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1 Introduction

Let Ty be a vector space of dimension n over a Galois Field F, = GF(q), where ¢ = p", p
prime. The Hamming distance between vectors u, v € Fy', denoted d(u,v), is the number of
coordinates in which u and v differ. A g-ary code, C, of length n is simply a subset of Fy.
The elements of C' are called codewords and C'is called linear if it is a linear space over I .
We will call p-linear a code C' which is a linear space over the prime field F,. The minimum
distance of a code is the smallest distance between a pair of codewords.

A g-ary code C of length n is perfect if for some integer 7 > 0 every = € Fy is within
distance r from exactly one codeword of C. In [8] it is shown that the only parameters for
nontrivial perfect codes are the two Golay codes and the g-ary 1—p$erect codes where ¢ is a

prime or prime power. The g-ary 1-perfect codes have length n = q;l’ m > 2, and r = 1.

They have ¢"~™ codewords and minimum distance 3. The linear 1-perfect codes are unique
up to equivalence, they are the well-known Hamming codes and exist for all m > 2. Nonlinear
g-ary 1-perfect codes also exist for ¢ =2,m >4, ¢ > 3,m > 3, and for ¢q a prime power, q # 4
or 8, m > 2, [17], [16], [10].

Two structural properties of nonlinear codes are the rank and kernel.

The rank of a g-ary code C, r(C'), is simply the dimension of the subspace over F, spanned
by C. If ¢ = p", r > 1, we define the p-rank of C' as the dimension of the subspace over F,
spanned by C. By the dual of the nonlinear code C, denoted by O, we mean the dual of
the subspace spanned by C' having dimension n — r(C'). Etzion and Vardy [6] established the
existence of binary 1-perfect codes of length n =2™ — 1, m > 4, and rank 7(C) =n —m +s
for each s € {0,1,... ,m}. In [13], the generalization to the g-ary case, that is, the existence

m

of g-ary 1-perfect codes of length n = q;l, m > 4 and rank r(C) = n —m + s for each
q-

s €{0,1,... ,m} was established.

The kernel of a binary code C' is defined as K¢ = {z € F} : x + C' = C}. If the zero
word is in C', then K¢ is a linear subspace of C. In general, C' can be written as the union of
cosets of K¢ and K¢ is the largest such linear code for which this is true [4]. We will denote
the dimension of the kernel of C' by k(C). Phelps and LeVan [11] established that for each
such m > 4, there exists a nonlinear binary 1-perfect code of length n = 2" —1, with a kernel
of dimension k(C') = k for each k € {1,2,... ,n — m — 2}. The rank and kernel of binary
1-perfect codes are related, it is known that k(C) +r(C) > n+ 1, since O+ C K¢ and the all
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ones codeword is always in the kernel, [4]. In [14], the exact upper and lower bounds on the
kernel dimension for a fixed rank, r(C) < n, were established. In [3], binary 1-perfect codes
of length n for all possible £(C') and 7(C) < n are constructed.

In this paper, we will focus on the kernels of g-ary 1-perfect codes when ¢ > 3. A previous
approach, only over the field F,, was showed in [15]. Here, we will present definitions and
properties of kernels for ¢g-ary codes as well as p-ary subfield codes. We will construct g-ary
1-perfect codes of length n with different kernel dimensions, using switching constructions.
We also give a simple and more general construction of nonlinear g-ary 1-perfect codes which
were first constructed in [10]. Finally, we consider bounds on the dimension of the kernel.

2 Definitions and properties of the kernel

First of all, we will give different generalizations of the kernel for ¢g-ary codes, C', over a Galois
Field F, = GF(q), where ¢ = p", p prime. We will show some of their properties and when
they are equivalent.

Definition 2.1 The kernel and p-kernel of a q-ary code C over F,, where ¢ = p", p prime,
s respectively
K (O)={zelFy : Xx+C=C VA€F}

KyC)={z el : 2+C=C}.

It is easy to see that if the zero word is in C', then Ky (C) is a linear sub-code of C' and
K,(C) is a p-linear sub-code of C'. We will denote the dimension of the kernel and p-kernel
of C by ky(C') and k,(C) respectively.

Proposition 2.1 Let K,(C) (K,(C)) be the kernel (p-kernel) of a g-ary code C. The code
C is a union of cosets of Ko(C) (Kp(C)), and Ky(C) (Kp(C)) is the mazimal linear subspace
of By over By (T, ) with this property.

It is easy to see that K,(C') C Kp(C) and also note that if ¢ = p prime, the kernel and
p-kernel are exactly the same. The kernel of a binary code, (', is also the intersection of all
maximal linear sub-codes of C, [9]. Next, we will show that, in general for g-ary codes, this
is not necessarily true.

Proposition 2.2 Let C' be a g-ary code over ¥y, where ¢ = p”, p prime, and let D = {z €
C : XxeC VYXeF,}. Then, the intersection of all mazimal linear sub-codes of C over F,
is M(C)={z €F} : =+ D= D}.

Proposition 2.3 Let M(C)={z €F; : e+ D =D}, where D={z € C : dxeC V¢
F,}. Then, D is a union of cosets of M(C), and M(C) is the mazimal p-linear subspace of
Fy with this property.

It is easy to see that K,(C') C M(C), but, in general, K,(C') # M(C). For example,
the code C' = {0000,1100,2200,0011} over Zj3 has kernel K3(C') = {0000} and M(C) =
{0000, 1100, 2200}.
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3 Subspaces T; and T7

In this section we consider two subspaces which play a key role in the switching construction.
These are also important in determining the kernel and p-kernel of the resulting codes.

Definition 3.1 T; is the subspace over Fy, ¢ = p", generated by the codewords of weight 3
(triples) in the Hamming code, Hy, having a 1 in the i** coordinate. T? is the subspace over
the sub-field B, generated by these codewords.

Proposition 3.1 [13] Given a q-ary Hamming code Hy, of length n = q;n__ll, the dimension
of T; over Fy is ¢™ 1 —1,Vie {1,... ,n}.

Let H,, denote the Hamming code of length n = %. The columns of the parity check
matrix of H,, are linearly independent and as such are representatives of all 1-dimensional
subspaces in Fj*. The columns can be identified with the points of projective space of di-
mension m — 1 over ;. In this way there is an obvious and natural correspondence between
the coordinates of the codewords in H,, and points in the projective space PG(m — 1,q).
We refer to certain coordinates as independent if the corresponding points in PG(m — 1,q)
are independent or equivalently if the corresponding columns of the parity check matrix are

independent (see [5]).

Proposition 3.2 Given a q-ary Hamming code Hy, with {1,2,... ,m} as a set of its inde-
pendent coordinates, the dimension of Ni_,T; over F, is (¢ —1)*"1¢™™%, Vs € {2,... ,m}.

Proposition 3.3 Given a g-ary Hamming code H,, of length n, when q = p", v > 2, the

m—1

-1
dimension of TY over the sub-field F, is %(r(g -2)+1),Yie{l,... ,n}.

The sub-code Tip is not a linear subspace over F;. In particular, we can ask what the
kernel K, (17) is.

Corollary 3.4 Given a q-ary Hamming code H,, of length n, when q = p", r > 2, the

. . | .
dimension of Ko(IF) is ———(q¢—2), Vi e {1,... ,n}.
q—

1
Corollary 3.5 Given a g-ary Hamming code H,, of length n, when q¢ = p", r > 2, if
aft € By, then T = oT! 0BT = NyerpjopyT7 and T is a subspace over Fy of dimen-

qm7171
T(fl—%, Yo, B €F,, Vi€ {1,... ,n}.

sion 1
Proposition 3.6 Given a q-ary Hamming code Hy, with {1,2,... ,m} as a set of its inde-
pendent coordinates, when q = p”, v > 2, the dimension of N_,TF over F, is (r(¢—1) —s(r —
1))(q - 1)S_qu_sa Vs € {27 s 7m}'

Corollary 3.7 Given a q-ary Hamming code Hy, with {1,2,... ,m} as a set of its indepen-

dent coordinates, when ¢ = p”, r > 2, the dimension of the kernel Ko(Ni_,TF) (over Fy) is
(q — 85— 1)(q - 1)372qm75) Vs € {27 s 7m}'

377



4  Switching constructions

The most intuitive approach to constructing nonlinear 1-perfect codes consists of starting with
the Hamming code H,,, and switching out one specially selected set of codewords S C H,,
for another set of words S’ such that the resulting code C' = (H,,\S) U S’ would still be a
1-perfect code. This idea has been developed from different approaches to construct binary
1-perfect codes, see [1], [2], [6] and [12]. In [7], one generalization of this technique was used
to construct g-ary 1-perfect codes. In [13], the approach developed in [11] was generalized to
construct g-ary 1l-perfect codes with different ranks. In this article, we will use switches to
construct g-ary 1-perfect codes with kernels of different sizes.

Obviously, if sub-codes S, S’ are switched we must have |S| = |S'| and for all z € ",y €
Hp, \ S we must have their distance d(x,y) > 3. If we consider the bipartite graph on the
codewords in H,, U H,, +w with an edge connecting codewords z, y if and only if d(z,y) < 2,
then S C Hy,, 8" C Hy, + w will be a switch if and only if S U S’ is the union of components
in the bipartite graph. If there is only one component, the switch is said to be minimal. Let
F, = {0,a°% a,... ,a?7%}, where « is a primitive element. Let e; denote the vector of length
n having all coordinates equal to zero, except the ¥, which contains a one.

Proposition 4.1 S C Hy,, S' C Hp+Xe; will be a minimal switch if and only if S = NP +y
(and 8" =S + Xe;), where y € Hp,, Vi € {1,... ,n} and Y\ € F,\{0}.

" -1
—1

Corollary 4.2 [13] Given a g-ary Hamming code Hy, of length n = ,m>3,q>3

and x; € Hp\T;. Then,
C" = (Hp\(T; + ;) U(T; + z; + a’e;) (1)
is a nonlinear q-ary I-perfect code, Vi € {1,... ,n} and ¥j € {0,1,... ,q — 2}.

Lindstrom [10] gave a construction of nonlinear g-ary perfect codes for m = 2 (n = ¢+1) if
¢ is a prime power, ¢ # 4 or 8, which in effect relied on the existence of translation planes. We
are able to give a simple construction of perfect codes with these parameters and in addition,
a nonlinear code for m = 2 and ¢ = 8.

. . qm -1
Corollary 4.3 Given a q-ary Hamming code H,, of length n = PR m>2,q=7p,
) q-
r>1 (execept m=2, ¢ =4) and x; € H,\a/TF. Then,
C' = (H\ (@7 + ) U (@IT7 + i + ey )
is a nonlinear q-ary I-perfect code, Vi € {1,... ,n} and ¥j € {0,1,... ,q — 2}.

m
Proposition 4.4 Let H,, be a q-ary Hamming code of length n = e

-1
1 ,m>3,q>3 and
let K be a subspace of Hy, such that T; C K C Hy, and dimK <n —m — 1. Then

O" = (Hn\(K +y)) U (K +y+a’e;)

is a nonlinear q-ary I-perfect code with rank r(C') = n —m + 1 and kernel K,(C') = K,
vie{l,...,n}, V5 €{0,1,... ,¢q —2} and Vy € H,;,\K.
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Corollary 4.5 Let H,, be a g-ary Hamming code of length n = T m>2,q=p",r>1,

qg" -1

q )
(except m = 2, ¢ = 4) and let K be a p-linear subspace of H,, such that a]Tip CKcCH,
and dimK <r(n—m)—1ifp>2 and dimK <r(n—m)—2 ifp=2. Then

O" = (Hp\(K +y)) U (K +y+a’e;)

is a nonlinear q-ary I-perfect code with p-rank r(n — m) + 1 and p-kernel Kp(C') = K,
Vie{l,...,n}, V5 €{0,1,... ,¢ — 2} and Vy € Hp\K.

By Proposition 4.2, once we have made one switch we have another ¢-ary 1-perfect code.
Actually, it is proved [13] that for all m > 4, there exist z1, 23, ... ,Zp such that it is possible
to make a series of switches. In this case, if {1,2,...,m} is a set of independent points of
H,, we can switch T; + z; with T; 4+ z; + afte;, Vj; € {0,... ,¢ — 2} Vi € {1,... ,m}, since
T; + x; and Ty, + x, are always disjoint for all k # 4.

m—1
qj, m Z 4, with

Proposition 4.6 Given a g-ary Hamming code H,, of length n =
{1,2,... ,m} as a set of its independent points. Then, the nonlinear q-ary 1-perfect code
s s
o = (Hm\ U T+ x,.)) Ul (Ti + 2 + oFiey) (3)
i=1 i=1
has rank 7(C') = n — m + s and kernel K,(C') = Ni_,T;, Vs € {1,2,... ,m} and Vj; €
{0,1,... ,¢—2}.

m 1
Corollary 4.7 Given a q-ary Hamming code H,, of length n = 4 T m >3, q=9p",
r > 1, with {1,2,... ,m} as a set of its independent points. Then, the nonlinear q-ary 1-
perfect code
8§ . s ) .
"= (Ha\|J (17 + ) U (0FT7 + 2 + atey) (4)
i=1 i=1

has rank n—m-+s, p-rank r(n —m)+s and p-kernel K,(C') = N5_,a%T?, Vs € {1,2,... ,m}
and Vj; € {0,1,... ,q — 2}.

-1
Corollary 4.8 Let Hy, be a g-ary Hamming code of length n = 1 ™ >3, q=7",

r>1, and let 1,a,... ,a" " be a basis of F; over the sub-field F,. Then, the nonlinear q-ary
1-perfect code
s s
0= (H\J @I +2) U (@777 407 e o)
j=1 Jj=1

has rank n —m + 1, p-rank r(n — m) + s and kernel Kp(C') = K, (C') = ﬂ;zlafflTip,
Vse{2,...,r} and Vi€ {1,... ,n}.

In the same way as in the above results, we could construct nonlinear g-ary 1-perfect
codes, C', with rank n — m + m' and p-rank 7(n — m) + m/r’, where m' < m and 7' < r, as
long as there exists z;;, Vi € {1,... ,m'} and Vj € {1,... ,r'}, such that a/='T? + z;; and
ok =IT? + 2 are always disjoint. In this case, K,(C) = N;ja/1TP and K,(C) = K,(T).
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5 Bounds on the kernel dimensions

Fixed the rank, an upper bound on the kernel and p-kernel dimension, can be established
using the same argument as in the binary case, [14].

Proposition 5.1 A g-ary 1-perfect code of length n, C', with rank r(C) =n—m+s over F,
and kernel K,(C) of dimension n—m — § fulfills ¢° — 6§ —1 > s.

Corollary 5.2 A q-ary I-perfect code of length n, C', where ¢ = p", with p-rank r(n—m)+s
and p-kernel K,(C) of dimension r(n —m) —§ fulfills p — 6 —1 > s.

If the p-rank of a g-ary 1-perfect code, C, is 7(n — m) + 1, we have the exact lower and
upper bounds on k,(C'), by Corollary 5.2 and next result. By Proposition 4.4 and Corollary
4.5, we can construct nonlinear g-ary 1-perfect codes with p-rank r(n—m)+1 and any p-kernel
dimension, kp(C'), between the lower and upper bounds.

m—1

-1
r(n —m)+1, then there exist i € {1,2,... ,n} and a € F\{0} such that aT? is a subset of
K,(C).

Proposition 5.3 Let C be a q-ary 1-perfect code of length n = a

, q=p", with p-rank

m
-1
Corollary 5.4 Let C be a q-ary I-perfect code of length n = qj
n—m+1 and p-rank r(n —m)+s, then there existi € {1,2,... ,n} such that N,cr,\ (0} aT?
is a subset of Kp(C) and K4(C), Vs € {2,... ,r}.

, q = p", with rank

6 Conclusions

In [13], g-ary 1-perfect codes of length n and rank n —m + s were constructed Vm > 4 and

Vs € {1,...,m}. In this paper, we also constructed them when ¢ = p", r > 1, for m = 3
and Vs € {1,2,3} and for m = 2 and s = 1. The existence of g-ary 1-perfect codes for any
s€{2,...,m}, when m =3 if ¢ = p prime and m =2 if ¢ = p", r > 1, still remain open.

The switching constructions established in this paper give 1-perfect g-ary codes of given
rank having kernels of minimal dimension. In the binary case, analogous constructions gave
codes with kernels of minimum possible dimension for given ranks.

Theorem 6.1 There exist a q-ary 1-perfect code of length n, C', when ¢ > 3 prime, with rank
n —m + s and kernel of dimension

o— gl -1 ifs=1 Ym >3

T (g=1) 1™ ifs>1 Ym >4
Theorem 6.2 There exist a q-ary I-perfect code of length n, C', when q = p"
m =2 and ¢ = 4), with rank n —m + s and kernel of dimension

,r>1 (except

- o (g - 2) ifs=1 VYm>2
(g—s—1)(¢g—1)*2¢™* ifs>1 VYVm>3
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By results in section 5, the switching construction give also 1-perfect codes with rank
n—m+1, any p-rank r(n —m)+7r' and the exact lower bound. The dimension of the kernel is

kq given in the previous theorems and the dimension of the p-kernel, k, > qw;ilfl (r(g—2)+1)

if ' =1and kp > qn;_lflr(q —2)if 7' > 1. So, in particular, we established these results for

the nonlinear 1-perfect codes with the same parameters as the ones given by Lindstrom [10],
that is m = 2.

The problem now is to establish a lower bound on the dimension of the kernel for 1-perfect
g-ary codes of rank n — m + s, Vs > 2. Key to this question seems to be the problem of the
minimum kernel for full rank 1-perfect g-ary codes.
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