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1 Introduction

Let Fnq be a vector space of dimension n over a Galois Field Fq = GF (q), where q = pr, p
prime. The Hamming distance between vectors u, v 2 F

n
q , denoted d(u; v), is the number of

coordinates in which u and v di�er. A q-ary code, C, of length n is simply a subset of Fnq .
The elements of C are called codewords and C is called linear if it is a linear space over Fq .
We will call p-linear a code C which is a linear space over the prime �eld Fp . The minimum
distance of a code is the smallest distance between a pair of codewords.

A q-ary code C of length n is perfect if for some integer r � 0 every x 2 F
n
q is within

distance r from exactly one codeword of C. In [8] it is shown that the only parameters for
nontrivial perfect codes are the two Golay codes and the q-ary 1-perfect codes where q is a

prime or prime power. The q-ary 1-perfect codes have length n =
qm � 1

q � 1
, m � 2, and r = 1.

They have qn�m codewords and minimum distance 3. The linear 1-perfect codes are unique
up to equivalence, they are the well-known Hamming codes and exist for all m � 2. Nonlinear
q-ary 1-perfect codes also exist for q = 2;m � 4, q � 3;m � 3, and for q a prime power, q 6= 4
or 8, m � 2, [17], [16], [10].

Two structural properties of nonlinear codes are the rank and kernel.
The rank of a q-ary code C, r(C), is simply the dimension of the subspace over Fq spanned

by C. If q = pr, r > 1, we de�ne the p-rank of C as the dimension of the subspace over Fp
spanned by C. By the dual of the nonlinear code C, denoted by C?, we mean the dual of
the subspace spanned by C having dimension n� r(C). Etzion and Vardy [6] established the
existence of binary 1-perfect codes of length n = 2m � 1, m � 4, and rank r(C) = n�m+ s

for each s 2 f0; 1; : : : ;mg. In [13], the generalization to the q-ary case, that is, the existence

of q-ary 1-perfect codes of length n =
qm � 1

q � 1
, m � 4 and rank r(C) = n �m + s for each

s 2 f0; 1; : : : ;mg was established.
The kernel of a binary code C is de�ned as KC = fx 2 F

n
2

: x + C = Cg: If the zero
word is in C, then KC is a linear subspace of C. In general, C can be written as the union of
cosets of KC and KC is the largest such linear code for which this is true [4]. We will denote
the dimension of the kernel of C by k(C). Phelps and LeVan [11] established that for each
such m � 4, there exists a nonlinear binary 1-perfect code of length n = 2m�1, with a kernel
of dimension k(C) = k for each k 2 f1; 2; : : : ; n �m � 2g. The rank and kernel of binary
1-perfect codes are related, it is known that k(C) + r(C) � n+1, since C? � KC and the all
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ones codeword is always in the kernel, [4]. In [14], the exact upper and lower bounds on the
kernel dimension for a �xed rank, r(C) < n, were established. In [3], binary 1-perfect codes
of length n for all possible k(C) and r(C) < n are constructed.

In this paper, we will focus on the kernels of q-ary 1-perfect codes when q � 3. A previous
approach, only over the �eld Fq , was showed in [15]. Here, we will present de�nitions and
properties of kernels for q-ary codes as well as p-ary sub�eld codes. We will construct q-ary
1-perfect codes of length n with di�erent kernel dimensions, using switching constructions.
We also give a simple and more general construction of nonlinear q-ary 1-perfect codes which
were �rst constructed in [10]. Finally, we consider bounds on the dimension of the kernel.

2 De�nitions and properties of the kernel

First of all, we will give di�erent generalizations of the kernel for q-ary codes, C, over a Galois
Field Fq = GF (q), where q = pr, p prime. We will show some of their properties and when
they are equivalent.

De�nition 2.1 The kernel and p-kernel of a q-ary code C over Fq , where q = pr, p prime,
is respectively

Kq(C) = fx 2 Fnq : �x+C = C 8� 2 Fq g

Kp(C) = fx 2 Fnq : x+ C = Cg:

It is easy to see that if the zero word is in C, then Kq(C) is a linear sub-code of C and
Kp(C) is a p-linear sub-code of C. We will denote the dimension of the kernel and p-kernel
of C by kq(C) and kp(C) respectively.

Proposition 2.1 Let Kq(C) (Kp(C)) be the kernel (p-kernel) of a q-ary code C. The code
C is a union of cosets of Kq(C) (Kp(C)), and Kq(C) (Kp(C)) is the maximal linear subspace
of Fnq over Fq (Fp ) with this property.

It is easy to see that Kq(C) � Kp(C) and also note that if q = p prime, the kernel and
p-kernel are exactly the same. The kernel of a binary code, C, is also the intersection of all
maximal linear sub-codes of C, [9]. Next, we will show that, in general for q-ary codes, this
is not necessarily true.

Proposition 2.2 Let C be a q-ary code over Fq , where q = pr, p prime, and let D = fx 2
C : �x 2 C 8� 2 Fpg: Then, the intersection of all maximal linear sub-codes of C over Fp
is M(C) = fx 2 Fnq : x+D = Dg.

Proposition 2.3 Let M(C) = fx 2 Fnq : x+D = Dg, where D = fx 2 C : �x 2 C 8� 2
Fpg. Then, D is a union of cosets of M(C), and M(C) is the maximal p-linear subspace of
F
n
q with this property.

It is easy to see that Kp(C) � M(C), but, in general, Kp(C) 6= M(C). For example,
the code C = f0000; 1100; 2200; 0011g over Z3 has kernel K3(C) = f0000g and M(C) =
f0000; 1100; 2200g.
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3 Subspaces Ti and T
p
i

In this section we consider two subspaces which play a key role in the switching construction.
These are also important in determining the kernel and p-kernel of the resulting codes.

De�nition 3.1 Ti is the subspace over Fq , q = pr, generated by the codewords of weight 3
(triples) in the Hamming code, Hm, having a 1 in the ith coordinate. T p

i is the subspace over
the sub-�eld Fp generated by these codewords.

Proposition 3.1 [13] Given a q-ary Hamming code Hm of length n = qm�1
q�1 , the dimension

of Ti over Fq is qm�1 � 1, 8i 2 f1; : : : ; ng.

Let Hm denote the Hamming code of length n = qm�1
q�1 . The columns of the parity check

matrix of Hm are linearly independent and as such are representatives of all 1-dimensional
subspaces in F

m
q . The columns can be identi�ed with the points of projective space of di-

mension m� 1 over Fq . In this way there is an obvious and natural correspondence between
the coordinates of the codewords in Hm and points in the projective space PG(m � 1; q).
We refer to certain coordinates as independent if the corresponding points in PG(m � 1; q)
are independent or equivalently if the corresponding columns of the parity check matrix are
independent (see [5]).

Proposition 3.2 Given a q-ary Hamming code Hm with f1; 2; : : : ;mg as a set of its inde-
pendent coordinates, the dimension of \s

i=1Ti over Fq is (q � 1)s�1qm�s, 8s 2 f2; : : : ;mg.

Proposition 3.3 Given a q-ary Hamming code Hm of length n, when q = pr, r � 2, the

dimension of T p
i over the sub-�eld Fp is

qm�1 � 1

q � 1
(r(q � 2) + 1), 8i 2 f1; : : : ; ng.

The sub-code T
p
i is not a linear subspace over Fq . In particular, we can ask what the

kernel Kq(T
p
i ) is.

Corollary 3.4 Given a q-ary Hamming code Hm of length n, when q = pr, r � 2, the

dimension of Kq(T
p
i ) is

qm�1 � 1

q � 1
(q � 2), 8i 2 f1; : : : ; ng.

Corollary 3.5 Given a q-ary Hamming code Hm of length n, when q = pr, r � 2, if
���1 62 Fp , then T = �T

p
i \ �T

p
i = \2Fqnf0gT

p
i and T is a subspace over Fq of dimen-

sion
qm�1 � 1

q � 1
(q � 2), 8�; � 2 Fq , 8i 2 f1; : : : ; ng.

Proposition 3.6 Given a q-ary Hamming code Hm with f1; 2; : : : ;mg as a set of its inde-
pendent coordinates, when q = pr, r � 2, the dimension of \s

i=1T
p
i over Fp is (r(q�1)�s(r�

1))(q � 1)s�2qm�s, 8s 2 f2; : : : ;mg.

Corollary 3.7 Given a q-ary Hamming code Hm with f1; 2; : : : ;mg as a set of its indepen-
dent coordinates, when q = pr, r � 2, the dimension of the kernel Kq(\

s
i=1T

p
i ) (over Fq ) is

(q � s� 1)(q � 1)s�2qm�s, 8s 2 f2; : : : ;mg.
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4 Switching constructions

The most intuitive approach to constructing nonlinear 1-perfect codes consists of starting with
the Hamming code Hm, and switching out one specially selected set of codewords S � Hm

for another set of words S0 such that the resulting code C = (HmnS) [ S0 would still be a
1-perfect code. This idea has been developed from di�erent approaches to construct binary
1-perfect codes, see [1], [2], [6] and [12]. In [7], one generalization of this technique was used
to construct q-ary 1-perfect codes. In [13], the approach developed in [11] was generalized to
construct q-ary 1-perfect codes with di�erent ranks. In this article, we will use switches to
construct q-ary 1-perfect codes with kernels of di�erent sizes.

Obviously, if sub-codes S, S0 are switched we must have jSj = jS0j and for all x 2 S0; y 2
Hm n S we must have their distance d(x; y) � 3. If we consider the bipartite graph on the
codewords in Hm[Hm+w with an edge connecting codewords x; y if and only if d(x; y) � 2,
then S � Hm, S

0 � Hm +w will be a switch if and only if S [ S0 is the union of components
in the bipartite graph. If there is only one component, the switch is said to be minimal. Let
Fq = f0; �0; �; : : : ; �q�2g, where � is a primitive element. Let ei denote the vector of length
n having all coordinates equal to zero, except the ith, which contains a one.

Proposition 4.1 S � Hm, S
0 � Hm+�ei will be a minimal switch if and only if S = �T

p
i +y

(and S0 = S + �ei), where y 2 Hm, 8i 2 f1; : : : ; ng and 8� 2 Fq nf0g.

Corollary 4.2 [13] Given a q-ary Hamming code Hm of length n =
qm � 1

q � 1
, m � 3, q � 3

and xi 2 HmnTi. Then,

C 0 = (Hmn(Ti + xi)) [ (Ti + xi + �jei) (1)

is a nonlinear q-ary 1-perfect code, 8i 2 f1; : : : ; ng and 8j 2 f0; 1; : : : ; q � 2g.

Lindstr�om [10] gave a construction of nonlinear q-ary perfect codes form = 2 (n = q+1) if
q is a prime power, q 6= 4 or 8, which in e�ect relied on the existence of translation planes. We
are able to give a simple construction of perfect codes with these parameters and in addition,
a nonlinear code for m = 2 and q = 8.

Corollary 4.3 Given a q-ary Hamming code Hm of length n =
qm � 1

q � 1
, m � 2, q = pr,

r > 1 (except m = 2, q = 4) and xi 2 Hmn�
jT

p
i . Then,

C 0 = (Hmn(�
jT

p
i + xi)) [ (�jT

p
i + xi + �jei) (2)

is a nonlinear q-ary 1-perfect code, 8i 2 f1; : : : ; ng and 8j 2 f0; 1; : : : ; q � 2g.

Proposition 4.4 Let Hm be a q-ary Hamming code of length n =
qm � 1

q � 1
, m � 3, q � 3 and

let K be a subspace of Hm such that Ti � K � Hm and dimK � n�m� 1. Then

C 0 = (Hmn(K + y)) [ (K + y + �jei)

is a nonlinear q-ary 1-perfect code with rank r(C 0) = n � m + 1 and kernel Kq(C
0) = K,

8i 2 f1; : : : ; ng, 8j 2 f0; 1; : : : ; q � 2g and 8y 2 HmnK.
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Corollary 4.5 Let Hm be a q-ary Hamming code of length n =
qm � 1

q � 1
, m � 2, q = pr, r > 1,

(except m = 2, q = 4) and let K be a p-linear subspace of Hm such that �jT
p
i � K � Hm

and dimK � r(n�m)� 1 if p > 2 and dimK � r(n�m)� 2 if p = 2. Then

C 0 = (Hmn(K + y)) [ (K + y + �jei)

is a nonlinear q-ary 1-perfect code with p-rank r(n � m) + 1 and p-kernel Kp(C
0) = K,

8i 2 f1; : : : ; ng, 8j 2 f0; 1; : : : ; q � 2g and 8y 2 HmnK.

By Proposition 4.2, once we have made one switch we have another q-ary 1-perfect code.
Actually, it is proved [13] that for all m � 4, there exist x1; x2; : : : ; xm such that it is possible
to make a series of switches. In this case, if f1; 2; : : : ;mg is a set of independent points of
Hm, we can switch Ti + xi with Ti + xi + �j1ei, 8ji 2 f0; : : : ; q � 2g 8i 2 f1; : : : ;mg, since
Ti + xi and Tk + xk are always disjoint for all k 6= i.

Proposition 4.6 Given a q-ary Hamming code Hm of length n =
qm � 1

q � 1
, m � 4, with

f1; 2; : : : ;mg as a set of its independent points. Then, the nonlinear q-ary 1-perfect code

C 0 =
�
Hmn

s[
i=1

(Ti + xi)
�
[

s[
i=1

(Ti + xi + �jiei) (3)

has rank r(C 0) = n � m + s and kernel Kq(C
0) = \s

i=1Ti, 8s 2 f1; 2; : : : ;mg and 8ji 2
f0; 1; : : : ; q � 2g.

Corollary 4.7 Given a q-ary Hamming code Hm of length n =
qm � 1

q � 1
, m � 3, q = pr,

r > 1, with f1; 2; : : : ;mg as a set of its independent points. Then, the nonlinear q-ary 1-
perfect code

C 0 =
�
Hmn

s[
i=1

(�jiT
p
i + xi)

�
[

s[
i=1

(�jiT
p
i + xi + �jiei) (4)

has rank n�m+s, p-rank r(n�m)+s and p-kernel Kp(C
0) = \s

i=1�
jiT

p
i , 8s 2 f1; 2; : : : ;mg

and 8ji 2 f0; 1; : : : ; q � 2g.

Corollary 4.8 Let Hm be a q-ary Hamming code of length n =
qm � 1

q � 1
, m � 3, q = pr,

r > 1, and let 1; �; : : : ; �r�1 be a basis of Fq over the sub-�eld Fp . Then, the nonlinear q-ary
1-perfect code

C 0 =
�
Hmn

s[
j=1

(�j�1T
p
i + xj)

�
[

s[
j=1

(�j�1T
p
i + xj + �j�1ei) (5)

has rank n � m + 1, p-rank r(n � m) + s and kernel Kp(C
0) = Kq(C

0) = \s
j=1�

j�1T
p
i ,

8s 2 f2; : : : ; rg and 8i 2 f1; : : : ; ng.

In the same way as in the above results, we could construct nonlinear q-ary 1-perfect
codes, C, with rank n�m +m0 and p-rank r(n �m) +m0r0, where m0 � m and r0 � r, as
long as there exists xij, 8i 2 f1; : : : ;m0g and 8j 2 f1; : : : ; r0g, such that �j�1T

p
i + xij and

�k�1T
p
s + xsk are always disjoint. In this case, Kp(C) = \i;j�

j�1T
p
i and Kq(C) = Kq(T ).
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5 Bounds on the kernel dimensions

Fixed the rank, an upper bound on the kernel and p-kernel dimension, can be established
using the same argument as in the binary case, [14].

Proposition 5.1 A q-ary 1-perfect code of length n, C, with rank r(C) = n�m+ s over Fq
and kernel Kq(C) of dimension n�m� � ful�lls q� � � � 1 � s.

Corollary 5.2 A q-ary 1-perfect code of length n, C, where q = pr, with p-rank r(n�m)+ s

and p-kernel Kp(C) of dimension r(n�m)� � ful�lls p� � � � 1 � s.

If the p-rank of a q-ary 1-perfect code, C, is r(n �m) + 1, we have the exact lower and
upper bounds on kp(C), by Corollary 5.2 and next result. By Proposition 4.4 and Corollary
4.5, we can construct nonlinear q-ary 1-perfect codes with p-rank r(n�m)+1 and any p-kernel
dimension, kp(C), between the lower and upper bounds.

Proposition 5.3 Let C be a q-ary 1-perfect code of length n =
qm � 1

q � 1
, q = pr, with p-rank

r(n�m) + 1, then there exist i 2 f1; 2; : : : ; ng and � 2 Fq nf0g such that �T p
i is a subset of

Kp(C).

Corollary 5.4 Let C be a q-ary 1-perfect code of length n =
qm � 1

q � 1
, q = pr, with rank

n�m+1 and p-rank r(n�m)+ s, then there exist i 2 f1; 2; : : : ; ng such that
T

�2Fqnf0g
�T

p
i

is a subset of Kp(C) and Kq(C), 8s 2 f2; : : : ; rg.

6 Conclusions

In [13], q-ary 1-perfect codes of length n and rank n�m + s were constructed 8m � 4 and
8s 2 f1; : : : ;mg. In this paper, we also constructed them when q = pr, r > 1, for m = 3
and 8s 2 f1; 2; 3g and for m = 2 and s = 1. The existence of q-ary 1-perfect codes for any
s 2 f2; : : : ;mg, when m = 3 if q = p prime and m = 2 if q = pr, r > 1, still remain open.

The switching constructions established in this paper give 1-perfect q-ary codes of given
rank having kernels of minimal dimension. In the binary case, analogous constructions gave
codes with kernels of minimum possible dimension for given ranks.

Theorem 6.1 There exist a q-ary 1-perfect code of length n, C, when q � 3 prime, with rank
n�m+ s and kernel of dimension

kq =

�
qm�1 � 1 if s = 1 8m � 3
(q � 1)s�1qm�s if s > 1 8m � 4

Theorem 6.2 There exist a q-ary 1-perfect code of length n, C, when q = pr, r > 1 (except
m = 2 and q = 4), with rank n�m+ s and kernel of dimension

kq =

(
qm�1�1
q�1 (q � 2) if s = 1 8m � 2

(q � s� 1)(q � 1)s�2qm�s if s > 1 8m � 3
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By results in section 5, the switching construction give also 1-perfect codes with rank
n�m+1, any p-rank r(n�m)+r0 and the exact lower bound. The dimension of the kernel is

kq given in the previous theorems and the dimension of the p-kernel, kp �
qm�1�1
q�1 (r(q�2)+1)

if r0 = 1 and kp �
qm�1�1
q�1 r(q � 2) if r0 > 1. So, in particular, we established these results for

the nonlinear 1-perfect codes with the same parameters as the ones given by Lindstr�om [10],
that is m = 2.

The problem now is to establish a lower bound on the dimension of the kernel for 1-perfect
q-ary codes of rank n�m+ s, 8s � 2. Key to this question seems to be the problem of the
minimum kernel for full rank 1-perfect q-ary codes.
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