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ABSTRACT

We consider irreducible Goppa codes over F, of length ¢™ defined by polynomials of degree
r where ¢ is a prime power and n,r are arbitrary integers. We obtain an upper bound
on the number of such codes. We also exhibit categories of quasicyclic Goppa codes which
depend only on numerical conditions on the parameters p,n,r. Finally we give a method for
generating all cubic Goppa codes.
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1 Introduction

Classical Goppa codes form a large family about which little is known, in general. They are
sometimes referred to as being near to arbitrary or near to random [1]. Their parameters, such
as dimension and minimum distance, and their automorphism groups are unknown. How-
ever they are easily generated, as any polynomial over a finite field generates such a code.
The cryptographic potential of Goppa codes was recognised in the McEliece cryptosystem [4],
which is still regarded as secure nearly a quarter of a century after it was first proposed. There
is a very large number of Goppa codes with similar parameters. Their number grows expo-
nentially with the length of the code and with the degree of the Goppa polynomial. However,
not all irreducible polynomials of a given degree over a finite field generate inequivalent codes
and the precise number of such codes, on which the security of the McEliece cryptosystem
depends, is not known. In 1978, Chin-Long Chen [5] derived an upper bound on the num-
ber of equivalence classes of irreducible Goppa codes. In a previous paper [10, 11] paper we
gave an improved bound for certain values of the parameters (field size, length, degree of the
Goppa polynomial). In this paper we consider the general case and give an improved bound
for the number of Goppa codes of length ¢™, defined by irreducible polynomials of degree r,
where ¢ = p' (p a prime), for arbitrary p,n,¢,7. In many cases, at least for small values of the
parameters, this bound is precise, although we can also generate examples where the bound
is not met. In order to make this paper relatively self-contained, we repeat and extend some
of the preliminary material from [10, 11].

2 Preliminaries

Let , (L,g) be an irreducible Goppa code over F, with defining set L = Fy», where g(z) €
Fyn [2] is an irreducible polynomial of degree r. Then a vector ¢ = (cg,c1,...cqn—1) with
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components in F; is a codeword in , (L, g) if and only if

q -1

Z % =0 mod g(2) (1)

= AT

where we adopt a fixed ordering on L = Fpn = {¢; : 0 <i < ¢" — 1}. The roots of g(z) lie in
Fynr, and if a is any root then g(z) = [i— (z —a?""). Thus condition (1) is equivalent to the
r equations

-1
anfil:o, 0<j<r—1. (2)
= =G

Since all the components ¢; of the codeword ¢ lie in F, and all the ¢; lie in Fgn, condition (2)
is equivalent to

nj

-1 a
(Zac}l) =0, 0<j<r-1 (3)

=0

which is equivalent to the single equation

q"—1

> =0 (1)

=0

Hence , (L,g) is completely described by any root a of g(z), and we may denote this code
C(a). Clearly any element of degree r over Fy» defines such a code. Using the single equation
in (4) we get the following parity check matrix H for C'(«)

A T 5
_(04*(0 a—( OZ*Cq"fl)- (5)

We make the definition.
DEFINITION 2.1 The set S = S(n,r) is the set of all elements in Fgnr of degree r over Fyn.
Next we establish the theorem.

Theorem 2.2 If a,3 € S are related by an equation 3 = (aqi + ¢ for some ( # 0,§ € Fyn
then C(a) is equivalent to C'(8).

We define the following maps on S, where (,§ € Fyn,( # 0.
Lm:a—a+é

2. p¢ o Ca

408



3 Enumeration of irreducible Goppa codes

Using Theorem 2.2 we construct an upper bound on the number of inequivalent irreducible
Goppa codes for fixed ¢,n and r in the following way. The set of all irreducible Goppa codes
over F; of length ¢™ and degree r is {C(a) : @ € S}. If o, 8 € S are related by an equation

B=Ca? +¢ for some ¢ # 0, € Fpn (6)

then C(«) and () are equivalent (Theorem 2.2). The set F' = {rgopc : §,{ #0 € Fymn }
forms the group of affine transformations and acts on S. The set G' = {¢¢ : 1 <4 < nr}
forms the Frobenius group and again acts on S. It is clear that the orbits in S under FG
(semidirect product) are precisely those elements related by an equation of type (6). Thus
any two elements in the same orbit generate equivalent Goppa codes. The number of orbits
in S under F'G then gives us the required upper bound on the number of Goppa codes.

4 Orbits of S under F

We first consider the action of the affine group F'. Let o be an arbitrary element of S. If
CGa+& = Ga+E& and ¢ = (o then & = &, while if {; # (> then a = (§& — &1)/(C1 — ¢2),
contrary to @ € S. Thus the orbit containing a, denoted A(a) and called the affine set
containing «, contains ¢"(¢™ — 1) elements. It is obvious that A(8) = A(«) for any 5 € A(«).
We denote the set of all affine sets, that is, {A(a) : « € S}, by A. We conclude that
|Al = [S|/q"(¢" = 1).

12 24

S
21(24 - 1) !

EXAMPLE 4.1 Let ¢ = 2,n = 4,7 = 3. Then S = Fyi2 \ Fys and there are

affine sets in A.

ExAMPLE 4.2 Let ¢ and n be arbitrary and let » = 2. Then S = Fj2n \ Fyn and there is only
2n n
a —4q

= W—l) affine set in A.

REMARK 4.3 Since in the case r = 2 there is only one orbit, we shall from now on assume
r> 2.

Next, we observe that o permutes the affine sets within A since if 5 = (a + £ is an arbitrary
element of A(«) then 39 = (%a? + &% € A(a?). So G = (o) acts on A. Our strategy is first
to apply the action of F' to S to obtain A. Then we apply the action of G’ to A to obtain
the orbits in S of F'G'. The action of F' on S is straightforward as shown above. However the
action of G on A is more complicated. This latter action is analyzed in the following section.

5 Orbits of A under G

The group G = (o) is a cyclic group of order nr. In analyzing the action of G on A we will
need to refer to the factorizations of n and r, highlighting the divisors that are products of
those primes dividing only one of n or r and those that divide both. In order not to over-
burden the notation with explicit prime factorizations, we define k to be the largest divisor
of n that is relatively prime to r and set ¢, = n/k, and m to be the largest divisor of r
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that is relatively prime to n and set ¢, = r/m. Thus nr = kfm = kl,l,m, where { = {,(,.
We often need to work with a divisor k; of k£ and write k; = k/ki. The symbols ks, ks
etc. will denote divisors of k possibly distinct from k;, and similar notation will be used for
divisors of {,m,n,r, where appropriate, without explicit mention. The letter p will always
denote the characteristic of the field and p; some other prime distinct from p. We define
K = (¢!, L = (¢"), M = (¢*!). Thus, |K| = k,|L| = {,| M| = m and by elementary group
theory G = K x L x M.

ExaMPLE 5.1 Tet ¢ = 2,n = 6,7 = 10. Then k = 3,{ = 4,m = 5 and K = (¢2°),L =
(01%), M = (¢'2). Thus, |K| =3,|L| = 4,|M| =5 and G = K x L x M.

In order to count the orbits in A under the action of G we count the fixed points of this
action and then apply the Cauchy-Frobenius Theorem (see [7], for example). In other words
we count the affine sets A(«) in A which are fixed under the various subgroups of G' and
then calculate the average number of affine sets fixed by an element of G. Observe that if
A(e) is fixed by (o°), then (0®) also acts on A(«) and A(«) itself may contain elements of S
fixed by (o). To make things clear we will refer to these elements as fized points and refer
to the elements of A that are fixed as fized affine sets. We introduce some notation. Let u,v
be integers. The greatest common divisor of u,v will be denoted by (u,v). We also write
m(u,v) = py'ps? - - - p,’, where py, pa, ..., py are the primes occurring in the prime factorization
of v and a; is the largest power of p; dividing u, 1 < i < b, a; > 0. Also, since an irreducible
polynomial of degree r over Fx, ¢, remains irreducible over Fyue, [8, Theorem 3.33], we may
define S(kily,7) as the subset of S(n,7) of elements that are of degree r over Fyz, ¢..

We divide the analysis as follows.

1. We first focus on affine sets fixed under subgroups of G having trivial intersection with
LM. These are precisely the subgroups of K. We prove that an affine set A(«) is fixed
by a subgroup (o*1™) of K if and only if A(a) contains a fixed point. We count the
total number of elements of S which can be fixed by (¢*1¢™) and the number of such
elements in each A(«a) fixed by (0*1¢™). Thus we find the number of affine sets fixed by
<0.kllm>.

Lemma 5.2 The number of affine sets fized by (o*1t7) is

IS (k1tas7)|/(a" 4 (¢4 = 1)).

ExAMPLE 5.3 Let ¢ = 2,n = 4,7 = 3. Recall from Example 4.1 that there are 17 affine
26 _ 22 23 _ 21
sets in A. Of these 17 affine sets ————— =5 are fixed by (0%) and Jai 1) = 3

22(22 — 1) (2r —1)
are fixed by (o).
2. Next we consider affine sets fixed under subgroups of GG which have non-trivial inter-

section with LM. Suppose A(a) is fixed by (o#1™1) such that (c¥14™1) N LM is non
trivial, that is, {17m; > 1. The analysis falls into two cases.

(a) The case when p [ ¢y7m;. We first show that the fixed points of (a#1¢™) are per-
muted in orbits of length precisely (1. We exploit these orbits to gain further
information.

410



i. First, we analyze the case when (cF101™) C LM and £,|¢;, that is, k; = k
and £y|01. If (617m1,p) = 1 and if k€,|k1¢; then we establish that an affine set
A(a) is fixed by (o*1©™1) if and only if the numerical condition ;7 |¢F* —1
is satisfied and then A() contains roots of the equation z¢"**"'=1 = ¢ where
€ € Fyn is of order L. Counting the roots of this equation which lie in S
and the number of such roots which lie in each A(«) we establish the number
of affine sets fixed by (gF1f1m1),

ii. Second, we allow (¢*14™) ¢ LM (k; < k) but insist that £,|¢;. In this
case we establish that an affine set A(a) is fixed by (oF1é1™1) if and only if
the numerical condition ;7 |¢Ff» — 1 is satisfied and then A(a) contains

roots of equations of type 201 — i where £ € Fyn is of order 0y and

(i,ym1) = 1. Again we count the roots of these equations which lie in S.

To count the number of such roots which lie in A(«) we count the number

of elements in the set U({;7m1) defined as the set of distinct elements in Fyn

which can be written as e/~ where o(¢) = {171, 4,5 coprime with £;7m; and
such that _

7l'(qn - 1,51777,1)
(qkld — 1,71'((]" — 1,K_17’?L1))

o(e77%) divides

where d = ({1,£,). In this way we establish the number of affine sets fixed by
(oFrtim1y when €, |0;.
iii. Third, we examine the case when £, [ {;. This breaks into two cases.

A. If ¢ = —1mod 4 and k;ilamy is odd and f17m, is even then A(«) is fixed
by (o*14™) if and only if 2017m1|¢* % — 1 and A(«) contains roots of
equations of type 24" ~1 = £*i where &* € F,» is of order 2¢17m; and

(i,flml) =1. (Note 2\!717711)

B. Otherwise, if any of the three conditions ¢ = —1 mod 4 and kifom; is
odd and €;7m; is even do not hold, we use induction to show that even if

Ly | €y we still have the result that an affine set A(a) is fixed by (oF1f1m1)

if and only if 1771 |¢**% — 1 and A(a) contains roots of equations of type

kit _ ; . 7 P
20Tl = g here £ € Fyn is of order £;m and (4,¢1m1) = 1.

We use the same technique to count the fixed affine sets when £, | {; as we do
for the case when 0, |¢;. Let T'(ky,lymy) (T*(k1,€1m1)) denote the set of roots of
the ¢(fym1) (¢(2017m1)) equations g? 1L g (qulelml_l = E*i), (3, b1y =
1, which lie in S and let U*(Z1m1) be defined in a similar way to U(Zym;) but
corresponding to £*.

Lemma 5.4 Suppose (p,lymy) =1. Then

i. If g=—1mod 4 and kilym; is odd and 01y is even then there are

\T*(kl,ﬂlm1)| I
= affine sets fized by (o"11™1)  where d = ({1,L,),
(qkld _ 1)‘U*(flﬁll)‘ i fi Y < > ( 1 TL)

if and only if 20y, |g* > — 1.

[T (ks ()
) (g7 = 1)|U (Lymy)]
if and only if Oymy|g*1t — 1.

ii. In all other cases there are affine sets fived by (o*10m)
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ExamPLE 5.5 Let ¢ = 3,n = 4,7 = 10. Note that k¥ = 1,/ = 8, m = 5. Then
1920
|T*(1,5)| = 1920, |U*(8)| = 4 and there are Ixi= 240 affine sets fixed by (o).

EXAMPLE 5.6 Let ¢ = 2,n = r = 6. Note that 9|26 — 1. Then |T(1,4)| = 72,
2
|U(9)] = 3 and there are 37>< 3 = 8 affine sets fixed by (o*).

(b) The case when p|l;77,.
oq
In this case if A(a) is fixed by (e%1@1™1) then it is also fixed by (o™ » ). We show
[y Em nr
that A(a) is fixed by (" # ) if and only if it contains a root of 27° —z — 1. We
then have the following analysis.

i. First we count the affine sets fixed by (o¥1©1™1) when ;7 = p, allowing k; to
be arbitrary. We do this by counting the number of elements in the set V(k1),
which denotes the set of roots of x? v x — 1 which lie in S, and then the
number of such roots in each affine set. We get the lemma:

Lemma 5.7 The number of affine sets fived by (c¥1™) when 1y = p is

[V (k)|

P
EXAMPLE 5.8 Let ¢ = 2,n = r = 6. Then |V(1)| = 262080 and there are
262

66280 = 4095 affine sets fixed by (c'®).

ii. We then show that there are no affine sets fixed by (oF1f1m1) if
A. fymy = p? and p?|r
B. {1/m, = pp1 where p; is some other prime.

ili. Finally, we analyze the case when {17y = p?, i > 1 and p? [r. Observe that
in this case m; = m. We show that A(«a) is fixed by (¢*14™) if and only if
A(w) contains a root of 24" — 2 — B; = 0, where f3; is a fixed element of
Fyn such that TrFq%/Fqkﬂlm(/Bi) = 1. Then again we denote the set of roots

of this equation which lie in S by W (k1{;m), count the elements in this set
and the number which lie in any one affine set and then deduce the number
of affine sets fixed by (0*1/1™) when ¢; = p’. We get the lemma:

Lemma 5.9 The number of affine sets fized by (c*19™) when 0, = p?, i > 2
is

A1, ifr=
W(kilim ,
% where d = (01,0y,), if r > p.
EXAMPLE 5.10 Let ¢ = 2,n = r = 6. Then |W(9)] = 504 and there are
504
5 = 63 affine sets fixed by (°).

Finally, we bring all the results of Lemma 5.2, Lemma 5.4, Lemma 5.7 and Lemma 5.9 together
to get the theorem.

Theorem 5.11 Let d = ({1,£,). With the notation we have established:

S (k1ln, )|

— L affine sets fived by (oFleTy,

1. There are
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2. If (p,£1m1) = 1. Then

(a) If g = —1mod 4 and kilom, is odd and (17, is even then there are

[T (k1, Lyma)]

(gh1? = 1)|U*(Cyim)|

if and only if 20y, |gF1» — 1.
(b) In all other cases there are

\T(kl,ﬂlml)\

(gh14 = D)|U (tymy )|

3. If (fymy,r) = p and lymy = pt, i > 1 then

(a) if i =1 there are

[V (k)|

qkld

affine sets fized by (o*10™) where d = ({1,0y,),

affine sets fixed by (*10™) if and only if Ly |g™ e — 1.

affine sets fived by (Uk1€1m1>'

(b) if i > 1 and r = p then there is precisely 1 affine set fived by (a*141).

(c) ifi >1 and r > p there are

qkld

6 Computation

[W (k1tim)]

affine sets fized by <0’k1£1m>'

Using Theorem 5.11 we can develop a program to apply the Cauchy-Frobenius Theorem and
calculate the average number of affine sets fixed by an element of G. This gives the number
N(q,n,r) of orbits in S under the action of FG. Among other things, the program calculates
the cardinality of the sets S, 7, 7%, U,U*,V and W. Our main result is as follows.

Theorem 6.1 The number of inequivalent irreducible Goppa codes over Fy of length ¢" and
degree T is at most N(q,n,r).

The following tables compare N(2,7,7) and N(2,n,7) for 6 < n,r < 16

(q[n]r] N7, [ n "] N2, |
2[7] 6 6442037 |[ 2| 6 | 7 25972041
(7] 7 706740561 || 2 | 7 | 7 706740561
278 79154980000 || 2 | 8 | 7 19711152849
2719 9006073495576 || 2| 9 | 7 559575017799
27110 1037499670492467 |[ 2 | 10 | 7 16100007541491
27|11 120727233941856231 || 2 | 11 | 7 168135036352467
2 [ 712 14165328782916945380 || 2 [ 12 | 7 13728607731106143
2713 1673688077687467924065 || 2 | 13 | 7 105472442822740719
2714 108920782948040712169263 || 2 | 14 | 7 12047588599432596753
27| 15| 23765473069520611201643781 || 2 | 15 | 7 | 359810331615688417563
2 [ 7 | 16 | 2851857368342478330960057440 || 2 | 16 | 7 | 10794145237868624836449

Note that N(2,7,6) < N(2,6,7) but N(2,7,8) > N(2,8,7) and then N(2,n,r) grows faster
with r than with n.

The following table gives some non binary values
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Y| WO (W O W w w3
(=2}

‘ N(q,n,r

~

O | W

68
1368

86
1644
16
842
53892

OO OO U U W|wWw| w|w| w|(

7 Quasicyclic Goppa codes

It is already known that there are classes of quasicyclic Goppa codes, see [1,3]. This feature
has also arisen in our analysis. Using specific orderings on the defining set L we show that

1. If p|r then there exists a category of quasicyclic irreducible Goppa codes of length ¢™
and index dividing <. It is not difficult to give an upper bound on the number of codes
in this category. We give a method for the generation of such codes and note that they
have varying parameters.

2. If £y |q™ — 1 there exists a category of quasicyclic Goppa codes of length ¢® — 1 and
index dividing ﬁ. Again it is not difficult to count the Goppa codes in this category
and we give a method for generating these codes.

7.1 Cryptosystems based on Goppa codes

The existence of these two categories of quasicyclic Goppa codes has implications for any
cryptosystem based on Goppa codes. Some authors have shown that Goppa codes with non
trivial automorphism groups are bad keys for the McEliece cryptosystem (See [3]). However
it is easy to eliminate the possibility of choosing a Goppa code in either of the above two
categories using the numerical condition necessary for their existence.

8 Cubic Goppa codes

The following result can be used to construct an efficient program to generate all all cubic
Goppa codes of length ¢™. Let ¢,n and r > 3 be fixed, let « € S and let D = {a} U {a+_£ :
&€ € Fgn}. Then |D| = ¢" 4+ 1 and no two elements of D belong to the same affine set. For
suppose 31 and (8+¢1) ! belong to the same affine set then (34 ¢;)~! = (B! +¢ for some
(,¢ € Fyn which implies that [ is a root of a quadratic over Fg» which is impossible. Finally
3n __ qn

note that, when r = 3, there are = ¢" + 1 affine sets in S and so the elements of

qn qTL — 1
D in this case characterize all affine sets. If » > 3 then the elements of D define ¢™ + 1 affine
sets.
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Theorem 8.1 Let q,n and r = 3 be fized, let « € S and let D = {a} U{

%ﬁgan}

Then D consists of a full set of representatives of all the affine sets in'S. If r > 3, D consists
of a set of representatives from q"™ + 1 affine sets.

Using Theorem 8.1 we outline a method for generating all irreducible cubic Goppa codes
of length ¢". A slight modification to this method helps to obtain any required number of
irreducible Goppa codes of degree r and length ¢".
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