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Abstract

The characterization of ideal access structures and the search for bounds on the optimal

information rate are two important problems in secret sharing. An access structure is

said to be r-homogeneous whenever its minimal quali�ed subsets have exactly r di�erent

participants. It is well known that a 2-homogeneous access structures is ideal if and only

if it is a vector space access structure and, besides, there is no 2-homogeneous access

structure with optimal information rate between 2=3 and 1. The aim of this paper is

to determine to which extent this result can be generalized for 3-homogeneous access

structures.
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1 Introduction

A secret sharing scheme � is a method to distribute shares of a secret value k 2 K among
a set of participants P in such a way that only some subsets of participants, the quali�ed

subsets , are able to reconstruct the secret k from their shares. Secret sharing was introduced
by Blakley [1] and Shamir [18]. A comprehensive introduction to this topic can be found
in [20]. Only perfect secret sharing schemes are going to be considered in this paper, that is,
schemes in which the shares of the participants in a non-quali�ed subset provide absolutely
no information about the value of the secret. Besides, the reader must notice that we are
dealing here with unconditional security because we are not making any assumption on the
computational power of the participants.

The access structure of a secret sharing scheme is the family of quali�ed subsets, � � 2P .
In general, access structures are considered to be monotone, that is, any subset of P containing
a quali�ed subset is quali�ed. Then, the access structure � is determined by the family of
minimal quali�ed subsets, �0, which is called the basis of �. We assume that every participant
belongs to at least one minimal quali�ed subset.

The �rst works about secret sharing [1, 18] considered only schemes with a (t; n)-threshold
access structure, which is formed by all the subsets with at least t participants in a set of
n participants. Further works considered the problem of �nding secret sharing schemes for
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more general access structures and Ito, Saito and Nishizeki [9] gave a method to construct
a secret sharing scheme for any access structure. While in the threshold schemes the shares
have the same size as the secret, the schemes constructed in [9] are very ine�cient because
the size of the shares is, in general, much larger than the size of the secret.

Actually, the size of the shares given to the participants is a key point in the design of
secret sharing schemes. This is due to fact that the security of a system depends on the
amount of information that must be kept secret. Therefore, one of the main parameters in
secret sharing is the information rate �(�;�;K) of the scheme, which is de�ned as the ratio
between the length (in bits) of the secret and the maximum length of the shares given to
the participants. That is, �(�;�;K) = log j K j=maxp2P log j Sp j, where Sp is the set of all
possible values of the share sp corresponding to the participant p.

A high information rate is desirable. Since the size of any share can not be smaller than
the size of the secret, the information rate of any secret sharing scheme is less than or equal
to one. A secret sharing scheme is said to be ideal if its information rate is equal to one.
An access structure � � 2P is an ideal access structure if there exists an ideal secret sharing
scheme for �. For instance, threshold access structures are ideal.

Not all access structures are ideal. So, when designing a secret sharing scheme for a given
access structure �, we may try to maximize the information rate. The optimal information

rate of an access structure � is de�ned by ��(�) = sup(�(�;�;K)), where the supremum is
taken over all possible sets of secrets K with j K j � 2 and all secret sharing schemes � with
access structure � and set of secrets K. Of course, the optimal information rate of an ideal
access structure is equal to one.

The above considerations lead to two problems that have received considerable attention:
to characterize the ideal access structures and, more generally, to determine the optimal
information rate of any access structure.

A necessary condition for an access structure to be ideal was given by Brickell and Daven-
port [6] in terms of matroids. Namely, they proved that every ideal access structure induces
a matroid. This necessary condition is not su�cient. A counterexample is obtained from
the result by Seymour [17], who proved that there is no ideal scheme for the access structure
related to the Vamos matroid.

A su�cient condition for an access structure to be ideal was introduced by Brickell [5] by
means of the vector space construction. The vector space construction provides ideal secret
sharing schemes for a wide family of access structures, the vector space access structures.
The ideal secret sharing schemes that are obtained in this way are equivalent to the ones that
are obtained from linear codes [14] and equivalent also to the ones obtained from monotone
span programs [11]. In fact, vector space access structures are exactly those related to a
representable matroid. Nevertheless, Simonis and Ashikhmin [19] presented an ideal access
structure that is not a vector space access structure. Speci�cally, they proved that the access
structure related to the non-Pappus matroid is ideal and it is not a vector space access
structure.

Several techniques have been introduced in [4, 7, 16, 21] in order to construct secret sharing
schemes for some families of access structures, which provide lower bounds on their optimal
information rate. Upper bounds have been found for several particular access structures by
using some tools from Information Theory [2, 3, 8]. A general method to �nd upper bounds,
the independent sequence method , was given in [2] and was generalized in [15]. However, there
exists a wide gap between the best known upper and lower bounds on the optimal information
rate for most access structures.
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Both problems, to characterize the ideal access structures as well as to determine the
optimal information rate of any access structure, are far from being solved at present. Due to
the di�culty of �nding general results, these problems have been studied in several particular
classes of access structures: access structures on sets of four [20] and �ve [10] participants,
access structures de�ned by graphs [2, 3, 4, 6, 7, 8, 21], bipartite access structures [15],
access structures with three or four minimal quali�ed subsets [12], and access structures with
intersection number equal to one [13].

There exist remarkable coincidences in the results obtained for all these classes of access
structures. Namely, the ideal access structures coincide with the vector space ones, and there
is no access structure � whose optimal information rate is such that 2=3 < ��(�) < 1. A
natural question that arises at this point is to determine to which extent these results can be
generalized to other families of access structures.

The aim of this paper is to analyze this question for the family of the sparse 3-homogeneous

access structures.
An access structure � on a set of participants P is said to be r-homogeneous if its rank and

its corank are equal to r, where the rank and the corank of � are, respectively, the maximum
and the minimum number of participants in a minimal quali�ed subset. For instance, the
2-homogeneous access structures are exactly those de�ned by a graph.

For a subset of participants Q � P, we de�ne !(Q;�) as the number of minimal quali�ed
subsets A 2 �0 such that A � Q. We consider also !(s;�) = maxf!(Q;�) : jQj = sg.
Therefore, if � is a 3-homogeneous access structure then 1 � !(4;�) � 4. A 3-homogeneous
access structure is said to be sparse if !(4;�) � 2, that is, if each set of four participants
contains at most two minimal quali�ed subsets.

Our main result is the characterization of the ideal sparse 3-homogeneous access structures.
We prove, in Theorem 3.2, that every ideal access structure in this family is a vector space
access structure over the �nite �eld Z2. Moreover, we show that there is no access structure
with optimal information rate between 2=3 and 1 in the family we consider. Besides, in
Theorem 3.3, we present a complete description of the ideal access structures in this family
in terms of their simplest components.

Therefore, our results are a �rst approach to the characterization of ideal 3-homogeneous
access structures. Nevertheless, they can not be directly generalized to general 3-homogeneous
access structures. Namely, by considering the ideal scheme presented in [19] for the non-
Pappus matroid, we get that the equivalence between ideal and vector space access structures
does not hold for general 3-homogeneous access structures. So, the characterization of ideal
3-homogeneous access structures with !(4;�) � 3 is still an open problem.

The paper is organized as follows. A general result on vector space access structures is
given in Section 2. Speci�cally, we characterize the vector space access structures over the
�nite �eld Z2 by a combinatorial property involving the dual access structure. Our main
results on the characterization of ideal sparse 3-homogeneous access structures, Theorems 3.2
and 3.3, are given in Section 3, together with some examples illustrating these results.

2 A characterization of vector space access structures over Z2

The aim of this section is to prove Theorem 2.2, which is a characterization of the Z2-vector
space access structures. As corollary we demonstrate that the access structures �hS(p)i de-
�ned by a star, the access structure �2 associated to the Fano plane (the �nite projective plane
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of order two), and its associated access structure �2;1 are Z2-vector space access structures.
An access structure � on a set of participants P is said to be a vector space access structure

over a �nite �eld K if there exist a vector space E over K and a map  : P [fDg �! E nf0g,
whereD =2 P is called the dealer , such that if A � P then, A 2 � if and only if the vector  (D)
can be expressed as a linear combination of the vectors in the set  (A) = f (p) : p 2 Ag.
In this situation, the map  is said to be a realization of the K -vector space access structure
�. Any vector space access structure can be realized by an ideal scheme (see [5] or [20] for
proofs). Namely, if � is a K -vector space access structure then we can construct a secret
sharing scheme for � with set of secrets K = K : given a secret value k 2 K , the dealer takes
at random an element v 2 E such that v �  (D) = k, and gives to the participant p 2 P the
share sp = v � (p). Observe that, a subset A � P is not quali�ed if and only if there exists a
vector v 2 E such that v �  (D) 6= 0 and v �  (p) = 0 if p 2 A.

Our characterization of Z2-vector space access structures, Theorem 2.2, involves the dual
access structure. Recall that for a given access structure � on a set of participants P, its dual
access structure �� is the access structure on P de�ned by �� = fB � P : P n B 62 �g. The
following result will be used in several places in the paper.

Lemma 2.1 Let � be an access structure on a set of participants P. Let B � P. Then,

B 2 �� if and only if B \A 6= ; for every A 2 �0.

Theorem 2.2 Let � be an access structure on a set of participants P. Then, � is a Z2-vector

space access structure if and only if for every two subsets A 2 �0 and A
� 2 ��0, the intersection

A \A� has odd cardinal number.

Proof. Let  : P [ fDg �! E n f0g be a realization of � as a Z2-vector space access
structure. Let A 2 �0 and A� 2 ��0. Since P n A� is a maximal non-quali�ed subset of the
access structure �, there exists v 2 E such that v �  (D) = 1, v �  (p) = 0 if p 2 P n A�, and
v �  (p) = 1 if p 2 A�. Observe that, since A 2 �0 is a minimal quali�ed subset and K = Z2,
then  (D) =

P
p2A  (p). Therefore, 1 = v �  (D) =

P
p2A v �  (p) =

P
p2A\A� 1 and, hence,

A \A� has odd cardinal number.
Let us prove now the reciprocal. We denote ��0 = fB1; : : : ; Bmg. Let  : P [ fDg �! Z

m
2

be the map de�ned by  (D) = (1; : : : ; 1), and  (p) = (�(p;B1); : : : ; �(p;Bm)) whenever p 2 P,
where �(p;B) = 1 if p 2 B and �(p;B) = 0 otherwise. We claim that  is a realization of �
as a Z2-vector space access structure. In order to prove our claim we must demonstrate that
if A � P then, A 2 � if and only if the vector  (D) can be expressed as a linear combination
of the vectors in the set  (A) = f (p) : p 2 Ag.

Assume that A 2 �. So there exists A0 2 �0 such that A0 � A. Therefore
P

p2A0
 (p) =

(
P

p2A0
�(p;B1); : : : ;

P
p2A0

�(p;Bm)) = (jA0 \ B1j; : : : ; jA0 \ Bmj) = (1; : : : ; 1) =  (D).
Hence,  (D) 2 h (p) : p 2 A0i � h (p) : p 2 Ai.

Conversely, assuming that  (D) is a linear combination of the vectors in the set  (A) =
f (p) : p 2 Ag, we must demonstrate that A 2 �. Since  (D) 2 h (p) : p 2 Ai , hence
 (D) =

P
p2A �p (p) =

P
p2A0

 (p) where A0 = fp 2 A : �p 6= 0g. So, (1; : : : ; 1) =
 (D) =

P
p2A0

 (p) = (
P

p2A0
�(p;B1); : : : ;

P
p2A0

�(p;Bm)) = (jA0 \ B1j; : : : ; jA0 \ Bmj).
Thus, for i = 1; : : : ;m we have that A0 \Bi 6= ;. Therefore, from Lemma 2.1 it follows that
A0 2 (��)� = � and hence, A 2 � as we wanted to prove. �

Remark 2.3 It is interesting to notice that the proof of the above proposition gives us an
explicit realization for any Z2-vector space access structure �. For instance, let us consider
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the access structure � on the set of six participants P = fp1; p2; p3; p4; p5; p6g having minimal
quali�ed subsets A1 = fp1; p2; p3g, A2 = fp1; p4; p5g, A3 = fp2; p3; p6g, A4 = fp4; p5; p6g,
A5 = fp2; p5g and A6 = fp3; p4g. It is not hard to check that its dual access structure �� has
basis (��)0 = ffp1; p2; p3; p6g; fp1; p4; p5; p6g; fp2; p4g; fp3; p5gg. Therefore, from Theorem 2.2
it follows that � is a vector space access structure. Furthermore, the map  : P [fDg �! Z

4
2

de�ned by  (D) = (1; 1; 1; 1),  (p1) = (1; 1; 0; 0),  (p2) = (1; 0; 1; 0),  (p3) = (1; 0; 0; 1),
 (p4) = (0; 1; 1; 0),  (p5) = (0; 1; 0; 1) and  (p6) = (1; 1; 0; 0), gives us a realization of � as a
Z2-vector space access structure.

Corollary 2.4 The following 3-homogeneous access structures are Z2-vector space access

structures:

1. The access structure �hS(p)i de�ned by a 3-homogeneous star. That is, �hS(p)i is the
access structure on the set of 2r + 1 participants P = fp; a1; : : : ; ar; b1; : : : ; brg having

basis (�hS(p)i)0 = fA1; : : : ; Arg where Ai = fp; ai; big for i = 1; : : : ; r.

2. The access structure �2 associated to the Fano plane. That is, �2 is the access struc-

ture on the set P = fp1; p2; p3; p4; p5; p6; p7g of seven participants with basis (�2)0 =
ffp1; p2; p3g; fp1; p4; p7g; fp1; p5; p6g; fp2; p4; p6g; fp2; p5; p7g; fp3; p4; p5g; fp3; p6; p7gg.

3. The access structure �2;1 obtained from �2 by removing one participant. That is, �2;1
is the access structure on the set P = fp1; p2; p3; p4; p5; p6g of six participants with basis

(�2;1)0 = ffp1; p2; p3g; fp1; p5; p6g; fp2; p4; p6g; fp3; p4; p5gg.

Proof. It is not hard to show that (�hS(p)i�)0 = ffpgg [ ffc1; : : : ; crg where ci 2 fai; bigg,
while ��2 = �2, and (��2;1)0 = (�2;1)0 [ ffp1; p4g; fp2; p5g; fp3; p6gg. Therefore, for each one of
these access structures we have that jA \ A�j = 1; 3 whenever A 2 �0 and A� 2 ��0. Hence,
applying Theorem 2.2 it follows that they are Z2-vector space access structures. �

3 Sparse homogeneous access structures with rank three

Let � be an access structure de�ned on a set of participants P. For a subset Q � P we de�ne
the access structure induced by � on the set of participants Q as �(Q) = fA � Q : A 2 �g.
Hence the minimal quali�ed subsets of �(Q) are exactly the subsets A � Q such that A 2 �0.
Let us denote !(Q;�) = j�(Q)0j and !(s;�) = maxf!(Q;�) : jQj = sg. Notice that if � is a
3-homogeneous access structure then 1 � !(4;�) � 4. We say that a 3-homogeneous access
structure � is sparse if !(4;�) � 2.

We present in this section a characterization of the ideal sparse 3-homogeneous access
structures. In Theorem 3.2 we prove that the ideal access structures in this family coin-
cide with the vector space ones and, besides, that there is no sparse 3-homogeneous access
structures whose optimal information rate veri�es 2=3 < ��(�) < 1. Furthermore, a explicit
description of the ideal sparse 3-homogeneous access structures is given in Theorem 3.3. The
section will be �nished by showing some examples of ideal and non ideal access structures.

The results in the previous section together with the independent sequence method are
the key points in the proof of Theorem 3.2. The independent sequence method was introduced
by Blundo, De Santis, De Simone and Vaccaro in [2, Theorem 3.8] and was generalized by
Padr�o and S�aez in [15, Theorem 2.1]. This method works as follows. Let � be an access
structure on a set of participants P. Let ; 6= B1 � � � � � Bm =2 � be a sequence of subsets of

311



P that is made independent by a subset A � P , that is to say, there exist X1; : : : ;Xm � A
such that Bi [Xi 2 � and Bi�1 [Xi =2 � for every i = 1; : : : ;m where B0 is the empty set.
Then, ��(�) � jAj=(m+ 1) if A 2 �, while ��(�) � jAj=m whenever A =2 �.

Lemma 3.1 Let � be an access structure on a set of participants P, with corank corank(�) �
3, and optimal information rate ��(�) > 2=3. Let p1; p2; p3; p4 2 P be four di�erent partici-

pants. Assume that fp1; p2; p3g 2 � and that fp1; p2; p4g 2 �. Then, either fp1; p3; p4g 2 �,
or fp2; p3; p4g 2 �, or fp3; p4; pg 62 � for any participant p 2 P n fp1; p2; p3; p4g.

Proof. Let us assume that fp1; p3; p4g; fp2; p3; p4g 62 �. Let p 2 P n fp1; p2; p3; p4g. We must
demonstrate that fp3; p4; pg 62 �. In order to do it we distinguish two cases.

First let us suppose that fp1; p3; pg 62 �. In this case we can consider the subsets B1 =
fp1g, B2 = fp1; p3g and B3 = fp1; p3; pg. We have that B1 [ fp2; p4g = fp1; p2; p4g 2 �,
B1[fp2g = fp1; p2g 62 � because corank(�) � 3, B2[fp2g = fp1; p2; p3g 2 �, and B2[fp4g =
fp1; p3; p4g 62 �. Therefore, if B3[fp4g 2 � then the sequence ; 6= B1 � B2 � B3 =2 � is made
independent by the set A = fp2; p4g =2 � by taking X1 = fp2; p4g, X2 = fp2g and X3 = fp4g.
Hence, by the independent sequence method it follows that ��(�) � 2=3, a contradiction.
Thus, B3 [ fp4g = fp1; p3; p4; pg 62 �. In particular, fp3; p4; pg 62 � as we wanted to prove.

Now we assume that fp1; p3; pg 2 �. In such a case we consider the subsets B1 = fp3g,
B2 = fp3; p4g and B3 = fp2; p3; p4g. Notice that B1 [ fp1; pg = fp1; p3; pg 2 �, B1 [
fpg = fp3; pg 62 � because corank(�) � 3, B2 [ fp1g = fp1; p3; p4g 62 �, and B3 [ fp1g =
fp1; p2; p3; p4g 2 �. Thus, if B2 [ fpg 2 �, then the sequence ; 6= B1 � B2 � B3 =2 � is made
independent by the set A = fp1; pg =2 � by taking X1 = fp1; pg, X2 = fpg and X3 = fp1g.
Therefore, by the independent sequence method it follows that ��(�) � 2=3, a contradiction.
Hence, fp3; p4; pg = B2 [ fpg 62 �. This completes the proof of the lemma. �

Theorem 3.2 Let � be a sparse 3-homogeneous access structure on a set of participants P.
Then, the following conditions are equivalent:

1. � is a vector space access structure.

2. � is an ideal access structure.

3. ��(�) > 2=3.

4. If A 2 �0 and A� 2 ��0, then the intersection A \A� has odd cardinal number.

Proof. A vector space access structure is ideal and, hence, its optimal information rate is
equal to one. Therefore we have that (1) implies (2), and that (2) implies (3). Furthermore,
from Theorem 2.2 it follows that (4) implies (1). So, the proof of theorem will be concluded
by proving that (3) implies (4).

Let us assume that ��(�) > 2=3 and that there exist A = fp1; p2; p3g 2 �0 and A� 2 ��0
such that the intersection A \ A� has even cardinal number. We are going to prove that a
contradiction holds in this case.

From Lemma 2.1 we have that A \ A� 6= ;. Therefore jA \ A�j = 2. Without loss of
generality we can suppose that p1; p2 2 A� and that p3 62 A�. Since A� 2 ��0, hence it
follows that A� n fpig 62 �� whenever i = 1; 2. Therefore, from Lemma 2.1, we get that there
exists fpi; qi;1; qi;2g 2 �0 such that qi;1; qi;2 =2 A�. Let us consider the subsets B1 = fp3g,
B2 = fp3; q1;1; q1;2g and B3 = fp3; q1;1; q1;2; q2;1; q2;2g. Observe that B3 \ A

� = ;. Hence,
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applying Lemma 2.1 it follows that B3 62 (��)� = �. We claim that the sequence ; 6= B1 �
B2 � B3 =2 � is made independent by the set A = fp1; p2g =2 � by taking the subsets
X1 = fp1; p2g, X2 = fp1g and X3 = fp2g. Therefore, from our claim and by applying the
independent sequence method it follows that ��(�) � 2=3, a contradiction. Hence, the proof
will be completed by proving our claim. Let us demonstrate it.

On one hand, we have that the subsets B3[X3, B2[X2 and B1[X1 are quali�ed subsets
for the access structure � because fp2; q2;1; q2;2g � B3 [ X3, fp1; q1;1; q1;2g � B2 [ X2 and
fp1; p2; p3g = B1 [X1. On the other hand, B1 [X2 = fp1; p3g is not a quali�ed subset since
� is a 3-homogeneous access structure. Therefore, in order to prove our claim we only must
to check that B2 [X3 62 �. Since B2 [X3 = fp2; p3; q1;1; q1;2g and � is 3-homogeneous, hence
it follows that it is enough to show that the subsets fp2; p3; q1;1g, fp2; p3; q1;2g, fp2; q1;1; q1;2g
and fp3; q1;1; q1;2g are not quali�ed.

Firstly let us show that fp3; q1;1; q1;2g 62 �. Since p3; q1;1; q1;2 =2 A
�, hence fp3; q1;1; q1;2g \

A� = ;. Thus, from Lemma 2.1, fp3; q1;1; q1;2g 62 (��)� = �.
Now we are going to prove that fp2; p3; q1;1g; fp2; p3; q1;2g 62 �. By symmetry we only need

to show that fp2; p3; q1;1g 62 �. If fp2; p3; q1;1g 2 �, then p1; p2; p3; q1;1 2 P are four di�erent
participants. On one hand we have that fp1; p2; p3g 2 �. Hence !(fp1; p2; p3; q1;1g;�) � 2,
and then !(fp1; p2; p3; q1;1g;�) = 2 because � is sparse. On the other hand we have that
fp1; q1;1; q1;2g 2 �. Therefore, a contradiction follows by applying Lemma 3.1.

To �nish we must demonstrate that fp2; q1;1; q1;2g 62 �. Otherwise, p1; p2; q1;1; q1;2 2 P
are four di�erent participants and !(fp1; p2; q1;1; q1;2g;�) � 2. So !(fp1; p2; q1;1; q1;2g;�) = 2.
Since fp1; p2; p3g 2 �, hence from Lemma 3.1 we get a contradiction. This completes the
proof of our claim and so the proof of the theorem. �

Next, in Theorem 3.3, we present a description of the ideal sparse 3-homogeneous access
structures. This theorem states that the ideal, reduced and connected , access structures in
the family that we consider are exactly those given in Corollary 2.4. The previous theorem
together with the results given in [13] and the independent sequence method are the key
points in its proof.

Let � be an access structure on the set of participants P. We say that � is connected if
for each pair of participants p; q 2 P there exist A1; : : : ; A` 2 �0 such that p 2 A1, q 2 A`,
and Ai \ Ai+1 6= ; if 1 � i � ` � 1. It is clear that, for any access structure � on a set of
participants P, there exists a unique partition P = P1 [ � � � [Pr such that the induced access
structures �(P1); : : : ;�(Pr) are connected and � = �(P1) [ � � � [ �(Pr). In this situation we
say that �(P1); : : : ;�(Pr) are the connected components of �.

Furthermore, related to the access structure �, we de�ne the equivalence relation � in P
as follows. Two participants p; q 2 P are said to be equivalent if either p = q or p 6= q and
the following two conditions are satis�ed: (1) fp; qg 6� A if A 2 �0, and (2) if A � P n fp; qg,
then A[fpg 2 �0 if and only if A[fqg 2 �0. We say that the access structure � is a reduced

access structure if there is no pair of di�erent equivalent participants. Otherwise, we consider
participants p1; : : : ; pr 2 P de�ning the set P= � of the equivalence classes given by the
relation �, that is P=� = f[p1]; : : : ; [pr]g. An access structure �� on the set P= � is obtained
in a natural way from the access structure � by identifying equivalent participants. It is not
di�cult to check that �� is isomorphic to the induced access structure �(fp1; : : : ; prg). The
structure �� is called the reduced access structure of �.

Theorem 3.3 Let � be a sparse 3-homogeneous access structure on a set of participants P.
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Then, the following conditions are equivalent:

1. � is an ideal access structure.

2. Every connected component of the reduced access structure �� of � is either an access

structure �hS(p0)i de�ned by a 3-homogeneous star, or the access structure associated

to the Fano plane �2, or its related access structure �2;1.

Proof. First we are going to prove that (2) implies (1). It is not hard to show that if �
is an access structure on a set of participants P such that each connected component of its
reduced access structure �� is a K -vector space access structure, then � is a K -vector space
access structure. In our case, from Corollary 2.4 we have that the access structures �hS(p0)i,
�2 and �2;1 are Z2-vector space access structures. Therefore, � is a Z2-vector space access
structure and so it is ideal.

Now, let us show that (1) implies (2). If � is ideal, then it is easy to check that all
the connected components of the reduced access structure �� are also ideal. Besides, since
�� �= �(fp1; : : : ; prg), these connected components are also sparse 3-homogeneous access
structures. Therefore, we only have to prove that: if � is an ideal, reduced and connected
sparse 3-homogeneous access structure on a set of participants P , then � is either an access
structure �hS(p0)i de�ned by a 3-homogeneous star, or the access structure associated to
the Fano plane �2, or its related access structure �2;1. From the results in [13] it follows
that �hS(p0)i, �2 and �2;1 are the only ideal and 3-homogeneous connected access structures
with intersection number equal to one (that is to say, there is at most one participant in the
intersection of any two di�erent minimal quali�ed subsets). Hence, the proof is concluded by
checking that: if � is an ideal, reduced and connected sparse 3-homogeneous access structure
on a set of participants P , then � has intersection number equal to one.

It is clear that a 3-homogeneous access structures � has intersection number equal to one
if and only if !(fa; b; c; dg;�) � 1 for every four di�erent participants a; b; c; d 2 P . Let us
suppose that there exist four di�erent participants a; b; c; d 2 P such that !(fa; b; c; dg;�) � 2.
Since � is sparse, hence we can assume that fa; c; dg; fb; c; dg 2 � and that fa; b; cg; fa; b; dg =2
�. We are going to prove that, in this situation, a and b are equivalent participants and,
hence, � is not a reduced access structure.

From Lemma 3.1, the set fa; b; pg is not quali�ed for any p 2 P. Then, fa; bg 6� A
if A 2 �0. Let us prove now that, if A � P n fa; bg, then A [ fag 2 �0 if and only if
A [ fbg 2 �0. Obviously, we can suppose that jAj = 2. We distinguish two cases.

Case 1 : A\fc; dg 6= ;. Since both fa; c; dg and fb; c; dg are minimal quali�ed subsets, we
can suppose that A = fc; xg with x 6= d. Let us show that, if fa; c; xg 2 �0, then fb; c; xg 2 �0,
being the reciprocal proved in the same way. We consider the subsets B1 = fcg, B2 = fb; cg
and B3 = fb; c; xg, and X1 = fa; dg, X2 = fdg and X3 = fag. If fb; c; xg =2 �, then the
sequence ; 6= B1 � B2 � B3 62 � is made independent by fa; dg and, hence ��(�) � 2=3, a
contradiction. Therefore, fb; c; xg 2 �0.

Case 2 : A\fc; dg = ;. Hence, A = fx; yg � Pnfa; b; c; dg. As before, it is enough to prove
that fb; x; yg 2 �0 if fa; x; yg 2 �0. So, let us assume that fa; x; yg 2 �0. Notice that, in such
a case we have that fb; c; x; yg 2 �, because otherwise a contradiction is obtained by applying
the independent sequence method to the subsets B1 = fcg, B2 = fb; cg and B3 = fb; c; x; yg,
and X1 = fa; dg, X2 = fdg and X3 = fag. Let us suppose that fb; x; yg =2 �. Hence, at
least one of the subsets fb; c; xg, fb; c; yg, fc; x; yg is quali�ed. If fc; x; yg 2 �, we can apply
Lemma 3.1 to the minimal quali�ed subsets fc; x; yg and fa; x; yg and, since fa; c; dg 2 �,
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we obtain that !(fa; c; x; yg;�) > 2, a contradiction. Then, without loss of generality, we
can suppose that fb; c; xg 2 �0, and so, from Case 1, we get that fa; c; xg 2 �0. Since
fb; x; yg =2 �, from Lemma 2.1, there exists A� 2 ��0 such that fb; x; yg \ A� = ;. Applying
again Lemma 2.1, fb; c; xg \A� 6= ; and fa; x; yg \A� 6= ;. Hence, fa; c; xg \A� = fa; cg has
an even number of elements, a contradiction with Theorem 3.2. This completes the proof. �

To �nish we point out some examples in order to illustrate our results. In the following
examples � is a 3-homogeneous access structure on a set P = fp1; p2; p3; p4; p5; p6g of six
participants. The �rst two are sparse access structure, while the last two satisfy !(4;�) � 3.

Example 3.4 Let � be the access structure on P with minimal quali�ed subsets A1 =
fp1; p2; p3g, A2 = fp1; p2; p6g, A3 = fp1; p5; p6g and A4 = fp3; p4; p5g. So !(4;�) = 2,
and hence � is sparse. From Lemma 2.1 it follows that fp1; p5g 2 ��0. Since jfp1; p5g \
fp1; p5; p6gj = 2 hence, from Theorem 3.2, we conclude that � is not ideal and has optimal
information rate ��(�) � 2=3. Observe that � is a connected and reduced access structure.

Example 3.5 Now we consider the access structure � on P whose minimal quali�ed sub-
sets are A1 = fp1; p2; p3g, A2 = fp4; p5; p6g, A3 = fp1; p4; p5g and A4 = fp2; p3; p6g.
Hence we have that !(4;�) = 2 and so � is sparse. It is not hard to check that ��0 =
ffp1; p6g; fp2; p4g; fp2; p5g; fp3; p4g; fp3; p5gg. So jA\A�j = 1 if A 2 �0 and A

� 2 ��0. Hence,
from Theorem 3.2, it follows that � is a vector space access structure. Notice that �� is a
star access structure.

Example 3.6 Next we consider the access structure � on P having minimal quali�ed subsets
A1 = fp1; p2; p3g, A2 = fp1; p2; p4g, A3 = fp3; p4; p5g, A4 = fp3; p4; p6g, and A5 = fp4; p5; p6g.
Notice that � is not sparse because !(fp3; p4; p5; p6g;�) = 3. Nevertheless we can apply
Lemma 3.1. Namely, we have that fp1; p2; p3g; fp1; p2; p4g 2 �, that fp1; p3; p4g; fp2; p3; p4g 62
�, and that fp3; p4; p5g 2 �. Therefore applying Lemma 3.1 we conclude that ��(�) � 2=3.

Example 3.7 Finally, let � be the access structure on P with minimal quali�ed subsets
A1 = fp1; p2; p3g, A2 = fp1; p2; p4g, A3 = fp1; p3; p4g, A4 = fp2; p3; p4g, A5 = fp1; p2; p5g,
A6 = fp1; p3; p6g and A7 = fp1; p4; p6g. Notice that for any i = 0; 1; 2; 3; 4 there exists a
subset Ci � P with jCij = 4 and !(Ci;�) = i. In particular, � is not sparse. However we are
going to prove that � is not ideal by applying our results to a suitable substructure. Namely,
let �(P4) be the access structure induced by � on P4 = Pnfp4g. So, (�(P4))0 = fA1; A5; A6g.
Hence, �(P4) is a sparse 3-homogeneous access structure on P4. From Lemma 2.1 we get that
fp2; p3g 2 (�(P4))

�
0 and thus we conclude that ��(�(P4)) � 2=3 by applying Theorem 3.2. It

is clear that any secret sharing scheme for � induce a secret sharing scheme for �(P4) with
the same set of secrets. Hence ��(�) � ��(�(P4)). Therefore, �

�(�) � 2=3.
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