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Abstract

We show that the dual code of the cyclic code C with two zeros �; �t cannot have three
weights in the case that m is even, t � 0 (mod 3), and d(C) > 3. The proof involves the
partial calculation of a coset weight distribution.

1 Introduction

Let n = 2m�1 and let F = F2m . Let � be a primitive root of F . Let C denote the cyclic code
of length n with two zeros � and �t, where t � 3 is odd. The minimum distance d = d(C) of
C satis�es 3 � d � 5. We do not assume that t is relatively prime to n, but we do assume
that dimC? = 2m.

These cyclic codes and their weight distributions arise in a surprising variety of di�erent
places. They are closely related to the crosscorrelation functions of m-sequences (maximal
length linear feedback shift register sequences) related by a decimation t, see [1] for example.
They arise in the study of the nonlinearity of power functions from F to F (see [1]), which are
used in S-boxes in Feistel ciphers in cryptography. The weights give rise to exponential sums
of the type that number theorists have studied, and results such as the Weil-Carlitz-Uchiyama
bound have consequences for the weights. And in coding theory itself, they are in one sense
the "simplest" cyclic codes for which the minimum distance is not completely known.

Of particular interest are the cases when C? has exactly three nonzero weights. There
are many conjectures and results on the instances that C? is a three-weight code. These
results are closely related to questions about three-valued crosscorrelation functions. The
paper of Canteaut-Charpin-Dobbertin [1] has a study of the weight divisibility of these three-
weight codes. These cases often correspond to power functions of maximal nonlinearity. It
is therefore of great interest to classify the values of m and t for which C? is a three-weight
code. Such a classi�cation is probably di�cult. We present a partial result in that direction
here.

It is shown in [2] that when m is even and t 6� 0 (mod 3), the minimum distance of C
must be equal to 3. In this case it is possible for C? to have three weights, as happens for
example when m = 6 and t = 5 or 13. In this paper we consider the case when m is even and
t � 0 (mod 3). We will prove that C? cannot have three weights when d > 3. We remark
that there are many examples of C with m even, t � 0 (mod 3) and d > 3; one occurs when
m = 10, t = 9. There are also many examples of C with m even, t � 0 (mod 3) and d = 3.
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However, we do not know of an example with m even, t � 0 (mod 3), d = 3, and C? having
three weights, so it is possible that our result can be extended to the case d = 3.

We index vectors of length n by F � (the nonzero elements of F ). The support of a vector
is the subset of F � where the vector has nonzero entries.

2 The Result

Suppose then that C? has the three weights w1 = 2m�1 � a, w2 = 2m�1, and w3 = 2m�1 + b
(the weights must have this form). Let Ai be the number of codewords of weight i in C?, and
let Bi be the number of codewords of weight i in C. Since C is a subcode of the Hamming
code we have B1 = B2 = 0.

The MacWilliams identities give

Aw1
=

2m�1(2m � 1)(2m�1 + b)

a(a+ b)
(1)

Aw2
=

(2m � 1)(2m�1(a� b)� 22m�2 + ab+ 2mab)

ab
(2)

Aw3
=

2m�1(2m � 1)(2m�1 � a)

b(a+ b)
(3)

B3 =

�
2m � 1

3

��
a� b� 1 +

ab

2m�1

�
: (4)

Let ht(x) = xt+ (x+ 1)t +1. Let N(m; t) denote the number of distinct roots of ht(x) in
F . The following result is not hard (see [4]).

Theorem 1 [4]

N(m; t) =
6B3

2m � 1
+ 2:

Theorem 1 and equation 4 yield

Corollary 2

N(m; t) = 2(a� b) +
ab

2m�2
:

Consider next the annihilator polynomial of C?

F (x) = 22m
�
1�

x

w1

��
1�

x

w2

��
1�

x

w3

�
(5)

whose roots are the weights. We express F (x) in its Krawtchouk expansion

F (x) = �0P0(x) + �1P1(x) + �2P2(x) + �3P3(x) (6)

where Pk(x) =
Pk

j=0(�1)
j
�
x
j

��
n�x
k�j

�
is the k-th binary Krawtchouk polynomial.

Lemma 3 If B3 = 0 then

�2 =
1

2m�1 � 1

�
ab

2m�2
+ 1

�
and �3 =

3

2m�1 � 1
:
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Proof: As shown in [4], equating coe�cients gives

�3 =
3 � 2m�1

w1w3
(7)

and
�2

�3
=

2

3
(w1 +w3 + 2m�1)� n: (8)

Substituting (7) into (8) and using equation (4) together with B3 = 0 gives the result. �

The following result follows from Theorem 3.2 in Delsarte [3]:

Lemma 4 Let Bi(x) be the number of vectors of weight i in C + x, where x 2 F
m
2 . ThenP3

i=0 �iBi(x) = 1 for all x 2 Fm2 .

Let F4 = f0; 1; !; !2g � F .

Theorem 5 If m is even and t � 0 (mod 3), then the number of weight 4 codewords in C
whose support contains f1; !g is d� 3, where d = gcd(t; 2m � 1).

Proof: Since the parity check matrix for C is

�
1 � �2 : : : �n�1

1 �t �2t : : : �(n�1)t

�
; (9)

the weight 4 codewords containing f1; !g correspond to solutions y 2 F n f0; 1; !; !2g of

1 + !t + yt + (1 + ! + y)t = 0:

Since 3jt this becomes yt + (!2 + y)t = 0, or

�
1 +

!2

y

�t

= 1: (10)

Let d = gcd(t; 2m � 1). Let r1 = 1; r2; : : : ; rd 2 F be the roots of xd � 1, i.e., the t-th roots
of unity in F . Choosing y = !2=(1 + ri) for i = 2; 3; : : : ; d gives d� 1 solutions to (10), and
these are all the solutions to (10) in F .

However, the solutions y = 1 and y = ! do not correspond to weight 4 codewords. Thus
there are d� 3 weight 4 codewords whose support contains f1; !g. �

Theorem 6 If m is even and t � 0 (mod 3) and d(C) > 3, then it is not possible for C?

to have three weights.

Proof: Suppose C? has three weights and continue the notation as above. Let x be the
vector of weight 2 with support f1; !g, and consider the coset C + x. For this coset we have
B0(x) = 0, and B1(x) = 0 because d > 3. Also B2(x) = d� 2 by Theorem 5.

Then Lemmas 3 and 4 give

1

2m�1 � 1

�
ab

2m�2
+ 1

�
(d� 2) +

3

2m�1 � 1
B3(x) = 1
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or �
ab

2m�2
+ 1

�
(d� 2) + 3B3(x) = 2m�1 � 1: (11)

Note that ab
2m�2

is an integer by equation (4). Since m is even and 3jt, d is divisible by 3 and
2m�1 � 2 (mod 3). Taking equation (11) modulo 3 gives

ab

2m�2
+ 1 � 1 (mod 3)

from which we conclude ab � 0 (mod 3).
Returning to equation (2) we �nd

Aw2

2m � 1
=

2m�1(a� b)� 22m�2

ab
+ 1 + 2m;

and since 2m � 1 divides Aw2
we obtain

2m�1[a� b� 2m�1]

ab
2 Z:

Since 3 divides ab we must have a�b�2m�1 � 0 (mod 3) which implies a�b � 2 (mod 3).
Now Corollary 2 implies N(m; t) � 1 (mod 3).

On the other hand, 2m�1 divides B3 because 3jt (see [4]), so Theorem 1 implies N(m; t) �
2 (mod 3). This contradiction completes the proof. �
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