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Abstract

Let V be a F,—linear maximum rank distance (MRD) (n, k, d) code over the field F,.
All the code words are n—vectors over F,,. One refers to this code as a code in the vector
representation. It also can be represented as a set M of » x n matrices over the base field
Fy by some mapping B : F,, = F{*. Thus a code vector g = (g1,92,-.. ,9n), gj € Fn,
is (reversibly) mapped to a code matrix M = (M; ;), M;; € Fy, i,j =1,2,... ,n. One
refers to the set M as a code in the matriz representation.

The set M7 of all transposed code matrices CT is known as the transposed rank code
in the matrix representation. It can be rewritten as a code in the vector representation by
the inverse map B~! but this code is only F;—linear, not necessarily F,,—linear. Hence
no fast decoding algorithms are known for transposed rank codes.

In this paper, we consider a special class of MRD codes based on symmetric ma-
trices. We show that some mapping exists for the set M7T such that resulted code is
the F,,—linear code in the vector representation. This property allows more flexible fast
decoding algorithms.

1 Introduction

Codes in rank metric (or, in brief, rank codes) are of interest to communications, cryptography,
space-time coding, etc., [1, 2, 3]. Rank codes can be considered in a vector or in a matriz
representation. We remind some notations and definitions.

Let 1 = GF(q) be a base field and let F;, = GF(¢"™) be an extension of degree n of the
field Fy.

Let F™*™ be a normalized space of square matrices of order n over Fy. The rank norm of
a matrix G € F["*" is defined as ordinary rank of this matrix, i.e., the mazimal number of
rows (or, columns) which are linearly independent over F;. We denote the rank norm of G as
rank(G). The rank distance between (31 and Gy is defined as d(G1,G2) = rank(Gy — Gs).

A (matrix) code M C F[™" is any set of matrices. A code M is said to be Fj-linear
(or, simply linear) if any linear combination of code matrices with coefficients in Fj is a code
matrix too. Given a code M one can construct a code M7 = {GT G e M} where GT means
the transposed matrix. The code M7 is called the transposed code (given M). Tt is clear that
many characteristics of M and M7, such as code distance, weight distribution, linearity, and
others are identical.

Let F7' be a normalized vector space of dimension n over Fj, where the rank norm of a
vector g = (g1,92,... ,9n), & € F?, is defined as the mazimal number of coordinates g; which
are linearly independent over the base field F;. We denote the rank norm of g as r(g).

A code V C F} is said to be Fj-linear if a linear combination of code vectors with
coefficients in F is a code vector too. A code V C F}} is said to be Fj-linear if a linear
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combination of code vectors with coefficients in F}, is a code vector too, or, equivalently, if V
is a subspace of F”. A code can be Fj-linear but not Fj-linear.

Let Q = {wy,wa,... ,wy} be a basis of the extension field F;, over the base field F;. Each
element § € F), can be uniquely represented in the form

b

by
B =biw1 + baws + ... + bpwp = (w1, wa, ... ,wy) e (1.1)

bn,
where b; € F1, i =1,... ,n. Thus Eq (1.1) defines a one-to-one mapping
Bq: F, = FT, (1.2)

i.e., each element of 8 € I, is uniquely mapped into a column vector b = (b1, ba,... ,b,)T €
FP. Each column b = (by,ba,... ,b,)T € FP is uniquely mapped into the element (3 using
inverse mapping By (1.1).

Define one-to-one mapping vectors g = (g1, 92,... ,9n) € F into matrices G € F[**" by
the formula

Ba(g) = G = (Balg1), Ba(g2), - - » Ba(gn))- (1.3)

Mapping (1.3) being applied to a chosen vector code V C FI gives a matriz code M =
Bq(V) C F*™. Tt is clear that Bq is norm- and distance-preserving mapping: r(g) =
rank(Ba(g)); rank(G) = r(Bg'(G)). Hence given Bq we can say on the vector or matriz
representation of a code and use vector or matrix notations by context.

The vector representation is more convenient to describe code constructions and decoding
algorithms (see, e.g., [1]) while the matrix representation is useful in the coding modulation
area, for example, in the theory of space-time codes (see, e.g., [3]).

One can construct new codes in rank metric using known codes. Let a code V be given in
the vector representation. Let two bases Q and Q be given. Then construct a new code VT
as follows:

vV — M -— M T (1.4)

We call VT the transposed code in the vector representation. Note that bases Q and Q can
be different.

The code VT preserves all the distance properties of the code V with the only exception.
If the code V is Fy-linear then VT may not be Fj,-linear though it is still F}-linear. This is a
grave disadvantage since fast decoding algorithms are known only for F,-linear codes.

We illustrate this with the following example.

Example 1 Let ¢ =2 and V be Fs-linear code

V:{(O, 0,0), (1, , aZ), (o, a?, a3), (az, a?, a4), (ag, a?, as), (a4, o, aﬁ), (as, a®, 1), (a6, 1, a),},
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where o is a root of the irreducible polynomial f(x) = 2®+x+1. Let Bq be defined by relations
1« (1,0,0)T, a0« (0,1,0)7, a2 « (0,0,1)T. Then M is a set of 3 x 3 matrices over the field
GF(2):

000 100 00 1 011
Me={0 0 0),M;=[0 1 0|,M=(100),My=[00 1],
000 001 01 1 111
111 110 1 1 010
My=(0 1 1|, My=|1 1 1|, Ms=(1 1 0], Mg= |1 1
110 101 010 100

If we transpose these matrices and convert them into vectors by B&l, we get the code
VT:{(O,O,O), (1,a,a?),(a?, 1,a4), (a4,a2,a5), (a5,a4,a3), (?,0%,a%),(a%, o, ), (a,ab, 1),}
which is not F3-linear, only Fy-linear.

In this paper, we show that for a special class of linear maximum rank distance (MRD) codes

V there exist bases 2 and  such that both V and transposed code VT are Fj-linear.

2 A class of MRD codes

From now on we consider binary fields only, i.e., ¢ = 2.
The standard generator matrix of a linear maximum rank distance code in the vector
representation has a form [1]

g1 g2 In
g 9 9z
22 22 22
G=| g 92 In ) (2.5)
k—1 k—1 k—1
g 9% g
where g1, g2, ... , g, are linearly independent over the base field Fj.

These codes achieve the Singlton bound d =n — k + 1 for code rank distance.

The first row of the generator matrix (2.5) generates an Fy-linear (n,1,n) code. It is shown
in [4] that there exists so-called symmetric representation for this code such that a transposed
code is also Fj-linear. In this case all the code matrices in the matrix representation are
symmetric.

We consider a class of MRD codes (2.5) for which the first row defines a (n,1,n) subcode
with the symmetric representation. We refer to these codes as MRD codes based on symmetric
matrices.

The main statement is as follows.

Theorem 1 (Main) Let V be a Fy,-linear MRD (n,k,d) code based on symmetric matrices
with generator matriz (2.5). Then the corresponding transposed code VT is also a Fy-linear
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MRD (n,k,d) code based on symmetric matrices with generator matriz

gn—k+1 gn—k+1 gn—k+1

91 . 2 T no.
on— on— on—

91 92  Y9n

G=] ... .. (2,6)

Zn—l Zn—l Zn—l

g1 92  Y9n

g1 g2 t gn

In Section 3, matrix and vector representations of an extension field are described. Proof
of the Main theorem is given in Section 4.

3 Matrix and vector representations of an extension field

Let a be a root of an irreducible primitive monic polynomial
FO) = A" 4 ay A" ta, 3224 a4 (3.7)

Then « is a primitive element of an extension field F,,. The elements o/, j =1,2,...,2" — 1
are all non zero elements of Fj,. Moreover, for i # j, we have o — o/ = aF.

Let A be an n x n matrix over the base field ;. We say that the matrix A represents the
field F,) if and only if all the powers A7, j =1,2,...,2" —1 are distinct, A2"~1 = TI,,, where
I, is the identity matrix of order n, and A* — A7 = A*, § £ j.

A matrix A represents the extension field F, with image « if and only if its characteristic
polynomial det(AI, — A) coincides with the irreducible primitive polynomial f()) of Eq (3.7).

There exist many matrices representing the extension field F;, with the same image «.

Lemma 1 Let C be a matriz representing the field Iy, with image o. Let Q) be a non singular
matriz in Fy of order n. Then the matriz A = Q~'CQ also represents the field Fy, with image
a.

PROOF. Matrices C' and A = Q~'CQ are similar. Hence they have identical characteristic
polynomials. O

It is known (see, e.g., [5]) that the companion matrix C' of the polynomial (3.7)

00 ... 0 —ap
10 ... 0 —a
C=1:: ... : : (3.8)
0 0 0 —ap—2
00 1 —ap1

represents the field F}, with image « since the characteristic polynomial of this matrix is f(\)
from Eq (3.7). By Lemma 1, all the other matrices representing the same field are of the form
A =Q7'CQ, where Q is a square nonsingular matrix of order n over the base field F}.
Denote A[j] the jth column of a matrix A. Note that for non zero column b=(by, by, . . ., by)T
€ FP there exists the only integer j such that b = AJ[1].
Let A be a matrix representing the field F}, with image a. Define one-to-one mapping B4
by relations

Ba(0) = (0,0,...,0)T, Ba(ad) = AT[1], j =1,...,2"7} (3.9)
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(we use notation By instead of more general notation Bg.) We say that B4 defines the vector
representation of the field F;, with image «.
For a vector g = (g1,92,... ,9n), gj € Fn, we define

BA(g) = (BA(gl)vBA(QZ)v' .. 7BA(gn))'

Thus G = Ba(g) is an n X n matrix in Fj.
Lemma 2 Let 3 € Fy,. Then
Ba(aB) = ABa(B).
Proor. If § = 0 then nothing to prove. If 3 # 0 then 8 = «® for some integer s. Therefore
Ba(aB) = Ba(al™) = A15[1] = AA%[1] = AB4(B).
|

Corollary 1 Let g € F and Ba(g) = G. Then Ba(ag) = ABa(g) = AG and, inversely,
B, (AG) = aB,*(G). By recursion, for integer s, B,'(A°G) = a*B;'(G) = o’g.

Corollary 2 Let g € F}'. Let R be a n x m matriz in Fy. Then

Ba(gR) = Ba(g)R.

4 Proof of the Main theorem

It is shown in [4] that symmetric matrices A = AT exist representing binary fields F},. From
now on, we consider only symmetric matrices A.

Choose the first row in the generator matrix (2.5) as B, (I), i-e., the vector representation
of the identity matrix Ip,:

g0 =(91,92,.- ,9n) = BZI(IH) = (ail,aiQ,... ,ai”), (4.10)

where 7; = 0.
The next row g; can be represented as

g1 = (91,95, »97) = (a®,072,... ,a®m).
Let D = B4(g1) be the n x n nonsingular matrix in F3.
Lemma 3
g1 = goD.
Proor. It follows from Corollary 2

g1 = B;'(D) = B;*(I,D) = B;*(Ba(go)D) = goD.

For s =0,1,2,... ,n — 1, define

g = (97,95 .....9%). (4.11)
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Lemma 4
gs = gs—1D = goD’. (4.12)

ProoF. We have from Lemma 3 that g]2- =Y =, 9iDjj, where D;; are binary entries of the
matrix D. Hence, jth coordinate of the vector g is g]2-5 =y, gfs lDij, or,gs =gs—1D. O

Lemma 5 Let a; = BZI(AS) be the vector representation of the matriz A®. Then
a, = (o T . ot (4.13)

Proor. We have using Corollary 1 a, = B,'(A%) = B;'(A°L,) = o*B,"(I,) = a’gy =
(astit qstia o qstin), O
Corollary 3

(a1+i1, a1+i2, . 7a1+7:n)

goA = agp =

)

or, equivalently, S r_, gsAs; = o'9, j = 1,...,n, where Asj are (binary) entries of the

matriz A.

PROOF. It is enough to prove that mapping Ba of both sides are identical. Ba(goA) =
Ba(go)A = I,A = A. On the other hand, Ba(ago) = ABa(go) = AI, = A. O

Lemma 6

DP#I,,1<s<n; D"=1In. (4.14)
PROOF. Vectors gs, s =0,1,... ,n— 1 are linearly independent [5]. Therefore D° # I, 1 <
s<n—L On the other hand’ 8n = gODn = (g%nvggnv s 792") = (917927' .. 7gn) = 8o- HBTLCE,
D" = I,. O
Lemma 7

DA = AD. (4.15)

Proor. Calculate

BEI(DA): ( A g14A = Zgl ij» J=1,. )

n
_ ((Z giAij)Zv ] _ 1,. B 7n) _ (a2+211,a2+2i2,. . 7()[2+212) _ a2g1.

Hence

BA(B3{(DA)) = DA = Ba(a’g1) = A2Ba(g1) = AD

208



Lemma 8 Forr,s=0,1,... ,n—1,

DTA® = AT Dr. (4.16)
Proor. It follows from Lemma 7 using some iteration procedure. For example,

DA? = (DA)A = (A’D)A = A%(DA) = A%(A’D) = A”'D,

or,
D?A=D(DA) = D(A2D) = (DA)(AD) = (A2D)(AD) = AX(DA)D = A’(A2D)D = A” D?,
ete. |
Lemma 9

DT = gvpnt (4.17)
for some integer w.

PRrOOF. Transpose matrices in (4.15) and note that A is the symmetric matrix: DTA? =
ADT = DTDAD™!, or, DTDA = ADTD. Thus the matrix D7D commute with A and
should be equal to degree, say, u of A. We have DT = A*D~1 = A*D"~L, (In fact, one can
prove that DT = D™~! but we use this fact without proof). O

It follows from this Lemma that
(DT) A5 = A¥ i, (4.18)
Let F,-linear MRD code V be given defined by the generator matrix

8o
81
G=|: , (4.19)
8k—2
8k—1
where rows g, are defined by Eq (4.10, 4.11).

Let an information vector u of dimension k be given by u=(g9a™?,e1a™!,...,ep_1a™k-1),
where €; € {0,1} and 0 < m; < 2" — 1 are integers. Then a code vector is equal to

k—1
glu) =uG = 3 cja™g;.
j=0

The corresponding code matrix is as follows

k-1 k-1 k-1
M(u) = BA(Z gjaMig;) = ZsjBA(amfgj) = Zngmej. (4.20)
=0 7=0 =0
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The transposed code matrix is

k—1
M(u)" = " (D7) A™. (4.21)
j=0

By Eq (4.18), it can be rewritten as

k—1
M(u)" =34 Dri. (4.22)
j=0

This means that the transposed code Vr in vector representation can be described as

k-1 k-1
gu) =B (M(w)") = ¢;B (A7 D" ) =3 cj0” ' guey.
j=0 j=0

In turn, this expression shows that the transposed code VT is F,—linear and may be given
by the following generator matrix

gn—k+1 g%n—k+1 g%n—k,+l . 2'7L—k,+l

n

n—k n—k n—k
_ | Bk 9 9 g

n—1 n—1 n—1
8n 1 9t 9 g
4] g1 92 t gn

If we denote g; = gf"7k+l,§2 = g§"7k+l, N g,ZLMHl, then the generator matrix G can

be rewritten in the canonical form of Eq (2.5):

gl g2 e gn
’g“‘ll2 ggz g?Lz
G'"=|g @ @ |- (4.24)
k—1 ~k—1 ~ok—1
A A 1

5 Conclusions

We proposed Fj,—linear MRD codes based on symmetric matrices such that corresponding
transposed codes are also F,,—linear MRD codes. This allows to use either fast decoding
based on columns of received corrupted code matrix, or fast decoding based on rows that
matrix, or both.
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