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Abstract

Minihypers are equivalent to linear codes meeting the Griesmer bound. We classify all
{6(p*+1), 6; 3, p* }-minihypers, 6§ < 2p>—4p, p = pf > 9, h > 1, for a prime number py > 7.
Such a minihyper is a sum of lines and of possibly one projected subgeometry PG(5,p),
or a sum of lines and a minihyper which is a projected subgeometry PG(5,p) minus one
line. When p is a square, also (possibly projected) Baer subgeometries PG(3,p*/?) can
occur. We will also discuss the general result on {§v,41,0v,;t, ¢}-minihypers.

1 Weighted minihypers and linear codes meeting the Gries-
mer bound

Let PG(t,q) be the t-dimensional projective space over GF(q), the finite field of order g.

This abstract collects the results from [4, 3]. We refer to the abstract [2] for a similar
threatment, although here, we will also describe the different types of projected PG(5,p) on
PG(3,p%). This will be done by discussing the space spanned by L, the line from which we
project, and its conjugates.

A linear [n, k,d; q] code C over the finite field GF(q) of order ¢ is a k-dimensional subspace
of the n-dimensional vector space V(n,q) over GF(q), having minimum Hamming distance
d.

From an economical point of view, it is interesting to use linear codes having a minimal
length n for given k, d and gq. The Griesmer bound states that if there exists a linear [n, k, d; g]

code for given values of k,d and ¢, then n > Zi‘:ol [%-‘ = gq(k,d), where [z] denotes the

smallest integer greater than or equal to z [8, 16].

We describe the link between weighted minihypers and linear codes meeting the Griesmer
bound. These results were described in Hamada and Helleseth [10].

Definition 1.1 (Hamada and Tamari [12]) An {f, m; N, q}-minihyper is a pair (F,w), where
F is a subset of the point set of PG(N,q) and w is a weight function w : PG(N,q) — N :
x — w(z), satisfying

(1) wz) >0z e L,

(2) Doep (@) = f, and

(3) min(3_,cqgw(z) | H € H) = m; where H denotes the set of hyperplanes of PG(N,q).
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In the case that w is a mapping onto {0,1}, the minihyper (F,w) can be identified with
the set F' and is simply denoted by F'.
The excess e of a minihyper (F,w) is the number y_ . p(w(z) <1).

Suppose there exists a linear [n, k, d; g]-code meeting the Griesmer bound (d > 1,k > 3),
then we can write d in an unique way as d = fgb~! @Zf:_g €;q™ such that # > 1 and
0<e¢<q.

Using this expression for d, the Griesmer bound for an [n, k,d; q] code can be expressed
as: n > Qv @Zf;g €ivy, 11 where v, = (¢! ©1)/(¢ 1), for any integer [ > 0.

Let E(t,q) denote the set of all ordered tuples ({p,-..,(;—1) of integers (; such that
(C(),...,Ct,l) #* (O,,O) and either: (a) 0<G0<qel,0<(1<qgel,...,0< G <gel,

or (b) CO = q,O S Cl S q<:>1770 S thl S l]<:>17 or (C) CO = s = C)\—l = 07 C)\ = q,
0<O+1<gel,...,0< (-1 <g<l for some integer A € {1,...,t <1},
From now on, we suppose that (eg,...,€x_2) belongs to E(k <1, q).

Hamada and Helleseth [10, 11] showed that there is a one-to-one correspondence between
the set of all non-equivalent [n,k,d;q| codes meeting the Griesmer bound and the set of all
projectively distinct {Zf:_g eiv)\ﬁl,Zf:_OZ €0);; k <1, ¢}-minihypers (F,w), such that 1 <
w(p) < @ for every point p € F'.

More precisely, the link is described in the following way. Let G = (g1 - - - gn) be a generator
matrix for a linear [n, k, d; q] code, meeting the Griesmer bound. We look at a column of G
as being the coordinates of a point in PG(k <1,q). Let the point set of PG(k <1,q) be
{s1,...,8y,}. Let m;(G) denote the number of columns in G defining s;. Let m(G) be
the maximum value in {m;(G) | i = 1,2,...,v;}. Then § = m(G) is uniquely determined
by the code C' and we call it the mazimum multiplicity of the code. Define the weight
function w : PG(k ©1,q9) — Nas w(s;) = 0 ©mi(G), ¢ = 1,2,...,v,. Let F = {s; €
PG(ke1,q) | w(s;) > 0}, then (F,w) is a {3 "2 cjon,11, 223 €vn,; k<1, ¢}-minihyper with
weight function w.

2 A particular class of minihypers

Minihypers have many applications in finite geometries [1, 5, 6, 7]. A class of minihypers which
is crucial in the study of mazimal partial t-spreads and minimal t-covers in finite projective
spaces PG(n,q), where (¢ + 1)|(n + 1), is the class of {§viy1, 6ve;n, ¢}-minihypers.

A further reason to study this particular class of minihypers is that for this class, there is
a duality principle; indeed, as will be explained later on more in detail, for a {§vs, bv1;3,q}-
minihyper (F,w), the blocking planes through a point of (F,w) form a dual blocking set in
the quotient geometry of this point.

We improve the results of [6]. By using the recent results on the classification of the
smallest minimal blocking sets B in PG(2,p?), new classification results on {§viy1, dvi;n, p3}-
minihypers are obtained.

We present the results for {6v, §v1;3, p}-minihypers, and refer to [4] where the other
cases for (t,n) are discussed.

The easiest way to construct weighted minihypers is to construct a sum of certain geo-
metrical objects.

Consider a number of geometrical objects, such as subspaces PG(d, q = p*) of PG(n,q =
p"), subgeometries PG(d, pt) of PG(n,q = p"), where t|h, and even projected subgeometries
PG(d,p') in PG(n,q = p"), where t|h. In the first two cases, a point of respectively PG(d, q)
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or PG(d,p') has weight one, while all the other points not belonging to respectively PG(d, q)
or PG(d,p') have weight zero. In the latter case, let IT be a projected PG(d,p?). The weight
of a point s € II of the projected subgeometry II is the number of points s’ of PG(d, p’) that
are projected onto s; all other points s not belonging to II have weight zero.

Then the sum of these subspaces and (projected) subgeometries is the weighted set (F, w),
where the weight w(s) of a point s of (F,w) is the sum of all the weights of s in the subspaces
and (projected) subgeometries of (F,w).

We will characterize the {§(p® + 1),6;3,p?}-minihypers, § small, with excess e < p3, as
being either: (1) a sum of lines, (projected) subgeometries PG(3,p*?) when p is square,
and of at most one projected PG(5,p), or (2) the sum of lines, (projected) subgeometries
PG(3,p3/?) when p is square, and one {(p2 + p)(p® + 1), p? + p; 3, p? }-minihyper which is a
projected PG(5,p) minus one line.

The crucial substructures that are used in the characterizations of the minihypers are
so-called blocking sets.

Definition 2.1 A blocking set of PG(2,q) is a set of points intersecting every line of PG(2,q)
in at least one point.

A blocking set is called minimal when no proper subset of it is still a blocking set; and we
call a blocking set non-trivial when it contains no line.

A blocking set of PG(2,q) is called small when it has less than 3(q+ 1)/2 points.

If ¢ = p", p prime, we call the exponent e of the minimal blocking set B the mazimal
integer e such that every line intersects B in 1 modulo p® points.

From a result of Szényi [17], it follows that e > 1 for every small non-trivial minimal
blocking set in PG(2,q).

A plane intersecting a minihyper (F,w) of PG(3,q) in a blocking set will be called a
blocking plane of (F,w).

Crucial in our classification results are the recent classification results on non-trivial min-
imal blocking sets in PG/(2,p?).

3 Known results on blocking sets

Theorem 3.1 (Polverino [13, 14], Polverino and Storme [15]) The smallest minimal blocking
sets in PG(2,p), p = p{l, po prime, po > 7, with exponent e > h, are:

(1) a line,
(2) a Baer subplane of cardinality p® + p3/? + 1, when p is a square,
3) a set B of cardinality p> + p?> + 1, equivalent to

Y

3/2

{(z,T(2),1) |z € GF(p*)} U{(z, T(2),0) | = € GF(p*) \ {0}},

with T the trace function from GF(p3) to GF(p), i.e., T : GF(p?) — GF(p) : & — w4zl 42",
A line intersects this blocking set B in 1,p+1 or p>+1 points. The last type of intersection

with a line will be called a (p? + 1)-set.

(4) a set B of cardinality p* + p* + p+ 1, equivalent to

{(z,2",1) | € GF(p*)} U{(x,2?,0) | & € GF(p*) \ {0}}.
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A line intersects B in 1,p + 1 or p? + p + 1 points.
The last type of intersection with a line will be called a (p* +p + 1)-set.

Remark 3.2 These two latter blocking sets (3) and (4) are also characterized as being a
projected PG(3,p) in the plane PG(2,p?). Namely, embed PG(2,p?) in a 3-dimensional
space PG(3,p?). Consider a subgeometry PG(3,p) of PG(3,p®) and a point r not belonging
to this subgeometry PG(3,p) and not belonging to the plane PG(2,p?).

Project PG(3,p) from r onto PG(2,p3).

If the point r belongs to a line of the subgeometry PG(3, p), then this PG(3,p) is projected
onto the blocking set of size p34p?4-1; otherwise we obtain the blocking set of size p>+p>+p-+1.

Important in our techniques is the following result on plane intersections of a minihyper
(F,w) in PG(3,q).

Theorem 3.3 (Hamada and Helleseth [9]) Let (F,w) be a {6(q+1),8;t,q}-minthyper where
t>3,6<2p%

Then a plane of PG(t,q) is either contained in (F,w) or intersects (F,w) in an {mgy +
mi(q +1),my; 2, q}-minihyper with mo +my = 6.

For a plane intersecting a minihyper (F,w) in an {mg + mi(q + 1), m1;2, ¢}-minihyper,
we will call my the multiplicity of that plane with respect to the minihyper (F,w).

Lemma 3.4 (Govaerts and Storme [6]) A point of a {6(q+1),8;3, ¢}-minihyper (F,w) having
weight one is contained in exactly ¢ + & planes with respect to (F,w), counted with multiplic-
ties.

A point having weight zero with respect to a {6(q + 1),6;3,q}-minihyper (F,w) is contained
in ezactly § planes with respect to (F,w), counted with multiplicities.

Lemma 3.5 (Govaerts and Storme [6]) A line L contains « points of a {6(¢ +1),6;3,q}-
minthyper (F,w) in PG(3,q) if and only if there are exactly a planes with respect to (F,w)
through L.

4 Examples

The main problem in the classification results on {6(p® + 1),8;3,p>}-minihypers F' that will
be presented is that such minihypers might contain projected subgeometries PG(5,p) = Q.

We now give the detailed description of the different types of points s in a projected sub-
geometry PG(5,p) = Qin PG(3,p?), and of the planes of PG(3,p?) passing through s which
share a projected subgeometry PG(3,p) with .

Consider a subgeometry A = PG(5,p) naturally embedded in PG(5,p3). Let L be a line
of PG(5,p?) skew to A. Then the line L has two conjugate lines with respect to A. We will

always denote these conjugate lines by L? and L.

Case 1. Suppose 2 is the projection of a PG(5,p) = A from a line L with dim (L, L?, Lpz) =5.
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Then every projected point s in €2 has weight one. Every point s € (2 lies on exactly one
(p® +p+1)-set, on p* + p* +p? (p +1)-secants, and lies in p* + p% +p + 1 planes of PG(3,p?)
sharing a minimal 1-fold blocking set of size p* + p? + p + 1 with Q.

This is proven in the following way. Let s be the projection of the point s’ of A. The
planes (r,r?, 7"1’2) N A, r € L, induce a regular 2-spread in A, i.e., a partitioning of the point
set of A into planes. The planes of this regular 2-spread are projected onto (p% + p + 1)-sets
of ; thus implying that s lies on exactly one (p? + p + 1)-set of . Through such a plane
(r, rp,rp2> NA, r € L, there pass p?> +p + 1 3-spaces of A which are projected onto planar
minimal blocking sets of size p> + p? + p + 1.

And, similarly, if one considers a 3-space of A defined by s’ and a plane (r',r'?, r’p2> NA,
r' € L, with s' & (r’,r’p,r’pz) N A; also such a 3-space of A is projected onto a planar minimal
blocking set of size p3 4+ p® 4+ p + 1.

This shows that s lies in total on p® + p? + p + 1 planes of PG(3,p*) sharing a minimal
1-fold blocking set of size p® + p* + p + 1 with Q.

In general, a plane of PG(3,p?) intersects Q in either a PG(2,p), a (p> +p -+ 1)-set, or in
a minimal blocking set of size p® + p> 4+ p + 1.

Case 2. Suppose 2 is the projection of a PG(5,p) = A from a line L with dim(L, L?, Lpz) =4.

Then the 4-dimensional space (L,Lp,Lp2> N A is called the special 4-space of A, and
similarly, its projection is called the special projected 4-space of Q2. We will denote this
special 4-space (L, L?, Lpz) NA by P.

Then for exactly one point r of L, dim(r, r?, 7"1’2) = 1. Thisline M = (r,7?, 7"1’2) is projected
from L onto a point of  of weight p+ 1. The other p® points 7 of L satisfy dim(r, 7P, sz> =2.
The latter planes (r,r?,77") N A are projected onto (p? + p + 1)-sets of PG(3,p?).

Let s be the point of Q of weight p + 1. Every plane 7 of A passing through M and not
lying in P is projected from L onto a (p? + 1)-set with special point s. Each such plane 7
lies in p? + p + 1 solids of A which are projected onto planar minimal blocking sets of size
p3 + p% + 1; thus implying that s lies in p* + p3 4 p? planes of PG(3,p?) sharing a 1-fold
blocking set of size p3 + p? + 1 with Q.

Let s be a point of  different from the point of weight p + 1 and not lying in the special
4-space P of . Assume s is the projection of s' € A. Then each solid (r, PP’ s"), with
r € L\ M, is projected onto a planar minimal blocking set of size p> 4+ p? + p+ 1; hence, s lies
in p? such planes. And every solid of A passing through M and s’ is projected onto a planar
minimal blocking set of size p® 4+ p? + 1 passing through s; thus giving p% 4 p + 1 extra planes
through s intersecting 2 in a projected PG(3,p).

Let s be a point of weight one of  which is the projection of a point s’ of P. Then the
plane (M, s') lies in p? 3-spaces of A not contained in P which are projected onto planar
blocking sets of size p* + p + 1 through s.

Case 3. Suppose 2 is the projection of a PG(5,p) = A from a line L with dim (L, L?, Lpz) =3.
Let P = (L, LP, L*’) N A.
Every plane « through L in (L, L?, Lp2> has two conjugate planes of, a?® with respect to

A, and these three planes intersect in at least one point of P. Hence every plane through
. 2 . . . .
L in (L, LP,LP") contains at least one point of P. Then we call the 3-dimensional space P
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the special 3-space of A, and its projection will always be denoted by the line N. There are
p + 1 skew lines Ly,..., Lyt in P which are projected onto points of weight p + 1, and the
remaining p3 <>p points of P are projected onto points of weight one of the line V.

A point s' of A\ P is projected onto a point s lying on p + 1 (p? + 1)-secants, which are
the projections of (s', L;) VA, i =1,...,p+ 1. Each such (p%+ 1)-secant through s lies in p?
planes of PG(3,p?) containing a projected PG(3,p) of A, which is a minimal blocking set of
size p® +p? +1; hence, s’ lies in p3 + p® such planes. Considering these PG(3,p)’s in A; these
are the PG(3,p)’s through a plane (s', L;) only intersecting P in L;.

Furthermore, P is projected on the line N through which there are p+1 planes of PG(3,p®)
containing p* 4+ p® + p? + p + 1 projected points of A. The other planes through N contain
p® + p? + p + 1 projected weighted points; these all lie on N.

Hence, this projection forms a {(p?+p+1)(p3+1), p>+p-+1; 3, p?}-minihyper containing the
line N. Reducing the weight of every point on N by one yields a {(p?+p)(p3+1),p>+p; 3, p}-
minihyper.

Case 4. Suppose 2 is the projection of a PG(5,p) = A from a line L with dim (L, L?, Lpz) =2.

Then this projection is a cone of p? +p+ 1 lines; the vertex of the cone is a common point
having weight p%+p+1 arising from the projection of the points of the plane (L, L?, Lpz) NA,
and the base of the cone is a subplane PG(2,p).

5 The classification result on minihypers

We now start the description of the arguments leading to the classification result of Theorem
5.7. We assume that (F,w) is a weighted minihyper satisfying the conditions of Theorem 5.7.
The first result shows that we can assume that (F,w) does not contain any lines.

Theorem 5.1 If (F,w) contains a line, then we can delete this line from (F,w) to obtain a
{(6 ©1)(q +1),6 <1, 3, g}-minihyper.

Now we describe this duality property that is valid for the {§(p? 4+ 1), §;3, p® }-minihypers,
and that was mentioned at the beginning of Section 2.

Consider a point r of (F,w) with weight one. If we consider the planes of PG(3,p?)
through 7, according to their multiplicities with respect to (F,w), then they form a dual
non-trivial blocking set of size p3 + § in the quotient geometry of 7.

We will describe this quotient geometry by means of a plane 7, skew to r, and denote the
dual blocking set of blocking planes in 7, by B,P.

This dual blocking set contains a dual minimal blocking set E. By the classification
results of Polverino and Storme (Theorem 3.1), there are three possibilities for this dual
minimal blocking set E. We discuss the three possibilities separately.

Theorem 5.2 If E is a Baer subplane, then (F,w) contains a PG(3,p%?) through r.
Theorem 5.3 It is impossible that E has size p* + p? + 1.
So only the dual of the minimal blocking set of size p® 4 p? + p + 1 remains as possibility

for F (Theorem 3.1). This latter blocking set intersects exactly one line in p? +p 4 1 points.
Dualizing this property, the following result is obtained.
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Remark 5.4 There is a special point sy € 7,, contained in p? 4+ p + 1 lines of E.

We now use these p?> 4+ p + 1 lines of E through r. These lines of E through r define
p? +p + 1 blocking planes of (F,w) through r. We use the intersections of these planes with
(F,w) to construct a projected subgeometry PG(5,p) completely contained in (F,w).

Lemma 5.5 There are at least three planes o, 3,7y defined by r and a line of E, which satisfy
the following properties:

(1) they intersect (F,w) in an 1-fold blocking set,

(2) these 1-fold blocking sets aN (Fyw),B N (Fyw),y N (F,w) contain minimal 1-fold blocking
sets Ey, Ey, E3 which are projected subgeometries PG(3,p) sharing the same (p* + 1)- or
(p® +p +1)-set on rso, and

(3) these projected subgeometries F1, Eo, Es define a projected subgeometry Q = PG(5,p) of
PG(3,p%).

Using the other planes through = defined by a line of E, it is possible to prove that this
latter projected subgeometry € lies completely in (F,w).

Theorem 5.6 The projected subgeometry PG(5,p) = Q is contained in (F,w).

We have now discussed all the possibilities. We have obtained the following characteriza-
tion result on minihypers.

Theorem 5.7 (Ferret and Storme [3]) A {§(p® + 1), 6;3,p}-minihyper, p = pft, po prime,
h>1,p>17,p>9, 6 <2p®4p, and with excess e < p°, is either:

(1) a sum of lines, (projected) PG(3,p>?)’s, and at most one projected PG(5,p) projected
from a line L for which dim(L,Lp,Lpz) >3,

(2) a sum of lines, (projected) PG(3,p%/?)’s, and a {(p* + p)(p® + 1), + p; 3,p32}—minihyper
Q\ N, where Q is a PG(5,p) projected from a line L for which dim(L,L? LP") = 3, and
where N is the line contained in Q.

6 The general result

We first of all extended the result on the {6(p® + 1), 6; 3, p®}-minihypers of Theorem 5.7 to
{6(p® +1),6; N, p?}-minihypers, with N > 4.

Theorem 6.1 (Ferret and Storme [4]) A {6(p® + 1), 6; N, p*}-minihyper, N > 4, p = pf, po
prime, po > T, p > 9, § < 2p® <4p, with total excess e < p* <4p, is a sum of either:

(1) lines, (projected) PG(3,p%2)’s (where the projection is from a point), and at most one
(projected) PG(5,p),

(2) lines, (projected) PG(3,p%?)’s, and a {(p* + p)(p® + 1),p* + p; 3, p?}-minihyper Q\ N,
where Q is a PG(5,p) projected from a line L for which dim(L,Lp,Lp2> =3, and where N is
the line contained in ).

This result then was the building tool for the general classification result.

Theorem 6.2 (Ferret and Storme [4]) Let F be a {6vyi1,6v,; N, p®}-minihyper, p > 2,
§<2p?<4p, N >3, p :pg >9, h>1, pyg> T prime, with excess e < p® + p.

Then F is a sum of p-dimensional spaces PG(p,p?), (projected) PG(2u + 1,,/q)’s, and
of at most one (projected) subgeometry PG(3u + 2,p).
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