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Abstract
We study a class of good codes and their duals explicitly. We give direct constructions
of the dual codes and obtain self-orthogonal codes with good parameters.
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1 Introduction

It is well known that subfield subcodes and propagation techniques would give codes with
good parameters. Recently Xing, Ling and Niederreiter [7], [3], [4] have constructed a class of
codes with very good parameters from the rational function field of F; using specially chosen
subcodes of Reed-Solomon codes and propagation rules. Due to their good parameters and
algebraic structures, this class of linear codes has attracted further attention. For instance, a
decoding algorithm of these codes is given in [5] and these codes have also been generalized
to arbitrary algebraic function fields [8].

In this paper we introduce a general framework for such constructions over rational func-
tion fields and we study their dual codes. Since subcodes and propagations in the construction
have nice algebraic structures, it turns out that the dual codes are also in the same class and
we can easily control the dual codes so that we get self-orthogonal and self-dual codes with
good parameters. As good codes, we basically mean linear codes with parameters close to the
best known ones according to Brouwer’s [1] table or certain known bounds. We show that all
linear codes can be obtained from our construction in a unique way and dual codes as well
as self-orthogonality can be obtained in a simple and explicit manner. Direct constructions
of the dual codes and self-orthogonal codes are provided.

“This paper was written while the second named author was visiting the Institute for Mathematical Sciences,
National University of Singapore, Republic of Singapore. He would like to thank the institute for the support.
The first and third named authors are partially supported by MOE-ARF research grant number R-146-000-
029-112 and DSTA research grant number R-394-000-011-422.
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2 Construction

First we fix some notation. In the paper we use the usual Euclidean inner product. For
C C F; a linear code, we denote its dual by C+. A code C is said to be self-orthogonal if
O C C+. If C' = O, then C is said to be self-dual. For \; € F, \ {0} for i = 1,2,...,n, let
(A1,...,An) - C denote the equivalent code defined as {(Aic1,...,\nen) | (€1,...,c) € O} If
(AL« - s M) C C Ct for some Ay, ..., A, € F,\ {0}, then C is said to be quasi self-orthogonal.
Similarly, if this containment is in fact an equality, then C' is quasi self-dual. Let F, be a
finite field and let F, be a fixed algebraic closure.
Let r be any prime and consider the set

A; = {((Il,ag,...,arr)‘OS(MSq@l,lSiST}

of r-tuples of integers between 0 and ¢ <1. Let Q, denote the cyclic group generated by the
cyclic shift w, on Ag, i.e.,

wT(alyaQy .. '7a7‘) = (a27a37 s 7arval)'

Note that Q, =< w, >= Z/rZ. For a = (ai,...,a,) € A}, let O, denote the orbit of a under
the action of the group €, on A7

Oa:{(bl,...,bT):wi(al,...,aT)\1§i§r}CA;.

Note that, for a’ € O,, we have O, = On. We also define the associated polynomial h, of
the orbit O, as

ha = Z pb1Hb2atAbrgT T

Since 7 is a prime number, there are m := (¢" <q)/r + ¢ distinct orbits. Let S = {h1,...,hn}
be the set of all associated polynomials. For every a = (a1,...,a,) € Ay, let

a=(¢elea,... gl <a).

Definition 2.1. For an orbit Oa of Aj under the action of (2., we define O, as

Oa = Og.

For h, € S, we define h, € S as

Let P be a subset of F,» with the largest cardinality such that
a€P=al=aoral gPfor1<i<rel.

Then #P = (¢" <q)/r +q=m. Let P = {ai,...,an}. It is easy to check that the F,-linear
span of the set {(hi(a1),...,hi(am)) [ 1 < i < m} is the space Fy* and max{degh | h € S} =
> wcp deg fo ©min{deg fo | @ € P}, where fq is the minimal polynomial of « over F,.

Now we give our construction in a general framework. For a given positive integer n,
assume that for some m > n there exists a pair (S, P) such that P = {ay,...,am} is a set
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of elements of F, with distinct minimal polynomials over F, and S is a set of m polynomials
hi,...,hm € Fg such that the set

{(hi(@r),... hi(am)) | 1 < i < m}

generates the space F*. Let f; denote the minimal polynomial of a; over Fy for i =1,...,m.
Then it follows that max{degh; | 1 <i<m} > > deg f; ©min{deg f; | 1 < i < m}.

For example, let 7 be a prime number satisfying L;q +qg>nandlet m=(¢" <q)/r+q.
Consider the pair (S,P) as defined before. It is clear that S = S and P = P satisfies the
conditions above.

We fix an order on P as P = (a1,@2,...,am,) and let P, = {aj,...,an}. For k <n
and an F,-linearly independent subset {g1,...,gx} C SpanFqS with the corresponding k£ x n
matrix G = (gi(aj))1<i<k,1<j<n7 we denote the code generated by G as C(gl,...,gk;ﬁn).
Note that when m = n, we have C(h1,...,hs, P) = Fy.

Remark 2.2. In [7], Xing and Ling considered the case r = 2 and they constructed codes
with good parameters. Ling, Niederreiter and Xing [3] considered the general case that
r > 2 is an integer. They constructed codes of arbitrary length and some codes with good
parameters. Our construction and the constructions in [7] and [3] are identical for » = 2. For
r > 3 a prime integer, our construction and the construction in [3] use similar subsets of Fy-
for evaluations of polynomials. For r > 3 a prime integer, the sets of polynomials used in
our construction and in [3] are different. For example, it can be readily verified that, when
¢ =4 and r = 3, the degrees of the largest set of polynomials used in [3] is a proper subset of
the one in our construction. The corresponding subset in our construction includes the set of
degrees {33,49,50,54} as extra.

We observe that for n < m, any ¢ary [n,k,d] linear code C' can be considered as
C(g1,---9k; Pn) uniquely upto an ordering of entries of P, for some g1,..., gg-

Proposition 2.3. Let the notation be as above. Gz’venA a q-ary [n,k,d] linear code Q, there
exists a unique subspace Wo =< g1,...,g1 >C SpanFqS such that C = C(g1,...,91;P).

Hence for a prime number r, fixing an order on the elements of P, we can find all ¢-ary
linear codes of length n < m = (¢" <¢)/r + ¢ in a unique way. Moreover m — 0o as r — 00
for a fixed g¢.

For given ¢-ary [n, k, d] code C(g1,- .., 9x; ﬁ), this observation leads to a method of finding

915> 9n—y € Spanp, S explicitly such that C(g1,-- -, 9 P)E =Clgl,...,g15P).

Theorem 2.4. Let the notation be as above. Choose gp+1,-..,9n € SpanFqg such that the
n x n matriz G = (gi(a;)),<; j<, is nonsingular. Consider the matriz B defined as

B:=(b},b,...,bt) = (GG,
where b; = (Bi1,-..,0in) €Fy fori=1,2,...,n. Let g € SpanFq‘? be defined as

9i = Brtin g1 + Brripg2 + - -+ Bryingn

fori=1,2,...,n<k. Then

Og1,---5 95 P)" = Clghs - 9 i P)-
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3 Direct Constructions of Dual Codes

Let r be a prime, [, a finite field of characteristic different from r and n = L;q +g¢q. In
this section we study direct constructions of dual codes corresponding to pairs (S, P) defined
in Section 2. We explicitly construct (quasi) self-orthogonal codes with good parameters.
Throughout the section we order the elements of S = {hy,..., h,} such that deg h; < deg h;+1
fori =1,...,n<1. Then we have by = 1 and h,, = 2@ D0+a+-+a""1) = 2¢"=1 Moreover we
also order the elements of P as P = (a1, aa, ..., g, Qgt1, - - ., ay), where {a1,..., a4} = F;.

Theorem 3.1. Let 1 < k < n 1. For any subset {hj,...,hj;} C S with {hi,hn} €
{hj1,... hj,} we have

.oVl .
COlhjys sy PY- = (L., ry e ) - C(RG,, .. bGP,
q times n—q times
where {h; ..., 0} } =8\ {Rjry... kj,}. Moreover if r is a square in F, with ¢ =r and

hj, & {hjys.. ., hj} fori=1,...,k, then
1,...,1,¢,...5¢)-Clhjy,...,hj; P
( ) - Clhjy i3 P)
q times n—q times
is self-orthogonal.
Proof. First note that ZaquT o' =0for 0 < i < q" <2 Thisis trivial for i = 0. For
1 <i < ¢" &2, we can choose ¢ = ¢(i) € F;» such that ¢! € F,r \ {0,1}. Hence
Z ol = Z (ca)t = ¢ Z o,
a€F,r a€F,r a€F,r
Then
(1) Z o' =0and Z ol =0 since 1 # ¢\
a€F,r a€F,r
Therefore if h € Fy[z] and degh < ¢" <2, then
> ha)=0. (1)
a€F,r

Since Spang, S forms a ring with multiplication modulo (27" <) and S is a basis, we have
for any 1 <4; <k and 1 < iy <n <k, a uniquely determined a;(i1,i2) € Fy for [ =1,...,n
satisfying
n
h]'hh;-i2 = Zal(il,i2)hl mod (27 &x). (2)
=1
Moreover by definition of the operation h +— & on S and by the definition of the set
{h;-l,...,h;-nik}, we have ap(i1,iz) = 0 for 1 < i3y < k and 1 < 42 < n k. Therefore

since h(a) = h(a?) for any h € Spang S and a € Fyr, we get

(hﬁl (@1)s o> b, () B, (@qi)s - s P, (an))

. (h;-i2 (a1),..., h;—iz (ag), rh;-i2 (ags1)s--- ,rh;-iz (an)) = Z h]-i1 (a)h;-i2 (o)
aE]P‘qr

for 1 <43 <k and 1<iy <n<k. Using (1) and (2) we complete the proof. O

302



It is possible to characterize the subsets 7' C S satisfying the property
h & T for any h € T. (3)
First we determine elements a € Aj such that Oy = O,.

Proposition 3.2. For a € Ay, we have the following equivalences depending on the cases.
Case 7 is 2: Oa = Oa & a= (a,b) witha+b=q&l.
Case 7 is odd and q is even: On # Oa for any a € A.

1

Case r is odd and q is odd: Oa = Oa <> a = (a1,...,a,) with ay = -+ =a, = &=,

Next we define special subsets Sp, S—, and S4 depending on the cases.

Case r is 2 and ¢ is odd:

So ={ha € S|a=(a,b) with a +b= g1},
S_={ha€S|a=(a,b) witha+b< g1},
St ={ha € S|a=(a,b) with a+b>q<1}.

Case r is odd and ¢ is even:

So =10,
q/2—1 q-1

S_ = {haES |a=(ai,...,a,) and Z #i’sin a < Z #i’s in a},
i=0 i=q/2
q/2—1 q—1

St = {haES |a=(ai,...,a,) and Z #i’sin a > Z #i’s in a}.
i=0 i=q/2

Case r is odd and ¢ is odd: For simplicity we consider » = 3 and let s = ((¢ ©1)/2,(q¢ &
1)/2,(g 1)/2) € A2,

SO = {hs}7
(g-1)/2-1 g—1
S_ =< hy €S]a=(a1,a2,a3) and Z #i’sina < Z #i’sin a
i=0 i=(g-1)/2+1
U {h; €S |i= (qu,i,qu@i) and i < %}
(g-1)/2-1 g—1
Sy =< hy €S ]a=(a1,a2,a3) and Z #i’sin a > Z #i’sin a
i=0 i=(g—1)/2+1

1 1
U {h;eS|i:(q<2:> Vi g 1 o) andi>%}

For a subset 7' C S, we denote by T the subset {h | h € T'}.

Theorem 3.3. Let the notation be as above. Then & = So U S_ US4, #S_ = #54 and
T C S satisfies (3) if and only if

(TNS_)N(TNSy)=0 and TNSy=0. (4)
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Note that in the case r is odd and ¢ is even, for T C § satisfying (4) and #7T = n/2 we obtain
self-dual codes. o
We obtain similar results for the pair (S,P) where

giS\{hn} and P = (a2, a3,...,0p),
where a1 =0. Let 7 = n <1 = (¢" <q)/r + ¢ <1 and define

Theorem 3.4. Let 1 <k <7 <1. For any subset {hj,,...,h;} C S we have

C(hjl,...,hjk;P)l:(17---:17 7"7---77")'C(h;d"'"h;n—l—k;?))’
q—1 times n—gq times
Ezhere {h;d""’h;'n_1_k} = g\ {ijl,...,;i;jk}. If also r is a square in By with 2 =171 and

hj, & {hjys. ., hj} fori=1,...,k, then

...l ¢,...,¢)-Clhiy,... . hj; P
( ¢ c)-C(hj i3 P)

g—1 times n—q times
is self-orthogonal. Moreover let T C S be a subset with hy € T satisfying (4). If C(T,P) is a
g-ary [n, k,d] code, then the code (1,...,1,¢,...,¢)-C(T\{h1};P) is a (quasi) self-orthogonal
g-ary [n &1,k <1, d1] code with dy > d.

Note that in the case r is odd and ¢ is odd, #So = 1. Moreover let ¢ =1 mod 4 and hence
choose e € F, with e? = <1. Then we can get (quasi) self-dual codes using P as follows. For
simplicity we assume that r = 3.

Theorem 3.5. Let F; be a finite field with ¢ = 1 mod 4, e € F, with €2 = &1, 7 = 3 and
s=((ge1)/2,(¢e1)/2,(¢©1)/2) € A]. Let T C 8 be a subset with hy,hs € T and T \ {hs}
satisfying (4). Let Ty = T U {ehy + hs} \ {h1,hs}. If C(T,P) is a g-ary [n,k,d] code, then

(1,...,1,¢,...,¢)-C(T1,P)

is a (quasi) self-orthogonal ¢-ary [n <1,k <1,d;y] code with dy > d. In particular it is (quasi)
self-dual when k = (n <1)/2 + 1.

Example 3.6. Using Theorem 3.1 and subsets {%;,,...,hj } C S satisfying (4) with deg hj, <
deg hj, for 1 < j; < j» < n and deghj, as small as possible, we obtain the following (quasi)
self-orthogonal ¢-ary [n,k,d] codes with the best known parameters as linear codes (see [1]).
The minimum distances can be estimated as in [7] and using Magma [2].

qg=2: [4,2,2],[8,4,4],
¢g=3: [6,2,4],
g=5: [15,2,12],[15,3,11], [45,3, 35], [45, 4, 34], [45, 10, 24], [45, 17,17],

g=9: [45,2,40],[45,3,39],[45,6,33], [45,7,30], [45,8,29], [45,9, 28],

[
[
[ [
g=T7: [28,2,24],[28,3,23],(28,5,19], (28,8, 15],[28,9, 14],
[
[45,10,27], [45, 12, 24], [45, 13, 23], [45, 14, 22], [45, 16, 20).
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Using Theorem 3.4 and similar subsets of § we obtain the following (quasi) self-orthogonal
¢ary [n,k,d] codes with the best known parameters as linear codes.

q:2: [77374]7

q=>5: [14,2,11],[44,16,17],

q="T: [27,2,23],

q=9: [44,2,39],[44,15,20], [44,7,29], [44,8, 28],
[44,9,27], [44, 12, 23], [44, 13, 22].

We also obtain some good (quasi) self-orthogonal codes whose parameters are beyond the
range of Brouwer’s tables ([1]).

qg=8: [176,10,127],[176,9,127],
g=11: [66,3,59],[66,6,52],[66,10,45],
[65,2,59], [65,5,52], (65,9, 45].
We give a generator matrix for 5-ary quasi self-orthogonal code [45,17,17] in Figure I. By

applying the propagation rules (see, for example, [6, Exercise 1.2.24]), we get a 5-ary code
[44,17,16], which is also a linear code with the best known parameters.

Remark 3.7. Example 3.6 as well as examples in [7] suggest that certain choices of r, subsets
of P and subsets of S can yield good codes. It would be interesting to characterize some classes
of good codes using our construction.

G = (Ii7 | P)17x4s,

where 17 is the 17 x 17 identity matrix and P is a 17 x 28 matrix given as below:

4314241410344331312113043111
0203301420411220120433421224
1223012143301440134132222340
4322031010031304421203042012
0242103320321334310121311412
201323224341101431303413324414
2321224314112210440204033201
2213441332144243101424011020
P=14130034000131241300041323330
1232244032203403322134203022
2433423201313434011011423243
3433302240402013442320321013
2441212332210102310213112442
4332434010440321032333232244
2314222114423033414440214341
3010430031403013100022321421
0320110334341340304323131421

Figure I: A generator matrix GG for 5-ary quasi self-orthogonal [45,17,17] code
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