Those are given in the in table in the Appendix. The
weight distributions of the corresponding codes are given by the table below

Ag Ay A An Ae Az A |

Gua(1) 153 144 192 192 270 48 24
G1a(2) 153 144 192 192 270 48 24
G14(3) 147 156 198 198 276 60 18
Gia4) 189 0 420 0 378 0 36
Gua(5) 189 0 420 0 378 0 36
Gia(6) 189 0 420 0 378 0 36
Gu(7) 189 0 420 0 378 0 36
Gia(8) 189 0 420 0 378 0 36
G14(9) 189 0 420 0 378 0 36

We can state the following,.
Theorem 2 There exist 9 (up to equivalence) quaternary [14,5, 8] codes.

We have checked that only the codes with the generator matrices G14(4) —
G14(9) can be embedded in an [15, 6, 8] code.
Next, we search for generator matrices of [15, 6, 8] codes of the form

(1)
Gis = ( Ig Go ),

v

where (I5 | G(()l)) has to be one of G14(4) — G14(9) and v = (Lw),w =
(w1, wa,...,w) € F8. We find that there are 25 solutions for G5 which are
divided into only three equivalence classes. Thus, we have

Theorem 3 There exist three (up to equivalence) quaternary [15,6, 8] codes; all
three with non-zero weights:

Ao = 1,A3 = 405,A10 = 1260,A12 = 1890, A14 = 540.

One generator matrix for each one these three codes in Theorem 3 is given
by the matrices G15(1) — G15(3) below.

1 0000O0OO0OT1 1 1 11 1 1 0
0100000 1 w w1 w w 0 1
G(l)_001000101w2w101w2_
BW=1 0001001 1 o 0 w w w 0 |’
0000101 w 1 w? 0 w2 1 w 0
0000011 w w 1 w 0 0 w 1
1 0000O0O0OGCT1T 1 1 1 1 1 10
01 00000 1 w w? 1 w w01
Grs(2) = 00100011 0 w w w2 w 0 1 |,
15 0 001001 w w w 1  w w w |’
0000101 1 «w 0 0 1 w 1 w?
0000011 1 w 1 w w w1l w
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1 0000O0OOOGDT1 1 1 1 1 1 1 0
0100000 1 w « 1 ww 01
Gis(3) = 0 010001 0 1 W w 1 0 1 w?
88)1 5001001 w 0 1 1 1 w? 0 ?
0000101 w 0 0 w w 1l ww
0000011 w w w w 1 v w w

Although the three [15,6,8] codes given by the matrices G15(1) — G15(3)
have equal weight distribution only the the codes given by the matrices G15(2)
and G15(3) can be embedded in an [16,7,8] code. So, we search for generator
matrices of [16,7,8] codes of the form

(2)
G16 = ( I Go ) 3

v

where (I5|G((,2)) has to be either G15(2) or G15(3) and v = (1, w),w = (w1, w2, .-y
wg) € Fg. The search gave 6 solutions for Gy which are divided into two
equivalence classes. This results in the following theorem.

Theorem 4 There exist two (up to equivalence) quaternary [16,7,8] codes; both
with non-zero weights

Ao = l,Ag = 810, AlO = 3360,A12 = 7560, A14 - 4320, A16 = 333.

One generator matrix for these two codes in Theorem 4 is given by the matrices
G1s (1) and G15(2) below.

1 0000000 1 1 1 1 1 1 1 0
01000000 1 w w1 w w 0 1
001000010 1 w1l 0 1 o
Ge(l)=] 000100011 Ww? 0 w w w 0 WP |;
00001001 w 1 o 0w 1 w 0
00000101 w2 w 1 w0 0 1
000O0O0OO0DT11 0 1 0 1 w 1 ? 1
1 0000O00O0 1 1 1 1 1 1 1 0
0100 0000 1 w w1l w o wr 0 1
00100001 1 0 w w w w 0 1
Ge@=|00010001w w o 1 W w w WP
00001001 1 w2 0 0 1 w 1 w?
00000101 1 w 1 w? w? ow? 1w
000000110 1 w 0 1 1 w 1

We continue and search for generator matrices of [17,8, 8] codes of the form

(3)
Gir = ( Ig Go ),

v
where (I7|G‘()3)) has to be either G15(1) or G16(2) and v = (1, w), w = (w1, w2, ...,

wg) € F8. The search gave 4 solutions for Gy7 divided into two pairs of equiva-
lent codes.
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Theorem 5 There ezist two (up to equivalence) quaternary [17, 8, 8] codes; both
with non-zero weights

Ap =1,A5 = 1530, Ayo = 8160, A1z = 25704, A;4 = 24480, A5 = 5661.

One generator matrix for these two codes in Theorem 5 is given by the matrices
G17(1) and G17(2) below.

10000O0O0CO0OOODT11 1 1 1 1 1 1 ¢
01 00 000O0OD0 ! w w1 w v 0 1
D01 00O0OO0OOCT1 0 1 o w 1 0 1
G(1)=0001000011w20www0w2
17 0000100001 w 1 w2 0 w 1 w 0
00 0O0O0T1O00O0 1 w? w2 1 w 0 0 w 1
0000O0O0O1O01 0 1 0 1 w 1 & 1
00 00000 T1 1 w w w v w 1 w w
100000O0O0OCDO0OT11 1 1 1 1 1 1 0
010000000 1 w w1l w w?@ 0 1
0 01 00 O0O0O0T1 0 1 w2 w 1 0 1 o
Gl7(z)=0001000011w20www0w2
00001 0001 w 1 w0 w2 1 w 0
D00 OO0 1001 w? w2 1 w 0 0 o 1
0000 O0O0T1O01 0 1 0 1 w 1 w 1
00 00 00011 w2 w w0 0 w 1 w

Finally, we search for generator matrices of {18, 9, 8] codes of the form

(4)
Gis = ( L Co >,
v

—

where (Is|GS") has to be either G17(1) or G17(2) and v = (1, w), w = (w1, Wa, ...,
wg) € F8. The search gave two generator matrices which, however, yield equiv-
alent codes. Hence, we have

Theorem 6 There exists one (up to equivalence) quaternary [18,9, 8] code with
non-zero weights

Ag =1, As = 2754, A1 = 18360, A12 = 77112, A14 = 110160, A16 = 50949, A5 = 2808.

One generator matrix of the unique [18,9, 8] code is given by

(1000000000111.11110\
01 0000O0O0OD0TU 0 1 w w 1 w w 0 1
0 01 0ODO0O0OO0OODODTI1 0 1 ww w 1 0 1 ?
00 01 00O0O0O0T1 1 w 0 w w w 0
Gis=| 000 010000 1 w 1 o 0 w? 1 w 0
00 0 001000 1 « w2 1 w 0 0 w 1
00O O0OO0OOT1O0O0T1U0 1 0 1 w 1 w1
0 00 000010 1w w o 0 0 & 1 w
\0000000011w2w2ww2w1ww

In view of the above theorem we can give the following strengthening of a result
by Huffman (see Theorem 2.1 [7}).

Corollary 1 Let C be an [18,9, 8] quaternary code, then C is equivalent to Sis.
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3 Appendix: Table of representatives of [14,5, 8]

codes.

Gh4(2)
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112w W2w1
| — w2.ru.1w

- O
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oo o
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SO ~-=O O
O~ OO0

- O oo

O - - w2w
—HOO -~ 3
12w 3O
1w2w11
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12ww =
1w02w2w
-0 3
(=R =TI ]
cooc o
DO OO
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oO- O OO

oo oOoOo

012”W2w0
HOoO A0 3

— 3 wzw
-—- 33O
~R [ oy

~— w12w1
- O~ 3
OO =t
cCoOoo o
o OO
OO OO
OO OO

- oo Qoo

Ollzwn;.w
oo 3
—% 333
- 3O
lzw wzwo
— 3O w2w
111..2w1
OO =~ i
oo QO O -
oo oOoHO
OO -OoO O

oO- OO0

- o0 OO

Ollzww
oo 3~

] ]

—"3 3 33

N NN

= 3333
— w12w
~ Y wn,.wl
— 3o 3 3
— oy
OO0 = = =
oo™
o OO O
OO -HOO

oO- OO O

oo oOo

0112ww
oo 3 3
-5 3 3%
— 3% 3
— o 3o

« o
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- 30 30

1112w0
OO
ccoo
coo—HO
oo OO
o-mOoO 0O

- OoOOoOOo

012w2w.l.
10102w
=3 o%%

— 3oy
= 3O

[T

.I.wwlw
~ 3~ OO0
- - 3
OO -~
OO0 C o™
SCoOoOOoO-O
O ~O 0
oO-@oO0O

- OO0 00O

012W2ww
O — O 3

12w02

~ 3~ 3
— 3y

N

— 3~ OCQ
- - 33
OO -
OO oo~
OO ~O
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OO OO
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Abstract

Using the principle of weighted unions two new spherical codes are
constructed. From these constructions we obtain new lower bounds
on the kissing number in dimensions 13 and 14.

keywords: spherical codes, contact number, kissing number.

1 Introduction

A spherical code is a finite pointset on the unit sphere in n-dimensional
Euclidean space. We characterize such a code by a triple (n, p, M) of param-
eters, where n is called dimension, p is called squared minimum distance, and
M is called cardinality. The dimension n equals the dimension of the smallest
Euclidean space containing the code. The squared minimum distance p is the
square of the smallest Euclidean distance bewteen two distinct points in the
code. The cardinality, finally, is simply the number of points in the code. The
points are usually referred to as codewords. Given dimension n and squared
distance p we are interested in finding spherical codes with largest possible
cardinality M. Clearly this number depends on the squared distance p. The
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case p = 1 is of special interest. In that case the maximal cardinality is
referred to as the kissing number (or contact number), and is usually denoted
as 7,,. The following cases are known: 7, = 2,7, = 6,73 = 12,73 = 240, and
724 = 196560. In all other cases only upper and lower bounds are known.
Leech and Sloane [5] in 1971 derived lower and upper bounds for contact
number 7, in the region n < 24. In their approach they used error-correcting
codes. In 1988 Conway and Sloane ([2], p. 23) republished this table with
only one change for lower bounds. In the present paper we improve the lower
bounds in two cases, providing the new bounds: 73 > 1154 and 4 > 1606.
Except for the single improvement offered in [2] these results are the first
improvements since the paper [5] of Leech and Sloane in 1971.

2 The Y,-constructions

In (3], [4] we described a class of spherical codes generated from binary codes.
The constructions are denoted Y%, and there is one such construction for each
integer k > 2. Although simple these codes include several cases of best
known spherical codes. We also demonstrated that good spherical codes
can often be obtained by weighted unions of codes obtained from the Y-
constructions. We now use that approach for constructing the codes gener-
ating the new lower bounds for contact number in dimensions n = 13, 14.
The case Y; is simply the well known binary antipodal representation of
a binary code. We use the symbolic notation [(+c)"] to indicate that each
codeword is a real vector with n components, each taking the value o or —a.
Clearly we must have na? = 1. It is easily established that for a binary code
A of length n and with minimum Hamming distance d the resulting spherical
code has minimum squared Euclidean distance p = 4d/n. The cardinality of
the spherical code equals - of course - the cardinality of the binary code.
The construction Y; employs two binary codes: a constant weight code
C and an unrestricted code A. The length of the unrestricted code A equals
the weight of the constant weight code C. If the constant weight code C has
length n and weight w we use the symbolic notation [0"~*, (+a)¥] for the
resulting spherical code. This notation indicates that each codeword is a real
vector of length 7, containing 0 in n—w positions and *« in the w remaining
ones. For each pair (c,a) € C x A there is a codeword z in the spherical code
such that z has a 0 in each one of the positions where ¢ has a 0 and *o in
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each of the positions where c contains a 1. The signs are determined by the
components in the binary codeword a € A. It is easily established that the
squared minimum Euclidean distance p of the spherical code X satisfies
p = min {d—c,. dda :
wow
where d¢ and d4 are the minimum Hamming distances in the binary codes
C and A respectively.

We use the symbolic notation [0%, (£a)f| & 8] to denote a spherical code
obtained from the Ys-construction by a weighted union. This construction
uses two spherical codes obtained from the Y3-construction in such a way that
each codeword contains a codeword from one of the basic Y3-codes appended
with a tail, which is +8 or —f depending on which one of the Y3-codes
is used. Here o and [ are real numbers selected such that the constraint
ja? + % =1 is satisfied. As a special case one and the same Y3-code could
be used for both tails 4.

A corresponding construction is of course applicable to the Y,-construction,
with a similar symbolic notation for the resulting spherical code. It is also
obvious that the idea of weighted union can be extended so as to include
more than two constituent spherical codes and more complicated tails. How-
ever, for our present purposes the simple special cases indicated above will
be sufficient.

3 Two special cases

We are now ready to describe the special constructions leading to the im-
proved bounds on contact number. Consider first the case n = 13. We
construct a spherical code W as a regular union of four different spherical
codes with the following forms:

Wi [08,(£1/2)%0]  (m,p, M) = (13,1,816)
Wa: [(£F1/4)2£1/2] (n,p, M) = (13,1,288)
Wi [0%,£v3/2|£1/2] (n,p, M) = (13,1,48)
Wy : [012] & 1] (n,p, M) = (13,4, 2).

The first code W, is obtained from the Y3-construction using the constant
weight code C with parameters (n,w, d, M) = (12,4, 4,51) ( see [1], Table I-
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A) and the trivial unrestricted code A, with parameters (n,d, M) = (4,1,16).
To this spherical code a trivial tail consisting of a 0 is added. The second
code W, is obtained as a weighted union of two identical copies of codes
obtained from the Yz-construction, using the unrestricted binary code A,
with parameters (n,d, M) = (12,4,144) (see [1], Table II). The code Wj is
obtained as a union of two copies of the biorhtogoinal code, generated by
the Ys-construction. The code Wy, finally, is nothing else than the antipodal
code, consisting of two points, where the first twelve positions are zero.
Consider the matrix S = [s;;], with entities s;; defined as

o = max{(z,y): z,yeW;,, z#y} if i=]
47 max{(z,y): zeW, yeW;} if i#/,

where 7,5 = 1,2,3,4 and (z,y) denotes the inner product of z and y.
Without much effort we compute:

1/2 1/2 V3/4 0
g | 12 1/2 (vV3+2)/8 1/2
T V3/4 (V3+2)/8  1)2 1/2
0 1/2 1/2 -1

We clearly get max(s;;) = 1/2, and so we have p(W) = 1. It follows that the
spherical code

W=W1UW2UW3UW4

has parameters (n, p, M) = (13,1,1154).
For the case n = 14 we choose four codes as follows:

Wy [0%(£1/2)40]  (n,p, M) = (14,1,1040)
Wa: [(£1/4)2] £3/4] (n,p, M) = (14,1,512)
Wy : [0'2,£v3/2]£1/2) (n,p, M) = (14,2,52)
Wy : [013} & 1] (n,p, M) = (14,4,2).

The code W, is obtained from the Yj-construction using the constant
weight code C; with parameters (n,w,d, M) = (14,4,4,65) ([1], Table I-A)
and the trivial unrestricted code A; with parameters (n,d, M) = (4,1,16).
The code W, is obtained from the Yz-construction. In this case we use two
disjoint unrestricted codes A; and Aj, both with parameters (n,d, M) =
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(13,4,256). They can be obtained by (1)- and (0)-reductions of the code
A with parameters (14,4,512) ([1], Table II). The two last codes are again
obtained from the biorthogonal code and the antipodal code.

Exactly as in the previous case we define a correlation matrix S. In the
present case it takes the form

1/2  1/2 +3/4 0
s—| Y2 12 V34 0
| V3/4 VB4 1/2 1/2
0 0 1/2 -1

Again we have max(s;;) = 1/2, and so p(W) = 1. It follows that the
spherical code
W =w W Jw, W,

has parameters (n, p, M) = (14, 1, 1606).

4 Conclusions

The constructions described above allow us to formulate the following result.

Theorem 1 For n = 13,14 the contact number 1, is bounded below as fol-

lows
T13 Z 1154 and T14 Z 1606.

We notice that these new bounds exceed the bounds given in [5] by 24 in
both cases.
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Abstract
A perfect hash function for a subset X of {0,1,---,n — 1} is an injection A from
X into the set {0,1,.--,m — 1}. Perfect hash functions are useful for the compact

storage and fast retrieval of frequently used objects. In this paper, we discuss some new
practical algorithms for efficient construction of perfect hash functions, and we analyze
their complexity and program size.

Keywords: perfect hash family, perfect hash function, program size, complexity.

1 Introduction

A hash function is a function h : {1,2,--+,n} = {1,2,---,m}. A hash function is said to be
perfect on a subset X of {1,2,---,n} if h is injective on X, i.e., if k| x is one-to-one. Perfect
hash functions are useful for the compact storage and fast retrieval of frequently used data,
such as reserved words in programming languages, command names in interactive systems,
etc. Let w = |X|; then w < m. When w = m, the function h is called a minimal perfect
hash function. Minimal perfect hash functions have applications in compilers, operating
systems, language translation systems, hypertext, hypermedia, file managers, and informa-
tion retrieval systems. For more information about perfect hash functions and minimal
perfect hash functions, readers can consult the recent survey paper [3] and its references.

The purpose of this paper is to present some new practical algorithms for construction
of a perfect hash function. The efficiency of the algorithm is measured in three ways. First
is the amount of time required to find a hash function & which is perfect on a given subset
X. Second is the time required to evaluate a given function h for a given = € X. Third is
the amount of memory required to store a description of the function &, i.e., the program
size. The memory required will be the logarithm of the number of the possible perfect hash
functions in the associated perfect hash family, as defined below.
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Definition 1.1 An (n,m,w)-perfect hash family is a finite set of hash functions F such
that
h:A— B

for each h € F, where |A| = n and |B| = m, with the property that for any X C A such
that | X| = w, there exists at least one h € F such that hlx is one-to-one.

We use the notation PHF(N;n,m,w) to denote an (n,m, w)-perfect hash family with
|| = N. We can think of a PHF(N;n,m,w) as an N X n array of m symbols, where
each row of the array corresponds to one of the functions in the family. This array has
the property that, for any subset of w columns, there exists at least one row such that the
entries in the w given columns of that row are distinct. We will use this representation in
some small examples in the sequel.

Let N(n,m,w) denote the smallest value of IV for which a PHF(N;n,m,w) exists. In
[4], N(n,m,w) is proved to be @(logn). However, the proof of [4] is not constructive, and
it seems difficult to give explicit constructions that are good asymptotically. Hence, it is
interesting to find explicit constructions for PHFs. We use some constructions where N is
a polynomial function of logn (for fixed m and w). Moreover, our constructions have the
advantage that they are simple and easy to program.

Our goal is to obtain an algorithm for construction and evaluation of a (minimal) perfect
hash function in which the complexity and program size are low, and which also works well
in practice.

The rest of this paper is arranged as follows. In Section 2, we describe our constructions
of PHFS, both direct and recursive. Then we give algorithms to realize these constructions
in Section 3. We will analyze the efficiency of these algorithms in Section 4.

All logarithms in this paper are to the base 2.

2 Constructions

2.1 Direct Constructions

In this section, we give two direct constructions of perfect hash families. These are simple
“hase” PHFs which will be used as initial families in our main recursive construction.

The first construction is based on a finite affine plane (see [1, Corollary 3.2] ). Let ¢
be a prime power such that ¢+ 1 > (). Consider the array having columns indexed by
pairs (z,y) € F, X Fy, and rows indexed by F, U {-1}, where F, is a finite field with ¢
elements and —1 € F,. The entry in row r and column (z,9)iszxr+yifre Fy,and zif
r = —1. It is easy to see that any two different columns have precisely one row of conflict.
Since g+ 1 > (3), it follows that for any w different columns there will be a row that has
w different entries in these w columns. Hence we have the following result.

Theorem 2.1 Suppose q is a prime power and ¢+ 1 > (3). Then there ezists a PHF(q +
1;¢% ¢, w).

Tn the first construction, m is Q(w?). We will use another base PHF when m < (3)-
This construction is far from optimal, however, the hash families are very easy to compute,
and they are considerably smaller than the trivial construction in which N=)
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For a subset X = {21,22,-*,2Zw}, Where z; < 253 < --- < Z,, we define a perfect hash
function Ay as follows:

1 fo<zg

hx(z) = 21—1 if Ta(i-1) < T < Ty, for some i =2,3,---, L%J
21 ifa::xr‘;,-forsomei=1’2,...,|.%_|
w if z > z,.

Since hx(z;) =i fori=1,2,--.,w, hx is perfect on X. Thus the family
{hX : X g {1,2,,n},]X1=w}

is a PHF. (In fact, it is a minimal PHF.)

Let us determine the number of functions, N, in the family. Observe that Ay depends
only on the values z3, 24, - First, consider the case where w is even. Denote ¢t = w/2.
We have that {z2,z4, -+, 22} C {2,---,n} and z9; > Tg(i-1) + 2. If we define d; = z9; — ¢

for 1 <4 < t, then we construct a list of ¢ distinct elements dy,...,d; where {di,...,d;} C
{1,...,n —t}. Thus we see that
n— %
N = w 2
2

in the case where w is even. A similar argument when w is odd establishes the following
theorem.

Theorem 2.2 For any n > w, the PHF(N;n,w,w) constructed above has

(=]
N"( 2] )

We mentioned that this construction represents a considerable improvement over the
trivial family. For example, if » = 11 and w = 5, then we have N = (g) = 28 as compared
to N = (i) = 462 in the trivial PHF.

In the case n = w+ 1, we obtain a PHF(|¥] + 1;n, w, w), which can be shown to be
optimal.

2.2 A Recursive Construction

In this section, we describe the recursive construction given in [1]. We begin with a spe-
cific type of difference matrix. Suppose that the integers n,w have the property that
ged(n, (5)!1) = 1. Let D = (d;;), where d;; =i mod nfor0 < i< (5) and 0<j <n—1.
This is called an (n, () + 1)-difference matriz, since for all k,4 such that 0 < h < i < (3),
we have {d;; — d;jmodn :0< j <n—1} = N,. (See [2] for more information about
difference matrices.) The following lemma ([1, Theorem 4.1]) gives a recursive construction
for PHF that uses difference matrices.

Lemma 2.1 Suppose there is an (no, (3) + 1)-difference matriz and a PHF(Nop; ng, m,w).
Then there is a PHF(((3) + 1)No; ng, m, w).

For completeness, we outline the construction. Let A be a PHF(No;no, m,w) and let
D = (di;) be an (no, (3) + 1)-difference matrix. For 0 < j < no — 1, let A7 denote
the array obtained from A by letting the permutation ¢/ act on the columns of A, where
o(i) = (i — 1) mod ng. Now let
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Algorithm 3.1: Construction of a (¢?,¢,w) hash function

Input: -
g, w and {5151,222,.. '1$‘UJ} .g {0113' ",q2 - 1}1
where ¢ is prime, g+ 1 > (5)

(1) for k:=1to wdo
i 1= l,ﬁqb'_',
jr = (zx — ik X ¢) mod ¢
(2) If all if’s are different then 7 := ~1

else find r, where 0 < r < g—-1
such that (i X 7 + ji) mod g are different for k= 1,...,w

(8) the constructed hash function is h,

Bo,o Bo1 | -+ | Bomo-1
Bio Byy |-+ | Bimg—1
B = ]
B{’z;;)’o B(?},l e B('f),'no-—l

where B; ; = A%i 0<1 < (‘;’),0 < j < mg— 1. Then B is the desired PHF.
Using the difference matrices constructed above, and iterating Lemma 2.1, we have the
following theorem.

Theorem 2.3 [1] Suppose there exists a PHF(No; no, m, w), where ged(ng, (5)!) = 1. Then
there is a PHF(((5) + 1) No; no® , m, w) for any integer j > 1.

3 Algorithms for Construction of a Perfect Hash Function

In this section, we describe algorithms which realize the constructions of the previous sec-
tion. The first two algorithms concern Theorem 2.1. Suppose g is a prime, ¢+ 1> (3),and
n < 2. For a given w-subset X of {0,1,---,n — 1}, Algorithm 3.1 finds a hash function
which is perfect on X and takes on values in {0,1,---,q — 1}, and outputs the description
of that function. ‘Algorithm 3.2 will use the description of the hash function to evaluate the
function for any z € {0,1,---,n —1}.

Similarly, Algorithms 3.3 and 3.4 realize the construction of Theorem 2.2.

Finally, Algorithms 3.5 and 3.6 realize the recursive construction of Theorem 2.3. Sup-
pose we have a “base” PHF(N;no,m,w) and a w-subset X C {0,1,- .+, ng — 1}, where
ged(ng, (¥)!) = 1. Algorithm 3.5 finds the hash function, say %, which is perfect on X.
Algorithm 3.6 evalnates the hash function % which is found by Algorithm 3.5 at any input
z € {0,1,...,n— 1}, where n = nd’. Notice that in Algorithm 3.5, we do not need to store
the whole constructed PHF; we only need to store the base PHF.

1t is straightforward to combine the previous algorithms to give a general construction.
Suppose integers n,m,w, and a w-subset X C {0,1,---,n — 1} are given. We want to
find a hash function which is perfect on X. We can proceed as follows. First we find the
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Algorithm 3.2: Evaluate a (¢2, ¢, w).hash function

Input:
q, w, T 6{0,1,...,,12_1} andre{—l,O,---',q—-l},
where ¢ is prime, ¢ +1 > ()

(1) z:==x
(2) i = 2]

ji=(z—-¢xi)modgq

(8) If r = —~1 then A.(z):=1
else hg(z):= (i X r+ j)mod g

Algorithm 3.3: Construction of an (n,w,w) hash function
Input: n, w and {z1,22,-*,%,} € {0,1,---,n — 1}
(1) Sort the elements 1,23, *, 2y such that 27 < 75 < +++ < Ty,
(2) Lett:= %]
(3) Define ¢; 1= zg;,for 1 <i <t

(4) The constructed hash function is denoted as k¢, where
C:= (61702" - '7ct)

Algorithm 3.4: Evaluate an (n,w,w) hash function

Input:
n,w, z € {0,1,---,n—1} and C = (e1, 2, -+, ¢:) (T = (2]

(1) Define ¢p := 0 and ¢443 :=n+1
(2) Fori:=1tot+1do

(a) If z = ¢; then define y := 2 and exit loop
(b) If ¢;—1 < < ¢; then define y := 2 — 1 and exit loop

(3) Define hg(z):=y
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Algorithm 3.5: Construct an (n,m,w) Hash Function, n = ngj

Input:
A base PHF(V; 19, m, w), where ged(no, (5)!) = 1
X = {yh eny yw} c {07 1, mangj - 1}
(1) While j > 0 do
(a)for k :=1to w do

iNh=[7%v]
o
25 1= [yg — n2" ™ x i, 9] mod n20™Y
(b) find d;, 0 < d; < (%), such that (2x9) 4 d; x 1)) mod ng(j_l)
are all different for £k = 1,2,---,w.
(¢) for k:=1,2,---,w do
v = (zx0) + dj x ix1)) mod ng(j_l)
()j=5-1
(2) Find the hash function hg in the base PHF(N; ng, m, w)
which is perfect on {y1, .+, Yu}
(8) The constructed hash function is denoted Ap
where D = (dj,dj-1,...,d1; C)

Algorithm 3.6: Evaluate an (n,m,w) Hash Function, n = n?,j

Input:
0<z<nd —1
D =(d;,...,d1; C)
(1) /* Reduce z to y € [0,n0 — 1] by using d;’s */
While 5 > 0 do
i = | |
16) = (z - n2U™ x 4l mod n2
z 1= (1) + d; x i(9)) mod S
j=i-1
(2)y:==z
(8) hp(z) := ho(y) where ho(y) is in the base PHF(N; ng, m, w)
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smallest prime ¢ > (3), so it follows ged(g, (3)!) = 1. (Notice that this step is actually
a preprocessing step, since it doés not require knowing the particular set X that is to
be hashed.) Then we use Algorithm 3.5:letting j = [log(log n) — log(log n9)], to find the
suitable hash function. If ¢ < m, then step (2) will use a PHF(¢+1; ¢?, ¢, w) from Algorithm

3.1 as the base PHF, otherwise it will use a PHF((qIL_?]); g, w,w) from Algorithm 3.3 as
2

the base PHF. (In this second case, it is not necessary that ¢ be prime.) In either case,
Algorithm 3.5 will output the description of the hash function.

4 Efficiency of the Algorithms

In this section, we look at the efficiency of our algorithms. We are interested both in the
complexity of the algorithms as well as the running time of an actual implementation. We
consider the case of minimal perfect hashing, i.e., m = w. In this case, we can take ¢ to be
the smallest integer such that gcd(g, (5)!) = 1. The value of ¢ is less than w? and it can be
computed in time polynomial in logw, using the Euclidean algorithm to compute greatest
common divisors.

Let’s first consider program size. The size of the hash family in Theorem 2.3 is ((5) +
1)? No. Here we have that j < loglogn and

2
No < (Z) < (w2)% = w",

2

Thus the program size is bounded above by
jlogw® + log Ny < 2log wloglog n + wlog w.

It is known that any minimal PHF has program size that is Q(loglogn + w) (see, e.g., [4,
p. 129} or [3, p. 9]). So our construction is not much larger than an optimal one.

In the encoding of PHF that we use, we have a sequence at most loglogn d’s (produced
by Algorithm 3.5), where 0 < d; < ¢ — 1 for each 7. Thus each d requires at most logq <
2logw bits to encode it. The remaining wlogw bits correspond to the list of [¥] ¢’s
produced by Algorithm 3.3, where 0 < ¢; < w? — 1 for each 3.

The above analysis is a provable, worst-case bound. In practice, however, we usually do
not require so much space. This is because the d’s are frequently very small and may not
require 2logw bits to encode them. It appears that the program size is more likely to be
O(wlogw + loglogn), since d; = 0 or 1 “most of the time”. We will now try to justify this
assumption with an informal heuristic argument and some experiments.

We have done some experiments for fixed w values to compute the average number of
values that need to be tested to find an acceptable d in step 1(b) of Algorithm 3.5. In
these computations, we take n = 20 and randomly create 100 subsets X (|X| = w) of
{0,1,...,230— 1} for each w. We run the program for each subset X, computing the average
number of tested d values. In Table 4.1, columns 1, 2, and 3 record the values of w, g,
and j, respectively. The fourth column gives average number of d values checked (over all
J iterations). The sixth column gives the computing time in seconds. (We have done these
computations with Sun Ultra 1 Model 140 in the International Computer Institute at the
University of Ege, Turkey.)

We now derive a heuristic estimate for the number of d values tested (see column 5§ of
Table 4.1). If we choose k random elements from a set of n elements (repetition allowed),
the probability that all k& elements will be distinct is

87



Table 4.1

w | q j | Aver. num. of | j —1+4 e | time (in secondsT
d values tested

3 |5 4 4.89 5.72 0.00013
10 | 47 3 4.72 4.72 0.00033
20 | 191 2 3.72 3.72 0.00067
50 | 1229 2 4.13 3.72 0.00248
100 | 4951 2 3.25 3.72 0.00668
150 | 11177 | 2 3.60 3.72 0.01373
200 | 19913 |2 3.92 3.72 0.02298
300 | 44851 |1 2.60 2.72 0.04432
400 | 79801 |1 2.44 2.72 0.07488
500 | 124753 | 1 2.81 2.72 0.11518
600 | 179717 | 1 2.76 2.72 0.16355
700 | 244667 | 1 2.82 2.72 0.21934
800 | 319601 | 1 2.68 2.72 0.28208
900 | 404557 | 1 2.28 2.72 0.35176
1000 | 499507 | 1 2.91 2.72 0.43724

k-1 .
p(k,n):(1—%)(1—%)---(1—kn1)=ﬂ(1—%). (1)
i=1 -
In step 1(b) of iteration I of Algorithm 3.5, we find a value d such that the w values (z+dxi)
mod ¢2 " are distinct elements in Z -1 If we assume that these w values are randomly
distributed, we can estimate the probability that they are distinct using Eq. (1) with bk =w
and n = g% .
For !l > 1, p(w,qu-l) ~ 1 while for [ = 1, we have

p(w,q) ~ p(w,w?/2)= (1 - sz/Q) (1 _ %%)

Here, we are using the approximation 1 — z ~ e~%, which is true when  is a small
positive real number. Thus we estimate that the total number of d values tested should be
approximately j — 1 +e. These estimates, recorded in column 5 of Table 4.1, are quite close
to the actual experimental values obtained in column 4.

Now we briefly analyze the complexity of the algorithms to construct and evaluate a hash
function. For simplicity, we use the “uniform cost” model which assumes that any arithmetic
operation can be done in O(1) time (see, e.g., [3, p.10]). As above, we are considering the
case w = m and we assume that ¢ < w? has been determined in a preprocessing step.
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Step (1) of Algorithm 3.5 requires O(loglogn) iterations. Each iteration takes time
O(wlogw) to test each particulai d value (the w numbers in step 1(b) can be sorted to
determine if they are distinct). The numiber of d values that need be considered is O(w?).
Thus step (1) can be accomplished in time O(w?logwloglogn). Algorithm 3.3 takes time
O(wlogw), so the total time is O(w®logwloglogn). Notice also that, if the heuristic
argument presented above is valid, then the time required to construct the hash function is
reduced to O(wlog wloglog n).

The evaluation time is analyzed is a similar fashion. Algorithm 3.6 requires time
O(loglogn), and Algorithm.3.4 can be modified to run in time O(logw) if a binary search
is used. Therefore the total time is O(log w + loglogn).

Finally, we should emphasize again that the algorithms are very suitable for practical
use, as is shown by the timings in Table 4.1.
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- Abstract

In this paper, an eflicient soft-decision iterative multistage decoding algorithm for
decoding decomposable and multilevel concatenated codes is presented. This algorithm
achieves maximum likelihood decoding (MLD) through iterations with optimality tests
at each decoding stage. It achieves MLD performance with a significant reduction in
decoding complexity. Decoding results for some long codes are included.

1 Introduction

Multistage decoding (MSD) [1] is devised for decoding decomposable codes and multilevel
codes [2] to achieve an efficient trade-off between error performance and decoding complexity.
In a conventional soft-decision MSD scheme, each stage uses soft-decision decoding, but
hard-decision decoded output is used to modify the soft-decision received sequence for the
next stage decoding. Decoded information is passed down from one stage to the next until
the last decoding stage. With this decoding, incorrect decoded information at one stage
may result in error propagation through the subsequent decoding stages. Therefore, the
decoding is not MLD even if every decoding stage is MLD, it is a suboptimum decoding
scheme. This decoding works well for short to moderately long codes, say lengths up to
64. It provides excellent trade-off between error performance and decoding complexity. The
performance degradation compared with that of MLD is very small, no more than 0.4 dB
for decomposable codes of lengths 64 [3]. However, for long codes of lengths 128 and up,
the performance degradation becomes severe. For example, the performance degradation of
the (128,64) Reed-Muller (RM) code with three-stage decoding (each stage uses the Viterbi
decoding) is 1.5dB at bit-error rate (BER) of 105 [4].

Error performance of MSD can be improved by passing a list of L best decoded estimates
from one stage to the next. At the last stage, the codeword with the best metric (largest

*This research was supported by the National Science Foundation under Grants No. NCR-94-15374 and
NCR-97-32959, and NASA under Grant NAG 5-931.
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correlation, or smallest Euclidean distance) is chosen as the decoded codeword [5]. Of course,
the decoding complexity of this multistage list decoding increases multifoldly. For long
decomposable codes, in order to maintain the trellis complexity of each component code in
a practically implementable range, the number of decoding stages must go up. As a result,
the size of the list must increase to maintain a small performance degradation compared
to MLD. This results in a large increase of computational complexity. To overcome this
problem, a list of variable size depending on the signal-to-noise ratio (SNR) can be used to
reduce the average computational complexity.

In this paper, we present an iterative multistage maximum likelihood decoding (IMS-
MLD) algorithm which achieves MLD performance through decoding iterations. Each new
decoding iteration begins with the generation of a new estimate at a certain decoding stage.
This new estimate is then passed down to the subsequent stages of decoding. During a
decoding iteration, two simple optimality conditions are tested. If one of the conditions is
satisfied, the decoding process is terminated and the best codeword found at the time is the
most likely (ML) codeword. Decoding iteration continues until the ML codeword is found.
In this IMS-MLD algorithm, a new estimate is generated only when it is needed. Optimality
tests prevent error propagation.

In the following, we first present the new decoding algorithm and some decoding results
for several long codes. Then we discuss several possible variations of this algorithm.

2 MSD of Multilevel Codes

An m-level concatenated code [3] is formed from a set of m inner codes and a set of
m outer codes as shown in Figure 1.” The m inner codes are coset codes formed from
a binary linear block code A of length n and a sequence of m linear subcodes of Ay,
denoted byAs, As,...,Ams1 = {0}, with A4y ' C A; for 1 < 4 < m. The i-th inner
code [A;/Ai41] is simply the set of representatives of cosets of A; modulo Aiyy, de-
noted by A;/Ais1. Each codeword in A; is a unique sum of m coset representatives from
[A1/Aq), [Az/Ae,] - [Am/{0}], respectively
At the i-th 1evel encoding, b{®) is encoded into the following sequence,

c® = (ef?,cf,...,eR) = (80", fi(t), ..., (W), (1)

where c( D= ft(b( ) is a coset representative in [A;/A;41]. Therefore, c*) is a sequence of coset
representatwes from [A;/Aiy1] and is a codeword in the i-th level concatenated code, denoted
by C; = B,o[A,/A,.H]. The direct sum C = Blo[Al/Ag]eaBzo[Ag/Ag]EB.. @ Bpo[An/Am+s1]
forms an m-level concatenated code. For simplicity, we denote this m-level code by
C 2 {By,B,,...,Bn}o{A1,As...,An}. Every codeword c € C is a sum of m codewords
c®,c®. ... ¢ from the m component concatenated codes Ci,Cy,...,Cn, respectively,
1. e,Cc= c(l) + C(2) + ...+ c(m)

Suppose a codeword ¢ corresponding to m outer codewords b, b ... b(™ is trans-
mitted. Let r = (r1,rz,...,rn) be the received sequence at the output of the matched filter
in the receiver, where j- th section r; = (rj1,7j2,...,Tjn) consists of n real numbers. At the

first decoding stage, r() £ 1 is decoded into a codeword b in the first outer code B;.
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- For 1 <4 <m,let ¢ 2 I[A:i/Ai+1]| and
[Ai/Ai] = {a¥ 1 < j < ¢:}. Thena
coset in A;/A;4; is given by

B HCRIET

By

,(2) fa b;-m) = a? ;
B, | ag R =00 (a9 4a:ae A,

For 1 < ¢ < m, the i-th outer code, de-
° noted by B;, is an (N, K;) linear block
code over GF(g;). Let fi() be a one-to-

B Fm(6™) = af” :

B, [An/{0}] one mapping from GF(g;) onto [A;/A;41]-
This mapping is simply the inner code
encoding at the i-th level. Let b() =

Figure 1: An encoder for an m-level con- (bg'), bg), ciey b§f,’) be a codeword in the i-
catenated code th outer code B;.

Then the effect of the decoded estimate b() (or ¢() is removed from r(®). This results in
a modified received sequence r(?) = (r?),rgz), .. ,rg‘;)) with r§~2) = (rﬁ),r}? ) .,rg-i)). Then
r(? is used for decoding at the second stage and is decoded into a codeword b® ¢ B,.
Again, the effect of b(® is removed from r? to obtain a modified received sequence r® for
the third stage decoding. This continues until the last estimate b{™ is obtained.

Suppose the i-th stage of decoding has been completed and b{®) is the decoded estimate.

From b and (1), we obtain the estimate cl) = (cgi),cgi)',.. .,c%)). Then the received
sequence r(it!) = (r&‘“.),rgz.ﬂ), . ,.rgff"l)) for the (z + 1)-th stage of decoding is obtained
from ¢® and r® = ({7, 5, ..., r{) as follows: For 1 <1< n and 1 < j < N, the I-th

(i+1)

symbol of the j-th section r;" of r*1) is given by

=) (1~ 2d) 2)

(assuming BPSK signaling and ¢j; — (—1)% mapping).

Each stage of decoding consists of two steps, the inner and outer decoding. At the i-th
decoding stage, the inner decoder processes the N sections of the received sequence r() =
(r&i), . r%)) independently and forms N metric tables. Let {a(!} 2 {a+a:a€ Ay}
be a coset in A;/A;;1 with a®) as the coset representative. The metric of {a)} with respect to
rg-i) is defined as the best metric between rg-i) and the vectors in {a()}, denoted by M({a"}).
Let al 4+ a* be the vector in {a()} with the best metric. This vector is called the label
of {al)} with respect to rg-i). Form a metric table, denoted by M TJ-(i), which for each coset
{a®} € Ai/Ai4a, stores its metric M({a®)}) and its label at) + a*. This table is called the
metric table for rg-i). The inner decoding at the i-th stage is to form N metric tables, one
for each section of the received sequence rg-i). These N metric tables are then passed to the

outer decoder. Let b() = (bgi), bgi), cee, b%)) be a codeword in B;. The metric of b{¥ is defined
as the following sum:

N .
M(b®) = 5 M{£E)),
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where M({ f,-(bd(ii))}) is the metric of the coset { f.;(bg-i))} with f,-(bg-i)) as the coset leader. The

outer decoding is to find the codeword b € B which has the best metric among all the
codewords in B;. This can be achieved by using a trellis-based decoding algorithm, such as
the Viterbi algorithm.

3 The Iterative Multistage MLD Algorithm

For simplicity, we first describe the proposed IMS-MLD algorithm using a two-level con-
catenated code, {B1, B2} o {A1,Az}. Once this is understood, we generalize it to m-level
codes.

Let b®M) = (bgl), b3, .. .,bg\lr)) be the decoded codeword at the first stage. Then b(*) has
the best metric with respect to the received sequence r() = p. The metric of b® is given

by

N
M(bO) = 3 M{AG)),
J=1
where M({fl(bgl))}) is the metric of the coset {fl(bg-l))} € A1/A;. Let fl(bg-l)) + a} be the
label of coset { fl(bgl))} with respect to the j-th section rgl) of (1), Then

N
M{A()) = MUAE) +45), and M) = 3 M(£(5”) +25)- (3)
J=1
If we replace each component bgl) of the decoded codeword b(!) by its corresponding coset
label fl(bg-l)) + a*, we obtain the following coset label sequence,

Lb®) & (£(0) + af, AED) + a3, AF) + k). )

From (3) and (4), we see that the metric of b®) is the metric of its corresponding coset label
sequence.

If the coset label sequence L(b(!)) is a codeword in the overall concatenated code C' =
{B1, B;} o {A1, A;}, then it is the codeword in C that has the best metric and hence
the most likely codeword. In this case, the decoding is done and the sequence a* =

(al,a,...,a%) is a codeword in the second-level concatenated code Uz = Bz 0 A;. The
second outer codeword b(?) = (bgz), bg2), ey bg\?)) can be recovered from a* as follows: b(?) =
(771 @), f71(as), . . ., fi(ak)), where f7(-) is the inverse mapping of fa(-). Alternatively,

for systematic encoding, the information bits are obtained directly from the coset label se-
quence. If the coset label sequence L(b®™) is not a codeword in C, then it is a sum of a
codeword (fl(bgl)),fl(bgl)), e fl(bﬁ))) in C; = B o [A1/A2] and a sequence of codewords
in A, which is not a codeword in C; = B; 0 A;. In this case, decoding continues. Therefore,
the condition that L(b®)) is a codeword in C is an optimality condition, which will be used
in the proposed IMS-MLD algorithm.

At the second stage of decoding, the received sequence r? = (rgz),rgz),...,rg)) for
decoding is obtained by removing the effect of the decoded codeword b) at the first stage
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from r™ = r, as given by (2). The inner decoder forms N metric tables, one for each section
of r(®, These tables are then passed to the outer decoder. The outer decoder finds the
codeword b(® = (b(z) b(2) .,613)) in B, that has the best metric with respect to r®. The
metric of b(® is given by

N
b(2) Zl M (2) (5)
J=

For 1 <j<N,let fz(b_s-z)) = a§2) which is a codeword in A;. Then a® £ (a®, ..., a{?) is
a codeword in C; = By 0 Ay, and

M(b®) = M(a®) = i M(a?) (6)
where M (a; (2)) is the metric of a( ) with respect to r§-2).
Now we compare metric M (b(l)) and metric M(b®). Recall that
M(f(b5") + a5) = max M(f1(b") +a;)
Then for any a; € A,,
M(£i(6°) +25) 2 M(fi(b") +2;). ")
Since a§~2) € A,, it follows from (7) that

M(f(b) +a3) > M(f(bM) +a). (8)

Let corr(:,-) denote the correlation function (any other metric can be used as well). It is
easy to show that

corr(fi(b{") + a;, 2"y = corr(a;,r®) 9)
for any a; € A;. Then it follows from (3), (6), (8) and (9) that
M(bY) > M(b?), (10)
where equality holds if and only if the sequence a* = (aj, a},...,a)) is a codeword in Cj.

For the iterative two-stage MLD algorithm, decoding iterations are based on the genera-
tion of a sequence of estimates at the first stage. The estimates are generated in decreasing
order of metrics, one at a time. This can be achieved by using the list Viterbi algorithm
[6]. At the i-th iteration, the first-stage decoder generates the i-th best estimate, denoted

by bV = (b(l)” Wi ,bg\l,)’i). Let b(®) denote the decoded codeword at the second stage
based on b(l)’ and r(2) The proposed algorithm is based on the following two theorems.
Theorem 1 is a direct consequence of (10).

Theorem 1: For i > 0, M(b{})¥) > M(bB)| where equality holds if and only if the coset
label sequence for b, L(bM+#) & (£ (V) 4 at, fi(0D) + a3, ..., A7) + ay), is a
codeword in C, i.e. (al,a2, .,a)) is a codeword in C; = B; 0 A,.
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Let 7o be the integer such that 1 <.4p < ¢ and

(2).i0 = (2)1j
M (b)) Pgl?éM(b )- (11)
Then b is the best decoded codeword at the second decoding stage during the first ¢ — 1

iterations. Theorem 2 follows from Theorem 1 and the fact that for ¢ < j, M(b®)¥) >
M (b)),

Theorem 2: For i > ig, if M(b®+) > M (b)), then the codeword in C that corresponds
to b0 and b is the most likely codeword with respect to the received sequence r. If
M(b®+0) < M(bM%) and the coset label sequence L(b®)*) is a codeword in C, then L(b()")
is the most likely codeword in C' with respect to r.

In fact, the optimality conditions of Theorem 2 are also necessary conditions for the
proposed iterative decoding algorithm.

3.1 Decoding Algorithm

o Step 1: Compute the first (best) estimate b®1 of the first decoding stage and its
metric M(b{"1). Check whether the coset label sequence L(b®)1) is a codeword in C.
If it is, L(b{)1) is the most likely codeword and the decoding stops. Otherwise, go to
Step 2.

o Step 2: Perform second stage decoding and obtain the estimate L(b®) with metric
M(b@1), Set 45 = 1, and store b®)* and b1, Go to Step 3.

e Step 3: For i > ig, b and b®" are currently stored in a buffer register together
with the metric M(b®)). Determine the i-th best estimate b1 of the outer code
B, and its metric M(b®+). If M(b®i) > M(b1)), then bWsioand b@% together
give the most likely code in C, and decoding is finished. Otherwise, go to Step 4.

o Step 4: Check if the coset label sequence L(b()#) is a codeword in C. If it is, L(b(M)+)
is the most likely codeword in C and decoding is finished. Otherwise go to Step 5.

o Step 5: Generate b®+. Update o, b and b and M (b)), Go to Step 3.
The decoding process iterates until the most likely codeword is found. Therefore, the max-
imum number of iterations is ¢!. This is the extreme case. In general, the number of
iterations required to obtain the most likely codeword is very small compared to . We
may limit the number of iterations to keep decoding computational complexity down and
decoding delay small. In this case, the decoding algorithm achieves near optimal error per-
formance.

Theorems 1 and 2, and the two-stage iterative MLD decoding can be generalized to m
stages. In m-stage decoding, new decoding iteration can be initiated at any stage above
the final stage. Decoding iteration begins with the generation of a new estimate at the
starting stage, say stage-l. If all the qlK‘ estimates at the stage ! (resulting from a particular
sequence of codewords from stages above the stage !) have already been generated and
tested, the decoder moves up to the (I — 1)-th stage and starts a new iteration with a
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new estimate. Decoding iterations coatinue until the ML codeword is found. Just like the
two-stage decoding, the final decoding decision is made at the first stage.

Suppose the decoding process is at the i-th decoding stage of j-th iteration. Let b(")
denote the decoded codeword in the outer code B;. Let L(b{)7) denote the coset label
sequence corresponding to b()7. The metric of L(b{)4) or b7 is denoted by M (b)),
Let blio)is denote the codeword whose metric M (b{e)#) is the best (largest) among the
codewords that have been generated before the i-th decoding stage of j-th iteration, and
whose coset label sequence L(b{?)%) is a codeword in the overall m-level code C. Then, the
buffer contains M (ble)#), L(bl)d), the estimates of the stages 1,2, ..., (io— 1) from which
the estimate blio)¥ resulted, and the estimates of the stages 1,2, ..., (¢ — 1) from which the
estimate b/ resulted.

At the completion of the i-th decoding stage of the j-th iteration, the decoder makes one
of the following three moves:

1. If M(b@) < M(blio)io) the decoder moves up to stage-(i — 1) and starts a new

iteration with a new estimate.

2. Otherwise, if M(b()7) > M(blehio) the coset label sequence L(b®¥) is tested. If it
is a codeword in C, then the buffer is updated (M(ble)¥) = M(b()4), etc.). The
decoder moves up to stage-(¢ — 1) and starts a new iteration with a new estimate.

3. If M(b)i) > M(blio)io) and the coset label sequence L(b) is not a codeword in
C, then decoder moves down to the (i 4+ 1)-th stage of j-th iteration.

When the decoder reaches the last (m-th) stage, it must move up to (m —1)-th stage and
start a new iteration (since the label sequence of the estimate b(™ is always a codeword in
C).

Whenever the decoder reaches the first stage at the beginning of an iteration, a decision
is made at the completion of the first-stage decoding whether the decoding is terminated or
continues. Suppose the decoder has reached and completed the first stage decoding at the
J-th iteration. The decoder makes one of the following moves:

1. If M(b1)4) < M(blie)ie), then the decoding is finished. The ML codeword is formed

from ble)# and the codewords above iy-th stage which resulted in the generation of
blio)wo

2. Otherwise, if M (b)) > M(blo)io) and the coset label sequence L(b()) is a code-
word in C, then L(b(®)+) is the ML codeword. Decoding stops.

3. If M(b()7) > M(ble)#) and L(b{)+) is not a codeword in C, then the decoder moves
down to the second stage and continues the decoding for the j-th iteration.
Thus, the tests performed at the first decoding stage are actually the optimality conditions.
In m-stage decoding, new decoding iteration can be initiated at any stage above the final
stage. Decoding iteration begins with the generation of a new estimate at the starting stage,
say stage-l. From there, the decoder can either move down to the next stage, or, if the coset
label sequence is a codeword in Cj, it moves up and starts a new iteration at stage-({ —1). If
all the ¢! estimates at the stage I (resulting from a particular sequence of codewords from
stages above the stage [) have already been generated and tested, the decoder moves up
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to the (I — 1)-th stage and starts a new iteration with a new estimate. Decoding iterations
continue until the ML codeword is found. Just like the two-stage decoding, the final decoding
decision is made at the first stage.

3.2 Simulation Results & Decoding Complexity

In this section, we give two examples in which IMS-MLD is applied to two RM codes of
length 128. We assume BPSK transmission over additive white Gaussian noise (AWGN)
channel. We also use encoding in reduced echelon form in all simulated cases to minimize

the BER [7).

Example 1 Consider the third order RM code of length 128, which is a (128, 64, 16)
code. This code can be decomposed as multilevel concatenated code [3], and a possible
decomposition is given by:

(128,64,16) = {(16,1)(16,5), (16,5)(16, 11), (16,11)*(16,15)} o {(8,8),(8,5), (8,3)}.

The outer codes are interleaved RM codes of length 16, while the inner codes are formed by
a partition chain, (8,8)/(8,5)/(8,3). The universal code is partitioned by the two subcodes
of RM codes, namely (8,5) C (8,7) and (8,3) C (8,4).

The 16-section full code trellis has 226 states [8]. However, after decomposition, the
8-section trellises of the component outer codes have 2°, 28, and 2° states, respectively.
Therefore, for MSD, the total trellis state complexity is equal to 2° 4+ 2% 4+ 2°, which is much
less than 226,

The bit error performances for different algorithms are given in Figure 2. It can be seen
that the performance curve of the IMS-MLD algorithm agrees with the union bound for the
(128,64) RM code. The new algorithm outperforms the conventional MSD by 1.35dB at
BER=2 x 107. '

The computational complexity is expressed in terms of number of real operations (addi-
tion and comparisons) required for decoding one block of data. The computational complex-
ity of Viterbi algorithm based on the full code trellis is 9.3 x 10°. For conventional MSD,
the computational complexity is 4.26 x 10°. Due to the iterative nature of the IMS-MLD
algorithm, the average complexity varies with the SNR. The values of the average number of
real operations per block, and average numbers of estimates generated at each decoding level
(ave;, for i = 1,2,3) are given in Table 1. All the values decrease as the SNR increases. At
a certain point, the complexity of the IMS-MLD becomes even smaller than that of conven-
tional MSD. Another way to compare is to include a test on the coset label sequence for the
conventional MSD. If this sequence is a codeword at any level, the decoding of the following
stages is not necessary. The complexity of this modified conventional MSD becomes variable
with SNR, and ranges from 2.6 x 10* for SNR=2.0 dB, to 0.55 x 10* for SNR=>5.0 dB. The
complexities of various algorithms are given in Table 3 for comparison.

The problem of large average number of estimates generated at each stage, as well as the
large worst case complexity, can be overcome by setting a limit on the number of estimates
generated by the list Viterbi Algorithm of the outer codes. Setting these limits to 5 and
2, for the first and second outer decoder respectively, results in an iterative algorithm with
the same performance as that of List MSD [4] with parameters 5 and 2. However, the
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computational complexity of the subeptimum iterative algorithm is much lower, as it can
be seen from Table 2 (complexity of the list decoding is equal to the upper bound on the
complexity of suboptimum IMS algorithm). This suboptimum version of IMS not only has
large reduction in the average number of estimates generated at each stage for small SNR,
but it has bounded worst case complexity, as well. Complexities of different algorithms are
given in Table 3 for comparison.

From Figure 2 and Table 3, it can be seen that, compared to conventional MSD, IMS-MLD
achieves significantly better performance with relatively small increase in average computa-
tional complexity. In Figure 2 and Table 3, the list decoding of [4] is also included. It can
be seen that IMS-MLD outperforms the List MSD by 0.4dB. When compared to Viterbi
decoding algorithm based on the full code trellis, IMS-MLD achieves the same performance
with enormous reduction in both computational and trellis complexity.

Example 2 Consider the 4-th order (128,99) RM code with the following decomposition
(128,99,8) = {(16,5)(16,11),(16,11)?,(16,15)*(16,16)} o {(8,8),(8,6), (8,4)}.

Again, the outer codes are obtained by interleaving the RM codes of length 16. The trellis
state complexities of the three outher codes By, By, and Bj are 28, 28, and 24, respectively.
These complexities are very small compared to 21° states of the full code trellis.

The IMS-MLD outperforms the conventional MSD by 0.75dB. If suboptimum IMS algo-
rithm is used with the list sizes of the list Viterbi algorithm limited to 5 for the first stage
outer code and 2 for the second stage outer code, it achieves almost optimum performance
with a very small average complexity and with bounded worst case complexity. Table 4
contains complexities of different decoding algorithms.

4 Conclusion

In this paper, an efficient iterative multistage MLD algorithm has been presented. As shown
with two examples, it reduces decoding complexity enormously, compared to Viterbi Al-
gorithm. This algorithm can be tailored in many ways to trade off error performance for
reduction in decoding complexity. One version with a significant reduction in worst case com-
plexity is to limit the maximum number of iterations. In this way, the worst case complexity
per block and maximum decoding delay are bounded.

Only the trellis based decoding algorithms (such as Viterbi Algorithm) have been con-
sidered because of their standardized implementation. The other reason was that Viterbi
algorithm results in optimum decoding of component codes, which is necessary for the opti-
mality of the overall iterative multi-stage decoding algorithm. For the suboptimum versions,
computationally efficient probabilistic algorithms, like ordered statistics [9], can be applied
for decoding component codes.

Although examples are given for RM codes, the same algorithm can be applied to any
multilevel coded modulation code, and decomposable BCH and EG codes. Recently, many
such codes have been found [10]. Some of these codes are the best known codes for given
lengths and dimensions.
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Table 1: Decoding Complexity for IMS-MLD of RM(3,7)=(128,64,16)

| SNR [20]25]30][35] 40 |

No of opr [10%] || 45.0 | 12.6 | 10.0 | 4.0 [ 2.6
ave; 31 [9.12] 3.2 [1.84| 147
avey 40 11 3 1.1 | 0.69
aves 9.5 | 2.8 [0.78]0.22 | 0.081 |
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Table 2: Decoding Complexity for Suboptimum IMS of RM(3,7)=(128,64,16)

| SNR [ 2025307357 4.0 ]
No of opr [10%] || 6.25 | 3.33 [ 1.82 [ 1.15 | 0.83
avep 3.24 | 2.55 | 2.04 | 1.71 | 1.46
avep 3.5 | 220 1.36 | 0.92 | 0.66
aves 1.41 | 0.67 | 0.30 | 0.14 | 0.07

Table 3: Computational complexity of different algorithms for (128,64,16) code

Average number of real operations at SNR: | Upper bound on
20 | 25 | 3.0 | 35 | 4.0 | 45 | 5.0 complexity
conventional MSD [10%] | 2.57 | 1.88 | 1.42 | 1.03 | 0.80 | 0.65 | 0.55 4.26

Decoding Algorithm

suboptimum IMS (109 | 6.25 | 3.33 | 1.82 | 1.15 | 0.83 | - 36.6
optimum IMS-MLD [10%] | 45.0 | 12.6 | 10.0 | 4.0 | 2.6 - - -
Viterbi 10°] 9.3 9.20 | 9.28 | 9.23 9.3

Table 4: Computational complexity of different algorithms for (128,99,8) code

. . Average number of real operations at SNR: | Upper bound on
Decoding Algorithm =5 —rEmma o e e o complexity
conventional MSD  [10%] | 1.2 | 1.1 | 0.9 | 0.7 [ 0.56 | 0.4 | 0.3 1.5
suboptimum IMS 104 33 | 21 | 1.3 | 0.8 [056| 0.4 | - 7.8
optimum IMS-MLD [10%] | 22.0| 79 | 6.3 | 1.0 | 0.56 | 0.4 - -
Viterbi [109] 462 | 4.61 | 4.56 | 4.44 | 4.20 | 3.82 | 3.29 4.63
RM(3.7)=(128,84,16} RM{4,7)=(128.09.6}

Bit error probablity

Figure 2: Performance of different algo- Figure 3: Performance of different algo-
rithms for (128,64,16) code rithms for (128,99,8) code
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1 Introduction

"The practical importance of Reed-solomon (RS) codes is well established (see
[1]-[3]). For these codes, the use of soft decision decoding can really improve
the performance (see [4]-[5]). In fact, in most cases, these codes are over Fam
but they are used under their expanded binary form and the avalaible soft
information is relative to the binary symbols. However, the soft decoding
algorithms as the Generalized Minimum Distance (GMD) of Forney [6] or
the Chase’s algorithm [7] make use of soft decision information only on the
byte level. In [1], it is explained that "the major drawback with RS codes
(for satellite use) is that the present generation of decoders do not make full
use of bit-based soft decision information”. Some works were presented in
order to improve this point [8]. This is also the purpose of this paper.

For this, we use for the decoding a permutation group acting on the g-
ary image of some g™-ary cyclic codes recently introduced in [9). The idea
of using some permutations for the hard decision decoding of some binary
codes was already proposed (see for example [10]). But here, we use the
permutations for the soft decision decoding of expanded RS codes.

The principle is the following. We first consider the received binary word
and we determine its least reliable bits with the bit-level soft information. By
using a permutation which lets invariant the code, we permute the received
word in order to "group” the non reliable bits on the same bytes. These
bytes are then considered as the least reliable for the soft decision decoding.

*The authors are now with the LaRIS, UT Belfort-Montbéliard, Rue du chéiteau -
Sévenans F-90010 BELFORT Cedex, France
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After the decoding, the binary form of the corrected word is permuted by
the inverse permutation to obtain the initial emitted word.

This extended abstract is organized as follows. In section 2, we first recall
the definition of the permutation group and its action over the codewords
[9]. In [9], it is proved that the g-ary image of some ¢™-ary RS codes are
invariant under the action of some of these particular groups. We also recall
these results. In the third section, we propose three decoding algorithms
using the permutations. We present simulation results to evaluate their bit
error rate (BER) performance for additive white gaussian noise (AWGN)
channels.

2 Permutation groups and invariant codes un-
der the action of some of these groups

In order to recall some results on codes invariant under the action of some
particular permutation groups, let us fix some notations and explain some
preliminary points.

In this paper we denote by [N =¢™—1,NZ] a cyclic code of length N
over IF,-, where NZ is its set of nonzeros. Let a = {ag,01,...,0m-1} be a
basis of g over IF, and let a(z) be an element of Fym[2]/(2" —1). We
define the g-ary image of a(z) with respect to the basis a by the bijective
module homomorphism :

D. - { Fq"‘[z]/(zN ~1) ) - (Fq[z']/(mN )
. a(z) = S0 (T @) — (ao(x), 01(2); - - s 0m-1(2))

where a;(z) = Y05 ai 7.

Now, we consider the RS code C; equal to [N, {$}];m, where S is a prim-
itive element of Fm. Let gi(z) be a generator of C;. When we write
the coefficients of JF,m over the basis ¢ then gi'(z) may be expressed as
0(z) (2% + ... + 2“"~1am_1), Where 6(2) is the primitive idempotent of
[N, {B,09,...,87 '}, (see [9] section 4). This writing defines a particular
m~tuple (ug, Uy, - .. Um-1)- The g-ary image of C; with respect to the basis
@ is equal to {D4(c(2))/c(z) € Ci} and we denote it by Da(C1). Then a
generator of Dy(Cy) is equal to (9(z)z™,...,0(z)z 1) (see [9] section 4).
Let us denote it by G3(z).

The expression of G5(z) leads us to define a permutation set such that
D,(C}) is invariant under the action of the permutations of this set. In 9]
it is proved that this set is a group. We only recall here its definition.
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Definition 2.1 Let C; be equal to [N, {3}],m, where B is a primitive element
of FFym. Suppose that Gf(z) = (0(z)z™, §(z)z™, ..., 8(z)z m1).

Let (I,0,a) be the permutation of {0,1,...,m — 1} x Z/(N) which send
(i, ) onto (o(0), (j + si"")q' +a), where

1- o € S (the group of permutations of {0,1,...,m —1})

2-a€ Z/(N)andl € {0,1,...,m—1}

- ) = g o) — Ui, fori=0,1,...,m— 1.

We define by P1% the permutation group equal to {(l,0,a),l =0,1,...,m—
1,0 € S, anda € Z/(N)}.

Let C be equal to [N, NZ]. Each codeword of D, (C) may be expressed
as a m x N-array, where a row corresponds to a polynomial of IF,[z]/(z" —1)
expressed in the monomial basis {1,z,z?%...,z7"1} and a column corre-
sponds to an element of JF';= expressed over JF', in the basis o. By a position
we means a pair (4,7) of {0,1,...,m—1} x Z/(N). Let us now provide the
precise definition of the action of P1% over an element of D,(C).

Definition 2.2 Let C be equal to [N,NZ]m. Let c¢(z) be an element of
D, (C). Let us suppose that c(x) = (co(x),c1(z), . .-, em-1(x)), where c;(z) =
i ezt Let (I,0,a) be a permutation of P
Then (1, 0,a) acts overc(x) such that the coefficient ¢; ; (on position (3, 7))
is sent onto the position (I,0,a)(3,7), fori=0,1,...,m—1 and j € Z/(N).
The new obtained word is called the permuted of c(x).

In the following proposition, we prove that for some particular code C
the permuted of a codeword of D, (C) is also a codeword of Dy(C).

Proposition 2.3 Let Cy be equal to [N, V]gm, where V is some union of full
sets of conjugates with respect to IF'y. Let C; be equal to [N, {}]qm, where
B is a primitive element of IFyn. And let us suppose that G3(z) = (8(zx)z¥,
6(z)z™, ..., O(z)zv=-1).

Then Dy(Ch), Da(C1) and Dy([N, {8} U V]m) are invariant under the
action of P,<.

PROOF See [9] prop. 4.5. O
Let at be the trace dual basis of & and C* the dual code of C.

Proposition 2.4 Let C be a code in Fym[2]/(2N — 1) such that Dy(C) is
invariant under the action of P12,
Then D,1(C*) is also invariant under the action of P;%.

PROOF See [9] prop. 4.6. O
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3 Decoding and simulations results

3.1 Decoding algorithms

We propose here three different algorithms based on permutations. The used
permutations are the permutations (1,0,0). We consider that ¢ is equal to 2
but these algorithms may be applied in the non-binary case. The principle
of the use of these permutations is the following :

We consider the received binary word and we permute it using one of
these permutations. We transform the obtained word into a 2™.ary word.
The soft coefficient of each 2™-ary symbol is determined as the worst (least
reliable) soft coefficients of the corresponding bits. Using these new coeffi-
cients, we use the usual RS soft decision decoding algorithm to produce some
proposed codewords. These codewords are expanded into their binary form
and permuted with the inverse permutation. The distance between each ob-
tained binary codewords and the initial binary received word is computed
(see [6]). The nearest codeword (the more likely) is retained.

Clearly, if the used permutation is the identity, we obtain the classical
decoding algorithm.

This operation is made for several permutations (one permutation corre-
sponds to one step). The final corrected word is the best of the codewords
proposed by the differents steps of the decoding. The difference between the
three algorithms is in the choice of the permutations to use.

The first one (PERM1) simply uses all the possible permutations. There-
fore, it processes m x m! soft decision decoding by word.

The second algorithm (PERM2) considers the differents rows of the re-
ceived binary word (considered as a m X N-array) and determines the d — 1
worst positions of each row. The used permutations are all that are able to
group onto one column only some of the non-reliable positions of the differ-
ents rows. The average number of the used permutations can be evaluated.
The decoder tries (d — 1)™ times to group m positions onto one column.

It is possible to verify that the probability to group m random positions
onto one column is less or equal to (m! x m)/N™"1. Thus to decode each
word, the decoder makes on average less than (d — 1)™ x (m! X m)/N™1
soft decision decoding by word.

The third algorithm (PERM3) determines the least reliable coefficient of
each row. It then considers all the possibilities to choose m — 1 rows in the
m rows. For each possibility, it considers all the permutations which are able
to group onto one column the worst position of each of the m — 1 rows. If
there are several permutations which verify this property, it chooses the one
such that the last coefficient of the column is the worst possible. The decoder
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therefore uses at most m soft decision decoding for each word.

3.2 Simulation results

In order to use the permutations in the decoding, let us consider the code
C = [7,{B} U {8°, 5%, B%}s, where 8 is such that % + 82+ 1 = 0. The
parameters of this code are [7,4,4], so it is able to correct ¢ errors and s
erasures provided that 2¢ 4+ s < 4. Thus, it can correct one byte error and
one byte erasure or 3 byte erasures. Let us consider D,(C), the binary
image of C with respect to the basis a equal to {1, a, o}, where o verifies
o® +a+1 = 0. Then GF(z) = (8(z),0(z)z®, 8(z)2?), where 8(z) is the
primitive idempotent of 7, {8, 3% #*}]z. Proposition 2.3 proves that Dy(C)
is invariant under the action of Pf.

The simulations first consist in adding a additive white gaussian noise
(AWGN) to the binary form of the sent codewords. For each bit, a soft
information is computed. Theoretically, this information is represented by
real numbers, but in practical, it is quantified. In these simulations, it is
quantified over 5 bits (32 possibles values).

In order to evaluate the bit error rate (BER) performances of these al-
gorithms, we implemented other known algorithms. The first one is the
maximum likelihood decoding (MLD). Its principle is simply to consider all
the codewords and to choose the nearest one of the received binary word. It
is the optimum decoding. The second one is the usual soft decision decoding
algorithm of G.D. Forney: the generalized minimum distance (GMD). Note
that the implemented version is the one presented by D.J. Taipale and M.J.
Seo in [11]. It is equivalent to the GMD algorithm of G.D. Forney [6], but it
needs less operations. The last one is the usual hard decision (HD) decoding.

The results of these simulations are presented on the figure 1.

The coding gain of the different algorithms at BER=1075 is :

decoding || MLD | PERM1 | PERM?2 | PERM3 |GMD | HD
gain 5.4 5.15 5 4.75 4 2.6

The performances of the 3 decoders PERM1, PERM2 and PERMS3 are
very interesting. They are not very far of those of the MLD (resp. 0.25, 0.4
and 0.65) and the gain in comparison with the GMD is significant (near 1.15,
1 and 0.75 dB).

If we consider the argument of complexity, PERM2 and PERM3 are the
most interesting. Actually, in all cases, PERM1 processes a soft decision
decoding for all the permutations. Thus, the number of needed operations
is multiplied by m x m! = 18. For PERM2, it is explained in the paragraph
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Figure 1: BER performances of the different decodings

3.1 that the average number of possible permutations is (d — 1)™ x (m! x
m)/N™! = 9.91. But a permutation can appear several times in the possible
permutations. In practical, the soft decision decoding associated to this
permutation is made only once. This fact is also true for PERM3. For
example, the m = 3 permutations found by PERM3 are identical in near
of third of cases. In this case, the decoder processes only one soft decision
decoding.

Moreover, for each of these three algorithms, as the different decodings are
independant, it is possible to process them in a parallel way. Furthermore,
the electronic complexity of a RS decoder including the permutations seems
to be not very important than one of an usual RS decoder.

Acknowledgments

The authors wish to acknowledge Professor Alain Poli for permit us to use
the software SECC made by M.C. Gennero, A. Poli and C. Poli.

108



References

[1]

2]

[3]

4]

[5]

[10]

[11]

E.R. Berlekamp, R.E. Peile, and S.P. Pope, "The application of error
control to communications”, IEEE Commun.Mag., vol 25, 1987.

W.W. Wu, D. Haccoun, R.E. Peile, and Y. Hirata, ” Coding for satellite
communications”, IEEE J.Select. Areas Commun., vol. SAC-5 , 1987

Consultative Committee for Space Data System, " Recommendations for
Space Data System Standarts: Telemetry Channel Coding”, Blue Book,
1984.

J.G. Proakis, ”"Digital Communications”, New York: McGraw-Hill,
1983.

G.C. Clark and J.B. Cain "Error Control Coding for Digital Communi-
cations”, New York: Plenum, 1981

G.D. Forney, Jr. ”"Generalized minimum distance decoding”, IEEE
Trans. Inform. Theory, vol. IT-12, 1966.

D. Chase, “A Class of Algorithms for Decoding Block Codes with Chan-
nel Measurement Information”, IEEE Trans. Inform. Theory, vol. IT-1,
no. 6, Jan. 1972.

A. Vardy and Y. Be’ery, "Bit-level Soft Decision Decoding of Reed-
Solomon Codes”, IEEE Trans. Inform. Theory, vol. 39, no. 3, March
1991.

J. Lacan and E. Delpeyroux, ”Permutation Group of the g-ary Image
of Some ¢™-ary Cyclic Codes”, Finite Field: Theory, Applications and
algorithms, Contemporary Mathematics, 225, American Mathematical
Society, 1998.

O. Papini, J. Wolfmann, ” Algebre Discréte et Codes Correcteurs”, Edi-
tions Springer-Verlag, Collections ”Mathématiques et Applications”, vol.
20, 1995.

D.J. Taipale and M.J. Seo, ” An Efficient Soft-Decision Reed-Solomon
Decoding Algorithm”, IEEE Trans. Inform. Theory, vol. 43, no. 2, July
1994.

109



110



Min-seok Oh Peter Sweeney
CCSR CCSR
University of Surrey University of Surrey,
GUILDFORD, GU2 5XH, U.K. GUILDFORD, GU2 5XH, UK.

m.oh@ee.surrey.ac.uk p.sweeney @ee.surrey.ac.uk

Abstract .,
We present a novel sequential decoding based on bit-level soft-decision for RS codes.

In the scheme, each information bit stream is encoded by a binary generator matrix in

systematic form and a binary-branch trellis is constructed by using a binary paritycheck

matrix. For sequential decoding, the standard Fano decoding algorithm is modified to get

near maximum likelihood performance. In order to minimise the required computations,

we employ a technique of sequence shifting so that a more reliable consecutive bit
sequence is chosen as the information sequence.

L Introduction

Reed Solomon codes are known to be very effective for practical applications requiring
burst error correction or concatenated coding. In spite of these strengths, soft-decision
decoding is not generally available, being much more complex than hard-decision
decoding. Although Forney and Chase have presented algebraic decoding methods using
soft decisions [14][15], they used the soft-decision information at the symbol level and
their methods had limitations in the aspect of complexity and performance. More
recently, there was a bit-level soft-decision decoding approach [22] using a binary matrix
for RS codes. It was a useful approach toward the implementation of maximum
likelihood performance for RS codes using bit-level-soft-decision decoding.

Subsequently, the use of trellis decoding methods has also been reported [4] using a
sequential decoding method on symbol level trellis structure. In that work, although the
results obtained were good, the approach did not use the soft-decision information at the
bit level and the non-binary-branch trellis structure needed a large number of
computations due to alternative path searching. This potential problem is expected to be
more serious in the application to long RS codes.

From the view-point of the sequential decoder, a trellis structure with fewer branches
will be more efficient even if the search depth increases. The reason is that the
complexity of sequential decoding does not increase exponentially with constraint length,
in particular with the number of parity check symbols in block codes.

In this paper we present a decoding method that can completely use the bit level soft-
decision information. It is carried out on a systematic trellis structure with binary-
branches, which is constructed by a decomposition process in which the multilevel linear
cyclic block codes are mapped onto an equivalent binary code. In the structure, the binary
parity check matrix is used to construct a systematic trellis structure[1]. This trellis
structure makes the sequential decoder reflect bit-level soft decision information.

For decoding, the Fano algorithm is adapted to achieve hear maximum likelihood
performance. In order to get more computational gain, a technique of sequence shifting is
introduced, in which a more reliable consecutive bit sequence is chosen as the
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information sequence by cyclic-shifting of the received sequence. Since a shifted
sequence with the most reliable information sequence is also a code word, the decoder
can simply use the same trellis structure without any additional process.

Simulation has been carried out assuming BPSK modulation and 16 level demodulator
quantization on an AWGN channel. The procedure for the binary-branch trellis is
described in Section II. In section III, the Fano decoding algorithm and its modifications
are explained and there is a discussion of the computational problem and the different
types decoding failure event. Finally, simulation results are shown and analysed in section
IV in terms of performance and complexity.

IL Binary branch trellis for RS codes

Consider t-error correcting (n, k) RS codes over GF(2") with minimum distance d.
Since RS codes are linear cyclic codes in the symbol basis, the set of all possible codes,

C, can be generated by the matrix equation such that C=X-G where X is the k
information sequence x = {xo,%,,~-%,,} and G is a kxn generator matrix with the cyclic

form of the generator polynomial g(x) [17][18][22] .
In order to construct the binary generator matrix, let v,.¥,-Y ... be the basis of GF(2™)
for binary representation so that any element g over GF(2™) can be expressed as

B=Fv" for b' € GF(2). (1.1)

Then the code word sequence c =(c,,¢;,**,¢, ;) is represented by
c= (bg'_lsb(')"-z,"':bg’_brlsblm-zv'"sbloo """ ,bm-l b’:z""’b,?.l) s (1'2)

n=1 “n

where b/ € GF(2) and ¢, ="'§';1b{ «* for i=0,1.--n—1. Thus the i-th symbol element of the
I=0
code word, ¢,, can be written associated with the generator matrix G for an information
symbol sequence x = {xg, %, X;,_,} @S
k=1 k=1 { m-1 ! f
=% 8= Z( b; -y )'Sﬁ
j=0

J=0\I=0
= j=0[b0bj . ['Y . gji]] (]_3)
where g; is the symbol element in the j-th row and i-th column of the matrix G with an

element over GF(2™). Since the term in the inner bracket becomes another linear
combination, symbol elements of the matrixG can be viewed ate the bit level as

m-1

o a™xg,

Polgy= : , 14

o’ a’xg;
where o is a primitive element of GF(2™). As a result we have the k-mxn-mbinary
generator matrix G,. For the systematic codes, if the matrix G is changed before the
decomposition, the obtained G, is also in systematic form. With the binary generator

matrix G, , each bit of a code word is represented by

¢=5%-6,64)  for j=0L-,nm-1, (L5)

i=0
where X, is the i-th bit of information sequence, G,(, ) is the i-th row and j-th column of

generator matrix G,. The code obtained is linear and quasi-cyclic.
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Once the systematic binary generator matrix G, is determined, the parity check matrix
H, is easily obtained by transposing the sub-matrix of the first k-m identical matrix.
Thus we have the binary parity check matrix H, from G, as

H,=ltoihy = ], (1.6)
where &, is the j-th column of H, , which is a with (n—k)-m-tuple.

From the binary parity check matrix H,, we construct the trellis structure defined by
Wolf [1]. The state for a node of depth (j+1) is obtained as

Sm=S;+c) h for j=01,---,nm-1 1.7
where S, is (n—k)-m-tuple zero state and ¢ is the j-th bit of a code word. The state for
arbitrary depth k is expressed by "
S, = icj?_, ‘hyy (1.8)
=1

This trellis structure has the following properties [1]:
e Number of possible states is min(2*,2"™*).
e Trellis sequence starts with (n-k)-m-tuple zero state and ends with the zero state.

o Trellis sequence is periodic and the reverse trellis sequence also exists.
On the trellis structure, there are 2™ possible paths which correspond to a unique code
word. '

II1. Sequential decoder

In this section, the application of Fano sequential decoding is explained on the
systematic binary-branch trellis structure which has been described in the previous
section. Each searching operation is performed with the metric based on the bit-level
soft-decision. For (n,k) RS codes over GF(2") the length is m-a but the decoder needs
the path extensions only up to depth m-k because the state at the end of an information
sequence implicates the unique correct path.

For near maximum likelihood performance, the Fano algorithm is modified, and a
sequence shifting method is presented to ameliorate the computational problem.

Decoding failure events of the sequential decoder

We consider three kinds of decoding failure sources in sequential decoding. The first
happens in the case that the whole path metric A, of a searched path is greater than the
path metric A, for the transmitted code. In this situation, the searched path is regarded as
correct and thus these errors can not be corrected even in any maximum-likelihood
decoder. We define this type of decoding failure as an uncorrectable error event, having
probability p, .

The second type of error event happens in the case that the sequential decoder has
chosen a sub-optimum path as being correct. If maximum likelihood decoding, e.g. the
Viterbi algorithm, were implemented, such errors would be able to be corrected because
better paths still exist among those that have not been tried. This type of error occurrence
is designated an error event by a wrong path and its probability is represented by p,, .

The third error source arises from the limitation of computations to avoid decoder
buffer overflow. In a practical system, this problem can be handled in two ways. One is
to deliver just the information symbols in a systematic code or to take linear combinations
in a non-systematic code. The other method is to erase the affected sequence and call for
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retransmission. Actually this type of errors is the most serious in practical
applications[11]. We also define this decoding error probability asp. .

From the consideration of above three types of the decoding failures, the overall

decoding error probability P, is upper bounded as
p.<p,+p,tp, 2.1)
Performance improvement

The decoding performance can be improved by minimising the p, and p,at the cost of
additional computations. To limit the complexity, we introduce the decision rule function
and the path updating function.

The decision rule function is used to reduce the p,,. This function is carried at the end
of the depth to decide whether a searched path is accepted by a decision rule. If a
searched path does not satisfy the decision rule, the path is ignored and the decoder
initiates the back tracking operation to look for more likely path.

Fano proposed a threshold condition[5] for a correct path in sequential decoding such
that

é[log—gl%]z N-R, fori=0,1 2.2)
i[log————p U _ R] >0, (23)
= p)

here p(j)is the total probability of observing an output in the j-th quantization level,
p(j|i)is the probability of observing in the j-th quantization interval given that the symbol
i is transmitted, N is the number of the output sequence, and R is the code rate. Let
Nbe the code length, then the left term of equation (2.3) represents the whole path
‘metric, and thus we can get a useful interpretation that the path metric of the correct path
is lower bounded by zero. By this condition, we find decision rule I which is to compare
the A, for the searched path to zero.
Decision rule II has a further step that includes the additional comparison between the
A, and the A, for the information sequence. Since the whole path metric A, is greater

than A, in the correct path, only a path satisfying the condition A, >A, is accepted as a
correct path. Furthermore the second decision rule has the bias term B, to avoid decoding
failure by a slight difference between A, and A,. The value of B, is empirically obtained

from the inspection of the distribution of such error patterns. Figure 1.1 shows the flow
chart of the decision rule.
Next we consider the decoding failure event with probability p,. In general, a larger

decoder buffer contributes to lower decoding error probability, but in the worst channel
conditions it is likely that other error mechanisms will produce errors regardless of the
buffering provided. Therefore the improvement of p, within a given computational limit

is desirable; this problem has been discussed by Anderson[6]. In this paper, we propose
the use of a path updating function as follows.

The decoder calculates the whole path metric of a searched path at the end of the
information sequence. Whenever a searched path has path metric greater than the best
one recorded so far, the path is updated as the best path. In the meantime, when the
decoder reaches the computational limit without any valid path search, it releases the best
path as the decoded one.

In this scheme, since the updated path is always the most likely path among the
searched paths, if the correct path has been tried at least once, the decoder can produce
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the maximum likelihood decoding decision. Thus it is important that the searching
operation is carried out in the region including the correct path. Furthermore if the
computational limitation is set efficiently, the computational complexity will be improved
considerably as well. Figure 1.2 shows the flow of the path updating function at the depth
k which is the end of information sequence.

{nitiate Back
a ’ I tracking operation

Relaase the h
path

Figure 1.1 Flow chart of decision rule Figure 1.2 Path update process

Computational complexity of the sequential decoder

We consider two important aspects that affect the computational complexity in the
sequential decoding; trellis complexity and algorithm complexity.

Trellis complexity is discussed in terms of state-complexity [21] or branch complexity
[19]. In this paper, we present the method to reduce the branch-complexity.

The usual trellis structure for (z,k) RS codes has 2™ non-binary branches at each node.
However, this trellis characteristic causes heavy alternative searching operations in the
application of long RS codes. At this point, we realise the attractive property of
sequential decoding that its complexity does not increase exponentially with the trellis
depth. Thus the binary-branch trellis structure seems desirable to avoid the complex
alternative searching.

The decomposition process explained in section II allows the simple binary-branch
trellis. In the structure, the whole depth becomes longer from nto n-m but the branches
at each level are reduced from 2" to 2. On this trellis structure, sequential decoding is
applied with the bit-level metric.

The other complexity problem exists in the sequential algorithm. There are many
factors that affect the computations of a sequential algorithm such as the number of
errors, the burst length, the error position, and the confidence level of the error bit.
Among the factors, we are interested in the complexity dependent on the position of
errors, because other factors are more difficult to manage in the decoder. Figure 2 is the
computational distribution for the correction of a single bit error occurring in each bit
position of a code word. It is seen that the computations required decrease as the error
occurs in later position, and an error in the parity check part has an effect which is less
dependent on the position than one in the information part.

By investigation of the computational distribution in Figure 2, we derive a scheme
called sequence shifting, in which the decoder tries a cyclically shifted sequence with
more reliable information bits. In this scheme, the decoder firstly deals with a sequence in
which less reliable bits have been shifted to the rear of the sequence. The most reliable
sequence is decided by summing the confidences for the k information symbol block from
each symbol position, sorting the results into order.
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Figure 2 Computational distribution
for one-bit error correction in different positions

Thus the sum of confidences, I,, for k consecutive symbol sequence starting from the
k-1

i-th symbol position is represented by I, =3, fem, for i=01-,n-1, where f, is the
=0

confidence level of the j-th symbol of the received sequence. Figure 3.1 shows the
process to select the best reliable information sequence at the received sequence.

e Jalelafe]e el

Seq. 1, >

Seq. I <« >

Seq. I, -+ .

Seq. I .5 L +—
Seq. I, - ———
Seq. 1, > <

Figure 3.1 The most reliable sequence sorting

For the efficiency of the searching operation, the decoder can try more than one
sequence, with a reduced computational limit, L_, such that an overall computation limit

L is observed. If the first sequence reaches the L_, the next reliable sequence is tried. This

procedure is continued within the trial number ¥ until the correct path has been found.
Figure 3.2 shows this strategy for (15, 9) RS codes. Once the number of tried sequences
Y is decided, the computational limit Z, for each sequence is

L
L=7 (24)
At every sequence shift, the shifted number is saved and used to restore the original
sequence order after a sequence has been released as the decoded one. By using the
sequence shifting method with the sequence trial number ¥, certain bad combinations of
errors may be avoided. In particular, in channel conditions with low bit error rate, or
where error tend to occur in bursts, the complexity can be improved significantly. Other
approaches are of course possible, including completely re-ordering the sequence and the

trellis according to reliability, but this might be impractical for hardware implementation.
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Cost-effective decoder

Finally we present a cost-effective decoder using the previous techniques for the
improvement of the performance and complexity. Figure 4 shows the flow of the
modified Fano algorithm and Figure 5 is the overall decoding procedure. In the decoding
scheme, the computations increase due to the modification for the performance
improvement than those using standard Fano algorithm, but the sequence shifting method
makes the additional cost minimised with the performance improvement. Therefore if the
optimised L and Y are applied, this decoding scheme will be very effective producing
near maximum likelihoodperformance.

{ P1:Decoding Fallurs ﬁ

Initlalize prrameters

{=0.7,0=0
TalF 0)=0

Wmﬁl'-

AG+D = AQdy (14T

P,(f)w 0:3clect th ebest branch

F ()= 1:select alternitiy o branch

Yeou
x

Relegase {he best
codeword

I= wellisdepth, F, () = the first visitindication flag at depth!,
T = current threshold, A(}) = path metric at depth /,

F, ()= alternative searching indication flag at depthl,
AT = Threshold spacing
Figure 4 Modified Fano Algorithm
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IV. Simulation Results .

The simulation has been performed on digital communication model which consists of
a BPSK system with 16 level quantized demodulator output on the AWGN channel. The
performance is analysed in two aspects of the decoding error probability p,and the

average path extensions per bit, C . Threshold spacing AT, the computational limit Z and
bias B, have been determined as the optimised values. Floating point numbers were used

for the metric so that possible calculation error is minimised.

Effect of sequence shifting

Figure 6 and Figure 7 show the effect of the sequence shifting for (7,3) and (15,9) RS
codes using the standard Fano algorithm. In the simulation, the values of the
computational limit Z were fixed at 2'° and 2™ for only one sequence, that is Y=1.

In the results, the decoding method using the sequence shifting produced slightly better
performance for (7,3) RS codes and for (15,9) RS codes. On the other hand, in the
complexity comparison the use of the shifting method showed much lower computations
for both codes. In particular the reduction of complexity appeared more effectively in
(15,9) RS codes. Moreover as Eb/No increases, the required computations have been
reduced rapidly. From these results, it has been demonstrated that a shifted sequence with
less complex error pattern produces lower complexity with at least equal performance. If
such a scheme is used with an algorithm optimised for error correcting ability, it will be
more effective in the decoding of long RS codes.

Performance comparison by sequence shifting Complexity comparison by sequence shm_lng_
using standard Fano algorihm 10t using soft decision -

&—e (7,3) RS codes without seq.shifling

u- - - (7,5) RS codes using seq:shifting

'v—¥ (15,9) RS codes withoul seq.shifiing
- 9] RS codes usi .shifti

BER 10 |ioowre,

)

10° |;n:[ = Uncoded

|8~ (7,3} RS codes without seq. shifing.
{7,3} RS codes using seq. shiti

Number of computations per a bit

10° | L
107 0 : 50 a0 10‘3.0 40 5:0 — 5':)
Eb/No(dB) Eb/No (dB)
Figure 6 Comparison of performance Figure 7 Complexity comparison
for sequence shifting method for sequence shifting method

Cost effective performance

Figure 8 and Figure 9 are, from the simulations, considered to represent the most cost-
effective configurations for RS codes with different code lengths and code rates. The
simulations have been carried out under the optimised values of L, L, and Y. In the
results, because of the decision rule function, the decoder required more computations
but the use of the sequence shifting with optimised ¥, reduced the complexity and
maximised the performance.
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Figure 9 illustrates that the complexity decreases rapidly as SNR is high and the
computational reductions were relatively effective in the decoding of low code rate with
long codes.

Cost-effactive performance Complexity comparison
using soft decision using soft decislon

b [6—= (7,3 RS coden
- - @ (7,5) AS codes
v——v (15,9) RS codes
- - 4 (15,11) AS codes
w6 L »—= (15,13) RS codes
28} RS codes

@
m
0
5

Number of eomputations per a bit
a

TS

38 ' 80 1 EY] a0 50 0
Eb/No(dB) Eb/No (dB)
Figure 8 Cost-effective performance Figure 9 Complexity comparison for
for RS codes RS codes

V. Conclusion

We have presented a cost-effective decoder for RS codes. The binary codes produced
by decomposition enabled the decoder to use the bit-level soft decision values on the
binary-branch trellis structure. Although the overall searching depth increased, the binary-
branch structure allowing only one alternative searching produced more efficient back-
tracking-operation. Moreover the sequence shifting method demonstrated the great
computational reduction and it maximised the roles of the decision rule and path updating
function.

When the Viterbi algorithm is compared, this new decoding approach has very low
complexity while the decoding error probability is close to the maximum likelihood
performance. As the code length increases or SNR increases, the computational
efficiency will be relatively improved. In the comparison with previous work [4], this
approach showed slightly better coding gain but much lower complexity. In addition,
since this approach has employed the soft decision values in bit level for the sequential
decoding, it can reflect the channel information for each bit so that the decoder can
search the correct path with more reliable bit-level channel information.

In order to achieve the most cost-effective decoder, the decoding -parameters
L,L, and Y should be adjusted according to a given channel condition, code rate, and
code length. In general, the larger computational limit the better performance produced.
However, the decision on these parameters must be chosen by considering the additional
complexity required for any performance improvement.
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1 Introduction

A classical problem of coding theory is to study the behaviour of the prob-
ability of a decoding error fc(p) when a block code C' is used to transmit
information over a binary symmetric channel with transition probability p.
This quantity is defined as the average over all codewords z of C of the prob-
ability f%(p) that a maximum-likelihood decoding scheme does not recover
the transmitted word z.

Shannon’s fondamental theorem states that for any R < 1 — Hy(p), where
H,(p) = —plogyp — (1 — p) log,(1 — p) is the binary entropy function, there
exist families (C,) of codes with increasing block length n and fixed rate
R such that fg,(p) vanishes when n tends to infinity. Ever since, a lot of
effort was put into studying the asymptotic behaviour of fo(p) for the best
codes. In particular it was proved that, for the best codes of length n, fo(p)
is exponentially small in n as long as R < 1 — Hj(p), and the best known
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upper bounds of the form
fc(p) S e_nE(R7P)+O(n) (1)

are due to Elias [3] and Gallager [4, 5]. Furthermore, results of type (1) are
obtained by random coding arguments and are valid for almost all codes.

Let us rephrase the above facts by defining the threshold decoding proba-
bility of C, as the value @ such that

fe(0) =1/2.

For growing n and for codes of rate R with a distribution of weights ap-
proaching the binomial distribution, that is almost all codes, we have

0= H;'(1— R)+o(1). (2)

Furthermore, if we pick a random code C of large block length n, its proba-
bility fc(p) of decoding error will almost surely jump suddenly from almost
zero to almost one around the threshold probability #(C') and satisfy an upper
bound of the type

fC(p) < e-—-nK(G,p)+o(n)

where K (6,p) is some function such that K(6,p) > 0 for p < 6. The best
known lower bound on K(6, p) gives :

K(0,p) 2 Hln% +(1-6)ln %’Q for ‘9‘2+(912—9)2 <p<é
K@,p) > Hy(0)In2-2In(\/p++/1-p) for 0 < p < 92+€12—6)2

In this paper we prove a result of a similar nature for all codes. For reasons
of clarity we shall state the results for linear codes but linearity is actually
not essential. We obtain bounds on fo(p) which depends only on the code’s
minimum distance d(C) and its threshold probability #(C) and does not
presuppose anything else about its weight distribution. The upperbound is
of the form

fo(p) < e~dL0P)

where L(f,p) is a function such that L(6,p) > 0 for p < 8. In other words,
as long as p stays smaller than a certain threshold value, fc(p) is an expo-
nentially small function of the minimum distance.

More precisely, we have the following theorem.
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Theorem 1 Let C be a linear binary block code of any length, and minimum
distance d. Qver the binary symmetric channel with transition probability p,
the probability of decoding error fc(p) of the code C satisfies :

folp) < @ [ (\/— (1~ 6) — /= In(1 = p))]

where 6 is the threshold decoding probability of C, i.e. is the transition prob-
ability for which fc(ﬁ) = 1/2, and ® stands for the Gaussian cumulative
distribution, ®(z) = = [ e™/2dt.

Note that for growing d this upperbound is smaller than e~¢4%#) with

(\/ﬁ m)

Moreover, if we denote by d the quantity d(C)/n, then from (2) we know
that for almost all codes # is much bigger than §/2 and we obtain an upper-
bound on the probability of decoding error which vanishes exponentially in d
for values of p between §/2 and 8. We don’t know of any other bound which
involves only d and # which gives a result of this kind.

Theorem 1 is in fact a consequence of a more general result which we
obtain by refining an isoperimetric method introduced by Margulis [6] and
further developped by Talagrand [7] and Bobkov [1].

2 A sketch of the proof of Theorem 1

A general result about the threshold behaviour of monotone prop-
erties

Theorem 1 is actually a consequence of a much more general result which
estimates the threshold behavior of monotone properties. By a monotone
(increasing) property on H® = {0,1}" we mean a subset € of H” which
is increasing with respect to the partial order for which z < y iff for any
t=1,2,...,n we have z; < y;. In other words whenever z belongs to 2 any
Y = z is also in Q. A decreasing property is a subset 2 C {0,1}" such that
whenever z € ) any y < z is also in Q.

'To bring in this general result about the threshold behaviour of monotone
properties we need some additional notation and a few definitions. Let u,
denote the measure on H” defined for any subset Q c H” by

pp(Q) = > pll(1 — p)n-iel.

e
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Here |z| denotes the weight Y, =; of a binary vector £ = (Z1,... ,Zn) €
H".

In order to study the behaviour of f(p) = u,(Q) as a function of p,
Margulis introduced in 1974 [6], the function hq(x) defined by

ho(z) = 0 ifz gQ
ho(z) = card{y € Q,d(z,y) =1} ifz e

where d(z,y) denotes the Hamming distance between z and y. By estimating
the quantity [ hodpu,, Margulis obtains, for increasing sets Q, a lower bound
on % 1ip(€) that quantifies the “threshold behaviour” of f(p) = p,(€2). Ta-
lagrand obtained more precise information on ,(f2) by studying [ Vhadp,
[7], and Bobkov and Goetze [1] improved his results by showing :

[ Ve > ——em () ®)
12

B 3i-p

where J(z) = z(1 — z),/ ln(;ul_—z)). This may be thought of as an
isoperimetric inequality, since [ Vhadp, is a measure of the boundary o0 =
{z, ha(z) # 0} of Q.

We further improve on this by showing :

Theorem 2 Let ¢ denote the normal density, i.e ¢(t) = -\71—2?642/2 and let

® stand for the Gaussian cumulative distribution, that is ®(z) = ffeo o(t)dt.
Let U be the function defined on (0,1) by ¥(z) = ¢(®~'(z)), and extended
by continuity on [0,1] with ¥(0) = ¥(1) = 0.

For any increasing set ) we have :

1
Vhadpy, > ———
/ oty = v2Inl/p

Remark. When p,(€) tends to 0, it can be checked that the lower bound

. - . 1
in the above theorem is equivalent to \/1}1_17;‘] (pp(£2))-

A proof of theorem 2 will be given in the full paper. The isoperimetric
inequality in theorem 2 can be integrated to yield the following :

\I’(.U'P(Q)) (4)
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Theorem 3 Let () C H" be an increasing set, let 0Q = {w, hq(w) # 0} and
let A = infean ha(w). Let f(p) = pp(Q) and let § be defined by f(6) = 1/2.
Then f(p) satisfies :

flp) < @(\/ﬁ(\/-ln —\/—lnp)) for 0<p<@ - (5)
flp) > @(\/ﬁ(\/—'ln —\/—élnp)) for 8 <p<1. (6)

Before we give the proof of this theorem let us first gather a few properties
on ® and ¥ that we need. (For a proof of these statements see for instance
[2] lemma 5.2 p.88).

lemma 1 i. ¥ is a positive and concave function on (0,1),and ¥(z) =
U(1 —z) for every z € (0,1),

i, U= -9

i, UT" = —1 on (0,1).

Proof of theorem 3 : First note that the Cauchy-Schwartz inequality gives us

/\/’m—(x)dﬂp < (Np(aﬂ)fhﬂ(x)dﬂp )1/2

and, since [ ho(z)dp, > [0 Adu, = Apy(0£2) by definition of A, we get :

[ ha@du, > VA [ VoGl @

Next apply Margulis-Russo’s formula [7]

d 1
@ =2 / hea(2)dps,

which together with (7) and theorem 2 gives us :

) VA
f'(p) > m‘ﬂf@))

Apply property 4ii. of lemma 1, -ﬁs) = U”(s), to obtain

1 ! ‘/Z
-¥(f(p)f (p) > WY
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Next, multiply by -1 and integrate : we get, for p < 6,

8 8
[wvenrens [ g,

ie.

9

'(9) — U'(p) < [\/—.m In s] :

)
Then we use the the fact that ¥'(f(0)) = ¥'(1/2) = 0 and —¥'(f(p)) =
®~1(f(p)) by property ii. of lemma 1. The left-hand side of the last inequality
is therefore simply ®~1(f(p)). Since & is increasing, apply @ to obtain (5).
To obtain (6), integrate (8) between 6 and p.

Remark. Note that for large negative ¢t we have log ®(t) ~ —t2/2, so that
we have an upper bound for fixed p < # and growing A which is exponential
in A. It should be mentioned that applying the aforementioned isoperimetric
inequalities of [7, 1] would also yield exponential bounds but with a much
smaller exponent (by a factor of more than one hundred).

Maximum-likelihood decoding. It is rather straightforward to apply
theorem 3 in order to estimate the probability of decoding error. In this
extended abstract we will only consider the case of linear codes. Let C C H"
be such a code of dimension & and minimum distance d. Let r =n — k. Let
H be a parity-check matrix for C' and for any z € H"™ define its syndrome
o(z) = H.*z. To every one of the 2" possible syndromes s associate an w € H”
of minimum weight such that o(w) = s. Let Q be the set of all those w’s, so
that o is a one-to-one correspondence between Q2 and the set S of syndromes.
The set Q is a decoding region for the zero codeword, i.e. a set of correctable
error-patterns. A maximum-likelihood decoding scheme consists of adding
to the received vector v the vector w € Q such that o(w) = o(v). A decoding
error occurs if the codeword thus obtained is not the original codeword, i.e.
if the error vector is not in . This happens with probability

fC(p) =1- ,U'p(Q)-
Remark. The set Q is decreasing.

‘We have :

proposition 1 If Q is a decoding region for the zero codeword of C, and if
A= infweag hQ(w), then
A > df2.
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Proof : Let w € 0f2. This means that no codeword is nearer to w than the
zero codeword (w € (2), and that there exists a codeword ¢ # 0 such that
changing one ‘0’ coordinate of w to ‘1’ will change w into a vector closer to
c than to zero (w is on the frontier). But then there must be at least |c|/2
‘0’ coordinates of w that, when changed to ‘1’ change w into a vector closer
to ¢ than to zero. Otherwise w + ¢ would be a vector of weight strictly less
than w and with the same syndrome. This contradicts the definition of Q. a

For any vector = (%;)1<i<n of H, let 7 = (1 — Z;)1<i<n. Note that Q is
an increasing set, that ho(z) = hg(T), and that

o) = p11-,(9).

Theorem 1 therefore follows from theorem 3 applied to Q.
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On the relation of error correction and
cryptography to an off line biometric based
identification scheme
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Abstract

An off-line biometric identification protocol based on error correct-
ing codes was recently developed as an enabling technology for secure
biometric based user authentication. The protocol was designed to
bind a user’s iris biometric template with authorization information
via a magnetic strip in the off-line case while reducing the exposure of
a user’s biometric data. In this paper we give an in depth discussion
of the role of error correcting codes in the cryptographically secure
biometric authentication scheme.

An Iris scan is a biometric technology which uses the human iris to au-
thenticate users [BAW96, HMW90, Dau92, Wil96]. This technology produces
a 2048 bit user biometric template such that any future scan of the same
user’s iris will generate a “similar” template. By similar, we mean having an
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acceptable Hamming distance within a predefined range, usually around one
to ten percent of the size of the code (e.g., Hamming distance between origi-
nal reading and future reading is set to be in the range from 20 to 200). One
can think of a biometric reading of a user as a faulty communication channel
which may introduce a limited number of errors. Moreover, the Hamming
distance for the biometric readings of two different users has been shown to
be much higher, about 45 percent (or 920 bits).

Recently, a cryptographically secure mechanism for off-line biometric
identification based on majority decoding and error correction codes (ECC')
was developed [DFM98]. The process of an off-line biometric system is the
following. A user, during an initialization step, is provided with a storage
device / token (e.g., a magnetic strip, smartcard, etc.) by a trusted autho-
rization authority. The token contains a signature and other data which can
later be used to prove that the user’s biometric is cryptographically bound
to the signature of the trusted third party. During a future reading, the
user first provides the token to a reader, the reader then obtains a new iris
scan template from the user, and finally the reader determines if the new
scan is cryptographically bound to the signature (of the trusted authority)
on the card. It should be noted that the purpose of the signature is to en-
able the verification process to be done off-line, i.e. without connectivity to
the trusted authority during future verifications. Moreover, it should be ob-
served that the system must handle differences (within the allowed Hamming
distance) from the original reading and future readings of the user’s iris scan,
because the digital signature verification will fail if there is any differences
from its original input (message). Off-line biometric authentication proto-
cols, of course, can be used in an online mode by replacing the token entry
as a record on an online database.

A biometric identification system which provides the user’s biometric tem-
plate in the clear may not be acceptable to the user, because template could
be used for unacceptable purposes if the template is obtained by an unautho-
rized individual. For instance, an iris scan may be used for medical purposes
by an insurance company instead of the legitimate identification process the
user was told to submit to.

In the work [DFM98], the feasibility of protecting the privacy of a user’s
biometric on an insecure storage device was studied. It was suggested that
providing additional privacy for the user’s biometric may provide for stronger
user acceptance. An additional constraint to make the system scalable was
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that neither the user nor the reader have private keys (or passwords) when the
user must have authorization amongst multiple readers and when password
protection is inappropriate. Providing for authorization bound to a biometric
template appears to be inherently difficult in ‘this model, because the user’s
biometric template cannot exist in the clear on the storage device. Since the
original template is not stored on the token, a new verification algorithm,
different from measuring Hamming distance from original template to new
reading, had to be developed.

Here we study the relation of error correction and cryptography to an
off-line biometric based identification scheme presented in [DFM98]. In par-
ticular, we will study the role of majority decoding, along with algebraic
decoding, in the authentication scheme.

1 Background

1.1 Error correcting codes

Majority decoding: In the rest of the paper, we will consider only binary
error correcting codes. We will denote by al|b the concatenation of two strings
a,b. -
Let ; = wiillvigll...||vin be n bit code vectors. Given odd M vec-
tors 4, a majority decoder computes vector V = V;||Vs...||V,, where Vi =
majority(vy j,. .., Unm, ), i.e., V; is the majority of 0’s or 1’s of bit j from each
of the M vectors. We shall use majority decoding primarily to get the best
biometric reading possible, thus reducing the Hamming distance between
successive final readings V.

In the biometric authentication protocol, described in Section 1.2 the
biometric being measured will be estimated by sampling since the actual
unique iris is not measured with precision. The samples that are taken of the
iris will converge to the actual unique individual biometric, with majority
decoding, with high probability.

Algebraic decoding: An [n, k,d] code [Ber68, MS78, PW88] is a code
of n bit codewords (vectors) where k is the number of information digits and
d is the minimum distance of code. Such a code can correct ¢ = (d — 1)/2
errors.
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Note: Bounded distance decoding: In the rest of the paper, we
assume that the decoding performed at the point of verification is to cor-
rect at most (d — 1)/2 errors. This is necessary to ensure that no bogus
biometric is decoded into a valid one. Bounded distance decoding can be
readily implemented through a simple count of the Hamming weight of the
error vector computed. In some decoding schemes, the error locations that
are computed are the roots of some polynomial o(z) over GF(2™) of degree
' = degree(o(2)). Ift' >t = (d — 1)/2 then the biometric is rejected.

1.2 An off-line biometric system

The basic idea of [DFM98] is that a user’s biometric template can be used
as the information bits of an error correcting code. Now instead of including
the biometric template on the storage device, only the error correction bits
are necessary. Since only the check bits are stored on the user’s card, the
available information about the biometric template is reduced. On the other
hand, the reader can take a new reading of the user’s biometric template,
append the error correcting bits, remove the errors using bounded distance
decoding, and finally reproduce the original template, which can be verified
with the signature on the token.

One other hurdle has to be overcome to provide security. The signature
may itself leak the user’s template. Observe that (M, SIG(M)) is a signature
for message M which leaks all bits of M,.yet is a valid signature of M. To
resolve this problem, special hash functions were used.

Here is a brief summary of the basic off-line biometric protocol presented
in [DFM98].

System Setup: The authorization authority generates its public and pri-
vate keys and disseminates its public key to the biometric readers. The
system also sets up an algebraic [n, k, d] code. We remind the reader that we
use bounded distance decoding.

User Initialization: To register, M biometric templates of length &k are
independently generated for the legitimate user. Majority decoding is then
applied to the M biometrics to obtain the user’s k bit template T. Given the
k information digits T, an 7 digit codeword T||C is constructed, where c
are the check digits, in the [n, k, d] code defined at system setup. A storage
device is constructed with the following information:
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1. Name of the individual, NAME.

2. Other public attributes ATTR, such as the issuing center and a user’s
access control list.

3. The check digits ¢ , of the biometric.

4. Sig(Hash(NAME, ATTR, T||C)) where Sig(z) denotes the authoriza-
tion officer’s signature of 2, and Hash(-) is a partial information hiding
hash function [Can97] (e.g., Sig(Hash(-)) is a content-hiding signature)
or a random oracle (See [BR93]).

Biometric verification process: When a user presents herself/himself and
the card with the information described above, M biometric templates are
independently generated for the user. Majority decoding is applied to the
M biometric vectors to obtain the user’s k& bit template T'. Error correc-
tion is performed on codeword 1" ||C_" to obtain the corrected biometric 7.
The signature Sig(Hash(NAME, ATTR, 7"||C)) is then verified. Successful
signature verification implies the user passed the identification step. For sim-
plicity of exposition, we assume that occasional rejection of a valid user is
acceptable (the user would simply repeat the scan). In applications where
rejection of a valid user is not acceptable, the parameters of the system can
be changed so that such an event has negligible probability. Determining
the correct parameters in such a case involves bounding the area under the
tail of a binomial distribution (or a Normal approximation to the binomial
distribution via the Central Limit Theorem).

Proof of security and in particular the choice of hash functions were dis-
cussed in [DFM98]. We now discuss how majority decoding will provide for
enhancement to the system.

2 The role of Error Correction

Error correction is performed at two crucial points in the scheme described:
The majority decoding at the point of biometric template generation (when
the user token is generated) and at the point of verification, when the user
presents herself and the token is issued by an authorization center.

To help understand the role of error correction at the various points in
the process, we need to consider the probability of per bit error in a measured
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1-p

Figure 1: A Binary Symmetric Channel

iris. In [Dau93], the probability of mismatch in each corresponding bit of two
samples from the same person, taken at different times, was found to be 0.084,
while the probability of a mismatch of corresponding bits of iris scan for two
different individuals was found to be 0.45, i.e. about one in two, approaching
a random toss of a coin. In addition, each bit of the iris scan appears to be a
random variable over a population of different individuals. The errors in the
measurement of one individual have been found to be independent over the
entire iris scan. Thus one can view errors in the measurements as a binary
symmetric channel (see Figure 1).

With this important assumption, which has been empirically validated
([Dau92],[Dau93}), it is possible to apply error correction at the point of ac-
quisition of the iris code. One possible error correction that can be applied
is majority decoding of M samples taken at the time of enrollment (or ver-
ification). Applying majority decoding at the time of acquisition of the iris
scan, one obtains a “reference” iris scan for which we then compute a set of
check digits that can correct ¢ errors in the iris scan using an [n, k, d] error
correcting code. We note that the check digits, which will be stored on the
user’s card, will not have any errors in them when error correction is per-
formed. Thus all the t errors that the ECC will correct will come from the k
bits of the iris scan, namely the information bits of the error correcting code.

At the point of verification, the user presents herself and the data from,
say, a magnetic card, containing the check digits that will be used in correct-
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ing a (possibly) erroneous iris scan vector. We now consider the method of
acquiring the iris scan at the point of verification.

With majority decoding, using M samples per bit, the probability of an
error in each bit then is

M
Prob(M/2 or more errors) = P, = Z ( f\/[ ) prgM-i (1)
i=M/2

What we are interested in is n % P,, the expected number of errors in a
final biometric. Let M, and M, be the sampling rates at registration and
verification times, respectively. Let P,_, and P,_, be the expected final per
bit error rates of the biometric at registration and verification times, after
majority decoding. Note that P._, and P,_, decrease as M, and M, increase,
respectively. To protect against ¢ errors at verification time, then we choose
M, such that

nxP,_, <1

For verification time, we choose M, such that
nkxP,_, <t

When we compute the check digits C, they are stored on the user’s card.
The check digits protect against ¢ errors when the biometric is read at the
verification point. Observe that ¢ cannot be too large (i.e. if we were to cor-
rect, for example, 32 percent errors in the 2048 vector, then we risk accepting
an imposter). In fact, for reasons of space efficiency we need to reduce the
error rate to something that does not lead to substantial expansion of the
data on the storage device carried by the user. In addition, for computational
efficiency the FCC needs to be reasonably fast at the point of verification.

At the verification point we consider the cases:

1. The presenter is authentic.In this case, the biometric read, using M,
samples to compute the final biometric, should result in n * P,_, < ¢
errors. The errors are then corrected using the C check digits from the
user’s card. If the biometric has more than ¢ errors, it is rejected.

2. The presenter is an imposter.Empirical data shows that the average
Hamming distance between imposters and authentics is almost n/2.
Thus an imposter’s biometric presented for correction, along with C
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will be rejected with high probability, since the ECC will correct at
most ¢ errors.

The error rates in the biometric and the error correction capability of the
ECC are critical to secure biometric computation. Using majority decoding,
we stabilize the biometric at both the registration point and the verification
point to allow the correction of the biometric at the verification point to a
reference value. We control the errors corrected at the verification point to
achieve the most efficient computation at the verification point, since that is
where delays can be problematic.

3 Artificial Iris

While it is believed that artificial devices will not likely succeed at the present
time, this may not be the case in the near future, as lcd devices improve in
density, color accuracy and other features. If an artificial iris is feasible, then
we need to consider defending against one.

Consider an artificial iris that targets one individual. Also, assume that
the artificial iris can get as close as distance d, to a target. In such a case
we choose M,, as before, such that

nxP, . <1

and choose M, such that g
o — S

2

where s is a security parameter chosen to make the probabilities of false
positives and false rejections acceptable.

t<

4 Concluding Remarks

The role of error correcting codes in reliable, secure and authenticated com-
munication and applications ranging from identification to electronic com-
merce is an important one. Already there is a significant amount of work,
such as the McEliece public key cryptosystem, the Shamir threshold key
sharing and the Davida-DeMillo-Lipton key sharing, that has been a link
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between the two seemingly separate areas of coding theory and cryptogra-
phy. This work combines the two to present an identification system that
facilitates the use of non-invasive biometrics using an off-line identification
scheme that is secure and reliable. Error correction is an important part of
this work. Without EC'C' this work would have been more difficult. For ex-
ample, in the schemes implemented in online systems where a user database
of biometrics is stored, the systems are slow even for a moderate number of
users. If the number of users is large, in the millions, earlier schmes may
very well be too slow for many applications.
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Abstract. Self-certified public keys, introduced by Giraunlt allow the au-
thenticity of public keys to be verified implicitly during the use of the keys.
This paper first presents new concept of verifiable self-certified public keys
and provides concrete examples satisfying our conditions. Verifiable self-
certified public keys combine the benefit of certification-based schemes and
Girault’s self-certified public keys. Furthermore, we will also cryptanalyze
Petersen’s pseudonymous self-certified keys.

1 Introduction

In [1], by W. Diffie and M. Hellman, the genius notion of public key cryptosys-
tems was proposed. In such schemes, every user has a key pair (secret key s,
public key P), where public keys don’t need to be protected for confidentiality.
But this “publicity” makes them particularly vulnerable to active attacks.

The obvious solution to this fraud is to provide witness W, that confirms P
is really the public-key of user I, by the authority. In this simplest approach, W,
often called “certificate”, takes the form of digital signature of the pair (I, P).
While this solution reaches Girault’s trust-level 3 2, this approach requires the
additional cost of storage and computation for P and W.

This leads to an “identity-based” schemes, introduced by A. Shamir [16]. The
advantage of this scheme is that P is nothing but I and W is nothing but the
corresponding s. There is, however, a penalty for this gain : the authority knows
users’ secret keys, since s is computed from I and some trapdoor originated by
the authority. (level 1) 4.

In [2], M. Girault proposed more sophisticated technique, called “self-certified
public keys”, which is intermediary between certification-based and identity-
based ones. In such schemes, (contrary to identity-based schemes) each user I

* This work was partially supported by KSEF(Korea Science and Engineering
Foundation) under projects 976-0900-001-2 and 97-01-00-13-01-5.

¥ At level 3, the authority does not know users’ secret keys, and it can be proven that it
generates false witnesses of users if it does so.

¢ At level 1, the authority knows the users’ secret keys and therefore can impersonate
any user at any time without being detected.
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Table 1. Comparison of several types of schemes by the form of witness. I is user’s
identification string (or identity), (s, P) means user’s key-pair (secret key, public key),
and G is a witness that P is really the public key of user I, and not the one of an impostor
r.

System Public key | Secret key Witness |Trust| Verify
(generation) |(generation)| (generation) | level
Public-key (s, P) P : user § : user
Certification- | (/,s, P, W) I, P : user 8 : user authority’s | 3 | explicit
based schemes W : authority sig. on (I, P)
Identity-based (I,s I s : authority| authority 1 |(implicit)
schemes P=IW=s
Self-certified I,s,P) (I, P) s : user authority | 2, 3 | implicit
public keys W=P
Self-certified (I,s I 8 : user authority | 2, 3 |(implicit)
identity P=I=W

chooses his secret key s, and creates his real public key P’. Then the author-
ity computes the witness W from the pair (P, ), in such a way that W may
not be computed without the knowledge of some trapdoor. Now, (contrary to
certification-based schemes) the witness W is embedded in the public key P it-
self, and therefore does not take the form of separate value. This achieves level
20r 35.

Furthermore, S.J. Park et al. introduced “self-certified identity-based schemes”,
combining the advantages of certification-based and identity-based schemes [10][11].
In their schemes, like identity-based schemes, P = I = W and like certification-
based schemes, each user chooses his own s (level 2 or 3). 6 The properties of
these schemes are in the Table 1.7

However, one disadvantage of self-certified public keys is their repudiability
[12]. In certification-based schemes, the authenticity of the public key P can
be verified directly after knowing a witness W, but, in self-certified schemes,
the authenticity is verified at the time, when the key is used for encryption,
signature verification, key exchange or any other cryptographic use. For example,
if the verification of a digital signature fails using a self-certified public key it is
uncertain, whether the signature or the public key is incorrect.

2 Girault’s self-certified public keys

For simplicity we only describe a scheme using RSA/Rabin digital signature
scheme. In the set-up phase, the CA(Certificate Authority) chooses a RSA mod-

5 At level 2, the authority does not know users’ secret keys, but the authority can still
impersonate a user by generating false witnesses.

§ [6], [7] and [5] have presented similar notion, called “one-time self-certified public keys”.

" The basic idea of categorization has been borrowed from [2].

140



ulus n = p - ¢ such that p and ¢ are large prime integers, generates an integer e
coprime to p— 1 and ¢ — 1, and the inverse d of e modulo (p —1) - (¢ — 1). Then
it computes an integer @ of maximal order in the multiplicative group (Z/nZ2)*.
The CA makes n, e and « public, whilist keeps p, ¢ and d secret.

The key generation phase consists of two steps. First, each user randomly
chooses a secret key z, computes his public key y = ™% (mod n) and gives y
to the CA. Then he proves to the CA that he knows = without revealing it.

Afterwards the CA computes the witness as a RSA signature of the modular
difference of &% and user’s identity I :

w=(y~I)% (modn).

So the following equation holds :
w'+I=y (modn). (1)

However, in Girault’s self-certified keys, anyone can obtain the pair (y,w)
satisfying the equation (1) by only the known-key attack :

wER Z,,
y=w'+1I (modn).

So, if the verification of a digital signature fails using a self-certified public key
it is uncertain, whether the signature or the public key is incorrect.

3 Verifiable self-certified public keys

Definition 1. (verifiable self-certified public keys) Verifiable self-certified public
key scheme satisfies the following two conditions ;

1. (self-certification) The witness is equal to the public key. The user’s at-
tributes ~ identity, secret key, public key, etc — satisfy a computational un-
forgeable relationship, which is verified implicitly during the proper use of
keys in any cryptographic protocol.

2. (verifiability) Furthermore, if necessary, there is an efficient way to verify
the authenticity of the public key after knowing a witness.

3.1 A scheme using RSA digital signature scheme
Set—up

- an integer n > 252 as the product of two large distinct random primes p
and ¢ of almost the same size, such that p = 2p' + 1 and ¢ = 2¢' + 1, where
p' and ¢’ are also prime integers,

-abasea#loforder r=p' ¢ (ie, 0" =1 (modn)),
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- a large integer u < 7, and
- a one-way hash function A which will output positive odd integers between

212 and p'( and ¢'). This can be easily implemented by flipping the least
significant bit, if even.

The CA makes n, o, u, f public, keeps p and g secret.

Verifiable self-certified key generation

Alice who visits the CA receives a witness wy, if her legitimacy is accepted
by the CA. The witness wy is generated as follows :

1. Alice chooses her secret key 24 < u as a random integer and computes her
public key as

ya= a4 (mod n).

Next, Alice visits the CA and gives y4 to it.
2. The CA, after having checked the Alice’s identity, prepares the corresponding
ID,, and computes

wa = (ya — 1D (mod n). (2)

CA transmits wy to Alice. 8
3. Then, Alice’s verifiable self-certified pubhc key is wy and e4 = h(ya).

Now, this set-up will enable Alice to explicitly check the authenticity of public
key ya, since , given the pair (y4,wa), the following equation holds :

w4 4 1Dy = yu  (mod n).

Key exchange protocol

Let (ID4,za,wa,€ea) be the attributes of Alice, (IDp, 25, ws, €p) those of
Bob. They can simply exchange an authenticated key by choosing (See Fig.1) :

Kap = (W¥ + IDp)** = (Wit + ID,)*® = a™*4"%  (mod n).

8 Note that in [14], the (not verifiable, in our sense) equation wy = y"(w‘) ' (mod n)
was used as an alternative to the congruence (2). But this doesn’t meet Girault’s notion
of self-certified public keys with trust-level 3, because there is the possibility for each
user to create other witnesses corresponding to his identity, after he has been given
one by the authority. As a consequence, a judge cannot distinguish between a cheating
authority and a cheating user, so Sacednia’s proposal only achieves level 2 [4].
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Alice Bob

ea = h(ya) ep = h(ys)

Wy, €4

wWpH, €8

Kap = (w® + IDp)™ Kap = (w + ID4)%

Fig.1 : Verifiable self-certified key exchange protocol

This protocol is related to Girault’s one. But contrary to it, if the key ex-
change protocol fails, each user can verify the authenticity of the public key by
computing :

Gap) = wyp +IDam) (mod n),

€a(s) = h(Gaz))-

3.2 A scheme using Schnorr digital signature scheme
Set—up

- large primes p, ¢ such that |p| > 512, |¢| > 140 and ¢|(p — 1),
— a generator « of a multiplicative subgroup of Zg with order ¢ (ie., a? = 1

(mod p)),
- a one-way hash function h of output length > 128,

— CA chooses a random number zc4 €r Z; as her secret key and computes
her public key ycs = o4 (mod p).

The CA makes p, g, a, h and h public, keeps z¢4 secret.

Verifiable self-certified key generation °

1. After confirming her legitimacy, CA generates a random number I::A €r Z;

and computes 74 = ¢ (mod p). CA transmits 74 to Alice.

2. Alice chooses a random a €g Z; and computes r4 = 74-a® (mod p). Alice
gives ID,4 and ru to the CA.

3. CA computes the signature

ka

§a=2zca -h(IDa,ma)+ ks (mod q).
This value §4 is transmitted to Alice.

® The proposed scheme is constructed from the Petersen’s self-certified key issuing pro-
tocol (trust level 3 version) [12].
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4. Alice obtains her secret key as
ta=25s+a (modyq).

5. Furthermore, Alice computes 7/, = g¥2 (mod p) with ) €r Z;, and gener-
ates (¢, s)) as

ea = h(r)

Sy =ky—2a-¢, (modq)

Now, Alice’s verifiable self-certified public key is ra, €/, and s/,.

Then, given the public parameters yc4,IDa, 4, the following equation holds

Yo = &A= yggDA,TA) .74 (mod p).

Furthermore, if encryption, signature verification, key exchange or any other
cryptographic use fails, given (€', s;), user can verify the authenticity of the
public key by checking :

ey = h(a®h - (7™ -ra)%  (mod p)).

Comparison among different lypes of wilnesses : From the point of computa-
tional advantage, the verifiable self-certified public keys reduce the amount of
computational work over the certification-based schemes 10 and, from the point
of organization, if need, our scheme can be explicitly verified unlike the self-
certified public keys (See Table 2. and 3., where, a method used by Kaliski[3)]
is adopted to assess the amount of computational work. Numbers means the
amount of work to perform modular multiplication in 512 bits modulus, WI(b)
means the amount of work to perform b-bit modular inversion, and W H (b) means
the amount of work to compute a hash function with a b-bit long input. Refer
to [8] for detail).

4 Pseudonymous self-certified keys

In [2], Girault distinguished several types of certification schemes, under different
trust level — three levels (1, 2 and 3) —. Also, in [12], Petersen extended it to
level 4 (called “pseudonymous self-certified keys”).

Definition 2. (pseudonymous self-certified public keys) The authority issues a
self-certified public key to a user with pseudonymous PS, such that the real
identity of the user is hidden to the authority. Nevertheless, all operations using
the same pseudonym are linkable for any person.

10 If very low public exponent (e.g., e = 3) is used in the original scheme, we can use
wy = (va = ID4)|h(y4))* (mod n) or wy = (ya — 1D ® h(ys))* (mod n) etc, as an
alternative to the congruence (2).
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Table 2. Performance of verifiable self-certified public keys for the RSA scheme
(1ol = 512, |e| = [h()| = 128)

Computational work
Total length|  Verify Verify
(implicit) {explicit)
Certification- 1024  |not available[160 + W H(|r| + |ID])
R|based schemes [13]
S|  Self-certified 512 160 not available
A| public keys [2]
Ours 640 160 (optional) W H ([n|)

Table 3. Performance of verifiable sclf-certified public keys for the Schnorr scheme
(|p} = 512,]g| = 140,}h(-)| = 128).

Computational work
Total length Verify Verify
(implicit) (explicit)
S| Certification- 780 not available 217+ WH(|p| + |ID|)
c|based schemes [15}||°
h|  Self-certified 512 161+ WH(|p| + |1D]) not available
n| public keys [12]
o
r Ours 780 161+ WH(|p| + |1D))|(optional) 217 + W H(|p])
r

So, pseudonymous self-certified keys have applications, such as electronic
cash, etc. Petersen et al. showed the pseudonymous self-certified key issuing
protocol, by the use of blind Schnorr signature scheme [9] (See Fig.2). Here,
Alice uses the pseudonym PS5y instead of her real identity I.D,. Furthermore,
CA uses a different certified keypair (£¢4,Jc4) in this protocol to distinguish it
from the protocol above.
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Alice CA

ka €r 2,
74 = af* (mod p)

a,b€r Zg

ra=fa-a® y%, (modp)
ea = h(PSa,ra)
Ea=es+b (modyq)

S5a=1Z%ca-€a+ka

z4=3s+a (modg)

Fig.2 : Petersen’s key issuing protocol

However, in Petersen’s construction (at level 4), a cheating one can use Alice’s
pseudonym PS, instead of his own pseudonym without any detection. So, as in
Saeednia’s proposal, a judge cannot distinguish between a cheating CA and a
cheating user, and then Petersen’s construction doesn’t reach even the level 3.

In order to prevent a cheating user from having a chance to get the self-
certified public key with same pseudonym, we split the key generation function
into the CA and the RA(Registration Authority). The RA will register informa-
tion about user identity, pseudonym, etc, and will blind the CA’s signatures.

Pseudonymous self-certified key generation !

1. CA chooses I~cA €r Z; , computes

. ks

fa=a" (mod p),

and send 74 to Alice.
2. Alice chooses a random a €g Z; and sends 1Dy, PS4 and

Fa-a® (mod p)

to RA in a secure manner (e.g., with non-deterministic encryption scheme).
3. The RA, after having checked the Alice’s identity, registers PS4, and com-
putes
ber Z; s
T4 = (Fa-a%) 3%, (mod p),
€a= h(PSA,‘I‘A) +b (mod q).
Then, RA gives €4 and a signature on it to Alice.

11 This scheme is similar to the fair version of Petersen’s pseudonymous self-certified key
issuing protocol. But, in [12], they didn’t mention the above problem.
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4. Alice presents €4 and signature to CA.
5. After having verified the RA’s signature, CA sends

§a=%ca-Ea+ka (mod q)

to Alice.
6. Now, Alice computes her secret key as

za=354+a (modgq).
And, her corresponding public key is computed as

ya = a4 = g’g{f“’“’ 74 (mod p).

Here, the RA cooperates in producing the above pseudonymous self-certified
keys in a way that prevents the cheating user from using the same pseudonym
without any detection. The proposed system achieves anonymity for the honest
user, but only by the cooperation of RA (when presented with an appropriate
court order), user anonymity can be revoked or suspended.

5 Conclusion

We proposed the new notion of verifiable self-certified public keys. Verifiable self-
certified keys have a computational advantage over certification-based schemes
and, if necessary, can be explicitly verified unlike self-certified public keys.

Moreover, we showed that the pseudonymous self-certified key scheme pre-
sented by H. Petersen and P. Horster doesn’t meet the trust-level 3, and proposed
the repaired scheme.
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Authentication frauds from the point of view of rate-distortion theory

e

Andrea Sgarro
DSM - University of Trieste, Italy - sgarro@univ.trieste.it

Abstract. Surprisingly, the rate-distortion function appears in a powerful lower bound to
the probability of an authentication fraud; we argue that the link between authentication
theory and rate-distortion theory is not just formal, but also conceptual. We show that
a source code with zero distortion-level provides a strategy to attack an authentication
system.

1. The rate-distortion function in authentication frauds

Basically, authentication is a game with three participants: a transmitter, a receiver and an
intruder [1]. Transmitter and receiver communicate over a publicly exposed channel; their
interest is safeguarding the communication authenticity, while the intruder observes the
communication channel and acts over it attempting to deceive the receiver into accepting
a fraudulent cryptogram as genuine. For a formal definition of an authentication code cf
Appendix 1; here we just recall that its basic elements are a set of (clear)messages (or
state-sources) to be encoded, a set of encoding rules, or keys, and a set of codewords (or
encoded messages, or cryptograms). Actually, in the sequel the term used will be codeletter
rather than codeword: this is unusual, but more convenient in our context. The binary
authentication matriz specifies which codeletters are authenticated by which keys, in the
sense that there is a message encoded to that codeletter under that key. Unlike encoding,
decoding is assumed to be deterministic(ally successful).

A powerful lower bound to the probability of an authentication fraud was given in [2];
it subsumes all lower bounds, both combinatorial and information-theoretic, given in the
literature, which are re-obtained either literally or as straightforward corollaries (weaken-
ings). The fraud considered in [2] is rather more “abstract” than those usually dealt with
(impersonation, substitution, chosen-content attack, etc.), which explains why the bound
is'so general. Actually, the starting point for [2] had been the wish to unify derivations
of bounds which were often quite similar, but had each time to be obtained separately
almost from scratch, which was boring, indeed. In [2] an “abstract” structure was in-
troduced, called a fraud scheme, which immediately particularizes to specific frauds. Its
elements are a random variable Z called the (scheme-)key, which represents the authen-
tication code key K as known to the intruder, and a binary matrix ¢ called the fraud
matriz, which tells which codeletters cheat which keys under the given attack: ¢(z,y) =1
iff codeletter y cheats scheme-key 2. We stress that in a fraud scheme all trace is lost of
source states and of encoding procedures: the point of view is that of the intruder who
wants to insert an illegal codeletter and have it passed by the authentication system. In

Partially supported by MURST
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impersonation, say, the fraud matrix ¢ coincides with the authentication matrix x of the
code, and so any codeletter authenticated by the current key brings about a fraud. In
chosen-content attacks, as introduced in [3] (cf also [2]; these attacks were re-introduced
later but independently in [4]) fraud succeeds only if the decoded clear-message belongs to
a special target set M of messages favourable to the intruder; in this case the matrix ¢ is
obtained from ¢ by “cancelling” (turning to zeroes) all the ones which correspond to decod-
ing outside M. In substitution, instead, a re-insertion of the intercepted codeletter ¢ does
not cause any fraud, and so the ones in the c-column of the code’s authentication matrix
y are cancelled in the fraud matrix ¢ (to be precise, whenever the code has splitting, one
should also cancel, for each key, the homophones of the intercepted codeletter; cf appendix
1). In impersonation and in chosen-content attacks the scheme-key Z and the code-key K
coincide (have the same probability distribution: dist(Z ) = dist(K)), while in substitu-
tion the distribution of the scheme-key is obtained by conditioning the distribution of the
code-key to the information possessed by the intruder: dist(Z) = dist(K|C = c), C being
the random legal codeletter just intercepted. The (abstract, general) fraud probability is
defined as

P = maxProb{$(Z,5) = 1) &

Below we need the rate-distortion function R(S,d) for probability distribution dist(S) (S
is the random source letter or primary letter), for distortion matrix d, and for a distortion-
level A equal to zero:

R(S,d,0) = R(S,d) = minI(SAY)

(the distortion level 0 will be omitted in our notation; to avoid trivial specifications we
delete zero-probability primary letters and no-zero columns in d, if any; I(SAY) is mutual
information, I(SAY) = H(S)+H(Y)—H(S,Y) in terms of Shannon entropy; the minimum
is taken over all random couples SY where Y is a random secondary letter constrained to
give d(S,Y) = 0 with probability 1; for the basics of rate-distortion theory, which are here
taken for granted, cf e.g. [5] or [6]). Now, the lower bound of [2] is:

P > 2-R(Z4") 2)

where ¢* is the binary complement of ¢ (the star indicates that ones and zeroes are
swapped). Appendix 2 is meant to convince the reader of the power of the bound by
showing how one soon re-finds bounds met in the literature, e.g. Simmons bound, or the
“historical” combinatorial bound of Gilbert, Mac Williams and Sloane {7]. The appear-
ance of the rate-distortion function R in a context where we are certainly not trying to
reproduce (encode) keys by means of codeletters (meant to cheat the system, on top of
that!) was judged as “intriguing”. Below we show that this coincidence is not just a formal
one: surprisingly, authentication theory has an meaningful overlapping with rate-distortion
theory.

We begin by revisiting the authentication problem in a new garment, which is rate-

distortion theoretic. Assume that we want to code by means of a reproducing sequence y
the random primary sequence S, which however we cannot observe; what we need is sort
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of a “universal” reproducing sequence, such that Prob{d,(S, y) > A} be small. In the
special case A = 0 inequality (2) ensures that:

Jy : Prob{d,(S,y) < A} > 27R(E:dn) — g-nR(5,d)

(for the last equality to hold one has to assime that the primary source is stationary and
memoryless).

2. Authentication frauds and source coding at zero distortion-level: an asymptotic view

In rate-distortion theory the rate-distortion function appears in an asymptotically correct
equality, rather than in a finite-length incorrect (though tight) inequality as (2) is: this is
why it would be nice to have a Shannon-type asymptotic theorem such as to show that
bound (2) can be manipulated to an asymptotically correct result. The direct theorem we
sketch below will be limited to the case of (row-)uniform fraud matrices (i.e. the number
of ones per row, i.e. per key, is constant); the limitation is not as severe as it seems, since
uniform matrices are those usually met in practice. We stress that our chief aim is making
explicit the link between the two theories, and this will suggest the choice of our setting,
which is standard in rate-distortion theory, but not necessarily the most interesting from
the point of view of authentication. In a final remark we shall shortly comment on how
the needs of authentication might influence rate-distortion theory, and conversely how the
ideas of the latter of might have a bearing on authentication coding.

We start by an asymptotic lower bound, i.e. by a converse theorem. Not to depart from
the usual setting of rate-distortion theory we assume that the key source is stationary and
memoryless, even if this assumption is reasonable only for frauds like impersonation or
chosen-content attacks, where the scheme-key and the code-key coincide (stationarity is
unacceptable in the case of substitution, since the distribution of the scheme-key depends
on the intercepted codeletter). At each time-instant a value of the key (i.e. a key-letter) is
chosen by the “system” and the intruder tries to insert a codeletter which brings about a
fraud and which he hopes to be authenticated by the current value of the key. (The true
key-sequence of the code is communicated to the legal user by means of a secure channel,
as is standard in unconditionally secure cryptography; it makes sense to assume that he
knows a fortiori also the true key-sequence of the scheme.) The assumption to follow is
itself not always the most natural from the point of view of authentication (cf the final
remark for a different assumption). Namely, we assume that the fraud succeeds only if it
succeeds at all time instants; so, we are thinking of “multiple checks”: the user is accepted
as legal (and served) only when he has been able to pass a long sequence of checks required
by the system; as soon as he fails once, the system turns him down. In this situation the
fraud matrix ¢y, for n-sequences is obtained by a min operation, ¢y (z, y) = min; ¢(z;, ),
i.e. the distortion matrix ¢ for n-sequences (the binary complement of the former) is
obtained from ¢* by a max operation, or, which amounts to the same at zero-distortion
(only the dichotomy zero/non-zero counts) by an arithmetic average, as is standard in rate-
distortion theory. We have already used the well-known fact that under our assumptions
R(Z™,¢%) = nR(Z,¢$*). So, the lower bound becomes:

P, > 2~ nR(Z,¢") (3)
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We go to a direct theorem. We assume that the scheme-key Z is uniform; then, in the
case of a row-uniform matrix ¢ with k ones per row, (2) soon weakens to the combinatorial
bound r

P> m (4)

(to compute size |Y|, first delete codeletters y with an all-zero ¢-column). If @ is doubly-
uniform and has, say, r ones per column, this is no weakening; the minimum in the
definition .of the function R can be made explicit and bound (2) holds with equality:

P = 2-R(Z:¢7) = ITk"I Now, whenever one finds an incidence structure ¢ such as to meet

both requirements (each row has the same number k of ones; each column has the same
number r of ones), then also ¢, is doubly-uniform (¢, has exactly £™ ones per row and
r™ ones per column); such a structure leads to optimal schemes for which (3) holds with
equality: P, = 27 "E(Z:$") or:

—n"tlog P, = R(Z,¢%)

(As a matter of fact, much more refined combinatorial designs have been needed in the
literature when constructing actual authentication codes, and not just “abstract” schemes.)
So far, this is an exact result; in the spirit of Shannon theory one might want to go further.
Here we only quickly hint at how this might be accomplished, omitting the technical details
of the derivation. Just observe that the uniformity of the key is “asymptotically true” when
the source is stationary and memoryless, while the constraints for the existence of incidence
structures as those we need become “irrelevant” when the sizes involved grow exponentially;
so, if one accepts the typical assumptions of Shannon-theoretic block-coding settings, after
some toil one arrives at a Shannon-theoretic asymptotic exact result involving the rate-
distortion function, though limited to the case when the rate of ones per each row of ¢y, is
bound to be “almost” constant.

3. Codebooks and fraud strategies

We now take the point of view of the intruder who wants to pass the multiple checks (n
“single-letter” checks); we design a procedure meant to cheat the system and based on a
source code for encoding the key source, as in rate-distortion theory. Before, we shortly
and sloppily hint at how such source codes work. Source sequences, or primary sequences,
which in our case are n-sequences of key-letters, are first partitioned into two sets; the first
set has an overall negligible probability and gives rise to encoding errors (by the way, this
set is a nuisance from the point of view of authentication, and we shall have to come to
it again); the (almost equiprobable) primary sequences in the second set (typical keys) are
further partitioned into subsets, or “clouds”, and each cloud is encoded by a codeword,
or, more specifically, by a reproducing sequence, which properly reproduces each primary
sequence in its cloud (has zero-distortion from it; we stress that reproducing sequences are
all distinct, without loss of optimality). In our case reproducing sequences are n-sequences
of codeletters. Whenever the code is “optimal”, the reproducing sequences output by the
encoder are “almost” equiprobable: were it not so, further data compression would be
feasible, and the code would not be optimal; this in turns means that also the clouds of
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primary sequences are themselves “almost” equiprobable. A side observation: a primary
sequence might be properly reproduced by two reproducing sequences, and so might be
moved from one cloud to another without changing the performance of the source code;
this would slightly decrease the probability of the first cloud and slightly increase the
probability of the second; however, in an optimal code, clouds are necessarily “almost”
equiprobable, and so “double reproducibility” is irrelevant.

Assume that the codebook of such an optimal source code is available to the intruder,
even if he does not know which specific key-letters are output by the source, and conse-
quently cannot feed the encoder so as to activate the encoding procedure. Now, each of
the reproducing sequences listed in the codebook of the source code can be viewed as a
fraud strategy, as follows. Before transmission begins, the intruder chooses a reproducing
sequence totally at random, and he inserts its letters, one at each time-instant, into the
authentication system. If the key is typical (which is almost sure), and if he has been
lucky enough to pick the correct reproducing sequence, the fraud succeeds. Since the code
is optimal, the total number of available strategies is “small” and approximately equal
to 2"R(Z:¢%); 5o the probability of having picked the correct strategy is (comparatively)
“large” and approximately equal to 27"#(Z:#") which achieves bound (3). To put it dif-
ferently: the codebook of a good zero-distortion code can be interpreted as a family of good
strategies meant to carry through an authentication fraud.

We are forgetting about a set of vanishing probability, namely the set of primary sequences
(key sequences) which are badly reproduced. This is a nuisance in authentication, since
the fraud probability is itself vanishing, actually exponentially vanishing. So we had bet-
ter use a zero-error model of rate-distortion theory: fortunately, the zero-error problem in
rate-distortion theory is solved. We recall that the place of the rate-distortion function,
R(Z,¢*), is taken by its maximum over dist(Z), R(¢*) = maxy R(Z,¢*). Significantly
enough, a case when R(¢*) = R(Z,¢*) is the one covered in our “direct theorem” (Z
uniform, ¢ doubly uniform); in this case, roughly speaking, zero-error source coding and
negligible-error source coding have the “same price”. From the point of view of authenti-
cation, all this means that the attack strategy based on a zero-distortion zero-error source
code is “essentially” optimal.

4. Final remark. In many situations when authentication is needed, a reasonable fraud ma-
trix between sequences had better be based on a max operation: ¢,(z, y) = max; ¢(2;, 3;);
this means that the fraud succeeds whenever it succeeds at least at one time-instant;
however, this would lead to a queer distortion measure between sequences based on the
manimum distortion between letters: d,(2,y) = min; d(z;, ¥;). As we have already stressed,
zero-error models are particularly interesting for authentication theory. Also, an attack
such as substitution makes it interesting to study appropriate non-stationary sources in
rate-distortion theory. Conversely, positive distortion levels make sense also in authentica-
tion coding, in a situation when the legal user is recognized as such whenever a. “sufficiently
high fraction” of the received codeletters are authenticated.

Appendiz 1: Authentication codes

We define an authentication code. One has three finite (non-empty) sets, X, C and K: K is
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the set of keys or encoding rules, X is the set of clearmessages or source states, and C is the
set of cryptograms or codewords (|X| < |C|; bars denote size). Two independent random
variables K and X are given over X and X, the random key and the random clearmessage,
respectively. An encoding function, or enciphering function, is assigned, i.e. a possibly
random function f from K x X onto the set of codewords C; if f is not deterministic we
say that the code allows for splitting, or also that encoding is homophonic. The encoding
function f defines a new random variable C = f(K, X) over C, the random cryptogram.
More explicitely: we write ¢ € f(k, z) to mean that c is a possible cryptogram for z under
key ¢, i.e Prob{C = ¢|K = k,X = z} # 0. Conditional probabilities of the latter type
specify the splitting strategy of the code; when the code is deterministic these probabilities
are either zero or one. We assume that there are no collisions when encoding, i.e. =z # z’
implies that f(k,z) and f(k,2’) are disjoint sets of codewords. Due to this, the decoding
function, or deciphering function, g from K X C onto X U {?} is deterministic (z = g(k, c)
iff ¢ € f(k,x); we set g(k,c) =7 whenever ¢ encodes no clearmessage x under key k, ie.
whenever Prob{K = k,C = ¢} = 0; the symbol ? is not in X). An authentication code is a
random triple XCK on X x C x K, or rather, to be very formal, a quintuple (X,C, K, f,9)
as above. Observe that, for each fixed key (encoding rule) k, the authentication code boils
down to a (possibly probabilistic) source code: so, an authentication code is a family of
source codes indexed by the random key. Starting from f we build the authentication
matriz x. The authentication matrix x is a binary matrix whose rows are labelled to
K, whose columns are labelled to C, whose values show which key k authenticates which
cryptogram c:

x(k,c)=1 < 3z e X:c€ f(kz) <= glk,c) #? <= Prob{K =k, C=c} #0

Else x(k, c) is zero. Since decoding is deterministic each of the || rows must have at least
|X| ones; if there is no splitting the number of ones must be ezactly |X | in each row.

Appendiz 2: Some applications of bound (2)

When the attack is impersonation, Z = K, ¢ = x, and (2) becomes literally the bound
on impersonation given by Johannesson and this author in [8]; as x*(K,C) = 0 with
probability 1 (this means that the random couple K,C belongs to the minimization set
defining the rate-distortion function), one has R(Z, ¢*) < I(K AC), and one re-obtains the
well-known Simmons bound Py > 2~ 1(XAC) When the attack is substitution of codeletter
¢ the very crude inequality R(Z,¢*) < H(Z) = H(K|C = c) gives Ps(c) > 2-HXKI|O=c),
and so for the average probability of substitution Ps = 3 Prob{C = c}Ps(c) a trivial
convexity argument gives Pg > 2-#XIC)_ For a chosen-content attack with target set M,
(2) becomes literally the bound given in [2]; the combinatorial bound (4) gives Paq > lTJ?I—I
for deterministic codes, as in [2], [3] and [4]; for more bounds cf [9]. For the deception attack,
which consists in choosing whichever attack of either impersonation or substitution has
higher fraud probability, one has Pp = max[Pr, Ps} > 4Py + 3Ps > 9- 452 (use again a
trivial convexity argument and the bounds to Pr and Ps just given); since H(K) < log|K]|,
one re-obtains also the “historical” combinatorial bound of Gilbert, Mac Williams and
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Sloane [7], Pp > TIIK—I However, our bound (2) makes more than just giving these old

bounds; since the inequality R(Z,¢*)- < H(Z) can be quite weak as it ignores a term
which is large essentially when the key equivocation of the code is large, the general bound
(2) soon informs us that the “old” specific. bounds to Ps and Pp are quite optimistic in
the case of an authentication code which has to have also good cryptographic (secrecy)
properties (we are being sloppy, but one can be much more precise by working on the
ignored term H(Z|Y), Y being now the random fake codeletter, which is constrained to
give ¢*(Z,Y) = 0). '
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Abstract

Cocks (1997) has recently described a protocol for two parties to
generate an RSA modulus N = PQ where neither party has knowl-
- edge of the factorisation, but which enables the parties to collaborate
to decipher a encrypted message. We describe a number of ways in
which it is possible for one of the parties to the protocol to cheat and
obtain knowledge of the factorisation, and suggest modifications to the
protocol to guard against cheating.

1 Introduction

At the last IMA Conference on Cryptography and Coding, Cocks (3] de-
scribed a protocol for two parties to generate an RSA modulus N = PQ
where neither party has knowledge of the factorisation, but which enables
the parties to collaborate to decipher a encrypted message. An alternative
method is described by Boneh and Franklin [2].

His protocol allows two parties A and B to form an RSA modulus N =
PQ in such a way that neither party has knowledge of the factorisation,
but the two parties can combine later to decipher a encrypted message. In
the proposal of Boneh and Franklin, A and B need the services of a trusted

*Sponsored by the National Science Council, Republic of China, under grant NSC88-
2811-E-032-0001.
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helper H to carry out the distributed computation to form the modulus N:
the proposal of Cocks requires no additional parties.

We show that there are a number of ways in which the parties to Cocks’s
protocol can cheat: that is, obtain knowledge of the factorisation of N or
force their own choice of N. In each case the cheating party would later be
able to decrypt messages without the collaboration of the other party.

2 The protocol of Cocks

We briefly describe the proposed protocol. There are three stages: genera-
tion of N; testing that N is a product of two primes; sharing the encryption
and decryption exponents. The protocol of Boneh and Franklin differs in
the first stage, where the trusted helper H is employed: the remaining two
stages are broadly similar.

At the beginning of the first stage, A secretly chooses two random num-
bers p; and ¢; and B similarly chooses ps and go. Their intention is to form
N = PQ where P = p; + pz and Q = ¢; + g2, and P and Q are prime.
We assume that A and B have their own RSA moduli N4 and Np with
enciphering exponents e4 and ep and deciphering exponents d4 and dp.

In the first stage A transmits pj4 and ¢;* to B. B now chooses three sets
of k numbers z1, %24, T3, such that for each j we have > ;z;; = 1. He
then forms the set of 3k numbers

— €A, .CA €A €A €A €4 €A,.CA CA . ;
X = {$1,1P1 42" ToiPa" 41", TyPa " 1t = 1,...,k}

and transmits the elements of X in some order to A. We call this the splitting
process and say that B has split the values p1ga, p2g1 and paga. A now forms

N=pg+ ), 2% = p1g1 +p1g2 + poq1 + p2q2 = PQ
zeX

and transmits the result to B. It is also proposed that A and B might wish
to carry out this stage again with roles reversed: we refer to this as the
symmetric case.

In the second stage A and B agree a random value b. A forms pN+1-p-a
mod N and B forms 4”219 mod N. If these disgree then ¢(/N) cannot equal
N+1-P—-Q = (P-1)(Q—1) and so P and @ cannot both be prime. A and
B exchange hashes of these values and if they disagree then N is rejected
and the protocol restarts at the first stage. If sufficiently many trial b pass
this test, then P and @ are declared (probably) prime.
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Boneh and Franklin suggest a modification of this test to avoid the pos-
sibility that P or ) might be a Carmichael number (which would pass the
proposed test unless b actually has a factor in common with N). They pro-
pose that P and @ should be chosen to be = 3 mod 4 by suitable conditions
on the p; and g;. Then b is chosen so that the Jacobi symbol (%) = +1

and the necessary condition 5#(M)/4 = +1 mod N is tested by comparing
+p(N+1-p1—01)/4 apd plpa+ae)/4, Again if these do not agree then N is re-
Jjected, otherwise if N passes sufficiently many of these tests then it is allowed
to proceed to the next stage. The advantage of this refinement is that if P
and @ are not both prime then the probability of the test succeeding with
a randomly chosen b is less than 1/2 [2, Lemma 2].

In the third stage an enciphering exponent e is agreed on (perhaps fixed
in advance). A and B exchange the values p; + ¢; mod e. Each can now
compute f = P+ Q — N —1 mod e and its inverse ¢ = f~! mod e. A forms

_ 1+(E-j'—1—m—q1 g
an st
and B forms (st )
~P2—q2)9
S
- Since

d= d]_ +dy = 1+(N+1-P—-Q)g N'HC_P_Q)-‘] ,

we have de = 1 mod ¢(N). Hence to decrypt C = M® mod N, A can form
C% and B can form C%, so that M = C% . Q2

3 Preliminary remarks

From the discussion of the protocol, it is clear that either A or B can cheat if
they can obtain the secrets p; and g; of the other party. With this informa-
tion the cheater can mimic the computations of the other party in order to
recover the deciphering exponent d, or predict the other’s responses in order
to impose a different value N’ and have it accepted as the correct modulus.

In particular, if either party can obtain both the values of p; + ¢; at
any point, then from that point on they can privately simulate the other
party’s computations. This will enable the cheater to ensure that any given
N (whether or not the result of carrying out that stage correctly) is passed
as being of the appropriate form, and also allow the cheater to participate
in joint deciphering, without the cheating being detected.
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We further note that the protocol may be expected to be repeated a
large number of times (Cocks [3] suggests 10* times for a modulus of 1024
bits). A cheater can therefore afford to wait for a reasonable amount of good
luck, deliberately causing the protocol to repeat until it occurs.

4 Cheating in the first stage

Clearly A can cheat in the first stage by announcing any value N' she pleases
as the result of the computation. However, in order to have any chance of
passing the second stage, it seems that A needs to obtain ps and g in order
to predict B’s contribution 5”219, We shall see in the next section that this
is not the case. However, a possible way to obtain p, g2 is for A to privately
carry out the computation correctly in order to obtain the true value of N.
She may then attempt to factor this. If it is possible to factor N quickly,
for example if it has only small prime factors and so is easy to factor by
trial division, then A may be able to obtain the secrets p2 and gz from the
resulting factors.

It is also possible for B to cheat. Suppose that B applies the splitting
process to the numbers (—p1g1)%4, o4 and §%4. We note that B can do
this, using (—p1q1)®4 = —pjAq54, since e4 must be odd. A will then form
p1g1—p1gi+a+B = a+B. So B can force an arbitrary modulus N' by taking
a at random and B = N’ — a. However, B will have no more information
about p; and ¢; than he would have had by applying the protocol correctly
(that is, B will possess only pi# and gi*).

Here we see that performing the first stage symmetrically actually weak-
ens it by making it possible for B to cheat in the same way as A: since he
is playing the role of A in the reversed computation, he can obtain the true
value of N privately and has the chance of factoring it.

It is also possible for B to cheat in the asymmetric case. He chooses 2
prime r and applies the previous method with a = pir and 8 = qr. A
will now form N’ = a+ 8 = (p1 + q1)r: A returns N’ to B, who knows r
and hence obtains p; + ¢;. Although B has not imposed a modulus of his
own choice, he now has the factors of the modulus N’ agreed on and enough
information required to force it through the remaining stages.

5 Cheating in the second stage

Suppose now that one of the parties has imposed a false value V' " on the
other during the first stage. We have already observed that it is possible
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to force this number to pass the second stage given information about the
i + ¢

We now show that it is possible to cheat without this knowledge: for
example, if B has cheated in an asymmetric first stage. Suppose that N’
has been imposed by the cheater after choosing it so that all its prime factors
p satisfy p — 1 | L for some L. :For example, taking L = 253%5.7 = 90720,
there are 49 such primes, with a product in excess of 10270, It is certainly
possible to form a value of N’ of say 512 bits. Then the exponent A(N') of the
multiplicative group modulo N’ will divide L and there is a chance of at least
1/L that the value b +1=P1~%1 or §P2+22 formed during the computation will
be = 1 mod N’. So the cheater simply hopes that this will be the case, and
tries again if not.

6 Preventing cheating

We note that certain forms of cheating will require the cheater to undertake
a certain, possibly considerable, amount of extra computation compared
to an honest participant. We suggest that, as a general principle, timing
requirements should be included in any such protocol and that a session
should be aborted if either party fails to reply in a timely manner.

A related requirement is that the protocol should specify a maximum
number of repetitions consistent with the probability of finding a number
of the required form. If the cheater is waiting for some other event which
is less likely than the legitimate one, this should lead to the protocol being
aborted before the cheater succeeds.

We further suggest that at the end of the first stage, either party should
have the option of randomly requiring that the round terminate with each
side immediately revealing their choice of random p;, g;. It would then be
open to both parties to verify that the data which has passed is consistent
with the revealed secret. A cheater would not be able to do this and so
will be detected. As a further security measure we suggest that, as in all
similar protocols for generation of secret keys, an audit trail should show
the pseudo-random generation from an initial seed, and that this should be
done through a cryptographically strong generator to prevent a ‘seed’ being
determined from the ocutput.

We note that a number of the methods of cheating that we have proposed
are in fact easy to detect. For example, one method leads to a modulus N’
divisible by p; +¢;1: another leads to N’ being divisible only by small primes.
One might advocate building checks against these into the protocol. How-
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ever, we note that they do little to guard against other, as yet undiscovered
methods of cheating, and hence may be thought to lead an unwarranted
degree of belief in the validity of a run which passes these tests alone.

7 Does cheating matter?

At first sight, it might appear that cheating is not an important issue for
the intended application. The parties involved will presumably be acting
as “trusted third parties” and it might be held that trusted parties do not
cheat. We do not reject this out of hand: but it is perhaps worth noting
that the parties involved are likely to be large corporations or government
departments, and it is not so clear that every employee or sub-contractor
will be equally trustworthy.

We might also note that for political acceptability of such arrangements,
it is desirable to minimise the amount of reliance which the general public is
required to place in the trustworthiness of these parties. Fielding a protocol
which is known to be vulnerable to cheating is likely to diminish public
confidence and encourage opposition from those already predisposed to resist
the principles involved.
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A Modified protocol

Cocks later modified his protocol and extended it to multiple participants [4].
In this appendix, we will show that it is also possible to cheat in this modified
scheme.

We only describe the protocol for two parties, called “basic algorithm?”
in [4]. As before each party secretly chooses p; and ¢;; their intention is to
obtain a shared RSA modulus N = (p; + p2)(g1 + g2). Using the previous
notations, the (basic) protocol goes as follows. A sends p$4 and ¢ to B,
and B similarly sends p5® and g3%. A then splits the values pi1ga, q1p2 and
a1z (where ay2 is a positive number secretly chosen) resulting in the set
X 4. Likewise, B forms the set Xp by splitting peq1, gop1 and ag;. A and
B exchange the elements of X4 and Xp. Next, A computes N; = 2p1q1 —
a12+ zexy z%4; similarly B computes Ny = 2p2ga—a21+ ex A z4s, They
finally exchange N1 and Nz to form N = (Ny + N2)/2 = (p1 + p2)(q1 + g2)-

Suppose that A cheats. At the end of the protocol, the RSA modulus
will be N' = PQ.

A first chooses a number « and a prime P. She takes g = 2P. Then,
instead of sending X4 and N; to B, she sends X’4 and N’ given by

X's = {splitting of —2pyq2, —p1¢2 and 2Pgy}

and
Ny =2aP+ ) z% .
z€Xp

From X4, B will then compute
Ny = 2poqa — a1 + E z%B = —ag1 — P19z + 2Pgs.

TEX's

Noting that A has chosen g; = 2P, the resulting RSA modulus will be thus
equal to -

!, 20P+2pa P —ag) — 2P
N = N];-Ng _ (2aP+2ps +Q2P1+a2;]+f a21—p192+2Pg3) =Pla+ps+q2) .

Notice that from N’, A can obtain ps + g2 and go through the remaining
stages. Notice also that sending in advance a hash value (as suggested in [4,
§5.1]) does not prevent cheating.
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Abstract. We present in this paper a solution to the Tiercé' problem, in
which two backers, Alice and Bob, want to know if they have backed the
same combination or a different one (but neither Alice nor Bob wants to
disclose her (his) combination). This problem is also known as the
socialist millionaires’ problem [JY], in which two socialist millionaires
want to know if they own exactly the same amount of wealth. In our
solution, both backers will be convinced of the equality (or inequality)
of their combinations and will get no extra information about the other
backer’s combination. Moreover, its complexity is polynomial in the
size of the secrets (the combinations). Finally, this protocol is fair: one
party cannot get the result of the comparison while preventing the other
one from getting it.

1 Introduction

1.1 Description of the problem

Alice and Bob are two backers and both have decided to back a combination for the
next Tiercé. Let x be Alice’s combination and y be Bob’s one. Alice and Bob,
together, want to know whether they have the same combination or not, but neither
Alice nor Bob wants to disclose their respective combinations. This problem called
Tiercé problem [Zém] is a variant of the millionaires’ problem, where two
millionaires wish to know who of two of them is the wealthier, but without disclosing
their respective wealth. The latter problem has been introduced by Yao [Yal,Ya2].

There is a naive method to solve the Tiercé problem: Alice sends h(x) to Bob and
Bob sends k(y) to Alice, where h is a one-way hash-fonction. If A(x) = h(y), then

x =7y with overwhelming probability. But this solution cannot be applied when the

! Tiercé is a French betting game, where the backers are expected to guess the winning
combination which consists of the three first of a horse race.
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secrets are small (because it is easy to compute A(X) for all possible values of ¥ and
determine the one which is equal to h(x), the value sent by Alice). Moreover, this
solution is not fair: Bob can send nothing, or send back h(x) to Alice even when
y # x, or else send back a value different from h(y) even when x =y . Furthermore,
even if x is large, Bob learns some information about x (i.e. A(x) ) and is able to test
whether a given value is Alice’s secret or not.

A solution to the millionaires’ problem is described by Salomaa in [Sal] (and also by
Schneier [Schn]). From this solution, we can easily deduce a solution to the Tiercé
problem. Unfortunately, such a solution is only efficient when x and y are very small
(the complexity is polynomial in x and y). This solution cannot be used, for example,
for integers x and y of at least 40 bits.

Recently, at Crypto'96, Jakobsson and Yung [JY] presented a solution to the Tiercé
problem (or socialist millionaires’ problem, using their terminology). Unfortunately,
this solution uses a cut-and-choose method and so is relatively inefficient.

The protocol we present in this paper is more efficient than Jakobsson and Yung's
one. Besides, its complexity is polynomial in the size of the secrets and so allows one
to compare integers of all sizes, Moreover, it allows a fair revelation of the result of
the comparison of x and y, to prevent a party from stopping the protocol after getting
the result of the comparison, and consequently preventing the other party from getting
the same result?.

1.2 Organization of the paper

In section 2, we define the notations we use in this paper, then we introduce the
assumptions on which the security of our protocol relies. Finally, we present the non-
interactive proofs of knowledge we use in the new protocol. In section 3, we describe
this new protocol which solves the Tiercé problem. Then, we give heuristic arguments
for the security of our protocol. Finally, we conclude in section 4.

2 Notations, Assumptions and Proofs of knowledge

2.1 Notations

We will denote Z, the residue class ring modulo » and Z, the multiplicative group of
invertible elements in Z, . If & is a hash-fonction, we will denote h(a,b) the image by

h of the concatenation of the strings @ and b. The symbol @ will denote the bitwise
operator “ exclusive-or ”.

2 The protocol presented by Jakobsson and Yung [JY] is not fair (like the one described by
Salomaa). So we have compared the efficiency of their protocol to the non fair version of ours.
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Finally, we will denote log, (a) the discrete logarithm of a in base g (when it exists),

i.e. the smallest integer x such that g* =amod p (where p is prime).

2.2 Assumptions

The security of our protocol relies on three standard assumptions in cryptography:
Assumption (A1) (Discrete logarithm): Let p and g be prime numbers such that

gl p—1, and let g be an element of order g in Z;. Let x and y be two integers such

that y=g* mod p. Then, it is hard to compute x given only y, p, g and g. We will
denote log,(y) the value of the discrete logarithm of y in base g.

Assumption (A2) (Decision Diffie-Hellman): Let p and g be prime numbers such that
gl p—1, and let g be an element of order ¢ in Z;. Given g*modp, g’ mod p and

g®mod p, it is hard to decide whether z = xymod g or not.

Assumption (A3) (Unicity of a decomposition in a base): Let p and g be prime
numbers such that gl p—1, and let g,,...,g, be n elements of order ¢ in Z; . If the
values log, (g;), i # j are not known, then it is hard to find (x,,...x,) #(x],...x;)
such that gf--- g = g ... g™ (mod p) . We will denote by (x,,...x,) the coordinates

(or the representation) of G = g;*+--g;» mod p in base (g,,...,g,).

Note: In fact, the assumptions (A1) and (A3) are equivalent, and (A2) is stronger than
(Al) and (A3). As a consequence, the security of our protocol only relies on
assumption (AZ2).

2.3 Non-interactive proofs of knowledge

The following protocols are non-interactive zero-knowledge proofs of knowledge,
derived from well-known interactive zero-knowledge proofs of knowledge. The
generic transformation (from an interactive protocol into a non-interactive one) we use
has been introduced by Fiat and Shamir [FS}, and preserves the properties of the
original protocol: Bob is convinced by Alice’s proof, if and only if she holds the
secret whose knowledge she wants to prove, and at the end of this protocol Bob will
learn no information about this secret.

Note: We assume, in order to simplify the description of the proofs of knowledge we
will introduce, that the verifier (in this case Bob) already knows all the public
parameters related to the assertion the prover (in this case Alice) wants to prove.

2.3.1 Proof of knowledge of a discrete logarithm

Let p and g be prime numbers such that gl p—1. Let g be an element of order ¢ in Z; ,
and 4 be a hash-fonction.
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The protocol described below allows Alice to prove to Bob that she knows an element
xin Z; which satisfies: y=g*mod p?.

Alice randomly selects an integer r in Z;, computes W=_g" mod p, c=h(W) and
D =r - xcmodgq . Then Alice sends the proof (c, D) to Bob.

Bob is convinced (accepts the proof) if: ¢ =h(g”y° mod p) .

This protocol is due to Schnorr [Sch].

2.3.2 Proof of knowledge of discrete coordinates
Let p and g be prime numbers such that gl p—1. Let g, and g, be two elements of

order g in Z,', such that log, (g,) is unknown to both Alice and Bob, and A be a

hash-fonction.
Using the protocol described below, Alice is able to prove to Bob that she knows a

couple (x,,x,) of elements in Z; verifying: y=g,"g;* mod p.

Alice randomly selects two integers r, and r, in Z, , computes W=g"g,* mod p,
c=h(W), D,=r,—xcmodg and D, =r, —x,cmodq. Then Alice sends the proof
(¢, Dy, D;) to Bob.

Bob is convinced if: ¢="h(g,” g7*y° mod p).

This protocol is due to Okamoto [Oka].

2.3.3 Proof of equality of two discrete logarithms
Let p and g be prime numbers such that gl p—1. Let g,and g, be two elements of

order g in Z; such that log, (g,) is unknown to both Alice and Bob, and & be a

hash-fonction.
The protocol described below allows Alice to prove to Bob that she knows an element

xin Z, verifying: y, = gf mod p and y, =g; mod p.

Alice randomly selects an integer r in Z; , computes W, =g/ mod p, W, =g, mod p,
¢ =h(W,,W,) and D=r—xcmodgq . Then Alice sends the proof (¢, D) to Bob.

Bob is convinced if: ¢="h(g,”y, mod p, g,”y," mod p).

This protocol is due to Chaum and Pedersen [CP].

2.3.4 Proof of equality of two discrete coordinates
Let p and ¢ be prime numbers such that gl p—1. Let g, ..., g, and g/ .., g, be

m+n elements of order g in Z,: such that log, (g;), i#j, and log,.(g7), i# ],

are unknown to both Alice and Bob, and 4 be a hash-fonction. Let (x,,...x,) be m

3 As previously specified, we will implicitly assume that Bob knows : g, p, g and y.
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elements such that P=gd.--g"modp and (x/,...x]) such that
Q=g/"-g " modp.

The protocol described below allows Alice to prove to Bob that she knows (x,,...x,,)
and (xj,...x;) and that x, = x;.

Alice randomly selects m+n integers n,....,7,,7,...r; in Z;, computes

W=gli---ghmodp and W =g;"g;%---g’" mod p, then c=h(W,W’), and finally
D =r-xcmodq, .. , D,=r,-x,cmodq, D;=r-x;cmodg,
D) =r/—x,cmodg.

Alice sends the proof (¢,D,,D,,...D,,,D;,...,D;) to Bob.

Bob is convinced if ¢ = h(g;" g;*--- g2 P* mod p, g/™ g;% .. g’% 0" mod p) .

L

2.3.5 Proof that a coordinate is equal to 0 or to 1

Let p and g be prime numbers such that gl p—1. Let g,, ..., g,, be m elements of
order ¢ in Z; such that log, (g;), i+ j, and log,(g}), i # j, are unknown to both
Alice and Bob, and s be a hash-function. Let (x,,...x,) be m integers such that
P=gfgrmodp.

The following protocol allows Alice to prove to Bob that she knows (x,,...x,) and
that (x,,...x,,) € {0,1}"™". For this purpose, she proves that for all i=2,...,m she
knows either the representation of P (in case x; =0), or the representation of P/g,
(in case x; =1) in base (g;,....&;_;»&i41>---&n) - The idea to prove the knowledge of
one out of two secrets is from [CDS].

For i from 2 to m do:
If x,=0:

Alice randomly selects m—1 elements r,. Fapseresly iD Z; and computes

s licta Tiagse
W=gl--glgh---g»modp. Moreover, she randomly selects an element
c¢’eIm(h) and m-1 elements Dj,...,D.,,D.,,....,D, in Z; and computes
W =gl g gl gin (Pl g) modp.

Alice computes C = h(W,W’),then c=C®¢’.

Finally, she computes D, =, — x,c mod ¢, .., D,, =1, — x_ ¢ mod g,
D, =r,, ~-x,cmodg, .. D,=r,~-x,cmodg.
If x,=1:

Alice randomly selects m—1 elements r)...,r,,r4,...,7; in Z; and computes
W=gll---giigi...g" mod p. Moreover, she randomly selects an element
celm(s) and m-1 elements D,,...,D,_,D,,,....D, in Z; and computes

D, D,

W =gl-gligl o PP'mod p.
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Alice computes C =h(W,W’), then ¢'=C®c.

Finally, she computes D{ = r{ — x,¢’ mod ¢, .., D, = r, = %, ¢ mod g,
D}, =1\ —x,cmodq,.., D, =r ~x,c modq .

Alice sends the proof (c,¢’,D,,...,D;_y, D..,,...D,, D},...,D_;, D}yy5-.-, D;,) to Bob.
Bob checks that:

c®c =h(gh gl gl -+ gom P*mod p, gl¥-- g% g%+ g (P1 g))" mod p).

end (for)

Bob is convinced if the final check succeeds.

3 Presentation of a new protocol

The following protocol allows Alice and Bob to prove to each other that their
respective secrets x and y are equal (or not) in such a way that Bob learns nothing
about x and Alice learns nothing about y (except, of course, that their secrets are equal
or different). This protocol is well suited to the case when x and y are small.

3.1 Parameter generation

Alice (or Bob) chooses a large prime number g (at least 160 bits). Then, Alice (or
Bob) chooses a large prime p (at least 512 bits) such that gl p~1, and g, an element

of Z; of order g. The generation of such numbers does not pose problems.
We assumne, to simplify the description of this protocol, that x and y are two elements
in Z; (if x or y is greater than g, then we use this protocol to compare h(x) and

h(y) , where h is a hash-fonction that maps {0,1}" to {0,1}'*).

3.2 Generation of elements of order g

Let k be a security parameter, such that it is computationally infeasible to do 2*
computations in a human-scale time and with human-scale computation resources
(nowadays, k is taken equal to 80).

Alice and Bob must generate k+2 elements, g,, g, fi» fz» - [fi» Of the

multiplicative group generated by g, such that neither of them knows log, (f;) for
ie{l,..k}, log,(f;) for ie{l. k}, log,(f;) for i#j, log, (g) and
log, (83) - ;

Alice and Bob use the following protocol to determine g,, an element of the
multiplicative group generated by g, :
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Alice randomly selects an element x, in Zq‘ , computes h, = g mod p and proves to
Bob that she knows log, (k) by using the protocol 2.3.1. Bob randomly selects an

element x, in Z;, computes ki, =g modp and proves to Alice that he knows
log, (hy) by using the protocol 2.3.1. Then, Alice and Bob respectively compute
g =8"™ =hp =h;(modp). They also check that h,#1modp and that
hy, #1modp.

Alice stores x, and s, and Bob stores x, and h, .

Alice and Bob also generate the elements g,, fj. ..., f,, for example in the same
way that they generated g,, but without storing any intermediate value,

3.3 Development of the protocol

Step I

Aliie randomly selects an element a in Z;, and k bits ¢,...,c,, then computes
P =gig;modp* and P, = g3 f"f,? - f* mod pand sends (F,PB) to Bob. Then
she proves that she knows the representation of P, with respect to (g, fi,....f,) and
that the k least coordinates belong to {0,1} by using the protocol 2.3.5. Then, by

_using the protocol 2.3.4, she proves that the first coordinate of P, with respect to
(81, &,) is equal to the first coordinate of P, with respectto (g5, fis.-» fi) -

Bob randomly selects an element & in Z;, and k bits e,...,e,, then computes
Q =glg!modp® and Q, =gif o f-f*modp and sends (Q,Q,) to Alice.
Then, he proves that he knows the representation of @, with respect to
(832 f1seen fi) and that the k least coordinates belong to {0,1} by using the protocol
2.3.5. Then, by using the protocol 2.3.4, he proves that the first coordinate of Q; with
respect to (g,,g,) is equal to the first coordinate of (@, with respect to
(83 frreees fi)

We denote P3=g;'modp, 0, =gimodp and R= B /Q,mod p. Then,

x=y modg & R*™ =P/Q, modp (Test 1)

In the second step of this protocol Alice and Bob both compute R*™ .

4 Alice commits to her secret x.
5 Bob commits to his secret y.
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Step 2: Computation of R™™

Alice computes T = R™ mod p and sends T to Bob. Then, she proves to Bob that
log, T =log, h, by using the protocol 2.3.3. This proof convinces Bob that T is
actually equal to R™ .

Bob computes U = R®* mod p and sends U to Alice. Then, he proves to Alice that
log, U =log, hy by using the protocol 2.3.3. This proof convinces Alice that U is
actually equal to R™ .

Alice and Bob are now able to compute R** =T* = U™ (mod p)

In the third step of this protocol, Alice reveals P to Bob (and proves to him by using
the protocol 2.3.4 that she knows a couple (a, x) of elements of Z; such that
P =gig; modpand P, =gy modp). Bob reveals Q, to Alice (and proves to her by
using the protocol 2.3.4 that he knows a couple (b, y) of elements of Z; such that
0, = g'g] mod p and O, = g mod p). But if Alice immediately reveals P, to Bob,
he will be able to check the equality-(Test 1). Bob can then refuse to send Q, to Alice

and deny her to check the equality. To alleviate this drawback, Alice and Bob must
fairly transmit the values P, and Q, from the values £, and @, . For this purpose,

Alice and Bob will gradually reveal the bits ¢; and ¢;.
Step 3: Fair exchange of the values F and Q,

For i from 1 to k-1 do:
Alice reveals the bit ¢, to Bob and proves to him that she knows the representation of

P,/ £ with respect to (g3, fiyps--- fi) using (a generalization of) protocol 2.3.2.
Bob reveals the bit ¢, to Alice and proves to her that she knows the representation of
Q,/ £, with respect to (g3, fi4y-+-» f3) using (a generalization of) protocol 2.3.2.
Alice and Bob set P, = P,/ f (mod p) and Q, = @,/ f;* (mod p).

end (for).
Alice reveals the last bit ¢, to Bob and proves to him that she knows the discrete

logarithm of P,/ f* in base g, by using the protocol 2.3.1.

Bob reveals the last bit ¢, to Alice and proves to him that he knows the discrete
logarithm of @,/ f* in base g; by using the protocol 2.3.1.

Alice and Bob set P, = B,/ f* (mod p) and @, = Q,/ f;* (mod p).

Remark: In order to check the equality (Test 1), Bob needs to know P, =g modp,
but this value is hiddent (by f;' - f5* - f&* ). Alice needs to know @5 = gimodp,
which is also hidden (by £ - 2 --- £&*). The protocol described above allows Alice
(respectively Bob) to reveal to Bob (respectively Alice), bit after bit, the string

6 1t is computationally infeasible to find this value by exhaustive research (if k is well chosen).
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c=¢6...c, (respectively e=ege,...e,), and so to gradually reveal g; modp
(respectively g4 mod p).

Alice and Bob have respectively got (at the end of this step) @; (= @, ) and B (=
P,). So they can check the final test (Test 1): x = ymodg < R** = P,/ Q, mod p.

The assumption (A3) on the unicity of the representation ensures that each revealed
bit is correct.

This step can be regarded as fair, because if Bob (for example) deliberately stops the
protocol, he will only have one bit ahead of Alice to find, by exhaustive research, the
missing bits ¢; needed to compute P (the same holds for Alice).

3.4 Security

In this section, we give heuristic arguments for the security of our protocol.
Correctness:

At the end of the protocol, Alice and Bob are convinced of the validity of the result of
the comparison of their two secrets. Indeed, all the (non-interactive) proofs (of
knowledge) given by Alice and Bob allow both of them to be mutually convinced of
the validity of P,, Q;, U and 7, and consequently of the validity of the final test (Test
1).

Secrecy:

If x =y, Bob knows Alice’s secret, since it is equal to his secret.

If not, let us show, for example, that Bob learns no information about Alice’s secret.
As the (non-interactive) proofs (of knowledge) used during this protocol are zero-
knowledge, Bob has learnt no information about x,, a and x from these proofs.
Nevertheless, Alice has revealed the following values: £, =g/*modp,
P =gigimodp, P,=g;modp and T=g“gi* modp. It is clear that the
knowledge of these values is equivalent to the knowledge of:
(g* mod p, g g5 mod p, g™ mod p, g5*“ mod p) because g™ = sz;. mod p and
greM =T /(P xhy’)modp.

Bob may have some presumptions about x and want to know if one of these presumed

values ¥ is actually Alice’s secret. Let ¥ be the value Bob chooses for x. Let & be

the integer such that gfgl =gfg’modp and %, be the number such that
giE = oxC N mod p . Bob can compute g mod p and g3* mod p . To check that
the value of ¥ (and so of @ and of X,) is correct, he must be able to decide whether
log, (&) =log,, (g3*) or not, or whether (gf*,g7,g™) is a valid Diffie-Hellman

triplet or not. But Bob cannot decide (otherwise, this would contradict assumption
(A2)).

Hence, under the decision Diffie-Hellman assumption (A2), this protocol does not
reveal the secret x (resp. y) to Bob (resp. to Alice).
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4 Conclusion - Open problem

We have presented in this paper a protocol which allows one to fairly check the
equality (or the inequality) of two secrets, and this gives an answer to the Tiercé
problem. The complexity of this protocol is polynomial in the size of the secrets.
However, designing a fair and efficient solution for the millionaires’ problem (not
socialist) remains an open problem.
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| Finite Fields:
Primitive Normal Bases with Prescribed Trace

Dirk Hachenberger
Institut fiir Mathematik der Universitdat Augsburg,

86159 Augsburg, Germany
hachenberger@math.uni-augsburg.de

It is well-known that the multiplicative group E* of a finite field F is
cyclic, i.e., free on one generator as a module over the ring of integers; the
generators of E* are called primitive elements of E. A further classical
result is the normal basis theorem: if G is the Galois group of a finite
Galois extension E over a field F, then the additive group of F is free on
one generator as a module over the group algebra FFG. An element w € E
for which w® = {g(w)|g € G} is an F-basis of E is therefore called free in
E over F or normal in E over F; w® is called a normal basis of E over
F. If in particular F is a finite field, then each finite extension E over
F is a Galois extension. A combination of primitivity and normality was
considered by Lenstra and Schoof [LeSc] in 1987: they proved the primitive
normal basis theorem, which states that for each extension E/F of finite
fields there exists a primitive element for F which likewise is normal over
F.

The study and determination of primitive and normal elements are fun-
damental problems for the theory of finite fields. Those elements allow
representations of a finite field, which have proved to be very useful when
calculations in the field are required. Concrete applications are the decod-
ing for error-correcting codes, the encryption and key-exchange in public-
key-cryptosystems, or the generation of pseudorandom numbers.

In the talk we present recent results on the existence of primitive normal
bases having additional properties. We consider triples (g, k, €), where ¢ > 1
is a prime power and k,e > 1 are integers. To each such triple there
corresponds a triple (F, K, E) of finite fields: F =GF(qg) is the Galois field
with ¢ elements, and, in a fixed algebrai‘c closure F' of F, K and E are the
unique extensions over F' having degrees [K : F| = k and [E : F] = ke,
respectively (i.e., K is a subfield of E). :

Notation. Let T denote the set of triples (q,k,e), which satisfy the fol-
lowing condition: for every a € K :GF(qk) which (necessarily) is normal
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over F' =GF(q) there ezists an elementw € E =GF(g"®), which (1) is prim-
itive in E, (2) normal in E over F and (3) whose (E, K )-trace is equal to
a (recall that (E, K)-trace of w € E is defined as Trg F(w) = Y pem h(w),
where H is the Galois group of E/K).

The Main Problem is to decide which triples (g, k, €) belong to 7.
First, in a joined paper with Stephen D. Cohen [CoHal, we have proved

the following extension of the primitive normal basis theorem of Lenstra

and Schoof, and hence settled a conjecture of Morgan and Mullen [MoMul].

Theorem 1. ([CoHa)) (g,1,n) € T for all prime powers ¢ > 1 and all
integers n > 1, i.e., for any eztension E /F of finite fields and any nonzero
a € F there exists a primitive element w € E which is normal over F and
whose (E, F)-trace is equal to a.

The general problem, incorporating an arbitrary intermediate field, was
first considered in [Ha). The motivation for studying this generalization was
to determine whether there exist trace-compatible sequences of primitive
normal elements for certain towers of extensions over finite fields.

Definition. A tower over F is a set £ of finite extensions over F which
is totally ordered by inclusion. A sequence w = (wr)rec is called trace-
compatible for L if Trg x(wg) = wg for all E,K € L such that K is a
subfield of E. Furthermore, w is called normal over F if wy, is normal in L
over F for all L € £, and w is called primitive if wy, is primitive in L over
Fforall L€ L.

As pointed out by Scheerhorn [Sche] (see also Section 2.1.6 in [CiD]), com-
putationally simple embeddings of finite field extensions, which rely on a
normal-basis representation consist of trace-compatible normal sequences.
This additive presentation is used for instance in the computer algebra sys-
tem Axiom. The following results of [Ha] are interesting: they state that
under certain conditions, there exist trace-compatible normal sequences
which are likewise primitive.
First, we have the following asymptotic result.

Theorem 2. ([Ha]) Consider a tower L of finite fields. Assume that
[E:K)]> e >3 foral K,E € L such that K is a subfield of E. Then
there exists a constant go such that the following is true: if ¢ > qo, where
q is the cardinality of the smallest field F € L, then there exists a trace-
compatible sequence (wr)rec which is primitive and normal over F.

For example, if eg = 4, one can choose go = 3104.

Concerning extensions of prime power degree, we have proved the fol-
lowing assertion, which holds without restrictions on the cardinality ¢ of
the ground field.
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Theorem 3. ([Ha]) Let p be the characteristic of GF(q). Then (g, ¢, %) €
T forala>0andallb>1ifr>50rr=p;(q,3%3) €T foralla>0
and all b > 2; (¢,8-2,2%) € T for alla'> 0 and all b > 2.

A consequence of Theorem 3 is the following theorem, which again holds
without further conditions on ¢.,

Theorem 4. ([Ha]) Let F =GF(q) be a finite field with characteristic p and
letr be a prime. Leté =11fr=porr>5,letd=2ifr=3 andr #£ p,
and let § =3 if r =2 and r # p. For an integer n > 0 let E, , := GF(q"‘")
and let Lp, = {Epn|n > 0}. Then there exists a trace-compatible sequence
w for Lp, which is primitive and normal over F.

In general, the decision whether (g, k,e) belongs to 7 is a very difficult
problem, which is more harder the smaller the parameter e is. For example
(g,k,1) € T if and only if every normal element of GF(¢*) over GF(q) is
primitive in GF(g¥). This strange condition holds e.g. when (¢*—1)/(g—1)
is a prime, whence necessarily ¢ and k are primes. Thus, (2,k,1) € T for
all Mersenne primes 2% — 1 (e.g., for n = 859433). Also, if e =2 then not
much is known, and for e = 3 the methods in [Ha) only yield asymptotic
but no concrete bounds for g.
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Bounds on the Bilinear Complexity of Multiplication in
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e-mail: ballet@iml.univ-mrs.fr

1 Introduction - Notations

1.1 Bilinear complexity of multiplication

Let F, be a finite field with ¢ elements where g is a prime power and let
Fy» be a Fy extension of degree n. The multiplication M is a bilinear map
from Fyn X Fyn into Fyn, thus we can also represent M by a tensor f)y =
Z;\=1 a®b @ c € Fyn@Fyn @Fyn where Fyn denotes the dual of Fyn as a

IF,-vector space. Hence the product of two elements z and y of Fyn is :

zy=tu(z@y) =Y _ alz)b(y)a (1)

- i=1

Every expression (1) is called a bilinear multiplication algorithm /. The
number A is called the multiplicative complexity p(U) of U. Let us set

po(m) = min (W)

where U is running over all bilinear multiplication algorithms in Fy» over F,.
Then p,(n) is called the bilinear complexity of multiplication in Fy» over F,,
and it corresponds to the minimum possible number of summands in any
decomposition of tensor ¢y.

1.2 Known results

For any integer n, the bilinear complexity uq(n) of multiplication in Fy» is
> 2n — 1 by a result of Winograd [8]. Indeed, the multiplication in Fyn con-
sists on multiplying two polynomials of degree < n —1 modulo an irreducible
polynomial of degree n. So, the result follows from the notion of interpola-
tion. Then it is necessary to consider two cases:
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a) If F, is sufficiently large

De Groote [4] has shown that u,(n) = 2n — 1 if n < ¢ + 1. Moreover,
Winograd [8] has given a characterization of the class of algorithms realizing
this complexity: these are interpolation algorithms of the projective line over
F, i.e polynomial interpolation algorithms.

b) If F, is not sufficiently large

D.V. Chudnovsky and G.V. Chudnovsky in [2] have succeeded in obtaining
a principle of construction of fast multiplication algorithms by using inter-
polation on algebraic curves. This principe generalizes the polynomial inter-
polation. Moreover, Shparlinsky, Tsfasman and Vladut in [6] have studied
this principle, and found new asymptotic bounds. More precisely, they have
proved that for any prime power q > 3, Mz < 2(1 + ;1—2), M, <6(1+ 5{3)
and M, < 27 where M, = lim supp_coptq(n)/n. By using the D.V. and
G.V. Chudnovsky algorithm applied to elliptic curves, M.A Shokrollahi has
shown in [5] that the bilinear complexity of multiplication is equal to 2n for
1941 < n < 3(g+142¢(g)) where € is the function defined by:

- greatest integer < 2,/q prime to ¢ if ¢ is not a perfect square
e(q) = P
2,/q if qis a perfect square.

1.3 New results presented in this paper.

From the existence of algebraic function fields having some good properties,
we obtain some new upper bounds on the bilinear complexity of multipli-
cation in any extension of the finite field F, where ¢ is an arbitrary prime
power ¢g. More precisely, we prove the following result :

Theorem 1.1 Let g be an arbitrary prime power and let n be a integer.
Then the bilinear complezity of multiplication in any finite field Fon is such
that pg(n) < Byn where By is defined by:

61+ ;%) #g>3
g
2(1+ j_g—:;) if ¢ > 9'and ¢ is a perfect square
45 ifqg=3
90 ifg=2.

B, =
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So, we prove that the bilinear complexity of multiplication in the finite field
F,» is linear uniformly in ¢ with respect to the degree n. To this end, we use
the following general theorem established in [1]:

Theorem 1.2 Let g be a prime power and n be a natural number. If there
exists an algebraic function field F/F, of genus g, satisfying the following
conditions:
1) F[F, contains a prime divisor Q) of degree n.
2) N(F[F,) > 2n + 2g — 2.
Then

Hq(n) < 2n+g— 1.

A very important corollary of this theorem is the following theorem:

Theorem 1.3 Let q be a prime power and n be a natural number. If there
exits an algebraic function field F/F, of genus g, satisfying the following
conditions:
1)2g+1< q’";_l(q% — 1) (in particuler if g < 252)
2) N(F[F,) > 2n + 2g — 2.
Then

pe(n) < 2n+g—1.

Then, we show in section 2 that the tower of Artin-Schreier extensions of
function fields attaining the Drinfeld-Vladut bound, described by A. Garcia
and H. Stichtenoth in [3], satisfies the properties of Theorem 1.3. From it,
we deduce Theorem 1.1 in section 3.

2 Existence of algebraic function fields hav-
ing required properties

In this section, we consider the tower Fy & Fy, & F3 & ... of function fields
F;/Fp over Fp such the ratio N; /g: tends to the Drinfeld-Vladut bound
A(q?) = ¢— 1, constructed by A. Garcia and H. Stichtenoth in [3]. From it,
we show that for any ¢ > 3 and for almost all n € N, there exists an algebraic
function field having more than 2n +2g = 2 places of degree one. First, let us
recall the two following results established by A. Garcia and H. Stichtenoth
in [3].

181



Theorem 2.1 The genus gr = g(Fk) is given by the following formula:
_ qk+qk_1—qhz._l—2qﬁgl+l, ‘tka]. mod 2
Ik ¢ +q1 - %q§+1 - _g.(ﬁ — gt 41, ifk=0mod?2

Let Ny, be the number of places off‘k/IE‘qz of degree one. Then, for any k 2 3,
we have: "

Ne>(¢*—1).¢"" +2¢

Corollary 2.1 limgeo Ni/gr =q—1

From now, let us set M, = (¢* — 1).¢*7" +2¢.
Definition 2.1 Let
Mgk = My — (291 —2) = (¢ —2q = 3)¢" " + f(k)

where
F(k) = 2" +4¢"7 +2q¢, ifk=1mod2
T g +3¢F +2¢571 +2g, if k=0 mod?2 '

Let us consider the set

Opk = {n € NJAy, > 2n},

which, if ¢ > 3, is not empty. Then we will call upper ray of Fi[Fgp:

Agky ;
Rq,k = sup eq,k = card @q,k —1= { _léqi_ J Zf Aq,k 15 odd.

ok — 1 if Ag ts even.

Let us consider the set
O, ={neN2g+1<¢" (¢ 1)}
which is clearly not empty. Then we will call lower ray of Fp[Fp:
T,p = inf O
and we will call action domain of Fk/IFq";, the set I, . defined by:

Iq,k = @q.k n (I)q,k = [Fq,k, Rq,k]
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First, we are going to consider the case ¢ > 2.

Lemma 2.1 Let g be a prime power > 3. Then (Agk),ss is an increasing
sequence such that limge Agx = 00. -

Proof : Let g be an arbitary prime power. For any k& > 3, Agx = (¢*—2q—
3)¢*~ + f(k) where f(k) is a positive and increasing function. Consequently,
if ¢ > 2, (Agk),>s is increasing and tends to infinity. O

Lemma 2.2 Let q be a prime power > 3. Then for any k > 3, the action
domain of Ogx
Iq’k = equ n @qvk = [FQ1k7 R91k]

is not empty.

Proof : It follows from ['yx < Ry for any k > 3 and for any ¢ > 3. Indeed,
it is clear that g satisfies 2gx + 1 < 2¢F7(¢ + 1). Moreover, for any g > 3,
if n > k +2, then we have 2¢* 1 (¢ +1) < ¢" (g —1). Thus Iy < k +2.
Further, for any g > 3, we know that Agz > f(k) which yields Rgx 2 f—(zk—)
Consequently, as for any k¥ > 3 we have k + 2 < j@, we obtain Ry > g
and the proof is complete. O

Lemma 2.3 Let q be a prime power > 3. Then for any k>3, [N Ik
is not empty.

Proof : It follows from [yxy1 < Ry for any k£ > 3 and for any ¢ > 3.
Indeed, in the proof of Lemma 2.2, for any ¥ > 3 and for any ¢ = 3 we
obtained [yx < k + 2. Thus we have [y 41 < k + 3. Moreover, Ry 2 i%l
Consequently, as for any k > 3 we have k+3 < i%cl, we obtain Ry > [y rt1
and the proof is complete. O

Lemma 2.4 Let Jyoo = Ureslon, then Jyeo is a covering of
[Fq,;;,OO[C N.

Proof : First, [y« is an increasing function for any k > 3. Consequently,
the result immediatly follows from Lemma 2.2 and Lemma 2.3. O

Proposition 2.1 Let g be a prime power > 3. Then for any n > LI'gs, there
exists an algebraic function field of genus gr having more than 2n + 2g; — 2
places of degree one and at least a place of degree n. In particular, it ts true
for n such that n > 1¢% + 1.
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Proof : By [7] Corollary v.2.10.c pl79, for any n such that
9g + 1 < ¢™ (g ~ 1), there exists at least one place of degree n over an
algebraic function field F//F, of genus g. Consequently, by the definition of
I, r and by Lemma 2.4, for any n € /g0, there exists an algebraic function
field of genus gi having more than 2n + 2gx — 2 places of degree one and at
least a place of degree n. Moreover, for any q¢ > 3, I';3 < %qz 4+ 1 and the
proof is complete. O

3 Bounds on the multiplication complexity

In this section, we give some new bounds obtained from the results of section
2 and Theorem 1.3.

Theorem 3.1 Let g be a prime power such that ¢ > 3 and let gi be the
integer such that for any k > 3,

3 qk+qk—1_q5§'1"_2q£3‘1'+1, if k=1 mod 2
gk ¢* + ¢+t — Lgh+ — 348 — ¢ 141, ifk=0 mod?2

and

My = (¢ = 1).¢"" +2¢.
Then for all integers n € N such that n > 1¢* + 1, we have
2n < ppe(n) < 20+ gk, — 1

where ko is the integer such that gx, = min{g|n < J‘ﬂ:ﬁg"—*’z}

Proof : It follows directly from Proposition 2.1 and Theorem 1.3. O

Corollary 3.1 Let q be an arbitrary prime power such that ¢ > 3. Then for
any integer n,

pe(n) < 21+ —Lg)n.

Moreover, if 1¢*'(* —2¢—3) <n < L —2¢-3) + ﬂzﬂ where

F(k) = 258 +4¢" +2¢, ifk=1 mod 2
q§+1 + 3‘1!22 + 2(1%_1 +2q, ifk=0 mod2
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then
1

q—3

pe(n) < 2(1 + )n.

Proof : For any integer n, let k be the smallest such that 2n < My —2g;+2,
then 2n > Mi_y — 2gx—1 + 2. Consequently, we have £ — 1 < log,(2n) —
log,(g> —2g—3)+1. Moreover, we have pup(n) < 2n+gr—1 < 2n+ g +q* !
by Theorem 3.1, then p(n) < o+ glosa(2n)—loge(*~20-3)+1(g 1 1) e pga(n) <
2(1 + Z5)n. Further, if 11 (g? —2¢~3)<n< L1 (¢* —2¢-3) + -’%’—‘l,
then we have k — 1 < log,(2n) — log,(¢* — 2q — 3). Consequently, we obtain
() <2+ g —1 < 2n 4 gk + ¢F1 < 2n + gloaaTlesdla’ =203 (g 1), e
pee(n) <2(14+ q%s)n and the proof is complete. O

Corollary 3.2 Let g be an arbitrary prime power such that ¢ > 3. Then for
any integer n,

() < 6(1 + —)n. (2)

g—3
For g =3, uz(n) < 45n.
For g =2, uz(n) £90n. -

Proof : By Lemma 1.2 in [6], for all integers n and m, we have p,(n) <
pig(mn) < pg(m)pgm(n). Hence for ¢ > 3, we put m = 2 and use Ke(2) =3
for any g. Then the inequality (3) follows from Corollary 3.1. For ¢ = 3 we
put m = 2, then we use the inequality (2.3) and p3(2) = 3. For ¢ = 2 we put
m = 4, then we use the first inequality of Corollary 3.1 and p2(4) = 9 by [2].
[
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The o-invariant of some Reed-Muller type codes

C. Renteria (ESFM, IPN, México, renteri@esfm.ipn.mx)!
H. Tapia-Recillas®)(Dpto. Mat. UAM-I, México, htr@xanum.uam.mx)?

1 Introduction

Let X =GF(g) be a finite field with g elements, let P, (K) be the m-projective
space over K and let S = {Py,..., P} be a subset of Pr.(X). Let £ be a
finite dimensional K-linear space of functions which are defined on the set S
and take values on K. Then the evaluation map:

ev:L— K°  ev(f)=(f(P))...,f(P))

defines a K-linear code: Cg = ev(L).

Let A=K[Xo,...,Xm) = ®;»0A; be the polynomial ring over the finite
field K with the natural graduation. If S C P,(K) is as above and £ =
Ay is the d-graded homogeneous component of the polynomial ring A, the
corresponding linear code Cs(d) := ev(Aq), will be called the Reed-Muller
linear code over the set S, which is isomorphic to As/Is(d), where Is =
®,»0ls(5) is the (graded) vanishing ideal of 5. The dimension of this code is
given by the Hilbert function of A/Is. In some cases the minimal distance of
this code has been determined ([6], [12]). A generating matrix of this code
can be obtained by finding a Grobner basis for the ideal Ig, so that the cosets
with respect to I of monomials of degree d that are not in the leading terms
ideal LT (Is) of Ig, form a K-basis for Ag/Is(d). If B C Ry is this set of
monomials then (ev(M))uep is 2 generating matrix for Cs(d).

The knowledge of the so-called a-invariant of the ideal Ig helps to find
its Hilbert function, i.e., the dimension of the Reed-Muller code as defined
above as well as generators for the ideal I, and therefore a generating matrix
of the code. The purpose of this note is to determine the a-invariant, a set
of generators for the ideal Is when the set S is the image of the m-projective
space over a finite field under the Veronese mapping, and give some examples
to illustrate te ideas.

2 Some general results

1Partially supported by COFAA-IPN and SNI-SEP, México
2Partially supported by CONACyT grant No.L0076-E9607 and SNI-SEP, México.
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In this section we recall the definition of the Hilbert function, the a-
invariant of an ideal and give some results that will be useful later on (cf.
[1], [4]).

Let K be any field, let S C B, (K) be a finite set with cardirality s and
let A= K[Xo,...,Xm) = ®j>04; be as above. Let [ :=Is = {f € A:
f(P) =0V P € S} be the hombgeneous vanishing ideal of S in A and let
R = A/I be the coordinate ring of S. The Hilbert function of R is defined
as H(R,d) := dimg Ay — dimg I, which will also be denoted by Hs(d), for
alld € Z

Let I = @2 I, with I,; # 0, so that s is the lowest degree of a non-
trivial homogeneous component of the ideal I. There is an integer ag called
the a-invariant of R (or the a-invariant of the ideal /s, or even the g-invariant
of S) such that:

1. Hs(d) = dimg Ag = (™}%) if and only if d < 7s.

2. Hs(d) < Hs(d+1) < s for 0<d < as.
3. Hs(d) =s for d > ag.

The number ag + 1 is called the r_egularity indez of A/Is.

We also recall that a graded free resolution of A/-IS is an exact sequence
of the form:

0— @A(_az_’r)ﬂir — e @A(_ail)ﬂu — A A/Is -0

so that by restriction to the d component we get the general formula for the
Hilbert function of R:

T

. m-+d j m+d — oy
= (" )+z< 1) ;ﬂ”( )

In particular if K is a finite field, this relation gives the dimension of the
code Cs(d).

We now recall that the Hilbert series of S is Fs(t) = Y ;oo Hs(4)¥, and

~2O " where p(t) is a

that it is a rational function of the form Fs(t) = 5
polynomial with integral coefficients. The next result 1s useful in practical

situations for determining the a-invariant when the Hilbert series is known.
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Lemma 1 With the notation as above, the a-invariant ag of S is equal to
deg(p(t)) — (1 +n).

The proof of this lemma is easy and is omitted (cf.[11]).

Let K be a field and let P, (K) be the m-projective space over K. If
z = (29, ..., Tmm) is an element of B, (K) the Veronese map is defined as

vyt Bu(K) — Py(K), wa(z) = (.., M(z),...)

where M(X) runs over all the monomials of degree n in the variables X =
(Xo, vy Xm), and N = ( nm

known that v, is a smooth embedding with the property that every hyper-
surface of degree n in [P,,,(K) becomes a hyperplane section of the Veronese
variety, the image of [,,(K) under the mapping v,. For m = 1 the image
of v, is the rational normal curve of degree n, and for m = 2 the image
is the Veronese surface. In the sequel an element of Py(K) will be de-
noted by ¥ = (yo, ..., yn), the coordinate ring of P, (K) will be denoted by
Ap = K[Xo, ..oy Xim] = ®j50Am(j) and the corresponding ring of Py(K) by
An = KYy, ..., Yn] = ®j5>0AN(j), both with the standard graduation.

— 1. If K is algebraically closed, it is well

From now on we restrict the above construction to the case where K is
the finite field GF(q) with ¢ = p" elements (p prime and r a positive integer),
and let S = v,( Pr(K)) = {v.(P) € Py(K) : P € P (K)}.

Observe that since v, is an embedding then #(S) = 7, = # ( B.(X))
= -‘1mq—+_11—‘—1. Let Is be the graded vanishing ideal of the set S, ie., Ig =
{f(Y¥Y) € An : f(P) =0V P € S} = ®j>0l5(j). In [10] the a-invariant of
the vanishing ideal of the affine and projective space was found, and in [11]
the a-invariant and a set of generators for the defining ideal of the rational
normal curve were determined. In this note the a-invariant as well as the

vanishing ideal of the set S will be determined.

3 The a-invariant of S

For a positive integer d and for an element f € An(d), let p;(X) =
f(Mp(X), ..., Mn(X)). Then ¢; is homogeneous of degree nd and it defines
a mapping ¢ : Anx(d) — A, (nd) which induces an isomorphism between the
K-vector spaces Ay(d)/Is(d) and Ap(nd)/Ip,.(nd). In particular it follows
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that

| m (i) (i+nd—1—ig
Hs(d) = Hen(o) = 321 Ons) o
(for the last equality see [10], where we assumne that (4) = 1 for all integers d
and that (’Z) —0fork#tandt<0). We also recall that the a-invariant of
the projective space B, (K) is am = m(g—1) and that Ip,, =< XI1X; - X X},
i< jii,j7=0,1,...,m> (cf. [10]).

Lemma 2 The a-invariant ag of the set S = vn( P (K)) is equal to:
a_nr%l ifam+1=37 modn and j>0
ani_l_l if am+1=0 modn

Proof: fa, +1 = j modn with 0 < j <n let d = Elil:i, then
Hg(d+1) = Hp, (n(d+1)). Since n(d+ 1)=amp+1—j+n and n—j > 0,it
follows that n(d+1) > a, and consequently Hs(d+1) = #(S). Furthermore,
since j > 0, we have that am+1—j < ap+1 and hence Hs(d) = Hp,,(nd) =
Hp, (am+1-7) < #(S). From the definition of the a-invariant it follows that
d = ag. The case j = 0 is similar since if d = ¢+ —1, then Hg(d) = Hp,,(nd)
= Hp,(am+1—n) < #(Pr) = #(5), and Hs(d + 1) = Hp,(n(d+1)) =
Hp, (am + 1) = #(Pn) = #(S5), showing that as = el 1,

4 The vanishing ideal of S

In this section the vanishing ideal of S, i.e., the image of P..(K) under
the Veronese mapping is described. In order to do this let K be the algebraic
closure of K and let S be the Veronese variety, ie., the image of P.(K)
under the mapping v, : Po(K) — Py(K), valz) = (., M(g),...). LA =
K|Zq, ..., Z:) let A =K|Z, ..., Z;] and let I5 be the vanishing ideal of S.

Theorem 3 Forg=1! modn, 0<I<n—1,letr= 1;—1 Then
Ig =< IS(Z),Is(T + 1) >

Proof: Since Ig = ®ax2l5(d), in order to prove the assertion of the theorem
N

it is enough to show that Is(d) =Y Yils(d—1),foralld >3 andd #r+1.
i=0

=
We consider two cases: a) 3 < d < r, and b) d > 7+ 2. First we observe that
if d is any positive integer such that nd < g + 1, since Ip, =<Ip.(¢g+1)>
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then ¢ = 0 for all f € Is(d), (where ¢y is as defined in section 3), showing
that Is(d) C Iz(d). Since Ig(d) =< Iz(2) > then for all d > 3, we have
N

I(d) = Y YiIg(d—1). Inthecase a): 3<d < r,ie,3n <nd < ¢g—-1 < g+1,
i=1

N —
let W = E Y;Is(d — 1). Since dimg (W) =dimz(W®x K ) and

Wek K WAy = Ig(d), it follows that dlmKIS(d) =dimgIs(d), and
therefore W = Is(d). In case b): 7+ 2 < d, since & +1 < d — 1, we have
g+ (n—1) <n(d—1), and hence ¢+ 1 < n(d — 1) < nd. Thus 1ff € Is(d)
then ¢y € Ip,(nd) =< X{X; — X;X], 0 < i< j<m >, (cf [10]) and

consequently ¢y = . Z( i (X X; — XiX]) where the g;;’s are forms of
<i<j<m

degree nd — (¢ + 1). Since n(d — 1) >q+1,ie nd—(¢+1) > n the g;’s
can be written as: g;; = M;;(1)hi;(1) + M;;(Lij)hi;(Li;), where the M;;(k) are
monomials of degree n and the h;;(k) are forms of degree nd — (g + 1) — n.
Thus

lij

or = > Mi(k)his(k)(X{ X; — X:X])

j k=1

Note that for all 4, 7, k, the form hy;(k)(X{X;~X;X?) € Ip,,(n(d—1)). Hence
of = MypHj +...+ M Hig with M;; monomials in the variables Xo, ..., Xy, of
degree n and H;; € Ip,,(n(d—1)). Therefore f = Yiy Aia (Hin) +.. +}’;3/\15(H,s)
where each \;;(H;;) is in Ig(d — 1) and is such that »;(m,,) = Hij. From

the above argument we conclude that f € E Yils(d —1).
=0

5 The case m =2

In the previous section the ideal I's was described in terms of the homo-
geneous piece I5(2), i.e., quadrics and forms of degree r + 1, ie., Is(r +1)
(with 7 as defined in the theorem above). In this section we treat the case
of the projective plane [P5(K) closely and, in particular, the dimension of
Is(2) is determined and a set of generators for the homogeneous component
Is(r +1) is given.

Since for all positive integers d, the K-vector spaces An(d)/Is(d) and
An(nd)/Ip, (nd) are isomorphic it follows from relation (1) above that Hg(n) =
Hp,(2n) = (n+1)(2n + 1). The number of forms of degree 2 in the variables
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Yoo, Yy is g[(n + 1) (n + 2)}{(n + 1)(n + 2) + 2]. Therefore
diml5(2) = dimy Ay(2) = Hs(n) = %(n + D)n(n—1)(n +6)

Let 7 be as defined in the previous theorem, i.e., 7 = ’i;—l if ¢ =1 mod.n.
Since dimglIs(r +1) = dimgIp,(n(r + 1)), assuming ¢ + 1 < nr < 2¢+1, it
follows from relation (1) of section 3, that dimgIs(r) = (nr—q+ 1)2—-1. We
recall that if F((],l) = XgXl—X(]Xf, F(o,z) = XgXQ—Xng, F(1,2) = qu_Xz—
X]_Xg ’ then I]]:a2 =< F((),l), F(0,2),F(1,2) >, (Cf[lO]) Let t = n(r-l-l) - (q+ 1)
Since F(i,j) € Ipz(q + 1), then (XgX{’Xg)F(,;,j) € I]pz('n('l" -+ 1)) fa+b+c=t.
The number of monomials X¢X°X¢ with a +b+c = t is (*}?), so there is
a total of 3(**?) elements of the form (X§XX5)Fuz), &7 = 1,2,3. Since
dimglp,(n(r + 1)) = (£ +2)% — 1, it follows that dimgIp,(n(r +1)) < 3("9).
Thus there are enough elements in Ip,(n(r + 1)) of the form (X§X YX$)Fiuj
to choose from so that a basis for Ip,(n(r + 1)) can be taken.

Since the Veronese mapping is given by the monomials of degree n in the
variables Xo, X1, X3z, we may order them with the lexicographic ordering, so
that for instance we can identify the coordinate Yy of Py with the monomial
X7, the coordinate Y with the monomial XS‘_IX 1, and so on. Furthermore,
we introduce the following notation: X(g4¢) = X§X7 X5, where a +b+c =
n, so that if z = (zo, 1,72 € [, then for instance Xno0)(z) = = and
Xn-110(z) = zp 7y, ete. 5

Now let ¢ = nr +1, 0 <1 < n—1, and let F;;=(X§X1X5)F5),
i, = 1,2,3, a+b+c = t, be a basis element of Ip,(n(r + 1)) as de-
scribed above. For instance F(1,2) = (Xe¢XPX$)Fu2 = (X§XPX5)(X{Xs -
XoX9) = (XeXpritixgr) = (XeXPXpm+) = xpr(rexfixg) —
(XeX P XgH)Xpr. Observe that a+(b+1)+(c+ 1) =n=a+(b+1)+(c+])
since a + b + ¢ = n(r + 1) — (g + 1). With the notation introduced above let
Guz) = XfomoyX(aptterd) — XaprretX{oom- Then Gz € Is(r +1) and
it is easy to see that pg,, = ﬁ(u), where the mapping ¢ is as defined in
section 3. Consequently, a set of generators for the ideal Is(r + 1) can be

obtained as the “pull-back” under the mapping ¢ of a set of generators of
the ideal Ip,(n(r + 1)).

Some examples over specific fields ca{n be described in detail as well.
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ABSTRACT. The purpose of this paper is to find sequences with
a good autocorrelation function. The complex sequence 5 : t —
s(t) = x o try/x(ct) is studied, where K is a finite field with ¢
elements, g a power of a prime, L a finite extension of degree s of
K, « a primitive element of L, x a multiplicative character of K'*
of order k and x one of the extended mapping in zero by a root of
unity or zero. The obtained sequence s is valued in the unit circle,
in fact in the set of the k**-roots of unity, plus possibly the origin
(if x is such that 0 — 0). We give its autocorrelation function
and we show how the period of s depends on [L : K] and on the
order of x. The particular case when x is quadratic is studied.
When the extended character x is such that 0 — 1 or 0 — -1,
then the sequence is binary and has ”almost-constant” or almost-
perfect autocorrelation function and when y is such that 0 — 0,
then it is an almost-perfect ternary sequence. The cases when x is
of order 3 and 4 are also studied.

1. INTRODUCTION

Let 5 : £ — 5(¢) be a complex sequence of period n. The autocorre-
lation function of s is defined by

Cs: Z — C
v = Ci(u) = Z s(z)s(z + u)
T€L/nZ

C; is also periodic of period n. The autocorrelation function in some
u = 0 (mod n) are called ”in-phase” coeflicients and are equal to the
weight of 5, i.e. the number of non-zero elements of s in one period. The
other coefficients C,(u) for v # 0 (mod n) are called ”out-of-phase”
coefficients.

If all the out-of-phase coefficients vanish, the sequence is said to be
"perfect”. If they all vanish except for one value, the sequence is said

Date: November 26, 1998,
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——

to be "almost-perfect”. If all the coefficients are identical except one,
the sequence will be said ”almost-constant”. All those sequences are
very interesting for many applications like radar and transmission of
message.

In this paper, we study the complex sequence 5 : ¢ — s(t) = x o
try k() where K is a finite field with ¢ elements, g not necessarly
prime, L a finite extension of degree s of K, a a primitive element of L,
x a multiplicative character of K* of order k and x one of the extended
mapping in 0 by a root of unity or zero. The obtained sequence s is
valued in the unit circle, in fact in the set of the k*-root of unity plus
possibly the origin (in the case when x : 0 — 0). We prove that s is of
least period kgqs_;ll and we give its autocorrelation function. It depends
on ¢, on the degree s of the extension L, the order of x and the way to
extend y in zero.

In particular, when x is quadratic and such that 0 — 1, then 5 is
binary and has ”almost-constant” autocorrelation function, that is a
constant autocorrelation function except in one value. In fact, when
s = 2, the sequence is a 1-almost-perfect in the terminology of [20]
sequence and this completes the construction of [11] and [16]. When
s # 2, we obtain sequences with almost-constant autocorrelation for
lengths for which there is no almost-perfect sequence (n is not a mul-
tiple of 4 and % — 1 is not a power of a prime). When x is quadratic
and such that 0 — 0, then s is an almost-perfect ternary sequence with
period 29;%11 and weight 2¢°~! and this construction completes the one
given in [12].

In the case when x is of order 3, we obtain 3-phase sequences of
length 3(g + 1) and for which the out-of-peak autocorrelation is zero
except for 2 values.

Finally, when x is of order 4, we obtain 4-phase sequences of length
4(g+ 1) and for which the out-of-peak autocorrelation is zero except
for 3 values.

2. STUDY OF t — x o try k(o)

In all the sequel, if n is a positive integer, we will note Z, for the
set {0,1,...,n — 1} of the integer modulo n and ¢, for the primitive
n*h-root of unity exp(2r) in C*. ‘

The strategy to study the autocorrelation function of a sequence s
of period n is to use its Fourier transform 8, that is, for u in Z, :

5 = Y s(a)G"

xezn

It is well known that |5(u)[? = Ci(u). Indeed,
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Ci(w) = (D s(y)sz+ )¢

€Ly YEZn

=D EWG™ Y s
YE€EZn - Z€Zn

= §(u)s(u)

= J5(u)?

So in order to obtain the autocorrelation function of s, we can eval-
uate the module of its Fourier transform for each u in Z,, and then
apply Fourier transform inversion formula.

In order to calculate the Fourier transform of the sequence s, we will
use a result of Clarke in [2]. Let note a : F, = C a map, ¢ = 9;{11 and
v = (™ !)9 a primitive root of K. Let note h the sequence of period at

most ¢ — 1 given by :
h: Z — C
t = h(t) =alt)
and the sequence s of period at most ¢° — 1 given by
5. Zq"’—l - C
) t - s(t) = a(try/x(af))
Clarke stated the following :

5(0) = (¢ = 1a(0) + ¢ h(0)
1) g = {21 =Da©) ~AO)] ifue (- 12, - {o}
o' (o) ifu ¢ (g - 1)2,

Applying formula (2.1) in the particular case when a is one of the ex-
tended mapping of x and using character sum theory, Fourier transform
inversion formula and orthogonality relations, we state the following
theorem :

theorem 2.1. Let the sequence s be
5. an_l — C
t — s(t) = x o trp/x(a?)

sisa Q—}Ci-times-repetition of the sequence f of length kg;_;ll and Yu €
Z,q-1, we have
q—1

. s—=1_ o ” . s_
fxfu) = X(O)PEE + kg™ kLSE if ue £,
1%(0) [2/‘513;_2—1_1 otherwise.

The next scheme gives the modulus of C;. It is constant except at
zero and (k — 1) other values :
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3. QUADRATIC CASE : BINARY AND TERNARY SEQUENCES OF
PERIOD 29———

If ¢ is odd, then K* admits a quadratic character. f is bmary
({+1, —1}-valued) or ternary ({0, +1, —1}-valued), of period 2-‘1— and
has the following autocorrelation function :

%(0)P2(E=) +2¢°7F ifu=0,
Vi€ Zyy, Cilu) = | [XOPATEE) 20 =22,
- . .!—2___1 ;
%(0)[*2(+== otherwise.

f is ”almost-constant” (all the out-of-phase coeflicients are constant
except one). Now we can deduce the two following corollaries :

corollary 3.1. Let o be a primitive root of L, x the quadratic thar-
acter of K extended in zero by 0 — 1 or 0 — —1. The binary 29———

periodic sequence
f: Zzg"_—_l — C
g—1
i = f(t) = X o trL/K(at)

has the following autocorrelation function :

2%% ifu=0,
Vi € Zygy, Crlu) = {285 —4¢°! ifu= =,
g—1
29—;1- otherwise.

=1
o Ifs = 2 then f is I-almost perfect in the terminology of [20], of
length 2(g + 1) :

q+l
| i 1 U
o \/ 2gq+)
01
o If 5 # 2 then f is "almost-constant” of length 277
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4

0 4 2g

We can note that in the case when s = 3, f is almost-perfect of type
IITY with @ = ¢ + 1 in the terminology of [7] and corresponds to a
(*+q+1,2,¢%0, @iﬁl—) + 1)-relative difference set.

corollary 3.2. Let o be a primitive root of L, x the quadmtzc char-
acter of K extended in zero by 0 — 0. The ternary 2"" -perzodzc
sequence

f: Z2g-";11 — C
=
t — f(t) = x o trr/x(a?)

has the following autocorrelation function :

20"t ifu=0,

Yu € Zzgs__:, Ce(u) = ¢ —2¢°7' ifu= L—;__ll,
=
0 otherwise.

and if we note m = 2¢°~! for the weight of f, we have :

4. THREE-PHASE SEQUENCES

If ¢ = 1 (mod 3), then K* admits a character x of order 3. If
the character x is extended in zero by 0 — 1 or 0 exp(z T) or
0— exp(z——) then f is three-phase ({+1,exp(iZ), exp(i%F)}- valued)
of period 39q—_— and has the following autocorrelatlon function :

39’——11' ifu=0,
39——+35'1ex i2TY  if gy = =L
Vi € Zyg, Crlu) = 4 40" qs 1 p(-f;r) : qg—"l;’l
g1 3 - L+ 3g exp(ig) fu=2 —
3%}' _ otherwise.

In the case when L is an extension of degree 2 of K (s = 2), we have
the following corollary :
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corollary 4.1. Let x the character of order 3 of K extended in zero
by a third root of unity in C. Let L be the extension of degree 2 of K.
Let o be a primitive root of L. The three-phase sequence

f: Z3g;__—_ll - C
t - f(t) = x otrp/k(ah)
has the following autocorrelation function :

3(g+1) ifu=0,

3(1+qexp(i¥y)) ifu=q+1,
Vu e Z = ;
u € La(gr1), Ce(u) 3(1 + gexp(idZ)) ifu=2(g+1),
0 otherwise.

and the modulus of C; is the following :

0 g+l 2q+1) 3(gel)

5. FOUR-PHASE SEQUENCES

Ifg=1 (mod 4), then K* admits a character x of order 4. If the
character x is extended in zero by 0 — 1 or 0 = —1 or 0 — ¢ or
0 — —i, then f is four-phase ({£1,+i}-valued), of period 49—— and
has the following autocorrelation function :

’49;_;11 if u=0,
422l 4 4ig"t ifu= 9;;11,
Yu € Z4gqs_;11, Ce(u) = ¢ 495—;3:— 4¢°1 fu= 29q—1,
4L—— 4ig*! ifu= 39(1;11,
h49%_?1—1- otherwise.

In the case when L is an extension of degree 2 of K (s = 2), we have
the following corollary :

corollary 5.1. Let x the character of order 4 of K extended in zero
by a fourth root of unity in C. Let L be the extension of degree 2 of K.
Let o be a primitive root of L. The four-phase sequence

{: Z4q3_-1 — C

g—1

¢ — £(t) = x o trp/x(a?)
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has the following autocorrelation fynctian 5

(4(g+1) fu=0,
41+4q) tfu=q+1,
Vu € Zygtry, Ci(u) ={4(l—¢) fu=2(g+1),
41 -1q) ifu=3(g+1),
0 otherwise.

and the modulus of C; is the following :

0 q+t Ag+l) 3(q+l) Iq+1)

6. CONCLUSION

We have constructed sequences of length n = k%l-. The binary
or ternary sequences are particularly interesting. Let us see the cases
when the construction is new.

In the binary case, the sequences are of length n = 29;{11. When
s = 2 we obtain a new construction of 1-almost-perfect sequences of
length 2(¢ + 1) for ¢ a power of an odd prime which completes the
construction of Langevin in [11] and of Pott and Bradley in [16]. If s is
odd, n is not a multiple of 4 and according to [20], there is no almost-
perfect sequence. In all the cases when s # 2 (and in particular when
s is even), (3 —1) = ¢’ +... 4 ¢ is not a power of a prime (because g is
a power of a prime) and it is stated in [16] that for  —1 < 10000 there
is no almost-perfect sequences. In consequence, if s is odd or s # 2,
we have constructed ”almost-constant” sequences of length n for which
there is no almost-perfect sequence.

In the ternary case, we found ternary {0,+1,—1} almost-perfect
sequences of length 29;_;11 for ¢ a power of a prime and s a positive
integer and we have no conditions for the parameters ¢ and s (in [12]
the conditions were (s,%%) = 1 and 2|%* in [12]). The next four
tables summerize the parameters for each length. We specify by a star
lengths for which no such sequences were known before.

5 5 5

q/3 3 3 3 3

s|23 4 5 6 2 3 4

n|8 26 80 242 728 12* 62% 312%
¢|7 7 7 9 9 11 11 13 13
s|2 3 4 2 3 2 3 2 3
n |16 114* 800 20* 182* 24 266 28* 366+
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gl|l7 17 19 19 23 23 25 25 27
s12 3 2 3 2 3 2 3 2
n | 36% 614* 40 722* 48 1106 52* 1302* 56

g |29 31 37 41 43 47 49 121 125
sl2 2 2 2 2 2 2 2 2
60* 64 76* 84* 88 96 100* 244* 252*
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Abstract —Modulation codes used in almost all contemporary storage products belong to
the class of constrained codes. These nonlinear codes encode arbitrary input sequences as
sequences that do not contain (globally or at certain positions) a finite number of finite
length strings. Distance enhancing constraints of the second type should eliminate some of
the possible recorded sequences in order to increase the minimum distance between those
that remain. This general goal does not specify how the constraints should be defined,
and, until recently, the only known constraints of this type were the matched-spectral-
null (MSN) constraints. During the past few years, significant progress has been made
in defining high-rate distance-enhancing constraints for high density magnetic recording
channels. The most important characteristics of these constraints are that they support
the design of high rate codes and that they simplify the Viterbi detectors relative to the
uncoded channels. Codes that have been designed based on these constraints are the first
distance-enhancing codes implemented in commercial magnetic recording systems. The
main idea is to first identify constraints that differences of channel sequences (possible
errors) should satisfy, and then infer the constraints that channel sequences should satisfy.
The problem we address here is how to define the least restrictive of such constraints.

Keywords —constrained coding, intersymbol interference, magnetic recording.
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I. INTRODUCTION

Modulation codes used in almost all contemporary storage products belong to the class of
constrained codes. These nonlinear codes encode arbitrary input sequences as sequences
that do not contain (globally or at certain positions) a finite number of finite length strings.
Sets of such sequences are called constrained sets or constraints. Design of constrained
codes begins with identifying constraints that achieve certain objectives. Once the system
of constraints is specified, the task that remains is to construct two finite state machines:
an encoder to convert arbitrary user sequences into constrained sequences and a decoder
to recover user sequences from constrained sequences. Constrained sets and codes are
described in Section II.

Two types of constraints are of interest in magnetic recording channels: constraints for
improving timing and gain control and simplifying the design of the Viterbi detector for
the channel, and constraints for improving noise immunity. Constraints of the first type
impose run-length limitations (RLL) on sequences of recorded symbols. Several high
rate codes for these constraints have been designed and implemented. Constraints of the
second type should eliminate some of the possible recorded sequences in order to increase
the minimum distance between those that remain. This general goal does not specify how
the constraints should be defined, and, until recently, the only known constraints of this
type were the matched-spectral-null (MSN) constraints. They describe sequences whose
spectral nulls match those of the channel, and because of that, increase its minimum
distance.

During the past few years, significant progress has been made in defining high-rate
distance-enhancing constraints for high density magnetic recording channels (see [1} and
references therein). The main idea, explained in Section IIL, is to first identify constraints
that differences of channel sequences (possible errors) should satisfy, and then infer the
constraints that channel sequences should satisfy. The most important characteristics
of these constraints are that they support the design of high rate codes and that they
simplify the Viterbi detectors relative to the uncoded channels. Codes designed based
on these constraints were the first distance-enhancing codes implemented in commercial
magnetic recording systems. The problem we address in Section IV is how to define the
least restrictive constraints on channel sequences when constraints on their differences are
specified.

II. CONSTRAINED SETS AND CODES

Constrained codes are most often derived based on constrained systems of finite type
(FT). An FT system X over alphabet A can always be characterized by a finite list of
forbidden strings F = {w1,...,wn} of symbols in A. Defined this way, FT systems will
be denoted by X#. A set of constraints for the binary channel can be written in the
form of a directed graph with a finite number of states and edges, and edge labels drawn
from the binary alphabet. The set of corresponding constrained sequences is obtained
by reading the labels of paths through the graph. A constrained code C, C C X}O’l} can

be constructed based on a graph representation of X ;_-0’1'} by means of the state splitting
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algorithm [2].

Translation of constrained sequences into the channel sequences depends on the modula-
tion method. Saturation recording of binary information on magnetic medium is accom-
plished by converting an input stream of data into a spatial stream of bit cells along a
track where each cell is fully magnetized in one of two possible directions, denoted by 0
and 1. There are two important modulation methods commonly used on magnetic record-
ing channels: non-return-to-zero (NRZ) and modified non-return-to-zero (NRZI). In NRZ
modulation, the binary digits 0 and 1 in the input data stream correspond to 0 and 1
directions of cell magnetizations, respectively. In NRZI modulation, the binary digit 1
corresponds to a magnetic transition between two bit cells, and the binary digit 0 cor-
responds to no transition. For example, the channel constraint which forbids transitions
in two neighboring bit-cells, can be accomplished by either 7 = {11} NRZI constraint
or F = {101,010} NRZ constraint. The graph representation of these two constraints is
shown in Fig. 1. The NRZI representation is in this case simpler.

1
(1)
a) b)

Fig. 1. Two equivalent constraints: a) F = {11} NRZI and b) F = {101,010} NRZ.

The maximum rate of a code into a constrained system is determined by its Shannon
capacity. The Shannon capacity or simply capacity of a constrained system, denoted by
C, is defined as

C = bm M,

n=—00 n

where N(n) is the number of sequences of length n. The capacity of an FT constrained
system represented by a graph G can be easily computed from the adjacency matriz (or
_ state transition matriz) of G. The adjacency matrix of graph G with r states and ay;
edges from state 7 to state j, 1 <4,j <7, is the r x r matrix A = A(G) = {ai;}rxr. The
Shannon capacity of G is given by

C= 10g2 )‘(A)’

where A(A) is the largest real eigenvalue of A.
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III. CONSTRAINTS FOR ISI CHANNELS

A. Requirements

It has been proposed in a number of recent papers that constrained codes be used to
provide coding gain on channels with high intersymbol-interference (ISI). The main idea
of this approach can be briefly described as follows [1]. The minimum distance of the
uncoded binary channel with transfer function 2(D) is defined by

2 : 2
i = 1011 [|R(D)e( D),

:
where

-1
D) =) el

=0

and ¢ € {-1,0,1}, €0 = 1, -1 # 0, is the polynomial corresponding to a normalized

input error sequence € = {ei}ﬁ-;}, of length I, and the squared norm of a polynomial is

defined as the sum of its squared coefficients. The minimum distance is bounded from

above by ||h(D)|?, denoted by
dre = [R(D)I- (1)

This bound is known as the matched-filter bound (MFB), and is achieved when the error
sequence of length [ =1, i.e., ¢(D) = 1, is in the set

arg min [IR(D)e(D)I* (2)

For channels that fail to achieve the MFB, i.e., for which dZ;, < ||h(D)||?, error sequences
¢(D) for which

dria < IR(D)e(D)I* < [IA(D)]* (3)

are of length I > 2 and may belong to the strings excluded by a constrained system
X;E-_l’o’l}, where £ is an appropriately chosen finite list of forbidden strings.

For code C, we define the set of all admissible non-zero error sequences,
E(C) = {e = {ei}|e; € {-1,0,1},e0 =1,e =a—b, a,beC}. (4)

Given the condition £(C) C Xé_l'o’l}’, we seck to identify the least restrictive finite col-
lection F of blocks over the alphabet {0,1} so that

ccxP — gc) c xIHON. (5)

B. Definitions

A constrained code is defined by specifying #, the list of forbidden sirings for code se-
quences. Prior to that one needs to first characterize error sequences that satisfy (3) and

206



then specify £, the list of forbidden strings for error sequences. Error event characteriza-
tion can be done by using any of the methods described by Karabed, Siegel, and Soljanin
in [1]. Specification of £ is usually straightforward.

A natural way to construct a collection F of blocks forbidden in code sequences based on
the collection £ of blocks forbidden in error sequences is the following. From the above
definition of error sequences € = {¢;} we see that ¢; = 1 requires a; = 1 and ¢ = —1
requires a; = 0, i.e., a; = (14 ¢)/2. error sequences. For each error block wg € L,
construct a list Fap, of code blocks w¢ of the same length ! according to the rule:

Fw, = {we € {0,1} |wh = (14 wk)/2 for all i for which w} # 0}. (6)

Then the collection F obtained as F = | Jy, . Fuw, satisfies requirement (5). However,

the constrained system X J{_-O’l} obtained this way may not be the most efficient.

We illustrate the above ideas on the example of the E?PR4 channel. Its transfer function is
h(D) = (1-D)(1+D)?, and its MFB, determined by ¢(D) = 1, is ||(1—=D)(1+ D)3-1||* =
10. The error polynomial ¢(D) = 1 — D + D? is the unique error polynomial for which
[(1—D)(1+D)3¢(D)||*> = 6, and the error polynomials (D) =1—D+ D?+ D* - D8+ D7
and e(D) = Y1Zh(=1)'D’ for | > 4 are the only polynomials for which [|(1 — D)(1 +
D)3e(D)||* = 8 (see for example [1]).

It is easy to show that these error events are not in the constrained error set defined by
the list of forbidden error strings £ = {+-+00, +-+-}, where + denotes 1 and - denotes
—1. To see that, note that an error sequence that does not contain string +-+00 cannot
have polynomial (D) = 1 — D 4+ D? or ¢(D) =1 — D + D? + D% — D% 4 D7, while an
error sequence that does not contain string +-+- cannot have a polynomial of the form
e(D) = S025(~1)'D' for I > 4. Therefore, by the above procedure of defining the list of
forbidden code strings, we obtain the F = {+-+} NRZ constraint. Its capacity is about
0.81, and a rate 4/5 code into the constraint was first given in [3].

In [1], the following approach was used to obtain several higher rate constraints. For each
of the error strings in list £, we write all pairs of channel strings whose difference is the
error string. To define the list 7, we look for the longest string(s) appearing in at least
one of the strings in each channel pair. For the example above and +-+00 error string, a
case-by-case analysis of channel pairs is depicted in Fig. 2. We can distinguish two types

A B A A
a: of1 0 1]0 0 1/101]lo00 - o[t 01]01 110 1]0 1
b: 0/0 1 0[00 1(0 1 0[(0 0 0/0 1 0|01 1/0 1 0|0 1

A A " B A
a: 0[1T 0 I]1 0 110110 0f1 0 1|1 110 1]11
b: 0/lo10[/10 1/0 1010 0|0 1 0[1 1 1/0 1011

Fig. 2. Possible pairs of sequences for which error event + — +0 0 may occur.

(denoted by A and B in the figure) of pairs of code sequences involved in forming an error
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event. In a pair of type A, at least one of the sequences has a transition run of length
4. In a pair of type B, both sequences have transition runs of length 3, but for one of
them the run starts at an even position-and for the other at an odd position. This implies
that an NRZI constrained system that limits the run of 1s to 3 when it starts at an odd
position and to 2 when it starts at an even position, eliminates all possibilities shown
bold-faced in Fig. 2. In addition, this constraint eliminates all error sequences containing
string +-+-. A graph representation of this constraint is given in Fig. 3. Its capacity is

0
\—/1//
0 i 0

Fig. 3. Graph representation of F = {1111, 111even} NRZI constraint.

about 0.916.

IV. ANALYSIS OF CONSTRAINTS ON CHANNEL SEQUENCES

In this section we will continue our analysis of the constraints that channel sequences
should satisfy. The objective is to find the least restrictive constraints on channel se-
quences when constraints on their differences are specified. As in the previous section, we
will concentrate on the E2PR4 channel, for which the error polynomials have the following
form )
-1
E,. ¢(D) = Z(—l)i D', where [ > 3
i=0

and
Es. e(D)=1—D—l—D2—{-D5—D6—i-D7

These error events can not occur if property (6) holds for every pair of codewords in the
code set C. Consequently, we can consider the entire set of binary channel sequences and
determine for every channel sequence a, whether or not there exists a channel sequence
b for which the difference a — b would create an error sequence of the form E; or E;. Let
Ba = {bs,--- ,bs} denote the set of channel sequences for which the difference a — b;,
where 1 < i < s, would give an inadmissible error sequence. We then have the option to
include element a in the code set C and exclude the set By, or to exclude a and to add
one or more elements b; of B, to C, provided that By, NC = @.

It can be easily verified that for every channel sequence a that fulfils the 7 = {101,010}
NRZ constraint, or equivalently the F = {11} NRZI constraint, the set B, = &. Se-
quences that fulfil this constraint form the basis of the code set C. The Shannon capacity
for the given constraint is 0.6942.

We will now try to determine which of the sequences that do not satisfy the F = {11}
NRZI constraints can be included in the code set C.
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The common characteristic of sequences that do not satisfy the 7 = {11} NRZI con-
straints is the presence of at least one subsequence with the property that this subse-
quence can be represented in NRZI as a run of k consecutive “ones”, where k > 2. The
corresponding subsequence is represented in NRZ as a run of alternating symbols of length
k; = k + 1. The notation is illustrated by the following example:

NRZ : 00110100011011001010100
NRZI: *01011100101101011111160

The subsequences with k; > 3 are underlined. We will use the symbol * to represent an

§

arbitrary element of alphabet A.

A. Characterization of the Pairs that Form Error Fvent Ey

Consider a channel sequence a with a segment W for which k; = lpax. If [pax > 3, there
exists a pair (@, b), where b differs from.a in a part of segment W only. In this way error
events of the form E; can occur for any Iy < I < lnax, where lnin = 3.

Let the subsequence preceding W have k; = r, and the subsequence succeeding W have
k; = rs. To characterize the sequence b; that forms an error event E; we distinguish the
following cases:

Case A: | = l.x. By inverting W we obtain a sequence b; with a subsequence for which
ki =7, + lmax + 7+ 5. Since rp > 1 and vy 2> 1, kt 2 lmax + 2.
~ Case B: lnin £ < lmax. In this case only a segment of { consecutive symbols of W will be
inverted. Let ¢ denote the first position of the inverted consecutive symbols. Obviously,
1<g < (loax — 1+ 1).
« If g = 1, we obtain b; that has two subsequences, with k; = r, + ! and k; = lpax — [,
respectively.
o If1 < ¢ < (lmax—1+1), we obtain b; that has three subsequences with k; = ¢, k; = [,
and k; = w — [ — g, respectively.
o If ¢ = (lnax—[+1), we obtain b; that has two subsequences with k; = g and k; = [+,
respectively.

As an example, consider the situation where W = 10101 and k; = l,ax = 5.

¥1101011x 1101011 1101011 %
+-+ +-+ +-+

x*1010011x *1110111=% *1100101*

¥1101011% ¥1101011x ¥1101011 %

-t -t +—t—+
*1010111x x1110101= *1010101 %

The number of different pairs |B,| that can be formed if there are s subsequences for
which k; > lin, each having the value k; = lyayx, and 1 < ¢ < s, is given by the following

expression
5 Imax—Ilmin+1 s (l _ l i+ 1)(l _ l i+ 2)
|Ba| = ; ; J = ; 2
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B. Characterization of the Pairs that Form Error Event E;

Since the structure of the error event E, is quite different from the E; error events, we
will have to analyze this case separately. In Table I we show the properties in terms of

run lengths of the pair

for the 16 different values of v1v2v3v4.

(v,010v,v,01 02,210 1yv,10 1v,)

TABLE I

PAIRS OF SEQUENCES FOR WHICH ERROR EVENT 1 —D + D? 4+ D% — D% + D* May OCcUR

i | vy, | @i =4010u,010y, | b; =410 1v,,101v, | characteristics a; characteristics b;
0| 0000 0010000100 0101001010 | ks = 3 (twice) ky > 5 (twice)
110001 0010000101 0101001011 | k>4 k:>5, k=4
210010 0010010100 0101011010 | ks =5 k:>6, k>4
30011 0010010101 0101011011 | k> 6 ks> 6
4]0100 0010100100 0101101010 | k= ke >4,k >6
5| 0101 0010100101 0101101011 |k, =5,k >4 ki >4, k=5
6| 0110 0010110100 0101111010 | ks = 4 (twice) k: > 4 (twice)
7(0111 0010110101 0101111011 | k=4, ke 23 k>4

8.1 1000 1010000100 1101001010 | k>4 ky=4,k >5
9| 1001 1010000101 1101001011 | k¢ > 4 (twice) ky = 4 (twice)
10 | 1010 1010010100 1101011010 | k>4, k=5 ki=5k >4
11| 1011 1010010101 1101011011 | ks >4, k: 26 k:=5

12 | 1100 1010100100 1101101010 | k> 6 k> 6

13| 1101 1010100101 1101101011 | ks >6, ke >4 k=5

14| 1110 1010110100 1101111010 |k >5,k =4 k; >4

15 | 1111 1010110101 1101111011 | k¢ > 5 (twice) ks = 3 (twice)

There are, as shown in Table I, mostly pairs of which at least one of the elements has a

double occurrence of k; > 4. Only (as,bs) and (@12, by;) contain a single k; > 6.

C. Sequence Selection

We partition the set of binary sequences in subsets, each of which is characterized by the

maximum value that k; attains.

kt<3:

As discussed previously, these sequences cannot be involved in forming an
error event. The selection of these sequences does not put any restrictions on
the choice of the remaining sequences.

If a sequence with k; = 3 is involved in an error event, then the other sequence
in the pair has k; > 5:

x11011%*

+-+

x*10101=
Consider a sequence a where k; = 3 occurs s times. There are for every
sequence § pairs that would give the error sequence +-+, and therefore s
sequences have to be excluded. The other element of the pair has exactly one
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occurrence of k; > 5. We will include all sequences a with k; < 3, motivated
by the fact that |B,| < |Bs], for all b € B,.

Whenever k; = 4, there are two possible ways to form the error event +-+ and
one way to form the error event +-+-. This is illustrated for the sequence
*110100%.

¥110100x x110100%* *110100=
+-+ +-+ +—+-
x101000x *111010=% *101010=%

The other sequence in forming the error event either has &k, > 4 or k; > 6.
The run at which the sequence with k; = 4 starts is either one position ahead
or behind.

Consider a channel sequence where k; < 4 and where the subsequence 110100
or 001011 occurs s times in the sequence at the positions p;,ps, -+ ,p,. We
partition this set in a set of even positions, P., and a set of odd positions, P,.
If we allow all sequences for which |P.] is an even number, we have to exclude
all the sequences where |P¢| is odd, unless every segment for which k; = 4 is
preceded and succeeded by a segment with k; > 1.

Some of the sequences for which |P| is an even number have to be excluded
to avoid the error event E,, in particular pair (as,bs) and pair (ag, bg) as in
Table I. We therefore exclude sequences with the property that k; = 4 occurs
consecutively at even positions, surrounded by two segments for which k; = 1,
or separated by two segments with k; = 1.

Consider the situation where k; = 5. The pairs of sequences that would give
a forbidden error event are, as previously listed, equal to

*x1101011= x*x1101011=% *1101011x
+-+ +— + -+
*1010011= *x1110111= *1100101 =%

*1101011+« *1101011= *1101011=
+—+-— +—+= +-+ -+
*1010111=% *1110101=% 1010101«
Based on this analysis, it is obvious that sequences with single occurrences of
k; = 5 have to be excluded. Sequences where the number of occurrences of
segments with k; = 5 occur an equal number of times, and for which |P,| is
an even number, can be included, provided that

« they do not contain a segment with k; = 4 starting at an even position.

« they do not contain a segment with k; = 5 that is preceded or succeeded
by a segment with k; = 2 or k; = 4.

Channel sequences for which k; > 6 occur once, will usually have to be excluded, because
they can almost always be paired with channel sequences for which k; = 3 or k; = 4. The
fraction of channel sequences with multiple occurrences of k; > 6 is very small, and thus,
the effect of including these sequences is minor.

Ideally, one would like to represent the rules for the inclusion of sequences in the code set
C as described above by a graph. While this is relatively easy for the rules that limit the
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maximum value of k;, it is very hard to represent the rules for the inclusion of sequences
with multiple occurrences of k; > 4.

To compare the number of sequences that are specified with the number of sequences that
are allowed in the constrained system represented in Fig. 3, we will determine the number
of sequences that satisfy the rules for a given length n. The results are given in Table II.

TABLE 11

NUMBER OF SEQUENCES OBTAINED USING THE DERIVED RULES OR THE GRAPH

n |C|rule_s Ic|g'raph : A
5 28 28 0
6 56 50 6
7 104 100 4
8 200 178 22
9 372 356 16

10 720 634 86
11| 1342 1268 74
12 | 2598 2258 | 340
13 | 4840 4516 | 324
14| 9370 8042 | 1328
15 | 17494 | 16084 | 1410

The constrained system represented in Fig. 3 includes all sequences where k; = 3 and all
sequences with k; = 4 starting at odd positions. The difference in code size, A, indicates
that by allowing multiple occurrences of k; > 4 one can enlarge the code set. Options to
further extend the code set are currently being investigated.
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Abstract

We consider codes of rank 1 over Zy= in order to construct signal space codes for the
collision channel. To achieve collision resistance we search among codes generated by vec-
tors entirely consisting of units of the underlying ring. It turns out that the resulting signal
sets improve over previously known collision resistant signal sets. A further advantage is
that they allow for efficient decoding.

Key Words: Codes over Integer Residue Rings, Weight-Functions, Wireless Multiple Access
Collision Channel, Fading.

1 Introduction ;

A novel class of signal space codes called Collision Resistant Modulations (CRM) for bandwidth
efficient transmission on a random access collision channel, as in packet-radio applications,
was proposed in [3]. There it is shown that CRMs achieve a significant gain over traditional
modulation formats under a Slotted ALOHA protocol. We briefly summarize some of the key
ideas presented in [3] in order to set the basis of the present paper.

We model the collision channel with AWGN and fading as the on-off vecfor channel
y = C(Gx +n) (1)

Here x = (21,...,%n) I8 a transmitted word taken from the signal set S (signal-space code),
n = (ny,...,n,) is additive white Gaussian noise with i.i.d. components n; = N (0, Ny/2)
and the matrix G = diag(gi,...,gn) represents the channel fading coefficients g; > 0. The
matrix C = diag(cy,...,c,) represents the collision pattern with ¢; € {0,1} foralli = 1,...,n,
where ¢; = 0 indicates the presence of a collision on the i-th signal component. Finally
¥ = (¥1,--.,Yn) is the received signal vector.

The multiple access scheme induces a certain collision statistics. For example, if the users
randomly access any n slots of a common channel to transmit the n components of a signal,
the ¢; may be considered as Bernoulli i.i.d. random variables with P, = P(c; = 0) and if C has

k collisions
P(C) = Pf(1 - P.)"* (2)

*File: crmxwcc99.tex
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The fading coefficients g; are random variables whose joint statistics depends on the physical
characteristics of the propagation channél, such as the multi-path delay profile and the Doppler
spectrum.

We assume that the receiver has perfect channel state information (CSI) on both the collisions
and the fading, ie., has a complete knowledge of C' and G. In this case, the Maximum
Likelihood (ML) detection is obtained by minimizing over all x € S the metric

n

Zxy) = Y alyi — gizs)? (3)

=1

This detection criterium corresponds to the ML detection for the signal set S¢ in an (n — k)-
dimensional Euclidean space, where Sc is the projection of § on the subspace generated by
the n — k axes corresponding to the non zero ¢; (k is the number of collisions in the pattern
C). According to this detection criterium, in order to avoid systematic errors in the presence
of k < n collisions, we require that the points in S¢ are distinct, for all C with Hamming
distance wg(C) > 0. Then, we have the following

Definition 1.1 A Collision Resistant Modulation (CRM) is a signal-space code S with the
property that any projection on any coordinate subspace has the same number of distinct
points, i.e., M = |S¢| = |S]| for all non-zero collision patterns C.

Equivalently, the words in S must have all distinct coordinates or, more precisely, the Hamming
distance between any pair of words in S must be n. A similar requirement is imposed in the
design of high diversity signal constellations for the fading channel where the number of distinct
components is called modulation diversity [1, 2).

The symbol error probability is given by

P(e) =) _ P(C)P(e|C) (4)
c
where C runs over all 2" collision patterns, P(C) is given in (2) and by using the Union bound

PEC) <32 3 Y Plx—+%) (5)

x€8¢c x#£%

where P(x — X) is the pairwise error probability averaged with respect to G. {x = x}
represents the event that the decoder chooses X when x was actually transmitted, as if x and
% were the two only possible decoder outcomes. We refer to this as pairwise error event.
Expressions for the pairwise error probability for both the Gaussian and independent Rayleigh
fading channels can be found in [3]. These show that in order to reduce the symbol error proba-
bility it is important to maximize different types of minimum distances of all the constellations
Sc according to the type of channel being used.

Given any two signal words s and t in S we consider three types of distances:

o d4(s,t) := [|s — t|}§ = X%, |si — t:f?, the Squared Euclidean distance (SED). This is
appropriate on the pure AWGN channel without fading.

e dp(s,t) := [T%1|s; — ti|, the Product distance. This is appropriate in the presence of
independent Rayleigh fading.

o dz(s,t) :=|ls — t|ly = %, |s; — ti|, the £;-distance. This is appropriate in the presence
of Rice fading.
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Note that the product distance is not a distance function in the narrow sense in that is does
not satisfy the triangle inequality in general. In the following we speak about the weights
wg,wp and wy, of the symbols in § as- their distance from the origin.

In [3] some low dimensional CRMs are shown which could only be decoded by exhaustive
search through the codebook. Here we are interested in higher dimensional CRMs which
provide greater minimum distances in the projected constellations S¢ and present a structure
that can be effectively exploited for decoding.

2 The algebraic construction

Let Zjs denote the ring of integers modulo M where M = 2™, and write Zyr = {-M/2 +
1,...M/2} for convenience. Note that the usual mod M operation has to be slightly modified
in order to match the symmetric representation of Zjy.

We consider linear codes of rank 1 over Zjys and first note that the generator matrix of such
a code is a single word v = (vj,...vy,) that contains at least one unit of Zys. The Zps-code
generated by it is given by C = {fv|B € Zpn}. As corresponding signal set S we take the
code words identically embedded as real-valued vectors into the Euclidean space R". Under
the above premise this embedding is a weight preserving mapping of (Zps, wiee) into (R, £1).
In order to obtain the collision resistance property we require that the generating word entirely
consists of units of Zps. In fact the i-th component Sv; of each codeword are all distinct as 8
runs over Zpys. For M = 2™ the unit group U(Z)y) is the set of odd numbers in Zy,.

Proposition 2.1 The minimum weight of a vector in S is equal to the minimum distance
between any two vectors of S for all three types of distances.

Proof: In order to see this denote by w one of the respective weight functions wy,wg or wp
on Z" and denote by d the corresponding distance function. Then we obviously have

'wmin(S) > dmin(s) > dmin(A) = wmin(A)

where A := C + MZ" is the lattice resulting from C by Construction A (cf. [5]). Let x :=
(z1,..-,Zn) € Z" be given such that w(x) = wmin(A). If x € S then exchanging z; by
z} = z1 (mod M) produces a vector x' € A with w(x') < w(x) and hence w(x') = w(x)
because of minimality. Without loss of generality we may therefore assume x € S, and hence
conclude Wmin(A) > Wnin(S). All in all we have shown

dmin (S) = ,wmin(S)

which proves our claim. 0

We finally note that equivalent signal sets S in terms of error performance are obtained by
taking permutations and sign-changed versions of the generator vector of C.

2.1 Signal sets in dimension M/4

In this section we show that the signal sets generated by the above codes can be easily charac-
terized for all the three metrics when n = M/4 = 2™~2. In the following the double factorial
(2a + 1)!! denotes the product (2c+1)(2a —1)---3- 1.

Proposition 2.2 Let v = (1,3,...,M/2 — 1) then for the [M/4,1] code C generated by v the
following holds:
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(a) the minimum Lee weight of C is M?/16,
(b) the minimum Euclidean weight of C is M3/64, and
(c) the minimum product weight of C s (M/2 — 1)IL.
Proof: Let Bv be a word in C and let 8 = 92ky, for appropriate k < m and u € U(Zp). Since

multiplication by u~! merely applies a permutation and sign changes in Bv, we may without
loss of generality suppose u = 1. For our claim concerning the Lee weight we then compute

1Bviie = D122 - 1)
i=1

2m—1—k
= 2% 3 (20-1)
i=1
— 22l€ (2m—2—k (2m—2—k + 1) _ 2m—2—k)
2
— 22771-—4 —_—
16.

as claimed. Note that C\ {0} is a constant Lee weight code. For the Euclidean weight we
similarly have

;‘Ti_
IBvile = 28 2%(2i—-1)°
=1
4 3 4k in. o k-1
2B _F == — 4
v =30 )

which obviously assumes its minimum for k = m—2. Hence, in this case the resulting minimum
weight is given by 8™/64 =M 3/64. For the product distance we have -

;nk- k
1Bvile = ([T 2*@i - 1)

=1
If we prove that this is an increasing function of k then the minimum product weight occurs
at the unital multiples of v and hence on v itself, where it is given by (M/2 — 1)!!. Defining

ok) = ([] 2¢(2 — 1)

i=1
we have to show that g(k +1)/g(k) > 1 forall0 <k <m— 3. An easy transformation shows
that this is equivalent to

for all 0 < k < m — 3. Substituting s := n/2* and filling up the double factorials the latter
holds if and only if '

4

(2:) < 223

Wi

for all s = 1,2,4,...,2™ %, This, however, it is easily verified because of

(£)-£62)0)CIEE)-C)r

In Table 1 some minimum distances of the above codes are reported.
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M dL,min i ﬂd%.min dlfn

P.min
16 16 64 3.201
32 64 512 18.255

64 | 256 4096 759.473
128 | 1024 32768 1.963-10°
256 | 4006 | 262144 | 2.524-10%°
512 | 16384 | 2097152 | 1.232-10%

1024 | 65536 | 16777216 | 1.797-10%°

Table 1: Codes for n = M/4 generated by v = (1,3,...,M/2-1)

2.2 Punctured codes

In order to improve the spectral efficiency of the previous signal sets we should consider some
punctured versions of the codes presented in the previous section. The puncturing operation
produces lower dimensional signal sets with the same number of points of the original signal set,
due to the collision resistance property. We will consider the case n = m, which corresponds
to 1 bit/dim spectral efficiency.

Tables 2, 3 and 4 show some optimal codes giving the greatest minimum distances. These were
found by an exhaustive search through allv = (1,v2,...vn) and v; € U(Zy) all distinct since
they are obtained by puncturing the codes in the previous section. We note that any vector
Bv with 8 € U(Zp) generates the same code. Then, without loss of generality, we can always
assume the first component of v t0 be equal to 1. Due to the rapidly increasing number of
generator vectors to be tested the search for these optimal codes could only be performed up
to dimension n = 7.

M dL,min v

16 16 [1,3,5,7]

32 30 [1,3,5,11,15]

64 68 [1,3,5,17,23,31]
128 159 [1,5,17,25,27,57,63]

Table 2: Optimal punctured codes for the Lee metric n=m

M d%i‘.min v
16 64 1,3,5,7]
32| 253 [1,3,5,7,15]
64 | 1222 | [1,3,5,7,17,31]

128 | 5488 | [1,3,5,23,33,49,63] |

Table 3: Optimal punctured codes for the Euclidean metric n =m

We next consider a construction which we conjecture to produce comparatively good signal
sets. These are constructed from the generating vectors v = (1,lal,|e?| ... |a™"1|), where o is
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M| dir - v

P.min
16 | 3.201 [1,3,5,7]
32 | 4.638 [1,3,5,11,15]

64 | 8.363 | [1,7,13,17,23,31]
128 | 15.554 | [1,15,17,19,27,39,63]

Table 4: Optimal punctured codes for the Product metric n =m

selected among the elements of maximal order of U(Zp)-

Remark 2.3 Referring to [6, Chap. 4], we recall that the group of units U(Zps) consists of
all odd numbers in Zys and is isomorphic to Cy x Cym-2 for all m > 2, whereas for the finite
field Z, it is clearly the trivial one-element group. For M > 16 the elements of maximal
(multiplicative) order M/4 in Zys are given by (8k =+ 3) (mod M). To see this it is enough to
show that zM/8 # 1 (mod M) for all z of that form. It is clear that (8k £ 3)M/® =1 (mod 4).
An induction over m, where M = 2™, first proves the claim to be true for m = 3. In general
we have (8k £3)2™7 7" —1 = ((8k£3)2")>—1=((8k+ 3)2™° +1)((8k £3)2"° —1). If the
latter were equal to 0 modulo M, then by induction hypothesis (8% & 3)2m_3 +1 =0 (mod 4),
a contradiction. A similar argument shows that the elements of type 8k == 1 have lower order.

Tables 5, 6 and 7 show the codes generated by some of these elements giving the best minimum
distance. The generator vector is given only for the first « in the list. In order to show the

_interest in optimizing the choice of @, we also report in parentheses the distance obtained by
the worst choice of . It is an unsolved problem to relate the minimum weight of these codes
to their generator vector and the choice of a.

M |  dpmin o v
16 16 3,5 [1,3,7,5]
32 29 3,5.11,13 [1,3,9,5,15]
64 | (60) 66 19.27 [1,19,23,11,17,3]
128 | (107) 145 | 11,19,27,35 [1,11,7,51,49,27 41]
556 | (256) 324 | 35,117 [1,35,55,123,47,109,25,107]
512 | (489) 679 | 109,155 [1,100,105,181,239,61,7,251,223]
1024 | (932) 1576 | 293,339 | [1,263,167,221,041,43,311,13,287,123]

Table 5: Good punctured codes for the Lee metric n = m

3 Comparison with rotated hypercube

In order to better understand the improvements given by the new signal sets we will compare,
as an example, the 4-dimensional rotated hypercube signal set [2, 3] with the Z¢ signal set
generated by v = [1,3,5,7]. Tables 8,9,10 and 11 show the Euclidean and the product distances
of all the projections S of both signal sets. Figures 1 and 2 show the two dimensional
projections on the six coordinate planes of both signal sets. Finally, Figures 3 and 4 show
some approximate curves of the symbol error probabilities P(e) (solid lines) and some error
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M dQE.min o v

16 64 3,5 [1,3,7,5]

32 (237) 253 5,13 [1,5,7,3,15]

64 (942) 1118 11,29 [1,3,9,11,17,3]

128 | (3023) 4444 3,43 [1,3,9,27,47,13,39]
256 | (12392) 18600 5,61 [1,5,25,125,113,53,9,45]
512 | (39657) 85897 45,91 [1,45,23,11,17,253,121,187,223]

| 1024 (159106) 354370 | 293,339 [1,293,167,221,241,43,311,13,287,123]

Table 6: Good punctured codes for the Euclidean metric n =m

M d};‘ifm-n o v
16 3.201 3,5 [1,3,7,5]
32 | (4.237) 4.309 3,11 [1,3,9,5,15]
64 | (6.289) 7.911 19,27 [1,19,23,11,17,3]
128 | (8.287) 14.581 19,27 [1,19,23,53,17,61,7]
256 | (14.987) 25.545 | 35,117 [1,35,55,123,47,109,25,107]
512 | (22.383) 49.926 | 35,117 [1,35,201,133,47,109,231,107,161]
1024 | (46.491) 95.459 | 251,461 [1,251,487,381,399,203,247,467,481,101]

Table 7: Good punctured codes for the Product metric n =m

probabilities conditioned on the number of collisions k (dashed curves from left to right & =
0,1,2,3). In particular, we write

P(e) < 24: (’;) P*(1 — P.)" % Pmax(elk) (6)
k=0

where Pmax (€]k) is the largest error probability for given a collision pattern with & collisions. In
the case of an AWGN channel we simply approximated Pmax(elk) with jerfe(d, yin/ (2v/Np))
where dy; yip 18 the smallest entry in the k-th row of Tables 8 and 9. Comparing Figures 3 and
4 we observe an improvement in the symbol error probability in the range 10-35dB of Ej /No
for the Z;¢ signal set.

C with k collisions
86 =
32.88 | 32.88 | 32.88 | 32.88
12.59 | 9.08 | 4.41 | 4.41 | 9.08 | 12.59
0.06 | 0.06 | 0.06 | 0.06

lc.o'l\::b—lo?r'

Table 8 Minimum SED of all the projections Sc of the rotated 4D-hypercube signal set
arranged according to the number of collisions k.
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C-with k collisions

64
35(35|35 |35
10/10] 8|8 [10]10

31 1[1]1

o= O &

Table 9: Minimum squared Euclidean distances of all the projections S¢ of the Z¢ signal set
arranged according to the number of collisions k.

C with k collisions

184.9
12.48 | 12.48 | 12.48 | 12.48
233 | 1.98 | 2.21 | 2.21 | 1.98 | 2.33
(3] 024 [ 024 | 024 [ 024

o =lol s

Table 10: Minimum product distances of all the projections S¢ of the rotated 4D-hypercube
signal set arranged according to the number of collisions k.

4 The Decoder

We show here how to perform efficient ML detection in the presence of collisions for the signal
sets we have constructed. Let us consider the lattice A = C + MZ%, obtained by applying
Construction A to a [n, 1] code over Zy generated by the vector v = (1,v2,...vn)

A=C+MZ}

This lattice possesses a generator matrix of the form

1 Vo cer Up
G=|. .. .. :
o - 0 M

Given the collision pattern C with k collisions, the resulting projected lattice A¢ has a generator
matrix G¢ which is obtained from G by removing the k rows and the columns corresponding
to the collided components.

We conclude that all the signal sets Sc are lattice constellations hence we are able to decode
them efficiently by applying the Universal Lattice decoder proposed in 7] and [8]. The search
radius for the decoder can be adjusted according t6 the number of collisions in order to increase
the decoding speed.
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C with k collisions
105
15 | 15|15 | 15

3 | 3|141(4)3|3
1 11111

[JCI R STl el oy

Table 11: Minimum product distances of all the projections S¢ of the Z1¢ signal set arranged
according to the number of collisions k.
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Figure 1: The 6 two-dimensional projections of the rotated 4D-hypercube signal set.
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Abstract

This paper examines the performance gains achievable by adding interblock memory to block coded modula-
tion systems. The channel noise considered is additive Gaussian, and the twin design goals are to maximize the
asymptotic coding gain and to minimize the number of apparent nearest neighbors. In the case of the additive
Gaussian noise channel, these goals translate into the design of block codes of a given weighted or ‘normalized’
distance whose rate is as high as possible, and whose number of codewords at minimum normalized distance is as
low as possible.

It is shown that the effect of designing codes for normalized distance rather than Hamming distance is to ease
the problem of determining the best codes for given parameters in the cases of greatest interest, and many such
best codes are given.

I. INTRODUCTION

Block coded modulation systems have been extensively studied, and have much in common with
generalized concatenated codes. A simple modification to these systems, the introduction of “interblock
memory”’, transforms the code design problem into one in which the criterion of interest is a weighted
or “normalized” Hamming distance. Compared to regular BCM systems, the systems with interblock
memory support higher transmission rates with given probability of error. The only cost is a slightly more
complicated structure, and hence more expensive decoding. This extended abstract outlines the relation
between the motivating coded modulation problem and the normalized distance coding problem, and
develops many optimal codes in this framework. It is remarkable that two extremely simple bounds turn
out to be exact in very many of the cases of interest.

Previous work on block coded modulation with interblock memory (BCMIM) systems include the
original paper of Lin [3] and subsequent papers by Yamaguchi and Imai [9] and by Lin et al. [4], [5]
that give some codes, with associated trellis decoding structures and performance simulations, though
not general bounds and constructions. This paper generalizes the performance metric and explores the
limits of such schemes.

Details not given here and many further codes can be found in {7].

II. DEFINITIONS OF BCM AND BCMIM SYSTEMS

We assume throughout that the modulation scheme is 2%-ary, with bits labels assigned by a set parti-
tioning scheme in which the intra-subset minimum distances rise in the ratio 1 : ay : + -+ : ag.

A baseline BCM ‘codeword array’ is constructed by taking z binary linear codes C1, ..., C;, each
of length n. A sequence of transmitted symbols is obtained by filling the rows of an z X n array with
codewords from these respective codes, then reading labels upwards, column by column.

The codeword array thus has the form:

This work was supported in part by the U.S. Army Research Office under Grant DAAH04-96-1-0377.
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1st row: LSLB’s a codeword of C,
2nd row: 2nd LSLB’s a codeword of Cy

(z — 1)-throw: (z —1)-thLSLB’s acodeword of Cy_y
z-th row: MSLB’s a codeword of C,

where LSLB denotes the least significant label bits, and MSLB denotes the most significant label bits.
The minimum squared Euclidean distance between two sequences of n symbols in a baseline BCM
system is well known to be
D% = miin d; - a; - E2,

where d; is the minimum Hamming distance of code C;. (See, for example, Cusack [1}).

For a baseline BCM system using a length zn code and a 2%-ary modulation scheme to have a distance
gain D, we simply choose code C' such that each row code C; has minimum Hamming distance dpin >
t%. The maximum rate of a baseline BCM system with distance gain D is then

T

> K (n -D—) )
: a;
=1

where K (n, d) is the maximum dimension of a length n code with minimum Hamming distance dypin >
d.

A. Block Coded Modulation with Interblock Memory

BCMIM systems differ from BCM systems in two ways: the generator matrix is allowed a more
general structure, and the codewords are mapped to symbols in a different way.

A BCMIM system with interblock memory between the first ¢ blocks is one with generator matrix of
the form

- 0 0 y
G (C1,)
0 0
0 [ G(Cr) 0
0 0
L0 0 G(Cy) |

in which G (C1 ;) is the generator matrix of a binary linear code of length ¢n.
The resulting codewords are mapped to symbols in the following staggered way:

Bitsl...n (Previous block)
(Next block) | Bitsn + 1,...,2n | (Previous block)
(Next block) e

Bits,...,zn

where the symbols will be read and transmitted going from right to left. (Thus bit zn of the codeword
affects the transmitted stream first.)

Thus the difference in generator matrix is that we allow interdependencies between the first : rows of
the codeword array; and the difference in mapping is that we allow a codeword of length in to affect in
transmitted symbols, rather than a block of 7 symbols as in regular BCM.
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B. Asymptotic Performance and Normalized Weight

Definition: Normalized weight:
Given the basic block size n and the sequence 1 : ag : -+ : ay of increasing intra-subset squared
Euclidean distances, the normalized weight of a word ¢ of length zn is defined as

Wn(c) = wl(c) +az- wZ(C) +retag: wm(c)’ 0y

where w;(¢) is the Hamming weight of the 4-th length n basic block of c.

This quantity derives its significance from the fact that it represents the asymptotic (in signal-to-noise
ratio) improvement in squared Euclidean distance of the BCMIM system over the uncoded system.
Assuming that all past codewords have been decoded correctly, i.e., assuming that all blocks above the
one to be decoded are known and correct, the squared Euclidean distance between two codewords ¢;
and ¢, is at least

Ez-al-w(b;,l—d;,1)+---+E2-a$-w(b,~,x—-d,-,,;)= Z Ez-ak-wk(cl—-C2)=E2wn(c1—c2),
1<k<z

i.e., the minimum squared Euclidean distance is higher than in the uncoded case by exactly the minimum
normalized weight of the code, as claimed.

The probability of error is not exactly predicted by this minimum squared Euclidean distance due
to the conditioning on previous decoding results; however at large enough signal to noise ratios the
conditioning effect becomes negligible.

The rates of the BCM and BCMIM systems are lower than uncoded. We calculate asymptotic coding
gain by comparing the coded system to an interpolation of uncoded QAM. Omitting details, the result
is that the asymptotic coding gain of a system with rate R, and minimum squared Euclidean distance
D%, , over interpolated uncoded QAM is

Dy 2
10 lOglO —D? - 10 10g10 ﬁ dB (2)
1

as the target probability of error approaches 0, where R, and D%;,l are the rate and minimum squared
Euclidean distance of the uncoded QAM system on which the coded system is defined.

C. Nearest neighbors

The asymptotic gain overestimates the coding gain at finite signal to noise ratios, and the difference is
mostly attributable to the large number of “apparent nearest neighbors”, i.e., the large multiplicity of the
most likely error events. The exact difference varies according to target probability of error; a widely
used rule of thumb proposed by Fomey is that the signal to noise ratio increases by 0.2 dB for each
doubling in the number of nearest neighbors. '

Although we will not calculate exact coding gains in this discussion, we will take account of the
effect of number of nearest neighbors by seeking codes that have as few codewords of minimum weight
as possible.

D. Statement of Problem

We thus consider the following problem in ‘classical’ coding theory.
Given a nondecreasing sequence 1, a3, . . ., @z, find binary linear codes of length ¢n, and basic block
length n, of highest dimension for given normalized distance dr, where the normalized weight of a
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codeword is defined as Zj‘:l ajw;, and w; is the ordinary Hamming weight of the codeword in bits
(j—Ln+1tojn. :

Among those codes of highest dimension, find the ones with smallest number of codewords of nor-
malized weight d,,.

We will consider only the case a; = 2° in this paper: this is the case for QAM systems.

The notation for codes will be of the form [ny|ng| « - - |nz, k, ds) to indicate a code of length 7y +
ng + -+ + ng, dimension k, and pormalized distance, i.e., w1 + aowy + -+ * + Gz Wy, at least dy,. Thus
[n|n, k, d,] will indicate a code of length 2, dimension k, in which for every nonzero codeword the
weight on the left plus twice the weight on the right is at least dn.

[II. BOUNDS AND CONSTRUCTIONS FOR NORMALIZED WEIGHT CODES

Many of the cases are accounted for by two very simple bounds: the extension bound for interblock
memory between the first two basic blocks, and the ‘full rate’ lemma for interblock memory between
three or more basic blocks. The extension bound is a lower bound, while the full rate lemma is an upper
bound, so one must find appropriate upper bounds for the first case, and constructions for the second to
demonstrate that the bounds are tight.

A. Upper bounds

Lemma I (Full dimension lemma) The maximum dimension gain obtainable in extending interblock
memory from between the first ¢ — 1 basic blocks to between the first 1 blocks is upper bounded by

bits.
This follows easily since a length in code with normalized distance d,, has dimension at most n higher
than a length (i — 1)n code with the same normalized distance.

A.1 Modification of standard bounds

The Plotkin bound argument gives

d
M < i - ,
dn—i(nl-i—agng—i-----l-arn,.)

with equality if and only if every nonzero codeword has the minimum normalized weight d,,.

A Griesmer-type bound can also be derived. In the usual situation, we have n = d, and interblock
memory between the first two basic blocks. If we have the codeword (1,,]0,), then forming the residual
code with respect to this codeword gives us a [0|n, k — 1, [dn/2]] code, ie, an [n,k — 1, [[dn/2]/az2]]
binary linear code. Thus we must have

k<1+K(n, [Tdn/ﬂ /a21)

if the code contains (1,0, ).

From the MacWilliams Identities for split weight enumerators, we get constraints that can be used
with linear programming. We seek the maximum of Y. e(wi, .. ., wz) subject to the linear constraints
c(0,...,0) =1, e(wy, ..., w;) = 0 forall wy,...,ws such that 1 < wy + aqwa + -+ + AWz < dp,
and Z(WI,_"‘W) e(wi,. .., wz) Hf___l Pe;(wj;p;) > O for all wy,...,ws and all ey,...,e; with 0 <

14 1\k(w) {n—w\ 3. ¢k

- ar . k i
wi,e; < pj, where Py(w,n) = Y o{—1)*(7) (77) is the usual Krawtchouk coefficient.
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B. Lower bounds on the maximum rate gain of introducing interblock memory to a baseline BCM system
B.1 Extension bound

This bound relates the normalized and Hamming distance problems directly. Assume that a5 is an
integer dividing both n and d,,. Then if an [n + n/aq, k, d/a,] code exists, we can take any n/a, bits,
replicate them a, times, and take the resulting n bits to form the first basic block, with the remaining n
bits forming the second block. The normalized distance of this code is clearly d, so we have constructed
an [n|n, k,d] code. Note also that the normalized weight enumerator of this code is the same as the
Hamming weight enumerator for the original code.

This bound gives the highest dimension possible for n = 12, 14, and 16 in the QAM problem. The
bound falls one short in the cases n = 6,8, and 10, and at least one short in the cases n = 18 and 20.

B.2 Other constructions

| + v|u| constructions: if Cy and C; are codes of the same length, with parameters [n, k1, d1] and
[n, k2, do] respectively, then the code consisting of all words of the form |u + v|u|, withu € Cy,v € Cs,
has parameters [n|n, k1 + k2, d, > min{dz, (1 + az)d1, (a2 — 1)d; + d2}].

X and Reverse-X constructions: the X construction [6, p. 581] takes codes Cy ~ [ny, k1,d;], Cy ~
[n1, kg, dg], with C3 C Cs and C3 ~ [n3, k2 — ki1,ds]. Then the new code consists of the words
|z; + uly;|, where the z;’s are coset representatives of Cy in C1, u € C2, and y; € Cs. The z;’s and ;s
can be paired to make the resulting code linear.

This code has normalized parameters [n1|ns, ko, > min{d;, d2 + a2ds}).

In a reverse-X construction, we interchange the blocks to get a code with normalized parameters
[n3|n1,4 kg, > min{azd;, agds + da}].

X 4 construction: This construction takes four codes C; ~ [n;, k;, d;] with C> a union of b disjoint
cosets of C1, with coset representatives z1, . . ., 5, and 4 a union of b disjoint cosets of C'3, with coset
representatives ¥, . . ., 5. The new code consists of all words of the form |x; + u|y; 4 v|, where u € Cj,

v € C3. The normalized parameters are [n|ng, k2 + k3, > min{dy, azds, ds + a2d4}].

IV. BEST BCMIM CODES

In this section we examine some of the more interesting best codes for normalized distance. For
reasons of space we omit the following very interesting codes: an [11]11,8,12], a [13|13,9, 14], and a
[16]16]16, 28, 16] code, which the reader is invited to find. We concentrate on the natural case in which
the normalized distance is equal to the basic block length.

A. Best codes for QAM-based BCMIM systems with basic block length 8

The codes in the baseline BCM system will be [8, 1, 8], [8,4, 4], [8,7,2] and [8, 8, 1] codes, as given
by Cusack. The case n = d,, = 8 is a main focus of the papers of Lin et al. Lin and Ma give an [3|8, 8, §]
code [4] and Lin, Wang, and Ma follow by extending this to an [8|8|8, 16, 8] code [5]. These papers give
efficient trellis representations and performance simulations, but do not discuss constructions, bounds,
or optimality.

A.1 Best [8]8,k, 8] codes

If we allow interblock memory between the first two basic blocks, we are seeking the best [8|8, &, 8]
code. The baseline BCM case with no interblock memory is obtained by taking the direct sum of the
[8,1, 8] code and the [8, 4, 4] code, and so has dimension 5.

From the full dimension lemma, the gain in dimension when interblock memory is introduced is upper
bounded by n — K(n,d,/a;) = 8 — 4 = 4. The first necessary condition for equality in this bound is
that the past subcode has highest possible dimension, i.e., that kp = 1. This implies that the codeword
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(1s]0g) would be in the code, so that we can apply the Griesmer argument, from which the maximum
rate gain is upper bounded by K(n, dn/(202)) = K(n,dn/az) = K(8,2) - K(8,4) = 3,1i.e., we have
k < 8 for an [8]8, k, 8] code.

This upper bound can be achieved using the code discussed by Lin and Ma [4] with generator matrix
Gs/zl

- =

10001011 10000°0GO0°1
10010110100000T10
1010110010000100

G_111119111[00000000

82= |50 00 0 0001 0001011
0000OCO0OGO0OO|1 0010110
0000O0GO0GO OO/l 0101100
loo0o000000/t1111111]

This code can be obtained from an X4 construction, with Cy an [8,1,8] code, C3 and C3 [8,4,4]
codes, and C4 an [8, 7,2] code.

It can be shown that this code is (up to permutations) the unique [16, 8] code with normalized distance
8. (See [7] for details.)

We note that the best [16,8] code in terms of ordinary Hamming distance, a [16,8,5] shortened
quadratic residue code, also unique [8], cannot by the above discussion be partitioned into two halves
to get normalized distance 8 (though 7 is possible). This shows that we cannot solve the normalized
distance problem in general by simply taking the best code for ordinary Hamming distance and finding
the best partition for this code.

A2 Best [88]8,F, 8] codes

The baseline [8/8]8, k,8] code is obtained by a direct sum of an [8|8, k2, 8] code for the first two
basic blocks and an [8, 7,2] code for the third basic block. Thus using the above code, we can achieve
dimension 15 without extending the interblock memory to include the third basic block.

The full dimension lemma indicates that the dimension of any [8]8]8, k3, 8] code will be at most 8
more than the dimension of the best [8[8, k2, 8] code. Thus with interblock memory extended to the third

basic block, we can potentially increase the dimension by at most 1.
This can in fact be achieved by the code considered by Lin ef al. [5] in which the [8]8, 8, 8] code for
the first two basic blocks and the [8, 7, 2] baseline code for the third basic block are glued by the word

[000000110000000100000001].

B. Best codes for QAM-based BCMIM systems with basic block length 9
The codes in a baseline BCM system are (9, 1,9],[9, 2, 6], [9,5,3)and [9,8,2].

B.1 Best[9]9,k,9] codes ‘

With interblock memory between the first two blocks, we seek the best (919, k, 9] code. A direct sum
of the [9,1,9] and [9,2, 6] codes gives k = 3.

Applying split weight linear programming to this case indicates that £ < 7. On fixing the number
of codewords accordingly at 128 and using split weight linear programming to minimize the number of
codewords with minimum normalized weight 9, we find that the minimum of the objective is 0. This
suggests that we might be able to find a [9]9,7,10] code. This is in fact possible, and we will give a
couple of different constructions.

This case is also interesting in that it is the first case in which the Griesmer-type bound of Section III-
A.1 is not tight.
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Since the Griesmer argument indicates that k < 6if k, = 1, wemusthave k, = 0,and so ks +k; = 7.
The punctured future code C's, is then a [9, 7} code, and its dual C 4, is2[9,2, < 6] code. Shortening the
overall code in any set of m positions holding a codeword of C J-l-g givesacode withnq = 9,ny = 9—m,
and ks > 7 — m + 1 (this is construction Y1 from MacWilliams & Sloane [6, p. 592]). Suppose that
C flg had minimum distance < 5. Then applying Y1 with m = 5 gives a code with n; = 9, n3 = 4, and
k> 3. But the Plotkin bound for this case gives M < 10/(10— (9/2+ 4)) < 7. Thus we conclude that
C#, is the unique [9, 2, 6] linear code.

We can take the generator matrix for C's, to be

[ 1

SO C O
OO OO O
OO O O O
OO = OO
OO Ok, OO0
OO OO O
o OO O O
O, OO0 OO
_o O o OO

Now applying Y1 again, with m = 6, we get a code with ny = 9, nz = 3, and ¥ > 2. Applying
the Plotkin bound to this case, we find that M < 10/2.5 = 4; thus the shortened code would meet the
Plotkin bound with equality. This in turn would imply that every nonzero codeword has the minimum
nonzero normalized weight, as noted earlier. This means that in each of the rows of weight 2 on the right,
we would have to have a row of weight exactly 6 on the left. This further narrows the possibilities to
generator matrices where, with the above matrix on the right, rows 2 and 3 on the left generate a [9,2,6]
linear code, as do rows 4 and 5, and rows 6and 7. -

There are at least two inequivalent codes that satisfy these constraints. The first is obtained by a
version of Piret’s construction [6, pp. 588-9] applied to the [9, 6, 2] irreducible cyclic code. We first
construct the code consisting of 0 and all words of the form

u; = [y(2) 6 ()l () 201 ()]

for 0 < j < 62, where 61(z) = 2% + 2 is the idempotent of the given irreducible code, and ¥(z) =
28 4 28 + 2% + z3. A generator matrix for this code can be taken as having rows u;, 0 < j < 5. The key
property is that all nonzero codewords are either rows or permutations of rows of the generator matrix,
and so we need only select the remaining parameter a to maximize the minimum distance of the rows of
the generator matrix,

d' = OISH}ES (w; + 2Wjta),

where w; = wt(7(z) 81 (z)). We have (wo,wy,...,ws) = (2,6,6,4,6,4,4), and w;7 = w; for
all j, so the (unique) best choice for a in this case is 3, giving d+ = 10. (The factor 2 on the right
of the expression for d’ and the corresponding optimal choice of a are the only differences with the
development in [6].) This results in a [9|9,6,10] code, and adding the row (0s|1o) to the generator
matrix does not affect the minimum normalized distance, thus giving a [9]9, 7, 10] code. There are 36
codewords of minimum normalized weight. A generator matrix for this code is

O PP, OO0OCO
OO R QOO
O = OO
OO RO O
=0 = OO O
et O O
OO OO
= e OO
[ e N o B o B o R oo o
_0 O QK= =
e OO
OO0 O
oL O CKk
O b = O
—_ O O e O
—_0 = O = O
OO s
OO OO
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A slightly smaller number of nearest neighbors can be obtained from an optimal [18, 7, 7] code parti-
tioned in an appropriate way. The generator matrix that results is

110011101j111111111
111111000{110000000
111000111/1010060000
110110110[000110000
101101101(000101000
110101011j000000110
1011110101/000000101 |

which has 33 codewords of minimum normalized weight. This is obtained by shortening the [24, 12]
Golay code to get an [18, 6, 8] code with Hamming weight enumerator 1 +4528+182'2, then augmenting
by the top row.

Split linear programming, constraining the code to have 128 codewords, normalized distance 10 and
to have a [9, 2, 6] code as dual of the punctured future code gives a lower bound of 31 codewords of
minimum normalized weight. We remark that in the case of a [9]9, 7, 10] code, there is a particularly
large number of solutions to the linear programming constraints that are feasible candidates for codes,
in the sense of having nonnegative integer weights in both code and dual code. Many are ruled out by
the extra constraint that the punctured future code is the dual of the [9,2,6] code. We do not know
of any such code with 31 codewords of minimum normalized weight, though a feasible integer weight
enumerator exists.

C. Best codes for QAM-based BCMIM systems with basic block length 16
The codes in the baseline BCM system will be 16, 1, 16], 16, 5, 8], [16,11,4] and [16, 15, 2].

C.1 Best[16]186, k, 16] codes

Either split linear programming or the Y1/Plotkin argument show that & < 12. This can be achieved
using the duplication construction, starting with the [24, 12] Golay code, and forming the first block by
duplicating an arbitrary subset of eight bits. This gives 759 nearest neighbors.

This number of nearest neighbors can be reduced to 503 as follows. We use an X 4 construction with
C, the [16,1,16] code, Cj the [16,5, 8] first order Reed-Muller code, and Cy the extended Hamming
[16,11,4] code. This still leaves C; to be chosen. We choose C to be the [16, 7, 4] doubly even code
formed by taking the [16, 5, 8] first order Reed-Muller code, plus two linearly independent cosets; we
choose the cosets so that they both have weight enumerators 4z# + 2428 + 422, and their ‘sum’ (i.e.,
the translate of one coset by any element of the other coset) has the same weight enumerator. This is
possible if we choose one coset to be the one represented by the Boolean function v;v; and the other
to be the one represented by the Boolean function vy vs [6, p. 418]. The ‘sum’ coset is represented by
the Boolean function v;v2 + vivs. Letting f(v) = vyvs, we see that v1v3 + mv3 = f(Av), with
A=(1100/0100/0010/000 1), from which we conclude (see [6, Thm. 14.4, p. 417]) that the
cosets represented by v;v3 and v;v2 + v1v3 have the same weight distribution.

‘The code Cs thus has weight enumerator 1 + 1224 + 102z% + 1222 + 6. A straightforward
application of the X 4 bound gives the lower bound 12 on normalized distance with these codes; however,
only codewords with weight distribution 4|4 can have normalized weight this low, and all others have
normalized weight at least 16. Since the number of codewords of weight 4 in C is low, we can match
each to words of weight greater than 4 on the right, with some trial and error.

One resulting code has normalized weight enumerator 1 4 50326 + 5122%° + 20642>* 4 51 2328 4
50332 + z%8. (Once we have chosen Cj3, this number of nearest neighbors is minimum: split linear
programming constraining the left code to have the weight enumerator of C'z gives a minimum of exactly
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503 for the number of nearest neighbors. Furthermore this number is the only feasible solution to the
split linear programming problem when the past subcode is constrained to have the weight enumerator
of C 2.)

Split linear programming gives an overall lower bound of 271 on the number of nearest neighbors.

V. OTHER CODES

The reader is invited to construct the very interesting codes [11[11, 8,12],[13[13, 9, 14],and [16]16|16,
28, 16]. '

VI. CONCLUSION

A promising twist on block coded modulation constructions has been shown to lead to a modified
version of the classical coding problem. A number of interesting codes and code constructions arise in
this new scenario.
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Abstract

A new "Efficient-bandwidth code-division-multiple-'
access (CDMA) for band-limited channels' is
introduced which is based on finite field
transforms. A multilevel code division multiplex
exploits orthogonality properties of nonbinary
sequences defined over a complex finite field.
Galois-Fourier  transforms contain some
redundancy and only cyclotomic coefficients are
needed to be transmitted yielding compact spectrum
requirements, The primary advantage of such
schemes regarding classical multiplex is their better
spectral efficiency. This paper estimates the
"bandwidth compactness factor'' relatively to Time
Division Multiple Access TDMA showing that it
strongly depends on the alphabet extension. These
multiplex schemes termed Gualois-field Division
Multiplex (GDM) are based on transforms for
which there exists fast algorithins. They are also
convenient from the hardware viewpoint since they
can be implemented by a Digital Signal Processor.

Keywords- Digital multiplex, Code-divison multiple
access, Hartley-Galois transform, Finite field
transforms, Spread sequence design.

1. Introduction

The main title of this paper is, apart from the term
multiplex, literally identical to a Forney, Gallager
and coworkers paper issued more than one decade
ago [FOR et al. 84], which analyzed the benefits of
coded-modulation techniques. The large success
achieved by Ungerboeck's coded-modulation came
from the way redundancy was introduced in the
encoder [UNG 82). In classical channel coding,
redundant signals are appended to information
symbols in a way somewhat analogous to time
division multiplex TDM (envelope interleaving). It
was believed that introducing error-control ability
would increase bandwidth. An efficient way of
introducing such an ability without sacrificing rate
nor requiring more bandwidth consists in adding
redundancy by an alphabet expansion. This
technique is particularly suitable for channels in the
narrow-band region. A similar reasoning occurs in
the multiplex framework where many people
nowadays believe that mux must increase bandwidth
requirements.

In the present work, the coded-modulation idea is
adapted to multiplex: Information streaming from
users are not combined by interleaving (like TDM)
but rather by a signal alphabet expansion. The mux
of users' sources over a Galois Field GF(p) deals
with an expanded signal set having symbols from an

extension field GF(p™), m>1. As a consequence, the
multiplex of N band limited channels of identical
maximal frequency B leads to bandwidth
requirements less than N B, in contrast with TDMed
or FDMed signals.

The design of such an "efficient bandwidth mux" is
based upon Galois field Transforms (GFT) such as
the Finite Field Fourier Transform (FFFT)
introduced by Pollard {POL 71]. The FFFT been
successfully applied to perform discrete convolution
and image processing [REE et al. 77, REE&TRU
791, among many other applications. In this paper we
are concerned with a new finite field version [CAM
et al. 98] of the integral transform introduced by
R.V.L. Hartley [HAR 42, BRI 92]. Alike classical
Galois-Fourier transforms [BLA 79, CAM&FAR
85], Finite Field Hartley transforms (FFHT) defined

on a Gaussian integer set GI(p™) [CAM et al. 98]
contains some redundancy and only the cyclotomic
coset leaders of the transform coefficients need to be
transmitted. This yields a new "Efficient-bandwidth
Code Division multiplex for band-limited channels".
These multiplexes may present lower bandwidth
requirements than TDM. Tradeoffs between the
extension of the alphabet and the bandwidth are
exploited in the sequel. This paper shows that the
"bandwidth compactness factor" relatively to TDM
depends on the length m, the alphabet extension.

Another point to mention is that the superiority of
digital mux regarding analog mux is essentially due
to the low complexity of TDM. The majority of
current multiplex systems follows plesiochronous
(PDH) or synchronous (SDH) hierarchy [SIL&SHA
96]. Besides presenting higher spectral efficiency
(bits/s/Hz) than classical multiplex, the new code
division muitiplex (CDM) schemes introduced here
are based on fast transforms, so they also seem to be
attractive from the implementation viewpoint [HOU
87]. Although most mux systems today intended to
optical fiber which are not yet bandlimited channels,
multiplex has also been adopted on satellite
channels. Applications of such a multiplex will be on
transponders and more probably on cellular mobile
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communications. Cable Television (CATV) can also
benefit of such a technique.

v

2. A New Mux Scheme: Galois-Division-Multiplex

Digital multiplex normally alludes Time Division
Multiplex (TDM). However, it can also be achieved
by Coding Division Multiplex (CDM) which has
recently been the focus of interest, specially after the
IS-95 standardization of the CDMA system for
cellular telephone [QUAL 92]. The CDMA is now

becoming the most popular multiple access schemes
for mobile communication. In this section we

introduce a new class of mux schemes based upon
finite-field transforms which can be implemented by
fast transform algorithms. Classical multiplex
increases simultaneously the transmission rate and
the bandwidth by the same factor, keeping thus the
spectral efficiency unchanged. In order to achieve
(slight) better spectral efficiencies, classical CDMA
uses waveforms presenting a nonzero but residual
correlation. We introduce here a new and powerful
issue on CDMA techniques.

Given a signal v over a finite field GF(p), we deal
with the Galois domain considering the spectrum V

over an extension field GF(p™) which corresponds to
the Finite Field Transform (Galois Transform) of the
signal v [BLA 79, CAM et al. 98].

As an alternative and attractive implementation
(figure 1), the multiplex can be carried out by a
Galois Field Transform (FFFI/FFHT) so the
DEMUX corresponds exactly to an Inverse Finite-

Field Transform of length N | p™-1.

Yo Vo

+,

Vv
N-1

P /S >

MUX CDM
Yo

™l s/

DEMUX CDM

Figure 1. Implementation of Galois Field Transform
(GFT) multiplex.

Each symbol in the ground field GF(p) has duration
T seconds. An N-user mux can be designed on the
extension field GI{p™) where N | p™-1. For the sake
of simplicity, we begin with m=1 and consider a (p-
1)-channel mux as follows. Typically, we can
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consider GF(3) corresponding to Alternate Mark
Inversion (AMI) signaling.

Definition. A Galois modulator carries a pairwise
multiplication between a signal (vQ,v1.....vN-1)

vieGF(p) and a carrier (€0.C1,.-.CN-1), With
cie GI(p). -
A pictorial representation of a Galois modulator:

(vo,...,v N-l

(= C Np)

A (p-1)-CDM considers digital carrier sequences per
. . p-1
channel as versions of the cas function {Casi k}k=0

over the Galois (complex) field GI(p). The cas (cos
and sin) function is defined in terms of finite field
trigonometric functions [CAM et al. 98] according to
cas;k:=cos; k +sin; k.

Carrier 0:

{casOO casol cas02 casO(N— ]_) }
Carrier 1:

{cas;0 cas;l casy2 .. casy(N -1) }
Earrierj:

{cas;0 cas;1 casj2 - casj(N-1) }

Carrier N-1:
{casy_;0 casy_11 casy 12 casy_1(N -1} }.

The cyclic digital carrier has the same duration T of
an input modulation symbol, so that it carries N slots
per data symbol. The interval of each cas-symbol is
T/N and therefore the bandwidth expansion factor
when multiplexing N channels may be roughly N,
the same result as FDM and TDM/PAM.

A first scheme of the multiplex is showed in the
figure 2: The output corresponds exactly to the
Galois-Hartley Transform of the “user"-vector
(v0,¥1,-sVN-1)- Therefore, it contains all the
information about all channels. Each coefficient Vi
of the spectrum has duration T/N.



{casN_1 k}

Figure 2. Galois-Field MUX: Spreading sequences.

These carriers can also be viewed as spreading
waveforms [MAS 95]. An N-user mux has N
spreading sequences, one per channel. The
requirements to achieve Welch's lower bound
according to Massey and Mittelholzer [MAS&MIT
91], are achieved by {casik 11:_(1) sequences. The

matrix [{ casl-k }1 presents both orthogonal rows and
orthogonal columns having the same "energy”.

A naive example is presented in order to illustrate
such an approach (figure 3). A 4-channel mux over
GF(5) can be easily implemented i=0,1,...,p-2=3. It is
straightforward to see that such signals are not
FDMed nor TDMed. GI(5)-valued cas(.) function is
shown on table I assuming ¢, equals to 2, an element
of GF(5) of order 4.

TABLE I. Cas Function on GI(5) with =2,

an element of order 4.

casg0=1+j0 | casgl=1 | casp2=1 | casg3=1

cas)0=1+j0 | cas;l=j3 | cas;2=4 | cas;3 =2j

casy 0=1+j0 | casyl=4 | casy2=1 | casp3 =4

cas30=1+j0 | cas31=2j | cas32=4 | cas33 =j3

Putting these results as complex carriers, one has:

{caspk}={1, 1, 1, 1}
{casik}= {1, j3, 4,j2}
{caspk}= {1, 4, 1, 4}
{cas3k}= {1, ]2, 4,j3}.

Therefore, a 4-channel multiplex based on GHT is
shown in figure 3.

[VVVYV )
012 3

Figure 3. Interpreting Galois-Hartley Transform over
GF(5) as spreading waveforms.

The digital carriers are defined on a complex Galois
field GI(p) where the element j = 1/—_1 may or not
may belong to GF(p), although the original
definition [CAM et al. 98] considers -1 as a quadratic
non residue in GF(p). Two distinct cases are to be
considered: p=4k+1 or p=4k+3, k integer. If p = 1
(mod 4), then -1 is a quadratic residue. For instance,
considering jeGF(5) then' 2'=-1(mod 5) so
j= J_—-i =2(mod 5). Two-dimensional digital

-1 .
{cas,-k}: g carriers then degenerated to one-

dimensional carriers.

Considering the above example, carriers are reduced
to Walsh carriers!
{caspk}={1, 1,1,1}={L,1,1, 1}
{casik}={1, 1,4,4}={1,1,-1,-1}
{caspk}= {1, 4, 1,4} ={1,-1,1,-1}
{cas3k}= {1, 4,4, 1} ={1,-1,-1, 1}

11 01 1] o111

11 1 -1 |11 1 =i A‘:
(=1

1 -1 1 -1t 1 -1 o B A

1

-1 -1 1] 1 -1 -1 1
[WAL(k,i)].

In the absence of noise, there is no cross-talk from
any user to any other one, which corresponds to
orthogonal carrier case.
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If channels number 1, 2, 3, and 4 are transmi;ﬁng
{4,0, 1, 2} respectively, the mux output will be
(2, 3+4j, 3, 3+j), which corresponds to -
(4,012} ® {1,1,1,1} =2 mod5

{4,0,1,2) ® {1,j3,4,j2} =3+4j mod 5

(40,12} ® {1,4,1,4} =3 mod5

{4,0,1,2) ® {1,j2,4,j3} =3+ mod 5

There is no gain when the transform is taken without

alphabet extension. However, we have a nice -

interpretation of CDM based on finite field
transforms.

3. A New CDM scheme based on Galois-Hartley
Transforms

So far we have essentially considered Finite Field
Transforms from GF(p) to GF(p). Extension fields
can be used and results are much more interesting:
The Galois-Field Division Multiple Access schemes.
The advantage of the new scheme named GDMA
over FDMA / TDMA regards its higher spectral
efficiency.

The new multiplex is carried out over the Galois
domain instead the Frequency or time domain.
Figure 4 exhibits a block diagram of transform-based
multiplexes. First, the Galois spectrum of N-user
GE(p) signals is evaluated. The spectral compression
is achieved by eliminating the redundancy: only the
leaders of cyclotomic cosets are transmitted. The
demultiplex is carried out (after signal regeneration)
first recovering the complete spectrum by "filling”
missing components from the received coset leaders.
Then, the inverse finite field transform is computed
so as to obtain the demux signals. Another additional
feature is that GDM implementations can be made
more efficient if fast algorithms for computing the
transforms involved are used.

syn:;\;tr::ous v, Compression
vg MUXed
| GFT |— e
Wi o)
i Vi | |
Galois i |
spectrum ;
dodk ~ " T T T T
v v
v v "y |
N R f— 4 -
i e — | GFT (— users
hannel i, recover -,
channel | ot B ,_-

Figure 4. Multiplex based on Finite Field
Transforms.

Suppose that users data are p-ary symbols
transmitted at a speed Bp:=1l/T bauds. Let us
consider the problem of multiplexing N users.
Traditionally the bandwidth requirements will
increase proportionally with the number N of
channels, i.e., BN=NBj Hz.

Thereafter the number of cyclotomic cosets
associated with a Galois-Fourier (or Galois-Hartley)
finite field spectrum is denoted VE (respectively vi).

The clock driving GHT symbols is N/v times faster
than the input baud rate.

Definition. The bandwidth compactness parameter

Yec is defined as Yeg: =N/v. =

It plays a role somewhat similar to the coding
asymptotic gain yc on coded modulation [UNG 82].

Transform-multiplex, i.e., mux based on finite field
transforms are very attractive compared with FDM/
TDM due to their better spectral efficiency as it can
be seen in table I (appendix).

Another point that should be stressed is that instead
of compressing spectra (eliminating redundancy), it
is possible to use all the coefficients to introduce
some error-correction ability. The valid spectrum
sequences generate a multilevel block code.

Lemma 1. TFor an N-user GDMA system over
GI(p™) with N | p™-1, only a number v = Yo IN
(see below) of finite-field transform coefficients are
required to be transmitted.
proof. According to Mcebius' inversion formula,
I (@) ___% Zu(d)qk/d gives the number of
‘ dlk .
distinct irreducible polynomials of degree k over
GF(q), where p is the Mcebius function [McE 87].
Therefore, the number Vg of cyclotomic sets on the
Galois-Fourier transform (Vp,V1.....VN-1) is given
by
ve = I (p)-1"

klm
Since each pair of cosets containing reciprocal roots
is clustered, then

VH=VE—(Nm0d2)+1- B

As a rule-of-thumb, the number of cosets (in fact the

gain Ycc) when N=p™-1 is roughly given by szll__ly_ 11
m

and szlF_l [ﬁ]HW‘, where [X] is the ceiling
2l m

function (the smallest integer greater than or equal to
x). A -simple example over GF(3)—>GI(33) is
presented below: Factoring x26.1 one obtains v=10
and v =6. For the FFHT, Vi =V ;5 (indexes

modulo 26) according to [CAM et al. 98, Lemma 1].

FEFT cosets FFHT cosets
Co=(0) . CO0=(0)
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C1=(1,3,9) C1=(1,23,9,25,3,17)
C2=(2,6,18) C2=(2,6,18,8,24,20) —_
C4=(4,12,10) C4=(4,14,10,22,12,16)
C5=(5,15,19) C5=(5,11,19,21,15,7)
C7=(7.21,11) C13=(13).

C8=(8,24,20)

C13=(13)

C14=(14,16,22)
C17=(17,25,23).

Another interesting possibility is multiplexing
without the cyclotomic coset compression. Although -
such a GDM presents the same spectral efficiency as’
TDM or FDM it introduces some error-correcting
ability yielding a better performance.

By way of interpretation, Hartley transforms can be
seen as some kind of Digital Single Side Band since
the number of cyclotomic cosets of the FFHT is
roughly half that of the FFFT. We can therefore say
that "GDM/FFFT is to FDM/AM as GDM/FFHT is
to FDM/SSB."

Gain of GDM. The gain on the number of channels
GDMed regarding to TDM/FDM over the same

bandwidth is N-v, which comresponds to
89=100(1 - v} )%.

proof. The bandwidth gain is ghand=BTDM/BGDM
=Ycc and the saved Bandwidth is given by BTpm -
Bgpm. Calculating how many additional Bj-
channels (users) can be introduced:

(BrpM - BopM/BI=(1-——)N. ™

Yee
In the previous exemple, a 26-user GDM furnishes a
20-channels gain (=77%) regarding to TDM.

Indeed, a more formal treatment of spectra should be
tried. Power Spectral density calculations must be
evaluated by using cyclic Autocorrelation Functions
(ACF) of the carriers. As usual, it is assumed that
users' data sequences are independent.

Lemma 2. Users' signal sequences can be viewed as
wide-sense stationary random processes in both time
and Galois-domain, by assuming an uniform
probability distribution on GF(p) symbols.

proof.

time domain data stream:

-1 =1 -1 0 (1] (o] {1 1 1
w@EPUEY Lo @@L 00D wPe®L P ..

Supposing vie {0,£1,12, ... £(p~1)/2} equally likely,
the mean and the ACF of the discrete process are
given respectively by (E denotes the expected
value):

E{.J£m)}=E{)i}:O (vi), and
Ru(j)=E{>§m)v§'_nj)* E{u u:_j}=0, i#j
R, (0)= p“l.{0+ 12 + 22 +32+...+(pT_1)2):=P-

Galois domain data stream:
-1 -] -1 a 0
VOV LV v v ) (i VR L v

N-1
From V; = Evicaski (Vk), it follows that:

i=0
N-1
E{/I(cm)}:E{Vk}= Zﬁlvi)caski=o (VK) -
i=0

The ACF of the random process (Galois spectrum
sequence) is:
Rr()=H Vi )=
N-1N-1
* ] * i »
= 2 Z}xutvi_m)askl casy_;(i~ Ai)
i=0 Ai=0
N-1N-1 .
= Y, D R, (Acasyicas, _(i-AD)
i=0 Ai=0
N-1 .
=R, (0) Y, casi casg ;i
i=0
From orthogonality properties of casy function
[CAM et al. 98], it follows that

Ry(j)=0, j#0 and Ry(0)=R,(0). ™

This result can be used to show that the multiplex
based upon the finite field Hartley transform does
not shape the signal power spectrum. Denote by
Sp(t) the complex envelope of the generalized
QAM (G-QAM) signal s(t), i.e.,

s(t) = Re{s, (Hexp(j2f ot ) } where

+o0 N =1
BO= X X ViVt @)

m=-w k=0

U m O =u(t -kT -mNT)-

Theorem 3. The Power Spectral Density of GDM

signals is given by |U(f)|2 which depends just on the
shape of the spectrum of the shaping filter u(t).

proof. It can be shown that sp(t) is a cyclostationary
process [GAD&FRA 75] but we treat it as a wide-
sense stationary one by introducing a random phase
uniformly distributed over one block. Therefore we

consider a related signal
+eo N -1

H®= 3 Y ViV wen©:oy
H m=-ce jc =0
where  uk m(t.0)=ugk m(t-6), @ being uniformly
distributed in the interval (ONT). The
autocorrelation function (ACF)

-gds 5 1
Réb tt-1) —E{Sb(t)sb € - ’L')J of the complex

envelope is
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+eo -1N-1

— - s 1 ¢NT *
Ry tt-1)= 2 2 2 ZEV('”>V§C"‘A,§'") ko Wem O _ak m-am ¢ ~5.6)18

m=—oo Am=-oe k¢ =0 Ak=0

where indexes k-Ak are taken mod N.

We first remark that spectra (blocks) are transmitted
independently so that complex symbols on different
N-vectors are uncorrelated, yielding

N-1
(m), (m-Am)*
3 v My {mam™t =0, Am=0-
Ak=0
Furthermore, we suppose the sequence of N-:
dimensional signals is wide-sense stationary (lemma
2) and that there exist a block ACF Ry (j),
j=0,1,2,..N-1. The ACF of the complex envelope is
therefore '
R~ tt-17)=
N 1IN -1

2 YR Z f W (&, O ge_j m (= 7,6)d0

k=0 j=0 m=—oo
J=k

By an appropriate change of variables, we obtain
R~ tt-17)=
] N IN-I oo :
T Z Z EV{W V)" [ ulo+7 - KT)u" (o )dor
oL
Putting the above equation in-a simpler notation
results in:

- N-1
Ry (1)=Rg t,t-7)= N_IT }_%RV (s -JT)
Jj=

+oo
where v(7—jT) = I_w u(e+ r—jT)u*(a)da-

1 ,
Indeed, Rz (T)= —— Ru(0)v(t). Taking now
sb() NT v(0)v(T) g

the Fourier transform of the ACF, we finally have by
the Wiener-chhme relation

5, (f)= —|U( f Az so the power spectrum of the

multlplexed s1gna1 follows directly from the

modulation theorem. »

What can we say about the alphabet extension? A
simple upper-bound on the bandwidth compactness
factor can be easily derived. The greatest extension
that can be used depends on the signal-to-noise ratio,
since the total rate cannot exceed Shannon Capacity
over the Gaussian channel. Therefore,

S
Bopm Yec 1082 P = Bopm logz( 1+ -ﬁ) bps, or

S
Yec S logp(1+ﬁ)-

4. Conclusions

Finite field transforms are offered as a new tool of
spreading sequence design. New digital multiplex
schemes based on such transforms have been
introduced which are multilevel Code Division
Multiplex. They are attractive due to their better
spectral efficiency regarding to classical TDM/CDM
which require a bandwidth expansion roughly
proportional to the number of channels to be
multiplexed. This new approach is promising for
cellular mobile communications and channels
supporting a high signal-to-noise ratio. Moreover,
the Galois-Field Division (GDM) implementation
can be easily carried out by a Digital Signal
Processor (DSP). Combined multiplex and error-
correcting ability should be investigated. Another
nice payoff of GDM is that when Hartley Finite Field
transforms are used, the mux and demux hardware
are exactly the same. It is proved that GDM based on
Finite Field Hartley Transform does not shape the
signal Power Spectrum. They. can directly be applied
in multiple access digital schemes.
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APPENDIX
TABLE II. A Spectral Efficiency Comparison for Multiplex Systems.
N-users
one-user TDMed or FDMed GDMed
log p R= ZRt—user == R= ZRi—user =
Transmission Ri-user = T lég p loig p
rate N—22E pps N—2£ pps
T T
. . B 1
Bandwidth 21 : _ GDM = -1
requirements B, = T Hz By = T/IN ™ T/ (ycc N)
NB; H
1R L wB) He
ce
Spectral Ni-user =10gg P Tmux = log P "cpM = Vec logo P
efficiency bits/s/Hz bits/s/Hz bits/s/Hz
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Abstract

It is proved that any set of representatives of the distinct 1-dimensional
subspaces in the dual code of the unique linear perfect single-error-correcting
code of length ‘*’q— over GF(g) is a balanced generalized weighing matrix over
the multiplicative group of GF(g). Moreover, this matrix is characterized as
the unique (up to equivalence) weighing matrix for the given parameters with
minimum g¢-rank. The classical, more involved construction for this type of
BGW-matrices is discussed for comparison, and a few monomially inequivalent
examples are included.

*Research partially supported by a research grant of the Alexander von Humboldt Foundation.
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1 Introduction

We assume familiarity with some basic facts and notions from coding theory and
combinatorial design theory ([2], [6], [7]). In particular, we require the following
definitions.

Definition 1.1 A balanced generalized weighing matriz BGW (m, k, 1) over a
group G is an m X m matrix W = (g;;) with entries from G := GU{0} such that each
row of W contains exactly k nonzero entries, and for every a,b € {1,...,m}, a # b,
the multiset {gaig5 : 1 < ¢ < M, gai, g # 0} contains exactly /|G| copies of each
element of G.

Definition 1.2 Two matrices over GF(q) are said to be monomially equivalent if one
is obtainable from the other by permutations of rows and columns and multiplying
rows and columns by nonzero elements from GF(q).

There are many monomially inequivalent balanced generalized weighing matrices
with the same parameters that are distinguishable by their rank over GF(g). Some
small examples are listed in the Appendix. These examples, as well as many other
ones are obtained by decomposing difference sets with the “classical” parameters
(24+1 — 1,24 — 1,291 — 1) with respect to a subdesign with classical parameters [4].

It is the aim of this note to give a simple coding-theoretical construction of the
balanced generalized weighing matrices with parameters (9:—_}1, g% 1, g% ! — q%1) of
minimum g¢-rank, and to characterize these matrices as the unique (up to monomial
equivalence) matrices of minimum g-rank.

2 A class of weighing matrices from the simplex
code

The g-ary simplex code Si(g) of length 9;_’—11, where d > 2 and ¢ is a prime power,
is defined as a linear code over GF(q) with a generator matrix having as columns
representatives of all distinct 1-dimensional subspaces of the d-dimensional vector
space GF(g)% In other words, S is the dual code of the unique linear perfect single-

error-correcting code of length 9;_;11 over GF(q), that is, the g-ary analogue of the
Hamming code.

Lemma 2.1 (i) The Hamming weight enumerator of Sq(q) is given by
14 (% - 1)X77.

(ii) The supports of all nonzero vectors in Sq(q) are the blocks of a symmetric
2-(‘-’;_;11, g%, %1 —q%?) design isomorphic to the design with blocks the complements

of hyperplanes in PG(d —1,q).
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The statement (i) is a folklore fact. For a proof of (ii), see [8].

Theorem 2.2 Any 9—— X 9— matriz M with rows a set of representatives of the 9————
distinct 1- dzmenszonal subspaces of Sa(q) is a balanced generalized weighing matrzx
with parameters
g’ ~1
g—1
over the multiplicative group GF(q)* of GF(q).

Proof. Let z = (z1,22,...,Zm) be arow of M. By 2.1, if y = (31,92, ..., Ym) is any
other row of M, there are exactly ¢~ — ¢%2 indices i such that z; # 0 and y; # 0.
We want to show that the multiset

S={zi -y | yi # 0}

contains every nonzero element of GF{(q) equally frequently, that is, exactly ¢?2
times. Note that multiplication of any column or a row of M by a nonzero element of
GF(q) preserves the set of frequencies of the elements in S. Therefore, multiplying
the ith column of M by y;* for all ¢ such that y; # 0, transforms M into a matrix
M' in which z is transformed into z' = (...z;;...) and y becomes a (0, 1)-vector
y'. By Lemma 2.1,

, k= gd—l’ W= qd—l _ qd—-2

Dy(z',y') = Dy(z,y) = ¢

where Dy denotes the Hamming distance. Let
I'={i|z;#0and y; #0}.

In order for M’ (and therefore M) to be a balanced generalized weighing matrix, the
multiset S’ = {z} | i € I} has to contain each of the ¢ — 1 nonzero elements of GF(q)
the same number of times, that is, ¢?~? times. Note that ¢*~2 = (¢®~' —¢%"2)/(¢—1)
is the average frequency of an element in . If there is some 8 € GF(q), B #0
that occurs more than ¢%~2 times in S’ then multiplying the vector 2’ by $~! gives a
vector = such that Dy(z",y') < ¢*~1; but another application of Lemma 2.1 shows
Dy (z",y') = ¢%71, a contradiction. 0

Theorem 2.3 Let M be any balanced generalized weighing matriz with parameters
q_ll,q =1 g% — ¢%2) over GF(q)*. Then

ranksM > d.

Moreover, the equality rank,M = d holds if and only if M is monomially equivalent
to a matriz obtained by the construction of Theorem 2.2.
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Proof. Since the rows of M and their nonzero multiples constitute g — 1 dis-
tinct nonzero vectors in the row space C of M over GF(g), the rank of M over
GF(q), rank,(M), is at least d. If rank,(M) = d then C consists of the zero vec-
tor and all nonzero multiples of the rows of M. Since the supports of the rows, as
well as the columns of M are the blocks of a symmetric design with parameters 2-
(9;_:11, g4 1, g% 1 — ¢%2), that is, a 2-design with k& > A, any two columns of M are
linearly independent over GF(g). Consequently, the orthogonal subspace (or dual
code) C* has minimum Hamming distance at least 3. Thus, C*t is a linear single-

error-correcting code of length f_‘—f and dimension 9;—_‘—11 — d that meets the Hamming

(sphere packing) bound, hence C+ must be monomially equivalent to the unique linear
perfect code with these parameters, namely, the g-ary Hamming code. Any basis of C
formed by rows of M consists of d linearly independent rows. By the remarks about
CL, the set of columns-of B is a set of distinct representatives of all 1-dimensional
subspaces of the d-dimensional vector space GF(q)%. Consequently, the matrix B is
unique up to monomial equivalence over GF(q). O

3 A comparison with the classical construction

There is a “classical” comstruction for balanced generalized weighing matrices with
parameters

over the multiplicative group GF(q)* of GF(g) which we will now recall; see [3] and
[5] for background. We warn the reader that the notation used by us differs from that
in [3], where we used A = p/n instead of y as the third parameter of a BGW-matrix.

Let R be the set of elements of GF(g?) of trace 1 relative to GF(g). Then R is

a classical relative difference set with parameters (9:+—_11‘—l, g—1,¢%¢* 1) in GF(g*1)*
relative to N = GF(g)*. Let 8 be a primitive element of GF(¢**!) and define a
("d;_ll‘l X qd;_ll"l )-matrix W = (w;;) with entries in GF(g) as follows. If there is
a (necessarily unique) element r of RA* in the coset N B9, then set w;; = B7Ir,
and otherwise set wj; = 0. Then W is the desired BGW-matrix. Actually, this
construction gives BGW-matrices of a special form, namely w-circulant matrices,
where w = B~!. Recall that an w-circulant matrix is defined by the following
property: each row of W is obtained from the preceding row by shifting every entry
but the one in the final column one position to the right, whereas the entry in the
final column is first multiplied by w and then the result is put in the first position of
the shifted row. Formally, we have

W;,5 = Wig1,4+1 for ] = 1, e, M — 1 and Wit1,1 = WWim.-

246



——

By a result of [3], w-circulant BGW-matrices over a cyclic group and cyclic relative
difference sets are actually equivalent concepts:

Result 3.1 Let N be a cyclic group of order n, and let w be a generator for N.
Then the existence of a w-circulant BGW -matriz with parameters (m, k, p) over N
is equivalent to the existence of an (m,n, k, A)-difference set in the cyclic group G of
order v = mn relative to the unique subgroup of order m (which may, of course, be
identified with N), where A = p/n. ' m

It is also known that the classical BGW-matrices can be put into circulant form
whenever (¢ — 1, gq—) = 1. This is an easy consequence of the following analogue
of Result 3.1, see [3]. Here a matrix A = (a,5) whose rows and columns are indexed
by the elements of a group H is called H-invariant provided that

Qgh = Qgikhtk for all g,h,k € H.
In particular, A is circulant if and only if it is H-invariant for a cyclic group H.

Result 3.2 Let H and N be groups of orders m and m, respectively, and let G =
H x N. Then the ezxistence of an H-invariant BGW -matriz with parameters (m, k, u)
over N is equivalent to the existence of an (m,n,k, A)-difference set in G relative to
N, where A = p/n. O

For obvious reasons, relative difference sets of the form described in Result 3.2 are
called splitting. We now have the following result.

Proposition 3.3 The matrices constructed in Theorem 2.2 can be put into w-circulant
form. They can also be put circulant form whenever (g — 1, g—q_——) = 1.

Proof. The second assertion follows from the well-known fact that the g-ary Ham-
ming code (and hence its dual, the simplex code) is a cyclic code in these cases. In
general, the matrices of Theorem 2.2 can be put into w-circulant form, since the g-ary

Hamming code always is a constacyclic code; see, for instance, [1], p. 303. O

It is an open problem whether or not our construction gives the same matrices (up
to monomial equivalence) as the classical construction outlined in this section, though
the few small examples we have checked out suggest this to be the case. Although the
p-ranks of the classical affine difference sets are known, this does not seem to imply a
simple formula for the rank of the corresponding BGW-matrices over GF(g). In any
case, the construction presented here is obv1ously much simpler to implement than
the classical one. -

4 Appendix

In Table 4.1 we use the following notation: if o is a primitive root of GF(gq) then 4
denotes o*~! for 1 < ¢ < ¢ — 1, and 0 is the zero in GF(q).
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Table 4.1 Some inequivalent BGW-matrices

No. | (m, k, p) g | g-rank | first row w
1 (9,87 |8| 2 |161266510 7
2 1(9,8,7) 8 4 517745750 7
3 |(73,64,56) |8 3 0040454035374520737753643 7

527713054530444774322157
327110424362360373577234

4 |(73,64,56) | 8 9 0040556047572240657427645
131551012270415413452351
716630647176650465141444

5 | (85,64,48) | 4 4 1111310122310031030322011000
22113012103213331021010020360
23133131320021231110223321220

6 | (85,64,48) | 4 16 3233220233130023020231023000
3322202320133211201302001010
12222313230033322320112232130

Acknowledgment The second author wishes to thank the university of Augs-
burg, Germany, for the hospitality during his visit as a research fellow of the Alexander
von Humboldt Foundation.
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Abstract

The m—covering radius of a code is introduced here as the small-
est radius such that for all m—sets of vectors in ambient space, one of
them or one of their paiwise sums lies in a ball of that radius about
some codeword. This parameter is different from the multicovering
radius and easier to deal with. An application to the construction
of good long nonlinear error-correcting codes as union of cosets of
linear codes is given. When the code is linear this parameter is the
m—diameter of the coset graph. Therefrom upper bounds based on
the dual weight distribution are derived.. Quasi-random codes, a
new class of codes comprising the BCH and the duals of many inter-
esting cyclic codes used in CDMA is introduced in this note. These
bounds show that long quasi-random codes have bounded higher cov-
ering radii.

Keywords: Covering Radius, Coset Graph, Weight Distribution, Quasi-
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1 Introduction

Motivated by the study of streamciphers [5], Klapper introduced in [6] a gen-
eralization of the concept of covering radius called multi-covering radius. We
introduce here for the first time an alternative parameter the m—covering
radius which might be easier to study and is natural to consider when con-
structing dense nonlinear codes from union of cosets of a linear code. The
parameters and properties of the Kerdock codes, for instance, give an upper
bound on a m—covering radius of RM(1,2s). We provide spectral bounds
based on the connection with m—diameters of graphs a new combinatorial
parameter introduced in [1]. We introduce here for the first time the new class
of quasi-random codes which are defined by spectral conditions and show
that long quasi-random codes have a bounded covering radius. Example of
such codes abound in the literature of cyclic codes due the constructions of
low-correlation sequences [8] by application of the Weil Riemann Hypothesis
or direct computations.

2 Definitions

2.1 Codes

We denote by F the finite field of order 2. For a subset X € F", we denote by
X* the set X \ 0. The Hamming distance between z and y with z,y € F™ is
denoted by d(z,y). The distance d(X,Y’) between two sets of vectors X and
Y is min{d(z,y)|z € X, y € Y}. The m—covering radius Ry,(C) of a code
C of length 7 is the smallest integer r such that for all m—sets of vectors in
F™ , one of them or one of their pairwise sums at least is at distance at most
r of some codeword. Formally

Rn(C) = max{d(S|J(S + 8)*,C)| S C F"&|S| = m}.

The m—multicovering radius ¢,,(C) of a code C of length n is the smallest in-
teger 7 such that for all m—tuples of vectors in F” , all of them are at distance
at most r of some codeword. Clearly #,,(C) > Rn,(C). Since it is known [6]
that t,,(C) > n/2 and is shown below (Proposition 1) that Rn,,(C) < Ri(C),
a quantity very often < n/2 it seems that the two parameters are unrelated.
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Recall some classical definitions. The entropy function H is defined for
z € (0,1) as
H(z) := —zlogy(z) — (1 — z) logy (1 — ).

The Reed-Muller code of order 7 and length 2° is denoted by RM(r, s). The
usual covering radius is denoted by R. Plainly R;(C) = R(C).

2.2 Graphs

We consider finite undirected graphs with no loops and no multiple edges
and view them as metric spaces for the shortest path distance. A k—code in
a graph is a k—subset of vertices. Its distance is the minimum of its pairwise
distance between distinct elements. The k-diameter of I' say Di(T") is the
largest possible distance a k-code in I" can have. Note that D, is the standard
diameter. Denote by T the diagonal matrix indexed by V such that T, , is
the degree of x € V', by A the adjacency matrix of I and let L = T — A. The
Laplace operator is then defined as

L:=T2LT-1/2,

Let
=0 <. <0

be the eigenvalues of the Laplace operator arranged in increasing order. It
is not hard to check that the whole spectrum fits into [0,2]. In particular,
if the graph is A-regular then )\; = 1 — pu;/A, where p; is the i** eigenvalue
(decreasing order) of the adjacency matrix.

3 Basic Properties

The following is immediate from the definition.

Proposition 1 The function m — R, (C) is non increasing. In particular
for m > 1 we have R, (C) < Ry(C).

Some special values are easy to determine. Let E, denote the even weight
code and E/, its dual the repetition codeé. For instance,

Rpn(F") =0
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for all m.
Rm(En) =1,

for m < 271 and 0 otherwise. Define the jumps of C as the integers m > 1
where R,(C) < Rm-1(C). For instance E,, admits the jump 27—1 4+ 1. Call
J(C) the set of jumps of C. Call V(n,r) the volume of the ball of radius r.

Proposition 2 Let C be a binary code of packing radius e. If C is not perfect
then '
min(J(C)) < 1+ 2" — |C|V(n,e).

Proof:Pick m vectors with m > 2" — |C|V(n,e), then one of them at
least falls within distance e of the code. By hypothesis and the preceding
inequality m > 1. 0O

More generally let N(r,C) denote the number of vectors at distance ex-
actly r from C.

Proposition 3 If C is a binary code then
min(J(C)) < 1+ N(R:(C),C).

For instance, the first jump of RM(1,2s) gives a lower bound on the total
number of bent functions. We leave as an open problem R, (E;,) and Rn,(0).
In fact determining R,,(0) for all m < 2" is closely related to finding A(n, d)
for all d < n.

Proposition 4 For all d < n and m < 2" we obtain
e Ifm+1< A(n,d) then R,(0) > d
o Ifm+1= A(n,d) then R,(0) =d
o If R,(0) > d then A(n,d) > m +1

4 Graphical Approach
Let G(C) denote the Cayley graph on the cosets of a binary linear [n, k, d]

code, with generators the cosets of weight one. The spectrum of that graph
is well-known [2].
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Lemma 1 IfC is a linear [n, k,d] code with dual weights (resp. frequencies)
w! (resp. Al) then G(C) is a multigraph on 2"* vertices with Laplacian
eigenvalues \; = 2wi/n and multiplicities A;. If, furthermore, d > 2, this
graph has no multiple edges and is regular of degree n.

Recall from [2] that the usual covering radius R;(C) is no one else than
the diameter of G(C). This generalizes as follows for m > 1.

Proposition 5 The (m + 1)—diameter of G(C) is equal to the m—covering
radius of C.

Proof:Given m + 1 cosets with pairwise distance at least Dp,41(G(C))
being attained for some pair, we can always assume, by translation, that they
comprise the trivial coset C. Therefore

Ry(C) 2 Dt (G(C)).

In the other direction, to a set S of m vectors of F™ corresponds an m+1-
code of G(C) consisting of C and the m cosets s + C for s running over S.
Assume S realizes R,,(C). The minimum distance of that graphical code of
size m + 1 is then R,,(C) by definition. Therefore

Rn(C) £ Diya(G(C)).

Some easy values follow

Corollary 1 If C is the Hamming code then R, = 1 for all m. If C is
the extended Hamming code RM (s — 2,s) then Ry = 2 form < 2° and 1
otherwise.
Proof:In the first case G(C) is the complete graph. In the second case
G(C) is the bipartite complete graph K 5. O
We derive an anlogue of the sphere covering bound for linear codes. This
yields a lower bound on the jump of a linear code.

Corollary 2 If C is a linear code of length n and dimension k then
2"7F < (m+1)V(n, R(C) - 1).

This entails .
min(J(C)) > 2"7*/V(n, R(C) ~ 1),
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and, fur'thermore.

N(R,C) +1 > 2™ */V(n, R(C) - 1).

Proof:Apply the standard Varshamov-Gilbert argument to a code of size
m+1 and minimum distance R,,(C) in the coset graph G(C). Combine with
Proposition 3 to obtain the last assertion. O

For instance if C = RM(1, 2s) knowing that R; is n/2+4O(y/n) is enough
to assert that the first jump is at least of the order of 2°, for large s. A better
bound will be derived in §6.

5 Spectral Bounds

We are now in a position to use the following result [1, Cor.3].

Theorem 1 If G is a graph of size v distinct from the complete graph its
k—diameter is bounded above as

cosh™12+
2—Ap

Di(G) < { cosh™tw ]

if Ak # Ao—1 . If furthermore 2 > Ag + Ay—1 the bound can be sharpened to

Dk(G) < 1_1

cosh™ 1= "

cosh™lv ]

This last result, applied to G(C) yields.

Corollary 3 IfC is a linear [n, k] code with dual weights (resp. frequencies)
w! (resp. Al) then let the cumulative weight frequencies be

With these notations, provided C is not the perfect Hamming code its m— covering
radius is bounded above for f;_y <m < f; as
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n + w;
)
J

n + wh

R (C) < [cosh™*(2"*) /cosh™ 1( ’)] < [(n- k+1)/log2(

If, furthermore the weights < n gre symmetric wrt n/2 then

)] < [ =k 1/ logy (o

Rin(C) < [cosh™(2"*) /cosh™ 1( ).

Proof:Apply Theorem 1 to the coset graph of a quasi-random or m—quasi-
random code, using Lemma 1 as a dictionary to translate into graphical terms
the coding-theoretic hypotheses. ]

Consider the double-error correcting BCH code of length n = 2° — 1 for
s odd and codimension n — k = 2s. By [7, p.451] we know that the dual
distance is 2°~! — 206=1)/2 with frequency n(252 4 2(°~3)/2), For large s the
preceding bound entails

Bn(C) < 5.

Define a family of binary codes of unbounded length n and codimension
k logy(n) to be quasi-random if their dual weights different from zero and n
lie in the range [n/2 — cy/n, n/2 + ¢y/n], for some constant ¢. Such codes are
abundant in the litterature due to the use of arithmetic geometry bounds like
the Carlitz-Uchiyama bound [7, p.280]. The first examples are the t—error
correcting BCH codes for fixed ¢ [7, p.280]. More examples can be found by
taking duals of the cyclic codes used in direct sequence CDMA to generate
low correlation sequences [8]. See the example sections of [2, 9].

More generally, we shall say that a code is m—quasi-random if the pre-
ceding condition on the dual weights is replaced by the same range condition
bearing on the dual weights indexed in the range [m,n—m)]. Clearly, a quasi-
random code is m—quasirandom for all m in the range [1,7/2]. The preceding
bounds entail the following result.

Theorem 2 Let C be guasi-random [n, k] code. For length large enough
R,.(C) < Rl(C) <2k +1.
If, more generally, C is m— quasz’-mndah‘z then

R,(C) <2k +1.
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Proof:By definition for quasi-random codes n — k ~ xlog,(n) for large n,
and for w € [n/2 — ¢y/n,n/2 — ¢y/n] we can write

log,((n+ w)/(n — w)) 2 logy(cv/n).~ 0.5 logy(n).

Plugging these estimates into Corollary 3 yields the first assertion. The proof
of the second assertion is similar. O

In the special case of BCH codes, the first statement is proved in [2,
§6.3.1] and constitutes an alternative to the character sum approach of |3,
Corollary 3.3]. The second statement is a generalization to higher covering
radius.

6 Union of cosets

Many good nonlinear codes are unions of high weight cosets of a fixed linear
code. The chief examples of these are the Kerdock and Preparata codes, not
to mention the Delsarte-Goethals and Goethals-Delsarte codes of [4].

Proposition 6 If C is linear then there are m cosets z; + C such that the
code

p:=clU(m+0)

satisfies d(D) = min(d(C), Rn(C)).
As a consequence we obtain the following bound, which, while stated here
for the first time is certainly implicit in, e.g. the Preparata section of [7].

Corollary 4 If R,,(C) < d(C) then
(m+1)|C| < A(n, R,(C)).

The celebrated Kerdock code is a union of 2° cosets of RM (1, s), for even
s > 1. Therefrom we obtain

Rye_1(RM(1,5)) > 2°71 — 2%/,

Is this bound tight? It is the case for s — 4 by the fact [7] that A(16,6) = 64.
However, it is true for all such s by Proposition 1 and Ri(RM(1,s) = 2°71 —
25/2, This shows that min(J(RM (1, s)) for even s is at least 2°.
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Similarly, the [2° — 1,2° — s — 1, 3] Hamming code for even s > 2 is a
union of 2° translates of the shortened Preparata code P(s)* [7, p.475]. This
implies

Ry—1(P(s)*) 2 3.
This is actually equal in view of ‘the optimality of the Hamming code. The
fact that the double-error correcting BCH code of the preceding section is
contained in the perfect Hamming code yields

Rn(C) 23

for m < 2% — 1. Alternatively, equality also holds by Proposition 1 and
Ry(P(s)") = 3.
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Abstract

The paper discusses some ways to strengthen (nonasymptotically) the
Gilbert-Varshamov bound for linear codes. The unifying idea is to study
a certain graph constructed on vectors of low weight in the cosets of the
code, which we call the Varshamov graph. Various simple estimates of
the number of its connected components account for better lower bounds
on the minimum distance of codes, some of them known in the literature.

1 Introduction

Let C be a g-ary linear code of length n, dimension k¥ and minimum distance d,
in short an [n, k, d],-code. The Varshamov bound [13] guarantees, for any given
g, 7, k, the existence of a linear [n, k, d|4 code with a certain relation between the
parameters n, &, d, q (see Prop. 12 below). Moreover, [13] suggests a greedy pro-
cedure of constructing a parity-check matrix for a code whose parameters meet
the bound. Gilbert [6] suggested a similar greedy algorithm that produces (not
necessarily linear) codes whose parameters satisfy a similar relation. Asymp-
totically, both bounds give the same function; therefore, it became common to
join them into the “Varshamov-Gilbert bound.”

To improve the Varshamov-Gilbert bound asymptotically is a notoriously
difficult task [11]. However, for any small values of n, k, d, g, the best codes that
we know are usually better than this bound. Therefore, the question whether
better nonasymptotic bounds are possible seems to be a natural one. In Section 2
we introduce a graph on the standard array of the code and relate its parameters
to those of the code. Simple estimates on the number of connected components

*email: abarg@research.bell-labs.com
temail: S.Guritman@twi.tudelft.nl
temail: J.Simonis@twi.tudelft.nl
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of the graph lead to improvements of the Varshamov-Gilbert bound given in
Proposition 10, Proposition 14 {7], Proposition 15, and Corollary 21 [4].

2 The Varshamov graph

Definition 1 The code C is said to be maximal if it cannot be obtained by
shortening an [n+ 1,k + 1, d]¢-code.

The following is a useful characterization of maximal codes.

Proposition 2 The code C is mazimal if and only if its covering radius p(C)
does not exceed d — 2.

Proof. If x € F? has distance > d — 1 to C, then the code C’ spanned by
(x,1) and {(c,0) | c € C} has the parameters [n+1,k+1,d]q, and shortening C’
with respect to the last coordinate position gives C. Conversely, if C is obtained
by shortening an [n+1,k+ 1,d]q-code C’, then any word in C’ which is nonzero
in the shortening position yields a vector x € Fy at distance >d—1 from C. m

So an [n,k,d|s-code C with p(C) > d — 2 is not maximal. The following
proposition, a generalization of a result by Elia [5], extends this observation to
codes with arbitrary covering radius. The proof is completely analogous to that
of the preceding proposition.

Proposition 3 An [n,k,d]y-code C with p(C) > o, @ < d, can be extended to
an [n+d—a—1,k+1,d]4-code.

Let C be an [n, k, d]4-code.
Definition 4 The undirected groph with the vertex set
Va = {x | x € F and wt(x) < a}
and the edge set
E,:={{a,b}|a,beV, anda—-beC\{0}}

is denoted by Go(C). The graph G(C) := G4—2(C) is called the Varshamov graph
of C.

Obviously, the number of vertices in G, is equal to
(23 i n
vl =3 -1 (})
i=0
The number of edges will turn out to be a function of the weight distribution

(Ai(C))i=o,1,... n of C.
Let x,y € F} be any two vectors with d(x,y) = w. Then the integers

Py =z €Fy | d(x,2) =i and d(y, 2) = j}| 1)

are known to be independent of the choice of x and y. They are the so-called
intersection numbers of the Hamming scheme H(n,q). Sometimes the p}’; are
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also called the linearization coefficients of the Hamming scheme (cf. Remark
6). See [3], Chapter 21 of [9] or Chapter 30 of [8] for a detailed description of
the Hamming scheme and other association schemes. Finally, the numbers P
arise naturally in estimating the error probability of bounded distance decoding
on the g-ary symmetric channel [1].

In the sequel we need an explicit formula for the P

Proposition 5 ([1])

[ =5

- (1) ()05 o

§=0

For g = 2, this reduces to
0 ifi+ 7 —w is odd,
Pij =

(otinsyse) (ei—my2) 5 +37 —w is even.

Proof. In (1), we may assume that x = 0 and wt(y) = w. So p¥; counts
the number of z with wt(z) =i and wt(z — y) = 5. Put

I{u | Zu = Yuy 2y #0”’

|{'U. | 2y F# Yu, 2u F 0,00 # O}I,
|{u I zy =0,yy # 0}|1

Hu | zy # 0,9, = 0}].

M2 ™R
([ |

Then

w=Ya-2a-0°(2) (V7 7) ("), @

where the sum is taken over all nonnegative integer solutions of the system

w = a+f+y
i = at+p+6
J = B+y+é6
Solve for o, # and -y, and substitute in (3). £

Remark 6 Another formula for Py is

L=y Ki(u)ffj (W) Ku(w),

with -
Ka(y) = go(—l)’"(q - (31) (: - 31)

The K (y) are polynomials of degree x in y, the so-called Krawtchouk polyno-
mials. Again, we refer to the relevant sections of [8], [9], and [8].
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Proposition 7 The size of the edge set E, of Go(C) s equal to

2a a
%2%@2%-

%,§=0

A more explicit formula in the binary case is

1 2a 2a—w |v/2] w n—w
|Ea|=§£Aw(C) ; ; (a+u_v)< . )).

Proof. If ¢ € C is a codeword of weight w > 0, then the set
X.:={{a,b} |a,beV,anda—b=c¢c}

has size 3 ¢';_o P¥; OF § > i j—o P> depending on whether ¢ is odd or even. By
definition, E, is equal to
U X

ceC\{o}

Now observe that X; = X_. and that X. N X« =0 if ¢ # £c'. [

The graph G,(C) has a very simple structure: its components are complete
graphs whose vertices are the intersections of V,, with the cosets of weight < o
of C. Let co(C) be the number of components of G(C). It is also the size of the
largest coclique in G. Applying Turén’s theorem ([12] or [10]) we get a relation
between ¢, and E,.

Proposition 8 Ifc, < K, then
Vo 1| Vs Vo
>|=2lv,—=|=2(|= :
&_hthAqﬂﬂm
Hence the integer
. Va 1| Va Vo
> |2 | -
min{K | E, > [KJVQ 5 {K} ([KJ + 1)K}
s a lower bound for c,.

Another useful invariant of the graph Go(C) is p,(C), the size of its largest
component (i.e. clique). Turdn’s theorem for the complementary graph G
yields the following lower bound for p,(C).

Proposition 9 If u,(C) < M, then

Va Va 1| Vol | Vs
< _— — - m— — v
Ea_(2) [M V“+2\_M_(I_M +1)M

Hence

min{M | E, < (V"‘) |

2

is a lower bound for p.,.
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However, the next proposition shows that good upper bounds for p(C) ==
#4—2(C) are much more useful. What we really need are upper bounds for the
number of words of weight up to d — 2 in the cosets of C.

Proposition 10 An [n,k,d],-code C with
d—2
T [E(C)] -k
Z(q—l)‘(.) -2—== <"
pars i #(C)
s not mazimal.

Proof. Consider the Varshamov graph G(C). For i = 1,2,... ,u = p(C),
let v; denote the number of components of size i. Then

C(C) = Z Vi,

i=1
u
V| = ) iv;, and
=1
e
|E| = ;(2)1&'-

Hence ¢(C) is upperbounded by the maximal value of 3% | z; under the con-
straints

Y im = |V,
ZM:(;)% = |El,

We claim that
E .
Ta= %, z1 = |V| — px,, z; = 0 otherwise,

is an optimal solution. So the maximal value of Zi.;l x; is equal to

E E E
V1= sy + ot = V] 2L

G 6

Indeed, the dual linear program

|V|z1+|E|zz2 — min
izl-{—(;)zz > 0, 1<i<y,
2,20 2 0
has a feasible solution,
21=1,20=——,

that produces the same value of the objective function. m
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Remark 11 Following the idea of Proposition 8, we can generalize this result:
An [n, k,d]g-code C with

S0~ (7) ~ 2t o

poars 1a(C)

for some a < d~—1 can be extended to an [n +d—a — 1,k + 1,d],-code.

3 Varshamov—Gilbert type results

The number c4(C) of components of G4 (C) cannot exceed g"~*, the total num-
ber of cosets. Obviously, C is maximal if and only if the number of components
¢(C) of the Varshamov graph G(C) := G4—2(C) equals g"~*.

Our goal is to find upper bounds on ¢(C). For if such an upper bound is
smaller then ¢” %, then C is not maximal. The simplest upper bound is

«© =S~ (7),

i=0
which immediately gives the classical Varshamov-Gilbert bound.

Proposition 12 (Varshamov [13].) If

-1y (5) <o

i=0
then no [n, k, d)q-code is maximal.

Remark 13 By Proposition 3, we can generalize this:

If

[s 4
> (g1 (n) <qF,
i=0 ¢

for some o < d—1, then any [n,k,d],-code can be extended to an [n+d - —
1,k + 1, d]g-code.

For o = d — 3 this reduces to Elia’s result [5].

A general approach to find Varshamov-Gilbert type bounds would be to
estimate the number of components of specific subgraphs of the Varshamov
graph. We discuss two examples, basically due to Hashim [7] and Edel [4]
respectively.

The first idea to consider a forest F in G. If F D F is a spanning forest of
G, then

c(C) = V|~ |E(F)| < V|- |E(F), (4)
So if we can find a forest in G with many edges, we have a good upper bound

for ¢(C).
An interesting example was found by Hashim. Put ¢ := |43 ].
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Proposition 14 (Hashim [7].)An [n, k, d),-code C with

T 5 (o Bor()

w=d i=w—d+2 =0
s not mazimal.
Proof. Consider the two disjoint subsets
Xi:={a|2<wt(a) <t},Xo:={b|t < wt(b) <d -2}
of F7. The bipartite graph on {X7, X2} with the edge set
E' :={{a,b} |a—b & and suppansuppb = 0}

is a forest in G because all its vertices in X, have degree < 1. Indeed, if
{a,b}, {a’,b} € E’, then (a—b)—(a’ —b)—a a' ECandwt(a a’) <2t<d
whence a = a’. Each word of weight w in C contributes 3;_,_,., (¥) to E'.
Hence

d—24t &
LEDY ,_E+z< )Au(c)

and, by (4),

(0 <3 a- () - SIS (7).

=0 w=d i=w-—d+2

Hashim’s result admits a simple improvement.

Proposition 15 An [n, k,d|y-code C with

Y P w0 Se-v(D) -

w=d i=w—d+2j=w—i =0
is not maximal.

Proof. Now consider the bipartite graph with the same vertex sets X1, X
as in the preceding proposition, but with edge set

E":={{a,b} |a€ X;,be Xs anda—b €(}.

By the same reasoning, this bipartite graph is seen to be a forest Its number
of edges is

d—2+¢ t

d—2
2 D X P4 (%)

w=d i=w—d+42j=w—i

Again we apply (4). m
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Remark 16 In the binary case, Erpression (5) takes the form

EEE (L) e o

6=0 v=0 u=0

Remark 17 Proposition 3 enables us to generalize Proposition 15 in the fol-
lowing way:
An [n,k,d|q-code C with

ottt o .
Z E Z PZ,-AW(C) > Z(q — 1)1: ('Z) _ q""“
w=d i=w—-oa j=w—1i =

for some o < d—1 can be extended to an [n+d—a — 1,k +1,d|q-code.

Now we come to the second idea. First we fix some notation. Let T be a
subset of the coordinate index set {1,2,... ,n}. The projection of an x € Fy to
T is denoted by x7 and the code obtained by C through shortening with respect
to T by CT. (Here T denotes the complement of T in {1,2,...,n}.) We define
84(C) := ¢a(C) — ca—1(C). Note that

=€) <@-1°(7), )

with equality for a <t = L%J
We need two obvious lemmas.

Lemma 18 IfC :=C, & Ca, then
ca(€) = ) 8i(C1)ca(Ca).
=0
Lemma 19 If D CC, then ¢o(D) > calC).

The following relation between the values of ¢, for C, CT and CT creates a
possibility of induction.

Proposition 20

min(ea,m)

@< Y 5i(CT)eas(CT). (®)

=0

Proof. Note that CT@CT isa subcode of C and apply the preceding lemmas.
In fact, the right hand side counts the components of the subgraph G’ of G(C)
with the same vertex set V, but with the edge set

E' :={{a,b}| ar —bp e CT Aar—breCT}.
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Corollary 21 (Edel [4]) From (7) we infer that

min{o,m)

«©5 Y @-v (7)a-stcD.

We can embed any [n, k,d],-code C in an [n + 1,k,d],-code C’ by adding
one zero coordinate to each codeword. Let us call this construction #rivial
lengthening. Corollary 21, with m = 1, immediately gives the bound

ca(C’) € ca(C) + (g — 1)ca_1(C). (9)

If an [n, k, d]4-code C is not maximal, we can embed it in an [n+1,k+1, d)g-
code C’. Let us call this a Varshamov step. The component sizes c,(C’) of the
new code C’ satisfy the bounds

ca(C') € ca(C) + (g — 1)ca—1(C). (10)

Indeed, let n + 1 be the extra coordinate index in C’. We can split the vertex
set V,(C’) of C’ into the g subsets

W; = {u S Va(C') I Untl = t}

Then the restriction of Go(C’) to W; is isomorphic to G4(C) if ¢ = 0, and
isomorphic to Ga—_1(C) if i # 0.

Now Edel’s idea in [4] is as follows. Start with an [n;, k;, d],-code Cp and build
a sequence of [n;, k;,d],-codes C;, ¢ = 1,2,..., of increasing length by taking
Varshamov steps when our information on ¢4_2(C;) tells us that this possible. If
not, apply trivial lengthening until a Varshamov step again is possible. At each
step, estimate the c,(C;) using (9), (10) and the trivial bound ¢, (C;) < g™ *:.
By this simple method, Edel improved quite a few lower bounds in Brouwer’s
tables [2] on bounds for optimal linear ternary and quaternary linear codes.
Without doubt, the method will work for larger alphabets as well.
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Introduction

A code K C 2" in an alphabet  of g elements is called k-recursive, 1 < k <
n, if there exists a function f : Q¥ —  such that X consists of all the rows
u(0,n — 1) = (u(0),... ,u(n — 1)) € Q" with the property

u(i+ k)= f(u(z,i+%k-1)), i€0,n—-k-1.

In other words X is the set of all output n-sequences of a feedback shift
register with a feedback function f. We denote K = K(n, f) and investigate
the existence problem for MDS-codes of such type, i.e. recursive [n,k,n —
k + 1]4-codes. In connection with this, the following set of parameters is
interesting.

n(k, ¢) — maximum of lengths of MDS codes K of (combinatorial) dimen-
sion k . :

(JK| = ¢*) in alphabet Q) of cardinality g.

n"(k,q) — maximum of lengths of k-recursive MDS codes of the same type.

l(k, q) - maximum of lengths of MDS codes K of (combinatorial) dimen-
sion k£ which are linear over an abelian group (£2,+) for some operation +

*The last two authors thank the University of Oviedo for the hospitality and support.
Their work was partially supported also by RFBR grants 96-01-00-627 and 96-01-00-931
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(i.e. K is a subgroup of an Abelian group Q" and |K| = ¢*, where ¢ = ||
and n € N). We also shall call such codes linear in broad sense.

I"(k,q) — the analog of I(k, ¢) for recursive codes.

For the primary (the power of a prime) numbers ¢ we also study

m(k, g) — the analog of l(k, ¢) only for the codes which are linear over the
field F, (linear in narrow sense).

m"(k, q) — the analog of m(k, q) for the recursive codes.

Moreover, we shall call the above function f(x) idempotent if it satisfies
the identity f(z,...,z) = z. The last property is equivalent to the con-
dition that all “constants” (a,...,a) belong to K(n, f). So in addition to
the above six we can introduce three new parameters n'"(k, q), " (k, q) and
m™ (k,q) (only for primary g) with evident definitions. (“ir” means “idem-
potent recursive”).

So we have the following matrix of parameters

[mir(ka q) mr(k7 Q) Tn(k) Q)]
- M(k,q)=| U(k,q) U(k,q) I(k,q)
n*(k,q) n*(k,q) n(k,q)

whose entries do not decrease from left to right and from up to down. Natu-
rally the first row of this matrix (shown in brackets) is present only when g is
primary. It is interesting to estimate and to compare the entries of M(k, q)
for various values of k and q. In what follows the equality z¥(k, ¢) = k means
that the corresponding code does not exist. A standard argument gives the
following source of estimations for the entries of M(k, g):

0.1. Proposition. Ifz € {{,n}, y € {0,r,ir} and k, 1,92 € 2,00 then

z¥(k, q1q2) > min{z¥(k,q), 2 (k, q2)}-

1 Results for £ =2

It is well-known that n(2,q) =2+ N(q) where N (¢) is the maximal number
of mutually orthogonal Latin g x g-squares. The detailed reviews of the

results on N(q) are given in [3, 4, 5]. We cite here only the following general
conclusion:

1.1. Theorem. Let g € N,q > 1. Then:
() N(@) <gq-1;
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(b) if g is primary, then N(q) = q—1;

(c) N(q1q2) > min{N(q1), N(g2)}, in particular, if ¢ = g;-.. .-q: is a canonical
factorization of ¢ then N(q) > min{g: — 1,... ,¢: — 1};

(d) N(g) > 2 if and only if q ¢ {2,6};

(e) N(q) > 3 if ¢ ¢ {2,3,6,10}.

(f) N(q) > g5 — 2,

So the inequality n(2,¢) > 4 is equivalent to the existence of a pair of
orthogonal Latin squares of order q. The inequality n"(2,q) > 4 means that,
in addition, the second one must be recursive derivative of the first[1].

)

For small values of g we have

2 3 3 344
M2,2)=|2 3 3 |, M23) =3 44|, M©24)=
2 3 3 3 4 4

5 6 6 ) 7
M(2,5) = (g : g) M(@2,7) = (3 )

and of course (G.Tarry’s solution [7] of L.Euler’s problem of 36 ofﬁcers)
233
M(2,6) = ( 3 3 3 )

1.2. Proposition. If q is primary then

W o w
ot Ot Ot
r O Ot

Co Co oo
oo ©0 0o

m'(2,q) =n"(2,9) =n(2,q) =g+ 1;
_ . q if ¢ 1. a prime;
m"(2,9) =1"(2,9) =< ¢—1 ifqisnota prime
(V.Abashin (private communication)).

The following two theorems are the main results of this section.

1.3. Theorem. For arbitrary ¢ > 2, ezcept ¢ = 6 and possibly q €
{14,18,26,42}, n"(2,q) > 4.
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Really, the last inequality may be sharpened for many values of g. Some
of the stronger estimations are easily deduced from Propositions 0.1, 1.2. We
call them standard. Other estimations we have obtained are presented in

1.4. Theorem. The following nonstandard lower estimations are valid:
n(2,q) > 8 for g = 80.
n(2,q) > 7 for q € {50,57,58,65, 70, 78, 84, 85, 86,92, 94,95, 96, 98 }.
n’(2,q) > 6 for q € {54,62,66,68,69,74,75,76,82,87,90,93}.

n"(2,q) > 5 for q € {21,24,39,60}.

n"(2,q) > 7 for q € {50,57,58,65,70,78, 80,84, 85, 86,92, 94,95,96,98}.

n¥"(2,q) > 5 for q € {21,54,62,66,68,69, 74,75, 76,82,87,90,93}.

We present here the Table 1 which allows to compare the lower bounds

0] 1 2 | 3 4 |81 9 |
0 oo 3 *[4 *[5 6 *[3 8 *[9 *10 *
0o 4 6 3 9 10
1la (12 *[4 14 *[7 4 17 *18 *[7 20 *
4 12 7 14 5 6 17 18 20
25 |5 4 24 *|5 26 *|7? 28 *|5 [30 *
6 6 5 24 6 26 5 28 30

34 32 *[33 *|4 4 6 4 38 *l4 |5
5 32 33 6 5 6 6 38 6
44 |42 *|? 44 *5 4 4 48 *l4 |50 *
6 42 5 44 5 5 6 48 50
5017 [4 5 54 *|6 6 8 7 7 60 *
8 6 5 54 6 7 9 9 60

65 62 *[6 8 65 *|7 6 68 *6 |6
6 62 6 8 65 9 7 68 8
717 2 *|9 74 *|6 6 6 8 7 g0 *
8 72 9 74 7 7 7 8 80
g8 82 *[6 g4 *|71 7 7 6 9 |90 *
9 82 10 84 g 8 8 8 90
916 |8 7 6 7 7 7. 98 *[z 10 *
6 8 7 6 7 7 7 98| 7 10

Table 1: Table of values of n"(2,q) and n(2, q) for ¢ < 100.
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of n"(2, q) obtained by us (value in the upper left corner of each cell) and the
known Jower bounds n(2, ) (value in the lower right corner cell) taken from
[3, Figure 7.1, Chapter 5]. The cell in row -and column j corresponds to the
value ¢ = 10z + j. The nonstandard estimations of n"(2, ¢) are underlined.
The cells marked in the upper right corner by # correspond to the primary
numbers.

2 Results for £ > 2

The following estimations are known.

2.1. Theorem. [6, 5]

(a) If <k thenn(k,q)=k+1.

(b) If k < q and q is even then n(k,q) < g+ k — 1.

(c) If 3 <k < q and q is odd then n(k,q) < g+ k — 2.

(d) Ifk € 1,k + 1 and q is primary (i.e. a power of a prime) then m”(k,q) >
q+1.

(e) n(3,q) = ¢+ 1 for primary odd q.

(f) n(3,9) = n(qg—1,q) = g+ 2, for primary even q.

We have the following “recursive version” of these results.

2.2. Proposition. If ¢ < k then I"(k,q) = n(k,q) = k+1 and, for primary
g, m"(k,q) =k+1.

The well-known conjecture of McWilliams and Sloane [6] states that
for any primary q,

] g+l for2<k<gqg
m(k,q)_{k+1 for g < k

except the case
m(3,9) = m(g—1,¢) = ¢+ 2 for even q.

For k = 3 we have (using PC calculation):

275



2.3. Proposition. For every primary q € 4,128, the following equality takes
place:

m'(3,9) =g+ 1.

In each of these cases, the number of linear recursive [g+1,3,q — 1]-codes is
equal to

%w(q+ 1)(g—1).

The last statement means that any code obtained in Proposition 2.3 can
be constructed from some fixed linear cyclic code indicated in [6, ch.11, The-
orem 9] by substitution of each word (o, . . . , ) with the word (8o, . .. , Bq),
where §; = a‘oys for some fixed a € F, and § € 1,4, (6,9) = 1.

So the following conjecture is a “recursive analog” of McWilliams and
Sloane’s conjecture.

2.4. Conjecture. Proposition 2.3 is valid for any primary q > 4.

. For the case k = 3, ¢ = 4 we have the following full description of
parameters m"(3,4),1"(3,4),n"(3,4).

2.5. Proposition.
m"(3,4) =5 < 1'(3,4) =n"(3,4) =m(3,4) = n(3,4) = 6.

0 In view of 2.3 it is enough to prove only that ["(3,4) = 6. The computer
search gives exactly 24 recursive [6,3,4]s-codes K(6, f(z1,22,23)) over the
field F; = {0,1,a,a + 1}. One of them is linear in the broad sense with
recursion loo

f(z1,22,23) = az? + azy + z2.

We call it the Asturian code.0

The example of the Asturian code gives some important theoretical corol-
laries: (1) there exist linear in the broad sense recursive codes that are better
than any linear in the classical sense recursive code, and (2) for some of the
best known linear in classical sense but non recursive codes, there exist linear
in the broad sense recursive codes with the same parameters. However, the
Asturian code may be an exclusive example because the PC calculations give

I'3,q) =q+1 for gqe€{8,16}. ‘
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Abstract

A new method is presented to construct systematic authentication
codes from error-correcting codes. It makes use of certain affine trans-
formations. The basic parameters of the new authentication codes are
analyzed and compared with existing constructions.
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1 Introduction

The general theory of unconditional authentication has been developed by
Simmons [9]. In this model, there are three participants: a sender, a receiver
and an opponent. This model is usually called the non-arbitrator authenti-
cation model and will be explained briefly here. These authentication codes
are called A-codes for short.

The sender wants to send some information, which is usually called a
source state s, to the receiver by means of a public communications channel.
The opponent tries to fool the receiver into accepting a fraudulent message
as a genuine one. To defeat the attacks from the opponent, the transmitter
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encodes s into a message m according to a secret encoding rule e shared with
the receiver.

Here, we only discuss systematic (also called Carthesian) A-codes: the
transmitted message consists of a concatenation of the source state s with a
so-called authenticator t.

Let S be a finite set of source states and let 7 be a set of authentication
values or authenticators. Further, let £ be a finite set of encoding rules
e : & — 7. This set will also be called the key space of the system. In the
context of systematic A-codes, the set M of possible messages consists of all
m = (s, e(s)). It is a subset of S x 7', but will mostly be equal to it. The tail
e(s) acts as authenticator ¢ for s.

The receiver verifies the authenticity of a received message (s,t) by check-
ing that ¢ = e(s), where e is the (secret) encoding rule shared with the
presumed sender.

Suppose that the opponent has the ability to introduce new messages into
the channel and/or to modify messages transmitted by the sender. Also, we
shall assume that the opponent knows all the details of the authentication
scheme except for the secret encoding rule.

When the opponent transmits a message m' = (s/,t') € & x T over the
channel in an attempt to impersonate the sender, this is called an imperson-
ation attack. When the opponent intercepts a transmitted méssage m = (s, t)
from the legitimate sender and replaces it by another message m' = (s',t'),
with s’ # s, this is called a substitution attack. In either case, it is the goal of
the opponent to have m' accepted as an authentic message by the receiver.
That is, if e is the encoding rule being shared by sender and receiver (which
is not known to the opponent), then the opponent is hoping that t' = e(s').

An A-code is completely described by the triple (S, M,&). The code
is said to have parameters (|S|,|M]|,|€]). In addition, the probabilities of
impersonation and substitution attacks are important parameters of A-codes.

Let P; and Ps denote the maximum probability of a successful imperson-
ation resp. substitution and let Pp = max{P;, Ps} denote the probability
of successful deception. More precisely:

_ [{e € & | e(s) =t}

o=  mex, Ei 1)
B [{e € & | e(s) =t,e(s') =t}

Bs = (s,0(s NESXT s [{e € € | e(s) =t} 2)
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Let H(X|Y) and I(X;Y) denote the usual (conditional) entropy function
resp. the mutual information function (see [7] for definitions). Then the
following inequalities are known [1, 8, 9] :

Py > 27IMB) (3)

Ps > o HEM) (4)
1

Pp >

ViE )

where M and F denote random variables defined on M and €.
An A-code satisfying

1
13,=PS=7E (6)

is commonly called a perfect A-code (see [8]).
;From [2] we quote the following theorem (see also [4]).

Theorem 1.1 A necessary condition for an authentication code to be perfect
1s that

|81 < VIEN+1. (7)

In other words, a sender who wants to transmit from a large source space
by means of a perfect A-code has to share a key with the receiver from a
much larger key space. Hence, constructions of perfect A-codes are often not
very practical. It is very important to find A-codes which contain as many
source states as possible, given the size of the key space.

The paper is organized as followed. Section 2 gives an overview of some
A-codes constructed by error-correcting codes (from now on shortened to
EC-codes). Section 3 introduces constructions of systematic A-codes based
on affine transformations. Section 4 presents a new construction method
of A-codes, which is based on affine transformations and EC-codes. It also
analyzes the basic parameters of these code. Finally, in Section 5, we will
compare our construction with the g-twisted construction described in [3, 5].
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2 Constructions of A-Codes from EC-Codes

M.N.Wegman and J.L.Carter [16] observed that by relaxing requirement
slightly (by not requiring that the probability of deception is at its theoretical
minimum), one can often reduce the number of encoding rules significantly,
at least in the case where |S| > |7|. D.R.Stinson studied implementations
of the above idea by means of universal hash functions [12]. In the following,
we will give a small discussion of some works by means of EC-codes.

In [8], G.J.Simmons pointed out that coding theory and authenticaiion
theory are dual theories: one is concerned with clustering the most likely
alternations as closely about the original code as possible and the other with
spreading the optimal (to the opponent) alterations as uniformly as possibly
over M. But the essence of this duality has not been revealed.

In the light of the above statement, many researchers began to investigate
possible connections between A-codes and EC-codes. In [3, 5], Kabatianskii,
e.o., established a particular kind of connection between A-codes and EC-
codes. Through this connection, they showed that some systematic A-codes
can be constructed from EC-codes and vice versa. The former is used to
show that if Ps exceeds P; by an arbitrarily small positive amount, the
number of source states grows exponentially with the number of the keys
but if Pg = P; it will grow only linearly. Also, they derived some other
valuable results about authentication codes.

They introduced a particular subclass CQ of g-ary EC-codes, namely
block codes satisfying the additional property:

ceC=c+AleC, VYAeGF(qg). (8)

Through the so-called g-twisted construction, they can map a g-ary EC-
code C € CV with parameters (n,|C|,d) into a systematic A-code with
parameters (|C|/q,|C|, ng), in which P; =1/q and Ps = 1 — d/n. Note that
in such a A-code, the number of source states is 1/g-th of the number of
codewords in C. Also, C' must satisfy property (8).

Safavi-Naini and Seberry [10] constructed authentication codes by making
using the encoding rules of EC-codes directly as encoding rules for A-codes.

In the following, we will present a.construction of systematic A-codes
based on EC-codes and affine transformations.
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3 A Construction of Systematic A-Codes Based
on Affine Transformations

We firstly introduce a construction for systematic A-codes by means of affine
transformations. It does not make use of EC-codes, but will serve as an
introduction to our later constructions. This construction is an extension of
Ezample 10.1 in [13] and it is similar to the modified GMS-scheme in [14],
which is constructed from projective plane PG(2, Fy).

Construction 3.1 Let GF(q) be a finite field with q elements. Let S =
T = GF(q). As set of encoding rules £ take the set F of all mappings fap :
GF(q) — GF(q), a,b € GF(q), defined by

fap(s)=as+b, s€ 8. (9)
 The message set M, as always, consists of all pairs (s,t) witht = f,4(s).
So, M = (GF(g))*

The A-code constructed above is systematic and has parameters (g, g2, q?).

Let us now calculate the probabilities of impersonation and substitution.

First, we consider Pr. Independent of the choice of s and ¢ in GF(q) we
have )

Hee&|e(s) =t} = {(a,b) € (GF(g)* [as+b=1t}| = ¢.  (10)

Indeed, for any choice of a there is a unique value of b, satisfying as+b = ¢.
Since |€] = ¢, we get

The computation of Pg is slightly more involved. Suppose that the op-
ponent has observed message (s,t), and he want to replace it by (s',#') with
s' # s. Then

Hee &l e(s) =ze(s) =2H= [{(a,b) € (GF(q))’ | as +b =2,

as’' +b=2")}|
=1.
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So, by (10) we get
Ps=1/q. (12)

The above means that A-codes from Construction 3.1 satisfy (6), so they
are perfect.

4 A Construction of Systematic A-Codes Based
on Affine Transformations and EC-codes

The g-twisted construction described in [3, 5] makes use of g-ary EC-codes
satisfying property (8). As a result of the construction, the number of source
states in the resulting A-code is 1/g-th of the cardinality of the original EC-
code.

In the next construction no extra assumption will be made on the EC-
code being used. Let m; : (GF(g))® — GF(q) denote the projection of
a g-ary vector of length n onto its i-th coordinate, 1 < i < n. Also, let
N =1{1,2,...,n}.

Construction 4.1 Let C be a g-ary EC-code with parameters (n, |C|,d). To
define an A-code, take S = C as set of source states and take T = GF(q).
So, the message set M is contained (GF(g))"*.

The set £ of encoding rules consists of all composite mappings fqpom;, 1 <
i<n, a,be GF(q) (see (9) for the definition of fop), so

(fapom)(c) = fap(mi(c)) = ac; +0.

Theorem 4.2 Given any q-ary EC-code with parameters (n,|C/|,d), Con-
struction 4.1 will yield a systematic A-codes which has |C| source states, ng®
encoding rules, and |C|q messages.

Also, the probability of success for an impersonation attack is given by
P = 1/q, and the probability of success for substitution attack is given by
Ps <1-(g—1)d/qn.

Proof: The parameters of the constructed A-codes can easily be verified.

In the following, we will discuss the probability of success for an imperson-
ation attack and a substitution attack.
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To succeed in an impersonation attack, the opponent must guess the
correct authentication symbol ¢ corresponding to a source state ¢ chosen by
him. Again the probability of success turns out to be independent of the
choice of ¢ and ¢. Indeed,

Hee & le(fl) =t = H(a,b4) € (GF(q))* x N | fap(mi(c)) = t}|
= H(a,b,9) € (GF())* x N | aci +b=1t}|
= nq. (13)

Indeed, for any choice of i € N and a € GF(q) there is a unique b € GF(q)
such that ac; +b = ¢. It follows from Equation (1) that P; =ng/ng? = 1/q.

To calculate the probability of success for a substitution attack, we con-
sider an intercepted message (c,t) that the opponent wants to replace by
(c',t') with ¢ # /. Following (2), we calculate

He € € | elc) =t,e(c) =t} =[{(a,b,4) € (GF(q))* x N | fap(mi(c)) =1,
fap(mi(€)) = t'}]
=|{(a,b,7) € (GF(q))’ x N | ac; + b =t¢,
ac;+b=t}.

Let us look more closely at the set of simultaneous equations ac; + b = ¢
and ac; + b = t'. We distinguish two cases, namely ¢ = ¢’ and ¢ # t'. Let
us first consider the case that ¢ = ¢. One has ¢ solutions (a,b) on those
coordinates ¢ where ¢ and ¢’ agree (choose a arbitrary and solve for b). On
the coordinates where c and ¢’ differ, there is a unique solution (a, b), namely
a = 0 and b = ¢t = ¢. Therefore, if £ = #, the right hand side above is equal
to gn — (¢ — 1)du(c, ¢).

If t # t', we get no solutions on the coordinates where ¢ and ¢’ agree and
one solution on each coordinate where ¢ and ¢’ disagree. So, in this case, the
right hand side above is equal to dg(c, ¢).

In the definition of Ps, we need to consider the maximum over all pairs
(s,1). Since du(c,c') < n we have gn — (¢ — 1)du(c, ) > drlc, ), we may
conclude that in both cases:
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Hec & |ee)=t, e(¢) =t} < qn—(g—1dalcc))

<
S qan — (q— 1)d1

since ¢ and ¢’ are different and so must different in at least d coordinates.
Suppose that the encoding rules (a,b,i)s are chosen equiprobably. It
follows from (2) and (13) that

Ps < (gn—(¢—1)d)/qn=1~ (¢ —1)d/qn. (14)

Example 4.3 Let GF(q) be finite field of size ¢ and let C be a (generalized)
Reed-Solomon code over GF(q). Then C is a linear code, say with parameters
[n,k,d], so |C| = ¢*. The dimension k can take on any value in between 0
and n. The minimum distance is given byd =n — k + 1.

Construction 4.1 now yields a systematic A-code with parameters

(¢*, ¢**',ng?), with Pr=1/q and Ps <1— (¢ —1)(n — k+1)/gn.

In practice one likes to use A-codes with many source states, not too
many encoding rules and a probability of success for deception that is as
small as possible. In view of Construction 4.1 we need EC-codes with as
many codewords and as large a minimum Hamming distance as possible.
Concatenation codes may be convenient to use to this end.

5 Comparisons

Looking at Sections 2 and 4, it follows that Construction 4.1 has the following
advantages and disadvantages over the g-twisted construction [3, 5].

e The lower bound on 1 — Pg in Construction 4.1 is a factor (¢ — 1)/q
lower than in the g-twisted construction. For large field sizes this factor
is negligible.

e Construction 4.1 can be applied to any type of EC-code. Property (8)
is no longer required.
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e Let Ay(n,d) denote the maximum cardinality of a g-ary EC-code of
length » and minimum distance d. Let A,(ll)(n, d) be defined similarly
for EC-codes satisfying (8). It may happen that for some parameters
AP (n, d) will be strictly smaller than A,(n, d).

¢ Given a code C satisfying (8). Then the A-code in Construction 4.1
contains ¢ times as many source states as the A-code in the g-twisted
construction. On the other hand, it uses ¢ times as many encoding
rules. In view of Theorem 1.1 this can be viewed as a good trade-off.

We note that the number of source states in both the g-twisted construc-
tion and Construction 4.1 increases exponentially in the length of the code.

6 Conclusions

We introduced and analyzed a new construction method for systematic au-
thentication codes. It makes use of affine transformations and error-correcting
codes. The main difference with [3] is that we do not need to impose any
restrictions on the EC-codes that are used. As a result the A-code contains
as many source states as the EC-code contains codewords.
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Abstract: We have proposed a novel scheme based on arithmetic coding, an optimal data
compression algorithm in the sense of shortest length coding. The scheme can provide data
compression, encryption, and data integrity all together at the same time in a one pass
operation. The key size used is 248 bits. The scheme can resist existing attacks on arithmetic
coding encryption algorithms. A general approach to attack this scheme either on data secrecy
or on data integrity is difficult. The statistical properties of this scheme are very good and the
scheme is easily manageable in software. The compression ratio is only 2% worse than the
original arithmetic coding algorithm.

1 Introduction

Data integrity or authenticity has two meanings. Firstly, it means that the data is not changed
or altered during transmissions or storage. Secondly, it means that the data is originated from
the authentic sender. Data integrity can be achieved by adopting either digital signature or
message authentication code (MAC) algorithms. Digital signature, which was introduced by
Diffie and Hellman in 1976, is superior to MACs in that it can provide unforgable and
undeniable identification of the sender as well. Digital signature algorithms are in practice
always based on a public key cryptographic system which has the advantage over a symmetric
counterpart in key management. Even so, almost all of practical digital signature schemes, such
as RSA and DSA, depend on a hard number theoretic problem. Due to the implementation
technical problems, for some applications, digital signature algorithms require comparatively
too much storage and computation. Therefore, for a lot of applications, conventional MAC
algorithms are still used to achieve data integrity. MACs, such as MD5 and CBC-MAC, are
usually used in a symmetric system in which two communication parties must trust each other
and that means they cannot provide non-repudiation of origin. The shared symmetric keys make
the key management harder and more costly. However, MACs are around 100 to 1000 times
faster in the speed than digital signatures so they are preferable for some specific applications.
One feature for both digital signature and MAC algorithms is that they are unable to provide
data secrecy on their own. If data secrecy is required a separate cipher must be applied or for
public key systems a two pass operation must be adopted.

Arithmetic coding [1] is an optimal data compression algorithm. It can achieve the theoretical

compression ratio bound provided that the prediction of the symbol probabilities in the source
is accurate enough. The first practical implementation for arithmetic coding with either a fixed

291



model or a first-order adaptive model was published in 1987 by Witten et al [9] (which we call
the WNC implementation). Since then there have been several different implementations for
arithmetic coding with adaptive models in which the symbol probabilities are evolving on the
fly. Of course, the purpose of data compression is to reduce the redundancy in the message. On
the other hand, redundancy contained in the output of a cryptosystem is usually one of the main
resources to be used by the cryptanalyst. Based on these facts Witten et al [8] suggested that a
higher-order adaptive arithmetic coding algorithm may provide high level security. They also
indicated that to use an adaptive modelling compression algorithm as an encryption algorithm it
was enough to transmit the initial state in the model as a key over a secure channel. In 1993 [3]
Bergen and Hogan suggested a chosen plaintext attack on first-order adaptive arithmetic
coding. Although this attack is not feasible to break an arithmetic coding encryption algorithm
with an advanced adaptive model or the prediction by partial mach model, it succeeded in
attacking the first-order adaptive arithmetic coding algorithm. In [10] we proposed a novel
encryption algorithm based on first-order adaptive arithmetic coding whose strength is good
enough to resist Bergen-Hogan attack. In this paper we will reduce the key size of our scheme
to 248 bits and also we will provide a modified scheme to achieve data integrity as well so that
data compression, encryption, and data integrity can be provided all together at the same time
by the same algorithm in a one pass operation.

2 Arithmetic Coding

Arithmetic coding is based on the fact that the cumulative probability of a sequence of
statistically independent source symbols equals the product of the source symbol probabilities.
In arithmetic coding each symbol in the message is assigned a distinct subinterval of the unit
interval of length equal to its probability. This is the encoding interval for that symbol. As
encoding proceeds, a nest of subintervals is defined. Each successive subinterval is defined by
reducing the previous subinterval in proportion to the current symbol’ s probability. When the
message becomes longer, the subinterval needed to represent it becomes smaller, and the
number of bits needed to indicate that subinterval grows. The more likely symbols reduce the
subinterval by less than the unlikely symbols and thus add fewer bits to the message. This
results in data compression. When all symbols have been encoded, the final interval has length
equal to the product of all the symbol probabilities and can be transmitted by sending any
number belonging to the final interval. That means if the probability of the occurrence of a
message is p, arithmetic coding can encode that message in —log, p bits, which is optimal in

the sense of the shortest length encoding. The WNC implementation for arithmetic coding [9] is
the first practical algorithm and is widely accepted. The algorithm is provided with either a
static model or a first-order adaptive model. The algorithm realises integer arithmetic and
incremental transmission. The arithmetic precision is 16-bit. In their first-order adaptive model,
all the frequencies are initialised to 1. If the current model exceeds the maximum cumulative
frequency, the model reduces all frequencies by half and recalculates cumulative frequencies. If
necessary the model reorders the symbols to always put the current one in its correct rank in the
frequency ordering. Adaptation is performed by incrementing the proper frequency count and
adjusting cumulative frequencies accordingly. Due to the limit of the first-order adaptation, the
compression ratio is 50% to 70% according to the size and type of the file. However it can be
greatly improved by using a higher-order adaptive model.
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3 Our Basic Scheme
3.1 Witten-Cleary Proposal
In 1988 [8] Witten and Cleary suggested two ways to insert the key into arithmetic coding:

Method 1: The initial model is used as the key in which an array of single-character frequencies
in the range of 1-10 would do.

Method 2: A constant initial model is used and before transmission begins both the encoder and
decoder assimilate a short secret message into the model.

Aiming at Method 1 in Witten-Cleary proposal with WNC adaptive implementation, Bergen
and Hogan suggested a chosen plaintext attack on first-order adaptive arithmetic coding in 1993
[3]. Instead of trying to recover the initial model Bergen-Hogan attack tries to take control of
the model and reduce it to a manageable form. If the encoder does not initialise its model, the
attacker can decrypt any message transmitted after the attack is done. To be successful, in the
Bergen-Hogan attack an associate as well as an attacker are necessary. The associate needs to

send 2!8 symbols and the attacker needs to try decoding the test string 2! times. Up until now
the Bergen-Hogan attack is the only feasible attack on the adaptive arithmetic coding encryption
algorithm. It is an open question whether or not a modified Bergen-Hogan attack will succeed in
breaking the arithmetic coding algorithm with an advanced adaptive model, such as higher-order
adaptive models as well as the Prediction by Partial Match Model (PPM) [1].

3.2 Our Modified Proposal

In [10] we gave our initial proposal. Here is the revised version to reduce the total key size to
248 bits without impacting the strength significantly.

1. Select an initial frequency count for every symbol randomly, which act as the initial state in
the model. The only restriction is that these numbers are all larger than 0.

2. Select the initial interval randomly within the full range but the length of the initial interval
should not be less than(2!6 —1)/ 4.

3. Select a secret 16-bit substitution with the key size 16 bits, which is used to substitute the
first 16-bit output of the encoding.

4. Choose two secret parameter pairs (g,°,€,°) and (g,',&,") which are used to shrink the

current interval controlled by a random 64-bit string cyclically, where the four parameters are
different.

3.3 The Key Size
Firstly, 96 bits can be used to indicate the initial state. There are 96 symbols with exact

meaning in extended ASCII set in text compression, so 96 bits are enough to indicate the initial
state, If the bit is O set the count of the symbol to 2, otherwise to 3. Set the counts of the other
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160 symbols to be 1. Secondly, 32 bits can be used to indicate the initial interval. The initial
interval can be indicated by determining low and high, or low and range, so 16 bits are used to
indicate one of them and 32 bits for both. Thirdly, 40 bits can indicate the shrinking
parameters. The unknown part in every parameter ranges from 0 to 999, so 10 bits are
necessary to indicate each of them. And then, we use 64 bits for the random control string. In
this case, the polynomials (in Sec. 4) for low and range are of degree 256. And then, 16 bits
are used for the 16-bit substitution key size. A secret 16-bit substitution with the key size 16
bits is preferable. So the total key size for the scheme is 248 bits.

3.4 The Strength
3.4.1 Resisting Bergen-Hogan Attack

In Bergen-Hogan attack the attacker knows he matches the keying materials only when he
successfully decodes the test string. To use Bergen-Hogan attack on our proposal, the
associate’ s strategy is the same as that to attack with the Witten-Cleary proposal, but the
attacker’ s work will be increased dramatically. In order to decode the test string the attacker
has to find the first symbol’ s frequency count in the standard form, the initial interval, the

substitution, the pairs (g,%,£,%)and (g,',€,'), and the 64-bit control string all together,

instead of just trying the first symbol’ s frequency count in the standard form 21 times in
breaking with the Witten-Cleary proposal. The attacker has to try to decode the test string

214 5230 %216 % 219 % 219 =218 times. Partially finding the keying materials is also very

difficult. The reasonably simplest way for the attacker would be to firstly find the first
symbol’ s frequency count in the standard form together with the initial interval. For this
purpose the attacker only needs to decode the first symbol in the test string, but he has to try

decoding 214 %230 x 216 % 21° =27 times.

It has been shown in [10] that a general approach to attack our scheme is difficult and our
scheme can resist other related attacks to arithmetic coding encryption algorithms.

3.4.2 Other Related Results

It has been shown in [10] that compared with WNC first order adaptive implementation, the
compression ratio of our scheme is only 2% worse and the running time is about double of that
of WNC implementation. The results of compression ratio and running time are the same for
our modified scheme. The encoded files with our modified scheme have very good randomness.
Changing any number of bits in the file to be encoded results in the fact that from the position in
the encoded file the first changed bit corresponds to, then in the subsequent output, if this
encoded file is compared with the encoded file resulted from the totally unchanged original file
to be encoded, the changed bits and unchanged bits take the probabilities 0.5, and distribute
uniformly and randomly. Furthermore, the outputs of our modified scheme passed the frequency
test, the binary derivative test, the change point test, the poker test, the runs test, the sequence
complexity test, the linear complexity test, and Maurer's universal test (the statistical test
software Crypt-X [11] is from the Information Security Centre at the Queensland University of
Technology), and also there is no statistical difference between the output from our modified
scheme and that from the DES. So good plaintext diffusion and ciphertext avalanche are

294



achieved. Also, in the modified scheme, the keying materials have very good effects on balance,
diffusion, completeness, and avalanche.

4 A Scheme to Achieve Data Integrity

Compared with original arithmetic coding we have introduced 2% redundancy into our scheme.
The main steps to introduce redundancy into our scheme are the two stages of shrinking in the
current interval after encoding (decoding) a symbol. The fact that 2% redundancy is introduced
into our scheme and the scheme is originally from arithmetic coding results in the fact that the
scheme is highly sensitive to any changes in the compressed file. From a number of months
experiments, we have found that, without any exception, if we change the bits in the encoded
file randomly, no matter how many bits in the encoded file have been changed, in the decoded
file from the position the first changed bit in the encoded file corresponding to, the subsequent
decoded file is totally rubbish but if only the last bit in the encoded file is changed there is not
any affect on the decoding. This fact suggests a method to achieve data integrity: before
encoding the file with our scheme, we add a sequence number together with fifty zeros to the
end of the file. The decoder only needs to check if the sequence number is correct (to detect
replay) and if 50 zeros are presented at the end of the decoded file. This method has hardly any
affect on the compression ratio.

P6n (l—p)ao

I a I b |

Figure 1. A binary fixed model with initial interval not unit.

h()

(4

Now we analyse how difficult it would be for the attacker to succeed in breaking the method
without knowing the key. The binary fixed model in Figure 1 is the simplest one to attack
which is the reason to analyse it, while in practice a higher order adaptive model is used with
our scheme, which provides much better compression and also makes cryptanalysis much
harder. First, we use the binary fixed model as in Figure 1 with our scheme. We assume that
the substitution is ignored and the arithmetic precision is infinite and also the encoding is with
our scheme in which the data integrity method is included. Let the size of the file to be encoded
be n (> 64) and the size of the sequence number together with the 50 zeros be m, so the size of
the whole file to be encoded is n+m. When finishing encoding the output can be determined by:

=

Spim = Illa;p+(1-a)(1-plle,° +(g,' —€,0x,11-€,° +(g,° - £,))x;1, %
ol _

-~
]

Xj’iii"jp+(l—a,-)(l—p)][sh° +(&' —£,0)x;111-£,° +(&,° ~£,")x;]

bam =1y +6o(1-ap)p

*éz(‘ "“i)PE[“fP”f(l —a))(1- p)lies® + (&4t —£,0)x; 11— €,0 +(e,° —£,))x;18, +
Hayp +(A=a)A=-pIole,” +(e,' - £, e, + (& - )]+
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+§[a,.p+(1-a,.)(1—p)][s,,° +(g,! —é;"')x,.][e,o +(g,! —g,%)x;1x
=2

= 0 1 0y, 0 0_o1
XH[a1p+(1—a1)(1—p)][8h +(8h —Sh )Xj][l—el +(£l —81 )X]]60+
i1

n+m

=1
+ Z(ll—a,-)le[ajp+(l—aj)(l—p)][sho +(e,! —£,00x; )1 -€,° +(g,° —£,")x;160 +
i=n+ J=

+ Sla;p+(1-a;)1- p)lIe, + (4! - £,0)x1€,0 + (&) — £,°)x;1x
i=n+]

i-!
xnl[ajp+(1-aj 1= p)IEL? + (&4 —€,0)x;11-€,° +(,° — &' )x;18, 4.1)
j=

Here, &, represents the length of the current interval; [, represents the low point in the current
interval; a, represents the current input symbol; p is the probability for the symbol a in the

fixed model; and x; is the current bit in the control string.

As in theoretical arithmetic coding the low bound [ is usually used as the encoded file, it is
reasonable touse {,,, to represent the output of the scheme.

4.1 The Complexity to Change a File

Suppose the attacker knows the whole file to be encoded, a,a;...a,...a,4,, and the

corresponding output /,,,,, he will succeed if he successfully finds a I',,,, corresponding to
his changed file @' | a5 ...d ,, Gy -+ Apim» Which can be decoded as a file ended with a correct
sequence number together with 50 zeros. We have:

rn+m = ln+m +60(al _a'l)p+

n i—1
+.22(1 —-a',-)pnl[a'jp+(1—a'j)(1-—p)][£h0 +(e,! —€,0)x;11-£,° +(g,° —,))x;16, +
1= J=

Ha' | p+(1—a )1-p)8,le,’ + (e, —€,0x,1le,° +(e/! —&,°)x; 1+

+§[a',.p+(1—a',- Y- e’ + (g, —£,%)x;1e,° +(e,! —,%)x;1x
i=2

i—1
xnl[a'jp+(1—a'j 1= p)Ie,® +(ey' —&,0)x -2, +(e,° — €, )x;160 —
J=
n i-1
—_22(1-a,-)pnl[ajp+(1-aj)(1—p)][s,,o +(ey' —€,0)x; 11— % +(g,° —£,)x;18, -
= J= B
—a,p+(1—a)(1-p)I8ole, +(;' - £,0)x 1e,’ + (e —,%)x,1-

—'é[aip+(l—ai)(1—p)][£h° +(8hl —Gho)xi][elo ‘*‘(31l —Ezo)xi]X

i-l
XHl[ajp+(l—aj)(l—p)][£h0 +(ept —£,0)x;11-€,° +(¢,° — £,")x;18, 4.2)
=
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The equation above has similar structure with (4.1) but is slightly more complicated. In order
to find the /',,,,, the attacker has to find the key in advance or solve the polynomial equation

with 70 variables and with the degree (=)256. Here we assume that only the key is unknown. If

the size of the changed file is different from that of the original file the resulting equation is
more complicated.

4.2 The Complexity to Create a File
In this case we have:

l'n+m=10 +6O(1_a'1)17+
n i—1

+z(1—a',.)p1‘11[a'jp+(1—a'j 1-p)lle,’ +(e4' —£,°)x; 111 —€,° +(€,° —£,')x,18, +
i=2 Jj=

Ha'| p+(-d )1-pbyle,° +(e,! —€,0)x, 11,0 +(g;! —£,°)x, 1+

+§[a',.p+(1—a',. YA-pe,® + (&, —,%x,11e,° + (e, ~ £,%)x; 1%
i=2

i-1
xI1ld' jp+(1~d ; )1~ p)lle,® +(ey' —€,0)x;1-€° +(e,° — &, )x;18, +
J=1 ‘

mm o = . 0 1 0 0 0_ .1

+ X(-dpllld p+(-a;)A-plley’ + (&4’ ~€,°)x;l1-e,° +(e,° —&/)x;18, +
i=n+ Jj=

n+m

+ Ylap+(A-d;))A-plle,® +(&,' —£,%)x,10e,° + (g, —¢,°)x;]%

i=n+l

i-1 : )
XIld jp+(1-d ;)0 - p)les’ + (&' —£,00x;111-¢,0 +(g,° - £,))x;16, 4.3)
fh

The attacker has to solve the equation above, which has 71 variables and the degree at least
256 together with finding the proper sequence number.

4.3 The Complexity to Find a Collision

Finding a collision is one of the most important ways to break a MAC. However, our scheme is
uniquely decodable. So with our scheme two files correspond to the same compressed code only
when the two files are the same.

4.4 Extension

The analysis above is based on a much simplified fixed binary model and with ideal theoretical
arithmetic coding. Our scheme works with the Witten-Cleary first order adaptive model with
the alphabet size 256. There has not been any arithmetic method to trace the evolution of the
adaptive model. Also our scheme works with Witten-Cleary implementation for arithmetic
coding. Quite a few practical strategies in the implementation make the coding procedure much
more difficult to trace than the theoretical arithmetic coding. In fact, there are a number of
main differences between the scheme with theoretical arithmetic coding with a fixed binary
model and the scheme with WNC first order adaptive arithmetic coding. Firstly, for the WNC
first adaptive arithmetic coding, there is no way to find the exact current state in the adaptive
model. One may argue that as the uncertainty of the current state in the adaptive model, if a
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chosen plaintext attack is used and the secret shrinking parameters, the initial interval, and the
secret control as well string are known, totally depends on the secret initial state in the model,
after encoding a huge known file the effect from the initial model is trivial; i.e., it can be
converted from any known initial model. However, this is not true with WNC first order
adaptive model. Approximation does not make any sense unless the two current states are the
same in arithmetic coding. Secondly, WNC adaptive arithmetic coding uses 16-bit finite
precision. That means it has to expand the current interval after encoding (decoding) one
symbol. Such expansions are unpredictable and untraceable with our scheme. Therefore, such a
regular relation between the input and the output in the encoder in (4.1) definitely does not hold
in our scheme with WNC adaptive arithmetic coding. One thing clear is that if a mathematical
relation exists in WNC adaptive arithmetic coding it must be much more complicated than
(4.1). Now we analyse what happens in the algorithm of our scheme when the encoded file is
changed. To avoid underflow, WNC adaptive arithmetic coding expands the current interval
after encoding (decoding) a symbol so that the length of current interval is always at least as
large as one fourth of the full interval. After every expansion, our scheme further shrinks the
current interval two times secretly but the amplitudes are not large. From a conservative
estimation, we assume that the current interval is always about 3/4 of the full interval. If a bit
is changed, then there is a probability 1/4 that the next symbol can not be decoded and the
decoding stops, because the current value from the input of the decoding is located outside the
current interval. There is a probability 3/4 that the decoder decodes the next symbol but the
resulting symbol is absolutely wrong. After decoding that wrong symbol the adaptive model
updates the current state in the decoder which is different from that in the encoder. The
procedure is on going. Therefore, from the changed bit the probability that the decoder is still in
operation after it has decoded » wrong symbols is about (3/ 4)" . What exactly the wrong
symbols are depends on the exact current interval and the input as well as the position of the
changed bit. So, there is a very high probability of the decoder stopping intermediately.
Because of the adaptivity of the model, there is definitely no chance for the decoder to recover
the correct symbols later and that means there is no chance for the decoded file to be ended with
a correct sequence number and 50 zeros. The results are the same when changing a number of
bits in the encoded file. As the encoded file is pseudorandom, there is no better way to change
or generate an encoded file than randomly. What is the possibility of a succesful forgery from a
random guess? If one generates an encoded file which is supposed to be a forgery of a plaintext
file with n symbols randomly, the probability of the decoder still being in operation after
decoding »n symbols and still being ready to try to decode the supposed sequence number and 50

zeros is about (3/ 4)" . If the file he wants to be authenticated is a random file, the probability
of his randomly generated encoded file being succesfully decoded to the same file to be
encoded of his choice is about (3/ 4)"(1/256)" . The probability of this file being ended with a

correct sequence number and 50 zeros is about (3/ 4)"(1/256)" (1/256)°°*™ . Here the m is the

size of the sequence number in bytes. Another option for the attacker is to find the key first and
then the sequence number. As it was demonstrated before, by using Bergen-Hogan attack,
which is, we think, the most powerful attack on the specific scheme, the complexity of finding

the key is 2168
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4.5 Compared With MACs -

MACs have been widely used in symmetric systems. If the security of our scheme is
satisfactory, there are some specific features of our scheme which are superior to normal
MAGs. Firstly, MACs are used in this way that the file to be authenticated and the
corresponding MAC are sent separately. In our scheme we only need to send one encoded file.
Secondly, MACs can only detect data integrity. If data security is also required, a separate
cipher must be applied. That is a two pass operation with two different algorithms. Our scheme
can provide data integrity, encryption, and data compression all together in a one pass
operation. The compression ratio depends on'which adaptive model we use. Arithmetic coding
with a new version of the PPM model can represent one character in 2 bits. We expect that
only about 2% redundancy will be added with such a PPM modelling scheme.

5 Conclusions

In this paper we present a scheme that can provide data encryption, data integrity and data
compression all together in a one pass operation. The scheme is based on WNC implementation
for arithmetic coding in which a first order adaptive model is used. The total key size is 248
bits. The statistical properties of our scheme are very good. Attacking this scheme is difficult.
The compression ratio is about 2% worse than WNC implementation for arithmetic coding.
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NEGACYCLIC AND CYCLIC CODES OVER Z;

J WOLFMANN

ABSTRACT. The negashift » of Z} is defined as the permutation of Z}
such that v(ag,a1,...,ai,...,8n-1) = (~@n-1,@0,... ,8i,... ,an_3)
and a negacyclic code of length n over Z, is defined as a subset C of
Z% such that v(C) = C. We prove that the Gray map image of a linear
negacyclic code over Z4 of length n is a binary distance invariant (not
necessary linear) cyclic code. We also prove that, if n is odd, then every
binary code which is the Gray map image of a linear cyclic code over
Z4 of length n is equivalent to a (not necessary linear) cyclic code and
this equivalence is explicitely described. This last result explains and
generalizes the existence, already known, of version as doubly extended
cyclic codes of Kerdock, Preparata, and other codes. Furthermore, we
introduce a family of binary linear cyclic codes which are Gray map
images of Z4linear negacyclic codes.

1. NEGACYCLIC CODES
1.1. Definitions.
Définition 1.
1) The negashift v of Zj is the permutation of Z3 defined by :
I/(ao,a.l, BN / PP ,an_l) = (-—an_l,ao, e 304y ... ,a.n_z).
2) Let v be the negashift of Z3.
A negacyclic code of length n over Zy is a subset C of Z§ such that v(C) = C.

Using the classical polynomial representation we easily prove the following
proposition

Proposition 2. A subset C of Z} is a linear negacyclic code of length n

over Zy if and only if its polynomial representation is an ideal of the factor
ring Zaz]/(z™ + 1).

1.2. Negacyclic codes of odd length.

Théoréme 3. a) The ring Zy[z]/(z™ + 1) with n odd is a principal ideal
domain.

b) If C is a negacyclic code of odd length n, then its polynomial representa-
tion I 1s a principal ideal generated by a constant polynomial or a polynomial
of the kind :

9(z) = a(z)[b(z) + 2|
where z" + 1 = a(z)b(x)c(z) in Zy[z] and a(z),b(z),c(x) are pairwise co-
prime polynomials,

¢) The cardinality of C is 4de8c(z)gdegb(z)

Key words and phrases. Negacyclic and cyclic codes over Z4, Gray map.
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2. GRAY MAP AND NEGACYCLIC CODES

2.1. Gray map.

From now on, in order to eliminate ambiguity we denote additions in Iy, I3, 2,

I, [z] and F} x F} by &, while additions in Zq, Z}, Z4|z] are denoted by +.
We consider I} as the subset {0,1}" of Z7 where 0 or 1 are in Z4. In this
way, if X and Y are in I} we have to distinguish X +Y and X ©Y. The
last one is calculated with the binary addition and is viewed as a member
of Z7.

Now define two maps r and ¢ of Z, into I, such that, if A € Z4, then the
2-adic expansion of A is : A = r(}) +2¢(}1). We extend r and ¢ to Z} in the
natural following way. If Z = (21, 22,... ,2n) € Zj then :

r(Z) = (r(@), (@), - () a(2) = (a(21), a(z2), - »a(zn)
We now identify F2" as B} x I} and recall the definition of the Gray map.
Définition 4. The Gray map ® of Z} into Fa" is defined by :
®(2) = (9(2),9(2) ©7(2))
2.2. Gray map images of negacyclic codes.
Proposition 5. If v is the negashift of Zf, if o is the shift of F2" and if @
is the Gray map of Z into FE" then
by =0®

Théoréme 6. The Gray map image of a linear negacyclic code over Zy is
a binary distance invariant (not necessary linear) cyclic code.

Example : Let C be the negacyclic code over Z4 of length 7, which is the
principal ideal generated by (z+1)(z®+222+z+1) . The Gray image of C'is
a binary non-linear distance invariant cyclic code of length 14, cardinality 64
and minimum weight 6. For same length and cardinality the best minimum
weight of a binary linear code is 5 and, from inspection by computer, the
best minimum weight of a binary linear cyclic code is 4.

2.3. Gray map images of negacyclic codes of odd length.

Définition 7. The Nechaev permutation of {0,1,--- ,2n —1} is the follow-
ing permutation T :

(L,n+1)(3,n+3)...2+1,n+2i+1)...(n—2,2n — 2)

As usual,if 7 is a permutation of {0,1,--- ,7 — 1} and A is any set we
define the permutation 7 of A” induced by 7 by :
?(a'ﬂ’ Qlyeer 304y 7‘11‘—1) = (a"r(O)a Qr(1)y - s Br(i)s- - - ,a"r('r—l))'

Proposition 8. Assume n odd.
Let i be the permutation of Zj such that :

ﬁ'(a'O)ab see 3 Byen ,a'n.—l) = (a(), —0a1,02,.-. 1(_1)ia‘i7 cee 7(_1)n_la’n—1)

If T is the permutation of B3 induced by the Nechaev permutation and if ®
is the Gray map Z7 into F2" then

dji = 7
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Corollaire 9. Let T be as defined in the last proposition. If n is odd and if
T is the Gray map image of linear cyclic code over Zy, then 7(T") is a cyclic
code.

Recall that two codes I and A of length r over [, are said to be equivalent
if there exists a permutation 7 of {0,1,--- ,7 — 1} such that A = 7(T") where
7 is the permutation of F; induced by 7. Obviously, a consequence of the
previous result now is :

Théoréme 10. Every binary code which is the Gray map image of a linear
cyclic code over Zy of odd length is equivalent to a (not necessary linear)
cyclic code.

2.4. Examples : Kerdock, Preparata and others. Nechaev in [5], was
the first to prove that the binary Kerdock code K of length 2™*! is equiva-
lent to a code Ky which a doubly extended code of a non-linear cyclic code
K 1 - He used the Galois ring GR(4,m) and a connection between the trace
function of GR(4,m) and the trace function of the finite field Fym. Later
(see [3]), it was proved that K is the Gray map image of a Z,-linear code K
which is the extended code of a cyclic code K~ over Z4 of length n = 2™ —1.,
In fact, it can be easily seen that K~ is the Gray map image of K~ which
is equivalent to I~{1_ by means of the Nechaev permutation defined. This
is a special case of corollary 2.6. On the other hand, Delsarte-Goethals
codes, Goethals-Delsarte codes and the version of the Preparata codes, all
introduced in [3], are Gray map images of extended cyclic codes of length
n = 2™ — 1 over Z4. Applying corollary 2.6., they all are equivalent to
doubly extended cyclic codes. Same results hold for codes of [1],[2].

Another application of our result is given by the Zj4 trace codes introduced
in [4] and [6] which are Z4-linear cyclic code of length n = 2™ — 1. According
to corollary 2.6., their Gray map images are equivalent, by means of the
Nechaev permutation, to binary doubly extended cyclic codes.

2.5. More examples. We now introduce examples of Gray map images of
linear negacyclic codes which, for same length and cardinality, have mini-
mum weight close to the largest minimum weight for linear code and have
better minimum weight than the largest minimum weight for linear cyclic
code.

C : linear negacyclique code over Z4 generated by g(z) = a(z)[b(z) + 2]
where 2"+1 = a(z)b(z)c(z) in Z4|z] and a(z), b(x), c(z) are pairwise coprime
polynomials. C' = ®(C). Length of €' : i = 2n.

Cardinality of € = 2% with k = 2deg c(z).+ deg b(z).

Wreg. 1 the minimum weight of €, wy;,. is the largest minimum weight for
binary linear codes of length # and dimension k& and Weyer, 18 the largest
minimum weight for binary linear cyclic codes of length 7 and dimension k.
Wiin, comes from tables and wey, is obtained with the help of a computer.

1)n=14
a(z) =(z+1)(z® +222 + £ +1) ,b(z) = 1.
k =86, Wneg, = 6, win. =5, Weyel. = 4.

a(z) =23 +222+2+1 ,b(z) =1.
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k=8, Wneg. =4, Wiipn. = 4, Weyel. = 3.

2) =34
a(z) = (z + 1)(2® + 327 + 32% + +3z* + +3z + 1) ,b(z) = 1.
k=16, wpeg. = 8, Wiin. =8 — 9, Weyar. = 6.
o) =28 + 228 + 25 + 2t + 23 + 222 +1 Jb(z) =z + 1.
k=17, wpeg. = 8, Wijn. = 8, Weya. = 5.

a(z) =28 + 225 + 2% + 2t + 22 + 222 +1 |b(z) = 1.

3. BINARY LINEAR CYCLIC CODES WHICH ARE GRAY MAP IMAGES OF Z4
LINEAR NEGACYCLIC CODES

In general,Gray map images of Zy-linear codes are not binary linear codes.
We now introduce Zy-linear negacyclic codes whose Gray map images are
binary linear cyclic codes and, as corollary, Z4-linear cyclic codes whose
Gray map images are binary linear codes.

Théoréme 11. Let n be an odd positive integer and let &(x), b(z) be in
B, [z] such that :

2" — 1 = (z — 1)a(z)b(z)
where (z — 1), &(x), b(z) are pairwise coprime.
Let ay(z), bi(z) be respectively Hensel lifts of é(z) and b(z) and define
a(z) = a1(—z) and b(z) = by (—z).

If (::’ is the binary linear cyclic code of length 2n generated by a(x)2b(z),
then C is the Gray map image of the Zy-linear negacyclic code of length n
generated by a(z)(b(z) + 2).

ExampleIfn = 7, a(z) = z3+22?+z+1, b(z) = 23+22+22+1 , the Gray
map image of the Zg4-linear negacyclic code of length 7 generated by g(z) =
a(z)(b(z)+2) = 28+32° + 21 + 23+ 22+ 1+ 3 is the binary linear cyclic code
of length 14 generated by §(z) = a(x)?b(z) = z° +2® +28+ 25 +z* + 23 + 1.

The next corollary of theorem 3.1. introduces Z4-linear cyclic codes whose
Gray map images are binary linear codes.

Corollaire 12. With notations of theorem 3.1. :

The Gray map image of the Zs-linear cyclic code of length n generated by
a1(z)(by(z) + 2) is a binary linear code C;.

If 7 is the permutation of Fe" induced by the Nechaev permutation, then
7(C1) is the Gray map image of the Zy-linear negacyclic code of length n
generated by a(z)(b(z) + 2).

Example : From the last example, the -;Gray map image of the Z4-linear
cyclic code of length 7 generated by g1(z) = g(~z) = a1(z)(bi(z) +2) =
2 + 2% + 2% 4+ 32% + 22 + 3z + 3 is the binary linear code of length 14 and
is equivalent to a cyclic code.
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ABSTRACT. Carlet [2] has determined the linear codes over Z /(4)
of constant Lee weight. This extended abstract describes a different
approach to this problem, along the lines of [4], which has the
potential to apply to a wide class of examples. In particular, we
show that linear codes of constant Lee or Euclidean weight seldom
exist over Z/(p?) when p is an odd prime.

Over finite fiélds, any linear code with constant Hamming weight is
a replication of simplex (i.e., dual Hamming) codes. There are several
proofs of this result, including [1}], [3], and [4]. Recently, Carlet [2]
has proved a similar result for linear codes of constant Lee weight over
Z/(4), indeed, over any Z/(2™).

In this extended abstract we generalize the approach of [4]. While
more complicated than Carlet’s proof, our approach has the potential
to apply to a wide class of weight functions over any finite commutative
chain ring,.

For the purposes of this extended abstract, we will discuss codes
over rings of the form Z/(p?), p prime. In the case of Z/(4), we recover
Carlet’s result as Theorem 6. For p odd, we show in Theorem 11 that
very few constant weight codes exist.
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1. Linear codes as modules

Throughout this extended abstract, the ground ring will be R =
Z/(p?), p prime. It will be convenient to view Z/(p?) as the set

(1) 7)) = {t e Z: —p?/2 < t < p?/2}.

Only for p* = 4 is equality possible in ¢ < p?/2. A linear code C of
length n is a submodule of R".

The Lee weight w(z) of any element z = (21,...,%,) € R is defined
to be

(2) w(z) = Zafnn

where a; = |t|, with ¢ € R, as in (1). Similarly, the Euclidean weight

uses a; = |t|?. We will denote both types of weight by w(z); the context

will make clear which is being discussed.

" We wish to determine the linear codes of constant weight, i.e., codes

for which there exists L > 0 with w(z) = L for all nonzero z € C. As

above, w(z) refers to a fixed choice of either Lee or Euclidean weight.
Observe that reduction mod p makes Z/(p) a module over R =

Z/(®*).

PROPOSITION 1. Any linear code C is isomorphic, as an R-module,
to a direct sum

(3) C=(z/m)" ® (Z/()".

A linear automorphism of C is any R-homomorphism f: C — C
which is invertible. Note that this definition does not involve the weight
function w, so that f need not be a code automorphism. However,
if C' has constant weight, then any linear automorphism f is a code

automorphism. Denote the group of all linear automorphisms of C' by
Aut(C).

THEOREM 2. For C as in (3), Aut(C) consists of all equivalence
classes of matrices over R of the form

M N
A=
(PP Q) ’
where M and Q are invertible. Two such matrices A, A' are equivalent
if M = M' mod p and N = N' mod p.
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2. Orbit structures

The linear automorphism group Aut(C) acts on C and on C! =
Hompg(C, R), the linear dual of C. Qur main interest is the action on
C". However, C' 2 C, so we will work directly with the action on C.

In the next theorem, we will denote elements of C' as pairs z =
(zay, Z(2)), Where z(;) € Z/(p")", as in (3). An asterisk * means the
entry can assume any value; px means that every component of the
entry is a multiple of p; u means that at least one component of the
entry is a unit. We write e for the tuple e = (1,0,...,0).

THEOREM 3. The orbits of Aut(C) on C are as in Table 1.

Orbit Representative Size

(*, u) (0,¢) PR (p? — 1)
(u, ) (e, 0) (p" ~ 1)p"
(0, pu) (0, pe) -1
(0,0) (0,0) 1

TABLE 1. Orbits of Aut(C) on C.

3. Constant weight codes

A linear code C' C R"™ can be viewed as an abstract R-module as
in (3), equipped with an embedding in R*. The embedding is given by
n coordinate functionals Ay, ..., A\, € C*. If C has a generator matrix
G, then the columns of G are the values of the ); evaluated on a set of
generators for C.

The main restriction on constant weight codes is that entire orbits
of linear functionals must occur as coordinate functionals of C.

THEOREM 4. Let C' C R™ be o linear code of constant weight, either
Lee or Buclidean weight. If X € C* occurs as a coordinate functional of
C, then (up to % signs) every other linear functional u in the Aut(C)-
orbit of A also occurs as a coordinate functional of C.

PROOF. Given u in the orbit of A, there exists some f € Aut(C)
carrying A to . On the other hand, f preserves weight (i.e., w(f(z)) =
w(z), for all z € C), since C has constant weight. By the extension
theorem [5], [6], f extends to a signed permutation automorphism of
R™. Thus 4y is another coordinate functional of C. O

A similar argument shows that +) and £y occur with the same
multiplicity.
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REMARK 5. We caution the reader that Theorem 4 is a theorem
only to the extent that the extension theorem holds for Lee or Euclidean
weight. The extension theorem is not known for the general case of
R = Z/(p*). It holds for various small values of p* where the conditions
of [5] and [6] can be verified by hand.

4. Classification of constant weight codes: p =2

A linear code of length n can always be viewed as a code of length
n + 1 by adding a zero entry, i.e., by enlarging the set of coordinate
functionals Ay, ..., An to include A,y; = 0. We call a linear code non-
degenerate if it has no zero coordinate functionals.

THEOREM 6 (Carlet [2]). Let C be a nondegenerate linear code of
constant Lee weight over R = Z/(4). Then C is equivalent to the
replication of a code D whose coordinate functionals consist of all the
nonzero linear functionals on D.

The linear codes C and D are isomorphic as R-modules, each of
cardinality 21 4% = 21722 The code D has length |D| —1 = 21%22 — 1
while the code C has length r(21%212 — 1), for some positive integer r.
Every nonzero element of D has Lee weight L = |D| = 214722 while
every nonzero element of C has Lee weight L.

Let us clarify some terminology. In the context of Lee or Euclidean
weight, two linear codes of length n over R are equivalent if one can
be obtained from the other by a signed permutation automorphism of
R™. This means the two codes have the same collections of coordinate
functionals, up to =+ signs. An r-fold replication of a code D of length
n is a new code of length rn having the same coordinate functionals as
D, but with each having multiplicity r.

PROOF. By Theorem 4, entire orbits of linear functionals (up to
+ signs) must occur in the collection of coordinate functionals of C.
Because C is nondegenerate, no zero functionals occur.

Referring to Table 1, let ¢, 3, v denote the number of times the
orbits (,u), (u,2%), (0,2u), modulo =+ signs (relevant for (*,u) only),
occur in the coordinate functionals of C.

For any z € R", let s1(z) = |{i : z; = £1}| and s3(z) = |{i : zi =
2}|. Then w(z) = s1(z) + 2s2(x). Note that w(2z) = 2s:(z).

Over R = Z/(4), any nonzero element of C has order 2 or 4. Sup-
pose z € C has order 4. A consequence of constant Lee weight is that
w(z) = w(2z). It then follows that s;(z) = 2s2(z). If y has order 2,
then s1(y) = 0, so that w(y) = 2s2(y). Because 2y = 0, there is no
additional restriction on w(y).
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Let z = (0,€) and y = (e, 0); & has order 4, while y has order 2. A
detailed examination of the orbits in Table 1 reveals that

s1(x) = 2hta-2g

52(33) — 2l1+l2—2(2lz—1 i 1)0! + (2!1 _ 1)212—1'6 + 212_17’
82(y) = 2l1+12—2(2l2 _ 1)0! + 2ll+l2_lﬁ.

From the constant weight conditions w(z) = w(2z) = w(y), it
follows that s;(x) = 2s5(z) = s2(y). We then conclude that 8 = ~ and
a = 28 = 2v. Thus C is a -fold replication of D. (Note that the orbit
(*,u) is effectively cut in half by the =+ sign restriction. Having o = 23
restores the orbit to full size.) O

EXAMPLE 7. For l; = l; = 1, the smallest example occurs when
a =2, 8=v=1. A generating matrix has the form

c_(0202220
111102 2)

The code has cardinality 8, length 7, and constant Lee weight 8.

Turn now to Euclidean weight, so that the weight function w has
az = 4, asin (2). An argument similar to that in the proof of Theorem 6
shows that o = 26 and v = (2"%2=2 4 1)3. This proves the next
theorem.

THEOREM 8. For a fized isomorphism type (3), there ezists a linear
code D of constant Euclidean weight having minimal length. The code
D 1s unique up to equivalence. The cardinality of D is |D| = 2"14%2 =
24%2: | and its length is 21+ — 1 4 24+2-2(92 _ 1), Eyery nonzero
element of D has Euclidean weight L = 2|D| = 2h+2%2+1,

Any nondegenerate linear code C of constant Euclidean weight and
having isomorphism type (3) is equivalent to an r-fold replication of D.

EXAMPLE 9. If l; = I = 1, then @ = v = 23. The smallest
example has § = 1, @ =y = 2. A generating matrix has the form

(02022200
“\11110222)

The code has cardinality 8, length 8, and constant Euclidean weight
16. ‘

5. Classification of constant weight codes: p odd

When the prime p is odd, there are several surprises. One technical
difference from the case of p = 2 is that £ = —z implies z = 0 when p
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is odd. In contrast, z = —x implies z = 0 or 2 in Z/(4). This affects
the counting of orbits modulo = signs.
Throughout this section R = Z/(p?) with p an odd prime.

PRroOPOSITION 10. A linear code has constant Lee weight over R if
and only if it has constant Euclidean weight. The ratio of the weights
is p?/3.

THEOREM 11. Suppose C is a nondegenerate linear code over R of
constant Lee or Euclidean weight. Then the isomorphism type (3) of
C satisfiesla =0 or 1y + 1, < 2.

The code C is equivalent to an r-fold replication of a constant weight
code D whose properties are listed in Table 2. The codes C and D are
isomorphic as R-modules and of the same cardinality |C| = |D| =
pht22  The length and constant Lee weight of C are r times those of
D.

When ly = 0, the coordinate functionals of D consist of all the
nonzero linear functionals on D, modulo + signs.

Iy I |D] Length Weight L

L0 p" (" -1)/2 pp’-1)/8
0 1 p* (@-2p+1)/2 pP(P*-1)/8
11 p* p@®-1)/2 p(p*-1)/8
02 pt PE-1/2 pE-1)/8

TABLE 2. Properties of constant weight code D.

ProOOF. We keep the notation from the proof of Theorem 6. If
l, = 0, only orbit (u,px) can occur. Then o = v = 0, and § is
arbitrary. When I, > 0, the constant weight condition implies that
psp(z) = (p— 1)s1(),
ps1(z) = sp(y)-
The second condition occurs only when /; > 0.

In terms of orbit contributions (£ signs are now relevant for all
three types of orbits), we see that

81 (.'E) — p11+2l2—2a,

sp(z) = (p11+212—2 _p11+zz—1)a + (p’1+’2‘1 —plz‘l)ﬁ 4y,
Sp(y) = (pl1+2l2—1 - pl1+12—1)a _|_pl1+lz-—113_
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From the condition ps;(z) = s,(y) it follows that o = 8. From
psp(z) = (p — 1)s1(x) we obtain
| " - 1a+y=0.
Since @,y > 0, there are only zero solutions once I; + Iy > 2.

The reader may verify the other claims and cases. a

EXAMPLE 12. Let l; = 2, [, = 0. Then a = v = 0, with 8 arbi-
trary. The shortest example has § = 1. Over R = Z/(9), a generating

matrix has the form
33 30
G= ( 03 -3 3 ) )

The code has cardinality 9, length 4, constant Lee weight 9, and con-
stant Euclidean weight 27.
Over R = Z/(25), a generating matrix has the form

G_555 5 5 10 10 10 100 10 0 O
“\0 510 -10 -5 0 5 10 -10 -5 5 10 /-

The code has cardinality 25, length 12, constant Lee weight 75, and
constant Euclidean weight 625.

EXAMPLE 13. Let [; =0, l; = 1. Then =0 and (p — 1)a = py.
The shortest example has ¢ = p, vy = p— 1. Over R = Z/(9), a
generating matrix has the form

G=(12412412433).

The code has cardinality 9, length 11, constant Lee weight 27, and
constant Euclidean weight 81.

Over R = Z/(25), a generating matrix G has one row, consisting of
5 copies of

12346789 11 12
concatenated with 4 copies of
5 10.

The code has cardinality 25, length 58, constant Lee weight 375, and
constant Euclidean weight 3125.

EXAMPLE 14. Let [; = 1,1, = 1. Then v = 0 and & = 8. The
shortest example has o = § = 1. Over R = Z/(9), a generating matrix
has the form

G_03—303—303—3333
~\11 122 244 403 -3)"
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The code has cardinality 27, length 12, constant Lee weight 27, and
constant Euclidean weight 81.

EXAMPLE 15. Let I; = 0, I; = 2. Then § = v = 0, with « arbi-
trary. The shortest example has @ = 1. Over R = Z/(9), a generating
matrix has the form

G_(124000333—3—3—3)
T\lx o x x 124124 1 2 4)°

where * indicates 9 entries, running over the elements of Z/(9). The
code has cardinality 81, length 36, constant Lee weight 81, and constant
Euclidean weight 243.

6. Possible generalizations

The major ideas in this extended abstract generalize to any finite
commutative chain ring (i.e., local, with principal ideals). However,
there are serious technical and notational difficulties to be overcome
in order to understand the orbit structure of Aut(C) on C and to
manipulate the equations arising from the constant weight condition.

ACKNOWLEDGMENTS. I thank the referee and C. Carlet for their
advice on revising this extended abstract.
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On the Covering Radius
of

Z.4-Codes and Their Lattices

Toru Aoki* Philippe Gaborit! Masaaki Haradat
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Abstract

In this talk, we investigate the covering radius of codes over Zg4, especially self-
dual codes. We show that covering radii of codes over Z4 are related to omes of
binary nonlinear codes and lattices obtained by the Gray map and Construction Ay,
respectively. We give several upper and lower bounds of covering radii, including
Z4-analogues of the sphere-covering bound, the Delsarte bound , the packing radius
bound and the redundancy bound. The covering radii of some self-orthogonal codes
and self-dual codes are obtained, in particular, we show that any Type IT code of length
24 extremal for the Euclidean weight has covering radius 8 with respect to Euclidean
distance. We also give lower and upper bounds for the covering radii of the 23 Niemeier
lattices with minimum norm 2.

1 Definitions and Properties

For codes over Z,, there are three different distances, namely Hamming, Lee and Euclidean
distances. Thus we can define covering radius for the three distances. However the Lee
distance and the Euclidean distance have remarkable applications to binary nonlinear codes
and unimodular lattices, respectively. Hence, we consider only covering radius with respect
to Lee and Euclidean distances. First we define the covering radius of a code C over Z4 by

72(0) = max{mind(u, )} and rx(C) = max{min ds(u, o),

respectively. It is easy to see that r.(C), rg(C) are the minimum values 7y, rz such that

Zz = Ucecs,-L (C) and ZZ = UcECSrE (C)
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respectively, where
S, (u) = {v € Z} |dp(v,u) <rp} and S, (u) = {v € Z% | de(v,u) < rg}
Here u is an element of Zj .

Lemma 1.1 For a code C over Zy, r1(C) < rg(C).

Proof. Follows from di(z,y) < dr(z,y) for any two vectors z and y. O

Proposition 1.2 Let C be a code over Zy and ¢(C) the Gray map image of C. Then
ro(C) = r(¢(C)).

Proof. From the definition of r7(C), there is a codeword ¢ of C with dz(u,c) < ri(C) for
any vector u € Z%. Since dy,(u,c) = d(¢(u), ¢(c)), we have r(¢(C)) < ro(C). ¢ is one-to-one
thus 7(¢(C)) = r(C). O

We now relate the covering radius with respect to Lee or Euclidean distance to the weight
in cosets. The translate

u+C={u+c|ceC}

is called a coset of C' where u is a vector of Z}. A vector of minimum weight in a coset
is called a coset leader. The following prop0s1t10n is immediate but useful. The proof is
omitted.

Proposition 1.3 The covering radius of C with respect to Lee (resp. Euclidean) distance
is the largest minimum Lee (resp. Euclidean) weight among all cosets.

2 Upper and Lower Bounds

We prove several upper and lower bounds on covering radii of codes over Z4, which are
enumerated without proof in the following.

2.1 Lower Bounds

The sphere-covering bound holds for binary nonlinear codes as well as linear codes. We have
a Zg-analogy of the sphere-covering bound.

Proposition 2.1 (Sphere-Covering Bounds) For any code C' of length n over Z,,
2211, r.(C) 2 22n rg(C)
<) and < >V
IC|— =\ i=0

where

4n
S Virt = (1+ 2z + z)™

=0
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We say that the first and second bounds are sphere-covering bounds with respect to Lee
and Euclidean distance, respectively.

We now prove a Packing Radius Bound-like theorem (in the sense that the bounds
obtained are close to half the minimum considered distance) which is true for linear and
non-linear Z4 codes.

Theorem 2.2 (Packing Radius Bounds) Let C be a code of length n over Zy4, let dy, and
dg denote respectively the minimum Lee and Euclidean distances of C then

r5(C) > 4|dg/8], and
""L(C) > I_dL/ZJ

For aQ. code C' over Zj4, let d; denote the minimum distance of the related binary linear
codes C% (i =1 and 2).

Theorem 2.3 Ifd; > 4 and dy > 2 then

rg(C) > 4min(|di/4],|d2/2]), and
r.(C) > 2min(|d;/4],|d2/2)).

2.2 Upper Bounds

We consider an upper bound for the covering radius of codes over Z,. Let C be a code over

Z4 and
s(CH) = [{i | Ai(C*) # 0,1 # 0}

where A;(C*) be the number of codewords of Lee weight i in C*. Let B be a nonlinear
binary code and let s'(B) be the distinct numbers of nonzero distances in the distance
distribution of the formally defined dual code of B, which is obtained from the distance
distribution of B by the binary MacWilliams transform (see [6] for the definition of the
distance distributions). Delsarte [6] showed that the covering radius r(B) of B is bounded
by r(B) < s'(B). This is known as the Delsarte bound.

Theorem 2.4 (Delsarte Bound) Let C be a code over Zy then r1,(C) < s(C1).

By the above two bounds, it is possible to determine the covering radius for some codes.
For example, consider the unique Type II code DY in [4] of length 4. By the sphere-covering
bound, r(C) > 2 for any self-dual code C of length 4. Since s(D§) = 2, we have r,,(D$) = 2.

Now we give a redundancy bound for codes over Z; expressed in terms of Lee and
Euclidian distances.

Theorem 2.5 (Redundancy Bound) Let C be a code over Zy of type 412%2 then

TL(C) < 2(” - kl - kz) + k’z, and
Te(C) < 4(n—ky — k) + ks.
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Remark. It is easy to see that these bounds are tight for codes with generator matrices:
Iy gk, 0 O
0 21 e, 0/

There arises a natural question for the covering radius with respect to Euclidean distance,
namely, is such a covering radius related to the covering radius of a unimodular lattice
obtained by Construction A4?

Theorem 2.6 Let C be a code of length n over Zy. Let A4(C) be the n-dimensional lattice
constructed from C by Construction Ay. Then

5(C) < 4(p(As(C)))? < r5(C) + 7 +/nrs(C),

where p(L) 1is the covering radius of a lattice L.

As an example we consider the four inequivalent Type II codes of length 8 of [4], namely
08) ’Cs, Qs and ’C'S

Proposition 2.7 The Euclidean covering radius of the four inequivalent Type II codes of
length 8 is 4.

As the above example, often we can determine the exact value of the covering raidus
using the bounds in this section.

3 Covering Radius of Self-Dual Codes over Z,

3.1 Numerical Results

In this subsection, we give the numerical results of covering radii of some self-orthogonal
codes and %elf-dual codes over Z4, some of these results are theoritical and some are obtained
with help of computer. The program we used, is based on the coset distribution of a code as
described in Th. 2.5 and allowed us to compute the covering radius of a code of length up
to 16, in a few hours. It also allowed us to find lower bounds for the covering radii of codes
with greater lengths. Conway and Sloane [4] gave the list of all self-dual codes of length up
to 9 and a number of examples of self-orthogonal codes.

We list in Table 1 the values of covering radii r.,(C) and r5(C) with respect to the Lee
and Euclidean distances for some self-orthogonal codes and self-dual codes given in [4] (see
[4] for the notations of codes), together with the values s(C*).

We now prove the following result:

Proposition 3.1 If C is a Type II code of length 8 then r1.(C) = re(C) = 4 and r.(C)
attends the sphere-covering bound. '

As described in [7], ¢(Os) is the Nordstrom-Robinson code. Combining Proposition 1.2
with Table 1, the precedent result gives a theoritical proof of the following:

Corollary 3.2 The covering radius of the Nordstrom-Robinson code is 4.
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Table 1. Covering Radii of Self-Orthogonal Codes over Z,

Code C type | 7.(C) rg(C) s(CY)
Dy 4' 4 6 4
Dg 42 5 8 10
Dg 43 6 10 8
Dig 44 7 12 16
Di2 45 10 16 12
DS a2t | 4 4 4
e 291 | 5 7 8
Er 43 5 8 10
A; (self-dual) | 2! 1 1 1
D (TypeII) | 4122 | 2 4 2
EF (self-dual) | 4321 | 5 7 5
Es (self-dual) | 4% 4 8 6
Og (TypeII) | 4% 4 4 4
Ks (Type II) | 4126 4 4 4
Qg (Type II) | 4322 4 4 6
s (Type IT) | 4224 4 4 6

We also prove the following general result on the bound of extremal Euclidean codes of
length 24:

Proposition 3.3 The Euclidean covering radius of any Euclidean eztremal Type II code of
length 24 is 8.

Proof. Let C be an extremal Euclidean Type II code of length 24. It is known that Ay(C)

is the Leech lattice whose covering radius is v/2 (cf. [5]). The minimum Euclidean distance
has to be 16, therefore combining Theorems 2.6 and 2.2, we obtain:

8 <rp(C) <8.

3.2 Niemeier Lattices

The 24-dimensional 23 even unimodular lattices with minimum norm 2 are called Niemeier
lattices. It was shown in [1] that all the Niemeier lattices can be constructed from some
Type II codes over Zy by Construction As. Let C(N) be the Type II code given in [1]
corresponding to a Niemeier lattice N. Obtaining lower bounds on covering radii with respect
to Euclidean distance of the 23 Type II codes, we have lower bounds on covering radii of
the Niemeier lattices. The results are listed in Table 2 where lower bounds on rg(C (N)) are
obtained by Proposition 2.1 or Theorem 2.3, or computer search and Proposition 3.3, and
lower bounds on p(N) follow therefrom by Theorem 2.6 . The upper bounds are obtained
by computing the covering radius of the root sublattice using the information in [5, Chap.
4]. The following lower bound is obtained in [3].

319



Theorem 3.4 (Borcherds) If the Niemeier lattice of root system N has kissing number 24h
then

2
p(N) 22+E-

Table 2: The Covering Radii of the Niemeier Lattices and Type II Codes

Lattice N p(N)? re(C(N)) di(C(N)) da(C(N)) h 2+2/h
Di, 3—6 > 12 8 8 22 2.091
A15Dq 2.5 —6.25 > 10 8 8 16 2.125
Doy 3—6 > 12 24 2 46  2.435
D} 3-6 > 12 4 4 14 2.143
A} 2.25— ~ 6.67 >9 4 4 9 2222
A2D? | 2.25— ~ 11.17 >9 8 8 8 225
Ag 2.25— ~ 6.86 >9 8 8 7 2143
A§ 2.5—8 > 10 4 4 4 2.5
A 224 >8 8 8 2 3
A 2.25 — 7.2 >9 8 8 5 2.4
Al? 2.25 — 16 >9 8 8 3 2.667
Aog 2.5 — 6.24 > 10 4 2 25  2.04
A%, 2.5 —5.54 > 10 8 2 13 2.154
Ay Eq 2.5 — 5.74 > 10 4 2 18 2111
Dy E? 2.5—5.5 > 10 4 2 18 2111
AnD:Eg | 25-5.81 > 10 4 2 12 2.167
E} 2.5 — 24 > 10 8 2 12 2.167
AZDq 2.5 —6.5 > 10 4 2 10 22
D} 3—6 > 12 12 2 10 22
AD, 2.5 -7 >10 8 2 6 2333
D§ 3-6 > 12 8 2 6 2.333
E} 3 > 12 4 4 30 2.666
D1 Es 3-5 > 12 4 2 30 2.666
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In an important paper, Hammons et. al. [3] showed how to construct
well known binary codes like the Kerdock, Preparata and Delsarte-Goethals
codes by applying the Gray map to extended cyclic codes over Z;. From
this comes the motivation to study cyclic and extended cyclic codes over the
integer residue rings Z,., where p is prime. In previous literature, these codes
are characterized by generating polynomials. As an alternative method, we
characterize them via a Galois ring transform (as done by Rajan and Siddihi,
[5]) and the concept of multiple defining sets. Using this characterization,
we can determine the exact permutation group of extended cyclic codes over
Zye of length p™ that are affine-invariant. In particular, it is possible to cal-
culate the permutation groups of the quaternary analogues of the Preparata,
Goethals, and Goethals-Delsarte codes without using their binary images
under the Gray map. In at least one case, the permutation group of the
quaternary Goethals-Delsarte code is larger than the group described in [3].

1 Galois Rings

Let p be prime, a and m be positive integers, and n = p™ — 1. Recall
that the Galois ring GR(p®, m) of characterisitic p* and dimension m is an
algebraic extension Zp.[(] of Zye, where ( is a primitive nth root of unity that
is also a root of a monic irreducible polynomial m(X) in Z,[X] of degree
m. (Familar examples include the finite field. Fpm, which is GR(p,m), and
Zpe, which is-GR(p%1).) ( is called a primitive element of GR(p®, m).
R = GR(p®,m) is a local ring with maximal ideal pR, and a complete set of
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coset representitives of R modulo pR is given by the set
| T ={0,1,¢,.., ("'},

called the Teichmuller set of representitives. Note the nonzero elements
of T, are the nth roots of unity. Let u: R — Fym be the reduction map
modulo p; extend  to a map from R[X] to Fym[X] in the usual way. Observe
p 2 Trn — Fym is a bijection. Each element r € GR(p®,m) has a unique p-adic
expansion

r=(+pl+-+ 0" o,
where (o, (1, - - - (a1 € Trn. Denote T = p(r).

2 Extended Cyclic Codes

Now suppose n = p™ — 1. Since T, consists of 0 and the nth roots of unity,
7,, may be used as an index set for the coordinates of a vector c of length
p™ = n + 1 over any alphabet:

c= (cz)xe’fm = (Co, C1,C¢y v v ,C(n-—-l).

If 0,7 = {0,1,... ,n}, let Ty S Tpm1 C -+ € Ty C [0,n] be (possibly empty)
subsets that are each unions of p-cyclotomic cosets modulo n (i.e., if s € T},
s # n, then ps (mod n) € Tj for 1 < j < a).

Definition 1. Define the extended cyclic code C over Z of length p™
with defining sets (T}, ... ,Ta) to be the set of all vectors (¢;)zez, € (Zpe yrtt
such that -
Z czz° =0 (mod p’) Vs €Ty,
zETm
for 1 < j < a, with the convention that 0° = 1.

Note that the code of length n obtained by deleting the 0 coordinate of
C will be a cyclic code.

Example 1. Let m > 3 be odd. The quaternary Goethals code G(m) is
defined in [3] as the set of vectors (Cz)zez, Of length 2™ over Z4 that are
orthogonal to the rows of thev parity check matrix

11 1 1 1
01 C wio o Cn—l
0 2 2¢3 ... 2¢3-1)
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where ¢ is a primitive element of GR(4, m). Alternatively, G(m) is the ex-
tended cyclic code over Zy of length 2™ with defining sets (T}, T}), with

= {0} Ucly(1) U cla(3),

T2 = {O} U Clg(l),
cla(s) = {s,2s5,...,2™ s (mod n)}.

Example 2. The quaternary Preparata code P(m) is defined in [3] as the
set of vectors of length 2™ over Z; that are orthogonal to the rows of the

parity check matrix
111 1 1
01 ¢ - (1

where ¢ is a primitive element of GR(4,m). Alternatively, P(m) is the
extended cyclic code over Z; of length 2™ with defining sets (T}, T3), where

T]_ = T2 ] {O} U Clz(].)

Example 3. Supoosem > 3isodd,m =2t+1,1<r <¢,6 = 2y The
quaternary Goethals-Delsarte code GD(m, §) is defined to be the extended
cyclic code over Z; of length 2™ having defining sets (73, T ), where

Tl = {0} U Clz(l) U LTJ Cl2(1 + 2j)’

i=1

(Note that then 7 = 1, this code is just G(m).) It is shown in [3] that the
binary image of GD(m, §) under the Gray map has the same parameters and
weight distribution as the original binary Goethals-Delsarte code GD(m +
1,6). In the same paper, it is shown that the Gray image of GD(m, 6)! is in
fact the original binary Delsarte-Goethals codes DG(m + 1, 6).

Using the concept of defining sets, it is straight forward to determine the
size and dual of extended cyclic codes. -
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3 Permutation Groups

Recall that a permutation on any set S is a bijection o : S — S. lfois
any permutation of the elements of Fym, there exists a unique permutation
polynomial f, € Fpm[X] such that

o(a) = fe(a) Yo € Fym.
Any permutation of Fpm induces a permutation on the Teichmuller set 7.

Define f$(X) € T;[X] to be the unique polynomial such that x( FE(x)) =
f,(X). When a=2, the corresponding permutation on T is given by

o(z) = (P (@) Va € T
(This follows from the fact that if r € GR(p?, m), then P" € Tpy.)

Definition 2. Let e|m. Then the affine group over Fpe, denoted
AGL(m/e,p°), is the set of all permutations & of Fm whose permutation
polynomials are of the form
(m/fe)-1 .
L(X)= Y. aX” +b,
i=0
where a;,b € F,m. The semi-affine group over Fe, denoted ATL(m/e, p%),
is the group
< AGL(m/e,p%),0 >
where 8 is the Frobenius automorphism defined by fo(X) = X?.

A permutation o of Fp= acts on a vector ¢ of length p™ by permuting
the coordinates. Per(C), the permutation group of the code C, is the group
of all permutations of the coordinates of C which preserve the code (i.e., if
o € Per(C) and ¢ € C, then o(c) € C). Let C be a code (over any alphabet)
of length p™. Then its coordinates may be indexed by the elements a of Fym
(or 7,,). We define C to be affine-invariant if AGL(1,p™) € Per(C) (i.e., it
is invariant under any permutation e — ac+b, where a,b € Fpm and a # 0).

As a generalization of Theorem 5 and Corollary 2 of [1] and the fact that
codes over Zye are invariant under the Frobenius map, we have

Theorem 1 Let C be a nontrivial aﬁiné-z’nvariant extended cyclic code over
Zye of length p™. Then there exists a divisor e of m such that Per(C) =
ATL(m/e,p®).
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4 Main Results

Extended cyclic codes over F, of length p™ which are affine-invariant were
classified by Kasami et. al. in [4], using a combinatorial property of their
defining set. Berger and Charpin [1] developed other combinatorial prop-
erties to completely determine their permutation groups. These results can
be generalized to give information about the permutation groups of affine-
invariant extended cyclic codes over the integer residue ring Z,.. Here we
consider only the case p* = 4.

Charpin [2] developed the following partial order on the set S = [0, n).
For s € §, let

m~—1

s:Zsipi, OSSiSp_—la
i=0

be its p-adic expansion. If s,¢t € S, define
§Xt &= 5 <t Vi,0<i<m-1.
If I C S satisfies the property that
sel,it=s = tel,
then I is called a lower ideal of S. Finally, if s,k € [1,n — 1], then
M (s, k) = [{(4,5) :4,] 2 s,i<j,i+j=k (modn)}.

For example, if p= 2,5 = 3, and m = 3, then M, (3,k) =1ifk =1,2,4,5,
Mp(3,3) = 2, and M,(3, %) = 0 for all other values of k.

Theorem 2 (Kasami, [4]) If C C (F,)"*! is an extended cyclic code over
Fp of length p™ with defining set T, then C is affine-invariant if and only if

T is a lower ideal of [0, n)].

(Note: p may be replaced with any power of p.) We have generalized this
result for codes over Zj.

327



Theorem 3 IfC is an extended cyclic code over Zy of length 2™ with defining
sets (Ty, Ty), then C is affine-invariant if and only if

1. Ty and Ty are lower ideals of [0,n]

2. s €Ty, Mnu(s,k) £ 0 (mod 2) = keTi.

In particular, this result shows that while binary extended BCH codes
are always affine-invariant, their Hensel lifts may not be. We may use this
theorem to give an alternate proof of the following result found in [3)].

Corollary 1 The guaternary Preparata, Goethals, and Goethals-Delsarte
codes are affine-invariant.

Proof: It is easy to check that the defining sets of these codes are lower ideals
of [0,2™ — 1]. For all of these codes, Ty = {0} U cla(1), and M (2%, k) =0
for all k # 0 or 2* for any integer A, and clearly 0,2* € T, C T1. O

The following is a generalization of a lemma that appears in Berger and
Charpin [1)].

Lemma 1 Suppose o is a permutation of Fym such that o(0) = 0, and let
F-(X) be its permutation polynomial, and suppose C is an extended cyclic
code over Zy2 of length p™ with defining sets (Th,Ts). Furthermore, suppose
that for any s € [1,n],

n—1 n—1

FDENT" = X +pY by X' (mod X" — X).

i=1 i=1
where a; s, b;,s € Tm. Then o € Per(C) if and only if
1. S€T2,Cbs,i7é0 = 1 €TY
2. SETz,bs,i7éo = 1€}

3. seT,a;; #0 = 1 €Tx.

Using this lemma, it is easy to construct codes whose permutation group
is larger than ATL(1,p™).
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Example 4. Let C be the extended cyclic code over Z, of length 16 with

parity check matrix
1 1 1
¢ - C14
¢

2¢% ... ¢804
where ( is a primitive element of GR(4,4). The defining sets of C are
Ty = {0,1,2,4,8, 5,10},

OO =

1
1
2

T, ={0,1,2,4,8}

It is easy to check that these sets satisfy the conditions of Theorem 3, so C is
affine-invariant. Now choose § € 7 so that N(3) # 1, where N is the norm
map from Fys to Fy2. Then the polynomial

fs(X) =X - px*

is a permutation polynomial of Fys (see [1]), and its corresponding permuta-
tion og is in AT'L(2, 2%), and not in AT'L(1,2%). Note

(X - XY = X +pX*+24/BX®)- (mod X — X)
(X - BX**®) = X5+ X%+ X2+ °X° (mod 2, X' — X)

It is easy to check from these equations that o satisfies the conditions of
Lemma 1. Thus AT'L(2,2%) C Per(C). ATL(4,2) is not in Per(C), since
this would then imply that the binary extended cyclic code of length 16 with
defining set T} is invariant under this group, a contradiction since it is not a
Reed-Muller code. Thus, Per(C) = AT'L(2,2?).

The Goethals-Delsarte code GD(m, 6) is invariant under the group gener-
ated by AT'L(1,2™) and the negation map (¢ + - c). Hammons et. al. claim
in (3] that this is the full automorphism group of GD(m, ) for odd m > 5.
Unfortunately, this is incorrect for certain values of m and §. We give the
following counterexample.

Example 5. Suppose C = ¢D(9,1). This is the extended cyclic code over
Z, of length 2° with defining sets (T3, T3), where

Ty = {0} U cly(1) U cla(3) U cla(5) U cl(9) U ely(17),
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T2 = {0} U Clz(l)
Choose § € Ty such that N (B) # 1, where N is the norm mapping from Fys
to Fys. Then the polynomial

fa(X) = X — Bx*

is a permutation polynomial for Fy (see [1]). If o is the corresponding
permutation, note that og is in AT'L(3,2%) and not in ATL(1, 29). Observe
that

FPEONT = (X -px*)"
= X +0X% +2¢/BXH? (mod X¥ ~ X)

and that for any positive integer j,

(PO = (X = pX7)H
= X1+2J' +8 X23+2J' S+ ,B2j X1+23+J'
+BP XY (mod 2, X% — X))

Since 1+ 27,23 + 29,1 + 2847, 2%(1 + 29)( mod 2° — 1) € T, it follows from
the previous lemma that o5 € Per(C), and in fact AI'L(3, 23) C Per(C). It
turns out that Per(C) = AGL(9, 2), which is larger than the group described
in (3].

In conclusion, we remark that the results in this paper have been gener-
alized for extended cyclic codes over Galois rings GR(4,m) for m > 1, and
similar results can be obtained for extended cyclic codes over Zpe, where
p> 2.
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Let us remind that a complete weight enumerator (c.w.e.) of a code
K C Q" in alphabet Q is a polynomial over Z of variables {z. : 7 € Q} of

the form
Wi(z,:r €)=Y [] 277®,
uek re)
where o,(u) is the number of coordinates of the word u € K which are equal
tor € Q. If K is a distance invariant code (in particular a linear code over
some abelian group (£2,+)) then its c.w.e. is a full enough characteristic of
correcting properties of /C.

Let g =2, 1> 1and m = 2X\+1 > 3. A generalized Kerdock code
K4(m + 1) over the field GF'(g) was constructed in [1, 2]. It is a nonlinear
distance invariant (n, n?, lgl(n - \/ﬁ))-code, n = ¢™1, If ¢ = 2 then it is
equivalent to the original binary Kerdock code [3]. The Hamming weight
enumerator of this code was calculated in [4].
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Theorem 1 The c.w.e. of Ky(m 1) is

g-1 g—1
Wi (mt1)(@o, - Tg-1) = Y77 + (g™~ q) [] z?/q
3=0 j=0

1 m m A+l o %—q)‘ = Pt
+§(I(q 1)@+ [ zf Do)
=0 Jj=0

1 -1 2yt ol n
+5a(g" —D)(¢" - [ 27 L
=0 j=0

Let R = GR(¢?,4) be a Galois ring of characteristic 4 and cardinality ¢°
with identity e. The generalized Kerdock code is a concatenation of some
linear over the ring R code Kr(m), called base code and a linear over GF(q)
[g,2, g — 1]-Reed-Solomon code.

The base code can be described in the following way. There exists a
monic reversible polynomial F'(z) € R[z| of degree m such that its period is
T = g™ —1. We call it distinguished polynomial. Let G(z) = F(z)(z —e) and
LY Y(F(z)) be the set of all segments v(0,7 — 1) = (v(0), ..., v(7 —1)) of the
length 7 of all linear recurrences v over R with the characteristic polynomial
G(z). Then Kg(m) is the set of all words of the length h = ¢™ = 7 + 1 of
the form v = v(0,7): v(0,7 — 1) € L ' (F(x)), v(r) = v(0) +... + v(r — 1).
It is a linear over R [h,m + 1, g—z—lh]-code.

Let I'(R) = {a € R: o? = o}. Then I'(R) is closed with respect to
multiplication and consists of ¢ elements. Any element 8 € R is the unique
sum B = By + 281, where 8; = 1(B) € I'(R), t = 0,1. If we define &
on T'(R) by the rule u ® v = Y(u + v), then (I'(R),®,-) is GF(g). Let
I'(R) = {wp = 0, w1, ..., Wg-1} and 7,: R — ['(R)? be a map acting on
elements 7 = 1y + 2r; € R by the rule

'Y*(T) = (7'1, T D wire, .y T1 D wq—ITO)-

Then ~,(R) is a [g,2,¢ — 1]-Reed-Solomon code over I'(R) and the code
ICq(m + 1) consists of all words

1) = (1 (0(0), - (7)), . v € Ka(m).
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Theorem 2 The c.w.e. of the base code Kr(m) is

Wicamy(zr : 7 € R) =Y 2 + q(g™ — 1) 3 ( II xf/q)

TER ro€l'(R) \r1eT(R)

1 - m=2_ A=
+5(@" = 1" + ¢ [T of (Z X I wz':(aoea)_a))

TER e€R wel(R) §eT(R)

1 . N }
+5(@" = 1)@ = ¢") [] o e (Z > I md&o@a)_a)) .

TER 2€Rwel'(R) §€T(R)

Earlier for the code Kz,(m) Lee w.e. [5] and c.w.e. [4] were calculated.

The investigation of weight parameters of linear recurrences with distin-
guished characteristic polynomials F(z) is interesting not only for coding
theory, but also for theory of pseudorandom sequences. In this connection
we have

Theorem 3 The c.w.e. of the code LOR’T__I(F(m)) is
W(z,:r€R)=zj+(g—1) ] /00

a€l’'(R)

+ 3 =(¢™ - (@™ '+ (-1)¢")

m=24 {__1\e A1 __ ~1)¢ A
x J[ a§"+o 6"°( >, I wc(u(l-)l-gﬁ))'

CER wel(R) 6eT(R)

In particular we have the following estimation. Let u € Ly~ (F(z)) be
a nondegenerate word, i.e., u # 0 mod 2. Then for any r € R

-1
S__?q—Tq[m/ A« \)'C’.

Note that in [6] the trigonometric sums method gives more rough estimation,
with the right part equal to ¢™/2.

Ur(u) - m—l
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The proofs of .the presented results are based on the following reduction
to quadrics over finite field of the characteristic 2. Let S = GR(¢*™,4) be an
extension of degree m of the ring R and Tr§(z) be the trace-function from S
onto R [4]. The polynomial F'(z) has aroot § € S of the order 7 and the code
Kr(m) can be described as the set of all words v = (v(0)...v(h — 1)) such,
that (for some £ € S, c € R) v(i) = Tr5(€6)) +c, i=0,h—2, wv(h—1)=c.
So the description of the code Kg(m) c.w.e. is reduced to the calculation
of the number Ng(c) of solutions of the equation T7§(éz) = c in the set
I'(S) and to the sorting of such numbers. This problem can be reduced to
the calculation of the number of zeros of some special quadric on the spase
I'(S) = GF(g™) over the field I'(R) = GF(g) in some hiperplane of this spase

(see [4]).
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Abstract

We generalise structure theorems of Calderbank and Sloane for linear and
cyclic codes over Zye to a Galois ring R = GR(p®,1). Our results are more
detailed and do not use Commutative Algebra.

We prove that d(C), the Hamming distance of a linear code C over R, is
d((C : p*-1)), where (C : p*>!) is the submodule quotient and ~ denotes
projection to the residue field K of R. These two codes also have the same set
of minimal codeword supports. We explicitly construct a generator matrix/
generator polynomial of (C : p®~1) from C. We show that in general 4(C) <
d(C) with equality for free codes (i.e. for free R-submodules of R*) and in
particular for Hensel lifts of cyclic codes over K. Most of the codes over rings
described in the literature fall into this class.

We characterise MDS codes over R.and prove several analogues of prop-
erties of MDS codes over finite fields. We compute the Hamming weight
enurnierator of free MDS codes over R.

*Research supported by the U.K. Engineering and Physical Sciences Research Council under
Grant LO7680.
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1 Introduction -

Codes over finite rings have received much attention recently after it was proved that
important families of binary non-linear codes are in fact images under the Gray map
of linear codes over Z4, see [HKC*+94] and the references cited there. For codes over
Z4, it is usually the Lee distance which is studied, due to the fact that it coincides
with the Hamming distance of the image of the code under the Gray map.

However, the Hamming distance of (linear) codes over finite rings is still important
for a number of reasons. For codes over Zy. with a > 2 the Lee distance is no longer
equal to the Hamming distance of the image of the code under the Gray map. (For
example the elements of Zs have Lee weights ranging from 0 to 4, whereas their
images under any Gray map are elements of (Z)?® which can have Hamming weight
at most 3.) Consequently it is not clear which metric is the most appropriate in
this case. Most of the well-known algebraic decoding algorithms for codes over finite
fields use the Hamming distance. Some of these algorithms can be generalised to
codes over finite rings. For example analogues of Berlekamp-Massey algorithm were
devised for Z, in [RS85], for Galois rings in [I[PE97] and more generally for any finite
chain ring (i.e. a finite ring whose ideals can be linearly ordered, or equivalently a
finite local ring with principal maximal ideal) in [Nor98, NS98]. There are many
results on the exact value or lower bounds for the Hamming distance of codes over
finite fields. Thus it is useful to have a simple mechanism to transfer all these results
to codes over finite rings. Finally, let us note that the Hamming distance is obviously
a lower bound for the Lee distance of the code.

2 Structure

We work with codes over Galois rings rather than over Zp.. Our preference is
motivated by the fact that Galois rings are the natural setting for Reed-Solomon
and generalised Reed-Muller codes. BCH codes can also be defined over Galois rings,
in analogy to BCH codes over Galois fields, see [MS77, Chaper 7].

We denote the Galois ring GR(p?%, 1) by R, its residue field by K = GF(p"), and
projection to K[X] and K™ by .

We give first more detailed versions of the structure theorems for linear and for
cyclic codes given in [CS95]. We generalise these results to Galois rings and give
new, elementary proofs. An important role is played by the tower C=(C:p% C
...C(C:p) C...C(C:p+1)of linear/cyclic codes over K associated to any
linear/cyclic code C over R, where (C : p') = {e € R" | p'e € C}. We construct
generator matrices/ generator polynomials for these codes, given a generator matrix/
generator polynomials of C. We also prove that for a cyclic code over R there is a
unique set of generators of a form similar to the one given in [C895] for R = Zy.
Our proofs avoid the non-trivial Commutative Algebra invoked in [CS95], using
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instead properties of the codes (C': pf) and the technique used in [CS95, Corollary
to ‘Theorem 6] for proving that Z,.[X]/(X™ — 1) is principal. The fact that for any
Galois ring R, R[X]/(X™ — 1) is principal follows by the same technique.

There is a different set of generators which also provides a useful description of
properties of a cyclic code; see [PQ96] for codes over Z, and [KL97] for the gen-
eralisation to Zy.. For a discussion of the connection between these two sets of
generators, see [KL97].

3 Hamming distance

The main result of the paper consists in showing that the (Hamming) distance of a
linear/cyclic code C' over R is equal to the distance of (C : p2-1). We show that in
general the distance of a linear code C over R is at most the distance of C. Hence we
cannot increase distance by working over finite rings rather than over finite fields.
For free codes (i.e. codes which are free R-submodules of R™) the distance of C is the
same as the distance of C. In particular, the (extended) Hensel lift of a cyclic code
has the same distance as the original code over the finite field. Hence the classical
BCH, Hartmann-Tzeng, Roos etc. bounds for cyclic codes over a finite field also
hold for their Hensel lifts over Galois rings. (The BCH bound is stated in [Sha79,
Theorem 4] with an incorrect proof.)

We examine a number of codes over Galois rings described in the literature and
apply our results to either determine or give lower bounds for their distance.

4 MDS codes

Finally, we examine MDS codes over a Galois ring. We characterise these codes: a
code C over R is MDS iff (C : p2~1) is an MDS code over K. For free codes, this
means that C is MDS iff C is MDS. We prove a number of properties of MDS codes
over R analogous to properties of MDS codes over finite fields. We determine the
weight enumerator of a free MDS code.
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Abstract

Affine invariant and cyclic codes over p-adic numbers and over
integers modulo p? are studied. It has been determined what extended
cyclic code has an extension which is affine invariant.

Keywords: cyclic codes, affine invariant codes, codes over rings.

1 Introduction

Let p be a prime number, ¢ = p™ and V be the additive subgroup of a
finite field Fy of p™ elements. Let F' be a ring. We consider the group
ring F[V] as the set of all formal linear combinations a = ¥~ a, X" withv € V
and a, € F. Addition and
scalar multiplication are component-wise and the multiplication is given
by the addition in V:

D, XY+ D b, X =3 (ay+b,) X",

(T aX?) - (T 5.X7) = X aubX*+ = 3 (\; aubw_u) xv,
u,v w u
The element X° is the unity of the ring F[V] and we write X° = 1. So F[V]

_ is a free module over F' of rank p™ and with basis {X" | v € V}. We can
consider submodules of F[V] as codes of length p™ based on the alphabet F.
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Note that the elements of F[V] can be considered as functions from V
to F. As a function, an element Y a,X" is the one that assigns a, to the
element v of V.

Now we consider V as an one-dimensional vector space over the field F; of
p™ elements. Affine group G = AGL(V) = V-GL(V) is a semidirect product
of the abelian group V and the multiplicative group T' = GL(V) = Fy of the
field F,. We make F[V] into a G-module by putting

0 (X?) = X", weV;
p(XY) = X" teT.

A code C C F[V] is said to be affine invariant if it is invariant under the group
G. In our case affine invariant codes closely related to cyclic codes. Cyclic
code C of length g—1 over F is an ideal in the quotient ring F[Y]/(Y?™! -1).
Let w be a primitive element of the field F,. Then the correspondence

q-2 q-2 .

Z C-,;Yi — Z C,;Xw‘ (1)

=0 i=0
gives a bijective map from F[Y]/(Y?™! —1) to the module 37,0 FX". Thus
description of cyclic codes of length g — 1 is equivalent to the description of
subcodes in Y,..o F X" that are invariant under the group T' = GL(V) 2 F,.
The extended cyclic code is obtained by embedding:

g—2 g-2 g-2 )

YoaYie (=Y a)X'+ Y aXV.

=0 i=0 i=0
We are going to study affine invariant codes in the cases F' = Z, (the ring of
p-adic integers) and F' = Z/p?Z (the ring of integers modulo p?). Consider
modules

W={> a,X"|a, € Z},
veV
W' ={>_a,X"|a, € Zp}.
v#£0
The module W is the ambient space for our affine invariant codes over Zy,
and we will understand as a cyclic code of length g — 1 over Z, a code in W’
invariant under the group T'. Similarly for codes over Z/ p?Z we set
Wa={> a,X"|a, € Z/p°Z},

veV
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W, = {Z aX” | a, € Z/p?Z}.
v#0

We have Wy = W/p'W, since Z,/p%Z, = Z/p%Z. Duality is defined with
respect to the standard inner product

(X ax®, 3 5,X°) = Y ab,

If C'is a cyclic code in W’ (resp. W) then the extended cyclic code C is
obtained by embedding:

DX (=Y a,) X" + P, &

v#0 v£0 v#£0
Set

K={k=(ko,...,km1) | 0< k; <p-1i=0,...,m -1},
K'=K\{(,...,0)}

For element k € K we will assume k = 75! ki, It is clear that the map
k — k gives bijective correspondence between the set {0,1,...,9 — 1} of .

integer numbers and the set X. So k corresponds to p-adic expansion of k.
We define an equivalence relation ~ on . We will say that

(ko, e ,km—l) ~ (TLQ_, ‘e ,nm_l), if ko = Mg, kl = Nigs, kg = MNatsy ... for
some integer s (that is, k and 7 coincide for some cyclic shift). In other words,
equivalence & ~ 7 for k, @ € K' means that numbers k = ol kipt and

n = ¥75! n;p* belong to one cyclotomic coset modulo g— 1l Let K=K/ ~,
K' = K\ {(0,...,0)}, so m-tuples in K are identified under cyclic shift:
(ko5 -+, kme1) = (kme1, Ko, - - -, km_s). 3

In the case ' = F, the ambient space W = Yz, P (E) is a direct sum of
minimal cyclic codes Py(k). If w is a primitive generator of the field F,, then
the cyclic code Py (k) specified by the generator polynomial (01— 1)/hp(z),
where hi(z) is the minimal polynomial of w*. Furthermore, any cyclic code
C can be described as C' = Y., Pi (k) for some M C K, and the generator
polynomial of C' is (297! — 1)/ [Tzc s hie(2).

We prove that W' = @P(k) is a direct sum of cyclic codes P(F) over Z,,
where the code P(k) over Z, is obtained from the cyclic code P; (k) over F,
as the limit of sequence of Hensel lifts. '
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Theorem 1 Let.C be a cyclic code over Z,. Then there ezist a subset
M C K' and rational nonnegative integers l(k), k € M, such that C =
Sten PEP(E). The estended cyclic code C is affine invariant if and only if
a condition p® P(E) C C follows pl(k)P( Jkicy, ki+1,kip1...) C C for any
i, where it is assumed P(...,ki—1,0,kit1,...) =pP(..., ki-1,0, ki1 + 1,...)
(indices are considered modulo m).

Cyclic codes over Z/p®Z are obtained from these universal codes (i.e.
codes over Z,) by reduction modulo p¢.

Example. Let us consider the case d = 1 (F = F,). The previous
theorem says that a cyclic code C' = Yz, PA(k) has an extension which is
affine invariant if and only if a condition (..., ki—1, ki, kiv1...) € M, k; < p—1
implies (...,k;—1, ki + 1,kiy1...) € M for all i. Recall that the defining set
J(C) of a cyclic code C with the generator polynomial h(z) is J(C) = {j |
1<j<q-1, h{w) = 0} (note we consider here elements j € J(C) in
the range 1 < j < g — 1 rather than 0 < j < ¢ —2). It is clear that
J(C) = {k | k € K'\ M}. Therefore, we have the well-known result [3, 7, 12):
the extended code C is affine invariant if and only if its defining set J(C)
has the property that j € J(C) implies s € J(C) for all s < j.

Now we consider a particular case of cyclic and extended cyclic codes over
Z/4Z (i. e. p® = 4). Following [10, 11] we can describe codes in terms of
the set 7 = {0,1,&,¢€2,...,6%" 2}, where £ is a primitive (2™ — 1)th root of
unity in the Galois ring GR(4™). For any element o € F, we will denote by
& the corresponding element in 7.

Theorem 2 Elements Y4200 X® of a cyclic code C in W, can be deter-
mined by the following system of equations:

Zaadk=0, -EEB]_,
a#0

2> a,d* =0, k€ B,,
a#0

where BiUBy, C K', BiN By, =0.

Note that these systems of equations are well-defined by condition k € B;,
since a0 a,6F = 0 if and only if 2 a0 a,&*P = 0.
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Theorem 3 Let C be a cyclzc code in W, and B,, B, be as in theorem 2.
Then the extended cyclic code C is affine invariant if and only if the following
conditions hold:

(Z) (1’00, oy ki1, 1, kz+1, ) € B implies (ko,...,ki_l,o,ki+1,...) € B;U
{(0,...,00}

(’LZ) (ko, z 1,1 kz+17 ) € Bz implies (ko,...,ki_l,o,ki.l_l,...) € B]_U
B, U{(0,.. )};

(’LZZ) (ko, ceoykic1, 0,1, ki, .. ) € B; implies (ko, ey kiog, 1,0, kito,.. ) €
Bl U Bz.

There is one interesting result that has no analogies in the general case.

Corollary 4 Let K™ = {(ko,...,km—1) € K | " k; < n}, 1 <n < m, and
let C™ be an eztended cyclic code defined by equations

Zaa& =0, ke K"

Then the code C™ is affine invariant.

Modulo 2 the codes C™ are Reed-Muller codes R(m ~ n, m) [3, 4]. They
are affine invariant. In terms of papers [5, 13] the previous corollary means
that the Hensel liftings of binary Reed-Muller codes to codes over

Z/AZ are still affine invariant (but this is not true with respect to codes
over Z/8Z). These codes are called quaternary Reed-Muller codes in [10]. It
can be proved that (C")1 = Cm+i-n,

The binary images of the codes C? and C™! under the

Gray map are the “Preparata” and Kerdock codes [10].

In [12] (see also [3] and [7]) the affine invariance property of extended
cyclic codes was studied for F' = F, in terms of defining sets, and from
theorem 1 one can get an analog of this result for any d (see [1]).

We can also give a classification of affine invariant codes of length p™,
as well as a classification of codes invariant under the full affine group
AGL,(Fp).

Some classes of extended cyclic codes over Z/4Z with affine invariant
property were considered in [6], and theorem 2.1 from [6] is a particular case
of our theorem 3. Cyclic codes over Z/4Z were also studied in [11, 13, 14].
In [7, 8, 9] it has been studied affine invariant codes and group algebra codes
over a finite field.
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The approach. of this paper was inspired by the work [2], where invariant
integral lattices were considered.
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Lattices, Codes, and Radon Transforms

M. Boguslavsky*
December 9, 1998

Abstract

‘We present a new approach based on integral geometry methods which
allows us to obtain some relations on generalized spectra of codes and
lattices and gives a unifying point of view on some known results on linear
codes. Actually, we construct analogues of the Radon transform in certain
spaces connected with codes and lattices and use then the Plancherel
formula.

1 Introduction

Generalized Hamming weights (gHw) of linear codes {also known as minuimum
support sizes or dimension/length profile) were first introduced by Helleseth,
Klgve and Mykkeltveit [HKM] in 1976. They describe the performance of a
linear code when used in certain wire-tap channels [Weil] and are related to
trellis complexities of codes [Forl]. There exists a noticeable amount of papers
concerning generalized weights, including the surveys [TV2], [Wei2].

The theory of lattice sphere packings in Eucledean spaces is in many in-
stances similar to the theory of linear block codes. Generalized weights admit
lattice analogues, which are called generalized Hermitian parameters (gHp) or
density/length profile. Although gHp were introduced [Ran] more than 20 years
earlier than gHw, they are much less studied. Forney [For2] showed that they
are related to trellis complexities in the same way as gHw do. We give the
definition and a brief overview of properties of gHp in section 2.

In section 3, we mention some definitions and facts from the theory of ho-
mogenous spaces in duality as developed in [Hell] and [Hel2]. This theory allows
to extend the classical notion of the Radon transform in R to a rather gen-
era] situation. The Plancherel formula (11) becomes then an ample source of
identities for functional sums.

*The author is with Kortweg-de Vries Institute for Mathematics, University of Amsterdam
and with Institute for Information Transmission Problems, Russian Academy of Sciences,
Moscow; e-mail: michaelb@uins.uva.nl
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The generalized spectra of a linear block code is the distribution of subcode
support sizes; the generalized spectra of a lattice in R™ is the distribution of
sublattice volumes. It is often convenient to store the information about the
spectra as the coefficients of a power series. We introduce the notion of the
r-th T-function of a lattice, which is a kind of generalization of the classical
©-function of a lattice. There is an obvious duality between the T-functions of
a lattice and its dual..

We use the Plancherel formula for a Radon transform in a suitable space to
obtain amazing identities on T-functions. One may prove a similar identity for
generalized weight distributions of a linear code. We also use the Plancherel
formula, to reprove two known results from coding theory, namely, an upper
bound on r-th generalized weight and Nogin inversion formula for projective
multiset multiplicities.

In all these cases the proofs can be easily reformulated -without any use of
Radon transforms. However, it seems to be useful to have a unifying point of
view at all these problems, so we use the theory of homogenous spaces in duality
rather as a convenient language than as a tool.

92 Generalized Hermitian parameters

2.1 Definitions

Let L be a full rank lattice in R?. The determinant of the Gram matrix of any
base of I does not depend on the choice of a base; it is called the determinant of
L and is denoted by det L. By vol(L) we denote the volume of the fundamental
domain of L; clearly, det L = vol2(L). We denote the length of a minimal vector
of L by r(L). The number r?(L) is also called the minimum norm of L. The
Hermitian parameter y(L) of L is defined by

A(L) := r?(L)/det*/™ L.

It does not depend on the scaling and is also called the coding gain of L. The
maximum of (L) over all lattices of rank n is denoted by 7, and is called the
(true) Hermitian constant.

Let vol,,(L) denote the minimum volume of an m-sublattice (m =1,...,%)
of L: .
volgn{L) := McLI,nx}l?M=m vol(M).

It is clear that vol;(L) = r(L) and vol,(L) = vol(L). One way to normalize
these volumes is to consider generalized Hermitian parameters Ym (L);

Am(L) = vol?,(L)/det™" L.
Rankin [Ran] proved that the (true) deneralized Hermitian constants

Yr,m = rkr&%ﬁn Ym (L)
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are well-defined.

2.2 Properties

A) Generalized Mordell inequality [Ran]. f 1 <m < r < n — 1 then we
have

Tnm < ’Yr.m(’}’n,r)m/r, (1)
and for any n-lattice Land 1 < m < r <n — 1 we have
Ym(L) < Yrum (e (L)™' (2)

Rankin proved (1); his argument also proves Eq. (2) although he did not state
it explicitly. _
Substituting m = 1 into Eq. (2) we get the inequality

ve(L) 2 7 (L) /A, (3)

which is equivalent to a bound from [For2]. A lattice L meets bound (3) iff it
has the densest r-dimensional lattice as a sublattice with the same minimum
norm as L. For example, 7,.(A,) = v(Ap)/vf forr =1,...,8 and any n.

B) Coulangeon [Cou] proved that we have the following upper bound on
(L)

(L) < g : (4)

C) Bounds via antipodal spherical codes [Bogl]. These are a family of
bounds valid only for lattices with several minimal vectors. We state here only
several simplest bounds of this type on v2(L). Let 7 be the kissing number of
a lattice L, i.e. the number of vectors in L with the minimum norm. It is clear
that 7 is at least two. For a “random” lattice 7 is equal to two, but most known
“nice” lattices have a large kissing number. We have

72(L) < n—1 T

2.
nLy? = w T whenether 7 > 2;
'YZ(L) n-—1 T
< .
MI)? = nte X o whenether 7 > 2n;
(L) < 2= ! whenether 7 > n(n + 1).

nkLP - o’

D) Duality [Ran]. Scale a lattice L so that det L = 1. Then to any r-
sublattice M of a rank-n lattice L one may associate an {n —r) sublattice M of
L+ such that 1

det M
This implies, in particular, that for any 1 < m < n we have

det M = (5)

Tn,m = Yn,n—m -
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2.3 T-functions

Let L C R™ be a lattice and let M C L be a sublattice of L. By (M)g we denote
the space of all real linear combinations of vectors from M. We shall say that
M C L is primitive iff (M)gNL =M. This is equivalent to the property that
M is not contained in any sublattice of L of the same dimension as M. Let LH‘]
denote the set of all primitive r-sublattices of L and let L!"} denote the set of
all shifts of primitive r-sublattices of L by vectors from L.

It is convenient to describe the spectrum of a lattice (the distribution of
lengths of lattice vectors) by a ©-function of the lattice

HOEDIUL (6)

veL

(sometimes it is convenient to substitute ¢ = e"%.)
The code analogue of the ©-function is the MacWilliams weigth enumerator

Wolz,y) = 3 o™y,
ceC

where C is a linear [n, k]-code and wt(c) denotes the Hamming weight of a code-
word c. It is convenient to enumerate the determinants of primitive subalttices
by the set of lattice T'-functions {Ti(q),r =1,...,n}

Ti(a) = Y g% .- M

eeLll
Eq. (5) implies that if detL =1 then

Ti(g) =T (a)- (8)

Similarly, one may define generalized MacWilliams weight enumerators W5 (z, y)
of a linear code C. Analogues of the MacWilliams identity for generalized spec-
tra were found in [Klo].

The first T-function Th(g) does not coincide with the ©-function of L; the
summation in (7) is over all primitive vectors of L, while in (6) the summation is
over all vectors of L. However, T} and ©p are connected by a kind of Moebius
transform and ©f may be expressed via a summation over all primitive 1-
sublattices of the third Jacobi f-function 05 (see [Bog2]).

3 Homogenous spaces in duality

In this section we give the definition and mention some properties of homogenous
spaces in duality. For more details, see [Hell] and [Hel2}.
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Let G be a locally compact group, X and = two (left) coset spaces X =
G/Hx and E = G/Hg, where Hyx and Hz are two closed subgroups of G. Let
us make the following assumptions: (i) The groups G, Hx, Hz, Hx N Hz are
unimodular (i.e. the left-invariant Haar measures are right-invariant); (ii) For
any hx € Hx the inclusion hxH= C HzHx implies hx € Hg; for any hz € Hz
the inclusion he Hx C HxHz implies h=z € Hx; (iii) The set Hx H= is closed.

Homogenous spaces X and E are called homogenous spaces in duality.

In this paper we shall deal only with discrete groups so (i) and (iii) will be
satisfied automatically.

We shall say that z € X and £ € E are incident and denote it by = > £ if
the cosets zHx and ¢Hz are not disjoint.

Weput:i-:{EGE:sz}CEand£={a:eX:Elxlx}CX. The
factor G/ K may be identified with the set {(z,€) € X x E:z>a {}. Given Haar
measures that satisfy (i) we may construct nice G-invariant measures m(z) on
each £ and p(€) on each Z (cf. [Hell, p. 143].)

The Radon transform f:Z > Cofafunction f: X = Cis defined by

fe) = [ £(e)dm(a; (©)
E .
the dual Radon transform ¢ : X — C of a function ¢: E — C is defined by
$a) = [ 90 due). (10)

Lemma 1 [Hell], Plancherel formula. Let f: X = Cand ¢ : Z — C be
continous compact support functions. Then f and £ are continous and

[ i@ aa = [ Fowerde (1)
Note. For a discrete group G the formal equalities
Y@= Y, @ =) f©ee) (12)
zeX (£,£)EX X E: zbaf £€E

show that Eq. (11) holds also for any functions f and ¢ such that all series in (12) converge
absolutely. The proof for the general case is similar but requires some additional facts about
measures and groups.

Actually, equality (11) holds in a much more general situation than that of
conditions (i)-(iii).

4 Sublattices as a homogenous space

4.1 A duality between (n — 1)-sublattices and vectors
Let A(n) denote the group of integer n X n matrices with the determinant +1:
A(n):={M € GLy(Z): |detM|= 1} = SLA(Z) % Zo.
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The subset G = R(n) C GLnp41(Z) defined by

n
¢=Rm:=( 4" % (13)
0 1
is a group with the respect to the usual matrix multiplication. The map = —
!
Mz=Mz+v, M= ( Ag 1{ ) € R(n),z € Z™ defines an action of R(n)

on Z™ Note that this is also a transitive action of R(n) on the set of all shifts
of bases of Z™.
Let Hx denote the stabilizer of the point 0:

Hyx = St(0) ~ A(n); (14)

let II be a shift of an (n — 1)-sublattice of Z™ and let Hz denote the stabilizer
of II. Assume now that II is the sublattice IIy C Z™ spanned by the first n — 1
base vectors; then

HE = St(no) = St(‘Ul,'U2,. . ,'Un—l) o~ R(n - 1) X Zg. (15)

Lemma 2 The spaces X = G/Hx and = = G/H= defined by Bg. (13), (14)
and (15) satisfy conditions (i), (i) and (iii).

We omit the proof.

The coset space X = G/Hx may be identified with Z™ and the coset space
Z = G/Hg may be identified with the set (Z")[”'ll of all shifts of primitive
(n — 1)-sublattices of Z™. It can be checked that with our choice of Il a point

z € X is incident with a shift of sublattice £ € Z iff z € €.
Note. A different choice of Ig in (15) will give a different incidence relation; for example,
when Hg stabilizes

I=1 = (v1,v2,...,Un—1) + AUn, A € Z,

we get the incidence relation z I>Ad ¢ < indga(z, &) = A\
The Plancherel formula (11) gives

S @)= Y F(O(6) (16)

z€l geLn-1

forany f: L — Cand ¢: LIn=11 s C such that both series converge absolutely.
As a corollary of the Plancherel formula one may prove the following theorem.

Theorem 1 For any lattice L of rank n
0(e)-TF ') = Y, »"*1oc(). (17)
EeL[n—l]

Thus the product of the @-function of a lattice with the (n—1)-th T-function
of the same lattice equals the weighted sum of ©-functions of all shifts of (n—1)-
sublattices. Using the duality (8) we get
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Corollary 1 For any lattice L of rank n

0L(g) Theolp) =p*t" Y pléle(g).
geLin-1

4.2 Sublattices of other ranks

There exists a duality between the sets X, and X} of sublattices of dimensions
a and b respectively, a + b = n — 1, which is similar to-the duality between
(n — 1)-sublattices and vectors. The previous subsection may be regarded as
the case a = 0. Let G be the same group as in Eq. (13). Now, instead of
subgroups Hx and Hz defined by Eq. (14) and (15) let us consider subgroups
H,cGand H, CG, a+b=mn—1 defined by

H, = St{vy,va,...,v,) (18)
Hy = St{Unps1,Vn—b42s--+,n), (19)
where v1,...,v, is the standard base of Z"™. The corresponding coset spaces

X, = G/H, and Xj = G/Hy may be identified with the sets of shifts of primitive
sublattices in Z™ of dimensions a and b. It is not hard to check that conditions
(i)-(iii) hold. For these spaces one may write down an analogue of Theorem 1
giving a relation between T¢ and T?.

5 Homogenous spaces and codes

In this section, we study different forms of the Radon transform in the n-
dimensional projective space over a finite field ¥,. We shall reprove a known
upper bound on r-th generalized Hamming weight [TV2], obtain a code ana-
logue of Eq. (17) and an interpretation of Nogin [Nog] results on projective
systems.

5.1 Radon transform in a linear space over a finite field

To obtain a code analogue of Eq. 17 we shall consider the following homogenous
spaces in duality. Let the subgroup G = R,(n) C GL(n + 1,F,) be defined by

G = Ry(n) = ( GL(SL,]F,,) i )

g
1
Define the action of G on Fy by the map z — Mz = M'z +v, M =
]

J\(/)[ 11) € Ry(n),z € Fy. This is also a transitive action of R,(n) on
the set of all shifts of bases of 7. .

As in section 4, take the stabilizers of a hyperplane and of a point in this
hyperplane. Similarly to theorem 1 one may obtain a formula connecting the
weight enumerator of a code and the r generalized weight enumerator.

(20)
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5.2 Radon transform in a projective space over a finite
field

We may also introduce a Radon transform in the projective space P™ over a
finite field F;. Take the standard action of PGL(m, ;) there, let Hz be the
stabilizer of a hyperplane H and let Hx be the stabilizer of apoint P € H. Then
the Radon transform is defined by f(¢) = > zee f(z) and the dual transform is

dz) =3 ¢oz $(€)- In this case, we may obta,m a nice inversion formula. Let s(¢)
be the operator acting on functions ¢ : £ — R defined by s(¢) = 3z ¢(¢)

and let p, denote the number of points in P?, p, = "H‘l . Then

f(z) = q,,}_l (DF)(@), (21)

where the operator D¢ is defined by D¢(€) := ¢(¢) — ’;:"Z s(¢). We shall use
this inversion formula in subsection 5.4.

5.3 An upper bound on generalized weghts

We shall need the following lemma, which is due to van der Geer and van der
Vlugt.

Lemma 3 ([GV]) For any r-subcode D of a code C holds
’LU(D 1'—1 Z ’UJ(C) (22)
ceD

Let GL(n,F,) act in the standart way on r-subcodes of an [n, k];-code C.
One may easily find the subgroups such that the the corresponding homogenous
spaces X and = are be identified with the set of all codewords and the set of all
r-subcodes respectively with the obvious incidence relation

ctD<&ceD.
Theorem 2 ([TV2]) The r-th generalized Hamming weight of a linear [n, k]q-
code C satisfies the inegquality

-1
4y () < Mg =1 .- —)1q

The proof proceeds by applying twice lemma 3 and once lemma 1.

5.4 An interpretation of Nogin weight/multiplicity dual-
ity 3

It is well known that many results on linear codes may be naturally described

via projective systems (also called projective multisets) introduced in [TV1]. To
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any linear [n,k,d]s-code C corresponds an n-point multiset X¢ in a (k — 1)-
dimensional projective space over F,. This set is called the projective system
corresponding to C; the points of the system correspond to the coordinates of
the code; codewords correspond to hyperplanes in P*~1. See [TV2] for details.

Nogin [Nog] considered the projective system X¢ embedded into the pro-
jectivisation PC of the code C. Then the coordinates of a code are some dis-
tingiushed n hyperplanes. If C' has repetitions then these hyperplanes have
multiplicities #(H) > 1. It is natural to assign multiplicities zero to all other
hyperplanes. Up to a factor, points of PC are identified with codewords. The
weight of a codeword ¢ may be then expressed via the set of v(H):

wt(c) = Z v(H). (23)
H3c

Nogin obtained the following inversion formula,

2 ccpo WH(E) — 420 c g, Wt(c) .

v(Ho) = g1

(24)

He used then this formula to give a new construction of linear codes.

It is quite easy to reprove Eq. (24) using the Radon transform. Define the
homogenous spaces in duality as in subsection 5.2. We get a pair of homogenous
spaces which correspond to hyperplanes and points of PC with the obvious
incidence e H & ¢ € H. Then Eq. (23) becomes

wt(c) = n - J(c) (25)

and (24) is then the inversion (21).
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Designs, Harmonic Functions, and Codes

Christine Bachoc

December 1, 1998

The theory of discrete harmonic functions and its connection with com-
binatorial designs was developed by Delsarte ([D]). Some orthogonal poly-
nomials among the family of Hahn polynomials play a special role and, in
particular, provide a nice caracterisation of t-designs.

On the other hand, Assmus-Mattson theorem ([MWS]) gives some con-
ditions under which the set of codewords of given weight support a #-design;
this theorem was slightly strengthened in [CDS] by using the setting of har-
monic functions.

We propose here another approach, inspired by the theory of lattices
and their associated “spherical theta series”: we define polynomials We, s
associated to a binary code C and a harmonic function f of degree k and
prove a MacWilliams type equality for Z¢ s = (zy)~*Wg ;. The case f = 1
is the usual weight enumerator W¢ of C. Hence, these polynomials turn out
to be invariant polynomials (possibly with a character) for the same group as
the one acting on the usual weight enumerator of the code. With the help of
these harmonic weight enumerators, we give a new proof of Assmus-Mattson
theorem and of its strenghthened version for extremal type II codes.

The most interesting application of these results is to the computation
of the intersection numbers of the code, which are defined to be, for a fixed
t-set T,

|
ny,i(T) := Card{u € C | wi(u) = w,|unT| = i}.

These numbers turn out to be a powerfull tool in classification problems, es-
pecially when one is only interested in the classification of the extremal ones
(i.e. the ones with the best minimum dJstance), as illustrated in [FGHP1],
[FGHP2].

Certain specific degree ¥ harmonic functlons Hj, T associated to T have
the nice property that Hy 7(u) only depends on ¢, |u|, and |unT)|, and can be
expressed in terms of Hahn polynomials. Hence the coefficients of Wo,, .
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are linear forms in the intersection numbers. By making use of the fact
that these polynomial fall into certain subspaces of invariant polynomials,
one can derive some linear equations on the n,;(T) only depending on
t. In [B], this method is illustrated by the case of even formally self-dual
codes. Here we must consider the polynomials (zy)~*(Wo,m, » £ Wou, Hyr)

which provide relative invariants for the group G, generated by % (14)

and (3 % ). From the information obtained on the intersection numbers, we
derive a classification of the extremal codes in length 12. The classification of
extremal even formally self-dual codes was afterwards extended in [FGHP1],
[FGHP2] to lengths 14, 20, 22.
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Abstract

We investigate bounds for 7-designs in infinite polynomial metric spaces. When the
necessary and sufficient conditions for improving the Delsarte bound are satisfied we
derive extremal polynomials of certain degree and obtain new bounds.

1 Introduction

Let M be a polynomial metric space (PMS). They are finite metric spaces represented
by P- and Q- polynomial association schemes as well as infinite metric spaces, which are
completely classified as the real sphere, a real, complex or quaternions projective space and
the Cayley projective plane. Hamming H(n,r), Johnson J(n,w) and Grassmann spaces are
the most important examples of finite polynomial metric spaces.

Every polynomial metric space M is characterized by its metric d(z,y), and normalized
measure paq(.).

A basic property of a polynomial metric space M is the existence of a decomposition of the
Hilbert space L3(M, ) of complex-valued quadratic-integrable functions with the usual inner
product, into a direct sum of mutually orthogonal subspaces V; of dimension ;. Besides, there
exist real polynomials {Q;(%)}§2,, (Qi(t) of degree i), called zonal spherical functions,

Any finite nonempty subset C of M is called a code.

Definition 1.1 A code C C M is called a T-design if ¥, v(z) = 0
forallv(z) eV ®--- 0V,

The designs in H(n,r) are known as orthogonal arrays. The designs in the Johnson space
are nothing but the classical £ — (v, k, \) designs.
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For each a and b € IN, one can associate the zonal spherical functions (ZSF) {Q;(t)}32, with
their adjacent systems of orthogonal polynomials {Q?’b(t)}g'go [6]. These polynomials are
orthogonal with respect to the measure v®(t) defined by dv®®(t) = c**(1~t)2(1+1)® du(t)
(c*® is a constant), i.e.

1
rﬁ[ﬂ?m%%mﬁm=%,

for 4,7 > 0, where Q*°(1) =1, Q3*(t) =1, reb =1

A polynomial metric space M is called antipodal if for every point z € M there exists a
point T € M such that for any point y € M we have o(d(z,y)) + o(d(Z,y)) = 0.

The universal lower bound D(M, 7), so called Delsarte bound, for the cardinality of a 7-design
can be presented in the following form [5]:

.
ICl > D(M, 1) = 22> 3~ 1D?, (1)
=0

where 6 € {0,1} and 7 = 2k + 6.

The bound (1) can be obtained by using the polynomial f(7)(t) = (¢ + 1)9((Q,16’9 (¢))? in the
following Theorem.

Theorem 1.2 Let C C M 7-design and let f(t) be a real nonzero polynomial such that

(B1) f(¢) 20, for -1<¢ <1,

(B2) the coefficients in the ZSF expansion f(t) = 3% £:Qi(t)
satisfy fo >0, fi <0 fori=74+1,...,k.

Then, |C| 2 f(1)/fo = Q).
Definition 1.3 4 polynomial f(t) € Bam,r is called By r-extremal if

Q(f) = max{Q(g) : g(t) € Bm,r, deg(g) < deg(f)}-

The coeflicient fg, which is very important for our investigations, can be expressed as follows
1
fo= [ 10w, @)

The conditions of the Theorem 1.2 are indep;endent from the multiplication of f(t) with a
positive constant. Thus we shall not distinguish proportional polynomials from B, ;.

In this paper we apply the necessary and sufficient conditions for the optimality of the Delsarte
bound and when it is not the best bound possible we give an analytical form of the B ,-
extremal polynomials.
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2 Preliminary results

In this paper we consider only infinite polynomial metric spaces. We define the following
linear functional, which was introduced and investigated in [7, 8].

k46
Go(M 1) = s + YA () ®)
’ =1

where a;, p{”) are defined in [Theorem2.1 [7]].

I3

We will call it briefly “test” functions Similar test functions for codes were introduced and
investigated by Boyvalenkov, Danev and Bumova in [1] (for M = S"~1) and by Boyvalenkov
and Danev [2] (in the general case).

Theorem 2.1 The bound D(M,T) can be improved by a polynomial f(t) € By, of degree
at least T +1, if and only if G+(M, Q;) < 0 for some j > T+ 1. Moreover, if Gr(M,Q;) <0
for some j > 7+ 1, then D(M,T) can be improved by a polynomial in Br of degree j.

This theorem gives us necessary and sufficient conditions for the optimality of the Delsarte
bound.

Lemma 2.2 a) Let M be PMS, then G-(M,Q,41) > 0

b) For M antipodal
>0, forT=2k
G‘r(MaQ'r+2){ =0 ;07‘7'=2k+1.

The “test” functions G,(M, Qry2), Gr(M, Qri3) are negative for 3 < n < N(r, M). The
exact values of N(r, M) are given in [8].

3 Extremal polynomials of degree 7+ 2 and 7+ 3

;From the previous section we have necessary and sufficient conditions for improving the
Delsarte bound by using linear programming. The investigations of the test functions for
designs show that the smallest possible degree of an improving polynomial in non-antipodal
PMS is 7 + 2 and for antipodal and is 7 4+ 3 (see Lemma 2.2).

Theorem 3.1 Let M be non-antipodal PMS. Then, any B -extremal polynomial of degree
T+ 2 (T =2k +8) has the form i

FOGT+2) = A+ gt +1) + (1 - D)QP 12, @) + QL1 ()2 (4)

Corollary 3.2 Let M be a non-antipodal PMS and let T be an integer. Then

B(M,T) 2 S(M,7) = Uf (57 + 2)).
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Corollary 3.3 Let M be a non-antipodal PMS and let T be an integer. Then
S(M,7) > DM, 1) if and only if G- (M, Qr42) < 0.

As we mentioned before, for antipodal PMS the corresponding B ,-extremal polynomial
is of degree 7 + 3. We can prove in a similar way analogous theorem for the form of this
polynomials.

Theorem 3.4 Let M be antipodal PMS. Then, any By r-eztremal polynomial of degree 7+3
(r =2k + 8) has the form

T +3) = L+t + 1) + 1 - )m Q0 + mQR’ @ + QY0 (5)

Corollary 3.5 Let M be an antipodal PMS and let T be an integer. Then

B(M,7) 2 S(M,7) = Q(f")(t T +3)),

We compared by computer the results in [3, 4] and the bounds from Corollary 3.2 and 3.5.
We also compared the polynomials, which we use for obtaining new bounds in [3] and [4], and
the polynomials described in (4) and (5). This investigation showed the coincidence between
the corresponding polynomials and coincidence between the corresponding bounds.

Acknowlidgements. The authors thank to Peter Boyvalenkov and Henk van Tilborg for
the helpful discussions and comments.
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On the maximum 7-wise independent systems
of Boolean functions*

Vladimir I. Levenshtein

Keldysh Institute for Applied Mathematics, RAS, Moscow
Email: leven@spp.keldysh.ru

The problem of finding the maximum number N(n,T) of Boolean func-
tions in n variables of which any T are independent is considered. The
independence of functions is treated as that of the output random variables
in uniformly distributed n input variables. One can see that N(n,T) equals
the maximum length N of a binary (not necessarily linear) code of the size
2™ which has the dual distance at least T'+ 1 (or, equivalently, forms an
orthogonal array of strength T'). Moreover, linear codes give rise to systems
of linear functions. This relation allows one to use design and coding theory
in order to estimate N(n,T) (see [1], [5]).

First, note that the minimum size of a binary orthogonal array of length
n + 1 and strength 2m + 1 is equal to the doubled minimum size of a or-
thogonal array of length n and strength 2m (2], [5]. This implies

N(n,2m)=N(n+1,2m+1) -1 (1)

and allows one to consider only the case of odd 7. The Rao bound for
orthogonal arrays implies the following necessary condition:

("7 s ®

which is satisfied for any (2m + 1)-wise independent system from N (in
particular, N = N(n,2m + 1)) Boolean functions in n variables. Similarly,
special cases of the author bound [4] for orthogonal arrays imply the neces-
sary condition:

2N < ontl " (NJ_ 1) if d;(N—-2)<2m+1<d_y(N-2), (3)
j=0

*The research was partially supported by the Russian Foundation for Basic Research
under grant 98-01-00146.
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where d;(h) is the smallest root of the Krawtchouk polynomial

A L

of degree i. Notice, that the extended Goley (24,12,8)-code generates a

7-wise independent system from 24 linear functions in 12 variables which

gives equality in the both inequalities (2) and (3), since d3(22) = 7 and
?=0 (";3) = 911, This system is maximum and N(12,7) = 24.

Recently the author found one more bound for orthogonal arrays based
on the existence of a relationship between linear programming bounds on the
size of orthogonal arrays and block designs [6]. Special cases of this bound
imply for any integer w, 1 < w < N/2, the following necessary condition for
the existence of a (2m + 1)-wise independent system from N (in particular,
N = N(n,2m + 1)) Boolean functions in n variables:

(N) 52*‘(1:) if di(N,w) <m+1<diay(N,w), )

w

where d;(h, w) is the smallest root of the polynomial (J;"w(m‘) - Jih b (x)) Vi
with . .
_ i () (h+;.l—1) .
7o) = 0 (1 i (%)
' =0 (1:)( jw) J
The linear (n,k)-codes withn =2 and k =ml+1,1<m < 2l(t-1)/2],
which are dual to the extended BCH codes with designed distance 2m + 1,
have the dual distance 2m + 2 (or more) and give rise to (2m + 1)-wise

independent systems from 2! linear Boolean functions in ml + 1 variables.
Therefore, we have

N(m+1,2m+1) > 2" if 1< m <20~/

Due to (2) this bound is attained for m = 1. However, for larger m some
better results are obtained from the known nonlinear codes. In particular,
the Kerdock code of length n = 2% and size n? has the dual distance 6 and
together with (2) implies that

N(41,5) = 2% for 1>2.

Analogously, from (2) and the existence of the nonlinear Delsarte-Goethals
code of length n = 2% and size n®/2 which has the dual distance 8 it follows
that

2% < N(61—1,7) < 2% +1,
where ¢ = (3/2)/% = 1,1447.
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The Varshamov bound on the existence of linear codes and (1) imply
that the condition
2m-1 N —2 .
< 2™
() e .

is sufficient for the existence of a (2m + 1)-wise independent system from N
linear Boolean functions in n variables. Hence N(n,2m + 1) is larger than
or equal to the maximum integer N satisfying (5). For m = 1 the sufficient
condition (5) coincides with necessary condition (2).

At the asymptotic process when n — oo and T'/n = § (0 < § < 1) this

bound gives
s [ n/z(d) i 0<46<1/2
N(”’T)~{ n if 1/2<6<1

where z(8) is the unique positive root of the equation z = H(dz) and H(p)
is the Shannon entropy. At the same process (2) shows that

n/f(d) i 0<é6<1/2
N(”’T)S{ /n() if 1/2565/1
where )
f(é):l—H(E—\/cS(l——&)).
Thus

N(n,Ty~n if 1/2<§<L1.

The better (for § < 0.272) asymptotic upper bound can be obtained from
(5). It is known that if

) w
im - = im — = <¢<n 0<n<
Jm - =¢, lm —=n, where0< (<7, 0<n<1/2
then
di(h,w
B9 g0 +o01),
where

6 (o)~ 1= =5l = )
7 1+24/z(1 —x)
is a decreasing continuous function which maps the interval [0, 7] onto [0, p(1~

7)] (see [3], [7]). The inverse function £, (z) can be expressed in the follow-
ing explicit form:

&0 =5 (1 - \/1—4(\/77(1 —n) —z(1—3) —m)2) :
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The bound (5) gives
N(n,T) $nfg(é) if 0<d8<L1/2,

where

o(5) = () - E& 5

max
1a-vI-25)<n<i
Thus, the main asymptotic results for error-correcting codes can be extended
to the problem of constructing T-wise independent systems of functions al-
though this problem is connected with the existence of (in general, nonlinear)
orthogonal arrays.
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Abstract: Creeper is an algorithm for the sequential decoding of convolutional codes which
combines the best properties of both the stack and the Fano algorithms [1]. We propose an
efficient decoding strategy based on a multiprocessor architecture we call the Bidirectional
Creeper Algorithm (BCA). The proposed technique comprises two identical autonomous
decoders (processors) each searching for the correct path in the code tree but one working in
the forward direction and the other working in the backward direction. A third high speed
processor is used to monitor the progress of both decoders, terminating the decoding process
when agreement is detected. It is shown that the proposed technique for decoding
convolutional codes can significantly reduce the computational variability of the conventional
or unidirectional Creeper algorithm (UCA). In addition, the decoding speed is much faster
than that of the UCA.

1 Introduction

A major problem in sequential decoding of convolutional codes is the large
computational variability which is highly undesirable. Noisy frames need a large number of
computations, and decoding times occasionally exceed some upper limit, causing information
to be erased [2]. Recently some work designed to alleviate this problem based on
multiprocessor techniques has been reported [3]-[5]. In 1997, Kallel and Li proposed a
bidirectional sequential decoding strategy [5] using the stack algorithm which was shown to
substantially reduce the computational variability but which has poor error performance. We
propose and analyse in this paper an alternative efficient decoding system which applies a
bidirectional decoding search and a multiprocessor architecture to the Creeper Algorithm [1].
It is shown that the proposed system significantly reduces the computational variability and
speeds up the decoding process while retaining as good an error performance as the
Unidirectional Creeper Algorithm (UCA). An introduction to the Creeper Algorithm is
presented in Section 2 and some background on backward coding/decoding is then presented
in Section 3. In section 4, our proposal for a Bidirectional Creeper Algorithm (BCA) is
outlined. Simulation results are given in Section 5, followed by a conclusion and discussion in
Section 6.

2 Creeper: an algorithm for sequential decoding.

Creeper [1] is an efficient algorithm for. the sequential decoding of convolutional
codes. It combines the best properties of the stack algorithm and the Fano algorithm. Memory
requirements are low; at most 2L nodes need to be stored where L is the code tree length. The
main conceptual idea is to move forward in the code tree as far as possible and when leaving
the current subtree, store the best metric of the nodes that have been examined (i.e., have had
their metrics computed) but not visited. This value is used to determine the later actions taken
by the decoder.

Let n.., denote the node currently visited by the decoder. Assuming a rate 1/2
encoder, the successors of n., are called n, and n, with cumulative metrics M and p1,
respectively. We will also assume that i, = p,. The algorithm uses two stacks, one is used to
store nodes and is called the node stack and the other, called the threshold stack (or Ur stack),
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is used to store metric values of selected nodes in the node stack. The algorithm starts at the
root node and begins by computing the metrics of the successor nodes and the decoder then
decides whether to move forward or not. If both n, and n, are considered *“good” (¢, 2 T and
4, = T), both nodes are stored in the node stack. If only », is good, the decoder moves to this
node but the node is not stacked. If both nodes are considered “bad”, the decoder moves to the
node on the top of the node stack - a “sideways-backwards” move in Creeper terminology.
For convenience we denote by NP the stack pointer that points to the top element of the node
stack, and by TP the stack pointer that points to the top element of the threshold stack. A
stacked node is denoted by n(NP-k) where k is the location of the node on the stack relative to
the top element. Along with each node, a value ur(TP-k) is stored in the threshold stack but
not every node has its metric entered in the threshold stack. A node on the node stack with an
entry in the fr stack is said to be a T-node and those nodes that do not have an entry on the ur
stack are called non-T-nodes. Along with each node in the node stack, a flag is stored
indicating whether it is a T-node or not. The flag corresponding to n(NP-k) is denoted by
F(NP-k). A threshold T = Q(u(TP - 1)) is used to determine which nodes are stored; those
with metrics above T are placed on the node stack (Q(x) = LxAlA is a quantisation function
that converts an integer x to the largest multiple of A not larger than x). When a node, n,, is
found with a metric exceeding ima, the maximum metric of all nodes previously visited, n,
and n, are stacked on the node stack as T-nodes, and the two ur-values corresponding to
theses nodes, are placed on the g1 stack. Otherwise, if [y < [mar, 7 and ny are stored as non 7-
nodes on the node stack.

The algorithm is initialised with fmax ¢ =00, fir(-1) = o2, n(0) & root,
feur < root, and TP = NP = 0. Next, the successor metrics Uy, iy and the threshold
T = Q(ur(TP — 1)) are computed and one of the rules in Table 1 is applied.

After the application of the rule, the new successor metrics and the new threshold are
computed, and the decoder applies one of the rules again, and so on. The algorithm terminates
when ng is at the end of the code tree. Figure 1-8 show examples of how the decoder
proceeds. '

Table 1: Rules used in Creeper

Rule | Condition decoder actions

one T=<yp Reur € Nx

and n(NP + 1) ¢~ n,

Hx > Hnax a(NP + 2) < n,
(TP +1) &y
UATP +2) ¢ -0
FINP+1)«1
FINP+2) <1
NP« NP+2

TP« TP +2

Mimax = e

two T<u, Reyr € By

and n(NP + 1) < n,

Hx S Umax n(NP +2) < n,
FINP+1)«0
FINP+2)«0

NP < NP+2

three | pu, <T<p, Feur €= Ny

HRTP) « max(iiy, pr(TT))
Umax <— MAX(ty, Minax)
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four He<T

and
F(NP-1)=1
and

Max(i., u(TP))

2 Q(ur(TP - 3))

Aeyr <— R(NP - 1)

(TP ~ 1) < max(L,, 4r(TP))
exchange(n(NP), n(NP - 1))
exchange(F(NP), F(NP - 1))
Hr{TP) ¢ -oo

five e < T Reur € n(NP - 1)
and Ur(TP -2) < max(iy, ur(TP),
FINP-1)=1 ur(TP-2))
and NP« NP-2
max(Uor(TP)) | TP TP -2
< QuKTP - 3))
Six I‘l'X < T Reur «— n(NP - 1)
and Ur(TP) < max (i, ur(TP))
F(NP-1)=0 NP« NP-2
n(NP.4) n(NP-2) n(NP) n,, n,
oG ————p
\\
\ N\ S
N
n(NP -5} n(NP-3) n(NP- n,

Figure 1: The situation could look like this before any of the rules one, two, three or
six is applied. The T-nodes are marked black, the others white.

n(NP-4) n(NP-2) n(NP)=n_,
n(NP-5) n(NP-3) n(NP-1)

Figure 2: Rule one: move forward and stack both successors as T-nodes and stack
their p- values on the - stack.

n(NP-4) n(NP-2) n(NP)=n_,
n(NP-5) n(NP-3) n(NP-1)
Figure 3: Rule two: move forward and stack both successors as non-T-nodes.

n(NP-4) n(NP-2) n(NP) L -

NS OONy,

n(NP-35) n(NP-3) n(NP-

Figure 4: Rule three: move forward.
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n{NP-2) n(NP)

NSO

n(NP-3) n(NP-1) n,,

Figure 5: Rule six: move sideways-backwards to the closest (non-7-)node and delete
the two top elements on the node stack.

n(NP-2) n(NP)
n(NP-3) n(NP-1)

Figure 6: The situation could look like this before either rule four or five is applied.

n(NP 2) n(NP
n(NP-3) n(NP)=n,,

Figure 7: Rule four: move sideways-backwards and exchange the two top elements (n
(NP) and n(NP-1)) on the node stack.

n(NP)
n(NP-1) n

cur

Figure 8: Rule five: move sideways-backwards and delete the top elements on the
node stack.

3. Backward coding/decoding.

Every path in the trellis or tree diagram of a convolutional code can be viewed in
reverse by starting from the final state (usually the all-zero node) and terminating at the initial
state (usually the all-zero node). So from the original forward code, one can generate a
backward tree (or trellis) which we call the backward code. A backward code sequence is
obtained by simply reversing the "original forward code sequence. In addition, the
corresponding information sequences are also reversals of each other. The generator matrix of
an (n, k, m) backward code can be expressed in terms of the subgenerators g(D) of its
corresponding forward code by [5]:

g® (DY) gD - gD
™ (p- D1y L. W p-
GD) =D" 82 ( ) & .(D ) . &, ( )

gk(")(D—l) gk(n-l)(D-l) gk(l)(D_l)J
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4. Bidirectional Creeper Algorithm

In this section, we present a novel version of the Creeper Algorithm. The basic idea is
to apply the Creeper technique to both the forward and backward trees simultaneously to
produce a Bidirectional Creeper Algorithm (BCA).

4.1 Description of the decoder

The system comprises two identical decoders (processors), a forward decoder (FD)
and a backward decoder (BD), aided by a high speed control processor, CP. Each decoder
uses three stacks, a node stack (NS), a threshold stack (TS) and a supplementary stack (SS).
The proposed decoder is shown in Figure 9.

..--"""_.
FD BD S
ss P-_‘ 55
NS TS ITS | NS 1
+ * B < I ¥
[cr |
ee——=l

Figure 9: Illustration of a bidirectional Creeper decoding system

® The forward decoder (FD) searches for the correct path in the code tree using the
UCA.

® The backward decoder (BD) searches for the correct path in the reverse code tree
using the UCA.

e The node stacks serve the same purpose as those used in the UCA..

¢ The threshold stacks are the same as those used in the UCA.

¢ The control processor (CP) controls and terminates the decoding process.

o The supplementary stacks store certain good visited nodes.

To explain the operation of the supplementary stacks, let us define d; as the farthest
depth reached by the forward decoder, dj, the farthest depth reached by the backward decoder,
dy..x the current depth of the forward decoder, djq, the current depth of the backward decoder,
and B as an adjustable factor. Storing rules applied to the supplementary stack are as follows:

1) In rule three of the conventional Creeper, store n; if the depth of node n,, is greater
than or equal to d;- B (or ds~ f).

2) In rule five and six of the conventional Creeper, the top two nodes in the node
stack are transferred to the supplementary stack if their depths are greater than or equal to

ds- B (or dy- P).
4.2 Decoding of a data block

The first decoding steps of both the FD and the BD are the same as the UCA. Both
FD and BD are working in parallel at full speed and do not communicate with each other. The
CP is always informed about the progress of both the FD and the BD. This information is
obtained by the CP from the nodes stored in the NSs and the SSs. The CP is continually
checking if both the FD and the BD merge at a common state in the code tree. The CP will
occasionally interrupt the operation of the decoders when doing node comparisons. Whenever
the CP finds that both decoders merge at a common state in the code tree, it will then send a
signal to stop both decoders and terminate the decoding process. Some good nodes may be re-
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visited but these must not be stored in the SSs, and this job is also managed by the CP. The
three stopping rules used in the system are as follows:

1) If djour + dp 2 L, compare the current node being examined by the forward decoder
with all the nodes with depth equal to L - dp, in the NS and the SS of the backward decoder.
If one or more merging paths is found, stop decoding. Among all merging paths, select the
one with the highest cumulative metric as the decoded path.

2) If dypewr + ds 2 L, compare the current node being examined by the backward
decoder with all the nodes with depth equal to L - dpcy in the NS and the SS of the forward
decoder. If one or more merging paths is found, stop decoding. Among all merging paths,
select the one with the highest cumulative metric as the decoded path.

3) If the computational limit Cy is exceeded, stop decoding and erase the block.

4.3 An example of decoding

To illustrate how the system operates, we give a decoding example. The code used in the
example is a small rate-1/2 code with constraint length K =4 and octal generators (15, 13).
The frame length is just 7 bits. Assume that the message sequence is 1010011 so that the
corresponding code word is 11 10 1001010001 1110 11 and the received sequence is 11 10
10 01 00 00 11 11 10 01 (where error bits are shown in bold).

Table 2: Illustration of how the system proceeds in the example.

Cycle | Fueur Buor | T T, FNS BNS ESS BSS
0 Root root - - - - - -
204 | 10.2
1 1 0 - - 1,0 0,1 - -
204 | 10.2
2 10 . 1 - - 10,11,1,0 1,0 - 11
204 | 10.2
3 101 11 - - 101, 100,10,11,1,0 | 1,0 - 110, 11
20.4 | 10.2
4 1010 110 - - 1010, 1011, 101,100, | 1,0 - 110, 11
204|102 | 10,11,1,0
5 10100 0 - - 10100, 10101, 1010, | 0,1 - 110, 11
20.4 | 20.4 | 101,100,10,11,1,0
6 101001 1 - - 10100, 10101, 1010, | 1,0 - 110, 11
20.4 | 20.4 | 1011, 101,
100,10,11, 1,0
7 1010010 i1 - - 1010010, 1010011, 1,0 - 110, 11
204 | 20.4 | 10100, 10101, 1010,
1011, 101, 100,
10,11,1,0
8 10100100 | 110 - - 10100100, 1010010, | 1,0 - 110,11
20.4 | 20.4 | 1010011, 10100,
10101, 1010, 1011,
101, 100,10,11,1,0

Fuur = current node of the forward decoder
B..r = current node of the backward decoder
Ty = threshold used by the forward decoder
Ty = threshold used by the backward decoder
FNS = forward node stack

BNS = backward node stack

FSS = forward supplementary stack

BSS = backward supplementary stack
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Table 2 shows the details of how the system proceeds. Both decoders start at
the root nodes and the control processor finds the merging point in the eighth step.
Figure 10 shows how both decoders proceed by illustrating the same example using a
trellis diagram representing of the code trees.

U Sy W Sy merging paint
3 N N o iy SNty SNtk L
nf, nb Pasition of the FD and BD / So / o / ~Sa / S~ / -~
uasiepn ~ ~ ~4 ~ -

011

@§——4@ Correctpath

101

001

110

010

100

1b, 5b

Figure 10: Example of a decoding trellis
5. Simulation results

In this section, we present the results of simulations performed to evaluate the
performance of our proposed architecture. Convolutional codes that are most suitable for
bidirectional decoding algorithms are systematic almost bidirectional optimum distance
profile (SABODP) codes such as those found by Kallel and Li [5]. Our simulations were
conducted using a rate-1/2 SABODP convolutional code with constraint length K = 24 and
octal generators (55231643, 61346255). The modulation considered was binary phase-shift
keying with a post demodulator error probability
pe = 0.045. The frame size was 80 bits. 10000 blocks were run for each simulation.

Figure 11 shows the distribution of the total number of computations per decoded

block of the UCA and BCA for four cases: no storage in the supplementary stacks; B=0;
B =5;and B =10. The maximum allowed number of computations Cj;, used in the BCA is
based on both metric computations and node comparisons. The time used to finish one node
comparison is assumed to be much faster than that for one metric computation but the exact
ratio depends on the speed of the control processor. It can be seen from Figure 11 that the
slope of the curve is steeper (better) when S is increased. When the supplementary stacks are
not used (no storage case), the slope of the curves of both the UCA and BCA are almost
parallel. The BCA clearly results in a significant reduction of the computational variability
over the UCA when the supplementary stacks are used.

There is a tradeoff between variability and storage requirements. Table 3 shows the
maximum number of nodes stored in the supplementary stacks (for both forward and
backward decoders) and the maximum number of operations (metric computations plus node
comparisons) used to decode the most noisy block when Ci, and the size of the
supplementary stacks were set high enough to allow every block to be decoded successfully.

Table 3: Comparison of the maximum number of nodes stored in supplementary stacks and
the maximum number of operations

L| Max. no. of nodes stored in SSs Max. no of Ops.
B=0 131 49,662
B=5 369 41,479
B=10 501 11,508
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6. Conclusion and discussion,

We have applied a three processor architecture to the Creeper Algorithm
implementing a bidirectional decoding search. It has been shown that the system gives a
significant improvement of computational variability over the unidirectional Creeper
algorithm while maintaining the latter’s good error performance. The adjustable parameter f3
was shown to be an important factor for controlling the number of nodes stored in the
supplementary stacks. The more nodes stored in the supplementary stacks the faster the
decoder. The BCA gives better error performance than the bidirectional stack decoder (BSD)
proposed by Kallel and Li [5]. Moreover, the BCA does not have to sort stacks to get the top
nodes before performing the next decoding cycle as the BSD does and the use of the high
speed control processor, CP, allows both decoders to work in parallel at their full speed
without having to communicate with each other yielding a further speed up of the decoding
process.

10 T
107} 4
=3
S
- 2] E
o 10 7 :
3 BCA
e i No stornge— — =
10 E B=0 = 3
p=s =
p=10
-4
10 L "
10° 10° 10*

N
Figure 11: The distribution of the total number of operations per decoded block
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Abstract — In this paper a formal theory, construction methods, and a random ensem-
ble approach for low-density parity-check convolutional codes (including turbo-codes) are
presented. The principles of iterative decoding of low-density parity-check (LDPC) con-
volutional codes are given, and an iterative algorithm for decoding of homogeneous LDPC
convolutional codes is described. Some simulation results and performance bounds are
also presented.

1. INTRODUCTION

Low-density parity-check (LDPC) block codes were introduced by Gallager in the early
60’s [1]. A generalization of Gallager’s codes to convolutional codes with a low-density
parity-check matrix was developed in [2,3,4]. These codes form a large family of convolu-
tional codes which includes, in particular, the well known turbo-codes [5].

In this paper we give a mathematical definition of these codes and describe a way
to construct such codes. We also present bounds on the free distance and on the error
probability for such codes. All these bounds have been derived through the analysis of
a special ensemble of LDPC convolutional codes, having Markov properties. The error
performance described by these bounds can be reached by applying maximum likelihood
decoding on these codes, which is much too complex to use for codes with practically
interesting sizes.

Iterative decoding methods, first introduced by Elias [6], have attracted great interest
during resent years when applied to turbo-codes [5]. Since the complexity of iterative de-
coding practically does not depend on the memory of the code, it can be used for decoding
very long codes, and very good performance can be achieved even for transmission close
to the Shannon limit. Using a graph approach [1,7], we describe and analyze an iterative
algorithm for decoding of homogeneous LDPC convolutional codes. For simplicity we
consider only the case when the code rate R = 1/2. In the end we present the results
of computer simulations of the algorithm for different LDPC convolutional codes, and
compare these results with the theoretical results for maximum likelihood decoding.

1This work was supported in part by Swedish Research Council for Engineering Sciences under Grant
95-164.
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2. DEFINITION OF LDPC CONVOLUTIONAL CODES

Let

UW=...,U_1,Ug, Up,...  Utyer ey Ug = Uthy + -+ » U(t+1)b—1> (1)
and

V=, Vo1, V0, Vi ey Vg ooy Vi = Vtey « « + » U(t+1)e—1> (2)

ug, vy € GF (2), t € Z, be the information and code sequences respectively of an, in the
general case time-varying, rate R = bjc, b < ¢, convolutional encoder. Then the code
sub-blocks v, can be defined recursively by the syndrom former matrix of the code 8],

VeH] (&) + Vi HY (8)+ -+ Vi-m, HZ (t)=0 3)

where m, is the syndrome former memory, HT (t),i=0,1,...,ms, are ¢ X (c — b) sub-
matrices of the infinite syndrom former

HT(-1) HT(0) L OHD (me—1)

H" = HT (0) HE(1) BT (m) ... |0 @

and where the superscript T indicates transposition. We assume that H{ (t) has full
rank and that HZ (t) # 0 for all & € Z. Furthermore, we assume, without loss of
generality, that the last ¢ — b rows of HT (t) are linearly independent. In principle, the
condition HZ (t) # 0 for all t € Z can be omitted and the syndrom former memory can
be undefined, but in this case some of the following definitions must be changed.

As usual, the code sequence should satisfy the equality vHT = 0. The rows of the
infinite syndrom former can be written as infinite binary vectors h;, i € Z.

Definition 1 The rate b/c convolutional code defined by its infinite syndrom former HT
of memory m, is called a low-density parity-check (LDPC) convolutional code if the row
vectors h; are sparse for all i € Z, that is if -

wg (h;) <€ (c— b) ms, i€ Z, (5)

where wg (-) denotes Hamming weight. If all rows of the syndrom former have constant
Hamming weight, and if the same applies for all columns, then the LDPC convolutional
code is called homogeneous. O
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A constructive procedure for designing homogeneous periodically time-varying LDPC
convolutional codes was described in [2]. In this paper we present another and more
general method of construction of a large family of LDPC convolutional codes (turbo-
codes), that includes homogeneous codes as a partial case.

3. CONVOLUTIONAL SCRAMBLERS

Definition 2 An infinite matrix S = (s;;), 4,7 € Z, s;; € {0,1}, that has one one in
each row, one one in each column, and satisfies the causality condition 5i;=0,71> 7 is
called a (single) convolutional scrambler. ]

If x denotes the infinite input sequence of a convolutional scrambler and y = xS is the
corresponding output sequence, then y is a permutation of the symbols in x. The identity
scrambler has ones only along the diagonal, i.e. s;; = 1, ¢ € Z. For the delay scrambler
with delay é we have 5,545 = 1,7 € Z. If 5;; = si17 447, 1, € Z, for some T, the scrambler
is periodical with period T. Most practical scramblers are periodical. Particularly the
standard n X n block interleaver can be represented as a periodical convolutional scrambler
with period n?.

Definition 3 An infinite matrix S = (s;;), 4,7 € Z, s;; € {0,1}, that has one one in
each column and at least one one in each row, and that satisfies the causality condition
is called a multiple convolutional scrambler. O

Multiple convolutional scramblers do not only permute the input symbols, but they also
make copies of them. As a natural generalization of the multiple convolutional scrambler,
consider the convolutional scrambler S = (Sk;), k,! € Z, whose entries Sk, are ¢ x d,
d > c, sub-matrices, satisfying the causality condition Sx; = 0, k¥ > I. Represented in
element form, S = (s;;), each column of this scrambler has exactly one one, and the
rows will have d/c ones on average. This scrambler maps input sequences consisting of
c-tuples onto output sequences consisting of d-tuples. The ratio d/c is called the rate of
the scrambler. If all rows have the same number of ones, then the scrambler is called
homogeneous.

Definition 4 Let © be the set of sub-matrices of S such that Sk; # 0. Then the delay 6
of the scrambler is defined as

v L ©)
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and the size T of the scrambler is defined as

¥ = max Z Z wg (Sk1) (7)
k<p i2p

where wg (Si;) denotes the Hamming weight (the number of ones) of the sub-matrix Si,.
[}

The size of the scrambler is equal to the maximal number of input symbols that the
scrambler must keep in its memory. If the diagonal sub-matrices, Sk, of the homogeneous
scrambler all have the same Hamming weight, then the scrambler always keeps the same
number of input symbols in its memory. Although non-periodical scramblers with infinite
delay can be considered in theory, all practical scramblers have finite delays.

Now we will define two operations - column interleaving of matrices and row-column
interleaving of matrices - that can be used to construct multiple convolutional scramblers
from more simple scramblers.

Definition 5 The column interleaving S = S M $® of two infinite matrices S =
(S,(cl,)) and @ = (S,(czl)), where S,?}, i=1,2, arecX d® sub-matrices, is an infinite matrix
S = (Sk,) such that

Sk = Sl(clz) ; Seaer = S87- (8)

Since the entries Sy 2 and Sk 2141 of the matrix 5 have sizes cx d and e¢xd® respectively,
we can merge these two entries into one entry of size ¢ X (d® +d®@). |

The column interleaving of two scramblers of rates d®/c and d@ [c gives a rate (d®+
d®) /c scrambler.

Definition 6 The row-column interleaving S = 5@ B S® of two infinite matrices SW =
(St7)and S = (S:), where 88, i=1,2,are ) x d® sub-matrices, is an infinite matrix
S = (S,;) such that

Sok2t = Sl(clt) ; Saka1+1 = O xa) ©)
Sak+1,20 = 0@ xam)s Sok+1,24+1 = S,(fl) .

Here 0(cxq) means the all zero ¢ x d matrix. If we merge these four sub-matrices, we can
regard S as a matrix whose sub-matrices are of size (c® + ) x (d® +d3). 0

The row-column interleaving of two scramblers of rates d\)/ ¢ and d®/c? gives a rate

(dD +d@) / (c® + ¢{?) scrambler. The generalization of Definitions 5 and 6 to more
than two matrices is straight forward.
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4. TURBO-CODES

The following definition of turbo-codes, that differs from conventional definitions, includes
a larger family of LDC codes than the usual definitions.

Definition 7 An LDPC convolutional code is called a turbo-code if its syndrom former
can be represented as a product of a multiple convolutional scrambler S and the syndrom
former matrix Hy of the basic (component) code, HT = SHT. O

If Rg = d/cis the rate of the scrambler, and R, = 1—(c — b) /d is the rate of the basic code,
then R = 1—Rg (1 — R,) = b/c is the rate of the turbo-code. It can be shown [8] that the
scrambler matrix S of the standard, rate 1/3, turbo-code [5] is a rate 4/3 scrambler, and
that it can be represented as the row-column interleaving of three scramblers S , S@ and
5@, where S® is the column interleaving of the identity scrambler and a convolutional
scrambler, that describes the interleaver used, and $® and S® are identity scramblers.
The basic code is a rate 2/4 convolutional code, whose syndrom former can be constructed
by row-column interleaving the syndrom formers of two rate 1 /2 convolutional codes.

To construct the syndrom former for rate 1 /2 homogeneous LDPC convolutional codes,
having v ones in each row and 2v ones in each column, v = 2,3,.. ., we proceed as follows.
First, using column interleaving, we construct two rate v/1 scramblers. Then, using row-
column interleaving of these scramblers, we create a rate 2v/2 scrambler S. As basic
code we can choose the trivial, memory zero, rate (2v — 1) /2v convolutional code with
parity-check matrix

H, = . (10)

The product SHY is the syndrom former of the resulting rate 1/2 homogeneous LDPC con-
volutional code. A homogeneous LDPC convolutional code with syndrom former memory
s, v ones in each row of the syndrom former and v/ (1 — R) ones in each column of the
syndrom former is denoted a homogeneous LDPC convolutional (ms, v, v/ (1 — R))-code.

5. ENSEMBLE PERFORMANCE

The most difficult problem with LDPC convolutional codes is to find theoretical bounds
for their performance. Qur approach to this problem consists in introducing a special
ensemble of convolutional scramblers, Markov scramblers, for which we can develop a
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strong mathematical theory, and get tight bounds for the performance of the code, such
as free distance, burst and bit error probabilities for maximum likelihood decoding. We
will explain how to define this ensemble in the case of a homogeneous LDPC convolutional
(ms, v, 2v)-code, v = 2,3, ...

Let S = (Sk,) be a rate 2v/2 convolutional scrambler of size X, such that

S2k,2vl Sok,2vl+1 coe 82k 20(141)-1

Sky = ) : (11)
Sok41,200  S2k+120041 .-+ S2k+1,20(1+1)-1

Let the matrix Sy x be such that sox v = 1, Sok,20k4p = 0,p=12,...,2v—1, Sokt120k4v =

1 and Spp120k4p =0, 2=0,1,...,v -1, v+ 1,...,2v — 1. The matrices S;, k < [, are
chosen randomly from the ensemble of scramblers according to the following rule. Consider
an arbitrary row

;= ... S0 Si1 - Sij v (12)

of the matrix S. Clearly the Hamming weight of this row is equal to v, and s;; = 0 if
j < vi. Let

> wa(sip),  Fzv(+]) (13)

p=vi

be the accumulated Hamming weight of s; at moment j, and let

J
Wi =V — Z wy (Sip) (14)
p=vi

be the residual Hamming weight of s; at moment j. According to the definition of a
scrambler, only one of the jth components s;;, ¢ € Z, of the vectors s; can be nonzero.
Since s;,; = 1, we have that the nonzero element for column j = vp, p € Z, is the one
on row i = p. For the rest of the columns we have to choose the nonzero jth component
among the jth components of the vectors s;, ¢ < 2|j/2v], that have nonzero residual
Hamming weight w;;. We suppose that for any j a special random mechanism first
chooses i, i < 2|j/2v], with probability

Wi, 4

P; (i) = , 15
3 () Ei<2|_j/2u_| Wi, j (15)

and then sets s;; = 1 and s, ; =0, p # 4. This defines an ensemble of Markov scramblers
with fate 2v/2. We use the trivial, rate (2v — 1) /2v, memory zero convolutional code
with parity-check matrix (10) as basic code.

In Figure 1 a bound for the free distance of LDPC convolutional codes, analogous to
the Costello bound for “usual” convolutional codes, is given. At least half of the codes
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in the ensemble derived above have free distance greater than the curves shown in Figure
1, for different v. The curve for ¥ = 2.5 corresponds to the semi-homogeneous LDPC
convolutional code, whose syndrom former has three ones in each even row, two ones
in each odd row, and five ones in each column. The upper bounds for the burst error
probabilities are given in Figure 3, where the union and expurgation bounds are presented.

250
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o 500 1000 1500 2000 2500 000 N A (U —_ ;) ms
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Figure 1: Lower bound on the free distance.

6. PRINCIPLES OF ITERATIVE DECODING

Consider the homogeneous LDPC convolutional (mg,v,v/ (1 — R))-code. Suppose that
the code sequence

V =Yg, Ulyeer3Uiyean, 'UiEGF(2), (16)
of this code is transmitted, by antipodal signaling, over an AWGN channel with one-sided
power spectral density Np. Let the received sequence be

F=7T0,T1ycceyTigeeny (17)

where 7; are independent Gaussian variables, such that E (r;) = /E; (1 —2v;) and
Var (r;) = No/2, where E, = E,R is the energy per symbol. Let wfo), i=0,1,...
be the apriori probability that v; = 0, i.e. 7r§°) = P(v; =0), and let f(r; | v;) be the
probability density function of r; conditioned on that the transmitted symbol is v;. The
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goal of the decoding is to calculate, for all symbols v;, the aposteriori probabilities (APP)

that v; = O given that the transmitted code sequence of the convolutional code C is v

and that the received sequence is r, 7f?** = P (v; = 0| v € C,1). The calculation of the
apost

sequence of aposteriori probabilities ;™" ; = 0,1,..., for each symbol v; in the code
sequence, is called APP or soft decoding. Application of the trivial decision rule

. 0, if 7Pt > 1/2
{ 1, otherwise, (18)

yields maximum aposteriori probability (MAP) or hard decoding. Unfortunately, the
complexity of such decoding, if all aposteriori probabilities should be calculated correctly,
exceeds the computational possibilities of a realistic decoder. Therefore, for each i, the
decoder calculates, not the statistic 73’ Post ‘hut an approximation of it, ;" st The calcu-

. ~ s . t
lation of #2P°* is iterative, such that each new value defines ;7°*" more accurately.

Definition 8 Let 7ri(k) = 777°%, calculated in the kth iteration step satisfy Bayes formula

(k-1)
Q) a* D ({Rig}, - {Riw-1}) P{Rip} | v = 0)
7l'i Ri’ g Ri,v = : 19
({ 1} { ’ }) P({Ri,u}) ( )
where {Ri1},...{Riy} are different sub-sets of received symbols. The probability wgk) is
called correct, if (_; {Rix} = 0. =

We will show that it is possible to organize the iterative procedure such that, at least in the
first iteration steps, the calculated statistics are correct, and the condition of correctness
is violated only in later iteration steps.

Below, we consider decoding of homogeneous LDPC convolutional (m,, v, v/ (1 — R))-

codes. Then each symbol enters into v parity-check equations and each equation contain
v/ (1 — R) symbols.

Example 1 Let us consider the decoding of a rate R = 1/3 homogeneous LDPC convo-
lutional code with v = 2. Each symbol is included in two parity-check equations, and each
equation contains three symbols. We can represent this code as a set of triangles, Figure
2, where each triangle corresponds to a parity-check equation, and each apex corresponds
to a symbol v;. We enumerate the apexes ix, k =0,1,.. ., and the triangles 5, [ =0,1,...,
such that each apex is part of two triangles, one with even number and one with odd. Let
the apriori probabilities 7r§2) and the received sequence r;, be known. In the first iteration

- i . 3 a T eI, w 1 1
step we calculate two aposteriori probabilities, w,(‘o,)jo and ~ii'§o?j1, for symbol v;,. The one
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Figure 2: A graph describing the (mg, 2, 3)-code in Example 1.

corresponding to a parity-check equation with even number is calculated by using the
symbols in the parity-check equation with odd number, i.e.

W'gs,)e\’en - W'L(c})Jo =P (Uio =0 l Tigs Tigs ria) 3 (20)

and vice versa,

1 1
z(o,)odd = 7r1(0)_71 =P (v'io =0 I Tio’rin'ri‘x) . . (21)

Obviously, we use the apriori probabilities 70 ( (1)

‘Lo ?
(0) 7r(0) and 7r ) in the calculation of ro Analogous calculations are carried out
ig odd

) and 7r ) in the calculation of iy even?

and 7r10 ,
for all symbols v;,, k = 0,1,.... Then, as result of the first iteration we get, for each
symbol v;,, one even and one odd aposteriori probability, each corresponding to a parity-
check equation that includes v;,. These statistics will be used as apriori probabilities in
the second iteration step. Continuing the itera.tion process, we get, after the nth step,
,fk )even and 7r Odd for each symbol v;,. These statistics will,
together with 71'( ). be used in the (n + l)th iteration step. For the description of the

decoding process we need the following additional definitions, here given for symbol v;,

the aposteriori probabilities m

but the generalization to v;,, kK = 1,2,... is trivial.

r,e! (rig |0 =0) _ exp (4 =S (22)
° flr v =1) o/
(0) ' @
(0) def Lig Fio =1 _ L0 (0) def _Tig
Following Gallager [1], we get
1+ AQAD
Liyoaa L@F ‘ G (24)
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and Lz%)even is calculated analogously. In the following iteration steps we have

() def Liphaa =1 1,
n 0,0 n
ip,0dd = L(n) + 1 = tavnh ('é ln Lio,odd) ) n= 1, 2, ' e (25)
19,0dd
where (n) (n=1) A(n-1)
n— n—
Lg'n) " déf 7T'i.o,odd — L(O) ) 1+ Ail,evenAi4,even (2 6)
10,0 io 410 i —-1) °
’ 1- Wgtldd ° 1- A'gl,e:e)nAEZevle)n

In the same way, the likelihood ratio L{™__ depends on the statistics Ag’—l) and Ag"l)

ip,even

calculated in the previous iteration step, and on the original statistic A§°’ . It follows from
Figure 2 that the likelihood ratio L{ ., depends on AL, A and A{?, and that the
likelihood ratio Lg:,)odd depends on A§§’), Agf), Ag), Agg), A,(?z), Ag?g and Aﬁ?. We can also
see in Figure 2 that the condition for correct calculation of the odd aposteriori probability
is violated in the fourth iteration step. In fact, both the statistics Agf) and Ag’) depend,

in particular, on AQ ADQ ang AD

iser DNy 4a- Therefore, when we calculate ng}odd, the result

depends on these statistics twice, which unwarrantably intensifies their significance. This
is a corollary of the fact that the graph describing this LDPC convolutional code has a
loop of length 4. As a matter of fact, the introduction of the relatively compﬁcated rule of
separate calculation of even and odd aposteriori probabilities, is motivated by the desire
to have correct aposteriori probabilities at least in the first iteration steps. For the same
reason, we use the original value of the statistic Agg) when we calculate the likelihood ratio
according to formula (26). In practice, when realizing the algorithm, it is convenient to
operate with the statistics A®™ and Agﬁ,dd, defined by (25). Then (26) is equivalent to

ig,even

_ i1,eveni*ig,even
ig,0dd

14+ AQAPD A

11,even’ *ig,even

(27)

and Agg‘jmn is calculated analogously. In the last, Ith, iteration step the calculation of
A,EOI) is done by using both parity-check equations that includes v;,. Namely,

0 I-1) 4 (I-1 ' n I-1) A {I-1
(03] _ Ago) + Agl,evgnAg,;,evz.n o _ Aio,odd + Atgz,eve):nAgg,evgn (28)
ig,0dd T (0) A (I-1 I-1) ? Jio T ) I-1 I-1) *
1 + Aio)Ag1,evgnA§4,evzn 1 + Aio,oddAgz,evgnAga,evgn
The rule -
. 0, fA;’>0
. == ! 0
Yio { 1, otherwise, (29)
is used to make a decision about v;,. O
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We have described the iterative decoding process in the simple case, when each symbol en-
ters into two parity-check equations and each equation contains three symbols. Although
the graph describing the code can get complicated, the generalization to other cases is
straight forward.

We will now consider the decoding algorithm of (semi-) homogeneous LDPC convolu-
tional (ms, v, 2v)-codes, which are the codes that we used in all simulations and analysis.
Let Z (j) be the set of all 4, such that v; enters into the jth parity-check equation, and let
J (@) be the set of parity-check equations j, that include symbol v;. Z.J (i) is the set of
¢/, such that vy participates in one of the parity-check equations that include v;. In the
nth iteration step, n = 1,2,...,I — 1, we calculate, for each i, v statistics Ag;-) . In the
calculation of AE,';-) we use the statistics A and Af," 7 Y such that ! € 7.7 (3), ¢ # i and
j' € J (i), 7’ # 7. Only in the last, I'th, iteration step we calculate the statistic AgI), using
Af,j ;,1) such that ¢’ € ZJ (), ¢’ # 4 and j' € J (7), and make a decision according to (29).
Clearly, for any finite syndrom former of memory m;, the condition of correctness of the
calculated aposteriori probabilities will be violated in some iteration step. The later it
will be violated, the better, and the scrambler design problem is to construct a scrambler
having as long loops as possible for a given size Z.

Definition 9 An iterative aposteriori probability (APP) decoding procedure for LDPC
convolutional codes is called asymptotically correct if, for any fixed number of iterations 7,
there exists an LDPC convolutional code with sufficiently large syndrom former memory
mg, such that the calculated APP values are correct. O

The procedure of decoding rate 1/2 LDPC convolutional codes, described above, is asymp-
totically correct.

7. DECODING ALGORITHM

A formal description of the algorithm for rate R = 1/2 homogeneous LDPC convolutional
codes is given below. For each i =0,1,...

o _LR-1  o_ m L _ exp [ 2VLeTs
C TR+ T h Mo
e For each processor k =1,2,...,7

— iy =1i—2my (k—1)
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— Foreach ¢=1,2,...,v and for each j, € J (i), p=1,2,...,v

(+", " (k')
Aiy Jp +Hi’eI(jq),i';éik Ai'.]’g

(k, ) _ g 7 p ?é q
Aiyig = 1A 7 Moer().ons, A(’kal (30)
A(kll.,qll) —
k'Jp p q
where
k’: k_]. ifi,>?:k (k” ”)_ (k_l,l/) ifq=1
k otherwise '7)=\ (k,g—1) otherwise
and ( a)
k' (p+1)mod v)  , (0) (k) _ A ()
ik,jp - A'i’k ? Aikyjp - Aik!jP'

e Make a decision according to

i =

. _Jo AP >0
1 otherwise,

where
{I,g-1) (k") - .
AW def Ay _ Aiz,gu + [lvezi), i Mg, K = I-1 ifd >4
i T Tinde T Ae-1) A& I otherwise
+ A5 ez Do,

8. SIMULATION RESULTS

We performed computer simulations of the given algorithm for (semi-) homogeneous
LDPC convolutional codes with v = 2,2.5, 3,4 some different syndrom former memory
ms, and I = 60. The results are shown in Figure 3. In this figure we have also plotted
some error bounds, namely the union and expurgation bounds, for maximum likelihood
decoding of the random ensemble of codes that we get if we use the ensemble of Markov
scramblers described in Section 5. The expurgation bound is the union bound over the
sub-ensemble, that contains the codes with a free distance larger than the bound shown
in Figure 1.

9. CONCLUSION

In this paper, we presented a formal theory of LDPC convolutional codes, described a
method of their construction and gave preliminary results of a probabilistic analysis of
such codes. We discussed iterative decoding of LDPC convolutional codes, and simulated
the presented iterative decoding algorithm.
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Figure 3: Simulation results and bounds for (semi-) homogeneous LDPC convolutional
codes. The dashed lines are simulated bit error probabilities, the solid lines are simulated
burst error probabilities, and the bounds described in Section 5 are the dotted (union
bound) and dash-dotted (expurgation bound) lines. For all the plots the syndrom former
memory m, are, starting from the top and continuing for as many solid lines as there is

in the plot; 129, 257, 513, 1025, 2049 and 4097. The bounds are plotted only for the case
when m, = 129.
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Abstract

Generalized low density codes are built by applying a Tanner-like construction to binary recursive
systematic convolutional codes. The Gallager-Tanner construction is restricted to 2 levels only, We
describe the structure of a GLD code and show how to compute its ensemble performance. We also
prove that RSC based GLD codes are asymptotically good. A parity-check interpretation of turbo
codes is given for both parallel and serial concatenations.

1 Introduction

An efficient channel coding scheme has to imitate random codes. To make it feasible, such a scheme
is generally based on simple structured elementary codes linked via a pseudo-random interleaver. Low
density parity-check (LDPC) codes developed by Gallager [1] are a good example of error-correcting codes
imitating random coding.

A binary LDPC code (N, K) of length N and dimension K is defined by a set of N — K interleaved
parity-check equations (PCEs) making the (N — K) x N matrix H. The low density of H is due to the
limited number of 1’s in each PCE and the limited weight of its columns. It is also proved [1} that the
low density of H reduces significantly the complexity of the LDPC iterative decoder. Figure 1 shows an
LDPC matrix of size 9 x 12. This matrix is obtained from the concatenation of J = 3 submatrices Hj,
¢ = 1,2,3. The first submatrix H; contains 3 disjoint PCEs and the other ones are given by applying a
random column permutation 7 to Hi, i.e. Hy = m(H,) and Hz = m2(H;). The PCEs weight is n = 4
and the columns weight is J = 3. Gallager’s codes are asymptotically good in the sense of the minimum
distance criterion if J > 3.

The matrix representation of an LDPC code is equivalent to a bipartite graph showing the structure
of the code. The left part of the graph has N nodes (bit nodes) and the right one has N — K nodes
(subcode nodes). The graph is regular and the degrees of the bit nodes and the subcode nodes are J and
n respectively. For example, the code of Figure 1 can be graphically represented with a bipartite graph
having 12 bit nodes and 9 subcode nodes. '

The generalization of the graphical representation described above generates a Tanner code [2]. In fact,
each subcode node of an LDPC code is associated to an (n = 4, k = 3, 2) single parity-check (SPC) code.
A Tanner code is built from a graph where the subcode nodes are associated to a more general linear
(n, k, dgmin) code, e.g. BCH codes.

In this paper, we apply a Tanner-like construction to binary recursive systematic convolutional (RSC)
codes (3] to build a generalized low density (GLD) code. The matrix representation of a GLD code is
similar to an LDPC representation where the PCEs derived from the SPC code are ‘replaced by non-
disjoint PCEs derived from an RSC code. In the sequel, we restrict the Gallager-Tanner construction to
J = 2 levels only. We describe the structure of a GLD code and show how to compute its average weight
distribution, i.e. its ensemble performance. We also prove that RSC based GLD codes (with 2 levels)
are asymptotically good. A parity-check interpretation of turbo codes [4] is given for both parallel and
serial concatenations, where turbo codes are described as a special case of Low Density Parity Check codes.
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The structure of the generalized low density code is given in section 2 and its performance is analysed
in section 3. A Gallager-Tanner interpretation of turbo codes is made in section 4 before sketching the
simulation results on a gaussian channel.

<o N=12_________ -
<B4
111100000000
0000 11000 \
000 00O 00O 11 X
|
™ 00 1 0100 Nk
00010 .
0 06000001 !
T2 |
001 010 01 00 1
0 00000 :
010101010000 V

J = 3 submatrices

Figure 1: Example of an LDPC matrix H with J =3 levels.

2 The GLD code structure

For simplicity reasons, we consider only RSC codes of rate r = 'k’k_1 The RSC encoder reads k information
bits and generates an additional parity bit. The total number of coded bits at its output is denoted by
n = k 4+ 1. The constraint length is L = v+ 1 and the RSC code trellis has 2" states. This convolutional
code is defined by n generator polynomials, go(),91(2),. -, gx(z). The n output sequences s;(x) and
the k input sequences e;(z) are related by the following equations

PR . _ iz
si(z) = ei(z) fori=1,...,k and so(.'c)--iz:;go(x)e,(m) (1)

The PCEs of the RSC code are defined by the syndrome equation easily derived from (1)
go(z)s0(z) + g1(z)s1(z) + - .. + gk (2)sk(z) = 0 ()

The above equation produces the parity-check matrix Hrsc of the convolutional code. As an example,
the matrix below is associated to a four-state RSC of rate r = 1/2 with generators go =7 and g1 =5 in
octal notation,

/1100000000000 00 0
01110000000000O00
11011100000000T00 ,
HRSC-_—‘0011011100000000 )
0000110111000000
0000001101 1100°00
k0000000011011100
00000000001 10111)

Note that this convolutional code (go = 7,91 = 5) has been converted to a (N = 16, K; = 6) linear
block code. The trellis termination needs 2 branches ([%] branches in general) and it occupies the last 4
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columns and the last 2 rows of H rsc. The even columns are associated to information bits and the odd
columns to parity bits. Note also that the PCEs of a convolutional code are not disjoint.

The weight distribution of an RSC code (viewed as an (N, K1) block code) is computed using the transfer
function method described in [5]. The effect of the trellis termination phase can be neglected, i.e. & ~ .
The number of codewords of weight £ is denoted Ny (£), £=0...N.

Let Cy be an (N, K1,d;) linear binary block code built from an RSC code. A second (N, K1, d1) block
code C = m(C}) is constructed by a random interleaving of C1.

Definition (GLD code with two identical constituents)

A GLD code C is an (N, K, dgmin) linear block code equal to the intersection of C; and Cs.

The above definition is similar to that of GLD construction based on block codes [6] such as primitive,
extended or shortened BCH codes. It can be easily shown that R = % = 2r — 1 when the permutation
7 is random. The average minimum Hamming distance dgmin is obtained from the average weight dis-
tribution given in theorem 1. The structure of the GLD parity-check matrix is illustrated in Figure 2.

——

[ Sptintiat] RSC1

permutation :_,__

RSC 2

Figure 2: Structure of a GLD parity-check matrix based on two convolutional codes.

The GLD code C = C; [ C- has a simple graphical representation. Each convolutional code Cj is drawn
as a chain [7] where a supernode includes the encoder state, the n coded bits and. the corresponding
channel output (observation). Thus, the Bayesian network [7] of C is obtained by linking the supernodes
of the two chains via the interleaver. For example, if » = 3/4, each supernode is linked to the opposite
code via 4 branches (see Figure 3). The iterative decoding of C' is done by propagating the belief in the
network (practically by a forward-backward algorithm [8] applied successively on each chain).

@ -=supernode = state + coded bits + observation W degree=4

chain of RSC 1

T L R b R AR LR LER AT o

\ gl

BRSPS Al R Qg .

Figure 3: The Bayesian network of a GLD code based on two RSC rate 3/4 codes.
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3 Performance analysis of GLD codes

Given a fixed RSC constituent code Cy, the average weight distribution over the whole ensemble of ran-
dom interleavers is stated by the following theorem.

Theorem 1 (weight distribution)
Let C be an (N, K) GLD code. Then, the average number N (£) of codewords of C' with weight £ is

Nl(e)zl
(7)

where Nj(£) is the weight distribution of the constituent RSC code.

N(f) = (4)

Proof. We have N(f) = ];[ x P(£), where P(£) is the probability that a weight-£ word ¢ chosen

at random belongs to C. But if P;(£) is the probability that ¢ € Ci, then P(£) = Py(£)P;(¢) since
C=C n Cs.

By replacing P;(£) = P3(f) = N}VL we obtain the announced result. QED.

£

Formula (4) has been applied to a rate 1/2 GLD code C based on an §-state RSC code. The sta.rtmg tail
of the distribution is shown in Table 1. It can be easily shown that Prob(dgmin < D) < ZZ —a, N(£).
By taking the right hand side of the previous relation equal to 1, we can compute an upper bound for
the minimum Hamming distance of C'

A
SN@®=1 oand dgmin<A (5)
£=d;

As an example, from Table 1 we obtain dgmin < 18.

Weight £ | Coefficient N (£) || Weight £ | Coefficient N (£)

4 3.4E-3 17 0.37

5 1.4E-3 18 0.91

6 8.9E-4 19 2.3

7 6.3E-4 20 6.1

8 1.3E-3 21 16.6

9 2.0E-3 22 46.5
10 3.1E-3 23 134.0
11 4.8E-3 24 396.3
12 8.6E-3 25 1.19E+3
13 1.6E-2 26 3.71E43
14 3.4E-2 27 1.16E+4
15 7.2E-2 28 3.75E+4
16 0.16 29 1.22E4-5

Table 1: The starting tail of the average weight distribution, Cj is an 8-state (13,7,15,17) RSC.

ot

L ) T e atolt A3 it Fare o
The ourput WCigv distribution is sufficient for C\’)l'hp‘u uxns the bit error prcbab‘l‘ty when Maximum

Likelihood (ML) decoding of C. Actually, the interleaver acts on all coded bits, so that they are equally
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protected. Thus, the input-output enumerating function [9][10] is not needed to evaluate the ML bound.
Finally, we can write the following union bound

N
£
Pas Y 5 X NO x Q4 [RETD) )
£=d1

where Ey/Ny is the signal-to-noise ratio per bit and @(z) is the error function.
Figure 4 shows the average ML bound for two values of the code length, N = 200 and N = 800, when
Cj has an 8-state trellis.

107 ¢ p
10% | i
10° F uncoded BPSK (AWGN)
10* |
10°
-5
i~ 107 F Gibraterzeoss | Length N=200 1
$ 107 /
A -8
107
10° |
107 /
f Length N=R00
[
10"
10"3 1 1 I i !

0.0 10 20 30 40 50 60 70 80
Eb/NG (dB)

Figure 4: ML Performance of the GLD code built from the 8-state rate 3/4 RSC (13,7,15,17). The GLD
code length is N = 200 and N = 800, total rate R = 0.5, on AWGN channel.

Gallager [1] showed that LDPC codes based on simple SPC equations are asymptotically good, i.e.
dgmin > 6N where § is a positive constant, when J = 3 levels. It has been recently proved [6] that
Tanner codes based on bipartite graphs and BCH codes are asymptotically good with J = 2 levels only.
The theorem stated below proves that GLD construction with convolutional codes satisfies the same
minimum distance property. Notice that theorems 1 & 2 are not limited to RSC codes and are also valid
for non-systematic non-recursive convolutional (NRNSC) codes. In the SISO decoding of a systematic
code, the a posteriori probability (APP) depends on the a priori probabilities of information bits and
their channel observation. Thus, RSC codes exhibit a slightly better performance than NRNSC codes,
when iterative decoding is applied to the whole concatenation.
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Theorem 2 (asymptotically good)

The GLD code C built from the rate k/n convolutional code C1(N, K1, d1) is asymptotically good. When
N is large enough, the normalized minimum distance 8min = dEmin/N is lower bounded by a positive
constant 6. The constant  is the smallest positive (non-zero) root of the equation B(A) = 0, where
B(A) >0for A€]0...6[ and

1 A A A
B(,,\)_H(A)-z(;;—;+Z)H(———%_ﬂml) (7)
H(z) = —zlog(z) — (1 — z)log(1 - z) is the entropy function and J is a positive constant depending on
the convolutional code transfer function.

Proof. We first compute an asymptotic upper bound for N(£) from formula (4). When the code length
N is large enough, the Stirling approximation gives

1 1 N 1
—_— —exp | NH()\) — =7 ) £ L
2rNA(L = )) p( *) 12NA(1—A)) - ( £ ) = /27NA(1 - )
where A = ﬁ is the normalized Hamming weight, 0 < A < 0.5.
By introducing the number N; (¢, e) of codewords of C, of weight £ formed from the concatenation of e
consecutive simple error events in the trellis of C, we can write the weight distribution of Cy as a sum
over all possible combinations of error events, i.e.

Nl(f) _'—..eia:Jc ( % —p(:,£)+e )Nl(f,e) (9)

e=1

exp(NH(}))  (8)

: : . N ple, ) +e
where p(e, £) is the total number of branches in the ¢ error events of total weight £. Moreover ( n e, )

is maximal for ¢ = ep, consequently we obtain:

Ni(f) < ( Y — pleo, &) +eo )eistl(E,e)
ex=l

€p

Using (8), the above equation becomes

Ni(£) < A(N,l)exp ((% — pleo, &) + eo)H(ﬂ - p(::, O+ eo)>
where A(N,l) = ! fmex Ni(£,e).

2"80(1— = —p(:u 'l)+=o)
Similarly, by substituting equation (9) in (4) we have:
N(£) < C(N,X) exp(-NF(})) (10)

where the expression of the exponent function is

) =H(A)—2(%‘%+%)H(%_p(::,e)+eo)

According to inequality (10), f(A) can be lowerbounded while keeping the inequality satisfied. The pos-
itive part 1 — £+ $¢ can be maximized as well -,_v_—__f'fm. We need then to bound p and to upperbound eq.

For a given £, the maximal number of simple error events can be upper bounded by ;—1, as dy is the

minimal weight of an error event. The number of branches p is simply lowerbounded by p > % On the
other hand, we can upperbound p by 8¢, where 8 is a constant given by the trellis (or state diagram)
cycle maximizing the ratio p/£ for Cy. Figures 5, 6 and 7 illustrate this special cycle for three different
codes and the resulting value of 3.
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Figure 6: The RSC (23,31,35,37) cycle maximizing p/¢: cycle length=7, weight=2, § = 7/2.

state 3

state 6

-~ Tate 12

Figure 7: The RSC (45,63,67,75) cycle maximizing p/¢: cycle length=4, weight=1, 8 = 4.

Consequently, we obtain a lower bound for f(A):

ﬂnzzan-2(%f5+ivﬂ( A ) (11)

n" di) U\ - B+ e

When N is large, eg %,L can be neglected (this has no influence on the starting tail of the weight distribution)
and finally we have

N(£) < C(N, A) exp(-N B(A)) (12)
where B(]) is defined by expression (7). Q.E.D.

Expressions of B()) are given in Table 3 for different constituent RSC codes. B()) is also sketched on
figure 8. The values of § are listed in the last column of Table 3. Notice that the Gilbert-Varshamov
bound produces a minimum distance of §o = H; (1 — R) = H;*(1/2) = 0.11. We also computed the
upperbound A from equation (5) for the GLD code based on (13,7,15,17) and for different values of N.
Both bounds are shown in Figure (9) where A has a linear behavior similar to §N.
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Figure 8: The exponent function B(A) versus the normalized weight A.
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Figure 9: Upper bound and lower bound on the minimum distance.
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Number of States | Generator polynomials B()) § = LHmin
8 13,7,15,17 H()) - 3H(=55%) 0.0652
16 23,31, 35,37 H(\) - s H(=557) 0.0449
32 45,63,67,75 H(\) - 3(1- 9)H(55) | 0.0439

Table 2: Lower bound on the minimum distance of three GLD codes.

4 A Gallager-Tanner interpretation of PCCCs and SCCCs

Parallel concatenated convolutional codes (PCCCs) [4] and serial concatenated convolutional codes {SC-
CCs) [11] can be described as the intersection of two (or more) interleaved convolutional codes.

Let us consider a classical (PCCC) turbo code C with an interleaver of size K and two constituents. A
parity-check matrix H; can be defined for the first constituent Cy (N1, K). The (Ny — K) x Ny matrix H;
is similar to that given by equation (3), but the columns associated to information bits are now grouped
together on the left side. Next, extend C; by adding Ny — K zero columns to H; (at the right side). This
extended code is denoted Cieqs. The parity-check matrix Hieq: is written horizontally as 3 blocks : the
first block of size (N1 — K) x K defines the part of the PCEs associated to information bits, the second
block of size (N — K) x (N1 — K corresponds to parity check bits and the last block is null.

The turbo code C' is equal to the GLD code obtained from the intersection of Cyez; and Cy = T(Clest)s
where the special interleaver 7 acts randomly on the K columns of the first block of H;..: and permutes
the second and the third blocks.

Let us now consider a serial (SCCC) turbo code C with an interleaver of size Ny and two constituents.
The parity-check matrix H; of C; (the outer code) is of size (N; — K) x Ny. Extend H; by adding N - N,
zero columns and denote the extended constituent by Ciest. Hiezt has the same structure as described
above for the parallel turbo code. The inner code C3(N, N1) has a parity-check matrix Hy with no zero
columns, where the N1 columns associated to information bits are grouped in the left side.

The serial turbo code C is equal to the GLD code obtained from the intersection of Cjez: and 7(Ca),
where the special interleaver m acts on the Nj first columns of H,.

In both cases, parallel and serial concatenations, the interleaver of a GLD code equivalent to a turbo code
does not act on all coded bits. Thus, the formula R = 2r — 1 is no more valid. We have R = r/(2 —r)
and R = ryry for PCCCs and SCCCs respectively.

PCCCs exhibit an interleaver gain of & when both constituents are RSC codes [9]. SCCCs have an
interleaver gain of W when the inner code is RSC. Unfortunately, using the proof of theorem 2, it
can be easily shown that the bit error probability of a GLD code with a random interleaving of all coded
bits is proportionnal to /N at least, i.e. GLD codes do not exhibit an interleaving gain.

On the other hand, the specific structure of the interleaver makes the results on GLD code performance
inappropriate for turbo codes. Thus, GLD codes are good for the minimum distance criterion, but it is
well known that Turbo codes are not asymptotically good in this sense [9][10][11].

5 Simulation results

The iterative decoding of GLD codes is similar to the SISO decoding of turbo codes. Simulation results
presented here are obtained by applying the modified forward-backward algorithm to the constituent code
Ci and its interleaved version. Figures 10, 11, 12, 13 show the bit error rate function of the signal-to-noise
ratio Ep/No on a gaussian channel. Two code lengths have been tested, N = 800 and N = 2000. For
each length, two different constituent codes have been compared. The first code C; has a rate r = 3 /4
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and is obtained by puncturing the rate 1/2 16 state (23,35) RSC code. The second code C} is a true rate
3/4 8 state (13,7,15,17) RSC code.

6 Conclusions

We built generalized low density parity-check codes from the intersection of two randomly interleaved
convolutional codes. These codes belong to the Tanner family based on bipartite graphs. It has been
proved that such GLD codes are asymptotically good but do not have an interleaving gain. Their average
minimum Hamming distance is relatively high, e.g. 52 < dgmin < 56 for a code length N = 800 based
on an 8 state RSC code. We also showed that parallel and serial turbo codes can be viewed as a special
case of GLD codes.
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Figure 10: Iterative decoding of a GLD code, R = 0.5, C} is a 16 state punctured (23,35) RSC, N=800.
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Figure 11: Iterative decoding of a GLD code, R = 0.5, C} is an 8 state (13,7,15,17) RSC, N=800.
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Figure 12: Iterative decoding of a GLD code, R = 0.5, C, is a 16 state punctured (23,35) RSC, N=2000.
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Figure 13: Iterative decoding of a GLD code, R = 0.5, C1 is an 8 state (13,7,15,17) RSC, N=2000.
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Abstract

In this paper we derive a new catastrophicity test for rate k/n punctured convolutional
codes. Based on this test we present a computationally efficient algorithm to determine
whether or not a punctured convolutional encoder is catastrophic. The algorithm has a
simple software implementation and has a broader range of application than previously
published algorithms.

I. INTRODUCTION

‘Punctured convolutional codes were introduced by Cain et al, [1] as a means of significantly
simplifying both Viterbi and sequential decoding of high rate convolutional codes at the expense
of a relatively small performance penalty. A punctured convolutional code C is obtained by
periodically deleting output symbols from a convolutional encoder for some low rate 1/ng code
which we call the base code and denote by Cy. The base code has a canonical generator matrix

[+
B(D)=> bi(D)D'  b; € Fpe
=0
where « is the Kronecker index of C. Unless stated otherwise Cy will be assumed to be antipodal,
that is,

bo = by = (1,1,...,1)

Symbols from Cy are deleted according to a periodic puncturing pattern which is described by a
puncturing matrix

Pur ... DPik
P=|: Pij € Fy
pnol v Pnok

Consider a sequence of k trellis sections in the trellis diagram of the base code beginning at time
¢t = 0. Then p;; = 0 indicates that the ith symbol of every branch in the Jth trellis section is to
be deleted. In this paper we place no restrictions on P except that it has no zero columns. This
condition guarantees that at least one symbol is transmitted from each branch in the trellis of
c. .

Like ordinary convolutional codes, good punctured codes are usually found by computer search
[2]-[5]. One of the problems encountered in searching for good punctured codes is that, even
if the encoder for the base code is non-catastrophic, the punctured encoder may not be. Such
encoders must be identified and eliminated during the search procedure. In view of the large
number of codes to be examined it is essential that the algorithm employed be computationally
efficient. In Section II we briefly review three algorithms that appear in the literature. In
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Section III we show how a canonicity test reported in [6] can be used as a catastrophicity test
for rate k/n punctured convolutional encoders. Finally, in Section IV we show how this test
can be used as the basis of a fast and simple algorithm to test rate k/n punctured encoders for
catastrophicity.

I1. Previous WORK

Previously published algorithms have for the most part dealt with rate (» — 1)/n punctured
convolutional codes. In all cases the base code is assumed to be antipodal and the puncturing
matrix P is assumed to have no zero columns.

Hole [9] has shown that every rate (n — 1)/n punctured encoder can be regarded as a rate
(n — 1)/n ordinary convolutional encoder. In the same paper he shows how to obtain the
corresponding generator matrix G(D). Hence, one method of testing a punctured encoder for
catastrophicity, is to compute the greatest common divisor of the full size minors of G(D). The
punctured encoder is catastrophic if, and only if, oD # D2 (cf. [10]).

A second method, also due to Hole [8], is based on the fact that the state diagram of a catas-
trophic encoder contains at least one zero-weight cycle. The search is considerably simplified
if the state diagram of the base code is used. The computational complexity of this algorithm
is estimated to be O(n2%) and the algorithm is easily generalised to rate k/n punctured codes
derived from antipodal base codes. Furthermore a software implementation of the algorithm
is very straightforward. Its main disadvantage is that the computational complexity increases
exponentially with o.

Recently Sun and Vinck [13] have proposed a third algorithm which they claim is more efficient
for longer constraint lengths. This algorithm is based on the fact that the dual of a rate (n—~1)/n
punctured code is a rate 1/n code. Hence given any codeword in Ct it is easy to find the
Kronecker index of the punctured code. If it is less than ¢ then the code is catastrophic. The
computational complexity is estimated to be O(a®). The algorithm is more complex than Hole’s
algorithm and is restricted to rate (n—1)/n punctured codes derived from antipodal base codes.

The most general of these approaches is the GCD method, the simplest to implement in
software is Hole’s algorithm, and the most computationally efficient is Sun and Vinck’s algorithm.
In this paper we derive a new algorithm which combines the benefits of all three approaches.

I1I. CaTasTrROPHICITY TEST

Let Cp be a rate 1/ng base code with Kronecker index o and canonical generator matrix
B(D) andlet P € F20*F be any puncturing matrix with n non-zero elements. Let C denote the
corresponding punctured code with Kronecker index v < @. C has a generator matrix

Um
G(D)=) .G:iD'  GieF5*"
i=0
where vy, denotes the largest constraint length. We propose the following simple method to
obtain G(D) by inspection: Form the matrices

by e blig1)e-t
G;= 1<i< oy, 9]

btk - Dk
The coeficient matrices {G;} are obtained by deleting the columns of the matrices {G;} indicated

by the zero elements of the puncturing matrix P.

If Cy is antipodal and P has no zero columns then it is easy to show that G(D) has the
following properties:-

(1) vm = [%.l
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(2) The overall constraint length of G(D) is v = .
(3) The columns of G(D) can be permuted such that Gy = [GoolGo1] where Gop € FEXX is 5
nonsingular upper triangular matrix.

(4) The high-order coefficient matrix G, has full row rank.
Using these properties we can generalise a result for rate (n—1)/n punctured codes due to Hole
[7] as follows. :

Lemma 1: Let G(D) be the generator matrix for some rate k/n punctured code derived from
a rate 1/ng base code with puncturing matrix P. If the base code is antipodal and P has no
zero columns then G(D) is canonical if, and only if, G(D) is non-catastrophic. Furthermore
v = a if, and only if, G(D) is canonical. O
Thus we may determine whether or not G(D) is catastrophic using the following canonicity test
[6, Theorem 6].

Theorem 2: Let G(D) be any generator matrix with overall constraint length v. Then G(D)
is canonical if, and only if,

rank #{) = (E+1)v

where H is the k(€+ vy) X €n matrix

[Go 0 ... 0]

Gi  Go '

Gy 0
=g, Go
0 G, G
0 o Gun)

In order to minimise the number of computations required to compute the rank of ’}{S”) it is
necessary to analyse the rank properties in more detail. To do this we require the following
lemma due to Forney [11].

Lemma 3: Let C be a rate k/n convolutional code with Kronecker indices {»:}¥ and let C;
denote set of polynomial codewords in C with degree strictly less than £.

Ce := {y(D) € C|degy(D) < ¢, del y(D) > 0}
Then C; is a subspace of C over F, with dimension

dimg Ce=ke—v+ Y (-4
>l

O

The rank of the matrix ’ng) is given by the following theorem.
Theorem 4: Let C be a rate k/n convolutional code and let: G(D) be any generator matrix
for C with constraint lengths {v;}¥. Then

rank #$9 = ke + v — Z (v -9 (2)

it e

where {;*}77* are the Kronecker indices of C+. O
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Proof: Let H(D) be any canonical polynomial generator matrix for C L, Since C and C*
are dual subspaces of F,((D))" it follows that

H(D)GT(D)=0

Equivalently we can write H G = 0 where H and G are the semi-infinite block matrices

Hy H, Hy H; ... GT GT GI G%
0 Hy H Hy ... 3 0 G¥ GT Gf
H=|9 0 Hy, H ... G=l9 o GI GF

Now let G denote the matrix consisting of the first £ block rows and £+ v, block columns of
G

Gt ¢ ... GL_ 0 0
G = Lo (3)
o o GF G&f ... GL
The kernel of G is spanned by those rows of H that are zero in all but the first nf columns.
Since H(D) is a canonical polynomial generator matrix these rows are also a basis for C, the

set of polynomial codewords in C L with degree less than £. Therefore ker GO = C; and hence
from Lemma 3

dimkerG® = (n — k)l —v + Z (v -0 (4)
fwt >

We may also write dim ker GO = nt — rank GO, Substituting into (4) and re-arranging terms
yields

rank G =kt 4 v — Z (v - 1) (5)

il >e
But inspection of (3) reveals that G is the transpose of #). Therefore
rank GO = rank #{¥

Substituting the expression for rank G® given by (5) yields the desired result. [
Therefore we can re-state Theorem 2 as follows

Theorem 5: Let G(D) be a generator matrix for C with overall constraint length v. Then
G(D) is canonical if, and only if,

ra,nk’HS,e) =kl+v £2 v

where v is defined as the largest Kronecker index of ct. 0O
We note that ¢ < v < v and hence application of Theorem 5 may involve significantly fewer

computations than computing the rank of #"). Furthermore if G(D) is catastrophic then v < v
and hence further savings are made. In the next section we will use Theorem 5 as the basis of
a fast algorithm to test G(D) for catastrophicity.
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IV. THE ALGORITHM

A computationally efficient algorithm to implement the canonicity test of Theorem 5 can
be obtained by exploiting the banded and block Toeplitz structure of the matrix ’ng). We
assume, without loss of generality, that Go = [Goo|Go1] where G € F’z”"c is a nonsingular
upper triangular matrix. If this is not true then the columns of G(D) can be permuted to
ensure that this condition is met. Multiplying the block rows of # by Gy and re-arranging
columns yields the matrix

[ T 0 So 0
Ry S1
7O = : I : So
Rvm Rl S‘um Sl
. 0 R,.| O Svm |

where [R; | Si] = Gy Giy 0 < i < v Using elementary row operations 19 can be put in the

form

T 0 So 0 ]
0 I Si_1 e Sy ©)
5, . 5
i 0o ... 0 5'£+vm—1 Sum |

where §; € F’;x(“—k), 0 < i < £+ Up. It can be shown that the matrices {S5;} are given by the
recursion formula

=1
S;i=8:i+ Z R;_;5; (M
j=0
Note that B; = 0, V i > vp, and hence the computation of S; requires at most v,, matrix

products. .
Once the {S;} have been computed we form the matrix

wO=[w, Wy ... W
where
5
W; = : (8)

Situm+1

From (6) it is easily seen that rank W = rank #P — ke. Substituting the expression for
rank 'ng given by (2) yields

rank W = — Z (V{L - £)

fwl>e
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(1) Construct the coefficient matrices {Gi}o™.

(2) Compute Ggy and the matrices {R;}{™ and {Si}o™.

(8) FORL=1TO @
Compute W, using the recursion formula (7).
Using elementary column operations obtain Wc(t) from W,Se_l) and W,.
iF (rank &) _ rank Wi = 0) or (rank Wi = v) THEN GOTO END

NEXT £
(4) END

TABLE I
ALGORITHM FOR CATASTROPHICITY TEST.

and hence by Lemma 1 and Theorem 5 G (D) is non-catastrophic if, and only if,
rankWO =v ~ £> v

However we have no a priori knowledge of vL. This difficulty may be circumvented by noting
that

rank WY — rank W@ > 0

where the equality holds if, and only if, £ > vi-. Hence we compute rank w® for £ =1,2,...
until either (i) rankW(® = v or (i) rank W — rank W1 = 0. In both cases G(D) is
non-catastrophic if, and only if, rank W =,

Finally, we may compute rank w0, £=1,2,..., as follows. Using elementary column opera-
tions put W® in column echelon form which we denote by Wc(e). The rank of Wc(‘q) is determined
by inspection. Wc(e"'l) is easily found from the augmented matrix [Wc(‘e) | Weg1] where Wiy is
given by (8). The complete algorithm is summarised in Table L.

A. Computational complezity

Computing the matrices {8;} requires O(k(n — k)avk) binary operations. Computation of
the rank of W) requires O(v;(n — k)o?) binary operations. Typically @ will be greater than
k in order to ensure that the punctured code has good distance properties and consequently this
latter step dominates the overall computational complexity of the algorithm. For rate (n—1) /n
punctured codes the computational complexity is O(ve?) which is the same as Sun and Vinck’s
algorithm when G(D) is non-catastrophic.

B. Interpretation of the algorithm

Let G(D) be a generator matrix for some rate k/n code C with Kronecker index v. We
assume, without loss of generality, that G(D) = [Go(D) | G1(D)] where Go(D) € Fa[D]F%* is
nonsingular and det Go(D) is delay-free. Then the systematic generator matrix

G,(D) = G5*(D)G(D)= [ 1 | S(D) ]

is also a generator matrix for C [10]. It can be shown that

(o o]
S(Dy=">_ 5D
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where the coefficient matrices {5;} are given by (7) and hence the first part of the algorithm
is equivalent to computing the coefficient matrices of D in an equivalent systematic generator
matrix.

It is well known [10], [12] that a systematic generator matrix for C is minimal and hence has
a v-dimensional state space realisation. It is also well known [14] that the McMillan degree of a
transfer function S(D) is equal to the rank of the Hankel matrix

5 % ... &
_ 52 S3 ‘o S,_,+1
51/ §u+1 e 520—-1

It follows that rank S = w. If C is punctured code derived from a base code with Kronecker
index a then by Lemma 1 G(D) is non-catastrophic if, and only if, rank § = a.

V. CONCLUSIONS

We have presented a new algorithm for identifying rate k/n catastrophic punctured convolu-
tional encoders. The algorithm is simple to implement in software and requires no polynomial
operations. The computational complexity is O (v (n — k)a?) which is considerably better than
Hole’s algorithm when « is large. For rate (n — 1)/n punctured codes the computational com-
plexity is the same as Sun and Vinck’s algorithm. However their algorithm does not generalise
to rate k/n codes.

As with other algorithms reported in the literature, we have assumed punctured codes derived
from antipodal base codes. However Bocharova and Kudryashov [5] have recently shown to
be false the hypothesis that the best punctured codes are derived from antipodal base codes.
A significant advantage, therefore, of the algorithm presented in this paper is that it easily
generalised to non-antipodal base codes. In this case the algorithm identifies non-catastrophic
punctured codes with Kronecker index equal to that of the base code.

Finally, our algorithm may also used for codes defined over an arbitrary field F,. With suitable
modifications it can also be applied to punctured codes derived from base codes with rational
generator matrices.
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Introduction

Classical convolutional codes are defined over fields of Laurent series with
coefficients over a finite field. The main justification of this article is that
these fields belong to the class of “fields of fractions of complete discrete
valuation rings with finite residue field”. In particular, extensions of p-adic
fields also belong to this class. So, we will see that it is possible to define
codes over the field of fraction of any complete discrete valuation ring with
finite residue field in a way similar to the one used to define convolutional
codes. Codes in this new class will be named “convolutional-like codes”.
This abstract is organized in the following way: the first section is a small
reminder about discrete valuation rings and classification of complete discrete
valuation rings with finite residue field. In the second section, we will see
the definition of convolutional-like codes and in the third we will specialize
this definition for codes defined over the field of 2-adic numbers.

Note also that we use the term “2-adic code” to mean “convolutional-like
code over the 2-adic field” and that they don’t have the same meaning as
the codes defined by A.R. Calderbank and N.J.A. Sloane in [3] and P. Solé
in [13].

1 Discrete valuation rings

Definition 1.1. Let A be a commutative integral ring. A is a discrete valu-
ation ring if it is principal and has an unique maximal ideal.

Proposition 1.2. Let A be a discrete valuation ring and M its mazimal
ideal. The quotient A/M is a field called the residue field of A.

Proposition 1.3. Let A be a discrete valuation ring with M its mazimal
ideal, F its residue field and K its fraction field. As M is a principal ideal,

413



it has a generator element, say m, called an uniformizer of A. Then

A = {Xixo -"3z”fz | =i € F}
K = {3 iemin |z €F, d€ Z}

Proposition 1.4. The application

v K — ZU {+o0}
Yisd zint +— min{i € Z | z; # 0}

is a valuation over K. Moreover, if a > 1 is a real number, the function
z + |z| defined by |0| = 0 and |z| = a~v®) is an absolute value on K. This
absolute value is extended to a distance over K by

d: KxK — Rt
(z,y) +— d(z,y) =z -y

Definition 1.5. The field K is said complete if, for every sequence (an) of
elements of F, the series Y ;g a;7* converge in K.

The following theorem completely classify the complete discrete valuation
rings with finite residue field.

Theorem 1.6. Let F be a finite field having characteristic p and A a com-
plete discrete valuation ring with residue field F. Only two cases can arise:

(i) If A has characteristic p then A is isomorphic to the ring F[[T]] of formal
series over F. Iis fraction field is isomorphic to the field F((T)) of
Laurent series over F.

(ii) If A has characteristic zero then A is isomorphic to an eztension of
the ring Z, of p-adic integers. Iis fraction field is isomorphic to an
extension of the field Q, of p-adic numbers.

Definition 1.7. For an element £ = Y 5, ziw* of K, the weight of z, de-
noted by w(z), is the number of its non-zero coefficients, that is w(z) =

#{i € Z | z; #0}.

2 Convolutional-like codes

Let F be a finite field having characteristic p. Let A be a complete discrete
valuation ring with residue field F and K its field of fractions. We denote
by A; the sub-semiring of A containing the series of A whose general term
is ultimately null (finite weight series).

Definition 2.1. A (n,k) convolutional-like code over K is a k dimensional

subspace of the vector space K™ with a basis consisting entirely of vectors
from A’}.
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Definition 2.2. If C is a (n, k) convolutional-like code over K, an encoder
of C is a k X n matrix over K whose rows form a basis of C. This encoder is
said finite if its coefficients are all in Ay.

Definition 2.3. Let C be a (n,k) convolutional-like code over K and G a
finite encoder for C. Let u be an element of K*. The codeword corresponding
to u in C is the element z = uG in K™.

According to the classification of field of fractions of complete discrete valu-
ation rings (theorem 1.6), two types of codes are enclosed in definition 2.1.
If K has characteristic p then we find again the classical definition of convo-
lutional codes as it can be seen in, for example, [9]. If K has characteristic
zero, then this definition identify a new class of codes with coefficients over
extensions of p-adic fields.

Although some properties can be obtained directly, without distinguishing
between these two cases (notably a notion of “state space”), we will not talk
about that here. However, in the next section, we focus on 2-adic codes and
we will see some basic properties of their encoders. (Note that the choice
of 2-adic was driven by practical constraints and that theoretical results are
generalized to p-adic codes in a straightforward way.)

3 2-adic codes

Definition 3.1. A 2-adic code with parameters (n,k) is a k dimensional
subspace of the ; vector space f with a basis consisting entirely of vectors
from N,

Remark. In the context of 2-adic codes, an encoder is said finite if all its
components belong to N.

3.1 Finite encoders

In this section, we denote by N the set {z/2t |z €N, t > 0} and by Z the
set {z/2" | z € Z, t > 0}. Let C be an (n, k) 2-adic code.

In the encoding process, we try to avoid the case where the image of a finite
weight word is an infinite weight word as, in this case, a finite number of
errors during the transmission can cause an infinite number of errors after
the decoding process. Only the elements of N have a finite weight and there
exists two types of infinite weight words in Q», the elements of Z—N and the
elements of Q; —Z. (Note that negative elements of Z have an infinite weight
as —1 = Y",5,2%) Conditions on the encoders can be given to eliminate these
two types of series (theorem 3.2 and definition 3.4 respectively).

Moreover theorem 3.7 give an even stronger property insuring that, for every
word, there isn't any time delay between encoding and transmission.
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Theorem 3.2. Let G be a finite encoder for C. The three following cond:-
tions are equivalent :

(4) If z = uG is an element of N then u is necessarily in ZF,

(ii) The ged of the k-th order minors (determinants of k x k sub-matrices)
of G is a power of 2,

(i4i) G has a right inverse with coefficients over Z.
An encoder satisfying these conditions is said weakly non-catastrophic

Definition 3.3. An k x n encoder G is said quasi-monomial if, for every
i=1,...,k, there exists an index 1 < j < n such that g;; =0 forall l #1
and g;; # 0.

Definition 3.4. Let G be a weakly non-catastrophic encoder. G is said
(strongly) non-catastrophic if, when z = uG is an element of N*, then ne-
cessarily u is an element of N¥.

Theorem 3.5. A weakly non-catastrophic encoder is strongly non-catastro-
phic if and only if it is quasi-monomial.

Definition 3.6. Given a k x n matrix M over a field E. We denote by A;
the ged of its i-th order minors, fori =-1,... ,k, and, by convention, Ag = 1.
Then, for i = 1,...,k, the i-th invariant factor of G is the element of E
defined by Y = Ai/Ai—l-

Theorem 3.7. A finite quasi-monomial encoder G is said basic if it satisfies
one of the following five equivalent conditions:

() The invariant factors of G are all 1,

(i5) The ged of the k-th order minors of G is 1,

(iii) G has a right inverse with coefficients over Z,

(iv) = =uG is an element of N* if and only if u is an element of N¥,

(v) G is a sub-matriz of an invertible n X n matriz over Z.

3.2 Physical realization and decoding

As for convolutional codes, it is possible to draw a blueprint for an actual
physical device directly from a finite encoder of a given 2-adic code. In
fact, the only difference between convolutional codes and 2-adic codes is the
structure of binary adders. Adders for convolutional codes are XOR gates
while adders for 2-adic codes are constituted by a three entries modulo 2
adder with carry and a delay flip-flop which re-inject the carry at the next
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Figure 1: Binary adder with carry

Figure 2: 2-adic adder

time index (figures 1 and 2). The blueprint for a simple 2-adic code is given
in example in figure 3).

Another similarity between convolutional codes and 2-adic codes is the exist-
ence of a trellis structure, corresponding to a given finite encoder, in which
the set of paths starting and ending in the zero state is equivalent to the
set of codewords. The existence of this trellis permits the use of any trellis-
oriented decoding algorithms (such as the Viterbi flow-calculus algorithm)
to decode any received sequence. The figure 4 shows an example of trellis-
module for the 2-adic code generated by G = (3,5). (In this figure an arrow
denotes a state transition; it is plain if the input is 0 and dashed if the input
is 1; its is the corresponding output vector.)

However, the number of states for the trellissmodule of 2-adic codes is not as
easy to compute as the one of a convolutional code. An upper bound can be
given but it isn’t very accurate. In fact, a 2-adic encoder contains two types
of memory registers: the ones which hold past message bits and the ones
which are enclosed in 2-adic adders. The reason for which the number of
states isn’t easy to know @ priory is that, whereas the values of the registers
of the first kind are free, the values of the registers of the second kind are
driven by the global state of the encoder. So, as some configurations aren’t
reached from the zero state, the number of states isn’t necessarily a power
of 2.
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Figure 3: Physical realization of the 2-adic code generated by G = (3,7)

Figure 4: Trellis-module of the 2-adic code (3,5)

Conclusion

As we have seen in this paper, the definition of convolutional codes can easily
be generalized to other fields and notably to p-adic fields. Resulting codes
still keep a great part of the properties that made convolutional codes so
widely used (physical realization, soft decoding, ...). However, some problems
arise and, in particular, the fact that the number of states of the trellis is not
easily calculable a priori, and the fact that we don’t know, for the moment,
if the Hamming “distance” is appropriate to evaluate the quality of a 2-adic
code.

Using the mapping from Fy ((T')) to @ sending one uniformizer to the other,
we have made some simulations to compare the correcting power of the two
versions of some (2,1) codes. We obtained that the 2-adic version give a
slightly better bit error rate at the expense of an higher decoding work.
Nevertheless, it must be noted that we only used convolutional codes which
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are known to be extremal and that we don’t even know if their 2-adic version
are “good”. Moreover, the fact that, for a given 2-adic code, the sequence
of carries is only dependent of the message (in fact, of the repartition of the
ones in the message) may be exploited to obtain a substantial correcting
power gain.
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