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Abstract

The question if there exist non normal bent functions was an open question for several
years, as for most of the standard constructions for bent functions it is obvious that
they are normal. In this paper we give the first non normal bent function and even an
example for a non weakly-normal bent function. These examples belong to a class of bent
functions found in [8], namely the Kasami functions. The non-normality of these functions
was verified by using a computer algorithm. We furthermore give a construction which
extends these examples to higher dimensions. With this extension we have an infinite set
of non normal and non weakly-normal bent functions. In the third section we prove the
normality of some bent functions derived by modifications of the Maiorana-McFarland

type.
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1 Introduction

The main complezity characteristics for Boolean functions on F} which are relevant to cryp-
tography are the algebraic degree and the nonlinearity. But other criteria have also been
studied. One of them is the question if there exists a space of dimension § such that the
restriction of a given function is constant (resp. affine) on this space. We call the functions
for which such a space exists normal (resp. weakly-normal). The notion of normality has
been introduced for the first time by Hans Dobbertin in [9]. He used this notion to construct
balanced functions with high nonlinearities: it is shown in [3] that if a bent function f is
constant on an §-dimensional flat F, then f is balanced on each of the other cosets of the
flat. H. Dobbertin used this idea to construct balanced functions with high nonlinearities.
Since that time the question if there exist non normal bent functions was open. For arbitrary
Boolean functions, it was shown in [9], that for increasing dimension nearly all functions are
non normal. Furthermore, there exist Boolean functions on Fy whose restrictions to any
k-dimensional flat are non-affine if k > alogy(n) with o > 1 [4].

Let n = 2m be an even number. We recall some definitions:

Definition 1 Given a function f:F} — Fy, the function

GE B = [U(a) = Y (-1 e

z€Fy
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is called the Walsh transform of f. Moreover, the f¥(a),a € F} are called the Walsh coeffi-
cients of f.

Definition 2 A function f : F} — Fy is called bent if for all a € Fy with a #0
S (—1)f @t — g,
¢€Fy
This property is equivalent to the fact that all the Walsh-Coeflicients are +2™.
Definition 3 The dual function f of a bent function f is defined by the property
[*(@) = (-2,
The dual of a bent function is also bent.

Definition 4 A function f : F} — Fy is called normal if there exists a flat of dimension m
such that f is constant on this flat.

As bentness is invariant under addition of affine functions it is natural to consider a general-
ization of Definition 4.

Definition 5 A function f :F} — Fy is called weakly-normal if there exists a flat of dimen-
sion m such that the restriction of f to this flat is affine.

A function f is weakly-normal if and only if there exists an element a € F} such that
f(z) + (a,z) is normal. )

The Hamming Weight of a bent function f is > ;cpm f(z) =271 — (—1)/©gm-1 [t js
known that if a bent function is normal with respect to a flat U then it is balanced on all
cosets of U. This implies that, if f is constant on a flat of dimension m, the value of the
corresponding constant is f(0).

An easy counting argument shows that there must exist non normal functions of n variables
for n > 10, but the question if there exist non normal bent functions was an open problem
for several years. In Section 2 we present the first non normal bent function and even a
non weakly-normal bent function. In Section 3 we prove the normality of some modified
Maiorana-McFarland bent functions.

2 Non Normal Bent Functions

The functions that turned out to be non normal are Kasami functions. This class of bent
functions was found by Dobbertin and Dillon in [8] and some of the functions in this class
seemed to be good candidates for non normal bent functions.

The Kasami functions are defined as follows:

Definition 6 Let d = 2%% — 2% 41 with (k,n) =1 and o € Fyn. Then we call
Jajg : Fon — Iy
with
fak(z) = Tr(az?)

a Kasami function.
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Under some conditions these functions are bent.

Theorem 7 Let k and fq 1 be as in Definition 6.
If n is not divisible by 3 and o ¢ {z®|z € Fan } then fo is bent

Proof. The proof can be found in [8]. O
For some values of n it is possible to show, that the Kasami functions are always normal.
Lemma 8 Let n = 2m with m even. The Kasami power functions

fi Fon — Fy
r o+ Tr(az?)

are normal.
Proof. First note that ged(d,2" — 1) = 3, i.e.
U={e'|z €F}={2* |z €Fn}
and there exist A1, Ay ¢ U such that
Fon = U UMUUMU.

In the case where 4|n we will show, that A1, A2 can be chosen in Fom . It is sufficient to show
that there exists € Fom such that x ¢ U. Let g be a generator of Fom. ¢ is in U if and only

2" —1

if g7 =1. But,

2" -1 @m-1nE™+1)
g 3 = g 3

= g(2m+1)2m3_1 75 1

as 2™ + 1 is not divisible by 3 if m is even. So we can choose A\; = g and Xy = g%. Note that
if ' = ac? for some ¢ € Fi. then for(cx) = for(z) for all x € Fon. Thus we can assume
that o is'in {1,9,9%} C Fom. So for € Fym we get

far = Tr(az?)
= Trg,m /7y (TrFyn /Fym (az?))
Trr,m /7y (az®Trg,, [Fym (1))
0.

This proves the lemma. O

So we can only hope to get non normal Kasami functions for m odd. Furthermore, as
all quadratic bent functions are normal, only the case k # 1 is interesting. As it is known
that all bent functions on F§ are normal, the first possibility for a Kasami function to be non
normal is n = 10.

We found out that for n = 10 all the Kasami functions are normal but by addition of a
linear function they can be modified into non normal functions.
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Fact 1 Let « € F4\F» C Fyi0 . Then there exists 8 € Fyi0 such that the function
[0 — Fy
with
f(z) = Tr(az®" + Bz)
is non normal.

Verification. This can be verified using the algorithm described in [6]. O

Furthermore we found that for n = 14 and k£ = 3 the corresponding Kasami functions are
non weakly-normal.

Fact 2 Let a € F4\Fy C Fyia. The function
[ — Fy
with
f(z) = Tr(az®)
is non weakly-normal.

Verification. By using the algorithm described in [6]. O

These results are verified with a computer algorithm, proving these results theoretically
is still an open problem. We state the following conjecture.

Conjecture 9 All non quadratic Kasami functions on Fyem with m not divisible by 2 and
m > 7 are non weakly-normal.

The following lemma is a generalization of Theorem 4.5 of [10].
Lemma 10 Let f : Fy — Fy be a Boolean function. The following properties are equivalent:
1. f is (weakly) normal
2. The function
g:Fy xFy xFp — T
(z,9,2) — [flz)+yz
is (weakly) normal

Proof. 1.) = 2.) : We assume that f is normal, i.e. there exists a § dimensional flat F,
such that f|g is constant. We define:

E' = (E x {0} x {0}) U (B x {1} x {0})

which is a "T“LZ dimensional flat. It is easy to see that g|g = ¢ i.e. g is normal. Furthermore
if f is linear on E then g is linear on F'.
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1.) <= 2.) : We now assume that g is weakly-normal, i.e there exists a "T” dimensional
flat £, v € F3 and o, 8 € Fy such that

takes the same value, ¢, on E. We claim that f(x)+ (y,«) is normal.
For a,b € Fy we define

Eoy = {z € Fy|(z,a,b) € E}.
Then, f(z) + (v, z) is constant on all flats E,p since for all z € E,
f(z)+ (v,z) = h(z,a,b) + ab+ aa + Bb=c+ab+ aa+ (3b . (1)

If one of the flats Lo has dimension > ¥ we are done.

If this is not true, all the flats E,; have dimension § — 1. Furthermore, since the union
of all Ey is a flat, all F,p are cosets of the same subspace U: F,, = U + x4. Moreover,
To5 # Tap. Otherwise, for any element (z,&,3) in F, (z,a,3) belongs to F. Then, if we

consider two elements (z, &, ) and (z',a,3) in E, we obtain that
(z,a8) + (2,0, 0) + (¢, 0, 8) = (z', &, )
belongs to E. Thus, both (z',a,8) and (z,a,(3) lie in E, implying that h(z',a,f) =
h(z', &, ). But,
he',a, ) = f(2') + af +a+ B+ (y,2')
and
h(a',a,8) = [f(2')+aB+aa+ 46+ (1,2
= f)+af+a+B+1+{y,2)
= h(m,7a7ﬂ)+17

which leads to a contradiction. Therefore, since ,5 # 2ap, the set E 53U Eap is a flat of

dimension %. Moreover, we deduce from (1) that

Ve e E,5, f(x)+(y,z) =c+aB+a+pB3=c+af
and

Vo € Eag, f(z)+(v,z)=c+af+aa+B=c+af,
implying that f(z) + (v,z) is constant on F,5U Fgg. The special case y =0 and a =3 =0
shows that if ¢ is normal then f is normal as well. O

According to Lemma 10 (applied recursively), if f is a Boolean function on F} and if f’
is a quadratic bent function on F}', then f is (weakly) normal iff g(z,y) = f(x) + f/(y) is
(weakly) normal. The question if this is true for any normal bent function f’ is still open. The
important observation from our point of view is, that if the function f in the above lemma is
bent, then g is also bent.

With Fact 1 and Fact 2 we get:

Fact 3 There exist non normal bent functions of n variables for all even n > 10 and non
weakly-normal bent functions for all even n > 14.
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3 Modified Maiorana-McFarland Bent Functions

We consider functions derived from the Maiorana-McFarland family by adding an indicator
function of a flat E. In particular we are interested in functions described in [3] and below.
These functions are all of the following form:

[F X FY — By

f(z,y) = (z,7(y)) + h(z) + Pp(z,y)

where 7 : F)* — F3* is a permutation, b : F§* — Fy is an arbitrary function and ®g is the
characteristic function of E:

QE(a::y)]Fgl X]FIZTL *)]F27

Op(z,y)=1 iff (z,y) € E.

For some of these functions we shall show that they are normal, or at least weakly-normal.

Carlet’s construction

Carlet considers only the special situation, where F is of the form E x F5* for a subspace E
of FJ*. We denote the characteristic function (I)E‘xF;" (x,y) simply by ¢z(x) to simplify the
notation.

The bent functions constructed in [3] are described in the following theorem.

Theorem 11 [3] Let E be any linear subspace of F§*, and © be a permutation on F§* such
that for any element \ of F*, the set = (\ + EL) is a flat. Then the function

f(z,y) = (z,7(y)) + d6(z)
is bent.

It is obvious that these functions are normal, because f restricted to {0} x FJ' equals 1.
Therefore, in order to find non normal bent functions in a similar way, we consider a small
appropriate generalization which can be proven in the same way as Carlet’s original result
and which involves also a function A as the general form of the MM-construction requires.

Lemma 12 Let E and 7 be as in Theorem 11, and h be a Boolean function on Fy*, such that
for any element X of F, the function h is affine on 7= (A + EL). Then

f(@,y) = (z,7(y)) + h(y) + dr()

is bent.

Lemma 13 All bent functions f defined in Lemma 12 are normal.

96



Proof. We assume w.l.o.g that 7(0) = 0 and 2(0) = 0. We first consider the case that A is
not constant on 7~1(EL). Then, we find an element yo € 7~ 1(E*), with h(yo) = 1. Define
the hyperplane

S ={x e F:(z,n(y)) =1},

then it is clear that S N E = () since w(yp) € EL. Therefore, the restriction of f to the
m-dimensional flat

(8 x{0p) U (S x{y})

is constant and equal to 0.
If b is constant on the flat 7='(EL) then f(z,y) is constant and equal to 14 A(y) on the
n-dimensional flat E x 7~ 1(EL). O

Note that the first part of the above proof shows that actually every function derived
from the Maiorana-McFarland family by adding an indicator function of the form @ pypy is
weakly-normal.

Canteaut’s construction

Another class of bent functions can be derived from the Maiorana-McFarland functions by
adding an indicator function of a linear subspace E of Fj* x Fy* with codimension 2. This
construction is based on some properties of the derivatives of the dual function. Recall that
the derivative of a Boolean function on Fy, f, with respect to any direction a € Fy is the
Boolean function D, f : x — f(z +a) + f(z).

Proposition 14 [1, 2] Let f be a bent function of 2m variables, m > 2. Let a and b be two
distinct nonzero elements of Bs™ and F = (a,b). Then, the function f + ®g is bent if and

only if the dual function, f, satisfies Danf: 0.

Note that this result can also be derived from [3, p. 94]. The previous proposition enables
us to derive some new bent functions from the Maiorana-McFarland family. From now on,
we use an explicit description of the scalar product via the trace mapping: Fy* is identified
with the finite field of order 2™, Fom, and the linear functions are the mappings y — Tr(by)
on Fym, where b describes Fom and Tr is the trace function from Fom to Fy. The scalar
product of two elements = and y then corresponds to Tr(zy). As an example, the following
corollary exhibits a bent function obtained from the MM-family by the construction described
in Proposition 14.

Corollary 15 Let m = gk where g is odd and k > 1. Let
=i
s=1+ Y (2F—1)20Dk,
=0

Let a,3 and ) be three nonzero elements in Fom such that o has order (28 —1), Tr(6%(a®+a)) =
0 and Tr(A(a® + @)) = 0. Then, the 2m-variable function
g(z,y) = Tr(zy®) + Tr(Ay>) + Tr(z + By) Tr(az + azkilﬁy)

is bent and does not belong to the completed version of the Maiorana-McFarland family.
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Proof. Let f be the 2m-variable bent function in the Maiorana-McFarland family defined by
f(a,y) = Tr(zy®) + Tr(Ay™) .

Let a = (1,0), b = (a,2713) and V = (a,b)". From Prop. 14, we deduce that g is bent if
and only if DyDyf = 0. Let x — 2% be the inverse of z — z° over Fpm , i.e. d =2m~1 42671,
The dual f of f is given by [7, p. 91]:

f(az, y) = Tr(z%) + Tr(\(z?)**) = Tr(z%y) + Tr(Az®) .
We obtain after some calculations that, for this choice of a, § and A, Danf: 0, implying
that ¢ is bent.

Now, g belongs to the completed MM-family if and only if there exists an m-dimensional
subspace U C F2™ such that D,Dyg = 0 for any u,v € U [7, page 102]. We can prove
that U = FJ* x {0} does not satisfy this condition. Thus, if g belongs to the completed
MM-class, there exist two nonzero distinct elements u,v € F3™ with u ¢ FJ* x {0} such
that DyDyg = DyDyf + DyD,®y = 0. This implies that D,D,f is constant on F%m.
By computing D, D, f, we deduce that the function D,D,f is constant only if there exist
p,v € F5m, u # v, such that

(+p+v)’+@+p)’+@+v)’+2°=0, Vo € Fom ,
or if there exist p,v € F;,» such that
e = Tr(p((z +v)° +2%)

is constant on Fom . Using the expression of s, we can then prove that none of these conditions
is satisfied (see e.g. [1]). O

However, we can prove that any function derived from the Maiorana-McFarland fam-
ily by adding the indicator function of a linear subspace of codimension 2, as described in
Proposition 14, is normal.

Lemma 16 Let 7 be a permutation on Fy' and &; be arbitrary Boolean functions on Fj*. For
any nonzero o and B in Fom , a # 3, the function

9(z,y) = Tr(zn(y)) + Tr(az)Tr(Bz) + &1 (y) Tr(ax) + & (y) Tr(Bz) + E5(y)
is normal.

Proof. Let
E={zecFm : Tr(z) = Tr(az) =0} = (1,a)*

The function g restricted to y € 7~'(EL) can be represented as
9(2,Y)mp xr-1(pr) = Tr(ax)Tr(Bz) + &1(y) Tr(az) + &2(y) Tr(Bz) + E3(y)

by changing the functions &; appropriately.
For a fixed y € 7~}(EL) we denote g,(z) := g(z,y). The support of g, is either a coset
of I or the complement of a coset of £. We have

El = {Oaavﬂaa'i_ﬂ}'
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Thus, there are four possibility to choose y. At least for two different values yo and y; the
support of gy, and g,, has the same size. W.L.o.g we assume that the size of the support of
gy, and gy, is #E. Now, it follows that gy,(z) = gy, (z) = 0 for z in the affine hyperplane
(co+ E)U(cy + E), where the ¢; + E, i = 0,1 are different cosets of E. Hence g is constant
on the m-dimensional flat

{(co+ E)U(c1 + E)} x {yo,y1}
O

Theorem 17 Let 7w be a permutation of F§* and h be an arbitrary Boolean function on Fy'.
Let E be a linear subspace of F3* x F§* of codimension 2 such that

fz,y) = Tr(zm(y)) + h(y) + Pp(z,y)

is bent. Then, f is normal.

Proof. Let E = {(a1,a2), (81, 52))*. If dim{ay,B1) < 2, then f belongs to the Maiorana-
McFarland class, implying that it is normal. Actually, a bent function f of 2m variables
belongs to the completed MM-class if and only if there exists an m-dimensional subspace
V C F2™ such that D,D,f = 0 for any (a,b) € V [7, page 102]. Here, we obviously have that
DyDyf =0 for any a,b € FJ* x {0}.

Now, if o; and (; are two nonzero distinct elements of Fj*, f corresponds to the sum
of Tr(zm(y)) + Tr(crz) Tr(Biz) + &1 (y) Tr(erz) + E2(y) Tr(Biz) + €3(y) and a linear mapping.
From the previous lemma, we deduce that f is normal. O
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