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Abstract

We present a variant of RSA which can be used in an on-line/o�-line mode. More pre-
cisely, we present an asymmetric authentication/digital signature scheme which combines
the following properties : a) the key pair is a RSA key pair, b) it is secure if factoring
is hard, but c) almost all the computations can be made in advance. Such properties
make this scheme a very attractive alternative to RSA when the execution time of the
prover/signer is a critical parameter (e.g. in contactless transactions).

Keywords. Authentication, digital signatures, o�-line/on-line, on the y, RSA, server-
aided veri�cation.

1 Introduction

It is well-known that one drawback of the RSA digital signature scheme [15] is the large num-
ber of operations that the signer must carry out, leading to a frequently excessive execution
time. One solution is to use a speci�c cryptoprocessor (in addition to the general-purpose
(micro-)processor) in order to speed up the signature generation, but this is costly : smart
cards that use such a cryptoprocessor may be between 10 and 50% as expensive as standard
smart cards.

A second solution is to use special moduli n, such as those in the form n = pqr or n = p2q,
where p, q and r are prime numbers, and to apply the Chinese Remainder Technique, in order
to make the signature generation two or three times as e�cient as with a standard modulus
(in the form n = pq).

Another solution is to make things such that most of the signer computations can be per-
formed in advance, that is before the actual time of signing or interacting with a veri�er:
this is known as the on-line/o�-line concept [2]. At Crypto 2001, Shamir and Tauman have
de�ned a generic method (say ST) for using any digital signature scheme in an o�-line/on-line
way, by the means of a trapdoor hash-function [16].
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Here, we propose an authentication/digital signature scheme which has the following prop-
erties:

a) the key pair is a RSA key pair (there is no extra key or parameter)
b) it is secure if factoring is hard (consequently it is as least as secure as RSA)
c) almost all computations can be made in advance (\o�-line") and the \on-line" compu-

tation takes essentially no time
d) the results of the o�-line computations can be made very short (down to 50 bits under

some assumptions)
e) the veri�cation can be server-aided (so as to be almost as e�cient as a Guillou-

Quisquater [8] veri�cation)

Note that property a) does not mean that the scheme generates same signatures as RSA
scheme would have itself generated, only that the key pairs are RSA key pairs. We also point
out that RSA key pairs issued from standard key generation algorithms do work with our
scheme, but that \unusual" key pairs may not work (e.g. when the public exponent is not
prime).

Such properties make this scheme very attractive to replace RSA, in case RSA cannot be
used for performance and/or cost reasons. The reasons why are the following : �rst, there
is no need to change the Public Key Infractructure (PKI), since the public keys are RSA
keys. This is a crucial point, as carrying out a PKI is a very challenging and long process.
Second, there is no risk to replace RSA with this scheme, since its security is equivalent to
factorisation intractability (or equivalent to RSA in some variants). Finally, there is even no
need to change the key generator nor the key formatting used in the data memories, since
the private key is also a RSA private key.

This scheme is di�erent from the ST construction applied to RSA in that, on one hand,
the signatures from our scheme are not RSA signatures1, but on the other hand, no addi-
tional speci�c hash-function, keys and parameters (compared to regular RSA) are required.
Furthermore, many optimisations are possible (see properties d and e), while ST makes veri�-
cation much slower than with RSA. In summary, ST construction is much more general while
the present scheme is dedicated to RSA but is much more compact and e�cient.

2 The new scheme

2.1 Preliminaries

Let (n; e; d) be a RSA key, i.e. let n be a composite modulus, e and d integers such that
ed = 1 (mod '(n)), where '(n) is the Euler function of n. We address the following issue:
how to demonstrate the knowledge of the private key d, after revealing the public key (n; e) ?

1Actually, the ST method appends to the regular signature the result of a speci�c hash-function (in addition
to the hash-function used for hashing the message), so that a ST-signature applied to RSA is not reduced to
a single RSA signature, and the veri�cation process is not reduced to a single RSA veri�cation process.
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The �rst possibility is well-known: the prover computes y = cd (mod n), where c is for
example a random integer c chosen by the veri�er in the interval [0; n�1]. This is the famous
RSA process. By replacing c with the image of a message m by an appropriate function (such
as those speci�ed in the standard PKCS#1), y becomes the RSA signature of m.

Another possibility is to show the knowledge of d in the zero-knowledge paradigm. The
most practical approach consists in choosing an (appropriate) integer f smaller than n, and
prove in one way or another that:

f ed = f (mod n)

Again, there are two possibilities : either rewrite this equation as follows : (fd)e = f (mod n),
and prove that you know fd (mod n) without revealing it (i.e. roughly that you know a RSA
signature of f without revealing it) : this is achieved by the Guillou-Quisquater (GQ) pro-
tocol. Or rewrite this equation as follows : (f e)d = f (mod n) and prove that you know a
discrete logarithm of f in base g = f e (mod n) without revealing it : this is achieved by the
scheme presented in this paper, which can from the previous discussion be viewed as \dual"
to the GQ scheme.

Note that close issues are addressed in [14] and [1], but in a di�erent context and with
di�erent solutions. Note also that [13] provides a scheme which is related to the present one,
but the private key is di�erent from a RSA private key (explicitly it is equal to n� '(n)).

2.2 Description

The authentication scheme is obtained by iterating t times the following three-pass protocol2:

Parameters: n a composite modulus
e a prime integer and d an integer such that ed = 1 (mod '(n))
f; g 2 Z�

n with g = f e (mod n)

Secret key: d

Public key: (n; e)

Prover Veri�er
Choose r 2 [0; '(n)[
Compute x = gr (mod n)

x
��������!

Choose c 2 [0; e[
c

 ��������

Check c 2 [0; e[
Compute y = (r � cd) (mod '(n))

y
��������!

Check y < n and gyf c = x (mod n)
Figure 1 - On-line/o�-line RSA-like scheme (authentication protocol)

2as usual, Z�

n denotes the multiplicative group of the ring of integers modulo n.
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Typically:

� n is at least 1024-bit long, so that factorization algorithms are ine�cient

� e is 16, 32 or 64-bit long (e.g. e = 65537)

� f = 2 (or g = 2) in order to speed-up exponentiations (these choices are not compatible
with any value of n, see discussion below).

More generally, f will preferably be �xed to a given value for a group of users, so that neither
f nor g needs to be part of the public key. The way n is generated will depend on this value
of f . More precisely, n and f must be chosen so that the order of f modulo n be \su�ciently"
large (and the discrete logarithm modulo n in base f a \su�ciently" hard problem). Ideally,
f will be of order close or equal to the maximum possible value �(n), where �(n) denotes
the \Carmicha�el function" of n. For example, we will choose n as the product of two distinct
large safe primes p and q 3, and g of order �(n) = (p�1)(q�1)

2 or 1
2�(n). It happens that, for

such a choice of n, \almost any" integer between 2 and n is such a \good" g (and that a very
simple test allows to check it). Moreover, f = 2 or g = 2 is always good.

Of course, '(n) can be replaced everywhere in the protocol by �(n), or more generally by any
multiple of the order of g modulo n.

As claimed, the most consuming part of the protocol (from the prover's point of view) is
the computation of x and can be made before interacting with the veri�er. Sometimes, the
couple (r; x) is called a coupon [11]. The possibility of pre-computing coupons is the main
advantage of this variant of RSA. With regular RSA, no values can be pre-computed and the
on-line computation is time-expensive. With this scheme, there is only one modular multi-
plication and one modular addition to do at the time of the transaction. Even in a standard
smart card, the time of this operation is masked by all the rest (other computations, R/W
operations, communication time etc.).

Note that x can be hashed and thus replaced by x = H(gr (mod n)) where H is a hash-
function. In that case, the veri�cation equation becomes H(gyf c (mod n)) = x. It allows to
store many more coupons in the same memory size, especially if r is generated by a pseudo-
random number generator and can be regenerated at the time of the transaction (so that only
the values of x have to be stored). Finally, by using some tricks (see e.g. [9] and [5]), x can
be made as short as 80-90 bits and even 40-50 bits under the assumption that the veri�er
controls that the protocol be executed within a limited period of time.

Note also that a messageM can be authenticated (not only the identity) by using a (possibly
di�erent) hash-function H 0 in the following way : x = H 0(gr (mod n);M). In that case the
equation veri�cation becomes H 0(gyf c (mod n);M) = x.

Finally, the computation of x can be accelerated by using the well-known Chinese Remainder
Technique.

3A prime p is safe if p�1

2
is prime.
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2.3 Security properties

Let us briey consider the three conditions that a zero-knowledge protocol must satisfy.

a) Completeness is straight-forward :

gyf c = gr�dc mod('(n))f c = gr�dcf c = f er�edc+c = f er+c(1�ed) = f er = gr = x (mod n)

b) Soundness can be proved by exhibiting the following (informal) extractor : assume that a
machine can answer correctly to two di�erent challenge values c and c0 for the same value of
x. This means that this machine knows y and y0 such that :

gyf c = gy
0

f c
0

(mod n)

which is equivalent to f ey+c = f ey
0+c0 (mod n), i.e. f e(y�y0)+(c�c0) = 1 (mod n).

Assume (without loss of generality) that c > c0. Since c� c0 is greater than 0 and less than e,
the exponent of f is not equal to zero modulo e and therefore is not equal to zero. Hence it is
a multiple of the order of f modulo n. In case n and f are chosen as recommended in section
2.2, this exponent is a multiple of �(n)(or 1

2�(n)). Note that this multiple is \small" since y
and y0 are less than n. By a very classical result from Miller [10], such a multiple reveals the
factorization of n. As a consequence, assuming factorization is hard, no other entity than the
prover can answer to two di�erent values of the challenge and the success probability of an
impersonator is bounded by (1

e
)t. Typical values are e = 65537 and 1 � t � 4.

c) Now, the zero-knowledge property. In a few words, the simulator chooses at random c

in [0; e[ and y in [0; n[. Then he computes x from the veri�cation equation and sends it to
the veri�er. If and only if the veri�er sends the challenge c, the triplet (x; c; y) is an output
of the simulator. The expected time is t � e, and its distribution probability is statistically
indistinguishable from the true distribution. Roughly speaking, this is because n is \very
close" to '(n) (the di�erence is in the order of the square root of n if the two factors of n
have the same size). As usual, only honest-veri�er zero-knowledgeness is achieved when the
number t of rounds is constant (e.g. equal to 1). General (statistical) zero-knowledge would
require typically that t and e grow polynomially with the size of n.

2.4 On the y version

Here, we show an \on the y" variant, which is inspired from the Girault-Poupard-Stern
(GPS) scheme ([4],[12],[6]). It allows not to make any modular reduction during the on-line
computation. The counterpart is that r must be chosen a little bit larger and consequently
the response y also.
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Parameters: n a composite modulus
e a prime integer and d an integer such that ed = 1 (mod '(n))
f; g 2 Z�

n with g = f e (mod n)
A an integer >> e:n

Secret key: d

Public key: (n; e)

Prover Veri�er
Choose r 2 [0; A[
Compute x = gr (mod n)

x
��������!

Choose c 2 [0; e[
c

 ��������

Check c 2 [0; e[
Compute y = r � cd

y
��������!

Check y 2 [�(e� 1)(n� 2); A[
Check gyf c = x (mod n)

Figure 2 - On the y RSA-like

Note that the on the y version can be used in conjunction with any of the variants or
extensions described in this paper.

2.5 Case f = 2

The choice f = 2 allows to speed up the computation of x as well as the veri�cation.

Parameters: n a composite modulus
e a prime integer and d an integer such that ed = 1 (mod '(n))

Secret key: d

Public key: (n; e)

Prover Veri�er
Choose r 2 [0; '(n)[
Compute r0 = er (mod '(n))

Compute x = 2r
0

(mod n)
x

��������!

Choose c 2 [0; e[
c

 ��������

Check c 2 [0; e[
Compute y = (r � cd) (mod '(n))

y
��������!

Check y < n and 2ey+c = x (mod n)
Figure 3 - On-line/o�-line RSA-like with f = 2
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3 Extensions

3.1 Digital signature scheme

By using a standard method from Fiat and Shamir [3], the authentication scheme can be
easily turned into a digital signature scheme as follows:

Parameters: n a composite modulus
e a prime integer and d an integer such that ed = 1 (mod '(n))
f; g 2 Z�

n with g = f e (mod n)
H a collision-free hash-function
M message to be signed

Secret key: d

Public key: (n; e)

Prover Veri�er
Choose r 2 [0; '(n)[

Compute x = gr (mod n)
Compute c = H(x;M)
Compute y = (r � cd) (mod '(n))

y
��������!

Check y < n

Check H(gyf c (mod n);M) = c

Figure 4 - On-line/o�-line RSA-like (digital signature scheme)

The same sizes/values of parameters can be used, except c, which should be at least 160-bit
long, in order to prevent from �nding collisions on H by using a birthday attack.

3.2 Server-aided veri�cation

Veri�cation step is not so fast in this scheme, since it involves an exponentiation with a some-
what large exponent. In contrast, veri�cation is fast in the GQ scheme. A key observation
made in [7] is that GPS veri�cation step can be transformed into a GQ veri�cation step,
provided the exponentiation can be delegated to a (powerful) server. This implies to add
at least a new (public) parameter to those already existing in the GPS scheme, namely the
"GQ exponent". Another observation is that this server can be any third party, including
an untrusted one. This is useful in environments where a) the whole transaction must be
very rapid, b) the (secure) veri�cation chip is not powerful enough but is embedded in a
device including another (insecure but powerful) chip. Such a situation may occur e.g. in a
card-reader device or in a mobile telephone.

In the RSA-like scheme, that a public exponent is already part of the public key allows
to integrate the server-aided veri�cation option without modifying the set-up: the decision to
use (option 2) or not (option 1) this possibility can be made at the very last moment by the
veri�er, and therefore needs not be anticipated. With option 1, the security of the scheme is
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equivalent to factorisation, while in option 2 it is equivalent to RSA4. The resulting scheme
can be described as follows:

Parameters: n a composite modulus
e a prime integer and d an integer such that ed = 1 (mod '(n))
f; g 2 Z�

n with g = f e (mod n)

Secret key: d

Public key: (n; e)

Prover Veri�er Third party
Choose r 2 [0; '(n)[
Compute x = gr (mod n)

x
����!

Choose c 2 [0; e[
c

 ����

Check c 2 [0; e[
Compute y = (r � cd) (mod '(n))

y
����!

Check y < n

(all the operations below are performed
modulo n)

Option 1
check gyf c = x

Option 2
y
��!

Y = fy

Y
 ��

check Y ef c = x

Figure 5 - On-line/o�-line RSA-like with server-aided veri�cation

4 Conclusion

We have presented an authentication/digital signature scheme which combines compatibility
with RSA (the keys are the same), factorisation-based security and on-line/o�-line computa-
tion. Moreover it supports the so-called "server-aided veri�cation" option, which is of interest
when transaction time is a critical parameter. For all these reasons, this scheme is a good
candidate to replace RSA in all environments where RSA is not e�cient enough.

4The basic idea of the security proof in option 2 is that a collusion between a dishonest prover and a third
party able to be accepted by an honest veri�er can be used as an extractor of eth roots modulo n.
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