
An Explicit Construction of a Class of Good Codes and Their

Duals

San Ling, Ferruh �Ozbudak, Chaoping Xing �

San Ling and Chaoping Xing
Department of Mathematics, National University of Singapore
2 Science Drive 2, Singapore 117543, Republic of Singapore

e-mail: fmatlings, matxcpg@nus.edu.sg

Ferruh �Ozbudak
Department of Mathematics, Middle East Technical University

�In�on�u Bulvar�, 06531, Ankara, Turkey
e-mail: ozbudak@math.metu.edu.tr

Abstract

We study a class of good codes and their duals explicitly. We give direct constructions

of the dual codes and obtain self-orthogonal codes with good parameters.

Key words: linear codes, dual codes, self-orthogonal codes, optimal codes

1 Introduction

It is well known that sub�eld subcodes and propagation techniques would give codes with
good parameters. Recently Xing, Ling and Niederreiter [7], [3], [4] have constructed a class of
codes with very good parameters from the rational function �eld of Fq using specially chosen
subcodes of Reed-Solomon codes and propagation rules. Due to their good parameters and
algebraic structures, this class of linear codes has attracted further attention. For instance, a
decoding algorithm of these codes is given in [5] and these codes have also been generalized
to arbitrary algebraic function �elds [8].

In this paper we introduce a general framework for such constructions over rational func-
tion �elds and we study their dual codes. Since subcodes and propagations in the construction
have nice algebraic structures, it turns out that the dual codes are also in the same class and
we can easily control the dual codes so that we get self-orthogonal and self-dual codes with
good parameters. As good codes, we basically mean linear codes with parameters close to the
best known ones according to Brouwer's [1] table or certain known bounds. We show that all
linear codes can be obtained from our construction in a unique way and dual codes as well
as self-orthogonality can be obtained in a simple and explicit manner. Direct constructions
of the dual codes and self-orthogonal codes are provided.

�This paper was written while the second named author was visiting the Institute for Mathematical Sciences,

National University of Singapore, Republic of Singapore. He would like to thank the institute for the support.

The �rst and third named authors are partially supported by MOE-ARF research grant number R-146-000-

029-112 and DSTA research grant number R-394-000-011-422.
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2 Construction

First we �x some notation. In the paper we use the usual Euclidean inner product. For
C � F

n
q a linear code, we denote its dual by C?. A code C is said to be self-orthogonal if

C � C?. If C = C?, then C is said to be self-dual. For �i 2 Fq n f0g for i = 1; 2; : : : ; n, let
(�1; : : : ; �n) �C denote the equivalent code de�ned as f(�1c1; : : : ; �ncn) j (c1; : : : ; cn) 2 Cg. If
(�1; : : : ; �n) �C � C? for some �1; : : : ; �n 2 Fq nf0g, then C is said to be quasi self-orthogonal.
Similarly, if this containment is in fact an equality, then C is quasi self-dual. Let Fq be a
�nite �eld and let Fq be a �xed algebraic closure.

Let r be any prime and consider the set

�r
q := f(a1; a2; : : : ; ar) j 0 � ai � q � 1; 1 � i � rg

of r-tuples of integers between 0 and q � 1. Let 
r denote the cyclic group generated by the
cyclic shift !r on �r

q, i.e.,

!r(a1; a2; : : : ; ar) := (a2; a3; : : : ; ar; a1):

Note that 
r =< !r >�= Z=rZ. For a = (a1; : : : ; ar) 2 �r
q, let Oa denote the orbit of a under

the action of the group 
r on �r
q

Oa = f(b1; : : : ; br) = !i
r(a1; : : : ; ar) j 1 � i � rg � �r

q:

Note that, for a0 2 Oa, we have Oa = Oa0. We also de�ne the associated polynomial ha of
the orbit Oa as

ha :=
X

(b1;:::;br)2Oa

xb1+b2q+:::+brqr�1

:

Since r is a prime number, there are m := (qr�q)=r+q distinct orbits. Let S = fh1; : : : ; hmg
be the set of all associated polynomials. For every a = (a1; : : : ; ar) 2 �r

q, let

a = (q � 1� a1; : : : ; q � 1� ar):

De�nition 2.1. For an orbit Oa of �r
q under the action of 
r, we de�ne Oa as

Oa = Oa:

For ha 2 S, we de�ne ha 2 S as

ha = ha:

Let P be a subset of Fqr with the largest cardinality such that

� 2 P ) �q = � or �qi 62 P for 1 � i � r � 1:

Then #P = (qr � q)=r+ q = m. Let P = f�1; : : : ; �mg. It is easy to check that the Fq -linear
span of the set f(hi(�1); : : : ; hi(�m)) j 1 � i � mg is the space Fmq and maxfdeg h j h 2 Sg =P

�2P deg f� �minfdeg f� j � 2 Pg, where f� is the minimal polynomial of � over Fq .
Now we give our construction in a general framework. For a given positive integer n,

assume that for some m � n there exists a pair (Ŝ; P̂) such that P̂ = f�1; : : : ; �mg is a set
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of elements of Fq with distinct minimal polynomials over Fq and Ŝ is a set of m polynomials
h1; : : : ; hm 2 F q such that the set

f(hi(�1); : : : ; hi(�m)) j 1 � i � mg

generates the space Fmq . Let fi denote the minimal polynomial of �i over Fq for i = 1; : : : ;m.
Then it follows that maxfdeg hi j 1 � i �mg �

Pm
i=1 deg fi �minfdeg fi j 1 � i � mg.

For example, let r be a prime number satisfying qr�q
r + q � n and let m = (qr � q)=r+ q.

Consider the pair (S;P) as de�ned before. It is clear that Ŝ = S and P̂ = P satis�es the
conditions above.

We �x an order on P̂ as P̂ = (�1; �2; : : : ; �m) and let P̂n = f�1; : : : ; �ng. For k � n
and an Fq -linearly independent subset fg1; : : : ; gkg � SpanFq Ŝ with the corresponding k � n

matrix G = (gi(�j))1�i�k;1�j�n, we denote the code generated by G as C(g1; : : : ; gk; P̂n).
Note that when m = n, we have C(h1; : : : ; hn;P) = F

n
q .

Remark 2.2. In [7], Xing and Ling considered the case r = 2 and they constructed codes
with good parameters. Ling, Niederreiter and Xing [3] considered the general case that
r � 2 is an integer. They constructed codes of arbitrary length and some codes with good
parameters. Our construction and the constructions in [7] and [3] are identical for r = 2. For
r � 3 a prime integer, our construction and the construction in [3] use similar subsets of Fqr

for evaluations of polynomials. For r � 3 a prime integer, the sets of polynomials used in
our construction and in [3] are di�erent. For example, it can be readily veri�ed that, when
q = 4 and r = 3, the degrees of the largest set of polynomials used in [3] is a proper subset of
the one in our construction. The corresponding subset in our construction includes the set of
degrees f33; 49; 50; 54g as extra.

We observe that for n � m, any q-ary [n; k; d] linear code C can be considered as
C(g1; : : : ; gk; P̂n) uniquely upto an ordering of entries of P̂, for some g1; : : : ; gk.

Proposition 2.3. Let the notation be as above. Given a q-ary [n; k; d] linear code C, there
exists a unique subspace WC =< g1; : : : ; gk >� SpanFq Ŝ such that C = C(g1; : : : ; gk; P̂).

Hence for a prime number r, �xing an order on the elements of P, we can �nd all q-ary
linear codes of length n � m = (qr � q)=r + q in a unique way. Moreover m!1 as r !1
for a �xed q.

For given q-ary [n; k; d] code C(g1; : : : ; gk; P̂), this observation leads to a method of �nding
g01; : : : ; g

0
n�k 2 SpanFq Ŝ explicitly such that C(g1; : : : ; gk; P̂)

? = C(g01; : : : ; g
0
k; P̂).

Theorem 2.4. Let the notation be as above. Choose gk+1; : : : ; gn 2 Span
Fq
Ŝ such that the

n� n matrix G = (gi(�j))1�i;j�n is nonsingular. Consider the matrix B de�ned as

B := (bt1;b
t
2; : : : ;b

t
n) := (G�1)tG�1;

where bi = (�i;1; : : : ; �i;n) 2 F
n
q for i = 1; 2; : : : ; n. Let g0i 2 SpanFq Ŝ be de�ned as

g0i = �k+i;1g1 + �k+i;2g2 + : : :+ �k+i;ngn

for i = 1; 2; : : : ; n� k. Then

C(g1; : : : ; gk; P̂)
? = C(g01; : : : ; g

0
n�k; P̂):
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3 Direct Constructions of Dual Codes

Let r be a prime, Fq a �nite �eld of characteristic di�erent from r and n = qr�q
r + q. In

this section we study direct constructions of dual codes corresponding to pairs (S;P) de�ned
in Section 2. We explicitly construct (quasi) self-orthogonal codes with good parameters.
Throughout the section we order the elements of S = fh1; : : : ; hng such that deg hi < deg hi+1
for i = 1; : : : ; n�1. Then we have h1 = 1 and hn = x(q�1)(1+q+:::+qr�1) = xq

r�1. Moreover we
also order the elements of P as P = (�1; �2; : : : ; �q; �q+1; : : : ; �n), where f�1; : : : ; �qg = Fq .

Theorem 3.1. Let 1 � k � n � 1. For any subset fhj1 ; : : : ; hjkg � S with fh1; hng 6�
fhj1 ; : : : ; hjkg we have

C(hj1 ; : : : ; hjk ;P)
? = (1; : : : ; 1| {z }

q times

; r; : : : ; r| {z }
n�q times

) � C(h0j1 ; : : : ; h
0
jn�k

;P);

where fh0j1 ; : : : ; h
0
jn�k

g = S n fhj1 ; : : : ; hjkg. Moreover if r is a square in Fq with c2 = r and

hji 62 fhj1 ; : : : ; hjkg for i = 1; : : : ; k, then

(1; : : : ; 1| {z }
q times

; c; : : : ; c| {z }
n�q times

) � C(hj1 ; : : : ; hjk ;P)

is self-orthogonal.

Proof. First note that
P

�2Fqr
�i = 0 for 0 � i � qr � 2. This is trivial for i = 0. For

1 � i � qr � 2, we can choose c = c(i) 2 Fqr such that ci 2 Fqr n f0; 1g. HenceX
�2Fqr

�i =
X
�2Fqr

(c�)i = ci
X
�2Fqr

�i:

Then

(1� ci)
X

�2Fqr

�i = 0 and
X

�2Fqr

�i = 0 since 1 6= ci:

Therefore if h 2 Fq [x] and deg h � qr � 2, thenX
�2Fqr

h(�) = 0: (1)

Since SpanFqS forms a ring with multiplication modulo (xq
r
� x) and S is a basis, we have

for any 1 � i1 � k and 1 � i2 � n� k, a uniquely determined al(i1; i2) 2 Fq for l = 1; : : : ; n
satisfying

hji1h
0
ji2
�

nX
l=1

al(i1; i2)hl mod (xq
r

� x): (2)

Moreover by de�nition of the operation h 7! h on S and by the de�nition of the set
fh0j1 ; : : : ; h

0
jn�k

g, we have an(i1; i2) = 0 for 1 � i1 � k and 1 � i2 � n � k. Therefore
since h(�) = h(�q) for any h 2 SpanFqS and � 2 Fqr , we get�

hji1 (�1); : : : ; hji1 (�q); hji1 (�q+1); : : : ; hji1 (�n)
�

�
�
h0ji2

(�1); : : : ; h
0
ji2
(�q); rh

0
ji2
(�q+1); : : : ; rh

0
ji2
(�n)

�
=

X
�2Fqr

hji1 (�)h
0
ji2
(�)

for 1 � i1 � k and 1 � i2 � n� k. Using (1) and (2) we complete the proof.
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It is possible to characterize the subsets T � S satisfying the property

h 62 T for any h 2 T: (3)

First we determine elements a 2 �r
q such that Oa = Oa.

Proposition 3.2. For a 2 �r
q, we have the following equivalences depending on the cases.

Case r is 2: Oa = Oa , a = (a; b) with a+ b = q � 1.
Case r is odd and q is even: Oa 6= Oa for any a 2 �r

q.

Case r is odd and q is odd: Oa = Oa , a = (a1; : : : ; ar) with a1 = � � � = ar =
q�1
2 .

Next we de�ne special subsets S0; S�, and S+ depending on the cases.
Case r is 2 and q is odd:

S0 = fha 2 S j a = (a; b) with a+ b = q � 1g;
S� = fha 2 S j a = (a; b) with a+ b < q � 1g;
S+ = fha 2 S j a = (a; b) with a+ b > q � 1g:

Case r is odd and q is even:

S0 = ;;

S� =

8<
:ha 2 S j a = (a1; : : : ; ar) and

q=2�1X
i=0

#i's in a <

q�1X
i=q=2

#i's in a

9=
; ;

S+ =

8<
:ha 2 S j a = (a1; : : : ; ar) and

q=2�1X
i=0

#i's in a >

q�1X
i=q=2

#i's in a

9=
; :

Case r is odd and q is odd: For simplicity we consider r = 3 and let s = ((q � 1)=2; (q �
1)=2; (q � 1)=2) 2 �3

q .

S0 = fhsg;

S� =

8<
:ha 2 S j a = (a1; a2; a3) and

(q�1)=2�1X
i=0

#i's in a <

q�1X
i=(q�1)=2+1

#i's in a

9=
;

[

�
hi 2 S j i = (

q � 1

2
; i; q � 1� i) and i <

q � 1

2

�
;

S+ =

8<
:ha 2 S j a = (a1; a2; a3) and

(q�1)=2�1X
i=0

#i's in a >

q�1X
i=(q�1)=2+1

#i's in a

9=
;

[

�
hi 2 S j i = (

q � 1

2
; i; q � 1� i) and i >

q � 1

2

�
:

For a subset T � S, we denote by T the subset fh j h 2 Tg.

Theorem 3.3. Let the notation be as above. Then S = S0 t S� t S+, #S� = #S+ and
T � S satis�es (3) if and only if

(T \ S�) \ (T \ S+) = ; and T \ S0 = ;: (4)
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Note that in the case r is odd and q is even, for T � S satisfying (4) and #T = n=2 we obtain
self-dual codes.

We obtain similar results for the pair ( eS ; eP) where
eS = S n fhng and eP = (�2; �3; : : : ; �n);

where �1 = 0. Let ~n = n� 1 = (qr � q)=r + q � 1 and de�ne

ehi = hi if 2 � i � n� 1,eh1 = h1:

Theorem 3.4. Let 1 � k � ~n� 1. For any subset fhj1 ; : : : ; hjkg �
eS we have

C(hj1 ; : : : ; hjk ;
eP)? = (1; : : : ; 1| {z }

q�1 times

; r; : : : ; r| {z }
n�q times

) � C(h0j1 ; : : : ; h
0
jn�1�k

; eP);

where fh0j1 ; : : : ; h
0
jn�1�k

g = eS n fehj1 ; : : : ; ehjkg. If also r is a square in Fq with c2 = r andehji 62 fhj1 ; : : : ; hjkg for i = 1; : : : ; k, then

(1; : : : ; 1| {z }
q�1 times

; c; : : : ; c| {z }
n�q times

) � C(hj1 ; : : : ; hjk ;
eP)

is self-orthogonal. Moreover let T � S be a subset with h1 2 T satisfying (4). If C(T;P) is a
q-ary [n; k; d] code, then the code (1; : : : ; 1; c; : : : ; c) �C(T nfh1g; eP) is a (quasi) self-orthogonal
q-ary [n� 1; k � 1; d1] code with d1 � d.

Note that in the case r is odd and q is odd, #S0 = 1. Moreover let q � 1 mod 4 and hence
choose e 2 Fq with e2 = �1. Then we can get (quasi) self-dual codes using eP as follows. For
simplicity we assume that r = 3.

Theorem 3.5. Let Fq be a �nite �eld with q � 1 mod 4, e 2 Fq with e2 = �1, r = 3 and
s = ((q� 1)=2; (q � 1)=2; (q � 1)=2) 2 �3

q. Let T � S be a subset with h1; hs 2 T and T n fhsg
satisfying (4). Let T1 = T [ feh1 + hsg n fh1; hsg. If C(T;P) is a q-ary [n; k; d] code, then

(1; : : : ; 1; c; : : : ; c) � C(T1; eP)
is a (quasi) self-orthogonal q-ary [n� 1; k� 1; d1] code with d1 � d. In particular it is (quasi)
self-dual when k = (n� 1)=2 + 1.

Example 3.6. Using Theorem 3.1 and subsets fhj1 ; : : : ; hjkg � S satisfying (4) with deg hj1 <
deg hj2 for 1 � j1 < j2 � n and deg hjk as small as possible, we obtain the following (quasi)
self-orthogonal q-ary [n; k; d] codes with the best known parameters as linear codes (see [1]).
The minimum distances can be estimated as in [7] and using Magma [2].

q = 2 : [4; 2; 2]; [8; 4; 4];
q = 3 : [6; 2; 4];
q = 5 : [15; 2; 12]; [15; 3; 11]; [45; 3; 35]; [45; 4; 34]; [45; 10; 24]; [45; 17; 17];
q = 7 : [28; 2; 24]; [28; 3; 23]; [28; 5; 19]; [28; 8; 15]; [28; 9; 14];
q = 9 : [45; 2; 40]; [45; 3; 39]; [45; 6; 33]; [45; 7; 30]; [45; 8; 29]; [45; 9; 28];

[45; 10; 27]; [45; 12; 24]; [45; 13; 23]; [45; 14; 22]; [45; 16; 20]:
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Using Theorem 3.4 and similar subsets of S we obtain the following (quasi) self-orthogonal
q-ary [n; k; d] codes with the best known parameters as linear codes.

q = 2 : [7; 3; 4];
q = 5 : [14; 2; 11]; [44; 16; 17];
q = 7 : [27; 2; 23];
q = 9 : [44; 2; 39]; [44; 15; 20]; [44; 7; 29]; [44; 8; 28];

[44; 9; 27]; [44; 12; 23]; [44; 13; 22]:

We also obtain some good (quasi) self-orthogonal codes whose parameters are beyond the
range of Brouwer's tables ([1]).

q = 8 : [176; 10; 127]; [176; 9; 127];
q = 11 : [66; 3; 59]; [66; 6; 52]; [66; 10; 45];

[65; 2; 59]; [65; 5; 52]; [65; 9; 45]:

We give a generator matrix for 5-ary quasi self-orthogonal code [45; 17; 17] in Figure I. By
applying the propagation rules (see, for example, [6, Exercise 1.2.24]), we get a 5-ary code
[44; 17; 16], which is also a linear code with the best known parameters.

Remark 3.7. Example 3.6 as well as examples in [7] suggest that certain choices of r, subsets
of P and subsets of S can yield good codes. It would be interesting to characterize some classes
of good codes using our construction.

G := (I17 j P )17�45;

where I17 is the 17� 17 identity matrix and P is a 17� 28 matrix given as below:

P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 3 1 4 2 4 1 4 1 0 3 4 4 3 3 1 3 1 2 1 1 3 0 4 3 1 1 1
0 2 0 3 3 0 1 4 2 0 4 1 1 2 2 0 1 2 0 4 3 3 4 2 1 2 2 4
1 2 2 3 0 1 2 1 4 3 3 0 1 4 4 0 1 3 4 1 3 2 2 2 2 3 4 0
4 3 2 2 0 3 1 0 1 0 0 3 1 3 0 4 4 2 1 2 0 3 0 4 2 0 1 2
0 2 4 2 1 0 3 3 2 0 3 2 1 3 3 4 3 1 0 1 2 1 3 1 1 4 1 2
2 0 1 3 2 3 2 2 4 3 4 1 1 0 1 4 3 1 3 0 3 4 1 3 3 2 4 4
2 3 2 1 2 2 4 3 1 4 1 1 2 2 1 0 4 4 0 2 0 4 0 3 3 2 0 1
2 2 1 3 4 4 1 3 3 2 1 4 4 2 4 3 1 0 1 4 2 4 0 1 1 0 2 0
4 1 3 0 0 3 4 0 0 0 1 3 1 2 4 1 3 0 0 0 4 1 3 2 3 3 3 0
1 2 3 2 2 4 4 0 3 2 2 0 3 4 0 3 3 2 2 1 3 4 2 0 3 0 2 2
2 4 3 3 4 2 3 2 0 1 3 1 3 4 3 4 0 1 1 0 1 1 4 2 3 2 4 3
3 4 3 3 3 0 2 2 4 0 4 0 2 0 1 3 4 4 2 3 2 0 3 2 1 0 1 3
2 4 4 1 2 1 2 3 3 2 2 1 0 1 0 2 3 1 0 2 1 3 1 1 2 4 4 2
4 3 3 2 4 3 4 0 1 0 4 4 0 3 2 1 0 3 2 3 3 3 2 3 2 2 4 4
2 3 1 4 2 2 2 1 1 4 4 2 3 0 3 3 4 1 4 4 4 0 2 1 4 3 4 1
3 0 1 0 4 3 0 0 3 1 4 0 3 0 1 3 1 0 0 0 2 2 3 2 1 4 2 1
0 3 2 0 1 1 0 3 3 4 3 4 1 3 4 0 3 0 4 3 2 3 1 3 1 4 2 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Figure I: A generator matrix G for 5-ary quasi self-orthogonal [45,17,17] code
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