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Abstract

We consider irreducible Goppa codes over Fq of length qn de�ned by polynomials of degree
r where q is a prime power and n; r are arbitrary integers. We obtain an upper bound
on the number of such codes. We also exhibit categories of quasicyclic Goppa codes which
depend only on numerical conditions on the parameters p; n; r. Finally we give a method for
generating all cubic Goppa codes.
Key words: Classical Goppa codes, McEliece cryptosystem, enumeration, Cauchy-Frobenius.

1 Introduction

Classical Goppa codes form a large family about which little is known, in general. They are
sometimes referred to as being near to arbitrary or near to random [1]. Their parameters, such
as dimension and minimum distance, and their automorphism groups are unknown. How-
ever they are easily generated, as any polynomial over a �nite �eld generates such a code.
The cryptographic potential of Goppa codes was recognised in the McEliece cryptosystem [4],
which is still regarded as secure nearly a quarter of a century after it was �rst proposed. There
is a very large number of Goppa codes with similar parameters. Their number grows expo-
nentially with the length of the code and with the degree of the Goppa polynomial. However,
not all irreducible polynomials of a given degree over a �nite �eld generate inequivalent codes
and the precise number of such codes, on which the security of the McEliece cryptosystem
depends, is not known. In 1978, Chin-Long Chen [5] derived an upper bound on the num-
ber of equivalence classes of irreducible Goppa codes. In a previous paper [10, 11] paper we
gave an improved bound for certain values of the parameters (�eld size, length, degree of the
Goppa polynomial). In this paper we consider the general case and give an improved bound
for the number of Goppa codes of length qn, de�ned by irreducible polynomials of degree r,
where q = pt (p a prime), for arbitrary p; n; t; r. In many cases, at least for small values of the
parameters, this bound is precise, although we can also generate examples where the bound
is not met. In order to make this paper relatively self-contained, we repeat and extend some
of the preliminary material from [10, 11].

2 Preliminaries

Let �(L; g) be an irreducible Goppa code over Fq with de�ning set L = Fqn , where g(z) 2
Fqn [z] is an irreducible polynomial of degree r. Then a vector c = (c0; c1; : : : cqn�1) with
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components in Fq is a codeword in �(L; g) if and only if

qn�1X
i=0

ci
z � �i

� 0 mod g(z) (1)

where we adopt a �xed ordering on L = Fqn = f�i : 0 � i � qn � 1g. The roots of g(z) lie in

Fqnr , and if � is any root then g(z) =
Qr�1

i=0 (z��qni). Thus condition (1) is equivalent to the
r equations

qn�1X
i=0

ci

�qnj � �i
= 0; 0 � j � r � 1: (2)

Since all the components ci of the codeword c lie in Fq and all the �i lie in Fqn , condition (2)
is equivalent to

 
qn�1X
i=0

ci
�� �i

!qnj

= 0; 0 � j � r � 1 (3)

which is equivalent to the single equation

qn�1X
i=0

ci
�� �i

= 0: (4)

Hence �(L; g) is completely described by any root � of g(z), and we may denote this code
C(�). Clearly any element of degree r over Fqn de�nes such a code. Using the single equation
in (4) we get the following parity check matrix H for C(�)

H =

�
1

�� �0

1

�� �1
� � �

1

�� �qn�1

�
: (5)

We make the de�nition.

Definition 2.1 The set S= S(n; r) is the set of all elements in Fqnr of degree r over Fqn .

Next we establish the theorem.

Theorem 2.2 If �; � 2 S are related by an equation � = ��qi + � for some � 6= 0; � 2 Fqn

then C(�) is equivalent to C(�).

We de�ne the following maps on S, where �; � 2 Fqn ; � 6= 0.

1. �� : � 7! �+ �

2. �� : � 7! ��.

408



3 Enumeration of irreducible Goppa codes

Using Theorem 2.2 we construct an upper bound on the number of inequivalent irreducible
Goppa codes for �xed q; n and r in the following way. The set of all irreducible Goppa codes
over Fq of length qn and degree r is fC(�) : � 2 Sg. If �; � 2 S are related by an equation

� = ��qi + � for some � 6= 0; � 2 Fqn (6)

then C(�) and C(�) are equivalent (Theorem 2.2). The set F = f�� � �� : �; � 6= 0 2 Fqn g
forms the group of a�ne transformations and acts on S. The set G = f�i : 1 � i � nrg
forms the Frobenius group and again acts on S. It is clear that the orbits in S under FG
(semidirect product) are precisely those elements related by an equation of type (6). Thus
any two elements in the same orbit generate equivalent Goppa codes. The number of orbits
in S under FG then gives us the required upper bound on the number of Goppa codes.

4 Orbits of S under F

We �rst consider the action of the a�ne group F . Let � be an arbitrary element of S. If
�1� + �1 = �2�+ �2 and �1 = �2 then �1 = �2, while if �1 6= �2 then � = (�2 � �1)=(�1 � �2),
contrary to � 2 S. Thus the orbit containing �, denoted A(�) and called the a�ne set
containing �, contains qn(qn� 1) elements. It is obvious that A(�) = A(�) for any � 2 A(�).
We denote the set of all a�ne sets, that is, fA(�) : � 2 Sg, by A . We conclude that
jA j = jSj=qn(qn � 1).

Example 4.1 Let q = 2; n = 4; r = 3. Then S= F212 n F24 and there are
212 � 24

24(24 � 1)
= 17

a�ne sets in A .

Example 4.2 Let q and n be arbitrary and let r = 2. Then S= Fq2n n Fqn and there is only

1 =
q2n � qn

qn(qn � 1)
a�ne set in A .

Remark 4.3 Since in the case r = 2 there is only one orbit, we shall from now on assume
r > 2.

Next, we observe that � permutes the a�ne sets within A since if � = ��+ � is an arbitrary
element of A(�) then �q = �q�q + �q 2 A(�q). So G = h�i acts on A . Our strategy is �rst
to apply the action of F to S to obtain A . Then we apply the action of G to A to obtain
the orbits in S of FG. The action of F on S is straightforward as shown above. However the
action of G on A is more complicated. This latter action is analyzed in the following section.

5 Orbits of A under G

The group G = h�i is a cyclic group of order nr. In analyzing the action of G on A we will
need to refer to the factorizations of n and r, highlighting the divisors that are products of
those primes dividing only one of n or r and those that divide both. In order not to over-
burden the notation with explicit prime factorizations, we de�ne k to be the largest divisor
of n that is relatively prime to r and set `n = n=k, and m to be the largest divisor of r
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that is relatively prime to n and set `r = r=m. Thus nr = k`m = k`n`rm, where ` = `n`r.
We often need to work with a divisor k1 of k and write �k1 = k=k1. The symbols k2; k3
etc. will denote divisors of k possibly distinct from k1, and similar notation will be used for
divisors of `;m; n; r, where appropriate, without explicit mention. The letter p will always
denote the characteristic of the �eld and p1 some other prime distinct from p. We de�ne
K = h�`mi; L = h�kmi;M = h�k`i. Thus, jKj = k; jLj = `; jM j =m and by elementary group
theory G = K �L�M .

Example 5.1 Let q = 2; n = 6; r = 10. Then k = 3; ` = 4;m = 5 and K = h�20i; L =
h�15i;M = h�12i. Thus, jKj = 3; jLj = 4; jM j = 5 and G = K �L�M .

In order to count the orbits in A under the action of G we count the �xed points of this
action and then apply the Cauchy-Frobenius Theorem (see [7], for example). In other words
we count the a�ne sets A(�) in A which are �xed under the various subgroups of G and
then calculate the average number of a�ne sets �xed by an element of G. Observe that if
A(�) is �xed by h�si, then h�si also acts on A(�) and A(�) itself may contain elements of S
�xed by h�si. To make things clear we will refer to these elements as �xed points and refer
to the elements of A that are �xed as �xed a�ne sets. We introduce some notation. Let u; v
be integers. The greatest common divisor of u; v will be denoted by (u; v). We also write
�(u; v) = pa1

1
pa2
2
� � � pabb , where p1; p2; : : : ; pb are the primes occurring in the prime factorization

of v and ai is the largest power of pi dividing u, 1 � i � b, ai � 0. Also, since an irreducible
polynomial of degree r over Fqk1 `n remains irreducible over Fqk`n [8, Theorem 3.33], we may
de�ne S(k1`n; r) as the subset of S(n; r) of elements that are of degree r over Fqk1 `n .

We divide the analysis as follows.

1. We �rst focus on a�ne sets �xed under subgroups of G having trivial intersection with
LM . These are precisely the subgroups of K. We prove that an a�ne set A(�) is �xed
by a subgroup h�k1`mi of K if and only if A(�) contains a �xed point. We count the
total number of elements of S which can be �xed by h�k1`mi and the number of such
elements in each A(�) �xed by h�k1`mi. Thus we �nd the number of a�ne sets �xed by
h�k1`mi.

Lemma 5.2 The number of a�ne sets �xed by h�k1`nri is

jS(k1`n; r)j=(q
k1`n(qk1`n � 1)):

Example 5.3 Let q = 2; n = 4; r = 3. Recall from Example 4.1 that there are 17 a�ne

sets in A . Of these 17 a�ne sets
26 � 22

22(22 � 1)
= 5 are �xed by h�6i and

23 � 21

21(21 � 1)
= 3

are �xed by h�3i.

2. Next we consider a�ne sets �xed under subgroups of G which have non-trivial inter-
section with LM . Suppose A(�) is �xed by h�k1`1m1i such that h�k1`1m1i \ LM is non
trivial, that is, �̀1 �m1 > 1. The analysis falls into two cases.

(a) The case when p j/ �̀1 �m1. We �rst show that the �xed points of h�k1`mi are per-
muted in orbits of length precisely �̀

1 �m1. We exploit these orbits to gain further
information.
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i. First, we analyze the case when h�k1`1m1i � LM and `nj`1, that is, k1 = k
and `nj`1. If (�̀1 �m1; p) = 1 and if k`njk1`1 then we establish that an a�ne set
A(�) is �xed by h�k1`1m1i if and only if the numerical condition �̀

1 �m1jq
k1`n�1

is satis�ed and then A(�) contains roots of the equation xq
k1`1m1�1 = " where

" 2 Fqn is of order �̀
1 �m1. Counting the roots of this equation which lie in S

and the number of such roots which lie in each A(�) we establish the number
of a�ne sets �xed by h�k1`1m1i.

ii. Second, we allow h�k1`1m1i 6� LM (k1 < k) but insist that `nj`1. In this
case we establish that an a�ne set A(�) is �xed by h�k1`1m1i if and only if
the numerical condition �̀

1 �m1jq
k1`n � 1 is satis�ed and then A(�) contains

roots of equations of type xq
k1`1m1�1 = "i where " 2 Fqn is of order �̀1 �m1 and

(i; �̀1 �m1) = 1. Again we count the roots of these equations which lie in S.
To count the number of such roots which lie in A(�) we count the number
of elements in the set U(�̀1 �m1) de�ned as the set of distinct elements in Fqn

which can be written as "j�i where o(") = �̀
1 �m1, i; j coprime with �̀

1 �m1 and
such that

o("j�i) divides
�(qn � 1; �̀1 �m1)�

qk1d � 1; �(qn � 1; �̀1 �m1)
�

where d = (`1; `n). In this way we establish the number of a�ne sets �xed by
h�k1`1m1i when `nj`1.

iii. Third, we examine the case when `n j/ `1. This breaks into two cases.

A. If q � �1 mod 4 and k1`2m1 is odd and �̀
1 �m1 is even then A(�) is �xed

by h�k1`1m1i if and only if 2�̀1 �m1jq
k1`n � 1 and A(�) contains roots of

equations of type xq
k1`1m1�1 = "�i where "� 2 Fqn is of order 2�̀1 �m1 and

(i; �̀1 �m1) = 1. (Note 2j�̀1 �m1.)

B. Otherwise, if any of the three conditions q � �1 mod 4 and k1`2m1 is
odd and �̀

1 �m1 is even do not hold, we use induction to show that even if
`n j/ `1 we still have the result that an a�ne set A(�) is �xed by h�k1`1m1i
if and only if �̀1 �m1jq

k1`n � 1 and A(�) contains roots of equations of type

xq
k1`1m1�1 = "i where " 2 Fqn is of order �̀1 �m1 and (i; �̀1 �m1) = 1.

We use the same technique to count the �xed a�ne sets when `n j/ `1 as we do
for the case when `nj`1. Let T (k1; `1m1) (T

�(k1; `1m1)) denote the set of roots of

the �(�̀1 �m1)
�
�(2�̀1 �m1)

�
equations xq

k1`1m1�1 = "i
�
xq

k1`1m1�1 = "�i
�
, (i; �̀1 �m1) =

1, which lie in S and let U�(�̀1 �m1) be de�ned in a similar way to U(�̀1 �m1) but
corresponding to "�.

Lemma 5.4 Suppose (p; �̀1 �m1) = 1. Then

i. If q � �1 mod 4 and k1`2m1 is odd and �̀
1 �m1 is even then there are

jT �(k1; `1m1)j

(qk1d � 1)jU�(�̀1 �m1)j
a�ne sets �xed by h�k1`1m1i, where d = (`1; `n),

if and only if 2�̀1 �m1jq
k1`n � 1.

ii. In all other cases there are
jT (k1; `1m1)j

(qk1d � 1)jU(�̀1 �m1)j
a�ne sets �xed by h�k1`1m1i

if and only if �̀1 �m1jq
k1`n � 1.
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Example 5.5 Let q = 3; n = 4; r = 10. Note that k = 1; ` = 8;m = 5. Then

jT �(1; 5)j = 1920, jU�(8)j = 4 and there are
1920

2� 4
= 240 a�ne sets �xed by h�5i.

Example 5.6 Let q = 2; n = r = 6. Note that 9j26 � 1. Then jT (1; 4)j = 72,

jU(9)j = 3 and there are
72

3� 3
= 8 a�ne sets �xed by h�4i.

(b) The case when pj�̀1 �m1.

In this case if A(�) is �xed by h�k1`1m1i then it is also �xed by h�k1
`m
p i. We show

that A(�) is �xed by h�
k1

`m
p i if and only if it contains a root of xq

nr
p
� x� 1. We

then have the following analysis.

i. First we count the a�ne sets �xed by h�k1`1m1i when �̀
1 �m1 = p, allowing k1 to

be arbitrary. We do this by counting the number of elements in the set V (k1),

which denotes the set of roots of xq
nr
p
� x � 1 which lie in S, and then the

number of such roots in each a�ne set. We get the lemma:

Lemma 5.7 The number of a�ne sets �xed by h�k1`1m1i when �̀
1 �m1 = p is

jV (k1)j

qk1`n
:

Example 5.8 Let q = 2; n = r = 6. Then jV (1)j = 262080 and there are
262080

64
= 4095 a�ne sets �xed by h�18i.

ii. We then show that there are no a�ne sets �xed by h�k1`1m1i if

A. �̀
1 �m1 = p2 and p2jr

B. �̀
1 �m1 = pp1 where p1 is some other prime.

iii. Finally, we analyze the case when �̀
1 �m1 = pi, i > 1 and p2 j/ r. Observe that

in this case m1 = m. We show that A(�) is �xed by h�k1`1mi if and only if

A(�) contains a root of xq
k1`1m � x � �i = 0, where �i is a �xed element of

Fqn such that Tr F
q
nr
p
=F

qk1 `1m
(�i) = 1. Then again we denote the set of roots

of this equation which lie in S by W (k1`1m), count the elements in this set
and the number which lie in any one a�ne set and then deduce the number
of a�ne sets �xed by h�k1`1mi when �̀

1 = pi. We get the lemma:

Lemma 5.9 The number of a�ne sets �xed by h�k1`1mi when �̀
1 = pi, i � 2

is

A. 1, if r = p

B.
jW (k1`1m)j

qk1d
where d = (`1; `n), if r > p.

Example 5.10 Let q = 2; n = r = 6. Then jW (9)j = 504 and there are
504

23
= 63 a�ne sets �xed by h�9i.

Finally, we bring all the results of Lemma 5.2, Lemma 5.4, Lemma 5.7 and Lemma 5.9 together
to get the theorem.

Theorem 5.11 Let d = (`1; `n). With the notation we have established:

1. There are
jS(k1`n; r)j

qk1`n(qk1`n � 1)
a�ne sets �xed by h�k1`nri.
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2. If (p; �̀1 �m1) = 1. Then

(a) If q � �1 mod 4 and k1`2m1 is odd and �̀
1 �m1 is even then there are

jT �(k1; `1m1)j

(qk1d � 1)jU�(�̀1 �m1)j
a�ne sets �xed by h�k1`1m1i, where d = (`1; `n),

if and only if 2�̀1 �m1jq
k1`n � 1.

(b) In all other cases there are
jT (k1; `1m1)j

(qk1d � 1)jU(�̀1 �m1)j
a�ne sets �xed by h�k1`1m1i if and only if �̀1 �m1jq

k1`n � 1.

3. If (�̀1 �m1; r) = p and �̀
1 �m1 = pi, i � 1 then

(a) if i = 1 there are
jV (k1)j

qk1d
a�ne sets �xed by h�k1`1m1i.

(b) if i > 1 and r = p then there is precisely 1 a�ne set �xed by h�k1`1i.

(c) if i > 1 and r > p there are
jW (k1`1m)j

qk1d
a�ne sets �xed by h�k1`1mi.

6 Computation

Using Theorem 5.11 we can develop a program to apply the Cauchy-Frobenius Theorem and
calculate the average number of a�ne sets �xed by an element of G. This gives the number
N(q; n; r) of orbits in Sunder the action of FG. Among other things, the program calculates
the cardinality of the sets S; T; T �; U; U�; V and W . Our main result is as follows.

Theorem 6.1 The number of inequivalent irreducible Goppa codes over Fq of length qn and
degree r is at most N(q; n; r).

The following tables compare N(2; 7; r) and N(2; n; 7) for 6 � n; r � 16

q n r N(2; 7; r)

2 7 6 6442037

2 7 7 706740561

2 7 8 79154980000

2 7 9 9006073495576

2 7 10 1037499670492467

2 7 11 120727233941856231

2 7 12 14165328782916945380

2 7 13 1673688077687467924065

2 7 14 198929782948040712169263

2 7 15 23765478069520611201643781

2 7 16 2851857368342478330960957440

q n r N(2; n; 7)

2 6 7 25972041

2 7 7 706740561

2 8 7 19711152849

2 9 7 559575017799

2 10 7 16100007541491

2 11 7 468135036352467

2 12 7 13728607731106143

2 13 7 405472442822740719

2 14 7 12047588599432596753

2 15 7 359810331615688417563

2 16 7 10794145237868624836449

Note that N(2; 7; 6) < N(2; 6; 7) but N(2; 7; 8) > N(2; 8; 7) and then N(2; n; r) grows faster
with r than with n.
The following table gives some non binary values
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q n r N(q; n; r)

3 2 3 3

3 3 3 4

3 4 3 9

3 3 4 68

3 3 5 1368

5 2 3 6

5 2 4 86

5 2 5 1644

9 2 3 16

9 2 4 842

9 2 5 53892

7 Quasicyclic Goppa codes

It is already known that there are classes of quasicyclic Goppa codes, see [1,3]. This feature
has also arisen in our analysis. Using speci�c orderings on the de�ning set L we show that

1. If pjr then there exists a category of quasicyclic irreducible Goppa codes of length qn

and index dividing qn

p . It is not di�cult to give an upper bound on the number of codes
in this category. We give a method for the generation of such codes and note that they
have varying parameters.

2. If �̀1 �m1jq
n � 1 there exists a category of quasicyclic Goppa codes of length qn � 1 and

index dividing qn�1
�̀
1 �m1

. Again it is not di�cult to count the Goppa codes in this category
and we give a method for generating these codes.

7.1 Cryptosystems based on Goppa codes

The existence of these two categories of quasicyclic Goppa codes has implications for any
cryptosystem based on Goppa codes. Some authors have shown that Goppa codes with non
trivial automorphism groups are bad keys for the McEliece cryptosystem (See [3]). However
it is easy to eliminate the possibility of choosing a Goppa code in either of the above two
categories using the numerical condition necessary for their existence.

8 Cubic Goppa codes

The following result can be used to construct an e�cient program to generate all all cubic
Goppa codes of length qn. Let q; n and r � 3 be �xed, let � 2 S and let D = f�g [ f 1

�+� :
� 2 Fqn g. Then jDj = qn + 1 and no two elements of D belong to the same a�ne set. For
suppose ��1 and (�+ �1)

�1 belong to the same a�ne set then (�+ �1)
�1 = ���1+ � for some

�; � 2 Fqn which implies that � is a root of a quadratic over Fqn which is impossible. Finally

note that, when r = 3, there are
q3n � qn

qn(qn � 1)
= qn + 1 a�ne sets in S and so the elements of

D in this case characterize all a�ne sets. If r > 3 then the elements of D de�ne qn + 1 a�ne
sets.
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Theorem 8.1 Let q; n and r = 3 be �xed, let � 2 S and let D = f�g [ f 1

�+� : � 2 Fqn g.
Then D consists of a full set of representatives of all the a�ne sets in S. If r > 3, D consists
of a set of representatives from qn + 1 a�ne sets.

Using Theorem 8.1 we outline a method for generating all irreducible cubic Goppa codes
of length qn. A slight modi�cation to this method helps to obtain any required number of
irreducible Goppa codes of degree r and length qn.
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