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1 Introduction

In the elliptic curve cryptosystem(ECC), the order of elliptic curve must be a large prime
or divisible by a large prime in order to ensure its security. In practice, it is said that the
order should be 160 bits long at least, in addition, it is preferred to be a prime number[1].
Correspondingly, if ECC is de�ned over an extension �eld Fpm , the pair of p and m has to
satisfy m log p � 160[2]. For example, we may adopt a 30 bits long prime and 6 as p and m,
respectively. As compared to the ECC de�ned over a prime �eld, the ECC de�ned over an
extension �eld has some advantages, such that arithmetics operations in the de�nition �eld
can be fast implemented. But, it is cautioned that there exist some insecure curves fragile
to FR attack[4] and Weil descent attack[5]. For the latter attack, the following results have
already been reported:

� When p = 2, most elliptic curves are irrelevant for ECC[5].
� When p = 3, some elliptic curves are irrelevant for ECC[6].
� When p is odd and m = 3 or 5 or 7, all elliptic curves are irrelevant for ECC[7].

For the other cases, such that the extension degree is a power of 2, Weil descent attack has
not been developed su�ciently and there are many cases of curves and �elds for which the
attack techniques cannot apply[8]. Therefore, this paper takes only FR attack into account.

In this paper, however, we start from the elliptic curves whose coe�cient and de�nition
�elds are a prime �eld Fp (p 6= 2; 3) and its extension �eld Fpm , respectively. And we devise
the elliptic curves so as to have all the following features by using some techniques.

� The elliptic curve can resist against FR attack.
� Encryption/decryption can be fast performed.
� The de�nition �eld can be compactly implemented.
� The elliptic curve has a prime order.

By discussing these features separately, some mathematical conditions for elliptic curve so
as to have all features are deduced. The order of elliptic curve which we start from is un-
fortunately composite, in order to overcome this problem, the technique called twist[9] is
introduced. After that, it is shown that the order of the twisted elliptic curve can be prime
only when the extension degree m is a power of 2, in other words, an elliptic curve with a
prime order can be generated by adopting Fp2c as its de�nition �eld and using twist tech-
nique, where c is a positive integer. Finally, an e�cient algorithm to generate an elliptic curve
which satis�es all of the given conditions and has a prime order is proposed and two concrete
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examples are shown. By using this algorithm, such an elliptic curve with a prime order can
be generated within 1 second on PentiumIII(800MHz) processor, where the characteristc p
and the extension degree m are a 30 bits long prime and 8, respectively.

2 Fundamentals

This section deals with the fundamentals of arithmetics on an elliptic curve, FR attack, and
e�cient software implementation of the ECC.

2.1 Arithmetics on an elliptic curve

2.1.1 Coe�cient �eld and de�nition �eld

An elliptic curve over �nite �eld Fq is de�ned as the set of solutions to the equation

E(x; y) = y2 � x3 � ax� b = 0; (1)

with a; b 2 Fq and the characteristic of Fq is not equal to 2 or 3. The solutions (x; y) to Eq.(1)
are called Fq-rational points when the coordinates of x and y lie in Fq. This paper deals with
elliptic curves that the coordinates lie in some extension �eld but coe�cients a; b in its proper
sub�eld. In order to describe the di�erence clearly, we call the �eld of a; b coe�cient �eld and
that of coordinates x; y de�nition �eld.

2.1.2 Order and trace of elliptic curve

Fq-rational points on Eq.(1) form an additive Abelian group. In this paper, this group and its
order is denoted by E(Fq) and #E(Fq), respectively. The existing range of #E(Fq) is given
by Hasse's theorem[3]; let us consider t = q + 1�#E(Fq), t satis�es

2
p
q � t � �2pq; (2)

where t is called the trace of E(Fq). The order or trace of elliptic curve is closely related
to the security of the ECC[1], which will be discussed in Section2.2. Therefore, the problem
of determing order #E(Fq) is of critical importance in cryptographic applications. As the
e�cient order computation algorithm, Schoof's algorithm[10] and SEA algorithm[1] are well
known. If the coe�cient �eld is Fp but the de�nition �eld is its extension �eld Fpm , #E(Fpm)
can be obtained by the following steps, where base order is the number of Fp-rational points
on the curve.

1. Compute base order #E(Fp).
2. Determine the objective order by using the following Weil's theorem with the
previously computed #E(Fp).

Theorem 1 [3] Let coe�cient and de�nition �elds be a prime �eld Fp and its extension �eld
Fpm, respectively. And let t1 = p+ 1�#E(Fp). Then,

#E(Fpm) = pm + 1� (�m + �m); (3)

where �; � are complex numbers which satisfy �� = p and �+ � = t1, and �m + �m is the
trace of E(Fpm).

Therefore, it is enough to compute only base order by using SEA algorithm.
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2.2 FR attack

By using FR attack[4], we can reduce the elliptic curve discrete logarithm problem (ECDLP)
on E(Fq) to the discrete logarithm problem on Fqk of a certain extension degree k. It is known
that only the ECDLP which satis�es any of the following conditions can be easily reduced by
the attack, where t is the trace of E(Fq) and l is a certain integer.

� E(Fq) is super-singular. � Trace t = 2.

Let p be the characteristic of Fq, E(Fq) is said to be super-singular if p divides its trace t.

2.3 E�cient software implementation

According to Eq.(2), #E(Fq) exists in the range between q+1�2pq and q+1+2
p
q. This fact

indicates that q, that is the order of de�nition �eld Fq, must be 160 bits at least. Therefore,
we have to implement arithmetics in an extension �eld of such a large order. For software
implementation, optimal extension �eld(OEF)[11] and all-one polynomial �eld(AOPF)[12] are
known to realize fast implementation. In these �elds, we restrict their characteristic and the
modular polynomial for the extension as follows;

1. Characteristic p is a pseudo Mersenne prime of computer's word size, where we call a
prime in the form of 2n � c (n=2 � log2 c) pseudo Mersenne prime.

2. The modular polynomial is an irreducible binomial(OEF) or all-one polynomial(AOPF).

3 Conditions

In this section, we start at �rst from the elliptic curves whose coe�cient and de�nition �elds
are a prime �eld Fp (p 6= 2; 3) and its extension �eld Fpm, respectively, and show the su�cient
conditions for the elliptic curve that has all of the features shown in Section1.

3.1 Conditions to resist against FR attack

From Theorem1 and the de�nition of the super-singular elliptic curve, if E(Fpm) is super-
singular, then its trace �m + �m must be divisible by p. And then, �m + �m can be written
with �+ �, ��, by using Dickson polynomials of the �rst kind[14],

�m + �m = Dm(�+ �; ��); (4)

where Dickson polynomial Dm(X; a) is de�ned by

Dm(X; a) =

bm=2cX
i=0

m

m� i

 
m� i

i

!
(�a)iXm�2i; (5)

and m is referred to as the degree of Dickson polynomial. In Eq.(5), notation b�c shows the
maximum integer less than or equal to � . Substituting �+� and �� to t1 and p, respectively,
�m + �m is given with t1 and p as follows;

�m + �m =

bm=2cX
i=0

m

m� i

 
m� i

i

!
(�p)it1m�2i: (6)

349



According to Eq.(6), �m+�m is divisible by p if and only if t1 is divisible by p. On the other
hand, the existing range of t1 is given by considering t = t1 in Eq.(2),

2
p
p � t1 � �2pp: (7)

In this range, the only t1 = 0 is divisible by p. Therefore, E(Fpm) is super-singular if and
only if t1 = 0, and accordingly the following condition is at �rst needed.
Condition(1) : t1 6= 0.

According to Section2.2, if the trace of an elliptic curve is equal to 2, it is also irrelevant
for using in the ECC. To be more detailed, if the trace is equal to 2, the order of the elliptic
curve becomes even, of course it is not prime number. In this paper, as a su�cient condition
that trace is not equal to 2, we adopt the condition that the trace is not even.

At �rst, let us develop �m + �m as

�m + �m = (�+ �)(�m�1 + �m�1)� ��(�m�2 + �m�2): (8)

Eq.(8) gives a successive expression in regard to the degree of Dickson polynomial;

Dm(t1; p) = t1Dm�1(t1; p)� pDm�2(t1; p); (9)

where D0(t1; p) and D1(t1; p) are given by

D0(t1; p) = �0 + �0 = 2; D1(t1; p) = �1 + �1 = t1: (10)

From the above relations, we can deduce the condition that Dm(t1; p) is not even, more
accurately, a su�cient condition that trace is not equal to 2 as follows;
Condition(2) : m 6� 0 (mod 3) and t1 is odd.

3.2 Requirements for fast implementation

In order to realize fast implementation, we should choose the de�nition �eld Fpm from ex-
tension �elds introduced in Section2.3, for example OEF. According to the discussion in
Section2.3, Table 1 shows the rough settings of degree m and characteristic p versus to com-
puter's word size, in which p and m satisfy m log p � 160.

Table 1: Degree m and characteristic p versus to processor's word size

word size [bit] p [bit] m

16 10 � 16 16 � 10
32 20 � 32 8 � 5
64 40 � 64 4; 3

Since ECCs need addition between rational points, checking of quadratic power residue,
and calculation of square root, the pair of p and m must be selected from Table 1 so as
to perform these operations fast. Addition between rational points consists of additions,
multiplications, and an inversion in Fpm[1]. Therefore, fundamental arithmetics in Fpm should
be performed fast. For such a requirement, extension degree m is preferred to be a composite
number since some of the arithmetics in Fpm can be replaced by the corresponding arithmetics
in its proper sub�eld[12],[13]. Especially, m = 2i(i � 1) is the most e�ective[2].
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In calculating the square root of a quadratic power residue, the multiplicity d2 de�ned as
follows is preferred to be small[15].

pm � 1 = 2d2T; T is an odd number: (11)

For example, comparing (p;m) = (231 � 1; 2); (228 + 3; 2) which are the pairs of p and m, d2
becomes 32 in the former case and 3 in the latter case. Therefore, the square root computation
in the latter case may be about 10-fold faster than that in the former case.

Concluding this section, the following two requirements are also mentioned;
Requirement(3) : m is a power of 2.
Requirement(4) : Multiplicity d2 is small.

3.3 Conditions for prime order

When the coe�cient and de�nition �elds are a prime �eld and its extension �eld, respectively,
then #E(Fpm) is given by

#E(Fpm) = pm + 1�Dm(t1; p); (12)

as seen in Section3.1. In this case, the following equation always holds for an arbitrary factor
m0 of the extension degree m[1].

#E(Fpm0 ) j #E(Fpm); (13)

where X j Y means that X divides Y . Eq.(13) indicates not only that #E(Fpm) is not prime,
but also that the largest prime factor of #E(Fpm) becomes considerably smaller than 160 bits
long even if m log p is about 160. Therefore, we have to adopt a further larger extension �eld
for secure ECC. But it is not desirable with respect to the third feature shown in Section1.
This defect is due to the constrained setting that coe�cient �eld Fp is proper sub�eld of
de�nition �eld Fpm. In order to overcome this undesirable property, we allow coe�cient �eld
not to be proper sub�eld of de�nition �eld Fpm and then adopt a technique called twist[9].

For an original de�ning equation:

E(x; y) = y2 � x3 � ax� b = 0 a; b 2 Fp; (14)

the new de�ning equation is introduced,

E0(x; y) = y2 � x3 � aA2x� bA3 = 0; (15)

where A is a non-zero element of Fpm . The above E0(x; y) is said to be a twist of E(x; y).
Corresponding to whether A is a quadratic power residue(QPR) or a quadratic power non
residue(QPNR), the order of E0(x; y) is given as follows;

#E0(Fpm)=

�
pm + 1�Dm(t1; p) ; if A is QPR; (16a)

pm + 1 +Dm(t1; p) ; if A is QPNR: (16b)

By changing E(x; y) to E0(x; y), we can easily extend the coe�cient �eld Fp to the extension
�eld Fpm , and moreover its order #E0(Fpm) can be determined with only t1, where t1 can be
easily obtained by using Weil's Theorem with the base order #E(Fp). Comparing Eq.(16a)
and Eq.(12), however, if A is a quadratic power residue, the preceding undesirable property
remains since Eq.(16a) is not changed from Eq.(13). In the following, we consider that E0(Fpm)
is twisted with QPNR; accordingly the order #E0(Fpm) is given by Eq.(16b).
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Now, let us examine whether or not #E0(Fpm) can be prime (or, divisible by a large prime
or not). If we suppose that m has an odd factor m0 6= 1, then order #E0(Fpm) also has the
same undesirable property as the same of Eq.(13). On the other hand, let extension degree
m be 2c, where c is an positive integer, if we calculate #E0(Fp2c ) by using

#E0(Fp2c ) = p2
c

+ 1 +D2c(t1; p); (17a)

D2c(t1; p) =
2c�1X
i=0

2c

2c � i

 
2c � i

i

!
(�p)it12c�2i; (17b)

there exist many t1's such that #E0(Fp2c ) becomes prime[16]. The absolute values of such t1's
are tabulated in Table 2. The reason for using the absolute values is that #E0(Fp2c ) in either
case of �t1 are equal to each other, which is easily understood from Eq.(17b). For example,
in the case of (p;m) = (228 + 3; 8), #E0(Fp8) becomes prime when t1 = 59. Concluding this
section, elliptic curves with a prime order can be generated under the following condition;
Condition(5) : Use E0(Fp2c ) with a prime order.

Table 2: t1's such that #E0(Fp2c ) becomes prime

p 2c Absolute value of t1
215 + 3 16 23; 39; 63; 103; � � �
224 � 3 8 39; 217; 261; 345; � � �
228 + 3 8 59; 79; 91; 111; � � �

4 Algorithm and its performance

In this section, an e�cient algorithm to generate elliptic curves which satis�es all of the
conditions (1) � (5) shown in Section3 is proposed. Then, we evaluate its performance in
regard to computation time. Last, two concrete examples of such an elliptic curve are shown.

4.1 Algorithm

Since the conditions (3), and (4) are initial settings. In practice, calculations and condition
checks are required only for (1),(2) and (5). For (1) and (2), if #E0(Fp2c ) is prime, then
t1 must at least be odd from Eq.(17). Conversely, if t1 is odd, then (1) and (2) are always
satis�ed. However, these two conditions are given for E(Fp2c ) to resist against FR attack but

not for its twist E0(Fp2c ). In order to reconsider these conditions (1) and (2) from the view
point of E0(Fp2c ), let us recall the originals of these conditions, that is,

(1) is the necessary and su�cient condition for elliptic curves not to be super-singular,
(2) is a su�cient condition for the trace not to be even.

Comparing Eq.(16a) and Eq.(16b), the only di�erence between #E(Fp2c ) and its twist version

#E0(Fp2
c ) is the sign of D2c(t1; p). Therefore, if t1 is odd, E

0(Fp2
c ) is also not super-singular

and its trace is also not even. Consequently, in order to devise an e�cient algorithm to
generate E0(Fp2c ) with a prime order, an elliptic curve E(Fp) whose trace t1 is odd must be
e�ciently generated. It is noted that E(Fp) is an elliptic curve whose coe�cient and de�nition
�elds are both prime �eld Fp.
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We now introduce a class of elliptic curves whose de�ning equation E(x; y) is given by
using an irreducible polynomial E(x; 0) over Fp. In the following, we call an elliptic curve
in this class a no two-torsion elliptic curve. For example, the following elliptic curve is no
two-torsion elliptic curve over F5.

E(x; y) = y2 � x3 � x� 4 = 0 (18)

Let E(Fp) be a no two-torsion elliptic curve over de�nition �eld Fp, then, its trace t1 is
always odd[1]. Using this property, an e�cient algorithm to generate an elliptic curve E0(Fp2c )
satisfying all of the conditions becomes as follows, where it should be noted that the conditions
(3),(4) are automatically satis�ed as a result of extension degree restriction m = 2c.

Algorithm: Generate an elliptic curve satisfying all of the conditions.

Input: Characteristic p satisfying condition (5), extension degree 2c.
Output: An elliptic curve E0(Fp2c ) with a prime order.

1. Choose coe�cients a; b 2 Fp of de�ning equation E(x; y) at random. Then, test the
irreducibility of E(x; 0). If E(x; 0) is not irreducible, then choose di�erent coe�cients
again. Otherwise, go to Step2.

2. Compute base order #E(Fp) of the no two-torsion elliptic curve E(Fp) by Schoof's or
SEA algorithm. Then, determine t1 = p+ 1�#E(Fp).

3. Determine D2c(t1; p) by Eq.(17b), then test whether or not order #E0(Fp2c ) determined
by Eq.(17a) is prime. If it is not prime, then return to Step1. Otherwise, go to Step4.

4. Determine twisted de�ning equation Eq.(15) with some quadratic power non residue
A 2 Fp2c . Then, E

0(Fp2c ) is an objective elliptic curve with a prime order.

4.2 Experimental results and concrete examples

In this section, we evaluate the performance of the proposed algorithm in regard to computa-
tion time. We adopted an irreducibility test algorithm[17] for Step1, Schoof's algorithm[10]
for Step2, and a primary test algorithm[18] for Step4, respectively. Then, we implemented
these algorithms on PentiumIII(800MHz) processor by programming in C language. Consid-
ering Fp8 as the de�nition �eld, we selected pseudo Mersenne primes 224 � 3; 228 + 3, and

229 � 3 as its characteristic p. It is noted that each of these primes satis�es condition (5).
Now, let us estimate the probability of generating a no two-torsion elliptic curve at random,

that is to say, the probability of success in one iteration of Step1. The number of possible
pairs of the coe�cient a; b is p2. And also, the number of Fp-irreducible polynomials which
takes the form of x3 + ax+ b is (p2 � 1)=3[19]. Therefore, the probability can be estimated
by about 1=3. Table 3 shows the average times of passing an irreducibility test, Step1: an
irreducible elliptic curve generation, and Step2: an order computation by using Schoof's
algorithm, respectively. From Table 3, we can see that Step1 requires approximately three
times the duration required by the irreducibility test and also achieves much faster than Step2.
In the following, we discuss without accounting for the computation time required by Step1.

Next, let us experimentally estimate the probability that E0(Fp2c ) will be prime in Step3,
in other words, that an elliptic curve with a prime order will be generated by only one order
computation. For 2c = 2; 4; 8; 16, Table 4 shows the number of t1's such that #E0(Fp2c )
becomes prime. In addition, the following facts have been already known:
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Table 3: Average times of an irreducibility test, Step1, and Step2

p Irreducibility test [�s] Step1 [�s] Step2 [ms]
224 � 3 18:03 53:61 13:82
228 + 3 18:60 56:59 22:03
229 � 3 22:25 66:59 22:43

Table 4: The number of t1's such that #E0(Fp2c ) becomes prime

p
Extension degree m = 2c

2 4 8 16
224 � 3 418 478 328 178
228 + 3 1406 2290 1280 758
229 � 3 2662 752 1290 1028

� Trace t1 is almost uniformly distributed in the range of Eq.(7)[9].
� In the range of Eq.(7), there are b2ppc distinct odd numbers.
� The trace t1 is odd if and only if the elliptic curve is a no two-torsion elliptic curve[1].

Based on these facts, the probability can be estimated by dividing the numbers tabulated in
Table 4 by b2ppc, respectively. The results are shown in Table 5. For example, in the case of

Table 5: Probability of E0(Fp2c ) being prime in Step3

p b2ppc Extension degree m = 2c

2 4 8 16
224 � 3 8191 0:051 0:058 0:040 0:021
228 + 3 32768 0:042 0:069 0:039 0:023
229 � 3 46340 0:057 0:016 0:027 0:022

(p;m) = (224�3; 2), since the probability is 0:051, an elliptic curve with a prime order will be
generated by about 20 iterations from Step1 to Step3. And also, from the table, we can see a
tendency that the probability decreases as the extension degree increases. It seems that the
distribution of prime numbers becomes sparse as the number increases in accordance with a
heuristic reasoning, using the prime number theory.

Last, Table 6 exhibits the average times of generating an objective good elliptic curve
E0(Fp2c ). For example, in the case of (228 + 3; 8), it takes 537:1ms on average. In the case of

(224�3; 8), the average becomes 380:9ms, which is faster than the �rst case's. This is because
an order computation in the second case is faster than the �rst case's as shown in Table 3.
On the other hand, in the case of (228 + 3; 16), the average time becomes 977:5 ms, which
is slower than the �rst case's. This is because the probability of E0(Fp2c ) being prime in the
third case is lower than the �rst case's as shown in Table 5.

Concluding this section, in the case of 2c = 8 and any of the three primes, which will
be one of the most practical cases, the time tabulated in Table 6 is less than 1 second.
Therefore, we can conclude that the proposed algorithm is su�ciently practical as based on
the experimental data. Finally, Table 7 shows two concrete examples of an elliptic curve
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Table 6: Average times of generating an elliptic curve with a prime order [ms]

p
Extension degree m = 2c

2 4 8 16
224 � 3 326:5 203:1 380:9 665:4
228 + 3 472:7 325:7 537:1 977:5
229 � 3 449:2 854:8 971:7 1256:5

satisfying all of the conditions shown in Section3, in other words, these elliptic curves have
all of the features described in Section1.

Table 7: Concrete examples of an elliptic curve satisfying all of the conditions

Example 1 Example 2

�eld type OEF OEF

characteristic 224 � 3 229 � 3

extension degree 8 8

modular polynomial x8 � 2 x8 � 2

QPNR A ! y � y

de�ning Equation y2 � x3 � 3!2x� 10!3 y2 � x3 � 3� 2x� 195� 3

order #E0 191 bits prime 231 bits prime
y ! and tau are zeros of the modular polynomial.

5 Conclusion

In this paper, an e�cient algorithm to generate an elliptic curve which satis�es all of the
features shown in Section1 was proposed by using no two-torsion elliptic curves, and the
concrete examples were shown.

By using this algorithm, such an elliptic curve with a prime order could be generated within
1 second on PentiumIII(800MHz) processor, where the characteristc p and the extension
degree m are a 30 bits long prime and 8, respectively. From the experimental data shown in
this paper, we can conclude that the proposed algorithm is su�ciently practical.
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