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Abstract

We propose an elliptic curve scheme over the ring Z
n
2, which is e�cient and se-

mantically secure in the standard model. There appears to be no previous elliptic curve

cryptosystem based on factoring that enjoys both of these properties. The KMOV scheme

has been used as an underlying primitive to obtain e�ciency and probabilistic encryp-

tion. Semantic security of the scheme is based on a new decisional assumption, namely,

the Decisional Small-x e-Multiples assumption. Con�dence on this assumption is also

discussed.
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1 Introduction

In 1984, Goldwasser and Micali [9] de�ned a new security notion that any encryption scheme
should satisfy, namely indistinguishability of encryptions or semantic security (IND-CPA),
and they proposed a scheme with this property. This notion informally says that a cipher-
text does not leak any useful information about the plaintext, except its length, to a passive
polynomial-time attacker. Nowadays, it is generally recognized that the right notion of secu-
rity for a cryptosystem is indistinguishability against chosen ciphertext attack (IND-CCA).
On the other hand, even when IND-CPA security is still considered to deal with homomorphic
encryption, the few cryptosystems that are IND-CCA and practical in the standard model
(cf. [5, 6]) come from previous existing IND-CPA schemes in the standard model.

Recently, some new IND-CPA cryptosystems in the standard model have been introduced
by Paillier [13] in 1999 and by Catalano et al. [2] in 2001. Both schemes are de�ned over
the ring Zn2. Paillier's scheme is the �rst homomorphic IND-CPA cryptosystem based on a
trapdoor permutation. It has attracted the attention of the cryptographic community and
several works have generalised and applied Paillier's result. In this way, Catalano et al.

cryptosystem is a variant of Paillier's, with far improved e�ciency. Besides, Catalano et al.

encryption can be seen as a probabilistic encryption obtained from RSA.
Elliptic curves have been broadly used in the design of cryptosystems. Nevertheless, as

far as we know, the only semantically secure elliptic curve cryptosystems based on factoring
are those presented by Paillier (the third proposal in [14]) and Galbraith [8]. But, these
schemes are impractical since they have a high computational cost, not only in encryption
and decryption, but also in key generation.
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In this paper we propose a new IND-CPA elliptic curve scheme which is based on factoring
and e�cient. To our knowledge there is no previous such elliptic curve cryptosystem in the
literature enjoying both properties. The e�ciency of our scheme is similar to existing IND-
CPA elliptic curve schemes in the literature. In particular, the encryption time of our scheme
is similar to the well-known El Gamal scheme over elliptic curves with standard parameters.

The proposal is inspired by some techniques in [2] and uses as underlying primitive the
KMOV scheme [10], that is an analogue of RSA in the elliptic curve setting. So, as in [2], the
resulting scheme is not homomorphic anymore. It uses elliptic curves over the ring Zn2, where
n is an RSA modulus. Its semantic security is based on a new decisional assumption, namely
the Decisional Small-x e-Multiples assumption. In some sense, this assumption is analogous
to the one on which Catalano et al. scheme [2] is based.

The rest of the paper is organised as follows. Section 2 is devoted to introduce the
de�nition and some results about elliptic curves. Section 3 brie
y recalls the schemes our
cryptosystem is related to. In section 4, we describe the new scheme and prove it is seman-
tically secure under a new assumption. Then, we argue why one should be con�dent on this
new assumption. The computational cost of the new scheme is discussed in section 5. Finally,
section 6 contains some considerations about further research.

2 Some results about elliptic curves

In this section, we are going to summarize the de�nition and some results about elliptic curves
de�ned over the �nite �eld Zp, and over the rings Zp2 and Zn2, where n is an RSA modulus.

De�nition 1 Let p > 3 be a prime. An elliptic curve over the �nite �eld Zp, denoted by

Ep(a; b), where a; b 2 Zp, and gcd(4a3+27b2; p) = 1, is the set of points (x; y) 2 Zp�Zp such
that y2 = x3 + ax+ bmod p, together with a point O, called the point at in�nity.

The set Ep(a; b) is a group, with the usual tangent-and-chord operation. For an extensive
treatment on elliptic curves we refer to [15], and for an overview on elliptic curve cryptosys-
tems, see [12].

Elliptic curves can be also de�ned on the projective plane P2(Zp) as the set of points
(x : y : z) satisfying y2z = x3 + axz2 + bz3modp, and gcd(x; y; z; p) = 1. In particular, the
point (0 : 1 : 0) corresponds to the point at in�nity O . Following [8], this de�nition can be
extended to the ring Zp2. The natural map

�p : Ep2(a; b)! Ep(a; b)

is a surjective group morphism whose kernel is the set fOk = (kp : 1 : 0); k 2 Zpg, called
the set of points at in�nity. En2(a; b) can be de�ned from the natural surjective maps from
En2(a; b) to Ep2(a; b) and Eq2(a; b). Via the Chinese Remainder Theorem En2(a; b) can be
seen as a group isomorphic to Ep2(a; b)�Eq2(a; b). Points on curves En2(a; b) can be classi�ed
in three types:

� Points at in�nity: Ok = (kn : 1 : 0); k 2 Zn,

� A�ne points: (x; y) = (x : y : 1) 2 En2(a; b).

� Semi-in�nite points: (x : y : z) 2 En2(a; b), with gcd(z; n) = p or q.
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Since semi-in�nite points give a factorization of n, they will not be considered. The usual
tangent-and-chord formulas allow to perform addition of a�ne points on En2(a; b). To deal
with points at in�nity the following addition formulas are used:

Om +Om0 = Om+m0.
(x; y) +Om = (x� 2ymn; y� (3x2 + a)mn).

Finally, we state a property we will use later on:

Property 2 Let P = (x; y) 2 En(a; b), with y 2 Z
�

n. Then, there exists a unique (x; y0) 2
En2(a; b) such that y0 � ymodn.

Proof : Let y0 = y + 
n 2 Zn2, where 
 2 Zn. Then, (x; y
0) belongs to En2(a; b) if and only if


 =
x3 � y2 + ax+ b

n
(2y)�1modn:

3 Some previous schemes

In this section we brie
y recall Paillier's scheme and some of its variants. The original
Paillier's scheme [13] is performed on the multiplicative group Z�

n2. Paillier considers the
following function:

Fg : Z
�

n�Zn �! Z
�

n2

(r;m) 7�! rngmmodn2

where n is an RSA modulus, and g is an element of Z�

n2 with order multiple of n. The
function Fg is a trapdoor permutation assuming that inverting RSA[n; n] is hard, where
RSA[n; e] denotes the RSA function with exponent e. To encrypt a message m 2 Zn with
randomness r 2 Z

�

n, one computes Fg(r;m). The scheme is semantically secure under the
decisional n-residuosity assumption [13].

In order to increase the e�ciency of Paillier scheme, Catalano et al. [2] use a slightly
di�erent trapdoor permutation:

Ee : Z
�

n�Zn �! Z
�

n2

(r;m) 7�! re(1 +mn)modn2

for a small value of e, namely e 2 Zn such that gcd(e; �(n
2)) = 1, where � denotes Carmichael's

function. The encryption scheme Ee(r;m) with randomness r 2 Z�

n is semantically secure un-
der the decisional small e-residues assumption [2].

In [8], Galbraith proposes an elliptic curve Paillier scheme based on the one-way trapdoor
function

XQ : Zn�Zn �! En2(a; b)

(r;m) 7�! r#Q+Om

where Q 2 En2(a; b) is a �xed point whose order is a big-enough factor of jEn(a; b)j. The
semantic security of the scheme C = XQ(r;m) is related to the following decisional problem:
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given a point Q 2 En2(a; b) whose order is a divisor of jEn(a; b)j, and a random point S 2
En2(a; b), determine whether S lies on the subgroup generated by Q. The scheme has a high
computational cost, both in key generation and decryption. Moreover, Galbraith's scheme
involves the computation of the multiple r#Q, where r has roughly the same length as n.

Koyama et al. propose in [10] an elliptic curve RSA based scheme. They use supersingular
elliptic curves of type En(0; b), and thus avoid the problem of computing jEn(a; b)j, because
jEn(a; b)j = (p+1)(q+1) when p � q � 2mod 3. To encrypt a message m = (x; y) 2 Zn�Zn,
the following trapdoor one-way function is used:

KMOV[n; e] : Zn�Zn �! Zn�Zn

(x; y) 7�! e#(x; y):

The e-multiple is computed on the elliptic curve En(0; b), where b = y2 � x3modn. Let us
observe that the elliptic curve used to perform computation is determined by the message
point. We also point out that b 62 Z�

n with negligible probability. The trapdoor is

d = e�1 mod lcm(p+ 1; q + 1);

since d#(e#(x; y)) = (x; y) on En(0; b).
In the same way as RSA[n; e] with small exponent e is more e�cient than Paillier's scheme,

KMOV[n; e] for small values of e is signi�cantly more e�cient than Galbraith's scheme. Nev-
ertheless, RSA and KMOV schemes are not semantically secure. Our aim is to design an
IND-CPA elliptic curve cryptosystem that makes use of the e�ciency of KMOV cryptosys-
tem.

4 The new scheme

In this section we present a KMOV-type scheme over the ring Zn2 which is semantically secure
under a new decisional assumption, and signi�cantly preserves the e�ciency of the original
scheme.

Let us consider the sets 
 = f(x; y) 2 Zn2 � Z
�

n2 j y
2 � x3 2 Z

�

n2g and � = f(x; y) 2
Zn�Z

�

n2 j y
2 � x3 2 Z�

n2g and the function

 e : ��Zn �! 


(x; y;m) �! e#P +Om

where P = (x; y), and the e-multiple as well as the addition are performed on En2(0; b), with
b = y2 � x3modn2.

Lemma 3 For all e such that gcd(e; n(p+ 1)(q + 1)) = 1,  e is well de�ned and bijective.

The proof of this lemma is postponed to the appendix.

In the sequel we describe the proposed new scheme:
Key generation. Given e � 1; 5mod 6, (so e � 5) and a security parameter `, choose at
random two primes p and q with ` bits such that p � q � 2mod 3 and gcd(e; pq(p+1)(q+1)) =
1. Then the public key is PK=(n; e), where n = pq, and the private key is SK=(p; q; d), where
d = e�1 mod lcm(p+ 1; q + 1):
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Encryption. To encrypt a message m 2 Zn we compute C =  e(x; y;m), where (x; y) is
randomly chosen in �.
Decryption. To recover the message m from C = (cx; cy) = e#(x; y)+Om, the randomness
(x; y) is computed �rstly and, afterwards, m is easily obtained from Om = C�e#(x; y), where
the operations take place on the curve En2(0; b), with b = (c2y � c

3
x)modn2: Let us see how to

compute (x; y) from C. Notice that C = KMOV[n; e](x; y), where overline stands for reduction
modulo n. Now, (x; y) = d#C on En(0; b), because d is the trapdoor of KMOV[n; e]. Since
0 � x < n, then x = x and the point (x; y) is obtained by Property 2.

4.1 Semantic security

The scheme is semantically secure under the following assumption:
Decisional Small-x e-Multiples assumption (DSM assumption).
Let p; q be randomly chosen `-bit long primes, with p; q � 2mod 3, n = pq, and let e be

an integer such that gcd(e; n(p + 1)(q + 1)) = 1. The following probability distributions are

polynomially indistinguishable

De�multiple = (n; e#(x; y)) where (x; y) 2R �

Drandom = (n; (x0; y0)) where (x0; y0) 2R 
:

From now on we will denote by D1 � D2 the fact that two probability distributions D1 and
D2 are polynomially indistinguishable. Notice that if g is a bijection such that g and g�1 can
be computed in probabilistic polynomial time, then D1 � D2 is equivalent to g(D1) � g(D2).

Proposition 4 The proposed scheme is semantically secure if and only if the DSM assump-

tion holds.

Proof : Semantic security is equivalent to indistinguishability of encryptions, so we have to
prove that for all m0 2 Zn, the distributions

D0 = (n; e#(x; y) +Om0
) where (x; y) 2R � ; and

D = (n; e#(x; y) +Om) where (x; y) 2R �; m 2R Zn:

are polynomially indistinguishable. From the de�nition of sum of an a�ne point and a point
at in�nity given at the end of section 2, it is easy to see that the map


 �! 


P 7�! P �Om0

is a polynomial time bijection. Then, D0 � D is equivalent to

(n; e#(x; y)) � (n; e#(x; y) +Om0); with (x; y) 2R �; m0 2R Zn :

Note that the distribution on the left side is De�multiple . Besides, since e#(x; y) + Om0 =
 e(x; y;m

0), and  e is a bijection, then D and Drandom are identically distributed.
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4.2 Hardness of the Small-x e-Multiple Problems

In this subsection we argue why one should be con�dent on the hardness of the new decisional
problem presented in this paper. In [15] (Section 3, ex. 3.7) one proves that given Q = (x; y) 2
Ep(a; b) and e odd, then

e#Q =

�
�e(x)

�e(x)2
;
!e(x)

�e(x)3
y

�
(1)

where �e(x); �e(x) and !e(x) 2 Zp[x], whenever e#Q is de�ned. Moreover,

�e(x) = xe
2

+ lower order terms;

�e(x)
2 = e2xe

2
�1 + lower order terms;

and they are relatively prime polynomials in Zp[x].
Thus, given (t1; t2) = e#(x0; y0), x0 is a root of the univariate polynomial Pe(x) =

�e(x) � t1�e(x)
2 2 Zn2[x] whose degree is e2. Then, the DSM assumption is related to the

di�culty of deciding if the polynomial �e(x)� t�e(x)
2, with t 2R Zn2, has a root smaller than

n.
Similarly, the semantic security of Catalano et al. scheme is related to the di�culty of

deciding if the polynomial xe�t, with t 2R Zn2, has a root smaller than n. The best known way
to attack the above decisional problems is to solve their computational versions. The problem
of �nding small roots of polynomials modulo a large integer with unknown factorisation has
been directly studied in the literature. The most powerful result in this area was obtained by
Coppersmith in [4]. This result ensures that one can e�ciently compute (i.e. in polynomial
time) all roots x0 of a polynomial p 2 ZN[x] with degree d such that jx0j < N1=d. Up to
now, no improvement on this bound has been made. The result by Coppersmith implies we
cand �nd the roots jx0j < n2=e

2

of the polynomial Pe(x). Taking into account that in our
case e � 5, this does not a�ect the validity of the DSM assumption.

5 E�ciency analysis

Now we study the encryption cost of our scheme. Since operations modulo a large number
are involved, we neglect the cost of performing additions, multiplications and divisions by
small integers. We will express the cost in terms of multiplications modn2, because modular
inverses can be computed within a constant number of modular multiplications. The main
cost in encryption is due to the computation of e#P 2 En2(0; b). The amount of operations
depends on the addition chain used. We will suppose these addition chains are obtained by
using the binary algorithm. Doubles and addition of points on En2(0; b) are performed with
the usual tangent-and-chord formulas.

We point out that a�1modn2 can be obtained by computing a�1modn and then per-
forming two multiplications modulo n2. Let c be the number of multiplications modulo n
needed to compute a�1modn. Since the cost of multiplying two numbers mod n2 is roughly
the cost of 4 multiplications modulo n, we deduce that a�1modn2 can be computed in 2+c=4
multiplications modulo n2.

Then, the computational cost of  e (in terms of modular multiplications modulo n2) is
(11+ c=2)blog2 ec+5. Practical implementations, suggests than the value c = 8 can be taken
(see [1]), so our scheme has an encryption cost of 15blog2 ec+ 5:
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Thus we have proved that our scheme is drastically more e�cient than the previous seman-
tically secure elliptic curve cryptosystems (ECC) in the standard model based on factoring.
If our scheme is implemented with the standard exponent e = 17, we deduce from the above
computations that the number of multiplications modulo n2 needed is bounded by 65, but
using the special form of the exponent, this number is trivially reduced to 44 multiplications
modulo n2.

It is interesting to compare our scheme with existing semantically secure ECC in the
standard model over �nite �elds. We will compare the e�ciency of our scheme with the well-
known El Gamal ECC scheme. We assume that El Gamal ECC is performed over Z�

p, where
p is 170 bits long, and our scheme is performed over Z�

n2, where n is 1024 bits long (cf. [11]).
We will express both encryption costs in terms of multiplications modulo n2.

In El Gamal ECC the most time consuming operation is the computation of two multiples
r#P and ra#P , where r is a random integer which size is roughly the same as the modulus
p, and a is a �xed integer. Then, using the double and add algorithm, the computation of
these two multiples requires on average k additions of points and 2k doublings, where k is
the bit length of r. Assuming that a point addition or doubling requires about 12 modular
multiplications, then El Gamal ECC would take approximately 3 � 170 � 12 multiplications
modulo p. Since the time needed to perform a modular multiplication is quadratic in the size
of the modulus, the ratio between the time of a multiplication modulo p and a multiplication
modulo n2 is 1702

(2�1024)2
. It follows that the encryption time of El Gamal ECC would be

equivalent to 42 multiplications modulo n2.

6 Further research

Recently, Catalano, Nguyen and Stern [3], have showed that the one-wayness of Catalano et

al. scheme is equivalent to the one-wayness of the RSA[n; e] primitive. It remains an open
problem to study if this result extend to our scheme.

Security against adaptive chosen ciphertext attack, IND-CCA for short, can be given in
the random oracle model applying some generic construction like [7]. Since at the present
there is no practical IND-CCA scheme from the RSA[n; e] problem in the standard model,
it is very interesting to provide IND-CCA security in the standard model to Catalano et al.

scheme [2] as well as to ours. To achieve this goal, the recent work of Cramer and Shoup [6]
could provide useful ideas.

Appendix: proof of Lemma 3

The following function is well de�ned and bijective:

 e : ��Zn �! 


(x; y;m) �! e#P +Om :

�  e is well-de�ned.

>From the addition formula for an a�ne point and a point at in�nity (at the very end
of section 2), we deduce

 e(x; y;m) 2 
() e#(x; y) 2 
:
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Therefore, it su�ces to prove that, if y 2 Z�

n2, then e#(x; y) = (xe; ye), with ye 2 Z
�

n2.
For the sake of contradiction, suppose ye � 0mod p for a prime factor p of n. Then,
the point (xe; ye) has order 2 on the curve Ep(0; b). Since gcd(e; jEp(0; b)j) = 1, also the
point (x; y) has order 2 on Ep(0; b), contradicting the assumption y 2 Z�

n2.

�  e is injective.

Let us suppose  e(x; y;m) =  e(x
0; y0;m0). Reducing this equality modulo n, we obtain

e#(x; y) = e#(x0; y0) on En(0; b): Since gcd(e; jEp(0; b)j) = 1, we have the equality
(x; y) = (x0; y0) on En(0; b). Now, taking into account that (x; y), (x0; y0) belong to the
same curve En2(0; b), and that 0 � x; x0 < n, we use Property 2 to deduce (x; y) = (x0; y0)
on En2(0; b). Finally, it is easy to see that Om = Om0 , and it follows that m =m0.

�  e is surjective.

Let Q 2 
, d = e�1mod lcm(p+1; q+1), and P = d#Q = (x; y) on the curve En(0; b).
Let P 0 = (x; y0) be the point on En2(0; b) given in Property 2. Then, e#P 0 � Q is a
point at in�nity, Om. Therefore, Q =  e(x; y

0;m).
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