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Abstract

In this extended abstract we introduce the notion of s-extremal codes for self-dual
binary codes and we relate this notion to the existence of 1-designs or 2-designs in these
codes. We extend the classi�cation of codes with long shadows of [13] to codes with
minimum distance 6, for which we give partial classi�cation. Complete proofs of these
results and more can be found in [3].

1 Introduction

One important parameter of binary codes is their minimum weight d. In the case of singly-
even self-dual codes, only unsatisfactory bounds were known until the notion of the shadow
was introduced by Conway and Sloane in [10]. Let C be a singly-even self-dual code and C0

its doubly-even subcode, then the shadow S of C is de�ned as S := C0
? n C. One uses the

additional information contained in the weight enumerator of S, which is obtained by a linear
transformation of the one of C. The best achievement of this idea is the result by Rains [26]
extending the well known bound of Type II codes to Type I codes.

On the other hand, Elkies has studied in [13] the minimum weight (respectively the min-
imum norm) of the shadow of self-dual codes (respectively of unimodular lattices), especially
in the cases where it attains a high value. In the case of codes, let s denote the minimum
weight of S, then s � n

2 (mod 4); Elkies shows that s � n
2 and that s = n

2 if and only if C is
the direct sum of n

2 [2; 1; 2] binary self-dual codes. He also classi�es the self-dual codes such
that s = n

2 � 4, and shows in particular that their length cannot exceed 22.
In this paper, we propose to study the parameters d and s simultaneously. We prove

that 2d + s � n
2 + 4, except in the case where n � 22 (mod 24) where 2d + s � n

2 + 8, and
we call s-extremal the codes for which equality holds. We prove the existence of 1-designs
and sometimes 2-designs in s-extremal codes. The cases considered by Elkies correspond to
s-extremal codes with d = 2 and d = 4. We study s-extremal codes for d = 6 and we show
in particular that such codes can only exist for lengths 22 � n � 44, that there is a unique
such code for lengths 40; 42 and 44 and we provide partial classi�cation for the other lengths.
(Note that analogous results for lattices can be found in [5]). We also construct an isodual
[42; 21; 8] code with covering radius 6 related to a particular s-extremal code. The paper is
organized as follows : in sections 2 and 3 we de�ne the notion of s-extremal codes and we
prove the existence of 1-designs and sometimes 2-designs in these codes. In sections 4 and 5
we consider the case of s-extremal codes with s = n

2 � 8, we show that their length n satis�es
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22 � n � 44, and give partial classi�cation results. At last in section 6 we give examples of
s-extremal codes.

2 s-extremal codes

Let C be a self-dual binary code, which is assumed not to be doubly even and let S be its
shadow. We denote WC and WS the weight enumerators of C and S. From [10], there exists
c0; : : : ; c[n=8] 2 R such that:

(
WC(x; y) =

P[n=8]
i=0 ci(x

2 + y2)
n

2
�4ifx2y2(x2 � y2)2gi

WS(x; y) =
P[n=8]

i=0 ci(�1)
i2

n

2
�6i(xy)

n

2
�4i(x4 � y4)2i

(1)

We denote d the minimum weight of C and s the minimum weight of its shadow. This
section is devoted to the proof of the following theorem:

Theorem 2.1 Let C be a self-dual binary code, assumed not to be doubly even, of minimum
weight d, and let S be its shadow, of minimum weight s. Then, 2d+ s � 4+ n

2 , unless n � 22
mod 24 and d = 4[n=24] + 6, in which case 2d+ s = 8 + n

2 .

De�nition 2.2 A code which parameters (d; s) satisfy equality in the previous bounds is said
to be s-extremal. In that case, the polynomials WC and WS are uniquely determined.

Examples: The s-extremal codes with d = 4 correspond to the codes with long shadows
which have been classi�ed in [13]. For d = 6, the unique binary self-dual [26; 13; 6] code and
the two binary self-dual [28; 14; 6], from the classi�cation of self-dual codes [9] are examples
of s-extremal codes. The exceptionnal case in the theorem is the case of extremal codes (in
the sense of [26]) of length n � 22 mod 24, obtained by shortening of doubly even extremal
ones of length a multiple of 24.

3 Designs in s-extremal codes

In this section, we study the designs contained in the set of words of �xed weight in an s-
extremal code and in its shadow. Therefore, we make use of the harmonic weight enumerators
WC;f introduced in [2]. We recall that, if f is harmonic of degree k, and if C is self-dual, the
polynomial WC;f is divisible by (xy)k, and, if ZC;f := (xy)�kWC;f , one has: if k � 0 mod 2,
ZC;f 2 C [x2 +y2; x2y2(x2�y2)2] (respectively if k � 1 mod 2, ZC;f 2 Q8C [x

2+y2; x2y2(x2�
y2)2], where Q8 = xy(x6 � 7x4y2 + 7x2y4 � y6)).

Theorem 3.1 Let C be an s-extremal code. Let Ci, respectively Si denote the set of words
of weight i in C, respectively S.

1. For all i, Ci and Si hold a 1-design.

2. If d = n+8
6 , for all i � d+ 2 mod 4, Ci holds a 2-design.

3. If d = n+8
6 , and d � 2 mod 4, for all i, Ci [ Si holds a 2-design.

Remark 3.2 In the exceptionnal case of the extremal codes of length n � 22 mod 24, the
sets Ci and Si hold 3-designs (see [21]).
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4 Codes with long shadows

In [13], the codes with shadows of minimum weight equal to n=2 and n=2 � 4 are classi�ed.
In this section, we consider the case of weight n=2 � 8. Such codes are s-extremal if their
minimum weight equals 6. The corresponding problem for lattices is handled in [22]. We
prove here the following theorem:

Theorem 4.1 Let C be a s-extremal code of length n and distance d = 6. Then 22 � n � 44.

In the following, we freely identify a word x of Fn
2 and its support, and we denote by �x

the complement of x over Fn
2 .

From now on, we assume that C is a code of length n, distance d = 6 and of shadow S
with minimum weight s = n=2 � 8. A direct computation from the coe�cients of WS and
WC leads to: c1 = �n=2, c2 = n(n� 22)=8,

WS =2n=2�15n(n� 22)xn=2+8yn=2�8 + 2n=2�13n(86� n)xn=2+4yn=2�4

+ 2n=2�14(3n2 � 322n+ 214)xn=2yn=2;

and
a6 = n(n2 � 66n+ 1136)=48;

a8 = n(n3 � 92n2 + 2684n� 23248)=128:

Remark 4.2 The expression of WS shows already that n � 86. On the other hand, the bound
announced in the theorem n � 44 is optimal since the code of lenth 44 which is the direct sum
of two copies of the [22; 11; 6] is s-extremal.

For any y 2 Fn2 , let

Ni;j(y) := fx : x 2 Ci j jx \ yj = jg

and

ni;j(y) := jNi;j(y)j:

Since the sets Ci are 1-designs, the numbers ni;j(y) satisfy a linear equation (see Theorem
3 of [21]):

X
j

jni;j(y) =
iaiwt(y)

n
: (2)

Let y be a word of C6. Then, for all x 2 C6, jx \ yj = 0; 2, and Equation (2) leads to

m2 := n6;2(y) = 3(n2 � 66n+ 1128)=8:

For all x 2 C8, jx \ yj = 0; 2; 4; moreover, jx \ yj = 4 if and only if j(x+ y) \ yj = 2, so
n8;4(y) = n6;2(y) = m2. With Equation (2) we can also calculate n8;2(y):
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n8;2(y) = 3(n3 � 96n2 + 2948n+ 27760)=16:

Now we assume that wt(y) = 8. Again, for x 2 C6, we have jx \ yj = 0; 2; 4; but (2)
is not enough to calculate the values of n6;j(y). From now on, we set Nj(y) := N6;j(y) and
nj(y) := n6;j(y). Counting in two ways the number of elements of the set

f(x; y) : x 2 C6; y 2 C8 j jx \ yj = 4g

leads to the calculation of the mean value mv of n4(y):

mv =
1

a8

X
y2C8

n4(y) =
a6
a8
m2 =

(n2 � 66n+ 1136)(n2 � 66n+ 1128)

n3 � 92n2 + 2684n� 23248
: (3)

One notices that, if x 2 N4(y), also x+ y 2 N4(y), so n4(y) is even of size say 2k with:

N4(y) = fx1; � � � ; xkg [ fy + x1; � � � ; y + xkg:

In order to prove the theorem, we �rst prove two lemmas.

Lemma 4.3 Let xi and xj be elements of N4(y) with i 6= j then xi and xj do not intersect
on �y.

Lemma 4.4 The set N4(y) is, up to a permutation of the coordinates, contained in the set
S4 = ft1; : : : ; t7g [ ft1 + y; : : : ; t7 + yg:

y 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
t2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
t3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
t4 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
t5 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
t6 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
t7 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1

In particular, n4(y) � 14. Moreover, if n4(y) = 10; 12 or 14, the set N4(y) is unique up
to a permutation of the coordinates leaving y invariant.

We now prove the theorem:
Proof of theorem 4.1: First, by the classi�cation of self-dual codes, we have n � 22 because

d � 6. Suppose n � 46. Then, a8 > 0, so let y 2 C8. Then, from lemma 4.4, n4(y) � 14,
which gives mv � 14. But, from (3),

mv � 14 =
(n� 22)(n � 44)(n2 � 80n+ 1660)

(n3 � 92n2 + 2684n� 23248)

is strictly positive for n � 46, a contradiction.
�
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n mv n mv

22 14 34 2
24 7.68 36 3.36
26 4.40 38 6
28 2.67 40 9.26
30 1.82 42 12
32 1.60 44 14

Table 1: The value of mv for d = 6

5 Classi�cation results

We now prove some results on the classi�cation of the s-extremal codes of distance d = 6; we
assume that the length n is at least equal to 34. We introduce a few more de�nitions:

De�nition 5.1 Let C be an s-extremal code of minimum distance 6. Let nmax
4 denote the

maximal value of n4(y) when y runs over the set of codewords of weight 8, and let Nmax
4 :=

fy : y 2 C8 j n4(y) = nmax
4 g.

We have already seen (Lemma 4.4) that nmax
4 � 14. It turns out that a high value of

this number is a strong constraint on the code. We shall completely classify the codes with
nmax
4 = 10; 12; 14.

Theorem 5.2 � Assume nmax
4 = 14. Then, n = 36; 38; 44, and in each case there is a

unique code up to equivalence. In the case n = 44, it is the orthogonal sum of two copies
of the shorter Golay code with parameters [22; 11; 6].

� Assume nmax
4 = 12. Then, n = 34; 36; 40; 42, and in each case there is a unique code up

to equivalence.

� Assume nmax
4 = 10. Then, n = 34; 36; 38, there are up to equivalence 3 codes of length

34, and a unique code of length respectively 36 and 38.

Before giving a proof of this theorem, we derive from it a classi�cation of the s-extremal
codes of minimum weight 6, for the lengths 40, 42, 44.

Corollary 5.3 There is up to equivalence a unique s-extremal code of minimum weight 6 at
length 44, respectively 42 and 40.

We give in Table 1 the value of mv computed from (3) for d = 6 and 22 � n � 44.
If the length of C equals 40, 42, 44, we have nmax

4 � 10. Hence Theorem 5.2 exhausts all
the possibilities. �

For C = C0 [C2 and S = C1 [C3, the neighbors of C are de�ned as C0 [C1 and C0[C3.

Remark 5.4 In [18], the authors point out a doubly-even [40; 20; 8] code with covering radius
7, which turns out to be equivalent to the two equivalent doubly-even neighbors of the unique
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s-extremal [40; 20; 6] code. The neighbor of a self-dual Analogously, the s-extremal [34; 17; 6]
codes for nmax

4 = 10; 12, have each, two equivalent isodual [34; 17; 8] neighbors with covering
radius 6; the s-extremal [36; 18; 6] code for nmax

4 = 14 has two equivalent self-dual [36; 18; 8]
neighbors with covering radius 6; the two s-extremal [38; 19; 6] codes for nmax

4 = 12; 14 have
each two equivalent isodual [38; 19; 8] neighbors with covering radius 7; the s-extremal [42; 21; 6]
code for nmax

4 = 10 has two equivalent isodual [42; 21; 8] neighbors with covering radius 6 and
the unique s-extremal [44; 22; 6] code has two equivalent self-dual [44; 22; 8] neighbors with
covering radius 7.

Remark 5.5 The unique [40; 20; 6] code also leads to a 40-dimensional unimodular lattice of
norm 3 with a long shadow in the sense of [22]. The construction is the standard Construction
A followed by a neighboring procedure using the all-one vector

6 Number and examples of s-extremal codes

We now consider examples of s-extremal codes. The s-extremal codes with d = 4 have been
classi�ed in [13]. We now list the known s-extremal codes corresponding to a given d. First
note that from Theorem 3.1 the unique singly-even [16; 8; 4] holds 2-designs.

� d = 6
For this minimum distance, from section 4 codes are known to exist for length 22 � n � 44.
The two codes of length 28 hold 2-designs. Existing codes are given in the following table :

n num ref n num ref

22 1 [24] 34 � 2 [10],x5
24 1 [25] 36 � 3 x5
26 1 [9] 38 � 2 x5
28 2 [9] 40 1 x5
30 9 [9] 42 1 x5
32 19 [5] 44 1 x5

� d = 8
In that case it is not known for up to which length s-extremal codes do exist. The codes of
length 40 hold 2-designs. We list known codes for d = 8 :

n num ref

32 3 [10]
36 � 3 [20],[16]
38 � 8 [20],[16]
40 � 4 [10],[7]
42 � 17 [10],[8]
44 � 1 [10]

� d = 10
The codes of length 52 hold 2-designs, the cod sub(XQ47) is the code obtained by subtractio
of the (11) trivial code from the extended quadratic residu code of length 47. Codes are only
known for the following lengths :
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n num ref

46 � 1 sub(XQ47)
50 � 1 [10]
52 � 460 [19]
54 � 166 [27], x3
58 � 1 [10]

� d = 12
In that case it is not known whether a s-extremal [64; 32; 12] code exists, such a code would
hold 2-designs. For length 68, although many codes are known, none of them is s-extremal.
The only known codes are :

n num ref

60 � 3 [28],[12]
62 � 8 [12]
66 � 2 [10],[17]

� d � 14
For d = 14, two codes are known for length 76 ([15],[1]), which contain 2-designs, and more
than 50 codes are known for length 78 from [14] and [1]. For d = 16 only one s-extremal code
is known for length 86 from [11] and for d = 18 one code is obtained for length 102 from the
extended quadratic residue code of length 104.
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