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Abstract

A Steiner triple system of order n (briefly ST'S(n)) is a family of 3-element subsets
(blocks) of aset N = {1,2,...,n} such that each 2-element subset of N appears in exactly
one block. We will identify every block (i, j, k) € STS(n) with a topological triangle with
vertices ¢, j and k. Glueing together all equal edges of all triangles corresponding to
all triples of two nonintersecting Steiner triple systems one can get a closed surface or
closed pseudo-surface. A class of tilings of a nonorientable closed surface (a sphere with
(n—3)(n—4)/6 crosscaps) by special types of pairs of Steiner triple systems of order n = 3
(mod 6) is presented. It is also shown that there exists a class of tilings of a nonorientable
closed surface by STS’s of order n for half of the residue class n =1 (mod 6).

1 Introduction

The paper is devoted to tilings of closed surfaces by pairs of Steiner triple systems. A class of
tilings of a nonorientable closed surface (a sphere with (n —3)(n —4)/6 crosscaps) by special
types of pairs of Steiner triple systems of order n = 3 (mod 6) is presented. ! Tt is also
shown that there exists a class of tilings of a nonorientable closed surface by STS’s of order n
for half of the residue classn =1 (mod 6). Such tilings are also interpreted in the literature
as triangular embeddings of complete graphs in closed surfaces. We consider that the notion
of a tiling is more suitable (it will be clear from definitions given below). The investigation of
these tilings has stirring and long history since 1852, see [2]. The search gave new directions
concerning embeddings (or tilings) in many subjects such as design theory, graph theory,
combinatorial topology, algebra, classical geometry, see all links in [3] and surveys in [2, 3, 4, 6].
Despite the existence of many results devoted to embeddings of a complete graph, K,, in a
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Tt should be mentioned some parallelism between the results given here and the main result which was
published by the author in [1], where special components (called i-components) of perfect binary codes are
investigated. In the paper [1] the construction of a perfect code (of length n = 2™ — 1) partitioning into two
indecomposable i-components is presented. In both situations (for closed surfaces and for perfect codes) we
have a pair of structures such that their union gives a perfect structure (in the case of closed surface without
punched points we also have in some sense a ”perfectness”). In both cases it is necessary to guarantee a
connectivity (in one case for surfaces and in the other for i-components). As a basis of each construction it was
used a pair of special type nonintersected Steiner triple system (of course these pairs of STS’s are extremely
different).
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closed surface there still remain many unsolved problems, for example it is not known if there
exists nonisomorphic face 2-colorable triangulation of a nonorientable surface by a complete
graph K, for every n =1 (mod 6). It is also interesting to enumerate all nonisomorphic
face 2-colorable triangulations of an orientable or a nonorientable surface by a complete graph
K, for every admissible n.

Tt is well known [2] that a complete graph K, triangulates some orientable surface if
and only if n = 0,3,4 or 7 (mod 12) and triangulates some nonorientable surface if and
only if n = 0or 1 (mod3),n > 7. A triangulation is face 2-colorable if the triangular
faces of the embedding can be properly 2-coloured in black and white colours such that no
two monochromatic triangles share an edge. For the embeddings to be face 2-colorable it
is necessary for n to be odd because the vertex degrees should be even. The case of 2-
coloroubility is of special interest for design theory because all monochromatic triangles on
the surface induce a Steiner triple system (sets of three vertices giving the triangles in each of
these two colour sets form two Steiner triple systems). So we immediately get a tiling of the
surface given by black and white Steiner triple systems of order n. Further we will call such a
pair of Steiner triple systems of order n a tiling of order n (it is also called bi-embedded). We
remind that a Steiner triple system of order n (briefly ST'S(n)) is a family of 3-element blocks
(subsets or triples) of the set N = {1,2,...,n} such that each inordered pair of elements of
N appears in exactly one block. Two STS’s of order n are called equivalent if there exists
a permutation on the set N, which transforms one system into another. It is well known
that ST'S(n) exists if and only if n = 1 or 3 (mod 6). Therefore for an orientable case
we have n = 3 or 7 (mod 12) and it is known (see [2, 7]) that if a tiling of order n of an
orientable sphere exists, the surface should be a sphere with (n —4)(n — 3)/12 handles. For
a nonorientable case n = 1 or 3 (mod 6), n > 7, and therefore a tiling of a sphere with
(n —4)(n — 3)/6 crosscaps should exist.

From design theoretic point of view one can forget about topological aspects and get the
following interesting equivalent combinatorial problem. To find a pair of ST'S's of order n
tiles a surface in black and white tiles one has to construct a pair of ST'S’s defined on the
same set N and satisfy the following property:
each point ¢ € N has cyclic property which means that all triangles containing ¢ can be placed
on a plane around the point ¢ in the following cyclic way

ili1, i2]i3, 94l - . - |in—2, in-1],
here vertical lines are put to share triples of these two ST'S's. It means that the following
triples
(iv 7;17 i?)v (lv 7;37 i4)7 sy (17 in—Zv 7:n—l)

are included in the first STS(n) and triples

(i7i27 i3)7 (i7i47 i5)7 LR (ivin*hil)

are from the second one. As a consequence these ST'S's are not intersected by blocks.

Let us consider a short survey of results on tilings of order n (or what is the same face 2-
colorable embeddings of K,). First in 1970 Youngs [9] showed that forn =7 (mod 12) there
existed such tiling of an orientable surface. From Ringel’s book 1974, see [2], one can conclude
that for n = 3 (mod 12) there exists a tiling of order n of an orientable surface given by
well known Bose construction [8] and its isomorphic copy, and for n =3 (mod 6), n > 9,

426



there exists a tiling of a nonorientable surface. In 1978 Ducrocq and Sterboul [10] found
for n =3 (mod 6),n > 9, a tiling of order n of a nonorientable surface given by Bose
construction [8] and its isomorphic copy. Not all cases of embeddings of a complete graph
K, described in Ringel book give tilings. After 20 years the following new results appeared.
In 1998 Grannel, Griggs and Siras [4, 5] proved that it is possible to construct a tiling of
order 3n — 2, where n =3 or 7 (mod 12) using as input a tiling of order n of an orientable
surface. The same authors, see [4], established that there exist nonequivalent embeddings of
K, in a nonorientable surface for half of the residue class n =1 (mod 6), n > 7, one of

- 71.2
them is a tiling. In 2000 Bonnington, Grannel, Griggs and Sirdn [6] found at least 251 0(n)

tilings of order n of an orientable surface for n = 7 or 19 (mod 36). They also get a similar
estimation for orientable case if n =19 or 55 (mod 108), for nonorientable case if n =1 or
7 (mod 18) and an improved estimation if n =1 or 19 (mod 54). For information about
tilings of small orders see [5, 11].

2 Constructions

In the section we are going to present a class of pairs of STS’s of any order n =3 (mod 6)
which give us tilings of a nonorientable closed surface. The base construction is a special type
of equivalent copy of well known Bose construction of STS. We will use the same notations
as in known Hall book [8], see chapter 15, pages 230-233. The equivalent copy of Bose’s STS
of order n =3 (mod 6) with an automorphism group, which contains an Abelian group A
additively written as a subgroup is presented below in Theorem 1. The group A is an additive
group of residues modulo 2¢+1, so we have 3 orbits of elements, n = 6¢+3, where 0 is the zero
of A and elements of A are {0,1,...,2t}. Each i’th element of the j’th orbit will be labeled
as i;. The difference between elements from the same orbit is called a pure difference and
from different orbits is called a mized difference. We will labeled base block in orbit blocks by
square brackets. Using the group A every such block generates 2¢ + 1 blocks in the STS(n).
Other blocks in the system will be labeled by round brackets.

Theorem 1. (See [8] and also [12].) With the additive group of residues modulo m = 2t +1,
the blocks

[11, (Qt)l,lg], RN [tl, (t + 1)1,12],
[12, (2t)2,m3], ceey [tQ, (t + 1)2,7713], (1)
[13,(2t)3, (*l — m)l], ceey [tg, (t + 1)3, (*l — m)l],

[017 127 (l + m)3]7
form a base for ST'S(n), where n = 6t + 3 and I, m are any numbers from {0,1,...,2t}.

Proof. Let us show that the set of blocks (1) defines ST'S(n), where n = 6¢ + 3. Denote the
system by S,. It is easy to check that

a) every block contains three elements;

b) the number of elements equals to n = 3(2t + 1) = 6¢ + 3.

c¢) Let us count the number of blocks in the system S,,. By the construction, see (1), the
number of base blocks equals to 3¢ + 1. Because the order of the automorphism group A is
2t + 1 every base block generates 2t + 1 blocks. As the result one gets

(2t+1)B3t+1)=n(n-1)/6

427



blocks in the system 5.

d) It is not difficult to check from (1) that every element from N appears in (n —1)/2
triples.

e) At the end of the proof of the theorem we have to clarify if every pair of elements from
N is only in one triple. Without loss of generality it is sufficient to consider the first ¢ basis
blocks

li1, j1, 2] (2)
from (1), where
i=1,....t,i+j=0 (mod (2t+1)). (3)

To get a pure difference d of the first element orbits not equal to 0 by modulo 2¢ + 1 it is
necessary to have
i—j=d (mod (2t +1)).

From this equation and (3) we have
2i=d (mod (2t +1)).

Hence ¢ and j are uniquely determined. Blocks (2) give every mixed difference of the first
and the second element orbits with the exception [. The block

[017 l2, (l + m)g]

from (1) gives the mixed difference . Therefore the set S, is ST'S(n). X-Mozilla-Status: 0000
X-Morzilla-Status2: 00000000

Corollary 1. If | = m =0 the STS(n) from Theorem 1 is Bose [8] triple system.
Denote further the Bose system by STS(B,n).

Theorem 2. The triple system STS(B,n)US,, where Sy is a STS from Theorem 1 and
l,m are any numbers such that (1,2t+1) =1, (m,2t+1) =1,(I+m,2t+1) =1,1 #0, m # 0,
gives a tiling of order n of a closed surface.

Proof. Without loss of generality it is sufficient to consider any element from any orbit, for
example the element 0;, and prove that this element possesses cyclic property defined above.
It means that all triples from STS(B,n) and S, can be placed around the point 0; in the
following cyclic way

01|027 03|$§, 1‘%‘ te |w§t_17x§t|y%7 ZH st |y%t7 z%t|7 (4)

where triples
(017 027 03)7 (017 93%, 93%), ey (Olvxgtilvxgt)v (017 y%7 211)7 ey (Olvy%tv Z%t)

belong to ST'S(B,n) and other triples (01,03,23),...,(01,2%,0s) are from the system S,.
To show it we are going to find an explicit form of this row (4). First consider an element
2371 i =1,...,t. According to the structure of the system S,, see the third row in (1), base
blocks containing the element (—I — m); of the first orbit contain elements from the third

orbit. Therefore the element (—! —m); meets in blocks with 2¢ nonzero elements of the third
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orbit. The element (—! — m); meets zero element in one of the cyclic switchings of the last
base block from (1). Then between these elements there is the element (—I — m)s. Let this
base triple in S, have the following presentation

[w37 (_l - m)37 (_l - m)l]:

where according to (1), x =l —m = 0 (mod 2t 4+ 1) is true and therefore x = [ + m
(mod 2t +1). Hence we have the base block

(I +m)s, (=1 = m)3, (=l —m)1)] € S
and then its cyclic switching by the element [ + m gives the block
((2(l + m))g, 03, 01) € Sy,

hence 3 = (2(1 +m))s.
By the construction of the system ST'S(B,n) we have the base block

[is, (2t + 1 —4)3,01] € STS(B,n),
then ((2(1+m))s, (=2(I +m))s,01) € STS(B,n) and 22 = (—2(I + m))3. The block
(=l —m+1)s, (I +m—i)s, (=1 —m)]

is the base block in S, according to (1). Therefore its cyclic switching by the element [ + m
gives the block
(01,13, (2(l +m) —i)3)) € Sy (5)

for any ¢ = 1,...,t¢. For the system ST'S(B,n) we also have base blocks
(01, (=)s,43)], (01, (2( +m) —4)3), (=2(l +m) + i)s], (6)
surrounding the block (5) in the cyclic presentation (4). From (6) one can get
x§s+1 — x%s’l =2(l4+m)—i—(—=i)=2(l+m)

for any 5 = 1,...,t. Therefore elements 23" from (4) define the following arithmetical
progression
2(l+m),4(l +m),...,2t(1l +m),

where according to the condition of this theorem (I+m,2t+1) = 1 and then z} # z} for any
i # j, where 7,7 € {1,2,...,2t.} X-Mozilla-Status: 0000 X-Mozilla-Status2: 00000000
The triple
[01,2t(l +m))s, (—2t(l + m))3] € STS(B,n).

Using the equality —2¢(l +m) = (I +m) (mod 2¢+ 1) and the block
[01, l5, (l + m)g] es,

(see (1)) we get y3 = Iy in (4). Similar considerations show that elements
y%’y%’ tet 7y§t
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define an arithmetical progression with the difference [ and elements

TSI

an arithmetical progression with the difference 2/ and with the starting element (2[);.
Therefore y3t = (2t1)a, 23 = (4tl); and the triple (01, (2tl)2, (4¢l)1) have to belong to the

system STS(B,n). Let us prove it. Using the congruence

4t = (2t —1) (mod (2t + 1)), (7)
we get for the triple the following presentation

(01, (2t1)2, (421)1) = (0, (2tD)2, (2t — 1)])1). (8)
The cyclic switch of the last triple by the element [ gives the base triple

[ll, (Ztl + l)g, (Ztl — [+ l)l] = [l1,02, (Qtl)l],

from the system ST'S(B,n). Therefore the triple (8) also belongs to the system ST'S(B,n).
The triple [l2,(2tl)1,(—2tl)1] is a base triple from the system S, therefore its cyclic switch
by the element 2tl gives using (7) the triple

(((2t +1))a, (421)1,01) = (02, ((2t = 1)!)1,01) € Sp.

So we have enumerated all n — 1 triples of systems ST'S(B,n) and S,, containing the element
0;. Analogous considerations can be done for elements 02 and 03, for example for the element
03 we have the presentation

03]01, 0z fu, 3| . .. [u3' ™", w3 [0, wi] .. [0}, wi]. (9)
The proof is done.

Tt is well known from the main Theorem of surface topology, see, for example [7], that
two closed surfaces are homeomorphic if and only if both of them have the same Euler char-
acteristic and both of them are either oriented or nonoriented. If Euler characteristic is odd
then the surface is nonorientable. In our case n =3 (mod 6). It is easy to calculate that
for n =9 (mod 12) the Euler characteristic is odd and the system ST'S(S,n)U S, gives a
tiling of a sphere with (n — 3)(n — 4)/6 crosscaps. In the case n =3 (mod 12) after glue-
ing together all triangles corresponding to all triples of the system ST'S(S,n)U S, in order
to get a topological polygon and investigating a boundary of this resulting polygon one can
find at least two edges with the same orientation. It means that we also obtain a tiling of a
nonorientable surface. So we get the following statement.

Corollary 2. Any triple system STS(B,n)U S, from Theorem 2 gives a tiling of a nonori-
entable closed surface (a sphere with (n — 3)(n —4)/6 crosscaps).

Using different admissible [, m satisfying to Theorem 2 we get a large class of triple systems
of order n giving tilings. Some of such triple systems may be or may not be equivalent.

Taking as input any tiling of order n from Theorem 2 and Corollary 2 and use the same
approach as Grannel, Griggs and Siras applied in [4] we get the following result.

Theorem 3. There exists a class of tilings of a nonorientable closed surface (a sphere with

(n—3)(n—4)/6 crosscaps) by STS’s of order n for half of the residue classn =1 (mod 6).

The author is very grateful to Yu. L. Vasil’ev and S. V. Avgustinovich for useful discus-
sions.
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