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Abstract

Cheating-immune secret sharing schemes are secret sharing schemes where dishonest
participants, during the reconstruction phase, have no advantage in submitting incorrect
shares (i.e., cheating), compared to honest participants. In particular, they get no infor-
mation at all on the true secret that would be reconstructed if they submit correct shares.
In this paper we study properties and constraints holding for cheating-immune secret shar-
ing schemes. We show that a perfect secret sharing scheme cannot be cheating-immune.
Then, we prove an upper bound on the number of tolerated cheaters in such schemes,
and we propose a modi�ed version of an existing construction to realize cheating-immune
secret sharing schemes. Finally, we discuss some open problems.

1 Introduction

Secret sharing schemes are a fundamental primitive in Cryptography. In the basic model, a
secret sharing scheme is a protocol divided in two phases: Share and Reconstruct. During
Share, a dealer distributes a secret among a set of participants by sending each of them a piece
of information, called a share. Then, during Reconstruct, some subsets of participants, called
quali�ed, can reconstruct the secret either by pooling together their shares or by sending their
shares to a combiner that collects the shares, reconstructs the secret, and sends it back to
these participants; while, some other subsets, called forbidden, do not learn any information
about the secret. In such a model, dealer and participants are supposed to be honest.

However, many applications have to deal with the case of dishonest participants and,
possibly, of a dishonest dealer. Tompa and Woll in [9], showed that secret sharing schemes
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where the function for reconstructing the secret is linear (e.g., Shamir's scheme) can be
subject to the following attack: some dishonest participants, during Reconstruct, can submit
fake shares. Hence, the reconstructed secret is di�erent from the original one. But, from this
secret and their true shares, these dishonest users can recover the original secret.

In order to design secret sharing schemes that keep working even in hostile environments,
the concept of veri�ability was introduced in [3]. With this approach, some extra information
is used to enable users to detect a dishonest dealer, who sends inconsistent shares during
Share, and to verify that during Reconstruct each user submits a correct share. A lot of
research has been done along this line for both unconditionally secure and computationally
secure veri�able secret sharing schemes.

A di�erent approach was suggested last year in [10, 5, 6]. The dealer is assumed to be
honest: Only participants can cheat during Reconstruct, by submitting incorrect shares, in
order to gain some advantage upon honest users. In this setting, the secret sharing scheme is
said to be cheating-immune if cheaters have no advantage at all in submitting incorrect shares.
As it has been pointed out in [10, 5, 6], this property strongly depends on the structure of
the reconstruction function used in the secret sharing scheme. In this paper we continue the
study of such a model, showing some new results.

Organization of the paper: In Section 2, we give some background on secret sharing schemes:
we recall the concepts of perfect and ideal secret sharing schemes. In Section 3, we describe
a model for cheating-immune secret sharing scheme, which is the same given in [5], and in
Section 4 we recall a characterization for such schemes; while, in Section 5, we point out a
relation with resilient functions, which enable us to prove an upper bound on the number of
possible cheaters in any (n;N) threshold scheme. Finally, in Section 6, we describe a new
construction for cheating-immune secret sharing schemes, and in Section 7 we state some
result for the case of ramp schemes.

2 Perfect Secret Sharing Scheme

Secret sharing were introduced in 1979 by Blakley [1] and Shamir [7]. The reader can �nd an
introduction and references to the literature in [8].

Let P be a set of participants and let S be a set of possible secrets. The collection
of subsets A � 2P ; quali�ed to reconstruct the secret, is usually referred to as the access
structure of the secret sharing scheme. Denoting by S a random variable representing the
choice of a secret in S, by A the shares received by a subset of participants A 2 A, and using
the entropy function1, we can state the following de�nition:

De�nition 2.1 A perfect secret sharing scheme � with secrets chosen in S, for the access
structure A � 2P , is a protocol consisting of a Share phase and a Reconstruct phase, satisfying
two conditions:

1: Every quali�ed subset of participants can compute the secret:
Formally, for all A 2 A, it holds that H(SjA) = 0.

2: Any forbidden subset of participants gets absolutely no information on the secret value:
Formally, for all A 62 A, it holds that H(SjA) = H(S).

1The reader is referred to Appendix A for the de�nition of the entropy function and some basic properties.
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Property 1 means that the value of the shares held by A 2 A uniquely determines the
secret s 2 S. On the other hand, Property 2 means that the probability that the secret is
equal to s given that the shares held by A 62 A are a, is the same as the a priori probability
of the secret s. In other words, by pooling together their shares, a forbidden subset of
participant gets absolutely no information about the secret. When Property 2 is not satis�ed,
i.e., H(SjA) < H(S), then a secret sharing scheme � is said to be not perfect.

A secret sharing scheme � can be represented by a matrixM , where each row corresponds
to a possible distribution of shares for a certain secret. More precisely, in this representation,
the �rst column of M is indexed by the dealer D, and contains the possible secret values he
may wish to share, and the remaining columns are indexed by the participants in P, and
represent the shares they can get for each secret. This model has been proposed in [8].

The e�ciency of a secret sharing scheme is measured by means of an information rate,
which relates the size of the secret to the size of the shares given to the participants. More
precisely, given a secret sharing scheme � for the access structure A, on the set of secrets S,
and denoting by K(P ) the set of possible shares for participant P , we de�ne the information
rate �(�;A; S) as

�(�;A; S) =
log jSj

maxP2P log jK(P )j

and the optimal information rate of A as

�(A) = sup �(�;A; S)

where the sup is taken over the space of all possible sets of secrets S, such that jSj � 2, and
all secret sharing schemes for A. Secret sharing schemes with information rate equal to one,
which is the maximum possible value of this parameter (i.e., secret and shares have the same
size), are called ideal.

3 Cheating-Immune Model

We consider Ideal Secret Sharing Schemes with shares and values in GF (pt). More precisely,
we start by considering (n; n) secret sharing schemes ((n; n)-SSS, for short), i.e., schemes
where all the shares held by n participants are required to reconstruct the secret. The model
and the notation are the same used in [5].

Let GF (pt) denote a �nite �eld with pt elements, where p is a prime number and t is a
positive integer. Let GF (pt)n be the vector space of n-tuples of elements from GF (pt). For
each � = (�1; : : : ; �n) 2 GF (pt)n, we denote by HW (�) (Hamming Weight) the number of
non-zero coordinates of �.

In our setting, a vector � 2 GF (P t)n represents the shares the participants get from the
dealer during the Share. The secret sharing scheme � is represented by a de�ning function,

f : GF (pt)n ! GF (pt);

which associates to each n-tuple of shares a secret value in GF (pt).
Cheaters are represented by a vector � 2 GF (pt)n called cheating vector: non-zero elements

represent the change of the true shares performed by the cheaters. The number of cheaters
is equal to the Hamming weight of �. Moreover, given two vectors, x and �, we denote by
x+� 2 GF (pt)n a vector such that x+j = xj if �j 6= 0, and x+j = 0 otherwise. Conversely, we
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denote by x�� 2 GF (pt)n a vector such that x�j = xj if �j = 0, and x�j = 0 otherwise. Finally,
given two vectors � and �, we say that � � � if �j 6= 0 implies �j 6= 0. Using the above
notation we further de�ne the following sets:

R(�; �+
� ;K) = fx�� jf(x

�
� + �+

� ) = Kg

and,

R(�; �+
� + �;K�) = fx�� jf(x

�
� + �+

� + �) = K�g:

The �rst set represents the possible shares held by honest participants, enabling the re-
construction of the true secret K, if cheaters behave honestly. The second one, represents
the possible shares held by honest participants enabling the reconstruction of K�, when the
cheaters submit incorrect shares. Therefore, the value

��;� = jR(�; �+
� + �;K�) \R(�; �+

� ;K)j=jR(�; �+
� + �;K�)j

is the probability of successful cheating with respect to � and �.

De�nition 3.1 [5] An (n; n)-SSS with shares and values in GF (pt) is said to be k-cheating-
immune if, for every � 2 GF (pt)n and any � 2 GF (pt)n, with 1 � HW (�) � k, it holds that
��;� = p�t.

A 1-cheating-immune secret sharing scheme will be simply referred to as a cheating-
immune secret sharing scheme. Notice that, the above de�nition assumes that all cheaters
submit fake shares. A more general de�nition takes into account the possibility that some
of the cheaters submit correct shares. The underlying idea that justi�es such an extension
of the model is that there could be a strategy by means of which a coalition of cheaters can
gain more information if only some of them submit incorrect shares. More precisely, we use a
binary vector � to identify the cheaters and a vector � 2 GF (pt)n) to specify how much they
cheat and, for every � � �, we de�ne

��;�;� = jR(�; �+
� + �;K�) \R(�; �+

� ;K)j=jR(�; �+
� + �;K�)j

to be the probability of successful cheating with respect to �; �; and �.

De�nition 3.2 [5] An (n; n)-SSS with shares and values in GF (pt) is said to be strictly k-
cheating-immune if, for any vector � 2 GF (2)n, for any � 2 GF (pt)n), such that � � �,
1 � HW (�) � HW (�) � k, and every � 2 GF (pt)n, it holds that ��;�;� = p�t.

4 Characterisation for k-Cheating-Immune Secret Sharing

In this section we show some results about cheating-immune secret sharing schemes. We start
by proving that a perfect secret sharing scheme cannot be cheating-immune. More precisely,
we can state the following:

Theorem 4.1 Let � be a secret sharing scheme with access structure A on the set of partic-
ipants P. If � is perfect, then � cannot be cheating-immune.

114



Proof. For simplicity, assume that � is an (n; n)-SSS, and the set of secrets is GF (2). In
this case, the de�ning function f , is given by

f : GF (2)n ! GF (2):

Moreover, assume that 0 and 1, the values the secret can assume, are uniformly distributed.
For any subset of participants A = fi1; : : : ; in�1g, Condition 2 of De�nition 2.1, implies that
0 and 1 still have the same a-priori probabilities, once the users in A pool together their
shares. From the point of view of user in, this means that his share determines the value of
the function. In other words, assuming that the share he gets from the dealer is 0, if during
the reconstruction phase he submits 1, and the reconstructed secret is b, then he knows that
the real secret is 1 � b. Hence, the cheating-immune property is not satis�ed since ��;� 6=

1
2

with respect to any � and � = (0; : : : ; 0; 1; 0; : : : 0), with a single one in position in. The same
argument can be used for the case in which the set of shares and secrets is GF (pt), and when
considering a general access structure A de�ned over P.

The structure of the de�ning function f of a cheating-immune secret sharing scheme can
be precisely characterized. The following result was shown in [5]. We recall it2.

Theorem 4.2 Let � be an (n; n)-SSS with shares and values in GF (pt). Then, � is k-
cheating-immune , for any integer `, where 1 � ` � k, for any � 2 GF (pt)n, such that
HW (�) = `, for any � � �, and for any u; v 2 GF (pt), the following conditions hold simul-
taneously:

(i) jR(�; �; v)j = pt(n�`�1),

(ii) j(R(�; �; v) \R(�; � + �; u))j = pt(n�`�2).

5 k-Cheating-Immunity and k-Resilience

In this section we investigate the relation between k-cheating-immune secret sharing scheme
over GF (pt) and resilient functions. Such a relation has already been pointed out for the
binary case (k-cheating-immune secret sharing scheme over GF (2)) in [6, 10]. We use it to
state an upper bound on the number of possible cheaters in a cheating-immune secret sharing
scheme.

De�nition 5.1 A function f : GF (pt)n ! GF (pt) is said to be balanced if, for each K 2
GF (pt)

jfx 2 GF (pt)njf(x) = Kgj = pt(n�1):

In other words, each value f(x) 2 GF (pt) has the same number of pre-images x.

De�nition 5.2 A function f : GF (pt)n ! GF (pt) is said to be k-resilient if, for every subset
fj1; : : : ; jkg � f1; : : : ; ng and every (a1; : : : ; ak) 2 GF (pt)k, the function

f(x1; : : : ; xn)jxj1=a1;:::;xjk=ak

is balanced over GF (pt)n�k.

2In the full version of the paper we will propose a slightly simpli�ed proof, compared to the one given in
[5], of this characterization.
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Notice that, if f : GF (pt)n ! GF (pt) is the de�ning function of an (n; n)-SSS where
the secrets are chosen uniformly at random, then, for any 1 � k < n, f is k-resilient. This
property easily follows from Condition 2 of De�nition 2.1.

About k-cheating-immune secret sharing schemes, from Theorem 4.2, the next corollary
easily follows:

Corollary 5.3 Let � be an (n; n)-SSS, and let f : GF (pt)n ! GF (pt) the de�ning function
of �. If � is k-cheating-immune, then f is k-resilient.

On the other hand, we can prove the following result:

Theorem 5.4 Let � be an (n; n)-SSS, and let f : GF (pt)n ! GF (pt) be the de�ning function
of �. If � is k-cheating-immune, then f cannot be (n� k)-resilient.

Proof. Omitted from this extended abstract, due to lack of space.

At this point, we can state the main result of this section

Theorem 5.5 A secret sharing scheme � de�ned by f : GF (pt)n ! GF (pt) can be k-
cheating-immune only if k < n

2 .

Proof. Notice that a k-resilient function is also s-resilient, for any 1 � s < k. This
observation, Theorem 5.4, and Corollary 5.3, imply the result.

The above upper bound on the number of cheaters holds even for the case of strictly k-
cheating-immune secret sharing. Indeed, in the worst case a strictly k-cheating-immune secret
sharing is exactly a k-cheating-immune secret sharing (i.e., when all the cheaters submit fake
shares).

6 A Construction for k-Cheating-Immune Secret Sharing

We present a construction for k-cheating-immune secret sharing applying the ideas of the
construction given in [5]. Basically, we use of a new function � as a building block for the
scheme, instead of the function � therein described 3.

In the following, if 1 denotes the identity in GF (pt), we indicate the sum of dp=2e elements
equal to 1 by b+p , and the sum of bp=2c elements equal to 1 by b�p . Therefore, for any
a 2 GF (pt)n, b+p a (b�p a, resp.) is the sum of dp=2e (bp=2c, resp.) elements equal to a. In
order to show the properties of our new function, we need some results, that we briey recall.

De�nition 6.1 [5] A function h of degree two is said to have the property B(k) if, for any
� 2 GF (pt)n, with 1 � HW (�) � k, and for any � � �, the function h(x�� +�+�)�h(x�� +�)
is a non-constant a�ne function.

The next lemma is used to prove that our function is balanced.

Lemma 6.2 [5] Let a function f of degree two on GF (P t)n do not have a nonzero constant
term; in other words, f(0; : : : ; 0) = 0, where 0 denotes the zero element in GF (pt)n. Then, f
is balanced , there exists a nonzero vector � 2 GF (pt)n such that f(x+�)�f(x) is constant
and f(�) 6= 0.

3Unfortunately, the function � proposed in [5] is not balanced, as the construction requires.
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The function � we use in order to set up a k-cheating-immune secret sharing, is de�ned
as follows:

Lemma 6.3 Let n � 2k + 1, and let �n;p : GF (p
t)n ! GF (pt) be a function de�ned by

�n;p = x1 +

bn=2cX
i=1

fb�p x[2i�1](n)x[2i](n) + b+p x[2i](n)x[2i+1](n)g+

�
b�p xnx1 + b+p x1x1 if n is odd,

0 otherwise.

where [i](n) denotes the integer j such that 1 � j � n, and j � i mod n. Then, (i) �n;p is
balanced, and (ii) �n;p satis�es the property B(k).

Proof. For any 2 � j � n, by de�nition, �n;p has p quadratic terms including xj, which
consist of either b+p terms x[j�1](n)

xj and b�p terms xjx[j+1](n)
, or b�p terms x[j�1](n)

xj and b+p
terms xjx[j+1](n)

in �n;p. Moreover, if n is even, there exist p quadratic terms including x1,

which consist of b+p terms xnx1 and b�p terms x1x2. Otherwise, there exist p+ b�p quadratic
terms including x1, which consist of b�p terms xnx1, b

�
p terms x1x2, and b+p terms x1x1. Let

g be a function de�ned as g = �n;p � x1. Then, g can be re-written as

g =

bn=2cX
i=1

x[2i](n)fb
�
p x[2i�1](n)

+ b+p x[2i+1](n)
g+

(
x1(b

�
p xn + b+p x1) if n is odd;

0 otherwise.

Let � = (1; : : : ; 1), and assume n is odd. Since pe = 0 for any e 2 GF (pt)n (p is the
characteristic of the �nite �eld GF (pt)), and there exist dn=2e � p quadratic terms, then
g(�) = 0. Moreover, for 2 � j � n, xj appears in p quadratic terms, while x1 appears in 2b�p
quadratic terms with another term xk 6= x1, and in b+p terms of the form x1x1. Finally, since
a term (x1 + 1)(x1 + 1) produces two single x1 terms, g(x+ �)� g(x) produces 2p single x1
terms. Therefore, it is easy to verify g(x+ �) � g(x) = 0. Hence, �n;p(x+ �)� �n;p(x) = 1,
and �n;p(�) = 1. Using Lemma 6.2, we can conclude that �n;p is balanced. When n is even,
we can also show that �n;p is balanced, similarly.

To show that (ii) of the lemma holds, we can proceed as follows: Let � = (�1; : : : ; �n) 2
GF (pt)n be a cheating vector such that HW (�) = `, where 1 � ` � k. Moreover, let � � �,
and let J = fjj�j 6= 0; 1 � j � ng. Then, jJ j = HW (�) = `. Each quadratic term that
includes xi consists of variables in fx[i�1](n)

; xi; x[i+1](n)
g. Let Xi = f[i� 1](n); i; [i+1](n)g. It

can be easily seen that no quadratic term exists in �n;p(x
+
� + �+ �)��n;p(x

+
� + �). Therefore,

to show that �n;p has the property B(k), it is enough to show that there exists a linear term
xi in �n;p(x

+
� +�+�)��n;p(x

+
� +�). To this aim notice that, since n � 2k+1, there exists an i

such that Xi\J = f[i� 1](n)g. Let i0 be such that Xi0\J = f[i0 � 1](n)g. Then �[i0�1](n)
6= 0,

and �i0 = �[i0+1](n)
= 0. Hence, in �n;p(x

+
� + � + �) � �n;p(x

+
� + �), either �[i0�1](n)

b+p xi0 or

�[i0�1](n)
b�p xi0 is the only term which includes xi0 . Therefore, �n;p(x

+
� + � + �)��n;p(x

+
� + �)

includes a linear term xi0 , which ensures that �n;p has the property B(k).

According to the strategy de�ned by Lemma 5 and Theorem 5 in [5], using � as a building
block, we can construct a k-cheating-immune secret sharing scheme.

7 Ramp Secret Sharing Schemes

The idea of a ramp secret sharing scheme has been introduced in [2]. More precisely, a
ramp secret sharing scheme ((t1; t2; n)-RS, for short) is a protocol by means of which a dealer
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distributes a secret s among a set of n participants P in such a way that subsets of P of
size greater than or equal to t2 can reconstruct the value of s; no subset of P of size less
than or equal to t1 can determine anything about the value of the secret; and a subset of size
t1 < t < t2 can recover some information about the secret [2]. Using the entropy function
[4], the three properties of a (linear) (t1; t2; n)-RS can be stated as follows. Assuming that
A denotes both a subset of participants and the set of shares these participants receive from
the dealer to share a secret s 2 S, and denoting the corresponding random variables in bold,
it holds that

� Any subset of participants of size less than or equal to t1 has no information on the
secret value: Formally, for each subset A � P of size jAj � t1, H(SjA) = H(S):

� Any subset of participants of size t1 < jAj < t2 has some information on the secret

value: Formally, for each subset A � P of size t1 < jAj < t2, H(SjA) = jAj�t1
t2�t1

H(S):

� Any subset of participants of size greater than t2 can compute the whole secret: Formally,
for each subset A � P of size jAj � t2, H(SjA) = 0:

It can be easily seen that the de�ning function of a (t1; t2; n)-RS, where the secrets are
chosen uniformly at random, is t1-resilient. Applying the same arguments we have applied
before, and using Theorem 5.4, we can show the following:

Theorem 7.1 A (t1; t2; n)-ramp secret sharing scheme � de�ned by f : GF (pt)n ! GF (pt)
can be k-cheating-immune only if k < n� t1.

8 Conclusions and Open Problems

We have studied some properties and constraints holding for cheating-immune secret sharing
schemes. We have shown that a perfect secret sharing scheme cannot be cheating-immune,
and we have given an upper bound on the number of tolerated cheaters in such schemes.
Then, we have revised an existing construction to realize cheating-immune secret sharing
schemes. Interesting open problems are secret sharing constructions for threshold and general
(ideal) access structures. Another interesting research line could be the generalization of the
de�nition of cheating-immunity: at the moment, it is implicitly assumed that the secrets
are chosen by the dealer uniformly at random. If the dealer chooses the secret according
to a certain probability distribution on the space of secrets, we have to require that, when
the cheaters submit fake shares, the probability distribution that they infer over the set of
possible true secrets (once the incorrect secret has been reconstructed) must be the same the
honest participants infer (i.e., no advantage for the cheaters compared to the honest users).
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A Entropy Function

This appendix briey recalls some elements of information theory (the reader is referred to
[4] for details).

LetX be a random variable taking values on a setX according to a probability distribution
fPX(x)gx2X . The entropy of X, denoted by H(X), is de�ned as

H(X) = �
X
x�X

PX(x) log PX(x);

where the logarithm is to the base 2. The entropy satis�es

0 � H(X) � log jXj;

where H(X) = 0 if and only if there exists x0 2 X such that Pr(X = x0) = 1; whereas,
H(X) = log jXj if and only if Pr(X = x) = 1=jXj, for all x 2 X. The entropy of a random
variable is usually interpreted as

� a measure of the equidistribution of the random variable

� a measure of the amount of information given on average by the random variable

Given two random variables X and Y taking values on sets X and Y , respectively, ac-
cording to the joint probability distribution fPXY(x; y)gx2X;y2Y on their cartesian product,
the conditional entropy H(XjY) is de�ned as

H(XjY) = �
X
y2Y

X
x2X

PY(y)PXjY(xjy) logPXjY(xjy):
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It is easy to see that
H(XjY) � 0:

with equality if and only if X is a function of Y . The conditional entropy is a measure of the
amount of information that X still has, once given Y:
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