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Abstract

We analyze the complexity of list decoding and decision feedback schemes for the

binary symmetric channel. Both schemes utilize a sub-optimum list decoding algorithm.

If no feedback link is available, then the decoding complexity will asymptotically be

bounded by 2nR(1�R). The reliability function of the list decoding scheme is equivalent

to the sphere-packing bound. In the case of the decision feedback scheme the decoding

complexity will be of the order 2nR(1�C). With decision feedback the reliability function

is lower bounded by C �R, where C denotes the channel capacity.

1 Introduction

In this paper we analyze coding schemes for the binary symmetric channel (BSC). The stan-
dard coding situation for the BSC is that the encoder selects a codeword from a binary code
which corresponds to a particular message. The codeword is then transmitted over the noisy
channel. Finally, the receiver tries to infer which message was sent by performing maximum-
likelihood decoding. For symmetric channels without feedback near-maximum-likelihood de-
coding performance can be achieved with signi�cantly reduced complexity. In [1], Evseev
showed for the binary symmetric channel that virtually all linear codes of any rate R can be
decoded with decoding error probability bounded by twice the error probability of maximum-
likelihood decoding. The decoding complexity of his algorithm is of the exponential order
2nR(1�R). Note that the known complexity of optimum decoding is of order 2min(R;1�R)n.

In contrast to (near) maximum-likelihood decoding, we are interested in the decoding
complexity for the following situations: a) The decoder generates a list of potential codewords.
b) The decoder has the option of not deciding at all, that is, the decoder may reject its estimate
and declare a decoding failure. Option a) is reasonable if the encoder is given redundant data.
In this case the decoder may retain some equivocation in his decision.List decoding was �rst
studied by Elias in [2]. Later on it was shown that for a list size which is large but not
exponential in n, a list-error exponent equal to the sphere-packing exponent Esp(R; �) could
be obtained [3]. If the receiver has some means to request retransmissions, option b) becomes
more suitable than maximum-likelihood decoding. The estimated codeword is only accepted if
the decision is su�ciently reliable, otherwise an erasure is declared. Each erasure will result in
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a request for more redundancy. Forney proved that an exponent Ef (R; �) = Esp(R; �)+C�R
is attainable with decision feedback [4].

Most commonly, exponential bounds are derived by averaging the probability of a decoding
error over an appropriately chosen ensemble of codes. Evidently, at least one code in the
ensemble will have a probability of error that is as small as the ensemble-average. In [5],
Gallager introduced a di�erent approach based on the average weight spectrum of the standard
ensemble of linear codes. Later one, Blokh and Zyablov showed that codes with good weight
spectrum exist in this ensemble [6]. Then, they derived lower bounds on the error exponent for
particular codes with this weight spectrum. Our bounding technique is based on the Blokh-
Zyablov approach, i.e., we consider randomly chosen, but �xed codes. This concept allows us
to simultaneously bound the reliability and the decoding complexity. For decoding we utilize
a suboptimal list decoding algorithm. This decoding algorithm is a list type generalization of
bounded distance decoding. Its suboptimal nature allows to reduce the decoding complexity.
In particular, if no feedback link is available the decoding complexity will asymptotically be
bounded by 2nR(1�R). The obtained error exponent for the list decoding scheme is equivalent
to the sphere-packing bound. In the case of the decision feedback scheme the decoding
complexity will be of the order 2nR(1�C). Thus, depends on the code rate R and the channel
capacity C. With decision feedback the reliability function is lower bounded by C �R.

We prepare the necessary preliminaries in the next section. In the section 3 we de�ne
bounded distance list decoding as a generic decoding mapping. All realizations of this map-
ping achieve the same performance with respect to decoding errors, but di�erent realizations
may have di�erent decoding complexity. As an example we present a realization based on
information set decoding. In the following two sections, we derive bounds on decoding error
probabilities.

2 Preliminaries

Consider the BSC with crossover probability � < 0:5 . Let IF2 = f0; 1g be the binary

�eld and let vl 2 IF2, rl 2 IF2, and el
4
= vl + rl denote the input symbol, the output

symbol, and the error of the channel at the lth use, respectively. In the following we consider
the transmission of binary n-sequences v = (v0; : : : ; vn�1). Similarly, r = (r0; : : : ; rn�1),
and e = (e0; : : : ; en�1) denote the received sequence, and the error sequence, respectively.
The error process is memoryless and independent of the channel input. The probability of
occurrence of a particular error sequence e is P (e) = �wt(e)(1 � �)n�wt(e), where wt(e) is
the number of non-zero positions in e, i.e., the Hamming weight of e. Below we use the

mixed entropy function T2(x; y)
4
= �x log2 y � (1 � x) log2(1 � y). The function T2(x; x)

will be denoted h2(x) and called the binary entropy function. Let h�1
2 (x) denote the unique

solution of h(y) = x; for 0 � y � 1=2. The relative Gilbert-Varshamov distance is given by
�(R) = h�1

2 (1�R). The capacity of the binary symmetric channel with crossover probability
� is C(�) = 1 � h2(�). Note that �(�) is the inverse capacity function, i.e., �(C(�)) = �. The
sphere-packing exponent is Esp(R; �) = T2(�; �) � 1 + R. In order to estimate the sum of
binomial coe�cients we will frequently use the following result [7]. Suppose �n is an integer,
where 0 < � < 1=2. Then

�nX
k=0

�
n

k

�
� 2nh2(�) : (1)
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In particular, we have from (1): �
n

�n

�
� 2nh2(�) ; (2)

where we conclude from the symmetry of the binomial coe�cient that (2) holds for 0 � � � 1.
A binary linear code C of length n and rate R = k=n is a k-dimensional sub-space of IFn2 .

Since a linear code is completely speci�ed by a generator matrix, an ensemble of linear codes
may be de�ned in terms of an ensemble of generator matrices. We consider the set of binary
linear codes IE(n; k) generated by all binary k � n matrices, where we select a particular
matrix G from the ensemble by choosing each digit in the matrix independently and equally
likely to be 0 and 1. We will require the following lemma. A similar result is derived in [6].
Let A(w) denote the number of codewords of weight w in the code C.

Lemma 1. For virtually all codes in the ensemble IE(n; k) we have

A(w) � n22�(1�R)n
�
n
w

�
for w � �(R)n

A(w) = 0 for 0 < w < �(R)n
: (3)

3 Bounded Distance List Decoding

We consider a list type generalization of bounded distance decoding. This decoding generates
lists of variable size. Let S�(r) denote the sphere in IFn2 of radius � with center r, where r is
the received sequence.

De�nition 1 (Bounded distance list decoding). For a given linear code C bounded dis-
tance list decoding is a mapping  L : IFn

2 ! P(C) de�ned by

 L(r)
4
= S�(r) \ C ; (4)

where P(C) denotes the power set of the code C.

In words: The result of the bounded distance list decoding is the set of all codewords
which belong to the sphere S�(r). A decoding failure (erasure X ) occurs, if the sphere S�(r)
does not contain any codeword from C, i.e., if j  L(r) j= 0.

Next, we present a particular algorithm which realizes bounded distance list decoding.
This algorithm is a variation of a decoding procedure presented by Dumer in [8] and is based
on information set decoding. We use the notation N for the set f0; 1; : : : ; n � 1g and call
I � N an index set. Let G = (g0; : : : ;gn�1) be a matrix with the n columns g0; : : : ;gn�1.
By G[I ] we denote the matrix formed by the columns of G labeled with all indices from I.
Similar, the vector x[I] is the vector formed from the corresponding symbols of x.

De�nition 2 (Information set). Let C be a linear code with generator matrix G and let I
be an index set with j I j= k . We call I an information set if the k � k sub-matrix G[I]
has full rank. If G[I ] has full rank for some set I with j I j> k, then I(j; s) is said to be an
information superset.
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If I is an information set according to de�nition 2, then any two di�erent codewords
disagree on the corresponding k positions. Thus, given the k code symbols corresponding to
an information set we can uniquely compute the codeword. This fact can be exploited for

decoding. Let I(j; s)
4
= (j; j + 1(modn); : : : ; j + s� 1(modn)) be an index set with s � k

cyclically consecutive positions starting from position j. For a given generator matrix G we

call the set L(s)
4
= fI(j; s); j 2 Ng the sliding window if all index sets I(j; s) 2 L(s) are

information supersets.

Algorithm 1. Sliding window list decoding: Let L(s)
4
= fI(j; s); j 2 Ng be the sliding

window of the code C. For decoding we take every subset I(j; s) and re-encode each sub-
block r[I(j;s)] � e for any error pattern e of length s and weight wt(e) � b�sn c. Every newly

re-encoded codeword v is stored in a list if dist(v; r) � �.

In contrast to Dumer's decoding rule we introduced three modi�cations: First, we allow
di�erent radii �. In [8], � = �(R)n is selected which guarantees near-ML performance for all
possible channel conditions. Secondly, we perform list decoding, i.e., we store all codewords
which belong to S�(r)\C. Moreover, we explicitly test the reliability of all potential decoding
estimates v by comparing the distance dist(v; r) with the preselected radius �.

Lemma 2. Let L(s) be the sliding window for a given linear code from the ensemble IE(n; k),
then sliding window decoding is a realization of bounded distance list decoding.

Proof. For any codeword in C with dist(v; r) � � we obtain an error pattern r�v of weight �
or less. This error pattern produces for at least on subset L(j; s) 2 L(s) a sub-block e[L(j;s)] of
weight wt(e[L(j;s)]) � b�sn c or less. Consequently, any codeword in S�(r)\C will be re-encoded
during this decoding procedure.

The following analysis of the decoding complexity is essentially due to Dumer. For a proof
of the following lemma see [8].

Lemma 3. For virtually all binary linear codes in the ensemble IE(n; k) the sliding window
of length s = k + d2 log2 ne forms n information subsets.

Theorem 2. Virtually all codes in IE(n; k) can be decoded utilizing bounded distance list
decoding with a decoding complexity of the exponential order 2n[Rh2(%)+o(n)].1

Proof. The re-encoding of each information sub-block r[L(j;s)] � e[L(j;s)] takes at most o(n3)
operations. For the given s = k + d2 log2 ne the number N of trails satis�es

N = n

b �s
n
cX

e=0

�
s

e

�
� n

%sX
e=0

�
s

e

�
� n2sh2(%) = 2n[Rh2(%)+o(n)] ;

where we have used % = �=n and (1). The total number of operations is therefore bound from
above by 2n[Rh2(%)+o(n)]. However, we may require L logL additional operations if we wish
to order the decoder output list with L elements. Nevertheless, this sorting does not alter
the exponential order of the complexity. The decoder output list contains at most 2nRh2(%)

sequences. The sorting can therefore be done with 2n[Rh2(%)+o(n)] operations. Taking lemma 2
and lemma 3 into consideration the claim follows.

1o(�) is the usual order notation: If f(n) 2 o(g(n)), then limn!1
f(n)
g(n) = 0
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4 Error Probability Under Bounded Distance List Decoding

In the following we bound the error probability under bounded distance list decoding. The
error event under consideration is the event, that the actually tranmitted codeword is not in

the decoder output list  (r). First, we bound the erasure probability PX
4
= P (j S�(r)\C j= 0),

that the suboptimal decoding results in an empty list.

Lemma 4. The erasure probability PX with bounded distance list decoding satis�es for % =
�=n � �:

PX � 2�n[T2(%;�)�h2(%)�o(n)] : (5)

Proof. Without loss of generality we assume that the all-zero codeword has been transmitted.
Let e be an error vector of weight e, hence r = e. If e � �, then 0 2 S�(e). On the other
hand, if e > � we may have v 2 S�(e) for some v 6= 0. Therefore, we bound

PX = P (j S�(r) \ C j= 0) � P (e =2 S�(0)) :

From the union bound we have:

PX �
nX

e=�

�
n

e

�
�e(1� �)n�e :

Bounding the binomial coe�cient using (2) we obtain:

PX �
nX

e=�

2nh2(e=n)�e(1� �)n�e :

Note that 2nh2(e=n)�e(1� �)n�e has a unique maximum for e = %n; % � �. Thus, we have

PX � n2nh2(%)�n%(1� �)n(1�%) ;

from which we obtain (5).

Consider the event of an un-detected error under bounded distance list decoding, i.e., the
event that the actually transmitted codeword v0 is not in the decoder output list, but this
list is not empty

Pu(C)
4
= P (v0 =2  (r); j  (r) j� 1) :

Lemma 5. For almost all codes C 2 IE(n; k) the probability Pu(C) of an un-detected error
under suboptimal list decoding satis�es:

Pu(C) � 2�n[1�R+T (%;�)�2h(%)�o(n)] : (6)
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Fig. 1: Graphical representation of lemma 6.

In order to prove lemma 5 we introduce the following quantity: Consider some vector
e1 of weight e1 and count the number of vectors e2 which have weight e2 and distance
dist(e1; e2) = l. Let U(e1; e2; l) denote this number. Note that we can obtain any vector e01
of weight e1 by permuting the binary symbols of e1. Applying the same permutation to any
vector e2 with wt(e2) = e2 and dist(e1; e2) = l we obtain a vector e02. This vector satis�es
wt(e02) = e2 and dist(e01; e

0
2) = l. Thus, U(e1; e2; l) is same for all vectors of weight e1 and

is therefore only a function of the weights e1; e2; and the distance l. We write U(e1; e2; l) for
this function. Furthermore, U(e1; e2; l) has the following property:

Lemma 6. �
n

e1

�
U(e1; e2; l) =

�
n

e2

�
U(e2; e1; l) : (7)

Proof. Consider the graph in �gure 1. Each node on the left side represents a vector of
weight e1, while each node on the right represents a vector of weight e2. We connect each
node from the left with a node from the right by an edge if and only if the distance between
the corresponding two vectors is l. Apparently, there are

�
n
e1

�
U(e1; e2; l) edges, because there

are
�
n
e1

�
vectors of weight e1 on the left each connected to U(e1; e2; l) nodes on the right. On

the other hand, every node on the right must be connected to U(e2; e1; l) nodes on the left.
But there are

�
n
e2

�
vectors of weight e2 on the right and the proposition follows.

We will now prove lemma 5.

Proof. We have to bound the probability of an un-detected error with list decoding. That is
we are interested in the event E that the actually transmitted codeword is not in the sphere
of radius � around the received word r, but there is at least on codeword in this sphere.

We assume without loss of generality that the all-zero codeword has been transmitted.
Then, the received sequence is equal to the error vector e. In particular, an un-detected error
occurs if the sphere S�(e) contains at least one codeword v 6= 0;v 2 C. Yet, we have to
consider only error vectors e with e = wt(e) > �. Consequently, we have

198



Pu(C) =
nX

e=�+1

P (E j e)P (e) ;

with P (e) =
�
n
e

�
�e(1� �)n�e and

P (E j e) =
B(e; �)�

n
e

� ;

where B(e; �) denotes the number of error vectors e of weight e which lead to an un-detected
error under list decoding. Thus, we get

Pu(C) =
nX

e=�+1

B(e; �)�e(1� �)n�e : (8)

We proceed by bounding the number B(e; �). Consider a codeword v 2 C of weight w. Using
the function U(w; e; l) we can estimate the number of possible received vectors e of weight e
such that v would be in the decoder output list. If w � e, then there are

P�
l=e�w U(w; e; l)

such vectors. For w > e, we have
P�

l=w�eU(w; e; l) vectors. Consequently, summing over all
codewords with weights in the range [e� �; e+ �] we can bound B(e; �) as follows:

B(e; �) �
eX

w=e��

A(w)

�X
l=e�w

U(w; e; l) +

e+�X
w=e+1

A(w)

�X
l=w�e

U(w; e; l) : (9)

Substituting the weight spectrum from (3) into (9) we obtain

B(e; �) � n22�(1�R)n

 
eX

w=e��

�
n

w

� �X
l=e�w

U(w; e; l) +

e+�X
w=e+1

�
n

w

� �X
l=w�e

U(w; e; l)

!
:

Furthermore, with (7) we have
�n
w

�
U(w; e; l) =

�n
e

�
U(e; w; l) and can deduce

B(e; �) � n22�(1�R)n
��n

e

�Pe
w=e��

P�
l=e�wU(e; w; l) +

�n
e

�Pe+�
w=e+1

P�
l=w�e U(e; w; l)

�
� n22�(1�R)n

��n
e

�Pe+�
w=e��

P�
l=0U(e; w; l)

�
:

Note that
P�

l=0 U(e; w; l) �
P�

l=0

�
n
l

�
� 2nh(%). Thus, we have

B(e; �) � 2�n22�(1�R�h(%))n

�
n

e

�
:

Substituting this into (8) we get

Pu(C) � 2�n22�(1�R�h(%))n
nX

e=�+1

�
n

e

�
�e(1� �)n�e :

With 2�nT (
e
n
;�) = �e(1� �)n�e and bounding

�
n
e

�
� 2nh(

e
n) we obtain

Pu(C) � 2�n22�(1�R�h(%))n
nX

e=�+1

2�n(T (
e
n
;�)�h( e

n
)) :
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The maximum with respect to e is attained for e = � with e � � � �n. Thus, we get

Pu(C) � 2�n32�(1�R+T (%;�)�2h(%))n

which concludes the proof.

The probability Pe(C) that the actually transmitted codeword is not in the list satis�es

Pe(C) = Pu(C) + PX :

Choosing % = � and minding lemma 5, lemma 4, and theorem 2 we have:

Theorem 3. For almost all codes C 2 IE(n; k) the probability Pe(C) of an error under bounded
distance list decoding, that is, the probability that the transmitted codeword is not in the list
satis�es:

Pe(C) � 2�n[Esp(R;�)�o(n)] ; (10)

where the decoding complexity is of the exponential order 2n[R(1�R)+o(n)].

5 Decision Feedback

Consider the decision feedback scheme, where each erasure results in a repeat request for
the transmitted codeword. We will now analyze a decision feedback scheme which utilizes
bounded distance list decoding. We assume that the receiver chooses the most likely codeword
from S�(r)\C if j S�(r)\C j� 1, else a re-transmission is requested. If the erasure probability
is PX , then the probability that a codeword will be repeated i times is P i

X , and the average
number of times a codeword is transmitted is

1 + PX + P 2
X + : : : =

1

1� PX
:

Consequently, if the rate of the code is R, the e�ective rate of information transmission is
reduced to

Re = R(1� PX ) : (11)

We refer to

EX (R; �; %)
4
= lim

n!1
�
1

n
log2(PX ) (12)

as the erasure exponent. For EX (R; �; %) > 0 the e�ective rate can be made as close to R as
desired by increasing the codeword length n. Consider the probability of an (un-detected)

error with this decision feedback scheme, i.e., Pdf (C)
4
= P (decoding error j j S�(r) \ C j� 1).

Above discussion motivates the de�nition of the feedback exponent Efs(R) as

Efs(R)
4
= lim

n!1
�
1

n
log2(Pdf(C)) ; (13)

where % is chosen as the limiting value such that EX (R; �; %) approaches zero. With (5) we
have

EX (R; �; %) � T2(%; �)� h2(%) : (14)

That, is % = � is the limiting value such that EX (R; �; %) approaches zero.
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Theorem 4. For almost all codes C 2 IE(n; k) the probability Pdf (C) of an error with subop-
timal decoding and decision feedback satis�es:

Pdf (C) � 2�n[Efs(R;�)+o(n)] (15)

with

Efs(R; �) � C(�)�R for R < Cand � < � : (16)

Moreover, Re converges to R for n!1. The decoding complexity is bounded from above by
2n[R(1�C(�))+o(n)].

Proof. Again, we assume without loss of generality that the all-zero codeword has been trans-
mitted, i.e., r = e. Let e denote the weight of the error vector e. We can split the event that
a decoding error occurs conditioned on j S�(r) \ C j� 1 into two disjoint events: event E1
that an un-detected error occurs given e � �, and event E2 that an un-detected error occurs
given e > �. Thus,Pdf (C) 2 S�) = P (E1) + P (E2). First, consider event E1. Note that e � �
implies 0 2 S�(r). Let v 2 C be a codeword of weight w. Assume e = i + l � dw=2e with
i the number of ones within supp(v). If the error pattern e leads to a decoding error, then
the distance dist(v; e) = w � i + l � e. Estimating the decoding error probability by the
probability of the inequality for the distances, and summing over all code vectors of weight
at most 2�, we obtain

P (E1) �

2�X
w=dmin

A(w)

�X
i=dw=2e

��iX
l=0

�
w

i

��
n� w

l

�
�i+l(1� �)n�i�l : (17)

Substituting the weight spectrum from (3) into (17) we obtain

P (E1) �

2�X
w=�n

n22�(1�R)n

�
n

w

� �X
i=dw=2e

��iX
l=0

�
w

i

��
n� w

l

�
�i+l(1� �)n�i�l :

With w = !n, �i+l(1� �)n�i�l = 2�nT2(
i+l
n
;�), and using (2) several times, we have

P (E1) � n2
2�X

w=�n

�X
i=dw=2e

��iX
l=0

2
�n

h
1�R�h2(!)�!h2( i

!n)�(1�!)h2
�

l
n(1�!)

�
+T2( i+ln ;�)

i
:

We obtain the maximum over l for l = (n� w)� if (n � w)� is within the summation range.
However, for � = %n, with % � �+(12��)�, we have (n�w)� � �� i. Therefore, the maximum
is attained for l = %n� i. we get

P (E1) � �n3
2%nX
w=�n

%nX
i=dw=2e

2
�n

h
1�R�h2(!)�!h2( i

!n)�(1�!)h2
�

%n�i
n(1�!)

�
+T2(%;�)

i
:

Furthermore, we obtain the maximum over i for i = %w. But by assumption we have
w=2 � %w and we choose i = w=2:

P (E1) � �2n4
2%nX
w=�n

2
�n

h
1�R�h2(!)�!�(1�!)h2

�
%�!=2
1�!

�
+T2(%;�)

i
:
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Similarly, the maximum of the sum over w is attained for ! = 2%(1 � %). Substituting this
into above formula, choosing the limiting values % = �, and simplifying we get

P (E1) � 2�n[C�R�
1
n
log2(�

3n5)] :

Now, consider E2. This is the event of an un-detected error under suboptimal list decoding.
With lemma 5 we have

P (E2) � 2�n[1�R+T (%;�)�2h(%)�o(n)]

and P (E2) � 2�n[C�R�o(n)] in the limit %! �.
Finally, since for % > � the rate loss due to re-transmissions remains negligible, Re con-

verges to R. Moreover, it follows from Theorem 2 that in the limit % ! � the total number
of decoding operations is bounded from above by 2n[R(1�C(�))+o(n)].
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