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Abstract

In this paper we study negacyclic codes of length n = 2e for some integer e: We found
the set of generators for this type of codes as ideals in the ring D4 = Z4[x] = hxn + 1i.
It will be shown that any negacyclic code has the form h�(x+ 1)mi ; � = 1; 2; and
m = 0; 1; :::; n � 1. It will also be shown that the element 2 is in every nonzero code of
the form h(x+ 1)mi. As such, it is concluded that negacyclic codes of length n = 2e for
some integer e have a very low minimum distance. Dual codes of length n = 2e over Z4

will also be studied.

1 Introduction

The study of linear and cyclic codes over Z4 has provided useful results in coding theory [1-4,
6-8]. It was shown in [6] that important families of binary nonlinear codes are in fact images
under the Gray map of linear codes over Z4: For example, the Gray map [6] was used to show
that Kerdock and Preparata codes can be constructed as binary images via the Gray map of
linear codes over Z4:

Wolfmann in [10] studied negacyclic codes of odd length over Z4: He showed that this is
an important class of codes and must be given some attention from the coding community.
He de�ned a (linear) negacyclic code over Z4 to be an ideal in the ring D4 = Z4[x] = hx

n + 1i :
In this correspondence, we note that negacyclic codes mean linear negacyclic codes. In [10],
Wolfmann also showed that over Z4; the structure of negacyclic codes is similar to that of
cyclic codes: Furthermore, he showed that if C is a negacyclic code of odd length n then
its polynomial representation I is a principle ideal generated by a constant polynomial or
a polynomial of the kind g(x) = a(x)[b(x) + 2] where xn + 1 = a(x)b(x)c(x) in Z4[x] and
where a(x); b(x); and c(x) are pairwise coprime polynomials. He also studied the Gray image
of negacyclic codes and showed that the Gray image of a linear negacyclic code over Z4 is a
binary-distance-invariant (not necessary linear cyclic code. One of the many problems that
Wolfmann posted for future studies in [10] was the study of negacyclic codes of even length.

In this paper, we study negacyclic codes of even length over Z4. In particular, the length
n = 2e for some integer e:

Cyclic codes of length n over a �eld of characteristic p where p divides n are called repeatd-
root cyclic codes. Castagnoli et al [5] and Van Lint [9] studied this kind of codes and showed
that these codes are asymptotically bad even though they can be optimal in few cases. In a
study of cyclic codes of length n = 2e ([1], and [2]) it was shown that the class of cyclic codes
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of length n = 2e is indeed a big one. It was also shown that the ring R4 = Z4[x] = hx
n � 1i is

not a principle ideal ring and hence the ideals (cyclic codes) are not principle ideals. In [1],
the subject of dual codes of length n = 2e was studied as well. The structure of cyclic dual
codes was given including a list of all cyclic self dual codes of length 8.

In this paper, it will be shown that the structure of the ring D4 is di�erent from that of
R4: It will also be shown that the class of negacyclic codes of length n = 2e is not a big class
of codes as in the case of cyclic codes. The fact that the ring D4 is a principle ideal ring and
hence ideals (negacyclic codes) are principle ideals will be established. Furthermore, it will be
shown that this class of codes is not a good class for since all codes have very low minimum
distance. The objectives of this study will be reached in the following sequel: section 2 covers
a study of the ring D4 and the structure of negacyclic codes in it whereas section 3 covers a
study of the structure of dual negacyclic codes.

We assume throughout this paper that n = 2e:

2 Negacyclic Codes

By Z4 = f0; 1; 2; 3g ; it is meant the ring of integers modulo 4.
Construct the ring

D4 = Z4[x] = hx
n + 1i =

�
f(x) : f(x) = a0 + a1x+ :::an�1x

n�1
	

where ai 2 Z4 8 i = 0; 1; :::; n � 1, and xn = �1:
In [1], it was shown that (xn + 1) is an irreducible polynomial over Z4: It is worth men-

tioning that if Z4 is a �eld, then the ring D4 will only have the two trivial ideals; the zero
ideal and the D4 itself.

since any element c in Z4 can be written as c = a+2b where a; b are elements in Z2 then
any element in D4 can be expressed in the form

f(x) =
n�1X
i=0

ai(x+ 1)i + 2
n�1X
i=0

bi(x+ 1)i where ai; bi = 0; 1; for all i = 0; 1; :::; n � 1:

As in the case of cyclic codes, it is convenient to represent code words of length n by
polynomials modulo xn + 1: We identify v = (v0; :::; vn�1) with the polynomial v(x) =
v0 + v1x+ :::+ vn�1x

n�1 in the ring D4:

De�nition 1 By a negacyclic code over Z4; it is meant an ideal in the ring D4:

The proof of the following lemma can be found in [1].

Lemma 1 Let m = 2k where k > 0: Then xm + 1 = (x+ 1)m + 2xm=2 in Z4[x]:

A particular instant of the this lemma is that, in the ring D4 we have, 0 = xn + 1 =
(x + 1)n + 2xn=2: This implies that (x + 1)n = 2xn=2 ) (x + 1)2n = 0: This proves the
following lemma:

Lemma 2 (x+ 1) is a nilpotent element in D4 whose nilindex is equal to e = 2n.

Notice that if a and b are nilpotent elements in a ring R then using the Binomial Theorem
on the ring D4 it can easily be shown that (a� b) is also a nilpotent element.
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Lemma 3 Let f(x) =
n�1P
i=0

ai(x+1)i+2
n�1P
i=0

bi(x+1)i be an element in D4 where ai; bi = 0; 1:

Then f(x) is a unit in D4 i� ao = �1:

Proof. )) Suppose f(x) is a unit. If a0 = 0, then f(x) = (x+ 1)jh(x) where j � 1: But
then

f(x)2n =
�
(x+ 1)jh(x)

�2n
= 0:

Therefore, f(x) is not a unit.

() Suppose f(x) = �1 +
n�1P
i=1

ai(x+ 1)i + 2
n�1P
i=0

bi(x+ 1)i: Since (x+ 1) is nilpotent then

n�1X
i=1

ai(x+ 1)i + 2
n�1X
i=0

bi(x+ 1)i

is also a nilpotent element with"
n�1X
i=1

ai(x+ 1)i + 2
n�1X
i=0

bi(x+ 1)i

#2n
= 0:

Hence f(x) = �1 + a where a2n = 0: Then,

(a� 1)(�1(a2n�1 + a2n�2 + a2n�2 + :::+ 1)) = �(a2n � 1) = 1;

and

(a+ 1)(�1(a2n�1 � a2n�2 + a2n�2 � a2n�3 + :::� 1) = �(a2n � 1) = 1:

Hence f(x) is a unit.

Lemma 4 D4 is a local ring with maximal ideal M = hx+ 1i = hx� 1i :

Proof. In D4, it was established that

0 = xn + 1 = (x+ 1)(xn�1 � xn�2 + xn�3 � :::+ 1) + 2:

It follows that 2 2 hx+ 1i = hx� 1i : Since any element in D4 has the form

f(x) =
n�1X
i=0

ai(x+ 1)i + 2
n�1X
i=0

bi(x+ 1)i where ai = 0; 1; bi = 0; 1 for all i = 0; 1; :::; n � 1;

then the only elements that are not in M are the ones for which a0 = �1: But these are
unit elements by the above lemma. Therefore D4 is a local ring with maximal ideal M =
hx+ 1i = hx� 1i :

Since (x+ 1)n = 2xn=2 and xn=2 is a unit in D4 then 2 = h(x+ 1)ni :

Lemma 5 If R is a �nite local ring with maximal ideal M = hai : Then any ideal I in R is
given by I = hani :

7



Proof. Let i 2 I �M = hai : Then i = ar1 for some r1 2 R: If r1 is a unit then I = M;
otherwise r1 2M since R is a local ring. Hence r1 = ar2 for some r2 2 R which implies that
i = a2r2: Continuing in this process leads to i = an for some integer n: Therefore I = hani
for some integer n:

The main result can now be stated:

Theorem 1 D4 is a principal ideal ring with nonzero ideals (negacyclic codes) given by C =
h�(x+ 1)mi where � = 1; 2; and m = 0; 1; 2; :::; n � 1:

Proof. Follows directly from lemmas 4 and 5 in addition to the fact that h2i = h(x+ 1)ni :

Since h2i = h(x+ 1)ni ; then 2 is an element in any nonzero negacyclic code of the form
h(x+ 1)mi. This shows that the minimum Hamming and Lee wights of any negacyclic code
of length n = 2e and of the form h(x+ 1)mi is equal to 1 and 2 respectively. Also, this shows
that the minimum Euclidean weight for this type of codes is at most 4. For this reason, this
class of codes may be classi�ed as a bad one in terms of the minimum distance.

3 Dual Codes

De�nition 2 Let u = (u1; : : : ; un) and v = (v1; : : : ; vn) be any two vectors over Z4: De�ne
an inner product over Z4 by u � v = u1v1 + : : : + unvn: the vectors u and v are said to be
orthogonal if u � v = 0:

De�nition 3 Let C be a negacyclic code of length n: The dual of C is denoted by C? and is
de�ned by C? = fu : u:v = 0 8v 2 Cg :

The following theorem is the same as in [8] except that a �eld is replaced by a ring. We
state it without proof.

Theorem 2 Let f(x) = a0+a1x+ :::+an�1x
n�1 and b(x) = b0+ b1x+ :::+ bn�1x

n�1: Then
a(x)b(x) = 0 i� the vector (a0; a1; :::; an�1) is orthogonal to the vector (bn�1; bn�2; :::; b0) and
to all its cyclic shifts.

De�nition 4 If f(x) = a0 + a1x + ::: + arx
r; then the reciprocal of f(x) is the polynomial

f�(x) = ar + ar�1x+ :::+ a0x
r: Symbolically f�(x) can be represented by f�(x) = xrf(

1

x
):

If I is an ideal in D4; then I� = ff�(x) : f(x) 2 Ig is also an ideal.

De�nition 5 Let I be an ideal in D4: The annihilator of I (denoted by A(I)), which is an
ideal in D4 is given by

A(I) = fg(x) : f(x)g(x) = 0 for all f(x) 2 Ig

It is clear that if C is a negacylcic code whose associated ideal I; then the associated ideal
for C? is A�(I):

The following lemma and its proof can be found in [1].

Lemma 6 If f(x) = (x+ 1)r; then f(x) = f�(x):
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Theorem 3 Let C be a negacylcic code of length n over Z4:

1. If C =


(x+ 1)i

�
; then C? =



2(x+ 1)n�i

�
:

2. If C =


2(x+ 1)i

�
; then C? =



(x+ 1)n�i

�
:

Proof. Suppose C =


(x+ 1)i

�
: 2(x+1)n�i(x+1)i = 2(x+1)n = 0: Hence



2(x+ 1)n�i

�
�

A(C): Suppose that A(C) =


�(x+ 1)j

�
for some j = 0; 1; :::; n�1: Since �(x+1)j:(x+1)i = 0;

then � must equal 2. The smallest power j satis�es 2(x + 1)j :(x + 1)i = 0 is j = n � i:
Therefore,



2(x+ 1)n�i

�
= A(C): From lemma 6, A(C) = A�(C) = C? and consequently

C? =


2(x+ 1)n�i

�
:This establishes (1). The proof of two is similar.

4 Conclusion

The negacyclic codes studied here are taken over Z4 and have a length of n = 2e: Contrary to
the case of cyclic codes of the same length, it was shown that the ring D4 is a principal ideal
ring. We constructed a set of generators for this type of codes and their duals. It was also
shown that the element 2 is in every negacyclic code of the form h(x+ 1)mi which implies
that this class of negacyclic codes has a very low minimum distance. In particular, these
codes are asymptotically bad. It will be very interesting to see what kind of applications
might arise from this type of codes. Open problems include the study of negacyclic codes of
other lengths. In particular the study of negacyclic codes of length n = 2e where e is an odd
integer:
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