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Abstract

We present bounds on the error-correction capability of binary linear codes beyond
half the minimum distance which are a part of the results of the recently submitted paper
[7].
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1 Introduction

Let Fn be the set of all binary vectors x = (x1; x2; : : : ; xn) (with coordinates 0 and 1) and
Fn
t be the set of all vectors of Fn of the Hamming weight t. For any x 2 Fn we consider the

support S(x) = fi : xi = 1g and m(x) = minS(x); and de�ne on Fn a partial ordering �
(covering) as follows:

x � y if and only if S(x) � S(y):

A linear code C � Fn of dimension k is referred to as an [n; k] code. We also use the notation
[n; k; d] if the code C has minimum distance dC at least d. We set tC = b(dC � 1)=2c and
denote the covering radius of C by rC .

A coset leader of an [n; k] code C is the lexicographically smallest element among the
minimum weight vectors in a coset. We denote the set of all 2n�k coset leaders by E0(C).
In (maximum likelihood) decoding only error vectors of the set E0(C) can be corrected
and they are all corrected for transmission of any code word. Therefore, the elements of
E0(C) are called correctable errors, and the elements of E1(C) = Fn n E0(C) are called
uncorrectable errors. Let E0

t (C) = E0(C) \ Fn
t ; be the set of correctable errors of weight t,

and E1
t (C) = E1(C) \ Fn

t ; be the set of uncorrectable errors of weight t.
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One of the main problems in coding theory is to �nd, for a given [n; k; d] code C, the
function (the ratio of correctable errors):

"C(t) =
jE0

t (C)j�n
t

� ; t = 0; 1; :::; n: (1)

A signi�cant fact inherent in linear codes is a monotone structure of the sets of correctable
and uncorrectable errors, namely that if x � y, then x 2 E1(C) implies y 2 E1(C) and
y 2 E0(C) implies x 2 E0(C). Using this property it is easily proved that for any [n; k] code
C and any t = 0; 1; :::; n � 1,

"C(t+ 1) � "C(t): (2)

Thus, "C(t) is a nonincreasing function in t such that "C(t) = 1 for t � tC and "C(t) = 0
for t > rC since the covering radius equals to the maximum weight of a correctable error.
The function "C(t) for t � dC=2 (that is equivalent to t � tC + 1 for an integer t) really
characterizes the capability of codes to correct errors. However, it is di�cult to estimate this
function even if the weight distribution Ai(C); i = 0; 1; :::; n; of the code C is known. (Our
results in Section 4 show how it is possible to overcome this di�culty in some cases.) It is
also worth noticing that the decoding error probability Pde(C; p) of a code C � Fn on the
binary symmetric channel has the following expression:

Pde(C; p) =
nX
t=0

(1� "C(t))

�
n

t

�
pt(1� p)n�t: (3)

The monotonicity (2) allows us to introduce the following de�nition. For any integer
t; 1 � t � n, and any "; 0 < " � 1, a binary linear code C � Fn will be called (t; ")-
error-correcting code if "C(t) � ". In particular, for " = 1 this de�nition coincides with the
standard de�nition of a t-error-correcting code. As an example, the double-error-correcting
BCH [n = 2m�1; k = n�2m;d = 5] codes are (3; ")-error-correcting codes with " = 3(n+3)

(n�1)(n�2) ;
that is a consequence of the Gorenstein-Peterson-Zierler result [5] that these codes are quasi-
perfect. As it follows from the investigation due to Charpin and Zinoviev [3] the problem
to �nd " such that a 3-error-correcting BCH code is a (4; ")-error-correcting code is still
open. It is signi�cant to note that, by (2), any (t; ")-error-correcting code is a (t0; ")-error-
correcting code for any integer t0 < t. This ensures the reasonableness of the de�nition, for
any code C, of the error-correction capability function tC(") as the maximum t such that C
is a (t; ")-error-correcting code.

The �rst two of our bounds for "C(t) are based on investigation of the monotone structure
of correctable and uncorrectable errors for a code C and they are given in Section 2. In
Section 3 we �nd precise and simple bounds for the best [n; k] codes and give asymptotical
analysis of these bounds. In Section 4 we obtain bounds on "Cn(t) for given sequences of
[n; k(n)] codes Cn and prove that some of them are optimal in an asymptotical sense.
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2 Bounds based on monotone structure of correctable and un-

correctable errors

First we strengthen (2).

Theorem 1 For any [n; k] code C and any t, dC=2 � t � rC ,

"C(t+ 1) � "C(t)� 1�n
t

� : (4)

To prove this theorem we show that for any t, dC=2 � t � rC , there exist at least n� t+1
pairs (x;y) such that x 2 E0

t�1(C) and y 2 E1
t (C).

In particular, Theorem 1 implies that "C(t + 1) < "C(t) for tC � t � rC . Hence we get
the following corollary.

Corollary 1 For " 2 (0; 1], the error-correction capability function tC(") is nonincreasing,
left continuous, and takes all values t 2 ftC ; tC + 1; : : : ; rCg.

Another bound for "C(t) is based on the description of minimal uncorrectable errors y 2
E1(C) such that, if x � y and x 2 E1(C), then x = y.

A vector u 2 Fn will be called a larger half of a codeword c 2 C, c 6= 0, if and only if

u � c; jjcjj � 2jjujj � jjcjj+ 2; (5)

m(u) = m(c); if 2jjujj = jjcjj; (6)

m(u) > m(c); if 2jjujj = jjcjj+ 2: (7)

Note that if jjcjj is odd, jjcjj = 2h� 1 say, then by (5), jjujj = h and conditions (6) and (7)
do not apply. If jjcjj = 2h is even, we have jjujj = h or h + 1; moreover, if jjujj = h, then
m(u) = m(c), and if jjujj = h + 1, then m(u) > m(c). Thus, any codeword c 2 C of norm
i � 1 has

� i
d i+12 e

�
larger halves;

�2h�1
h

�
, if i = 2h� 1, and

�2h�1
h�1

�
+
�2h�1
h+1

�
=
� 2h
h+1

�
, if i = 2h.

A codeword c 2 C is called minimal, if c 6= 0 and a � c with a 2 C implies that
a = 0. Denote by M(C) the set of all minimal words of a code C: We give and use some
known properties of M(C) (see [1] and references there). Since any n� k + 1 columns of an
[n; k] code C are dependent, the maximum weight of a minimal word of C does not exceed
n�k+1 and hence we have jjujj � �n�k+2

2

�
for any larger half u of a codeword. We note that

M(C) = C n f0g if and only if any two non-zero code words have intersecting supports. Such
code are called intersecting codes, see e.g. [4]. Minimal codewords have found applications
e.g. in secret sharing, see [10].

One of our main results in [7] is a proof of the statement that all minimal uncorrectable
errors are larger halves of minimal codewords. The following bound is eventually based on
this statement and is a re�nement of bounds given in [11], [12], and [6].

Theorem 2 Let C be an [n; k; d] code and AM
d (C); : : : ; AM

n�k+1(C) be weight distribution of
its minimal codewords. Then for any weight t, d=2 � t � n,

1� "C(t) �
2tX
i=d

AM
i (C)

X
a=di=2e

�
i
a

��
n�i
t�a
�

�
n
t

� �
tX

a=dd=2e
AM
2a(C)

�
2a�1
a

��
n�2a
t�a
�

�
n
t

� : (8)
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From our proof it follows that this bound remains valid if one considers fAM
i (C)g as the

weight distribution of a (minimal) subset M � M(C) such that the set of larger halves of
codewords of M contains all minimal uncorrectable errors. Such a set M is a test set in the
terminology of Ashikhmin and Barg [1] and it is a subset of the test set consisting of the
zero-neighbors de�ned by Levitin and Hartman [9].

3 Bounds for the best codes

Now we give simple and precise bounds for "C(t) using the quantity

�(n; k; t) = 2k�n
tX

i=0

�
n

i

�
(9)

which plays a signi�cant role in our investigation. Note that �(n; k; t) � 1 is a necessary
condition for the existence of a t-error-correcting [n; k] code (the Hamming bound).

Theorem 3 (i) For any [n; k] code C and any t; t = 0; 1; :::; n,

"C(t) � 2n�kPt
i=0

�
n
i

� = 1

�(n; k; t)
: (10)

(ii) For any n; k; and t; 0 � t � n, there exists an [n; k] code C such that

"C(t) > 1� �(n; k; t): (11)

The bound (10) is a direct consequence of the monotonicity (2). To prove (11) we used
the approach proposed in [8], Theorem 1. We endow Fn with the structure of GF (2n) and
for any [n; k] code C � Fn and any non-zero g 2 Fn denote by gC the code fgc : c 2 Cg
which is also an [n; k] code. If z 2 E1

t (gC), then there exists a non-zero c 2 gC such that
w = z+ c has weight at most t. Therefore,X

g2Fnnf0g
jE1

t (gC)j �
X

g2Fnnf0g

X
z2E1

t (gC)

X
c2Cnf0g

X
w2St

i=0 F
n
i

�gc;z+w

�
X
z2Fn

t

X
c2Cnf0g

X
w2St

i=0 F
n
i

X
g2Fnnf0g

�gc;z+w

�
X
z2Fn

t

X
c2Cnf0g

X
w2St

i=0 F
n
i

1 =

�
n

t

�
(2k � 1)

tX
i=0

�
n

i

�
:

Since there are 2n � 1 non-zero g in Fn, there exists a g for which

jE1
t (gC)j �

�
n

t

�
2k � 1

2n � 1

tX
i=0

�
n

i

�
<

�
n

t

�
�(n; k; t):

This completes the proof because jE1
t (gC)j =

�
n
t

�
(1� "gC(t)):

Asymptotic consequences of Theorem 3 for a sequence of [n; k] codes C and weights t as
n !1 follow from the following arguments. If for such a sequence we have �(n; k; t) ! 1,
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then "C(t)! 0. On the other hand, if the parameters k; n; t satisfy �(n; k; t)! 0, then there
exists a sequence of [n; k] codes C such that "C(t)! 1.

We consider sequences of [n; k] codes Cn � Fn with k = k(n) ! 1 as n ! 1. If the
limit

R = lim
n!1

k

n

exists, we call R the rate of the sequence fCng. For any rate R; 0 � R � 1, we denote by
pR, 0 � pR � 1=2, the parameter which is uniquely de�ned by the equation R = 1�H(pR)
where H(p) = �p log2 p� (1� p) log2(1� p) is the Shannon entropy. First, for a sequence of
codes Cn of rate R and a �xed "; 0 < " < 1, we �nd the asymptotic behavior of tCn(") when
n!1.

Theorem 4 (i) For any R; 0 < R < 1, and any n � 1 there exist an [n; k] code C with
k = bnRc and a positive constant cR such that

tC

�
1� cRp

n

�
� bnpRc: (12)

(ii) For any sequence of [n; k] codes Cn of rate R; 0 � R < 1, and any �xed "; 0 < " < 1,

tCn(") . npR as n!1: (13)

Now, for a sequence of [n; k] of codes Cn of rate R = 0, that is, k = k(n) = o(n), we
investigate the asymptotic behavior of tCn(") for a �xed "; 0 < " < 1, as n!1. Note that
from (13) it follows that tCn(") . n=2 under our assumption that k = k(n) ! 1. Thus,
tCn(") � n=2 can hold only for a sequence of codes Cn with rate zero. In order to investigate
the convergence tCn(")! n=2 when k = o(n) we introduce for a code C � Fn the parameter

sC(") = n� 2tC("):

Note that sCn(") = o(n) when tCn(")! n=2.

Theorem 5 i) For any n and k, 0 < 9k ln 4 � n, there exists an [n; k] code C such that

tC

�
1� 1p

k� ln 4

�
�
jn�p

nk ln 4

2

k
: (14)

ii) If for a subsequence of [n; k] codes Cn there exists "; 0 < " < 1, such that

tCn(") � n=2 as n!1;

then
sCn(") = n� 2tCn(") &

p
nk ln 4: (15)

A sequence of [n; k] codes Cn where k = o(n) as n ! 1 is called asymptotically optimal
if for any �xed "; 0 < " < 1,

sCn(") = n� 2tCn(") �
p
nk ln 4:

From Theorem 5 it follows that asymptotically optimal sequences of [n; k] codes exist for
any function k = k(n) such that k(n) = o(n) and k(n)!1 as n!1.
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4 Bounds for given sequences of codes

The inequalities (12) and (14) characterize the maximum weight such that almost all errors of
this weight can be corrected for codes with positive and zero rate respectively. However, these
results are not constructive: they are based on the existence, for any n; k, and t, of an [n; k]
code C for which (11) is valid and on asymptotic analysis of the conditions for �(n; k; t)! 0.

A signi�cant problem is to �nd, for known classes of [n; k; d] codes C such as the primitive
BCH [n = 2m � 1; k = n � mh; d = 2h + 1] codes Bm;h and Reed-Muller [n = 2m; k =Pr

i=0

�
m
i

�
; d = 2m�r] codes RMm;r of order r, an upper bound for 1�"C(t) when t � tC+1 =

dd=2e. In this section we present bounds similar to (11) for an [n; k; d] code C when t � tC+1.
The �rst bound is valid under an additional restriction on the weight distribution fAM

i (C)g
of the minimal words of the code C.

Given a positive valued function �(n), an [n; k] code C is called �(n)-binomial, if for all i,

AM
i (C) � �(n)2k�n

�
n

i

�
: (16)

By the recent result of Blinovsky [2], there exists a constant c such that for any n � 2 and
k � n there exists an [n; k] code which is (c

p
n lnn)-binomial. (This result is proved using

the weight distribution of all, not necessarily minimal, codewords of weight i > 0.)
Note that all words of RMm;1 except 0 and 1 have weight n=2 and are minimal. Since�

n
n=2

� � p2=(�n)2n as n ! 1, the code RMm;1 is �(n)-binomial where �(n) � p�n=2 as
n = 2m !1.

Theorem 6 If an [n; k; d] code C is �(n)-binomial, then for any t; t � d=2;

1� "C(t) � �(n)�(n; k; t) = �(n)2k�n
tX

i=0

�
n

i

�
: (17)

To prove this statement we used Theorem 2 and two combinatorial identities. The �rst is
the well known relation �

n

i

��
i

a

��
n� i

t� a

�
=

�
n

t

��
t

a

��
n� t

i� a

�
: (18)

The other identity is
2tX
i=0

X
a=di=2e

�
t

a

��
n� t

i� a

�
=

tX
i=0

�
n

i

�
: (19)

We include the proof of (19). Since 0 � i � a � a � t and 0 � i � 2t, the sum
S =

P2t
i=0

P
a=di=2e

�
t
a

��
n�t
i�a
�
is equal to the number of pairs (U; V ) of subsets where U �

f1; 2; :::; tg, V � ft+1; t+2; :::; ng, and 0 � jV j � jU j � t. Therefore, S =
Pt

j=0

�n�t
j

�Pt
a=j

�t
a

�
.

If one considers the generating functions

(1 + x�1)n�t =
n�tX
j=0

�
n� t

j

�
x�j and (1 + x)t =

tX
a=0

�
t

a

�
xa;

then it is easily seen that S equals the sum of the coe�cients at nonnegative degrees of x in
the product

(1 + x�1)n�t(1 + x)t = (1 + x)nxt�n:
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Hence S =
Pn

j=n�t
�
n
j

�
=
Pt

i=0

�
n
i

�
. This proves (19).

The asymptotic results obtained in Section 3 are based on �nding conditions for

� log2 �(n; k; t) = n� k � log2

tX
i=0

�
n

i

�
!1:

Therefore, asymptotic properties of good codes whose existence was proved using random
selection are preserved for �(n)-binomial codes if ln�(n) = o(k) as n!1. In this case it is
su�cient to replace k by k � log2 �(n) in the previous proofs.

Now we present a bound similar to (11) for an arbitrary [n; k; d] code C. Note that we
can assume that t � (n�p

n)=2 due to (13) and (15).

Theorem 7 For any [n; k; d] code C and any t; tC + 1 � t � (n�p
n)=2,

1� "C(t) � 2k
� t
tC+1

�� n�t
tC+1

�
�

n
2tC+2

� n� t� tC
n� 2t+ 1

: (20)

To investigate (20) we proved that for even i and 0 < i < 2t � n;

� t
i=2

��n�t
i=2

�
�
n
i

� <

s
8(n� i)t(n� t)

�i(2t� i)(2n� 2t� i)n
2�ng(�;�) (21)

where � = i=n, � = t=n, and

g(�; �) = H(�)� �H

�
�

2�

�
� (1� �)H

�
�

2(1� �)

�
:

While � increases from �=2 to 1=2; the function g(�; �) decreases from g(�; �=2) > �(1��)= ln 4
to g(�; 1=2) = 0:

Corollary 2 For a sequence of [n; k; d] codes Cn, for which d
n ! � > 0, k

n ! R, where
0 < R < g(�; �=2), let �0 be the (unique) solution of the equation R = g(�; �). Then for any
� < �0, "Cn(bn�c) ! 1 as n!1.

Consider a sequence of [n; k; d] codes Cn (k ! 1) for which tCn(") � n=2 for an "; 0 <
" < 1, and hence sCn(") = n� 2tCn(") = o(n). By Theorems 4 and 5, we have k = o(n) and
sCn(") �

p
n. For such sequences of codes one can use the following useful inequality

g(�; �) >
�(1� 2�)2

(1� �) ln 4
when 0 < � � 2� < 1: (22)

Corollary 3 Let fCng be a sequence of [n; k; d] codes such that d=n ! � as n ! 1 where
0 < � � 1=2. Then for any s = s(n) such that s � p

n and s = o(n),

1� "Cn

��
n� s

2

��
.

1

s

r
(1� �)n

2��
2ke

� �s2

2(1��)n : (23)
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This is a re�nement of the Sidelnikov-Pershakov estimate [12] for Reed-Muller codes
RMm;r of a �xed order r when n ! 1. Equation (23) implies that for any sequence of
[n; k; d] codes Cn, for which the conditions of Corollary 3 are satis�ed (in particular, for the
codes RMm;r), and for any �xed ", 0 < " < 1,

sCn(") .

r
n� d

d
nk ln 4: (24)

Note that (24) implies the asymptotic optimality of the Reed-Muller codes RMm;1 of �rst
order. On the other hand, it gives only sRMm;2(") .

p
3nk ln 4 for Reed-Muller codes RMm;2

of second order.
Using Theorem 2, (21), and (22) we prove the following su�cient condition for asymptot-

ical optimality of zero rate codes.

Theorem 8 Let fCng be a sequence of [n; k = k(n)] codes such that k = o(n); k !1; and

�n � w � �n

for all weights w of minimal codewords where � and � are constants such that 0 < � � � < 1,
and let

in =
n

2

�
1� 1

k ln 4� 1

�
:

If

2�k�=(1��)p
k

bincX
i=d

AM
i (C)! 0 when n!1; (25)

then

"Cn

 $
n�p

nk ln 4

2

%!
! 1 when n!1; (26)

and so fCng is asymptotically optimal.

Corollary 4 The sequence of codes RMm;2 is asymptotically optimal when n = 2m !1:

To prove this corollary we used the known weight distribution of RMm;2: Note that
Ashikhmin and Barg [1] found the weight distribution of minimal words in RMm;2 but we do
not use this result in our proof.

Corollary 5 Let fCmg be the sequence of the dual of the primitive BCH codes of length
n = 2m � 1, designed distance 2t+ 1, and dimension k = mt (2t+ 1 < 2dm=2e + 3). Then the
sequence fCmg is asymptotically optimal when n = 2m � 1 ! 1 if t is a constant or grows

slowly (t2 = o
�p

n
lnn

�
).

For this sequence we have d > in and the condition (25) is ful�lled.
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