
Weak Collision Resistance for Variable Input Length

Can Imply Collision Resistance for Fixed Input Length

Shoichi Hirose and Susumu Yoshida

Graduate School of Informatics, Kyoto University, Kyoto 606-8501 Japan

E-mail: hirose@i.kyoto-u.ac.jp

Abstract

HMAC and NMAC are well-known functions for message authentication based on

cryptographic hash functions such as SHA. HMAC is a modi�ed practical version of

NMAC and has not been given any provable security. On the other hand, NMAC is

shown to be a secure message authentication code if its compression function with �xed

input length is a secure message authentication code and its iterated hash function with

variable input length constructed with the compression function is weak collision resistant.

In this article, two results are shown on the strength of the weak collision resistance of

the iterated hash function in NMAC. First, it is shown that the weak collision resistance

of the iterated hash function in NMAC is not implied by the pseudorandomness of its

compression function even if the MD-strengthening is assumed. Second, the weak collision

resistance of the iterated hash function in NMAC implies the collision resistance of its

compression function if the compression function is pseudorandom.

1 Introduction

HMAC and NMAC [2] are well-known functions for message authentication based on cryp-
tographic hash functions such as SHA. HMAC is designed for practical use based on NMAC
and has not been given any provable security. On the other hand, NMAC is shown to be a
secure message authentication code if its compression function with �xed input length is a
secure message authentication code and its iterated hash function with variable input length
constructed with the compression function is weak collision resistant [2]. In this article, two
results are shown on the weak collision resistance of the iterated hash function in NMAC.

Related Work. A function for message authentication should be a function with variable
input length for practical use and such a function is composed by iterated applications of a
function with �xed input length. In this case, it is preferable that the security of a function
with variable input length is implied by as weak assumptions as possible on the security of a
function with �xed input length.

Bellare, Canetti and Rogaway [4] showed that the CBC-MAC is a secure message au-
thentication code (MAC) if the function with �xed input length used in the construction is
pseudorandom. The pseudorandomness is, however, a stronger notion than the MAC secu-
rity. An and Bellare [1] presented a scheme to construct a secure MAC function with variable
input length from a secure MAC function with �xed input length. They call this scheme
the NI construction. To prove that the NI construction is a secure MAC, they showed that
the weak collision resistance of the iterated hash function in the NI construction is implied

253

by the weak collision resistance of the compression function with �xed input length used in
this construction. They also show that the weak collision resistance is implied by the MAC
security for a function with �xed input length.

For other security notions such as pseudorandomness and collision resistance, following
results are known. A pseudorandom function with variable input length can be produced
by cascade construction of a pseudorandom function with �xed input length [3]. This con-
struction needs some pre�x-free encoding of inputs or a secret key to be appended to inputs.
Collision resistance for variable input length is implied by collision resistance for �xed input
length [5].

Our Contribution. In the iterated hash function in the NI construction, each compression
function has the same secret key as a part of the input. On the other hand, in the iterated hash
function in NMAC, only the initial value is the secret key, that is, only the �rst compression
function has the secret key as a part of the input. It is an open question how strong the
assumption is that the iterated hash function in NMAC is weak collision resistant. In this
article, two results are presented on this question. These results show that there may exist
a large gap between the weak collision resistance of the iterated hash function in the NI
construction and that of the iterated hash function in NMAC.

First, it is shown that the weak collision resistance of the iterated hash function in NMAC
is not implied by the pseudorandomness of the compression function used in the iteration
even if the MD-strengthening is used for padding. This result implies that the weak collision
resistance of the iterated hash function in NMAC is a stronger notion of security than the weak
collision resistance of a function with �xed input length. Second, it is shown that the weak
collision resistance of the iterated hash function in NMAC implies the collision resistance of
the compression function used in the iteration if this compression function is pseudorandom.
Together with Simon's result [6], this result implies that there may exist a large gap between
the weak collision resistance of the iterated hash function in NMAC and that of a function
with �xed input length.

The remainder of this article is organized as follows. De�nitions and some notations are
presented in Section 2. Two results are shown in Section 3 on the strength of the weak collision
resistance of the iterated hash function in NMAC. Section 4 is the concluding remark.

2 Preliminaries

2.1 De�nitions

Let F be a function such that F : K(F)�D(F) ! R(F), where K(F), D(F), R(F) are the
set of the keys, that of the inputs and that of the outputs of F , respectively. For k 2 K(F),
Fk(�) represents F (k; �).

Four notions of security of a function are de�ned below. They are collision resistance,
weak collision resistance, pseudorandomness and a secure message authentication code.

Collision Resistance (CR). To de�ne the collision resistance (CR) of a function F , the
following experiment FindCol(A; F) is introduced, where A is a probabilistic algorithm which
gets a key k 2 K(F) as an input and works as a collision �nder of Fk.

FindCol(A; F)
k K(F); (m;m0) A(k);

254

if m 6= m0 ^ Fk(m) = Fk(m
0) then return 1;

else return 0;

In the above description of FindCol(A; F), k K(F) means that k is randomly selected from
the set K(F) and the distribution is uniform. On the other hand, (m;m0) A(k) means
that (m;m0) is an output of the probabilistic algorithm A with input k. The distribution
of the output is based on the random choices of A and the distribution of the input to A.
FindCol(A; F) returns 1 i� A(k) �nds a collision of Fk, that is, a pair of di�erent inputs of
Fk which give the same output. Let SuccCRF (A) denote the probability that FindCol(A; F)
returns 1.

The CR of F is quanti�ed by the maximum probability that any collision �nder with at
most t steps succeeds in �nding a collision of F . This value is denoted by InsecCRF (t) and is
de�ned as follows.

InsecCRF (t)
def
= max

A
fSuccCRF (A)g;

where the number of the steps of A is at most t.

Weak Collision Resistance (WCR). The following experiment FindWeakCol(A; F) is
introduced to de�ne the weak collision resistance (WCR) of a function F , where A is a
probabilistic algorithm which takes Fk as an oracle and works as a collision �nder of Fk.
A makes a chosen message attack to Fk. The di�erence between FindWeakCol(A; F) and
FindCol(A; F) is that the key k of F is not given to A in FindWeakCol(A; F). Thus, it is
obvious that the WCR of F is implied by the CR of F .

FindWeakCol(A; F)
k K(F); (m;m0) AFk;

if m 6= m0 ^ Fk(m) = Fk(m
0) then return 1;

else return 0;

FindWeakCol(A; F) returns 1 i� AFk �nds a pair of di�erent inputs of Fk which give the
same output. Let SuccWCR

F (A) denote the probability that FindCol(A; F) returns 1. The
WCR of F is quanti�ed by the maximum probability that any collision �nder such that the
number of its steps, that of its queries and the total length of its queries are at most t, q and
� respectively succeeds in �nding a collision of Fk. This value is denoted by InsecWCR

F (t; q; �)
and is de�ned as follows.

InsecWCR
F (t; q; �)

def
= max

A
fSuccWCR

F (A)g;

where A is a collision �nder with an oracle Fk such that the number of its steps, that of its
queries and the total length of the queries are at most t, q and �, respectively. For simplicity,
a collision �nder with an oracle Fk is called a weak collision �nder of F in the followings.

Pseudorandomness (PR). The following experiment Distinguish(A; F) is introduced
to de�ne the pseudorandomness of a function F . A is a probabilistic algorithm which works
as a distinguisher of F with an oracle O, to which A makes a chosen message attack. In this
experiment, a randomly chosen bit s 2 f0; 1g is given to the oracle �rst. If s = 1, then O
chooses k 2 K(F) randomly in advance. O returns Fk(x) to each query x from A. If s = 0,
then O chooses a function R : D(F) ! R(F) randomly in advance. O returns R(x) to each
query x from A.

255

Distinguish(A; F)
s f0; 1g; s0 AO(s);
if s = s0 then return 1; else return 0;

Distinguish(A; F) returns 1 i� s = s0, that is, A judges correctly which one of Fk and R is
used by O to compute the answers to the queries of A. Let SuccPRF (A) be the probability that
Distinguish(A; F) returns 1. We only consider the case where SuccPRF (A) � 1=2 because
the probability that s = s0 is 1=2 even if A chooses s0 randomly. Let

AdvPRF (A)
def
= SuccPRF (A)�

1

2
:

Then, the pseudorandomness of F is quanti�ed by the maximum of AdvPRF (A) for any A
such that the number of its steps, that of its queries and the total length of its queries are
at most t, q and �, respectively. This value is denoted by InsecPRF (t; q; �) and is de�ned as
follows.

InsecPRF (t; q; �)
def
= max

A
fAdvPRF (A)g:

Message Authentication Code (MAC). The following experiment Forge(A; F) is intro-
duced to de�ne the notion that a function F is a secure message authentication code (MAC).
A is a probabilistic algorithm which works as a forger of Fk. A takes Fk as an oracle and
makes a chosen message attack to it.

Forge(A; F)
k K(F); (m;a) AFk;

if a = Fk(m) then return 1; else return 0;

Forge(A; F) returns 1 i� A succeeds in forging a pair (m;Fk(m)), where m is not included in
the queries of A to Fk. Let Succ

MAC
F (A) denote the probability that Forge(A; F) returns 1.

The MAC security of F is quanti�ed by the maximum of SuccMAC
F (A) of any forger A

such that the number of its steps, that of its queries and the total length of its queries are
at most t, q and �, respectively. This value is denoted by InsecMAC

F (t; q; �) and is de�ned as
follows.

InsecMAC
F (t; q; �)

def
= max

A
fSuccMAC

F (A)g:

Notations. The Hamming distance between two binary strings x, y with equal length is
denoted by dH(x; y). The length of a binary string x is denoted by jxj. The number of the
steps to compute a function f is denoted by T (f).

2.2 Hash Function

A hash function is a function which outputs a string of �xed length for a given input string of
arbitrary length. A hash function H : f0; 1g� ! f0; 1g` is computed by iterated applications
of a compression function f : f0; 1g` � f0; 1gb ! f0; 1g` to a given input x.

A hash function H consists of a compression function f , an initial value v0 2 f0; 1g
`, and

a padding algorithm Pad. Pad produces x1; x2; : : : ; xm for a given input x, where xi 2 f0; 1g
b,

256

jxj � mb. For i = 1; : : : ;m, vi = f(vi�1; xi) and H(x) = vm. This kind of hash function is
called an iterated hash function.

The padding algorithm Pad is often based on the following algorithm called MD-strengthening.
In this algorithm, a given input x is divided into blocks x1; x2; : : : ; xn, each of whose length
is b, and a new block xn+1 = jxjbin is added, where (n� 1)b < jxj � n b and jxjbin is a b-bit
binary representation of jxj. If jxnj < b, then (b� jxnj) 0's are appended to xn.

2.3 NMAC

NMAC is a MAC function based on a hash function. It is composed with a compression func-
tion of the hash function. NMAC is a provably secure MAC function. NMAC is constructed
as follows:

NMACk(x)
def
= Hk1(Hk2(x));

where k = (k1; k2) is a secret key, k1; k2 2 f0; 1g
` and Hki represents H with the initial value

ki.
Suppose that H is a hash function such as SHA and MD5. In this case, Hk1 is computed

with only one application of f since the length of the input to Hk1 , which is generated from
Hk2(x) with the padding algorithm, is b. Taking this fact into account, we assume that Hk1

is computed with one application of the compression function f of the hash function H. Let
NMAC-IT(f) represent the iterated hash function Hk2 with the compression function f . Let
NMAC(f) represent NMAC composed with f .

The following theorem is on the security of NMAC.

Theorem 1 [2] Let f : f0; 1g` �f0; 1gb ! f0; 1g` be a compression function used in NMAC.
Then, for every t, q, �,

InsecMAC
NMAC(f)(t; q; �) � InsecMAC

f (t; q; q b) + InsecWCR
NMAC-IT(f)(t; q; �):

�

Theorem 1 shows that NMAC(f) is a secure MAC if f is a secure MAC and NMAC-IT(f)
is WCR. In the next section, two results are presented on the strength of the WCR of
NMAC-IT(f).

3 The Strength of the WCR of the Iterated Hash Function in

NMAC

For a compression function f : f0; 1g` � f0; 1gb ! f0; 1g` used in NMAC, the set of keys of
f , K(f), is assumed to be f0; 1g`.

First, it is shown that the PR of the compression function f does not imply the WCR of
NMAC-IT(f) even if MD-strengthening is assumed.

Theorem 2 Let g be a function such that g : f0; 1g`�f0; 1gb ! f0; 1g`. For every k 2 f0; 1g`

and w 2 f0; 1g` such that dH(k;w) � 1, suppose that

g(k;wjj0b�`) = w:

257

Then, there exists a weak collision �nder of NMAC-IT(g) such that the number of its steps,
that of its queries and the total length of its queries are at most O(`2b + ` T (g)), 1 and b,
respectively, even if MD-strengthening is assumed for padding.

(Proof) Let A be an algorithm whose behaviour is described below.

1. A chooses a query x1 2 f0; 1g
b to its oracle arbitrarily. Let v2 be the answer of the

oracle to the query x1. Since MD-strengthening is assumed, the input after padding is
(x1; x2), where x2 = jx1jbin.

2. A chooses x3; x4; : : : ; x`+2 2 f0; 1g
` arbitrarily such that x3 62 fv2jj0

b�`; (v2�e1)jj0
b�`g.

For i = 2; 3; : : : ; `+ 1, A computes vi+1 = g(vi; xi+1).

3. A computes x03; x
0
4; : : : ; x

0
`+2 in the following way.

v02 = v2;
for j = 1 to ` f

if hv02 � v`+2ij = 0 then x0j+2 = v0j+1jj0
b�`;

else x0j+2 = (v0j+1 � ej)jj0
b�`;

v0j+2 = g(v0j+1; x
0
j+2);

g

hv02 � v`+2ij is the j-th element of v02 � v`+2 2 f0; 1g
` and ej 2 f0; 1g

` such that

hejiu =

�
1 if u = j
0 otherwise

for u = 1; 2; : : : ; `.

4. A outputs x = (x1; x2; x3; : : : ; x`+2) and x0 = (x1; x2; x
0
3; : : : ; x

0
`+2).

It is clear that NMAC-IT(g) produces the same output for the inputs x and x0. x 6= x0

since x3 6= x03. The number of the queries of A is 1, the total length of the queries is b, and
the number of the steps is at most O(`2b+ ` T (g)). �

The following theorem shows that there exists a PR function satisfying the property given
in Theorem 2 if there exists a PR function.

Theorem 3 Let g : f0; 1g` � f0; 1gb ! f0; 1g` be de�ned with f : f0; 1g` � f0; 1gb ! f0; 1g`

as follows:

g(k; x) =

�
w if x = wjj0b�` and dH(k;w) � 1
f(k; x) otherwise.

Then,

InsecPRg (t; q; �) �
3

2
InsecPRf (t+ q(`+ 1)T (f); q; �) +

q(`+ 1)

2`+1
:

(Proof) Let A be a distinguisher of g with the maximum success probability such that the
number of its steps, that of its queries and the total length of its queries are at most t, q and
�, respectively.

258

Let I be a probabilistic algorithm which works as an interface between A and an oracle O.
First of all, a randomly chosen s 2 f0; 1g is given to O. If s = 1, then O chooses k 2 f0; 1g`

randomly and uses fk to produce answers to the queries. If s = 0, then O chooses a function
from f0; 1gb to f0; 1g` randomly and uses it. I is a distinguisher of f using A as a subroutine.
The behaviour of I is described below.

1. For 1 � i � q,

(a) I gives a query xi from A to the oracle O and receives the answer yi to this query.

(b) If xi = wijj0
b�` for some wi 2 f0; 1g

`, then I checks whether yi = fwi
(xi) and

yi = fwi�ej (xi) for 1 � j � `. If at least one equation holds, then I chooses
s0 2 f0; 1g randomly, outputs s0 and stops. Otherwise, I gives yi to A as an
answer of the oracle to xi and go to (a).

2. I receives the output of A, and outputs it as s0.

The number of the steps, that of the queries and the total length of the queries of (A;I) are
at most t+ q(`+1)T (f), q and �, respectively. Let � be the event that at least one equation
holds in 1(b) in the above algorithm. The success probability of this algorithm is evaluated
as follows:

Pr[s0 = s] = Pr[s0 = s ^ :�] + Pr[�]Pr[s0 = s j�]

= Pr[A succeeds ^ :�] +
1

2
Pr[�]

� Pr[A succeeds]� Pr[�] +
1

2
Pr[�]

=
1

2
+ InsecPRg (t; q; �)�

1

2
Pr[�]:

Thus,

InsecPRg (t; q; �) � InsecPRf (t+ q(`+ 1)T (f); q; �) +
1

2
Pr[�]:

The rest of the proof is the evaluation of Pr[�].
Let I 0 be a probabilistic algorithm which works as an interface between A and the oracle

O. I 0 is a distinguisher of f using A as a subroutine. The behaviour of I 0 is described below.

1. For 1 � i � q,

(a) I 0 gives a query xi from A to the oracle O and receives the answer yi to this query.

(b) If xi = wijj0
b�` for some wi 2 f0; 1g

`, then I 0 checks whether yi = fwi
(xi) and

yi = fwi�ej (xi) for 1 � j � `. If at least one equation holds, then I 0 outputs s0 = 1
and stops. Otherwise, I 0 gives yi to A as an answer of the oracle to xi and go to
(a).

2. I 0 outputs s0 = 0.

259

It is clear from the description above that the number of the steps, that of the queries and
the total length of the queries of (A;I 0) are at most t + q(` + 1)T (f), q and �, respectively.
The success probability of (A; I 0) is evaluated as follows:

Pr[s0 = s] =
1

2
Pr[s0 = 0js = 0] + Pr[s0 = 1 ^ s = 1]

=
1

2
Pr[:�js = 0] + Pr[� ^ s = 1]

=
1

2
Pr[:�js = 0] + Pr[�]�

1

2
Pr[�js = 0]

= Pr[:�js = 0]�
1

2
+ Pr[�]

�

�
1�

`+ 1

2`

�q

�
1

2
+ Pr[�]

�
1

2
�

q(`+ 1)

2`
+Pr[�]:

Using this fact, we can obtain

Pr[�] � InsecPRf (t+ q(`+ 1)T (f); q; �) +
q(`+ 1)

2`
:

Thus, we can obtain

InsecPRg (t; q; �) �
3

2
InsecPRf (t+ q(`+ 1)T (f); q; �) +

q(`+ 1)

2`+1
:

�

From Theorems 2 and 3, it is straightforward that the WCR of the iterated hash function in
NMAC is not implied by the PR of its compression function.

The following theorem shows that the CR of the compression function f is implied by the
WCR of NMAC-IT(f) if f is PR.

Theorem 4 For a compression function f and NMAC-IT(f),

InsecCRf (t) � 2 InsecPRf (t+O(1); 1) + InsecWCR
NMAC-IT(f)(t+O(1); 1; b):

�

To prove this theorem, two lemmas are presented.

Lemma 1 If there exists a collision �nder of f : f0; 1g` � f0; 1gb ! f0; 1g` with at most t
steps, then there exists a weak collision �nder of NMAC-IT(f) with at most t + O(1) steps
and 1 query of length b.

(Proof) Let A be a collision �nder of f with at most t steps. Let I be a probabilistic algorithm
which works as an interface between A and an oracle NMAC-IT(f). The behaviour of I is
described below. I is a weak collision �nder of NMAC-IT(f) using A as a subroutine.

260

1. I gives a query z 2 f0; 1gb to the oracle and gives the answer returned by the oracle to
A as an input.

2. I obtains the output x, x0 from A, outputs (z; x) and (z; x0).

It is obvious that the number of the steps, that of the queries and the total length of the
queries of (A;I) are t+O(1), 1 and b, respectively. �

In Lemma 1, the success probability is not mentioned. This is because the success prob-
ability of A depends on the distribution of the key of f given to A as input. The following
lemma shows that, if the di�erence is not negligible between the success probability of A with
the key randomly selected and that of A with the interface I and the oracle NMAC-IT(f) in
Lemma 1, then it is able to be used for distinguishing f from a random function.

Lemma 2 Let A be a collision �nder of f with at most t steps. Let "1 be the success
probability of A when the key of f given to A is randomly selected. Let "2 be the success
probability of A with the interface I and the oracle NMAC-IT(f) as in Lemma 1. Then, a
distinguisher of f is able to be constructed with A and the number of its steps and that of its
queries are t+O(1) and 1, respectively, and its success probability is at least 1

2 + j"1 � "2j.

(Proof) Suppose that "1 � "2. Let I
0 be a probabilistic algorithm which works as an interface

between A and an oracle O. First of all, a randomly chosen bit s 2 f0; 1g is given to O. If
s = 1, then O chooses k 2 f0; 1g` randomly and uses fk to produce answers to the queries.
If s = 0, then O chooses a function from f0; 1gb to f0; 1g` randomly and uses it. I 0 is a
distinguisher of f using A as a subroutine. The behaviour of I 0 is described below.

1. I 0 chooses a query z 2 f0; 1gb to the oracle in the same way as I in Lemma 1 and gives
the answer from the oracle to A as an input.

2. I 0 determines s0 in the following way and outputs it.

s0 =

�
0 if A fails in �nding a collision,
1 if A succeeds in �nding a collision.

It is obvious from the above description that the number of the steps, that of the queries
and the total length of the queries of (A;I 0) are t+O(1), 1 and b, respectively. The success
probability of this algorithm is evaluated as follows:

Pr[s0 = s] = Pr[s0 = 0 ^ s = 0] + Pr[s0 = 1 ^ s = 1]

= Pr[s = 0]Pr[s0 = 0js = 0] + Pr[s = 1]Pr[s0 = 1js = 1]

=
1

2
Pr[A failsjs = 0] +

1

2
Pr[A succeedsjs = 1]

=
1

2
(1� "1) +

1

2
"2

=
1

2
+

1

2
("2 � "1):

Suppose that "2 � "1. Then, in the behaviour of I 0described above, I 0 determines s0 as
follows:

s0 =

�
0 if A succeeds in �nding a collision,
1 if A fails in �nding a collision.

Then, the success probability of (A;I 0) is 1
2 + 1

2 ("1 � "2). �

261

Theorem 4 is led from Lemmas 1 and 2 in the following way.

Proof of Theorem 4. Since "2 is the success probability of A with the interface I and the
oracle NMAC-IT(f) in Lemma 1,

"2 � InsecWCR
NMAC-IT(f)(t+O(1); 1; b):

On the other hand, since j"1 � "2j � 2 InsecPRf (t+O(1); 1) from Lemma 2,

"1 � "2 + 2 InsecPRf (t+O(1); 1):

Thus, we are able to obtain

InsecCRf (t) � 2 InsecPRf (t+O(1); 1) + InsecWCR
NMAC-IT(f)(t+O(1); 1; b)

by assuming that A is a collision �nder of f with the maximum success probability. �

4 Conclusion

For a compression function with �xed input length, the WCR is implied by the MAC security.
In contrast, it is shown in this article that the CR of a compression function with �xed input
length can be implied by the WCR of the iterated hash function in NMAC with variable input
length. These facts shows that there may be a gap between the WCR of a function with �xed
input length and that of a function with variable input length.

Acknowledgements

The authors would like to thank anonymous referees for their valuable comments.
This work is supported in part by Grant-in-Aid for Young Scientists (B) KAKENHI

14780209 of Japan Society for the Promotion of Science (JSPS).

References

[1] J. H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message authenti-
cation under weakened assumptions. In CRYPTO'99 Proceedings, pages 252{269, 1999.
Lecture Notes in Computer Science 1666.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentica-
tion. In CRYPTO'96 Proceedings, pages 1{15, 1996. Lecture Notes in Computer Science
1109.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The cascade
construction and its concrete security. In Proceedings of the 37th IEEE Symposium on

Foundations of Computer Science, pages 514{523, 1996.

[4] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences, 61(3):362{399, 2000.

262

[5] I. Damg�ard. A design principle for hash functions. In CRYPTO'89, pages 416{427, 1990.
Lecture Notes in Computer Science 435.

[6] D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be based
on general assumptions? In EUROCRYPT'98, pages 334{345, 1998. Lecture Notes in
Computer Science 1403.

263

264

