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Abstract

Minihypers are equivalent to linear codes meeting the Griesmer bound. We classify all
f�(p3+1); �; 3; p3g-minihypers, � � 2p2�4p, p = ph0 � 9, h � 1, for a prime number p0 � 7.
Such a minihyper is a sum of lines and of possibly one projected subgeometry PG(5; p),
or a sum of lines and a minihyper which is a projected subgeometry PG(5; p) minus one
line. When p is a square, also (possibly projected) Baer subgeometries PG(3; p3=2) can
occur. We will also discuss the general result on f�v�+1; �v�; t; qg-minihypers.

1 Weighted minihypers and linear codes meeting the Gries-

mer bound

Let PG(t; q) be the t-dimensional projective space over GF (q), the �nite �eld of order q.
This abstract collects the results from [4, 3]. We refer to the abstract [2] for a similar

threatment, although here, we will also describe the di�erent types of projected PG(5; p) on
PG(3; p3). This will be done by discussing the space spanned by L, the line from which we
project, and its conjugates.

A linear [n; k; d; q] code C over the �nite �eld GF (q) of order q is a k-dimensional subspace
of the n-dimensional vector space V (n; q) over GF (q), having minimum Hamming distance
d.

From an economical point of view, it is interesting to use linear codes having a minimal
length n for given k; d and q. The Griesmer bound states that if there exists a linear [n; k; d; q]

code for given values of k; d and q, then n � Pk�1
i=0

l
d
qi

m
= gq(k; d), where dxe denotes the

smallest integer greater than or equal to x [8, 16].

We describe the link between weighted minihypers and linear codes meeting the Griesmer
bound. These results were described in Hamada and Helleseth [10].

De�nition 1.1 (Hamada and Tamari [12]) An ff;m;N; qg-minihyper is a pair (F;w), where
F is a subset of the point set of PG(N; q) and w is a weight function w : PG(N; q) ! N :
x 7! w(x), satisfying
(1) w(x) > 0, x 2 F ,
(2)

P
x2F w(x) = f , and

(3) min(
P

x2H w(x) j H 2 H) =m; where H denotes the set of hyperplanes of PG(N; q).
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In the case that w is a mapping onto f0; 1g, the minihyper (F;w) can be identi�ed with
the set F and is simply denoted by F .

The excess e of a minihyper (F;w) is the number
P

x2F (w(x)� 1).

Suppose there exists a linear [n; k; d; q]-code meeting the Griesmer bound (d � 1; k � 3),
then we can write d in an unique way as d = �qk�1 �Pk�2

i=0 �iq
�i such that � � 1 and

0 � �i < q.
Using this expression for d, the Griesmer bound for an [n; k; d; q] code can be expressed

as: n � �vk �
Pk�2

i=0 �iv�i+1 where vl = (ql � 1)=(q � 1), for any integer l � 0.
Let �E(t; q) denote the set of all ordered tuples (�0; : : : ; �t�1) of integers �i such that

(�0; : : : ; �t�1) 6= (0; : : : ; 0) and either: (a) 0 � �0 � q� 1; 0 � �1 � q � 1; : : : ; 0 � �t�1 � q � 1,
or (b) �0 = q; 0 � �1 � q � 1; : : : ; 0 � �t�1 � q � 1, or (c) �0 = : : : = ���1 = 0, �� = q,
0 � ��+1 � q � 1; : : : ; 0 � �t�1 � q � 1 for some integer � 2 f1; : : : ; t� 1g.

From now on, we suppose that (�0; : : : ; �k�2) belongs to �E(k � 1; q).
Hamada and Helleseth [10, 11] showed that there is a one-to-one correspondence between

the set of all non-equivalent [n; k; d; q] codes meeting the Griesmer bound and the set of all
projectively distinct fPk�2

i=0 �iv�i+1;
Pk�2

i=0 �iv�i ; k � 1; qg-minihypers (F;w), such that 1 �
w(p) � � for every point p 2 F .

More precisely, the link is described in the following way. Let G = (g1 � � � gn) be a generator
matrix for a linear [n; k; d; q] code, meeting the Griesmer bound. We look at a column of G
as being the coordinates of a point in PG(k � 1; q). Let the point set of PG(k � 1; q) be
fs1; : : : ; svkg. Let mi(G) denote the number of columns in G de�ning si. Let m(G) be
the maximum value in fmi(G) j i = 1; 2; : : : ; vkg. Then � = m(G) is uniquely determined
by the code C and we call it the maximum multiplicity of the code. De�ne the weight
function w : PG(k � 1; q) ! N as w(si) = � � mi(G), i = 1; 2; : : : ; vk. Let F = fsi 2
PG(k�1; q) j w(si) > 0g, then (F;w) is a fPk�2

i=0 �iv�i+1;
Pk�2

i=0 �iv�i ; k�1; qg-minihyper with
weight function w.

2 A particular class of minihypers

Minihypers have many applications in �nite geometries [1, 5, 6, 7]. A class of minihypers which
is crucial in the study of maximal partial t-spreads and minimal t-covers in �nite projective
spaces PG(n; q), where (t+ 1)j(n+ 1), is the class of f�vt+1; �vt;n; qg-minihypers.

A further reason to study this particular class of minihypers is that for this class, there is
a duality principle; indeed, as will be explained later on more in detail, for a f�v2; �v1; 3; qg-
minihyper (F;w), the blocking planes through a point of (F;w) form a dual blocking set in
the quotient geometry of this point.

We improve the results of [6]. By using the recent results on the classi�cation of the
smallest minimal blocking sets B in PG(2; p3), new classi�cation results on f�vt+1; �vt;n; p3g-
minihypers are obtained.

We present the results for f�v2; �v1; 3; p3g-minihypers, and refer to [4] where the other
cases for (t; n) are discussed.

The easiest way to construct weighted minihypers is to construct a sum of certain geo-
metrical objects.

Consider a number of geometrical objects, such as subspaces PG(d; q = ph) of PG(n; q =
ph), subgeometries PG(d; pt) of PG(n; q = ph), where tjh, and even projected subgeometries
PG(d; pt) in PG(n; q = ph), where tjh. In the �rst two cases, a point of respectively PG(d; q)
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or PG(d; pt) has weight one, while all the other points not belonging to respectively PG(d; q)
or PG(d; pt) have weight zero. In the latter case, let � be a projected PG(d; pt). The weight
of a point s 2 � of the projected subgeometry � is the number of points s0 of PG(d; pt) that
are projected onto s; all other points s not belonging to � have weight zero.

Then the sum of these subspaces and (projected) subgeometries is the weighted set (F;w),
where the weight w(s) of a point s of (F;w) is the sum of all the weights of s in the subspaces
and (projected) subgeometries of (F;w).

We will characterize the f�(p3 + 1); �; 3; p3g-minihypers, � small, with excess e � p3, as
being either: (1) a sum of lines, (projected) subgeometries PG(3; p3=2) when p is square,
and of at most one projected PG(5; p), or (2) the sum of lines, (projected) subgeometries
PG(3; p3=2) when p is square, and one f(p2 + p)(p3 + 1); p2 + p; 3; p3g-minihyper which is a
projected PG(5; p) minus one line.

The crucial substructures that are used in the characterizations of the minihypers are
so-called blocking sets.

De�nition 2.1 A blocking set of PG(2; q) is a set of points intersecting every line of PG(2; q)
in at least one point.

A blocking set is called minimal when no proper subset of it is still a blocking set; and we
call a blocking set non-trivial when it contains no line.

A blocking set of PG(2; q) is called small when it has less than 3(q + 1)=2 points.
If q = ph, p prime, we call the exponent e of the minimal blocking set B the maximal

integer e such that every line intersects B in 1 modulo pe points.

From a result of Sz}onyi [17], it follows that e � 1 for every small non-trivial minimal
blocking set in PG(2; q).

A plane intersecting a minihyper (F;w) of PG(3; q) in a blocking set will be called a
blocking plane of (F;w).

Crucial in our classi�cation results are the recent classi�cation results on non-trivial min-
imal blocking sets in PG(2; p3).

3 Known results on blocking sets

Theorem 3.1 (Polverino [13, 14], Polverino and Storme [15]) The smallest minimal blocking
sets in PG(2; p3), p = ph0 , p0 prime, p0 � 7, with exponent e � h, are:

(1) a line,
(2) a Baer subplane of cardinality p3 + p3=2 + 1, when p is a square,
(3) a set B of cardinality p3 + p2 + 1, equivalent to

f(x; T (x); 1) j x 2 GF (p3)g [ f(x; T (x); 0) j x 2 GF (p3) n f0gg;

with T the trace function from GF (p3) to GF (p), i.e., T : GF (p3)! GF (p) : x 7! x+xp+xp
2

.
A line intersects this blocking set B in 1; p+1 or p2+1 points. The last type of intersection

with a line will be called a (p2 + 1)-set.
(4) a set B of cardinality p3 + p2 + p+ 1, equivalent to

f(x; xp; 1) j x 2 GF (p3)g [ f(x; xp; 0) j x 2 GF (p3) n f0gg:
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A line intersects B in 1; p+ 1 or p2 + p+ 1 points.
The last type of intersection with a line will be called a (p2 + p+ 1)-set.

Remark 3.2 These two latter blocking sets (3) and (4) are also characterized as being a
projected PG(3; p) in the plane PG(2; p3). Namely, embed PG(2; p3) in a 3-dimensional
space PG(3; p3). Consider a subgeometry PG(3; p) of PG(3; p3) and a point r not belonging
to this subgeometry PG(3; p) and not belonging to the plane PG(2; p3).

Project PG(3; p) from r onto PG(2; p3).
If the point r belongs to a line of the subgeometry PG(3; p), then this PG(3; p) is projected

onto the blocking set of size p3+p2+1; otherwise we obtain the blocking set of size p3+p2+p+1.

Important in our techniques is the following result on plane intersections of a minihyper
(F;w) in PG(3; q).

Theorem 3.3 (Hamada and Helleseth [9]) Let (F;w) be a f�(q+1); �; t; qg-minihyper where
t � 3, � � 2p2.

Then a plane of PG(t; q) is either contained in (F;w) or intersects (F;w) in an fm0 +
m1(q + 1);m1; 2; qg-minihyper with m0 +m1 = �.

For a plane intersecting a minihyper (F;w) in an fm0 +m1(q + 1);m1; 2; qg-minihyper,
we will call m1 the multiplicity of that plane with respect to the minihyper (F;w).

Lemma 3.4 (Govaerts and Storme [6]) A point of a f�(q+1); �; 3; qg-minihyper (F;w) having
weight one is contained in exactly q + � planes with respect to (F;w), counted with multiplic-
ities.
A point having weight zero with respect to a f�(q + 1); �; 3; qg-minihyper (F;w) is contained
in exactly � planes with respect to (F;w), counted with multiplicities.

Lemma 3.5 (Govaerts and Storme [6]) A line L contains � points of a f�(q + 1); �; 3; qg-
minihyper (F;w) in PG(3; q) if and only if there are exactly � planes with respect to (F;w)
through L.

4 Examples

The main problem in the classi�cation results on f�(p3 + 1); �; 3; p3g-minihypers F that will
be presented is that such minihypers might contain projected subgeometries PG(5; p) � 
.

We now give the detailed description of the di�erent types of points s in a projected sub-
geometry PG(5; p) � 
 in PG(3; p3), and of the planes of PG(3; p3) passing through s which
share a projected subgeometry PG(3; p) with 
.

Consider a subgeometry � = PG(5; p) naturally embedded in PG(5; p3). Let L be a line
of PG(5; p3) skew to �. Then the line L has two conjugate lines with respect to �. We will
always denote these conjugate lines by Lp and Lp2.

Case 1. Suppose 
 is the projection of a PG(5; p) � � from a line L with dimhL;Lp; Lp2i = 5.
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Then every projected point s in 
 has weight one. Every point s 2 
 lies on exactly one
(p2+ p+1)-set, on p4+ p3+ p2 (p+1)-secants, and lies in p3+ p2+ p+1 planes of PG(3; p3)
sharing a minimal 1-fold blocking set of size p3 + p2 + p+ 1 with 
.

This is proven in the following way. Let s be the projection of the point s0 of �. The
planes hr; rp; rp2i \�, r 2 L, induce a regular 2-spread in �, i.e., a partitioning of the point
set of � into planes. The planes of this regular 2-spread are projected onto (p2 + p+ 1)-sets
of 
; thus implying that s lies on exactly one (p2 + p + 1)-set of 
. Through such a plane
hr; rp; rp2i \�, r 2 L, there pass p2 + p + 1 3-spaces of � which are projected onto planar
minimal blocking sets of size p3 + p2 + p+ 1.

And, similarly, if one considers a 3-space of � de�ned by s0 and a plane hr0; r0p; r0p2i \�,
r0 2 L, with s0 62 hr0; r0p; r0p2i\�; also such a 3-space of � is projected onto a planar minimal
blocking set of size p3 + p2 + p+ 1.

This shows that s lies in total on p3 + p2 + p + 1 planes of PG(3; p3) sharing a minimal
1-fold blocking set of size p3 + p2 + p+ 1 with 
.

In general, a plane of PG(3; p3) intersects 
 in either a PG(2; p), a (p2 + p+ 1)-set, or in
a minimal blocking set of size p3 + p2 + p+ 1.

Case 2. Suppose 
 is the projection of a PG(5; p) � � from a line L with dimhL;Lp; Lp2i = 4.

Then the 4-dimensional space hL;Lp; Lp2i \ � is called the special 4-space of �, and
similarly, its projection is called the special projected 4-space of 
. We will denote this
special 4-space hL;Lp; Lp2i \� by P .

Then for exactly one point r of L, dimhr; rp; rp2i = 1. This lineM = hr; rp; rp2i is projected
from L onto a point of 
 of weight p+1. The other p3 points r of L satisfy dimhr; rp; rp2i = 2.
The latter planes hr; rp; rp2i \� are projected onto (p2 + p+ 1)-sets of PG(3; p3).

Let s be the point of 
 of weight p+ 1. Every plane � of � passing through M and not
lying in P is projected from L onto a (p2 + 1)-set with special point s. Each such plane �
lies in p2 + p + 1 solids of � which are projected onto planar minimal blocking sets of size
p3 + p2 + 1; thus implying that s lies in p4 + p3 + p2 planes of PG(3; p3) sharing a 1-fold
blocking set of size p3 + p2 + 1 with 
.

Let s be a point of 
 di�erent from the point of weight p+ 1 and not lying in the special
4-space P of 
. Assume s is the projection of s0 2 �. Then each solid hr; rp; rp2 ; s0i, with
r 2 L nM , is projected onto a planar minimal blocking set of size p3+p2+p+1; hence, s lies
in p3 such planes. And every solid of � passing through M and s0 is projected onto a planar
minimal blocking set of size p3+ p2+1 passing through s; thus giving p2+ p+1 extra planes
through s intersecting 
 in a projected PG(3; p).

Let s be a point of weight one of 
 which is the projection of a point s0 of P. Then the
plane hM; s0i lies in p2 3-spaces of � not contained in P which are projected onto planar
blocking sets of size p3 + p2 + 1 through s.

Case 3. Suppose 
 is the projection of a PG(5; p) � � from a line L with dimhL;Lp; Lp2i = 3.

Let P = hL;Lp; Lp2i \�.
Every plane � through L in hL;Lp; Lp2i has two conjugate planes �p; �p

2

with respect to
�, and these three planes intersect in at least one point of P. Hence every plane through
L in hL;Lp; Lp2i contains at least one point of P. Then we call the 3-dimensional space P
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the special 3-space of �, and its projection will always be denoted by the line N . There are
p+ 1 skew lines L1; : : : ; Lp+1 in P which are projected onto points of weight p+ 1, and the
remaining p3 � p points of P are projected onto points of weight one of the line N .

A point s0 of � n P is projected onto a point s lying on p+ 1 (p2 + 1)-secants, which are
the projections of hs0; Lii \�, i = 1; : : : ; p+1. Each such (p2+ 1)-secant through s lies in p2

planes of PG(3; p3) containing a projected PG(3; p) of �, which is a minimal blocking set of
size p3+ p2+1; hence, s0 lies in p3+ p2 such planes. Considering these PG(3; p)'s in �; these
are the PG(3; p)'s through a plane hs0; Lii only intersecting P in Li.

Furthermore, P is projected on the line N through which there are p+1 planes of PG(3; p3)
containing p4 + p3 + p2 + p+ 1 projected points of �. The other planes through N contain
p3 + p2 + p+ 1 projected weighted points; these all lie on N .

Hence, this projection forms a f(p2+p+1)(p3+1); p2+p+1; 3; p3g-minihyper containing the
line N . Reducing the weight of every point on N by one yields a f(p2+p)(p3+1); p2+p; 3; p3g-
minihyper.

Case 4. Suppose 
 is the projection of a PG(5; p) � � from a line L with dimhL;Lp; Lp2i = 2.

Then this projection is a cone of p2+p+1 lines; the vertex of the cone is a common point
having weight p2+p+1 arising from the projection of the points of the plane hL;Lp; Lp2i\�,
and the base of the cone is a subplane PG(2; p).

5 The classi�cation result on minihypers

We now start the description of the arguments leading to the classi�cation result of Theorem
5.7. We assume that (F;w) is a weighted minihyper satisfying the conditions of Theorem 5.7.

The �rst result shows that we can assume that (F;w) does not contain any lines.

Theorem 5.1 If (F;w) contains a line, then we can delete this line from (F;w) to obtain a
f(� � 1)(q + 1); � � 1; 3; qg-minihyper.

Now we describe this duality property that is valid for the f�(p3+1); �; 3; p3g-minihypers,
and that was mentioned at the beginning of Section 2.

Consider a point r of (F;w) with weight one. If we consider the planes of PG(3; p3)
through r, according to their multiplicities with respect to (F;w), then they form a dual
non-trivial blocking set of size p3 + � in the quotient geometry of r.

We will describe this quotient geometry by means of a plane �r skew to r, and denote the
dual blocking set of blocking planes in �r by Br

D.
This dual blocking set contains a dual minimal blocking set E. By the classi�cation

results of Polverino and Storme (Theorem 3.1), there are three possibilities for this dual
minimal blocking set E. We discuss the three possibilities separately.

Theorem 5.2 If E is a Baer subplane, then (F;w) contains a PG(3; p3=2) through r.

Theorem 5.3 It is impossible that E has size p3 + p2 + 1.

So only the dual of the minimal blocking set of size p3 + p2 + p+ 1 remains as possibility
for E (Theorem 3.1). This latter blocking set intersects exactly one line in p2 + p+ 1 points.
Dualizing this property, the following result is obtained.
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Remark 5.4 There is a special point s0 2 �r, contained in p2 + p+ 1 lines of E.

We now use these p2 + p + 1 lines of E through r. These lines of E through r de�ne
p2 + p+ 1 blocking planes of (F;w) through r. We use the intersections of these planes with
(F;w) to construct a projected subgeometry PG(5; p) completely contained in (F;w).

Lemma 5.5 There are at least three planes �; �; 
 de�ned by r and a line of E, which satisfy
the following properties:
(1) they intersect (F;w) in an 1-fold blocking set,
(2) these 1-fold blocking sets �\ (F;w); � \ (F;w); 
 \ (F;w) contain minimal 1-fold blocking
sets E1; E2; E3 which are projected subgeometries PG(3; p) sharing the same (p2 + 1)- or
(p2 + p+ 1)-set on rs0, and
(3) these projected subgeometries E1; E2; E3 de�ne a projected subgeometry 
 � PG(5; p) of
PG(3; p3).

Using the other planes through r de�ned by a line of E, it is possible to prove that this
latter projected subgeometry 
 lies completely in (F;w).

Theorem 5.6 The projected subgeometry PG(5; p) � 
 is contained in (F;w).

We have now discussed all the possibilities. We have obtained the following characteriza-
tion result on minihypers.

Theorem 5.7 (Ferret and Storme [3]) A f�(p3 + 1); �; 3; p3g-minihyper, p = ph0 , p0 prime,
h � 1, p0 � 7, p � 9, � � 2p2 � 4p, and with excess e � p3, is either:
(1) a sum of lines, (projected) PG(3; p3=2)'s, and at most one projected PG(5; p) projected
from a line L for which dimhL;Lp; Lp2i � 3,
(2) a sum of lines, (projected) PG(3; p3=2)'s, and a f(p2 + p)(p3 + 1); p2 + p; 3; p3g-minihyper

 n N , where 
 is a PG(5; p) projected from a line L for which dimhL;Lp; Lp2i = 3, and
where N is the line contained in 
.

6 The general result

We �rst of all extended the result on the f�(p3 + 1); �; 3; p3g-minihypers of Theorem 5.7 to
f�(p3 + 1); �;N; p3g-minihypers, with N � 4.

Theorem 6.1 (Ferret and Storme [4]) A f�(p3 + 1); �;N; p3g-minihyper, N � 4, p = ph0 , p0
prime, p0 � 7, p � 9, � � 2p2 � 4p, with total excess e � p3 � 4p, is a sum of either:
(1) lines, (projected) PG(3; p3=2)'s (where the projection is from a point), and at most one
(projected) PG(5; p),
(2) lines, (projected) PG(3; p3=2)'s, and a f(p2 + p)(p3 + 1); p2 + p; 3; p3g-minihyper 
 n N ,
where 
 is a PG(5; p) projected from a line L for which dimhL;Lp; Lp2i = 3, and where N is
the line contained in 
.

This result then was the building tool for the general classi�cation result.

Theorem 6.2 (Ferret and Storme [4]) Let F be a f�v�+1; �v�;N; p3g-minihyper, � � 2,
� � 2p2 � 4p, N � 3, p = ph0 � 9, h � 1, p0 � 7 prime, with excess e � p2 + p.

Then F is a sum of �-dimensional spaces PG(�; p3), (projected) PG(2� + 1;
p
q)'s, and

of at most one (projected) subgeometry PG(3�+ 2; p).
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