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Abstract

Recently, the �rst author introduced some cryptographic functions closely related to

the Di�e-Hellman problem called P -Di�e-Hellman functions. We show that the existence

of a low degree polynomial representing a P -Di�e-Hellman function on a large set would

lead to an e�cient algorithm for solving the Di�e-Hellman problem. Motivated by this

result we prove lower bounds on the degree of such interpolation polynomials.

1 Introduction

Let IFq denote the �nite �eld of order q with a prime power q and let 0 6=  2 IFq be an element
of prime order t. The security of the Di�e-Hellman key exchange (see e. g. [10, Chapters 3.7
and 12.6]) for the group generated by  depends on the intractability of the Di�e-Hellman

mapping DH de�ned by

DH(x; y) = xy; 0 � x; y � t� 1:

For breaking the Di�e-Hellman cryptosystem it would be su�cient to have a low degree
polynomial that coincides with the mapping DH on a large subset of f0; 1; : : : ; t� 1g2. In [3]
and [16] it was shown that such a polynomial doesn't exist for several types of subsets. Since

2xy = (x+y)
2

�x
2

�y
2

and square roots in �nite �elds can be e�ciently calculated (see e. g. [1, Chapter 7]) we may
consider the univariate mapping

dh(x) = x
2

; 0 � x � t� 1;

instead of the bivariate mapping DH. For lower bounds on the degree of interpolation poly-
nomials of dh see [2, 7].
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In the present paper we consider mappings of the form

P�dh(x) = P (x); 0 � x � t� 1;

with a nonlinear polynomial P (X) 2 ZZt[X] of small degree with respect to t, say,

deg(P ) � log(q)2:

In [4] the �rst author suggested a toolbox of cryptographic functions called P -Di�e-Hellman

functions including these mappings. In particular, he proved that computing P�dh is com-
putationally equivalent to computing dh. Hence, a low degree polynomial representation of
P�dh would solve the Di�e-Hellman problem and an investigation of P�dh becomes very
important.

After some preliminary results in Section 2 we prove that dh can be evaluated with
an algorithm using O(log2(t) log2(q)) bit operations and deg(f) � 1 evaluations of P�dh
in Section 3, which improves the result of [4]. We prove lower bounds on the degree of
interpolation polynomials of P�dh in Section 4. Finally, in Section 5 we mention some
extensions of our work.

2 Preliminaries

The following result motivated by Newton's interpolation formula is essential for the reduction
algorithm and the proof of the interpolation results.

Lemma 1 Let B � 0 be an integer and P (X) 2 ZZ[X] a polynomial of degree D � B with

leading coe�cient aD. Then we have

D�BX
d=0

 
D �B

d

!
(�1)D�B�dP (X + d) =

aDD!

B!
XB + TB�1(X);

where TB�1(X) is a polynomial of degree at most B � 1 with the convention that the degree

of the zero polynomial is �1.

Proof. Fix B � 0. For D = B the result is trivial. For D � B + 1 with the convention�D�1�B
�1

�
= 0 we have

S :=
D�BX
d=0

 
D �B

d

!
(�1)D�B�dP (X + d)

=
D�BX
d=0

  
D � 1�B

d

!
+

 
D � 1�B

d� 1

!!
(�1)D�B�dP (X + d)

=
D�1�BX
d=0

 
D � 1�B

d

!
(�1)D�1�B�d(P (X + 1 + d)� P (X + d))

=
D�1�BX
d=0

 
D � 1�B

d

!
(�1)D�1�B�dQ(X + d);

where Q(X) := P (X+1)�P (X) has degree D�1 and leading coe�cient aDD. By induction
we get

S =
aDD(D � 1)!

B!
XB + TB�1(X);

where TB�1(X) is a polynomial of degree at most B � 1.
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3 A Reduction Algorithm

In this section we present results emphasizing the importance of analyzing the interpolation
polynomials of P�dh. More precisely, we show that a polynomial f that coincides with P�dh
on some �xed and known points x can be used as an oracle to e�ciently compute dh.

Theorem 1 Let 0 6=  2 IFq be an element of prime order t, P (X) 2 ZZt[X] a polynomial of

degree D with 2 � D � t� 1, and f(X) 2 IFq[X] such that

f(x) = P (x); x 2 S;

for a set S � fN +1; : : : ; N +Hg of cardinality jSj = H�s with 1 � H � t. Then there exist

a subset R � S of cardinality jRj � H �D+2� (D� 1)s and an algorithm A that computes

A(x) = x
2

for all x 2 R with O(D log(t)max(D; log(q)2)) bit operations and D� 1 evaluations of f(X).

Proof. Let R be the set of x 2 fN +1; : : : ; N +Hg for which x+ i 2 S for 0 � i � D� 2.
Then obviously

jRj � H �D + 2� (D � 1)s:

Let x be given for �xed x 2 R. The algorithm A proceeds as follows. We evaluate f(X) in
x+d, 0 � d � D � 2, and put

�d = f(x+d) = P (x+d); 0 � d � D � 2:

Then we get by Lemma 1 with B = 2

� :=
D�2Y
d=0

�
(D�2

d
)(�1)D�d

d = 
P

D�2

d=0
(D�2

d
)(�1)D�dP (x+d) = ex

2+c1x+c0

with some constants c1 and c0 and e := aDD!=2. This needs O(D2) additions in ZZt for
determining recursively all binomial coe�cients modulo t, O(D) powers, inversions, and mul-
tiplications in IFq, i. e.,

O(D log(t)max(D; log(q)2))

bit operations (cf. [1, Chapters 5 and 6]). Next we eliminate the linear term by computing

� := � � (x)�c1�c0 = ex
2

:

Finally, we determine the unique root of Xe � �, i. e., x
2

= �e
�1

, where e�1 denotes the
inverse of e modulo t, in O(log(t) log2(q)) bit operations (cf. [1, Theorem 7.3.1]).

4 Interpolation

Theorem 2 Let 0 6=  2 IFq be an element of prime order t, P (X) 2 ZZt[X] a polynomial of

degree D with 2 � D � t� 1 and leading coe�cient aD, and f(X) 2 IFq[X] such that

f(x) = P (x); x 2 S;
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for a set S � fN + 1; : : : ; N +Hg of cardinality jSj = H � s with 1 � H � t. Then we have

deg(f) � max

�
H � (D + 1)(s+ 1) + 1

2D�1
;
H �D(s+ 1) + 1� r

2D�2

�
;

where r denotes the least residue of aDD! modulo t.

Proof. Let R1 be the set of x 2 fN + 1; : : : ; N +Hg for which x+ i 2 S for 0 � i � D.
We see that

jR1j � H �D � (D + 1)s:

By Lemma 1 with B = 0 we have

DY
d=0

f(x+d)(
D

d
)(�1)D�d = 

P
D

d=0
(D
d
)(�1)D�dP (x+d) = aDD!; x 2 R1;

and the polynomial

F1(X) =
DY
d=0

D�d even

f(dX)(
D

d
) � aDD!

DY
d=0

D�d odd

f(dX)(
D

d
)

has at least jR1j zeros, namely x with x 2 R1. Analogously to Lemma 1 we get

DX
d=0

D�d even

d

 
D

d

!
=

DX
d=0

D�d odd

d

 
D

d

!

and the leading coe�cient of F1(X) is not zero. F1(X) is not identical to zero and thus
deg(F1) � jR1j. Now we have

deg(F1) =
DX
d=0

D�d odd

 
D

d

!
deg(f) =

1

2

DX
d=0

 
D

d

!
deg(f) = 2D�1 deg(f)

and thus

deg(f) �
jR1j

2D�1
:

Now let R2 be the set of x 2 fN + 1; : : : ; N +Hg for which x+ i 2 S for 0 � i � D � 1.
We see that

jR2j � H �D + 1�Ds:

By Lemma 1 with B = 1 we have

D�1Y
d=0

f(x+d)(
D�1

d
)(�1)D�1�d = 

P
D�1

d=0
(D�1

d
)(�1)D�1�dP (x+d)

= aDD!x+b; x 2 R2;

for some integer b and the nonzero polynomial

F2(X) =
D�1Y
d=0

D�1�d even

f(dX)(
D�1

d
) � bXr

D�1Y
d=0

D�1�d odd

f(dX)(
D�1

d
)

has at least jR2j zeros, namely x with x 2 R2. We have

deg(F2) = 2D�2 deg(f) + r

and thus deg(f) � (jR2j � r)=2D�2.
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5 Final Remarks

Composite t.
Put e := aDD!=2. With the restriction gcd(e; t) = 1 Theorem 1 is also valid for composite t.
Without this restriction the solution of Xe � � in the proof of Theorem 1 is not unique,
but in many cases the right solution can be e�ciently determined depending on the prime
factorization of e. We quickly sketch how to compute the rth root of � for every prime factor r
of e using ideas mentioned in [1, Chapter 7.3]. Note that since xab = (xa)b, taking the rth
root for every prime factor r of e is su�cient to solve the problem of taking the eth root.
Now let r be a prime factor of t. If gcd(r; t) = 1 then �nding the rth root can be done as
described in Theorem 1. Otherwise let t = rsu with r 6 ju. For mjt, let Cm denote the unique
subgroup of order m contained in G, where G � IF�q is the subgroup of order t generated by
. Then we have the isomorphism

G �= Crs � Cu:

Thus we can represent any element x 2 G as a pair (xr; xu) 2 Crs � Cu. The transformation
is given by x 7! (xu; xr

s

) and (xr; xu) 7! x�r x
�
u, where �u+ �rs = 1. The idea is to compute

the rth root of � by computing it in each direct factor separately. The rth root of � in Cu

is unique and can be e�ciently computed as mentioned in the proof of Theorem 1. Instead
of computing the rth root of � in Crs we compute x

2

in Crs directly from x. This can be
done by a "baby step-giant step" algorithm [14], see also [10]. For every prime factor r of
e, the running time is O(r log4(t)) bit operations. The overall running time to compute the
eth root is O(T (e) log4(t)) bit operations, where T (e) denotes the sum of the prime factors of
gcd(e; t).
With the restriction t 6 jaDD! Theorem 2 is valid for composite t.

Polynomials of high degree.
It seems to be not natural that the degree of the interpolation polynomial decreases if the
degree of P (X) increases in Theorem 2. Nontrivial results of this kind for D � log(t) are
particularly interesting.

Relation to discrete logarithm.
Obviously, the Di�e-Hellman key exchange depends also on the hardness of the discrete
logarithm ind de�ned by

ind(
x) = x; 0 � x � t� 1:

For results on interpolation polynomials of ind see [2, 8, 9, 11, 12, 13, 15, 17].

Bivariate case.
With the method of [16] we can prove lower bounds on the degree of interpolation polynomials
of the mappings P -DH(x; y) = P (x)y with an univariate polynomial P(X). Lemma 1 can be
used to design a reduction algorithm to DH. It would be interesting to �nd similar results for
the general case that P -DH(x; y) = P (x;y) with a nonlinear bivariate polynomial P (X;Y ).

Comparison with [4].
Note that in [4] similar results as given in Section 3 were proven though the presented results
in this work are more e�cient in terms of running time of the reduction algorithm and number
of evaluations of the function f . The reason for the more e�cient reduction is that in our
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setting the points x for which the polynomial f(x) coincides with the function P (x) are
known. In [4], the function f is viewed as an oracle that produces the correct answers P (x)

for a certain fraction of all inputs, randomized over internal coin tosses. So, for a �xed x it is
not known if f(x) = P (x) does hold true or not.

Elliptic Curves.
The existence of subexponential algorithms for solving the discrete logarithm problem in �nite
�elds motivates the consideration of other groups. An alternative used in practice is the group
of points on an elliptic curve over a �nite �eld. Lower bounds on the degree of interpolation
polynomials of the Di�e-Hellman mapping were obtained in [6] and of the discrete logarithm
in [5].
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