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Abstract

Recently, the first author introduced some cryptographic functions closely related to
the Diffie-Hellman problem called P-Diffie-Hellman functions. We show that the existence
of a low degree polynomial representing a P-Diffie-Hellman function on a large set would
lead to an efficient algorithm for solving the Diffie-Hellman problem. Motivated by this
result we prove lower bounds on the degree of such interpolation polynomials.

1 Introduction

Let I, denote the finite field of order ¢ with a prime power ¢ and let 0 # v € IF; be an element
of prime order t. The security of the Diffie-Hellman key exchange (see e.g. [10, Chapters 3.7
and 12.6]) for the group generated by v depends on the intractability of the Diffie-Hellman
mapping DH defined by

For breaking the Diffie-Hellman cryptosystem it would be sufficient to have a low degree
polynomial that coincides with the mapping DH on a large subset of {0,1,...,¢t —1}2. In [3]

and [16] it was shown that such a polynomial doesn’t exist for several types of subsets. Since
2 2

Y2 = 7(z+y)27—z Ny

and square roots in finite fields can be efficiently calculated (see e.g. [1, Chapter 7]) we may
consider the univariate mapping

dh(y*) =7", 0<e<t-1,

instead of the bivariate mapping DH. For lower bounds on the degree of interpolation poly-
nomials of dh see [2, 7].
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In the present paper we consider mappings of the form
P—dh(y") =@, 0<az<t-1,
with a nonlinear polynomial P(X) € Z;[X] of small degree with respect to ¢, say,
deg(P) < log(q)”.

In [4] the first author suggested a toolbox of cryptographic functions called P-Diffie-Hellman
functions including these mappings. In particular, he proved that computing P—dh is com-
putationally equivalent to computing dh. Hence, a low degree polynomial representation of
P—dh would solve the Diffie-Hellman problem and an investigation of P—dh becomes very
important.

After some preliminary results in Section 2 we prove that dh can be evaluated with
an algorithm using O(log?(t)log?(gq)) bit operations and deg(f) — 1 evaluations of P—dh
in Section 3, which improves the result of [4]. We prove lower bounds on the degree of
interpolation polynomials of P—dh in Section 4. Finally, in Section 5 we mention some
extensions of our work.

2 Preliminaries

The following result motivated by Newton’s interpolation formula is essential for the reduction
algorithm and the proof of the interpolation results.

Lemma 1 Let B > 0 be an integer and P(X) € Z[X] a polynomial of degree D > B with
leading coefficient ap. Then we have

D-B (D -B apD!

B!

XB 415 41(X),

2\

)(l)D‘B"iP(X +d) =
d=0

where Tg_1(X) is a polynomial of degree at most B — 1 with the convention that the degree
of the zero polynomial is —1.

Proof. Fix B > 0. For D = B the result is trivial. For D > B 4 1 with the convention
(P17B) = 0 we have

—1
D-B(ph _ g
d

d=0
P=B(/D-1-B D-1-B el
= (( p >+< Jo1 ))(—1)0 B=dp(X + d)

d
D—-1-B (D—I—B

)(—1)DBdP(X +d)

d

)(1)D—1—B—d(P(X +1+d) — P(X +d))
_ poin (D -1-B

d

where Q(X) := P(X +1)— P(X) has degree D —1 and leading coefficient apD. By induction
we get

) (—1)P=I=PQ(X + d),

D(D —-1)!
S = “D('#)XB + T_1(X),
where Tg_1(X) is a polynomial of degree at most B — 1. Cl
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3 A Reduction Algorithm

In this section we present results emphasizing the importance of analyzing the interpolation
polynomials of P—dh. More precisely, we show that a polynomial f that coincides with P—dh
on some fized and known points x can be used as an oracle to efficiently compute dh.

Theorem 1 Let 0 # vy € Iy be an element of prime order t, P(X) € Z[X] a polynomial of
degree D with 2 < D <t—1, and f(X) € IF,[X] such that

167 =170, wes,
for aset S C{N+1,...,N+H} of cardinality |S| = H—s with 1 < H <t. Then there exist
a subset R C S of cardinality |R| > H— D +2 — (D —1)s and an algorithm A that computes
AG®) ="
for all x € R with O(D log(t) max(D,log(q)?)) bit operations and D — 1 evaluations of f(X).
Proof. Let R be the set of z € {N +1,...,N+ H} for which z +7¢€ S for 0 <i< D —2.

Then obviously
|R|>H—-D+2—(D—1)s.

Let v* be given for fixed z € R. The algorithm A proceeds as follows. We evaluate f(X) in
4 0 <d< D -2, and put

na = f(y"t4) = 4Pt g<d< D2

Then we get by Lemma 1 with B = 2

D-2 _
C _ H nng 2)(_1)D—d _ 725;02 (D‘ZQ)(—I)D*JP(rﬁ»d) _ 7612+c11+c0
d=0

with some constants ¢; and ¢y and e := apD!/2. This needs O(D?) additions in Z; for
determining recursively all binomial coefficients modulo ¢, O(D) powers, inversions, and mul-
tiplications in IFy, i.e.,

O(D log(t) max(D,log(q)?))

bit operations (cf. [1, Chapters 5 and 6]). Next we eliminate the linear term by computing

2

£:=C- (") ="

Finally, we determine the unique root of X¢ — ¢, i.e., 'yxz = 56_1, where e~! denotes the
inverse of e modulo #, in O(log(t) log?(q)) bit operations (cf. [1, Theorem 7.3.1]). Cl

4 Interpolation

Theorem 2 Let 0 # v € Iy be an element of prime order t, P(X) € Z;[X] a polynomial of
degree D with 2 < D <t —1 and leading coefficient ap, and f(X) € IF,[X] such that

f(®) =9P@, zes,
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for a set SC{N +1,...,N+ H} of cardinality |S| = H — s with 1 < H < t. Then we have

deg(f) > max (H (DD r L H Dt r) |

where v denotes the least residue of ap D! modulo t.

Proof. Let Ry be the set of z € {N +1,...,N + H} for which z +i € S for 0 <i < D.

We see that
|Ri|>H — D —(D+1)s.

By Lemma 1 with B = 0 we have

D
T 7=+ (D077 = Bl (D *Patd) — qanD! -y e Ry
d=0

and the polynomial

D D
AX) = [I 16X —qeePt T f(vix)()

has at least |Ry| zeros, namely v* with z € Ry. Analogously to Lemma 1 we get

> 2)- 5 )

D—d even D—d odd

and the leading coefficient of Fi(X) is not zero. Fi(X) is not identical to zero and thus

deg(F1) > |R1|. Now we have

D D
deg(F) = Y (5) des(f) =3 > (5) deg(f) = 2" deg()

d=0
D—d odd

d=0

and thus Ry
1
deg(f) > 557

Now let Ry be the set of z € {N +1,...,N+ H} for which z+i€ Sfor 0 <i< D —1.

We see that
|Ra| >H —D+1— Ds.

By Lemma 1 with B = 1 we have
Dl D-1 D-1-d D-1/D-1 D-1-d
I[ £+ (0Pt S ()P R
d=0

!
,yaDD.x+b, xrc RZ,

for some integer b and the nonzero polynomial

D-1 D1 D-1 D1
BRX)= I 00 —yxr [T f¢x) )

has at least |Ry| zeros, namely v* with x € Ry. We have
deg(Fy) = 2P~2deg(f) +r
and thus deg(f) > (|R2| —r)/2P2.
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5 Final Remarks

COMPOSITE t.
Put e := apD!/2. With the restriction ged(e,t) = 1 Theorem 1 is also valid for composite ¢.
Without this restriction the solution of X¢ — ¢ in the proof of Theorem 1 is not unique,
but in many cases the right solution can be efficiently determined depending on the prime
factorization of e. We quickly sketch how to compute the rth root of £ for every prime factor r
of e using ideas mentioned in [1, Chapter 7.3]. Note that since 2% = (2%)°, taking the rth
root for every prime factor r of e is sufficient to solve the problem of taking the eth root.
Now let r be a prime factor of ¢. If ged(r,£) = 1 then finding the rth root can be done as
described in Theorem 1. Otherwise let ¢t = r®u with » fu. For m|t, let Cy, denote the unique
subgroup of order m contained in G, where G' C IF; is the subgroup of order ¢ generated by
v. Then we have the isomorphism

G =2 Cps x O

Thus we can represent any element # € (G as a pair (2,,2,) € Cps x (. The transformation
is given by z — (2% 2"") and (z,,z,) — %5, where au 4+ G = 1. The idea is to compute
the rth root of ¢ by computing it in each direct factor separately. The rth root of £ in C
is unique and can be efficiently computed as mentioned in the proof of Theorem 1. Instead
of computing the rth root of ¢ in Cys we compute ’yzz in (s directly from 4*. This can be
done by a "baby step-giant step” algorithm [14], see also [10]. For every prime factor r of
e, the running time is O(rlog?(#)) bit operations. The overall running time to compute the
eth root is O(7T'(e)log*(t)) bit operations, where 7'(e) denotes the sum of the prime factors of
ged(e, ).

With the restriction ¢ fap D! Theorem 2 is valid for composite ¢.

POLYNOMIALS OF HIGH DEGREE.

It seems to be not natural that the degree of the interpolation polynomial decreases if the
degree of P(X) increases in Theorem 2. Nontrivial results of this kind for D > log(t) are
particularly interesting.

RELATION TO DISCRETE LOGARITHM.
Obviously, the Diffie-Hellman key exchange depends also on the hardness of the discrete
logarithm ind.,, defined by

ind,("*) =z, 0<z<t-1.

For results on interpolation polynomials of ind, see [2, 8, 9, 11, 12, 13, 15, 17].

BIVARIATE CASE.

With the method of [16] we can prove lower bounds on the degree of interpolation polynomials
of the mappings P-DH(y%,~7¥) = v”(#)¥ with an univariate polynomial P(X). Lemma 1 can be
used to design a reduction algorithm to DH. It would be interesting to find similar results for
the general case that P-DH(y%,~Y) = vP(@¥) with a nonlinear bivariate polynomial P(X,Y).

COMPARISON WITH [4].

Note that in [4] similar results as given in Section 3 were proven though the presented results
in this work are more efficient in terms of running time of the reduction algorithm and number
of evaluations of the function f. The reason for the more efficient reduction is that in our
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setting the points x for which the polynomial f(7%) coincides with the function 47 are
known. In [4], the function f is viewed as an oracle that produces the correct answers vF(®)
for a certain fraction of all inputs, randomized over internal coin tosses. So, for a fixed z it is
not known if f(7*) = v does hold true or not.

ErvLipTic CURVES.

The existence of subexponential algorithms for solving the discrete logarithm problem in finite
fields motivates the consideration of other groups. An alternative used in practice is the group
of points on an elliptic curve over a finite field. Lower bounds on the degree of interpolation
polynomials of the Diffie-Hellman mapping were obtained in [6] and of the discrete logarithm
in [5].
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