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I. Introduction

A Hankel matrix (or persymmetric matrix)

An =

0
BBBBBB@

c0 c1 c2 : : : cn�1
c1 c2 c3 : : : cn
c2 c3 c4 : : : cn+1
...

...
...

...
cn�1 cn cn+1 : : : c2n�2

1
CCCCCCA
: (1:1)

is a matrix (aij) in which for every r the entries on the diagonal i+ j = r are the same,
i.e., ai;r�i = cr for some cr. For a sequence c0; c1; c2; : : : of real numbers we also consider the

collection of Hankel matrices A
(k)
n , k = 0; 1; : : :, n = 1; 2; : : :, where

A(k)
n =

0
BBBBBB@

ck ck+1 ck+2 : : : ck+n�1

ck+1 ck+2 ck+3 : : : ck+n

ck+2 ck+3 ck+4 : : : ck+n+1
...

...
...

...
ck+n�1 ck+n ck+n+1 : : : ck+2n�2

1
CCCCCCA
: (1:2)

We shall further denote the determinant of a Hankel matrix (1.2) by

d(k)n = det(A(k)
n ): (1:3)

In Coding Theory, Hankel matrices play a central role in decoding of BCH codes, es-
pecially in the Berlekamp - Massey algorithm. Their connection to orthogonal polynomials
often yields useful applications in Combinatorics: Hankel determinants enumerate certain
families of weighted paths, Catalan { like numbers often are sequences important in combi-
natorial enumeration, and, as a recent application, orthogonal polynomials turned out to be
an important tool in the proof of the alternating sign matrix conjecture.

The framework for studying combinatorial applications of Hankel matrices and further
aspects of orthogonal polynomials was set up by Viennot [23]. Of special interest (cf. [6]) are
determinants of Hankel matrices consisting of Catalan numbers 1

2m+1

�2m+1
m

�
, namely for the

sequence cm = 1
2m+1

�2m+1
m

�
, m = 0; 1; : : : it is

d(0)n = d(1)n = 1; d(k)n =
Y

1�i�j�k�1

i+ j + 2n

i+ j
for k � 2; n � 1: (1:4)
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In Section II we shall study Hankel matrices whose entries are de�ned as generalized
Catalan numbers cm = 1

3m+1

�3m+1
m

�
. In this case we could show that

d(0)n =
n�1Y
j=0

(3j + 1)(6j)!(2j)!

(4j + 1)!(4j)!
; d(1)n =

nY
j=1

�6j�2
2j

�
2
�4j�1

2j

� : (1:6)

These numbers are of special interest, since they coincide with two Mills { Robbins {
Rumsey determinants, which arise in the enumeration of alternating sign matrices.

Let us recall some properties of Hankel matrices. Of special importance is the equation

0
BBBBBB@

c0 c1 c2 : : : cn�1
c1 c2 c3 : : : cn
c2 c3 c4 : : : cn+1
...

...
...

...
cn�1 cn cn+1 : : : c2n�2

1
CCCCCCA
�

0
BBBBBB@

an;0
an;1
an;2
...

an;n�1

1
CCCCCCA
=

0
BBBBBB@

�cn
�cn+1

�cn+2
...

�c2n�1

1
CCCCCCA
: (1:7)

If the matrices A
(0)
n are nonsingular for all n, then (cf. [4], p. 246) the polynomials

tj(x) := xj + aj;j�1x
j�1 + aj;j�2x

j�2 + : : : aj;1x+ aj;0 (1:8)

form a sequence of monic orthogonal polynomials with respect to the linear operator T
mapping xl to its moment T (xl) = cl for all l, i. e.

T (tj(x) � tm(x)) = 0 for j 6=m; (1:9)

or equivalently, T (xm � tj(x)) = 0 for m = 0; : : : ; j � 1: (1:10)

In Section III we shall study matrices Ln = (l(m; j))m;j=0;1;:::;n�1 de�ned by

l(m; j) = T (xm � tj(x)): (1:11)

By (1.10) these matrices are lower triangular. The recursion for Catalan { like numbers,
as de�ned by Aigner [1], can be derived via matrices Ln with determinant 1. Further, the
Lanczos algorithm yields a factorization Ln = An � U

t
n, where An is a nonsingular Hankel

matrix as in (1.1), Ln is de�ned by (1.11) and

Un =

0
BBBBBB@

1 0 0 : : : 0 0
a1;0 1 0 : : : 0 0
a2;0 a2;1 1 : : : 0 0
...

...
...

...
...

an�1;0 an�1;1 an�2;2 : : : an�1;n�2 1

1
CCCCCCA
: (1:12)

is the triangular matrix whose entries are the coe�cients of the polynomials tj(x).
In Section III we further shall discuss the Berlekamp { Massey algorithm, where Hankel

matrices of syndromes resulting after the transmission of a code word over a noisy channel
have to be studied. Via the matrix Ln de�ned by (1.11) it will be shown that the Berlekamp
{ Massey algorithm applied to Hankel matrices with real entries can be used to compute the
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coe�cients in the corresponding orthogonal polynomials. In this case all Hankel matrices An

under consideration are nonsingular.

Hankel matrices come into play when the power series

F (x) = c0 + c1x+ c2x
2 + : : : (1:13)

is expressed as a continued fraction. If the Hankel determinants d
(0)
n and d

(1)
n are di�erent

from 0 for all n, the so{called S{fraction expansion of 1
x
F ( 1

x
) has the form

1

x
F (

1

x
) =

c0

x�
q1

1�
e1

x�
q2

1�
e2

x� : : :

(1:14)

where for n � 1 (cf. [16], p. 304)

qn =
d
(1)
n � d

(0)
n�1

d
(1)
n�1 � d

(0)
n

; en =
d
(0)
n+1 � d

(1)
n�1

d
(0)
n � d

(1)
n

: (1:15)

(1.14) can be transformed to the J{fraction

c0

x� �1 �
�1

x� �2 �
�2

x� �3 �
�3

x� �4 � : : :

(1:16)

with �1 = q1, and �j+1 = qj+1 + ej, �j = qjej for j � 1. (cf. [16], p.375).
For the notion of S{ and J{ fraction (S stands for Stieltjes, J for Jacobi) we refer to the

standard book by Perron [16]. We follow here the (qn; en){notation of Rutishauser [20]. (1.16)
was used by Flajolet ([7]) to study combinatorial aspects of continued fractions, especially,
he gave an interpretation of the coe�cients in the continued fractions expansion in terms of
weighted lattice paths.

(1.9) results from the quality of the approximation to 1
x
F ( 1

x
) by quotients of polynomials

pj(x)
tj(x)

with tj(x) de�ned under (1.8). The polynomials tj(x) hence obey the three { term
recurrence

tj(x) = (x� �j)tj�1(x)� �j�1 � tj�2(x); t0(x) = 1; t1(x) = x� �1; (1:17)

with �1 = q1 and �j+1 = qj+1 + ej; �j = qjej for j � 1: (1:18)

II. Hankel Determinants And Alternating Sign Matrices

The generating function

C(x) =
1X

m=0

1

3m+ 1

 
3m+ 1

m

!
xm (2:1)
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ful�lls the functional equation C(x) = 1+ x �C(x)3, from which immediately follows that

1

C(x)
= 1� x � C(x)2: (2:2)

Lattice path enumeration allows to derive the following identity.

Lemma 2.1: 
1X

m=0

 
3m

m

!
xm
!
�

 
1X

m=0

1

3m+ 1

 
3m+ 1

m

!
xm
!
=

1X
m=0

 
3m+ 1

m

!
xm: (2:3)

Theorem 2.1: For m = 0; 1; 2 : : : let denote cm = 1
3m+1

�3m+1
m

�
. Then

0
BBBBBB@

c0 c1 c2 : : : cn�1
c1 c2 c3 : : : cn
c2 c3 c4 : : : cn+1
...

...
...

...
cn�1 cn cn+1 : : : c2n�2

1
CCCCCCA
=

n�1Y
j=0

(3j + 1)(6j)!(2j)!

(4j + 1)!(4j)!
;

0
BBBBBB@

c1 c2 c3 : : : cn
c2 c3 c4 : : : cn+1

c3 c4 c5 : : : cn+2
...

...
...

...
cn cn+1 cn+2 : : : c2n�1

1
CCCCCCA
=

nY
j=1

�6j�2
2j

�
2
�4j�1

2j

� (2:4)

Proof: Observe that 
3m

m

!
=

Qm
j=1(3j)

Qm�1
j=0 (3j + 1)

Qm�1
j=0 (3j + 2)

m!
Qm

j=1(2j)
Qm�1

j=0 (2j + 1)
= (

27

4
)m
Qm�1

j=0 (
2
3 + j)

Qm�1
j=0 (

1
3 + j)

m!
Qm�1

j=0 (
1
2 + j)

and accordingly

 
3m+ 1

m

!
=

Qm
j=1(3j)

Qm�1
j=0 (3j + 4)

Qm�1
j=0 (3j + 2)

m!
Qm

j=1(2j)
Qm�1

j=0 (2j + 3)
= (

27

4
)m
Qm�1

j=0 (
2
3 + j)

Qm�1
j=0 (

4
3 + j)

m!
Qm�1

j=0 (
3
2 + j)

:

Then with (2.2) and (2.3) we have the representation

D(x) := 1� x � C(x)2 =

P1
m=0

�3m
m

�
xmP1

m=0

�3m+1
m

�
xm

=
F (�; �; 
; y)

F (�; � + 1; 
 + 1; y)
;

which is the quotient of two hypergeometric series, where

F (�; �; 
; y) = 1 +
��



y +

�(�+ 1)�(� + 1)

2! � 
(
 + 1)
y2 +

�(�+ 1)(�+ 2)�(� + 1)(� + 2)

3! � 
(
 + 1)(
 + 2)
y2 + : : :

with the parameter choice � = 2
3 ; � = 1

3 ; 
 = 1
2 ; y = 27

4 x:
For quotients of such hypergeometric series the continued fractions expansion as in (1.14)

was found by Gauss (see [16], p. 311). Namely for n = 1; 2; : : : it is
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en =
(�+ n)(
 � � + n)

(
 + 2n)(
 + 2n+ 1)
; qn =

(� + n)(
 � �+ n)

(
 + 2n� 1)(
 + 2n)
:

Some further elementary calculations { carried out exactly in [22] { �nally yield the formula
in the theorem. (q.e.d.)

Let us �nally discuss the connection to the Mills { Robbins { Rumsey determinants

Tn(x; �) = det

 
2n�2X
t=0

 
i+ �

t� i

! 
j

2j � t

!
x2j�t

!
i;j=0;:::;n�1

; (2:6)

where � is a nonnegative integer (discussed e. g. in [15]). For � = 0; 1 it is Tn(1; �) = d
(�)
n

- the Hankel determinants in (2.4). Stanley [21] conjectured Tn(1; 1) to be the generating
function for alternating sign matrices invariant under a re
ection about a vertical axis (cf.
also [15]. This has recently been proved by Kuperberg [10].

An alternating sign matrix is a square matrix with entries from f0; 1;�1g such that i) the
entries in each row and column sum up to 1, ii) the nonzero entries in each row and column
alternate in sign. An example is

0
BBBBB@

0 0 1 0 0
0 1 �1 1 0
1 �1 1 �1 1
0 1 �1 1 0
0 0 1 0 0

1
CCCCCA

The alternating sign matrix conjecture concerns the total number of n � n alternating
sign matrices, which was conjectured by Mills, Robbins, and Rumsey to be

Qn�1
j=0

(3j+1)!
(n+j)! .

The problem was open for �fteen years until it was �nally settled by Zeilberger [25]. The
development of ideas is described in Bressoud's book [4]. There are deep relations to Statistical
Mechanics, since the con�guration of water molecules in \square ice" can be described by an
alternating sign matrix.

Recently, it has been discovered [19] that the formula for the total number of alternating
sign matrices also arises as a Hankel determinant where the entries in the matrix are the coef-

�cients of the generating function 1�(1�9x)1=3

3x . An appropriate combinatorial interpretation of
these numbers might yield a new and simpler proof of the alternating sign matrix conjecture.

III. Catalan { like Numbers and the Berlekamp { Massey Algorithm

In this section we shall study two { dimensional arrays l(m; j), m; j = 0; 1; 2; : : : and the
matrices Ln = (l(m; j))m;j=0;1;:::;n�1 de�ned by

l(m; j) = T (xm � tj(x)); (3:1)

where T is the linear operator de�ned under (1.9). Application of the three{term{
recurrence

tj(x) = (x� �j)tj�1(x)� �j�1tj�2(x)

(cf. (1.17)) and the linearity of T yield the recursion
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l(m; j) = l(m� 1; j + 1) + �j+1l(m� 1; j) + �jl(m� 1; j � 1) (3:2)

with initial values l(m; 0) = cm, l(0; j) = 0 for j 6= 0 (and �0 = 0, of course). Especially,

l(m;m) = c0�1�2 � � � �m; l(m+ 1;m) = c0�1�2 � � � �m(�1 + �2 + : : :+ �m+1) (3:3)

We shall point out two connections of the matrices Ln to Combinatorics and Coding
Theory. Namely, for the case that �j = 1 for all j the matrices Ln occur in the derivation
of Catalan { like numbers as de�ned by Aigner in [1]. They also can be determined in order
to �nd the factorization Ln = An � U

t
n, where An is a nonsingular Hankel matrix of the form

(1.1) and Un is the matrix (1.12) with the coe�cients of the orthogonal polynomials in (1.8).
Via formula (3.3) the Berlekamp { Massey algorithm can be applied to �nd the parameters
�j and �j in the three { term recurrence of the orthogonal polynomials (1.8).

Aigner in [1] introduced Catalan { like numbers and considered Hankel determinants

consisting of these numbers. For positive reals a and s Catalan { like numbers C
(a;s)
m are

de�ned as entries b(m; 0) in a two { dimensional array b(m; j), m = 0; 1; 2; : : :, j = 0; 1; : : : ;m,
with initial conditions b(m;m) = 1 for all m = 0; 1; 2; : : :, b(0; j) = 0 for j > 0, and recursion

b(m; 0) = a � b(m� 1; 0) + b(m� 1; 1);

b(m; j) = b(m� 1; j � 1) + s � b(m� 1; j) + b(m� 1; j + 1) for j = 1; : : : ;m: (3:4)

The matrices Bn = (b(m; j))m;j=0;:::;n�1, obtained from this array, have the property that
Bn �B

t
n is a Hankel matrix with determinant 1. In the example below the binomial coe�cients�2m+1

m

�
arise as C

(3;2)
m .

1
3 1
10 5 1
35 21 7 1
126 84 36 9 1

In [1] it is further shown that C
(1;1)
m are the Motzkin numbers, C

(2;2)
m are the Catalan

numbers and C
(3;3)
m are restricted hexagonal numbers.

Important for the decoding of BCH codes is also a decomposition of the Hankel matrix
An = VnDnV

t
n as a product of a Vandermonde matrix Vn, its transpose V

t
n and the diagonal

matrix Dn. Here the parameters in the Vandermonde matrix are essentially the roots of the
polynomial tn(x). This decomposition was already discovered by Baron Gaspard Riche de
Prony [18] (rather known as the leading engineer in the construction of the Pont de la Concorde
in Paris and as project head of the group producing the logarithmic and trigonometric tables
from 1792 - 1801).

Via (3.3) the parameters rj in the Berlekamp { Massey algorithm presented below will be
explained in terms of the three { term recurrence of the orthogonal polynomials related to
the Hankel matrices An.
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Peterson [17] and Gorenstein and Zierler [8] presented an algorithm for the decoding of
BCH codes. The most time{consuming task is the inversion of a Hankel matrix An as in (1.1),
in which the entries ci are syndromes resulting after the transmission of a codeword over a
noisy channel. Matrix inversion, which takes O(n3) steps was proposed to solve equation
(1.7). Berlekamp found a way to determine the an;j in (1.7) in O(n2) steps. His approach was
to determine them as coe�cients of a polynomial u(x) which is found as appropriate solution
of the \key equation"

F (x)u(x) = q(x) mod x2t+1:

Here the coe�cients c0; : : : ; c2t up to degree 2t of F (x) can be calculated from the received
word. Further, the roots of u(x) yield the locations of the errors (and also determine q(x)).
Motivated by the application in Coding Theory one is interested in �nding polynomials of
minimum possible degree ful�lling the key equation. This key equation is solved by iteratively
calculating solutions (qk(x); uk(x)) to F (x)uk(x) = qk(x) mod zk+1, k = 0; : : : ; 2t.

The algorithm is presented by Berlekamp in [2]. Massey [13] made a slight simpli�cation
of Berlekamp's algorithm and derived it as a problem in the design of linear feedback shift
registers (cf. also [3], p. 180).

A sequence of shift registers (`j ; uj(x)), j = 1, : : : , 2n�2 is constructed, where `j denotes
the length (the degree of uj) and

uj(x) = bj;jx
j + bj;j�1x

j�1 + : : :+ bj;1x+ 1:

the feedback{connection polynomial of the j{th shift register. The Berlekamp { Massey
algorithm works over any �eld and will iteratively compute the polynomials uj(x) as follows
using a second sequence of polynomials vj(x).

Berlekamp { Massey Algorithm: Let u0(x) = 1; v0(x) = 1 and `0 = 0. Then for
j = 1; : : : ; 2n� 2 set

rj =

`jX
t=0

bj�1;tcj�1�t; (3:5)

`j = �j(j � `j�1) + (1� �j)`j�1; (3:6)

 
uj(x)
vj(x)

!
=

 
1 �rjx

�j � 1=rj (1� �j)x

!
�

 
uj�1(x)
vj�1(x)

!
; (3:7)

where

�j =

(
1 if rj 6= 0 and 2`j�1 � j � 1
0 otherwise

: (3:8)

The relation of Berlekamp's algorithm to continued fraction techniques was pointed out
by Mills [14] and thoroughly studied by Welch and Scholtz [24].

Several authors (e. g. [11], p. 156) state that the proof of the above recurrence is quite
complicated or that there is need for a transparent explanation. We shall see now that the
analysis is much simpler for the case that all principle submatrices of the Hankel matrix An

439



are nonsingular. As a useful application, then the rj's yield the parameters from the three {
term recurrence of the underlying polynomials.

So, let us assume from now on that all principal submatrices Ai, i � n of the Hankel matrix
An are nonsingular. For this case, Imamura and Yoshida [9] demonstrated that `j = `j�1 =

j
2

for even j and `j = j � `j�1 =
j+1
2 for odd j such that �j is 1 if j is odd and 0 if j is even

(
q2j (x)
u2j(x)

then are the convergents to F (x)).

This means that there are only two possible recursions for uj(x) depending on the parity
of j, namely

u2j(x) = u2j�1(x)�
r2j
r2j�1

xu2j�2(x); u2j�1(x) = u2j�2(x)�
r2j�1
r2j�3

x2u2j�4(x):

So the algorithm is simpli�ed in (3.6) and we obtain the recursion

 
u2j(x)
v2j(x)

!
=

 
1�

r2j
r2j�1

x �r2j�1x
1

r2j�1
x 0

!
�

 
u2j�2(x)
v2j�2(x)

!
: (3:9)

By the above considerations we have the following three{term recurrence for u2j(x) (and
also for q2j(x) with di�erent initial values).

u2j(x) = (1�
r2j
r2j�1

x)u2j�2(x)�
r2j�1
r2j�3

x2u2j�4(x):

Since the Berlekamp - Massey algorithm determines the solution of equation (1.7) it must
be

xj � u2j(
1

x
) = tj(x):

as under (1.8). This is consistent with (1.17) where we consider the function F ( 1
x
) instead

of F (x). By the previous considerations, for tj(x), we have the recurrence

tj(x) = (x�
r2j
r2j�1

)tj�1(x)�
r2j�1
r2j�3

tj�2(x) (3:10)

Equation (3.10) now allows to give a simple interpretation of the calculations in the single
steps carried out in the course of the Berlekamp { Massey algorithm for the special case that
all principle submatrices of the Hankel matrix An are nonsingular.

Proposition 3.1: Let An be a Hankel matrix with real entries such that all principal
submatrices Ai, i = 1; : : : ; n are nonsingular and let T be the linear operator mapping T (xl) =
cl as in (1.9). Then for the parameters rj obtained via (3.5) it is

r2j�1 = T (xj�1 � tj�1(x)) = c0�1�2 � � � �j�1 ;

r2j = �jT (x
j�1 � tj�1(x)) = c0�1�2 � � � �j�1�j; (3:11)

where �j and �1; : : : ; �j�1 are the parameters from the three-term recurrence of the or-
thogonal polynomials ti(x), i = 0; : : : ; j.

Proof: The proposition, of course, follows directly from (3.10), since the three { term
recurrence immediately yields the formula for the rj's. Let us also verify the identities directly.
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From the considerations under (3.5) to (3.10) it is clear that the degree of u2j�2 is j�1. Hence
in this case b2j�2;j = b2j�2;j+1 = : : : = b2j�2;2j�2 = 0 in (3.5) and

r2j�1 =
j�1X
t=0

b2j�2;tc2j�2�t =
j�1X
t=0

b2j�2;tT (x
2j�2�t)

= T

0
@j�1X

t=0

b2j�2;tx
2j�2�t

1
A = T

0
@xj�1 j�1X

t=0

b2j�2;tx
j�1�t

1
A = T

0
@xj�1 j�1X

t=0

b2j�2;j�1�tx
t

1
A

= T

0
@xj�1 j�1X

t=0

aj�1;tx
t

1
A = T (xj�1tj�1(x)) = c0�1�2 � � � �j�1

where the last equation follows by (3.3). A similar calculation shows that

r2j = T

 
xjtj�1(x)�

r2j�1
r2j�3

xj�1tj�2(x)

!
= T

�
xjtj�1(x)� �j�1x

j�1tj�2(x)
�

since by the previous calculation
r2j�1
r2j�3

= �j�1. So by (3.3) further

r2j = c0�1�2 � � � �j�1 [(�1 + �2 + : : :+ �j)� (�1 + �2 + : : :+ �j�1)] = c0�1�2 � � � �j�1�j:

Remarks:

1) Observe that with Proposition 3.1, the Berlekamp { Massey algorithm can be applied
to determine the coe�cients �j and �j from the three { term reccurence of the orthogonal
polynomials tj(x). From the parameters r2j�1 obtained by (3.5) in the odd steps of the
iteration �j�1 =

r2j�1
r2j�3

can be immediately calculated, and in the even steps �j =
r2j

r2j�1
is

obtained. By (1.15) and (1.19) it is �j�1 =
r2j�1
r2j�3

=
det(Aj)det(Aj�2)

det(Aj�1)2
. Hence r2j�1 =

det(Aj )

det(Aj�1)
,

which means that the Berlekamp { Massey algorithm also yields a fast procedure to compute
the determinant of a Hankel matrix.

2) By Proposition 3.1 the identity (3.5) reduces to
Pj

t=0 aj;tcj+t = c0�1�2 � � � �j where the
aj;t are the coe�cients of the polynomial tj(x), the �i's are the coe�cients in their three {
term recurrence and the ci's are the corresponding moments. For the classical orthogonal
polynomials all these parameters are usually known, such that one might also use (3.5) in the
Berlekamp { Massey algorithm to derive combinatorial identities.

3) The number wall algorithm due to Conway { also motivated by continued fractions {
was recently presented as a cookbook for linear feedback shift registers [12].
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