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Abstract

Several attempts have been made to strengthen the security of the GPT public key
cryptosystem which is based on maximal rank distance codes, the Gabidulin codes. One
of them is to publish a subcode instead of a full code in the hope that the subcode does
not expose the structure of the code. In this paper we present an algorithm that recov-
ers a parent Gabidulin code for a random subcode of it. When the difference between
dimensions of the subcode and code itself is not too high the algorithm is of polynomial
complexity. Consequently we show that publishing a pure subcode (without any distor-
tion) makes the cryptosystem either insecure or the system falls outside the region of
practical interest.

1 Maximal Rank Distance Codes — the Gabidulin Codes

Let Fy be a finite field with ¢V elements, and let F; be the base field of ¢ elements; ¢ is a
power of a prime. Let x = (z1,22,... ,2,) € F},. The rank weight, or simply rank, r(x|F;)
of x over F is defined as the maximal number of z; that are linearly independent over F;.

The rank distance d.(x,y) between two vectors x and y, x,y € F7,, is the rank of the
difference x — y: di(x,y) = r(x — y|F1). For any linear (n, k) code C the rank distance d, is
defined by d, = min{r(x|F) | x € C,x # 0}.

In this paper we are concerned with subcodes of Gabidulin rank codes. A (n, k) Gabidulin
code C, over Fy is defined by its generator matrix
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where g; € Fy are all linear independent over Fy, j = 1,... ,n; gl = gqi means the i-th

Frobenius power of g.
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Any matrix of the form (1) is called a Frobenius matrix induced by the generating vector

g =1(91,92,..- ,9n). A parity check matrix of the code C, is also a Frobenius matrix
hy By oo hy
a0l .
.h[ln—k—l] :h[2n—k—1] .hLZL—k—l]

with generating vector h = (hy, ha,... ,hy), r(h|F1) =n.

The code C; has the minimum rank distance d, = n — k + 1 and it reaches the upper
bound for the rank distance [1], hence this is a mazimal rank distance code. For C4 there
exists fast decoding algorithms correcting any errors of rank up to ¢, = [(dT — 1)/2J.

2 Cryptosystems Using Subcodes of Gabidulin Codes

A public key cryptosystem of a McEliece-type that uses Gabidulin codes is the GPT cryp-
tosystem. The public key in this system is a matrix

Gpu = SG + X, (3)

where G is given by (1), S is a k X k non-singular scramble matrix, and X is a randomly
chosen k x n distortion matrix such that r(X|Fy) = ¢; < t,, where {; is a design parameter.
Here r(X|F;) is the column rank of X over the field F; defined as the maximal number of
columns that are linearly independent over F;.

A vector of a plaintext m € F’;V is encrypted as

c=mGp,;, + e =mSG + (mX + e), (4)

where e is a randomly chose artificial vector of errors of rank » = ¢, — ¢; or less. Decryption
is performed by decoding the vector ¢ to obtain mS and then m.

Two attacks against GPT PKC were invented by Gibson. They recover a decoder for the
published code, or equivalently they find a representation of the public key

Gou =S'G' + X/, (5)

where S’ is non-singular, G’ is of the form (1), and r(X'|F;) < r(X|Fy).

The first attack on average requires O(n3¢®N) arithmetical operations in Fy, where s =
minr(X'|Fy), and the minimum is taken over all decompositions of the form (5).

The complexity of the second attack is estimated as O(k3+(k-+t;+2) f¢/*+2)) operations,
here ¢t; = minr(X'|F;), and the minimum is taken over all decompositions of the form (5), s
is defined above. Gibson claims that in almost all cases in practice f = max(0,¢; — 2s), and
it is known how to choose X so that the expected value of f =1¢; — s.

In the light of these attacks, several modifications of the GPT PKC were introduced. One
of them is to use a subcode of Gabidulin code instead of the code itself. Originally this idea
was implemented in paper [2] by replacing a square matrix S in (3) for a rectangular one:

Gpup = 5,G + X, (6)
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where S, is (k — p) x k matrix over Fy of rank k — p picking out a subcode C, from the
code Cy.

Another implementation was proposed in [5], where authors used a Niederreiter-type sys-
tem publishing a parity-check matrix of the subcode C,

H,=T Eﬂ , (7)
where T is a non-singular (n — k + p) x (n — k + p) matrix, H is given by (2), A — some
p X n matrix defining the subcode.

However, as cryptanalysis is concerned the system with key (7) can be regarded as ex-
tremely simplified version of the system with key (6): Put in (6) X = 0 and compute S, from
the equation S,GAT = 0.

The rationale behind the design of the system assumed that a subcode is not a Gabidulin
code itself, and what is more that the subcode has no obvious algebraic structure that enables
recovering a fast decoding algorithm for the subcode both for a cryptographer and cryptana-
lyst. It is also supposed that the minimum rank distance of the subcode is strictly less than
n —k+p+1 and it is taken to be equal to d, = n — k + 1, thus defined by the parent code.
Therefore, for decrypting messages in both systems the parent code (either given by matrix
G or H) is only needed. Thus, to break both systems it is enough to recover any parent
Gabidulin code in canonical form (1) or (2) for the given subcode.

3 Recovering a Parent Code for a Subcode

In this paper, we show that a system with public key H, is insecure for any interesting
parameters in practice. To do this we present an algorithm that computes a parent code for
a random subcode of a Gabidulin code in polynomial time.

Split the matrix H into three parts H = [H; Hy Hs], where Hy — the first n — k columns
of H, Hy — next p columns, Hj is the last £ —p columns of H. Similarly, split the generating
vector h = (hl hg hg)

Denote { =n — k + p.

Without loss of generality, assume that the first £ columns of H,, forms a non-singular
matrix. Since H; is non-singular, H, can be rewritten as
(8)

H. — T* {Hl H, Hs]
=

O E, B

for some non-singular T*, where O — p x (n — k) all-zero matrix, E, is the identity matrix
of order p.
Reduce H,, to a systematic form

H""' = [E; R].
It is readily shown that
_ |Rizs—Rp2B
Re [P
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where R13 = H;ng, R12 = HIIHQ.

Thus, the matrix A may equivalently be represented in the form A = [O E, B] and in
fact is known.

We are going to show how the matrix H can be reconstructed on the basis of H,: Using
elements of the matrix R we derive and solve a system of linear equations in the unknown
components of h. Hence a parent code for the given subcode will be found.

Notice that [H; Hy] R = Hj, in other words

H, H, Hy L;‘k_p} —o. (9)

Let the matrix B have exactly v linearly independent over F; rows, 0 < v < p. Then B
can be written as

B = PBBbasea (10)

where Bpagse — a v x (kK — p) matrix, all rows of which are linearly independent over Fy, and
Pp is some p X v matrix over F; of rank v. Equation (9) turns into

R13 - RT2Bbase
[H; Hj Hj] Bhase =0, (11)
~Ej—p

where H = HyPp, R}, = R1;Pp = H ' H;j.

The matrix H* = [H; H} Hj] is a Frobenius (k —p) X (n — p + v) matrix with generating
vector h* = (h; h} h3), h} = hyPp, and r(h*|¢) =n —p+v.

Let R; be the j-th column of the matrix

R13 - RTQBbase
R* = Bhase . (12)
—Ej—p

Denote by Rg-i] the column R, each component of which is raised to the ¢*-th power. Form
a matrix

GT —
L=
Nl [N—1 N—ntk+1]5 [N [N-1 N—ntk+1 N N—n+k+1
RIVRN UL RV HEIRIMIRINUL L gV ]...Rgcjp...RLp" . a3
By some obvious manipulations equation (11) is transformed into the following linear equation

h*GE =o. (14)

The matrix G consists of (k —p)(n — k) rows and n —p+ v columns. Assume that there
are more rows than columns in this matrix, i.e., (k —p)(n — k) > n —p +v. Otherwise the
rate R, of the subcode will be too low: R, <1/(n —k)=1/(d, —1).

Lemma 1. Let the rank of Bypase is b. Then the rank rg of Gr satisfies the following bounds

n—p—1<rg<n—p—1+min(v,b(n —k)).
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Proof. (Sketch.) Any matrix Bpase of rank b may be represented as a product Bpase = B1Bo,
where B and By are v x b and b x (k —p) matrices both of rank b. It can be shown that rows
of G corresponding to the matrix Bpage are a matrix C = C;Csy, where Cy is a v x b(n — k)
matrix. Therefore, the rank of C does not exceed min(v,b(n — k)).

It is easy to prove that among the remaining rows of G% there are exactly n—p—1 linearly
independent ones. Thus, the rank of G upper-bounded by the value n—p—1+4min(v, b(n—Fk))
and lower-bounded by n —p — 1. O

A more accurate lower bound for r¢ other than given by Lemma has not been established.
However, a lot of simulations were conducted using the computer algebra system MAGMA.
The matrix B was chosen randomly (using MAGMA’s built-in pseudo-random number gener-
ator), the values of v lay within the range 1 to p, and values of b were in the range from 1
through min(v, k — p). For different fields of characteristic ¢ = 2 and extension degree from
N = 24 through N = 64, code lengths n < N, and for different p =1,... ,k—2 and d, > 2, in
every examined case the rank of G g was exactly on the upper bound n—p—1+min(v, b(n—k)).

Apparently there exist matrices B such that rq is strictly less than n—p—1+4min(v, b(n —
k)). But most likely a fraction of these matrices among all possible v x (k — p) matrices B is
extremely low, and we did not encounter them in our simulations.

If the rank of Gp is exactly ¢ = n—p+ v — 1, then by solving equation (14) we compute
the vector h* (to be more correct, we compute a multiple of h* which defines the same code).
If r¢ <n—p+wv—1, then a space of solutions of dimension

m=n—p+v—rg (15)

will be found. We are interested in solutions (vectors h*) whose rank is exactly n — p +v. If
m is a small value, then it is expected that only a few trials will be needed to find h* with
independent coordinates, and the total cost is estimated by O(nm) operations. If m is large
enough, then solving (14) for h* requires O(nmg™(™~1) operations in Fy.

Once h* is found, the matrices H;, H3, and H3 are known.

To find a full H the matrix Hy is needed. Since

h,Pj = hj, (16)

and hj with Pp are known, solve this equation for hy as follows. Let some v rows of Pp, say
the upper ones, are independent. All components of h must be independent over F1, so choose
the last p — v components of hy to be linearly independent of each other and of components
of hy, hs, and hj. Then the first v components of hy, corresponding to a non-singular v x v
submatrix of Pp are easily calculated from (16).

Thus, a complete algorithm of recovering a parent Gabidulin code C, for a given subcode
Cp and computing decomposition (8) is as follows.

Algorithm.
1. Calculate a systematic form of the parity-check matrix H, of the subcode: H'*" =

[E., R]. Put the matrix A to be the lower p rows of H;**": A =[O E, B].

2. Calculate the row rank v of B over F;. Represent B = PpBy,s, where Byp,se is a
v X (k — p) matrix containing all independent rows of B, Pp is some p X v g-ary
matrix.
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3. Calculate matrices R* and Gg according (12) and (13).

4. Solve equation (14) for h*. Put h* = (h; hj hj).

5. Choose randomly p — v components of hy so that they would be linearly independent of
each other and of components of h*. The rest v components of hy compute from (16)
as described earlier.

6. Using h = (h; hy h3), compute H = [H; H, H3].
7. Solve equation H, = T [H] for a matrix T.

The complexity of the algorithm is estimated by
Woarent = O(3N® + nmg™ (™) (17)

operations in Fy, where m is given by (15). For an arbitrary subcode (by choosing arbi-
trary Sp) and subject to p ~ n — k with high probability m ~ 1, and the algorithm is
polynomial.

Depending on a given subcode the algorithm can recover

Nparent (1,9, v) > (¢ — ¢"PF) (g — "7 P71 (¢ — q"7h) ~ gV PV

different parent Gabidulin codes in canonical form.

4 The security of the system based on subcodes

Resistance of a Niederreiter-type system with key (7) to the presented algorithm substantially
depends on the balance between p and n—k. If p < b(n—k), then the algorithm is polynomial.
To make system secure the value b must be small enough. However, we have to choose b > 3,
otherwise it becomes possible to apply the first Gibson attack to Ri3 — R12Bpage to recover
H, and H3, and then Hy with complexity O(N3¢*") operations.

So p has to be chosen several times greater than n—k. Since p < k, the choice of parameters
for a secure system will be restricted to n ~ k and k ~ p. This means that the parent code has
a very small rank distance, and the subcode is of very small dimension. Remember that we
can only use correcting ability of the parent code when encrypting/decrypting messages. Thus
a selection p > b(n — k) making system secure to structural attacks will make it vulnerable
to direct (decoding) attacks.

For instance the example of the system given in [5] with ¢ =2, N =n =32, k = 24,
p = 4 and size of the public key (in systematic form) of 7680 bits will be broken on a PC
within less than a second. A secure system can be built forn = N =44, k=36, p =v = 18,
b = 2 with Wyerent = 2% and public key of 20592 bits. The published code can then be
decoded as a random one in 27 operations in F; [6]. It is easy to see that this system does
not reveal any advantages over the original GPT PKC: for n = N = 44, k =18, r = 5,
t1 = 8, s = 2 the best known structural attack requires 287 operations in Fy and the code
can be decoded in 2'% operations in F; with the same 20592 published bits. Moreover the
GPT PKC has twice as higher the information rate: 0,620 versus 0,294 (see also notes on
the information rate in [2]).
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5 Conclusion

We presented an algorithm recovering a parent Gabidulin code for any its subcode. When
the difference p between dimensions of the code and the subcode is not to great the algorithm
has polynomial complexity. This algorithm fully breaks the system presented at ISIT’2002 [5]
for any interesting in practice parameters. When the algorithm becomes computationally
infeasible (p is close to k) then that system turns out to be inferior to the GPT PKC (in
security and information rate) let alone other applications of codes in rank metric [3, 4].

Moreover, since the matrix B is known it may well happen that there is an improvement
that keeps the algorithm polynomial for any values of p.

Still on subcodes of Gabidulin codes a secure cryptosystem can be built. It was the lack of
an explicit distortion in the public key (7) that made the system vulnerable to the presented
algorithm. Careful choice of a subcode and the distortion matrix X in (6) could prevent
cryptanalysis.
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