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Abstract

In this paper we present a construction method of m-resilient Boolean functions with

very high nonlinearity for low values of m. The construction only considers functions

in even number of variables n. So far the maximum nonlinearity attainable by resilient

functions was 2n�1 � 2
n

2 + 2
n

2
�2. Here we show that given any m, one can construct n-

variable, m-resilient functions with nonlinearity 2n�1�2
n

2 +2
n

2
�2+2

n

2
�4 for all n � 8m+6.

Further we show that for su�ciently large n, it is possible to get such functions with

nonlinearity reaching almost 2n�1�2
n

2 + 4

3
2
n

2
�2. This is the upper bound on nonlinearity

when one uses our basic construction recursively.

Keyword : Boolean Function, Resiliency, Nonlinearity.

1 Introduction

Resilient Boolean functions have important applications in nonlinear combiner model of a
stream cipher [18, 19, 7, 1, 6, 17]. Construction of resilient Boolean functions, with as high
nonlinearity as possible, has been an important research question from mid eighties (by abuse
of notation, when we call a Boolean function resilient, we mean an m-resilient function for
some m � 1). Recently (since 2000), a lot of new results have been published in a very short
time which include nontrivial nonlinearity (upper) bounds [16, 20, 23, 2, 4] and construction
of resilient functions attaining either those bounds or reaching very close. In such a scenario,
getting resilient functions with a nonlinearity, that has not been demonstrated earlier, is
becoming harder.

Consider a Boolean function on n variables with order of resiliency m. Generalized con-
struction methods of resilient functions with higher order of resiliency (m > n

2 � 2) and
attaining maximum possible nonlinearity have been studied in depth [20, 21, 22]. Also there
are some interesting results available in [14, 12]. Construction of highly nonlinear functions
with lower order of resiliency has been discussed in [14, 10].

In this paper we consider that n is even. In [11], it has been conjectured that the maximum
possible nonlinearity of a resilient function on n variables can be 2n�1 � 2

n
2 . This conjecture

has been turned out to be false [14]. Note that, the maximum possible nonlinearity of an
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n-variable function is 2n�1 � 2
n
2
�1 and these functions are called bent [13]. It is known

that the bent functions can not be resilient and also it has been shown [16] that for low
order of resiliency m (m � n

2 � 2), the maximum possible nonlinearity is upper bounded by

2n�1 � 2
n
2
�1 � 2m+1. Note that the mid point of 2n�1 � 2

n
2 (the value conjectured in [11])

and 2n�1 � 2
n
2
�1 (the nonlinearity for bent function) is 2n�1 � 2

n
2 + 2

n
2
�2. Construction of

resilient functions having this nonlinearity is known [14, 10].
However, till date there has been no evidence of a resilient function having nonlinearity

strictly greater than 2n�1� 2
n
2 +2

n
2
�2. In this paper, we show that it is possible to construct

resilient functions having nonlinearity > 2n�1 � 2
n
2 + 2

n
2
�2 for n � 14. Our construction is

based on combination of linear functions with a suitable nonlinear resilient function.

1.1 Preliminaries

A Boolean function on n variables may be viewed as a mapping from f0; 1gn into f0; 1g. A
Boolean function f(x1; : : : ; xn) is also interpreted as the output column of its truth table f , i.e.,
a binary string of length 2n, f = [f(0; 0; � � � ; 0); f(1; 0; � � � ; 0); f(0; 1; � � � ; 0); : : : ; f(1; 1; � � � ; 1)]:

The Hamming distance between S1; S2 is denoted by d(S1; S2), i.e., d(S1; S2) = #(S1 6=
S2): Also the Hamming weight or simply the weight of a binary string S is the number of ones
in S. This is denoted by wt(S). An n-variable function f is said to be balanced if its output
column in the truth table contains equal number of 0's and 1's (i.e., wt(f) = 2n�1).

Denote addition operator over GF (2) by �. An n-variable Boolean function f(x1; : : : ; xn)
can be considered to be a multivariate polynomial over GF (2). This polynomial can be
expressed as a sum of products representation of all distinct k-th order products (0 � k � n)
of the variables. More precisely, f(x1; : : : ; xn) can be written as

a0 �
M

1�i�n

aixi �
M

1�i<j�n

aijxixj � : : :� a12:::nx1x2 : : : xn;

where the coe�cients a0; aij ; : : : ; a12:::n 2 f0; 1g. This representation of f is called the alge-
braic normal form (ANF) of f . The number of variables in the highest order product term
with nonzero coe�cient is called the algebraic degree, or simply the degree of f and denoted
by deg(f).

Take 0 � b � n. An n-variable function is called non degenerate on b variables if its ANF
contains exactly b distinct input variables.

Functions of degree at most one are called a�ne functions. An a�ne function with con-
stant term equal to zero is called a linear function. The set of all n-variable a�ne (respectively
linear) functions is denoted by A(n) (respectively L(n)). The nonlinearity of an n-variable
function f is

nl(f) =ming2A(n)(d(f; g));

i.e., the distance from the set of all n-variable a�ne functions.
Let x = (x1; : : : ; xn) and ! = (!1; : : : ; !n) both belong to f0; 1gn and

x � ! = x1!1 � : : :� xn!n:

Let f(x) be a Boolean function on n variables. Then the Walsh transform of f(x) is a real
valued function over f0; 1gn which is de�ned as

Wf (!) =
X

x2f0;1gn

(�1)f(x)�x�!:
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In terms of Walsh spectra, the nonlinearity of f is given by

nl(f) = 2n�1 �
1

2
max

!2f0;1gn
jWf (!)j:

In [7], an important characterization of resilient functions has been presented, which we
use as the de�nition here. A function f(x1; : : : ; xn) is m-resilient i� its Walsh transform
satis�es

Wf (!) = 0; for 0 � wt(!) � m:

As the notation used in [14, 16], by an (n;m; d; �) function we denote an n-variable,
m-resilient function with degree d and nonlinearity �.

Now we present a brief outline of the construction methods which are related to our
construction. Construction of resilient functions by concatenating the truth tables of small
a�ne functions was �rst described in [1]. However, the analysis has been made in terms of
orthogonal arrays. This construction has been revisited in more details in [17] where the
authors considered the algebraic degree and nonlinearity of the functions. Further analysis
on this basic method is also available in [9].

Moreover, in [5], construction of functions with concatenation of small a�ne functions
under certain conditions has been discussed. All these constructions used each small a�ne
functions exactly once. A major advancement in this area has been done in [14], where
each a�ne function has been used more than once in form of composition with nonlinear
functions. In [14], concatenation of both a�ne and nonlinear functions has been considered
too. The constructions in [14] presented very high nonlinearity. The generalized algorithms,
i.e., Algorithm A and Algorithm B in [14] outline a framework in this direction which has
later been analysed in [3].

Our construction idea falls under the general construction paradigm presented in [14].
However we like to highlight that this speci�c construction has not been identi�ed in [14, 3].
To construct an n-variable resilient function (n even) we use a set of n2 variable linear functions
(each exactly once) and a nonlinear resilient function on n

2 + k variables. Under certain
conditions, we show that this construction provides higher nonlinearity than the existing
results.

2 The Construction Method

We start with an existing construction idea. See [13, 14, 10] for more details about this
construction.

Construction 1 Let r; s be even. Consider that an r-variable, m-resilient, degree d function
fr(x1; : : : ; xr) having nonlinearity 2

r�1�2
r
2 +2

r
2
�2+�r is available, where �r is an integer � 0.

Let us select a bent function on s variables gs(y1; : : : ; ys). Then the function fr(x1; : : : ; xr)�
gs(y1; : : : ; ys) is an (r + s)-variable, m-resilient, (at least) degree d (the degree is exactly d if

s < 2d) function with nonlinearity 2(r+s)�1 � 2
r+s
2 + 2

r+s
2

�2 + �r � 2
s
2 . Putting n = r+ s, one

gets a function fn with nonlinearity 2n�1 � 2
n
2 + 2

n
2�2 + �r � 2

n�r
2 .

The nonlinearity result follows from nl(fn) = 2s nl(fr)+2r nl(gs)�2nl(fr)nl(gs). Note that,

if �r = 0, then �r � 2
n�r
2 is also zero. Hence, using Construction 1, it is not possible to cross

the nonlinearity bound of 2n�1 � 2
n
2 + 2

n
2
�2 for an n-variable function using a nonlinearity
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2r�1� 2
r
2 +2

r
2
�2 function on r variables, where r < n. However, we present a construction in

this section, where using a nonlinearity 2r�1�2
r
2 +2

r
2
�2 function on r variables, it is possible

to get an n-variable function with nonlinearity strictly greater than 2n�1 � 2
n
2 + 2

n
2
�2. We

show that it is possible to get such better nonlinearity under certain conditions.

Theorem 1 Let 1 � m � n=2 � 2, and 1 � k � n=2 � 1. Assume that there exists a
(q = n=2+k;m; d; �) function h with degree d > k+1. Also, for a �xed � 2 f0; 1g

n
2
�k assume

there exists an injective function � : f0; 1gk � f0; 1g
n
2
�k n f�g ! f0; 1g

n
2 with property that

wt(�(y)) > m for any y 2 f0; 1g
n
2 .

Then for x; y 2 f0; 1g
n
2 , and y = (y0; y00) 2 f0; 1gk � f0; 1g

n
2
�k construct the function

f(x; y) =

(
�(y) � x� g(y); y00 6= �;

h(x; y0); y00 = �;

where g is any function on f0; 1g
n
2 . Then the function f is an m-resilient function of degree

n=2� k + d and nonlinearity nl(f) � 2n�1 � 2
n
2
�1 � 2q�1 + nl(h).

Proof : Let (�; �) 2 f0; 1g
n
2 � f0; 1g

n
2 and denote by � = (�0; �00) for �0 2 f0; 1g and

�00 2 f0; 1g
n
2
�k. Then,

Wf (�; �) =
X
x

X
y

(�1)f(x;y)�(x;y)�(�;�) =
X
y00

(�1)y
00��00

X
y0

X
x

(�1)f(x;y)�x���y
0��0 =

=
X

x;y0jy00=�

(�1)h(x;y
0)�x���y0��0

| {z }
Wh(�;�0)

+
X

yjy00 6=�

(�1)g(y)�beta�y
X
x

(�1)(�(y)��)�x: (1)

Then for (�; �) such that wt((�; �)) � m the both sums in Equation (1) are equal to zero.
This is obvious for the left-hand sum since h is an m-resilient function. The right-hand sum
is zero due to the injection property and the weight restriction on �. Hence, f is m-resilient.

In case wt(�; �) > m the left-hand sum in (1) is a Walsh transform of h in point (�; �0).
The second sum is either 0 or �2

n
2 . This is because � is injective function and the inner sum

is nonzero (actually equal to 2
n
2 ) only if �(y) = � for some y 2 f0; 1g

n
2 . Thus, for any given

� there will be exactly either one (� is injective) or no one y such that �(y) = � (the `no one'
case corresponds to those � with wt(�) � m).

Noting that max�;�0 jWh(�; �
0)j = 2q � 2nl(h), we obtain

max
�;�

jWf (�; �)j � max
�;�0

jWh(�; �
0)j+ 2

n
2 = 2q � 2nl(h) + 2

n
2 :

By using, max�;� jWf (�; �)j = 2n�2nl(f), we prove that nl(f) � 2n�1�2
n
2
�1�2q�1+nl(h).

The maximum degree term in the ANF of f related to function h is n
2 � k + d. On the

other hand, for any given y the function �(y) � x+ g(y) is a�ne on x. Hence, the maximum
degree term related to this constituent part is n

2 +1. The condition d�k > 1 guarantees that
the degree n

2 � k + d term(s) can not be canceled by the degree n
2 + 1 term(s).

Note that, if the function h possesses the maximum possible algebraic degree (known as
degree optimized [18, 16]) d = n

2 + k �m� 1 then deg(f) = n�m� 1, i.e., f is also degree

optimized. Furthermore, according to nonlinearity result nl(f) � 2n�1� 2
n
2
�1� 2q�1+nl(h),

which means that the nonlinearity of f is increased by choosing a function h with maximum
possible nonlinearity for suitably chosen q = n=2 + k.

Next we concentrate on practical issues regarding the construction given in Theorem 1.
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Construction 2 Let 1 �m � n=2�2, and k be a positive integer satisfying
Pm

i=0

�
n=2
i

�
� 2k.

Assume that there exists a (q = n=2 + k;m; d; �) function h satisfying,

� d > k + 1,

� � = 2q�1 � 2
q

2 + 2
q

2
�2 + �q, for q even,

� � = 2q�1 � 2
q�1
2 + �q, for q odd,

where �q � 0.
Consider all the distinct linear functions on n

2 variables which are non degenerate on at

least m+ 1 variables. There are u =
Pn

2
i=m+1

� n
2
i

�
number of such linear functions. Among

them choose any v = u� (2k �
Pm

i=0

�
n=2
i

�
) = 2

n
2 � 2k linear functions and list these distinct

linear functions by l1; : : : ; lv in any arbitrary order. These linear functions are on the variables
(x1; : : : ; xn

2
). Then for x; y 2 f0; 1g

n
2 construct the function

f(x; y) =
�
(1� yn

2
) : : : (1� yk+1)h(x1; : : : ; xn

2
; y1; : : : ; yk)

�
(2)

�

 
vM

i=1

(1� an;i � yn
2
) : : : (1� an

2+1;i � y1) li(x1; : : : ; xn
2
)

!
;

where (an;i; : : : ; an
2
+1;i) is

n
2 -bit binary representation of the integer 2k � 1+ i. The bit an;i is

the most signi�cant bit and an
2
+1;i is the least signi�cant bit.

The function h, satisfying the above conditions, can be obtained for certain values of m using
the construction techniques proposed in [10, 14]. We will discuss this in more detail later. Also
notice that for given m and n the injective property of function � in Theorem 1 corresponds

to the condition
Pm

i=0

�
n=2
i

�
� 2k in Construction 2.

In language of [14, 10], Construction 2 can be interpreted as follows. Concatenate the
(n2 + k;m; d; �) function h and v = 2

n
2 � 2k distinct linear functions on n

2 variables which
are non degenerate on at least m + 1 variables. This will provide an n-variable function.
Here concatenation means the concatenation of the truth tables of the functions. Next we
concentrate on the following theorem which imposes certain restrictions on k for given n, so
that we indeed get a nonlinearity > 2n�1 � 2

n
2 + 2

n
2
�2 using Construction 2.

Theorem 2 The n-variable function f proposed by Construction 2 is an (n;m; n2 � k +

d; �) function where � �
�
2n�1 � 2

n
2 + 2

n
2
�2
�
+ 2

n
4
�2
�
2
n
4 � 2

k
2
+�
�
+ �q. Here � = log2 3

(respectively 3
2), if q =

n
2 + k is even (respectively odd), and �q � 0.

In particular, for �q = 0 the nonlinearity nl(f) > 2n�1 � 2
n
2 + 2

n
2�2, if

n

2
>

(
k + 3; for odd q = n

2 + k;
k + 3:17; for even q = n

2 + k:

Proof : Results on resiliency and algebraic degree follow fromTheorem 1. Also by Theorem 1,

nl(f) � 2n�1�2
n
2
�1�2q�1+nl(h), which can be rewritten as nl(f) �

�
2n�1 � 2

n
2 + 2

n
2
�2
�
+

2
n
2�2�2q�1+nl(h). Set nl(h) = 2q�1�2

q

2 +2
q

2�2+�q for q even and nl(h) = 2q�1�2
q�1
2 +�q

for q odd. The �rst part of statement is proved by noting that a2b = 2b+log2 a for positive
reals a; b.
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To prove the second part we assume �q = 0. Then, nl(f) > 2n�1 � 2
n
2 + 2

n
2
�2 gives that

2
n
4
�2
�
2
n
4 � 2

k
2
+�
�
> 0. Hence, n

4 > k
2 + � and the proof is completed by substituting the

value of � depending on evenness of q.
We now present the main result which establishes the existence of m-resilient functions

(m � n=2� 2) with nonlinearity better than previously best known.

Theorem 3 Given any m, it is possible to construct (n;m; 4m+6; 2n�1�2
n
2 +2

n
2�2+2

n
2�4)

functions for all n � 8m+ 6.

Proof : Given m, take k = 4m� 1. Later in the proof we will show that it is always possible
to construct a (q = 2k + 4;m; d > k + 1; 2q�1 � 2

q

2 + 2
q

2
�2) function h.

Let us �rst prove that
Pm

i=0

�
4m+3

i

�
� 24m�1 for all m � 1. It can be checked that

the statement is true for m = 1; 2; 3; 4. From [8, Page 165],
P�u

i=0

�u
i

�
� 2uH(�), where

the binary entropy function H(�) = �� log2 � � (1 � �) log2(1 � �). Now H(14) � 0:82

and H( m
4m+3) � H(14), since H(�) is increasing in 0 < � � 0:5. Thus,

Pm
i=0

�
4m+3

i

�
�

20:82�(4m+3) = 23:28m+2:46 = 2�0:72m+3:4624m�1 � 24m�1 for all m � 5. Hence the statement
is true for all m � 1.

Since
Pm

i=0

�
4m+3

i

�
� 24m�1 for all m � 1, we get

Pm
i=0

�
k+4
i

�
� 2k. If we take n0 =

2k + 8 = 8m+ 6 then
Pm

i=0

� n0
2
i

�
� 2k.

According to the proof of the Theorem 2, the nonlinearity of the n0-variable function f is

nl(f) �
�
2n0�1 � 2

n0
2 + 2

n0
2
�2
�
+ 2

n0
2
�2 � 2q�1 + nl(h) =

�
2n0�1 � 2

n0
2 + 2

n0
2
�2
�
+ 2

n0
2
�2 �

2
q

2 + 2
q

2
�2 =

�
2n0�1 � 2

n0
2 + 2

n0
2
�2
�
+ 2

n0
2
�4.

Now we discuss the construction of h. As given in [10], it is possible to get a (q;m; d; 2q�1�
2
q

2 + 2
q

2
�2) function for m = 1 and q = 8m+ 2. For this function d = 8 > 4 = k + 1. Next

we present the case for m � 2.
As given in [15, Proposition 4.2], it is possible to get a (q;m; d; 2q�1� 2

q

2 +2
q

2
�2) function

under the condition 4 � 2p+1

2p�1�
Pm

i=0

�
p�1
i

� � 5, where q = 2p. We prove that this condition is

always satis�ed when q = 8m+ 2.
It is clear that 4 � 2p+1

2p�1�
Pm

i=0

�
p�1
i

� . Now we present the proof of 2p+1

2p�1�
Pm

i=0

�
p�1
i

� � 5,

when q = 8m+ 2, i.e., p = 4m+ 1. Note that 24m+2

24m�
Pm

i=0

�
4m
i

� = 4

1�

Pm

i=0

�
4m
i

�
24m

. As the base

case, 4

1�

Pm

i=0

�
4m
i

�
24m

� 5 for m = 2. Further 4

1�

P(m+1)

i=0

�
4(m+1)

i

�
24(m+1)

< 4

1�

Pm

i=0

�
4m
i

�
24m

. Hence, by

induction, the proof is true for all m � 2.
Note that for the functions in [15, Proposition 4.2], d � p+ 1 = 4m + 2 > 4m = k + 1,

thus the degree condition is also satis�ed. Further, since h is m-resilient, from Theorem 1 the
n0-variable function is also m-resilient.

Once such a function on n0 variables is found, using Construction 1, it is possible to

get functions with nonlinearity
�
2n�1 � 2

n
2 + 2

n
2
�2
�
+ 2

n
2
�4 for all n � n0. It follows from

Theorem 1 that the degree of these functions will be n0
2 � k+ d. Note that n0 = 8m+6, and

d is at least 4m+ 2. Hence n0
2 � k + d is at least 4m+ 6.
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Thus, given any m, we will get (n;m; 4m+ 6; 2n�1 � 2
n
2 + 2

n
2
�2 + 2

n
2
�4) functions for all

n � 8m+ 6.
Note that we use the Construction 1 in the proof of Theorem 3 only to make a generalized

statement. Recursive use of Construction 2 will always provide better results (see Example 4,
Proposition 1 and Theorem 4 in the following subsection).

2.1 Further Discussion

In this section we �rst present some concrete examples and then prove important results
related to the recursive use of Construction 2.

Example 1 Let us construct an m = 1 resilient function using the Construction 2. Then
using the result of Theorem 3, we can construct an n = 8m+6 = 14 variable function, which
in turn requires a (q = 8m + 2 = 10; 1; d; 488 = 210�1 � 2

10
2 + 2

10
2 �2) function h. Note that

(10; 1; 8; 488 = 210�1 � 2
10
2 + 2

10
2
�2) functions are available [10]. Take k = 4m � 1 = 3. We

can also verify the calculation by noting that
P1

i=0

�
14=2
i

�
= 8 = 23, i.e., k = 3. Hence, we

get a (14; 1; 12; 214�1 � 2
14
2 + 2

14
2
�2 + 2

14
2
�4) function.

In the following example, we do not directly use Theorem 3 where q is always even, but
use the idea given in Theorem 2 where there is a scope of using a function where q is odd.

Example 2 Consider the construction of a 30-variable function. Take a (14; 1; 12; 214�1 �

2
14
2 +2

14
2
�2+8) function as a starting point. Using Construction 1, one gets (30; 1; 12; 230�1�

2
30
2 + 2

30
2
�2 + 8 � 28) function. Call this function h1. Note that 8� 28 = 211.

Now we explain the strategy using Construction 2. We know that
�
30=2
0

�
+
�
30=2
1

�
= 24.

Using the technique presented in [14], it is possible to get a (19; 1; 17; 219�1 � 2
19�1
2 ) function.

This, using Construction 2, provides a (30; 1; 28; 230�1 � 2
30
2 + 2

30
2
�2 + 213 � 29) function, as

given in Theorem 2. Call this function h2.
Both h1; h2 have nonlinearity > 230�1 � 2

30
2 + 2

30
2
�2. However, note that 28 = deg(h2) >

deg(h1) = 12 and nl(h2)� nl(h1) = 213 � 29 � 211 = 212 + 3 � 29.

We further demonstrate our construction by considering the case m = 2.

Example 3 The �rst case when the conditions of Theorem 2 are satis�ed for m = 2 is the

case n = 8m + 6 = 22. Here k = 4m � 1 = 7. It can be veri�ed that
Pm

i=0

�
n=2
i

�
� 2k is

satis�ed for k = 7. Also q = n=2 + k = 18 and we need a (18; 2; d; 217 � 29 + 27) function h.
Such a function can be obtained using the technique of [15, Proposition 4.2].

Then the function f , as described in Construction 2, is an (n = 22; 2; n2 �k+d = 4+d; �)

function, where � = 2n�1 � 2
n
2 + 2

n
2
�2 + 2

n
2
�4.

In the proof of Theorem 3, we use the Construction 1 just to make a generalized statement.
However, we like to point out the advantage of recursively applying only Construction 2
instead of using the combination of Construction 1 and Construction 2.

Example 4 We know that (10; 1; 8; 488) function is available. Using Construction 2 (�rst
time), we get a (n; 1; n� 2; 2n�1 � 2

n
2 + 2

n
2
�2 + 2

n
2
�4) function for n = 14.
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Now use this function as the initial function h (of Construction 2, second time) which is
a (q; 1; q � 2; 2q�1 � 2

q

2 + 2
q

2
�2 + 2

q

2
�4) function for q = 14 and take n = q + 4 = 18. In this

case we will get a (n; 1; n� 2; 2n�1 � 2
n
2 + 2

n
2
�2 + 2

n
2
�4 + 2

n
2
�6) function for n = 18.

One more recursion using Construction 2 (third time) provides (n; 1; n � 2; 2n�1 � 2
n
2 +

2
n
2
�2 + 2

n
2
�4 + 2

n
2
�6 + 2

n
2
�8) function for n = 22.

Note that since we have started from a degree optimized 10-variable function, we will go
on getting degree optimized functions in this case.

The examples above clearly indicate that the Construction 2 is to be preferred to Construc-
tion 1 when iteratively applied, and it is actually advantageous both in terms of nonlinearity
and algebraic degree. We demonstrate the implications of the above reasoning by the fol-
lowing generalized construction method of degree optimized 1-resilient functions. Notice that
the functions provided by means of Theorem 3 are not degree optimized.

Proposition 1 It is possible to construct (n; 1; n�2; 2n�1�2
n
2 + 4

3 (1�(
1
4)

z+1)2
n
2�2) functions

for n = 10 + 4z.

Proof : We start with the (10; 1; 8; 488) function and then use the Construction 2 recursively
z times. Then we get (n; 1; n� 2; 2n�1 � 2

n
2 +

Pz
i=0 2

n
2
�2�2i) functions for n = 10 + 4z. The

proof follows from
Pz

i=0 2
n
2�2�2i = 4

3 (1� (14 )
z+1)2

n
2�2.

Corollary 1 It is possible to construct (n; 1; n� 2; �) function with � � 2n�1 � 2
n
2 + 4

32
n
2
�2

for su�ciently large n.

Proof : The proof follows from Proposition 1, noting (14 )
z+1 tends to 0 as z takes an

increasingly large value.
Thus we can make the following general statement.

Theorem 4 It is possible to construct (n;m; (n � m � 1) � (3m � 1); 2n�1 � 2
n
2 + 4

3(1 �

(14)
z+1)2

n
2
�2) functions for n = 8m+ 2+ 4z. For a su�ciently large n, it is possible to get a

(n;m; (n�m� 1)� (3m� 1); �) function, where � � 2n�1 � 2
n
2 + 4

32
n
2
�2.

Proof : The nonlinearity result follows similar to Proposition 1 and Corollary 1. The result
from algebraic degree is as follows. The algebraic degree of the q-variable function, in the
proof of Theorem 3, is at least 4m + 2. Since q = 8m + 2, the maximum possible algebraic
degree is q �m� 1 = (8m + 2) � (m � 1) = 7m + 1 for that function. Thus the de�ciency
in algebraic degree is at most (7m + 1) � (4m + 2) = 3m � 1 with respect to a degree
optimized function. Once we start using Construction 2, no more de�ciency of algebraic
degree will be incorporated. Hence in the �nal construction we will get the algebraic degree
(n�m� 1)� (3m� 1).

3 Conclusion

In this paper for the �rst time we present resilient functions with nonlinearity > 2n�1� 2
n
2 +

2
n
2�2 for n � 14. It is known that up to 8-variables the maximum possible nonlinearity of

a resilient function is 2n�1 � 2
n
2 + 2

n
2
�2. Thus important open questions include the cases

for n = 10; 12. Moreover, we have provided a generalized construction method for m-resilient
functions with nonlinearity 2n�1� 2

n
2 +2

n
2�2+2

n
2�4 for all n � 8m+6. It is expected to get

372



functions with such nonlinearity (may be more) in many special cases where n < 8m+6 using
the techniques mentioned in this paper. Finally we have shown that for su�ciently large n,
it is possible to get such functions with nonlinearity � 2n�1� 2

n
2 + 4

32
n
2
�2. This is the upper

bound on maximum possible nonlinearity when Construction 2 is applied recursively.
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