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Abstract

For a code C' = C(n, M) the level k code of C, denoted Cj, is the set of all vectors
resulting from a linear combination of precisely k distinct codewords of C. We prove
that if k£ is any positive integer divisible by 8, and n = vk, M = Bk > 2k then there
is a codeword in Cj whose weight is either 0 or at most n/2 — n(% - ﬁ) +1. In
particular, if v < (43 —2)2/48 then there is a codeword in C}, whose weight is n/2 — ©(n).
The method used to prove this result enables us to prove the following: Let k£ be an integer
divisible by p, and let f(k,p) denote the minimum integer guaranteeing that in any square
matrix over Z,, of order f(k,p), there is a square submatrix of order & such that the sum
of all the elements in each row and column is 0. We prove that liminf f(k,2)/k < 3.836.
For general p we obtain, using a different approach, that f(k,p) < p(k/nF)(1+or(1)),

1 Introduction

For standard coding theory notations the reader is referred to [6]. The minimum weight of a
code C is the smallest Hamming weight of a codeword of C' other than zero. Coding theory
bounds such as Plotkin’s bound or the Linear Programming bound show that if the dimension
of a binary code is large enough as a function of its length, then some linear combination
has a small Hamming weight. In other words, the code spanned by the codewords of C' has
small minimum weight. In this paper we present an alternative coding theory bound for the
code obtained by fized size linear combinations. For a positive integer k, let C}, denote the
code obtained by linear combinations of precisely & distinct codewords of C. In particular,
Ci = O, and if C' is a linear code then C}, C C. We call Cy the level k code of C. Let w(Cy,)
denote the minimum weight of Cy. Notice that if £ is odd then w(C}) can be very large.
Indeed, consider a code C' = C(n, M) where M is the size of the code and n is the length of
the codewords, and assume the first n — [log M| coordinates of all codewords are one. We
can still have all M codewords distinct, and clearly, for such a code, w(Cy) > n— [log M for
all odd k. (If we allow C to contain repeated words we can even have all coordinates of all its
members being 1). Thus, to avoid this non-interesting case, we assume k is even. For M > k,
let w(k,n, M) denote the maximum possible value of w(C}) ranging over all codes of size M
and length n. A theorem of Enomoto et al. [3] shows that w(k,k —1,M) =0 for M > 2k
and the result is tight. In general, however, no nontrivial bound is known. It is interesting
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to find general cases which guarantee that w(k,n, M) is significantly less than n/2. In this
paper we present a nontrivial bound of this type. Our main result is the following:

Theorem 1.1 Let k be divisible by 8. Let C = C(n, M) be any code with M > 2k. Put
M = Bk and n = vk. Then, either 0 € C}, or else

n 1 6

In particular, if v < (48 — 2)2/48 then w(Cy) =n/2 — O(n).

The constants appearing in Theorem 1.1 are not optimal. It is not difficult to obtain somewhat
better constants for specific values of 5 and ~y, but we prefer a general statement at the price
of some loss in the constants. For example, Theorem 1.1 gives w(64,800,640) < 396 and
w(64,640,640) < 315. Theorem 1.1 is an application of a more general technical lemma,
Lemma 2.2 proved in Section 2, whose proof has another interesting application. Let A be
a matrix over Z,. A submatrix B of A is called zero-sum if the sum of all elements in each
row and in each column of B is zero. Consider the following Ramsey-type extremal problem:
Let f(k,p) denote the least integer such that any square matrix of order f(k,p) over Z, has
a square submatrix of order k which is zero-sum. Standard Ramsey-type arguments show
that f(k,p) is finite for all kK = 0 mod p. If p does not divide k then the all one matrix shows
that f(k,p) is infinite. The problem of determining f(k,p) was first raised in [1]. It is proved
there that liminf f(k,2)/k < 4, liminf f(k,2)/k > 2 and liminf f(k,3)/k < 20 (in fact, the
authors show that f(k,2) < 4k(1+0k(1)) for all even k). It is conjectured there that for every
prime p, liminf f(k, p)/k < ¢, where ¢, is a constant depending only on p. The conjecture is
open for all primes except p = 2,3. Using the proof method of Lemma 2.2 and the theorem
of Enomoto et al. mentioned above we are able to show that liminf f(k,2)/k < 3.836. We
also present a nontrivial upper bound for f(k,p) (which is, however, still very far from the
conjectured O(k) upper bound).

The rest of this note is organized as follows: In Section 2 we prove Theorem 1.1 and the
lemmas that are needed for its proof. In Section 3 we present the application to zero-sum
square matrices.

2 The proof of the main result

The main tool in the proof of Theorem 1.1 is a more general lemma whose proof is presented
next. Before we state the lemma we need a definition. Let s and r be positive integers where
s > r. Forv € (Z2)* let z,(r) denote the fraction of r-subvectors of v whose sum of coordinates
is odd. Let z(s,r) denote the maximum of z,(r) ranging over all v € (Z3). This quantity
can be expressed in terms of the minimum possible value of the corresponding Krawchouk
polynomial (see., e.g., [6] for the definition and some properties of these polynomials). Triv-
ially, if r is odd then z(s,r) = 1. However, when r is even it is not difficult to show that when
s >r/2, z(s,r) is close to 0.5 for large s. We shall be interested, however, in more precise
approximations and in fixed values of r. An easy exercise gives that z(s,2) = s/(2(s — 1))
when s is even and z(s,2) = (s +1)/(2s) when s is odd. However, for r > 4 there seems to
be no nice formula.

Another tool that we use is a theorem of Enomoto et al. [3] also mentioned in the
introduction:
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Lemma 2.1 [[3]] Let t be an even integer. If s <t—1 then any sequence of at least 2t vectors
from (Z2)* contains a t-subsequence whose sum is zero. O

We are now ready to prove the following lemma.

Lemma 2.2 Let k = 0 mod 4 and let v be any positive integer dividing k/4. Suppose C =
C(n, M) is a binary code with M > k + k/(2r). Then, either 0 € Cy, or else

w(C;) < (n—k/(2r) +1)z(|2rM/k] —1,2r).

Proof: Partition each v € C into two parts, v, and v, where v, consists of the first k/(2r)—1
coordinates, and vy consists of the remaining coordinates (if n < k/(2r) — 1 take v, = v and
there is no vy). Let A = {v, : v € C} (although the vectors in A are not necessarily
distinct, we consider each v, as labeled by the original vector v, and in this sense, they are
distinct). Since k/(2r) is even and since M > k/r, we have, by Lemma 2.1, that there exists
Ay C A with |A;] = k/(2r) such that the sum of all vectors in A; is zero. Throwing the
vectors of A; away from A we can repeat this process and find another set of k/(2r) vectors
whose sum is zero. We can repeat this process precisely d = |2rM/k| — 1 times obtaining

subsets of vectors Aj,... , Ag, that correspond to disjoint subsets of vectors of ', such that
the sum of the k/(2r) vectors in A; is zero for i = 1,... ,d. Since M > k + k/(2r) we have
d > 2r. If n < k/(2r) — 1 we have that the sum of the vectors in Aj,...,As is a sum

of k distinct vectors of C'. Since this sum is zero, we have 0 € C} and we are done. We
therefore assume n > k/(2r). Let B; = {vy : v, € Aj}. Foreach j =1,...,n—k/(2r) +1
let u; = {u]l, e ,u?} be defined by u; =Y, vp- Let U; denote the family of (2r)-sets
of {1,...,d} for which the corresponding (2r)-subvector of u; has an odd number of ones.

By definition, |U;| < z(d, 2r) (2dr) Hence, Z;-L;lk/(w)H |Uj| < (n—Fk/(2r) +1)z(d,2r) (;T) It
follows that there exists a (2r)-set U such that if B' = U;ey B; then vaeB' v, contains at most
(n —k/(2r) + 1)z(d, 2r) ones. Notice that |B'| = 2rk/2r = k. Now let C' = {v : v, € B'}.
Clearly }° ccrv € Cy and has at most (n — k/(2r) + 1)2(d,2r) ones. O

Tt is interesting to obtain general cases where w(C}) is significantly less than n/2. If we

use Lemma 2.2 with » = 1 we can obtain such a statement only when n < M.

Proposition 2.3 Let k = 0 mod 4. Suppose B8 > 2 is an integer. Then, for any code
C =C(n,M) with M > Bk and n < Bk, 0 € Cy, or else w(Cy) < n/2—(Bk—n)/(46—2)+1.

Proof: Clearly we may assume M = k. Put n = yk. We use Lemma 2.2 with r = 1.
Using the fact that 2(28 —1,2) = 1/2 4+ 1/(2(28 — 1)) we get that either 0 € C} or else
w(Cr) < (n—k/2+1)(1/2+1/(2(26 — 1))). Now,

3o Gt o) 46 Dot a) o
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The real power of Lemma 2.2 is demonstrated when r > 2. In this case we can show that
even if n > M we can still have w(Cy) < n/2 — ©(n). In fact, we can have n/M as large as
we want, assuming M is sufficiently large (but still M = O(k)). It turns out that using r = 2
already suffices for this purpose. Before we complete the proof of Theorem 1.1, we need to

provide a tight upper bound for z(s,4).

+ 1. d
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Lemma 2.4 For s > 7, 2(s,4) < 0.5+ 6/s2.

Proof: Consider a binary vector of length s. Let 2 denote its Hamming weight. The number
of 4-subvectors with an odd number of ones is (s — z)(3) + z(°3"). Hence, we need to show

that for all s > 7,
(s —2)(5) +=(5")
8§
(2)
Consider the numerator of the left-hand-side of the last inequality as a real polynomial (of
degree 4) of x (which can be expressed in terms of the corresponding Krawchouk polynomial).
Its derivative is a polynomial of degree 3, and z = n/2 is a root of the derivative and is a
local minimum. The other two roots are local maxima (yielding the same value, and hence

each is also a global maxima) and they are (s ++/3s —4)/2. The value at these maxima is
s*/48 — s3/8 + 175248 — s/2 + 1/3. Hence,

<1+6
-2 s

(s—2)(3) +z(°3%) < s'/48 —s*/8 + 17s/48 — s/2+1/3 _ 1 N s%/8 —3s/8 +1/3
(2) B (2) 2 (2) '

It follows that for s > 7,

1 §?/8=3s/8+1/3 1  3(s-1)(s—2)+2
dsd) <5+ B T (s —2)s—3)
1 3 2 1 6
37563 oo -Ds-3 -2t U

Proof of Theorem 1.1: Since ¥ = 0 mod 8 we can use r = 2 in Lemma 2.2. Let C =
C(n,M) be any code with M > 2k. M = k and n = vk. By Lemma 2.2, either 0 € C},
or else w(Cy) < (n —k/4+1)z(|43| — 1,4). Assuming the latter, and since § > 2, we have
[43] —1 > 7, so using Lemma 2.4 we get

w(Ck)g(nfk/4+l)(%+m><k(7fi> (%+ﬁ>+1:

non, b Ok gonm (L6 Vi g
2 8y (4522 4(45 2) 2 8 (45 -22) "~

Tt is easy to see from Theorem 1.1, that when M grows, our upper bound for w(C}) approaches
n/2 —n/(8y). When M becomes very large we can gain some more as demonstrated by the
following simple example: Suppose m > 9n2%1% n = vk with, say, v > 1. We can find 9n
vectors that agree on the first 0.1n coordinates. Putting M’ = 9n and n' = 0.9n we have
M'=10n', 4" = 0.9y and 8’ = 9y. By Theorem 1.1 we have

n' 1 6 1 5.4 n
y Y (RE S R D Sy B S L SR S T SR
w(Cr) < 5 (87’ (36772)2>+ 0.45n n<87 (36772)2>+ <0.45n 97+

3 Zero sum square matrices

In the following upper bound for liminf f(k,2)/k we use Lemma 2.2 without change. In fact,
the following theorem supplies an upper bound for f(k,2) valid for all £ = 0 mod 12.
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Theorem 3.1 Let k = 0 mod 12. Every square binary matriz of order at least 50447k /13008+
2221/2168 has a square submatriz of order k which is zero sum. In particular liminf f(k,2)/k <
3.879.

Proof: Let A be a square binary matrix of order n > 50447k/13008 + 2221/2168. Clearly
we may assume n — 1 < 4k. We consider the first n — 1 rows of A as codewords of an
(n,m — 1) binary code. Since & = 0 mod 12 we can use Lemma 2.2 with » = 3. Since
23 < 6(n—1)/k < 24 we have, by Lemma 2.2, that there are k rows of A whose sum contains
at most (n—k/6+1)z(22,6) ones. The maximum number of 6-subvectors with an odd number
of ones of a vector v € (Z3)?? is obtained when v has 5 or 17 ones and it is 37757. Thus,
2(22,6) = 37757/74613 = 2221/4389. It follows that there are k rows of A whose sum has at
least

2221 k = 2168 2221 1 2221 S 2168 [ 50447k i 2221 i 2221 e 2221 ok
13008 2168

" 380" 6 T 1380" 26334 4380 ~ 4389

26334 4389

zeroes. Thus, A has a submatrix B with k£ rows and 2k columns, such that the sum of all
rows of B is zero. Ignoring the last row of B, and using Lemma 2.1 with ¢t =k and s =k — 1
we have a submatrix B’ of B with k columns and k rows such that sum of all rows of B’ is
zero and the sum of all columns is a vector whose first k¥ — 1 coordinates are zero. However,
the last coordinate must also be zero since the total number of ones in B’ is even. Hence B’
is a zero sum square submatrix of order k. [J

The choice of » = 3 in the proof of Theorem 3.1 is optimal. A similar approach using
r = 2 yields the constant 144/37 > 3.89 instead of the constant 50447/13008 < 3.879 that
appears in Theorem 3.1. However, using r = 2 applies to all £ = 0 mod 8. Using values of
r > 4 again yields inferior results. This is because z(s,r) > 0.5, by a simple probabilistic
argument. Now if r > 5 take n = 3.89k and then the number of ones in the sum of the k
rows guaranteed by Lemma 2.2 is not less than (3.9k — k/2r)/2 > 1.9k so there are less than
3.89k — 1.9k < 2k guaranteed zeroes and we cannot define B as in the proof of Theorem 3.1.
Thus, even a constant of 3.89 cannot be guaranteed in this way. For r = 4 one can check
specifically that the obtained constant is inferior.

A slightly better upper bound for liminf f(k,2)/k is obtained using the following idea,
that supplies an upper bound for f(k,2) valid for large k that is of the form k£ = 12¢ where
¢ is a prime power. The following coding theory bound has been proved by Bassalygo et al.
in [2] using a theorem of Frankl and Wilson [5]:

Lemma 3.2 Let A < 0.5. For every n sufficiently large, if An is twice a prime power and C
is a linear code of dimension dn that does not contain the weight An then

d<1—H\) +H(\2)
where H(z) = —zlogy(x) — (1 — z)logy(1 — z) is the binary entropy. O
We therefore obtain the following corollary:

Corollary 3.3 For every sufficiently large m for which m/2 is a prime power, the following
holds: Every binary matriz with [1.41m] rows and [5.95m] columns has m columns whose
sum is the zero vector of (Zy)t-41m1,
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Proof: Choose m sufficiently large such that n = [5.95m] is sufficiently large for the param-
eter A =m/n < 1/5.95 in Lemma 3.2 and so that A > 1/5.9449. Let A be a binary matrix
with [1.41m] rows and n columns. Consider the linear code C' whose parity check matrix is
A. The dimension of C' is at least n — [1.41m] > 4.54m — 1 > 0.763n. Now, since

1— H(\) + H()\/2) < 0.763

it follows from Lemma 3.2 that C contains the weight An = m. In particular, there are m
columns whose sum is zero.
Corollary 3.3, together with (a slightly modified) version of Lemma 2.2 give the following:

Theorem 3.4 For k sufficiently large for which k/12 is a prime power, f(k,2) < 3.836k +1.

Proof: Assume m is sufficiently large and chosen as in Corollary 3.3. Put £k = 6m. Let A be
a square matrix of order ¢ > 3.836k = 23.016m. By Corollary 3.3 we can arrange the rows of
A such that the sum of all m rows sm+1,... ,(s+1)m is zero in the first [1.41m] coordinates,
for each s = 0,...,17. For each of these 18 sums, let S; denote the vector corresponding to
the remaining ¢ — [1.41m] coordinates of the corresponding sum vector. Asin Lemma 2.2, we
can find a set of 6 vectors of the S; such that their sum has at most z(18,6)(¢ — [1.41m]) ones.
This implies the existence of 6m = k rows of A whose sum has at least t —2(18,6)(t—[1.41m])
zeroes. Since z(18,6) = 26/51 we have ¢t — 2(18,6)(t — [1.41m]) > 12m = 2k. Thus, A has a
submatrix B with k rows and 2k columns, such that the sum of all rows of B is zero. As in
Theorem 3.1 we get that there exists a zero sum square submatrix B’ of order k. O

We conclude this section with an upper bound for f(k,p). In fact, our upper bound
follows from a proposition which is a (weak) analog of the theorem of Enomoto et al. for Z,
instead of Z,. For k a multiple of p, let g(k,p) be the minimum integer that guarantees that
in any sequence of g(k,p) elements of (Z,)* there is a k-subsequence whose sum is zero. The
theorem of Enomoto et al. gives, almost immediately, that g(k,2) < 4k — 1 for all even k.
In fact, using a theorem of Olson [7] we can get g(k,2) < 2k + 1 whenever k is a power of 2.
In [1] it is proved that g(k,3) < 15k — 8 if k is a power of 3. For p > 3 there is no known
linear bound for g(k,p) which holds for infinitely many values of k. A trivial upper bound
is obviously (k — 1)p® 4+ 1. A much smaller upper bound (but still, a non polynomial one) is
given in the following theorem:

Proposition 3.5 Let p be a fived prime. For infinitely many values of k,

glk,p) < p(k/ In £)(140r(1))

Proof: Let r be a positive integer. Let k be the smallest integer such that k/p is divisible by
all 1 < s <r. Clearly, k/p is obtained by multiplying appropriate powers of all primes q up to
r, where each prime ¢ is raised to the maximum power z, for which ¢*¢ < r. Hence k/p < r(r)
where 7(r) is the number of primes up to r. It is well known that w(r) < (1 +o(1))r/Inr,
and hence k/p < e"(+or(1) - Now, suppose m satisfies (m;krz) > pkprp™tl. We claim that
g(k,p) < m. Consider a sequence of m vectors from (7Z,)*. By the pigeonhole principle, there
is a family 7" of at least ¢ > p"+1r" r-subsequences, such that for each U € 7', the sum of all r
vectors of U is the same. It is well-known that in any family of at least (p—1)"+1r! < ¢ distinct
(but non necessarily disjoint) sets, each with r elements, there is a delta system with p petals
[4]. In other words, there are p sets in the family such that the common intersection of all
of them is identical to the intersection of any two of them. Hence, there are Uy,... ,U, € T,
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where N_, = S and (U; \ S)N(U; \ S) =0 for i # j. Putting W; = U; \ S we have that the
sum of all the vectors in W; is the same for all ¢ = 1,...,p. Hence the sum of all vectors in
UP_ W, is zero (in Z,). Now, r > |W;| =r — |S| > 1. Putting 7 — |S| = ¢1 we have found ¢1p
distinct vectors whose sum is zero. Recall that & is divisible by g;p. Deleting these ¢;p vectors
and repeating this process kr/p times we have kr/p disjoint subsequences of ¢;p vectors for
i =1,... ,kr/p, such that the sum of the vectors in each subsequence is zero. There exist
some 1 < s < 7 such that ¢; = s for at least k/p distinct values of 7. k/(ps) < k/p is an integer
and we can therefore select k/(ps) sequences of size sp each. The union of these sequences is
a sequence of k vectors whose sum is zero, as required. Now, m = p(k/Ink)(1+0x(1) gatisfies
(m_Tsz) > pFr7pr+1 and the result follows. O

It remains to show the relation between f(k,p) and g(k,p). Let z(s,k,p) denote the
minimum possible fraction of k-subvectors of a vector v € (Z,)° whose sum is divisible by
p. This generalizes the definition of z(s,k) = 1 — z(s,k,2) appearing in Section 2. It is
proved in [1] that z(s, k,p) > 27P(1 — 04(1)) for k < s/2. This, together with an immediate
counting argument, shows that in any matrix over Z, with s > 2k rows and ¢ columns there is
a submatrix with & rows and #217P(1—o0(1)) columns such that the sum of the rows is zero. By
definition of g(k, p), if £2!7P(1 — 0x(1)) > g(k,p) then there is a square zero-sum submatrix of
order k. Since ¢t > s, it follows that any square matrix of order ¢ over Z, has a square submatrix
of order k which is zero-sum. Hence f(k,p) < 2P~Lg(k,p)(1 + ox(1)). By Proposition 3.5 we
have that for infinitely many values of k, f(k,p) < 20~ 1pk/mE)(1+ox(1) — p(k/Ink)(1+ow(1))
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