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I. Introduction

A Hankel matrix (or persymmetric matrix)

Co C1 Cy SN Cp—1
C1 (&) C3 NN Cn
A, = €2 € G4 ... Cpgl | (1.1)
Cp—1 Cn Cptl .- C2p-2
is a matrix (a;;) in which for every r the entries on the diagonal i + j = r are the same,
i.e., a;r—; = ¢, for some ¢,. For a sequence ¢y, ¢, c2,. .. of real numbers we also consider the
collection of Hankel matrices A% ), k=0,1,...,n=1,2,..., where
Ck Ck+1  Ck+2 -+ Ckyn—1
Ck+1  Ck+2  Ck+3  --- Ck+n
AW = Cht2  Ck+3  Ck+4 .-+ Chintl | . (1.2)
Ck+n-1 Ck+n Cktn+l --- Ckt2n—2

We shall further denote the determinant of a Hankel matrix (1.2) by

AP = det(AR)). (1.3)
In Coding Theory, Hankel matrices play a central role in decoding of BCH codes, es-
pecially in the Berlekamp - Massey algorithm. Their connection to orthogonal polynomials
often yields useful applications in Combinatorics: Hankel determinants enumerate certain
families of weighted paths, Catalan — like numbers often are sequences important in combi-
natorial enumeration, and, as a recent application, orthogonal polynomials turned out to be
an important tool in the proof of the alternating sign matrix conjecture.
The framework for studying combinatorial applications of Hankel matrices and further
aspects of orthogonal polynomials was set up by Viennot [23]. Of special interest (cf. [6]) are

determinants of Hankel matrices consisting of Catalan numbers 2m1+1 (2”;:1), namely for the
sequence ¢, = 2m1+1 (%:n“), m=0,1,... it is
: i +J+2
dO=dp =1, 4= I LI fork>2n>1. (1.4)
1<igj<k-1 ¢t
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In Section II we shall study Hankel matrices whose entries are defined as generalized

Catalan numbers ¢ = 320 (*+1). In this case we could show that
1 fn Ny 62
d%o) _ nl—[ (37 + 1)(6])!(.2])!7 %1) _ ﬁ ( 2 ) _ (1.6)
iso (43 + D) = 2%

These numbers are of special interest, since they coincide with two Mills — Robbins —
Rumsey determinants, which arise in the enumeration of alternating sign matrices.

Let us recall some properties of Hankel matrices. Of special importance is the equation

Co C1 (&) NN Cp—1 Qn,0 —Cp

C1 C2 c3 S Cn, An, 1 —Cn+1

() Cc3 C4 cee Cp+l . An,2 = —Cn+2 . (17)
Cpn—1 Cn Cp4l ... C2p-2 QAn,n—1 —C2n—1

If the matrices AELO) are nonsingular for all n, then (cf. [4], p. 246) the polynomials

tj(:t) = J + (L]',j_ll'j71 + (L]',j_zl'j72 + ... a1+ ajp (1.8)

form a sequence of monic orthogonal polynomials with respect to the linear operator T
mapping z! to its moment 7T (z!) = ¢ for all [, i. e.

T(tj(z)  tm(z)) =0 for j #m, (1.9)

or equivalently, T(z™-tj(z)) =0form=0,...,j — 1. (1.10)

In Section IIT we shall study matrices Ln, = (I(m,7))m, j=0,1,.,n—1 defined by

P

[(m,j) =T(x™ - t;j(x)). (1.11)

By (1.10) these matrices are lower triangular. The recursion for Catalan — like numbers,
as defined by Aigner [1], can be derived via matrices L, with determinant 1. Further, the
Lanczos algorithm yields a factorization L, = A, - UL, where A, is a nonsingular Hankel
matrix as in (1.1), Ly, is defined by (1.11) and

1 0 0 . 0 0
(Ll,g 1 0 N 0 0

Uy=| @0 a2 T .. 0 0 (1.12)
Ap-10 Gpn-1,1 Gn—22 -.. Gp—1p—2 1

is the triangular matrix whose entries are the coefficients of the polynomials ¢;(x).

In Section IIT we further shall discuss the Berlekamp — Massey algorithm, where Hankel
matrices of syndromes resulting after the transmission of a code word over a noisy channel
have to be studied. Via the matrix L, defined by (1.11) it will be shown that the Berlekamp
— Massey algorithm applied to Hankel matrices with real entries can be used to compute the
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coefficients in the corresponding orthogonal polynomials. In this case all Hankel matrices A,
under consideration are nonsingular.

Hankel matrices come into play when the power series
F(z) =co+ c1e + o + ... (1.13)

is expressed as a continued fraction. If the Hankel determinants dg)) and d%l) are different
from 0 for all n, the so-called S—fraction expansion of 2F(2) has the form

1 1 - Co
;F(;) - @ (1.14)
1 =
B 72
T — P
T —
where for n > 1 (cf. [16], p. 304)
1) 40 0 1
oo A A, (115)
n — ) n — . .
dgblzl Fo FONFE
(1.14) can be transformed to the J—fraction
Co
1.16
R 3 (1.16)
' Ba
e 2
r—a3— ——————
T—ag—...

with a1 = ¢1, and a1 = gj41 + €5, B = gjej for j > 1. (cf. [16], p.375).

For the notion of S— and J- fraction (S stands for Stieltjes, J for Jacobi) we refer to the
standard book by Perron [16]. We follow here the (gn, e,)-notation of Rutishauser [20]. (1.16)
was used by Flajolet ([7]) to study combinatorial aspects of continued fractions, especially,
he gave an interpretation of the coefficients in the continued fractions expansion in terms of
weighted lattice paths.

(1.9) results from the quality of the approximation to %F (%) by quotients of polynomials
1;]’((;”)) with ¢;(z) defined under (1.8). The polynomials ¢;(x) hence obey the three — term
recurrence

tj(z) = (z — aj)tj1(x) = Bj—1 - tj-2(z),  to(z)=1, t(z)=x—-o, (1.17)

with a1 = ¢1 and aj41 = gj41 + €5, Bj = qje; for j > 1. (1.18)

I1. Hankel Determinants And Alternating Sign Matrices
The generating function

Ca)=Y 3m1+ : <3m * 1) 2" (2.1)

m=0 m
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fulfills the functional equation C(z) = 1+ = - C(z)3, from which immediately follows that

1
O(x)
Lattice path enumeration allows to derive the following identity.
Lemma 2.1:

( mi'::o (3;?) wm) . ( ,,i:o 3m1+ 1 <3mm+ 1) w) _ i <3mm+ 1) o )

m=0

=1-z-C(z)% (2.2)

Theorem 2.1: For m =0,1,2... let denote ¢, = (3m+1) Then

3m+1
Co C1 C2 - Cn—1
C1 C2 C3 - Cp _ .
Ca €3 €4 ... Cptl H (37 + 1)(65)!(24)! 7
S . = (45 +1)|(4])|
Cp—1 Cp Cpyl .. C2p—2
C1 C2 c3 . Cp
C2 C3 C4 coo Cpy1 n (6]'—_2)
3 C4 C5 ... Cpt2 _ H 42]_1_1 (2.4)
S . =20
Cn Cn+l Cp42 ... C2p-—1

Proof: Observe that

<3m> I GH IS (34 + DTS (35 +2) Ty 5 G+ ) 5 (G +4)

m m! 17 (27) T17%, (25 + 1) 4 m! 7L (5 + 4)

and accordingly

<3m+1> T2 G9) 70 (35 + ) T (35 + 2) 7(27)mHT:BI(%+j)HT:BI(%+j)
m m) szl( ) 117 (24 +3) 1 m! 175 (3 +J)

Then with (2.2) and (2.3) we have the representation

D(z):=1-z-C(z)* = m=0 (3::)wm Fla,B,7,9)

%o (™ )am  Fla,8+ 1,7+ 1,y)’

which is the quotient of two hypergeometric series, where

0 et DB 5, alat D+ BB B 1) ,
Flafoy) =1t =t = oy v T s+ Y

with the parameter choice a = %, 8= %, v = %, Yy = 247:p
For quotients of such hypergeometric series the continued fractions expansion as in (1.14)
was found by Gauss (see [16], p. 311). Namely for n =1,2,... it is
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o - latn)(y-B+n) _ B4n)ly—a+tn)
" (y+2n)(y+2n+1) " (y42n - D(y +2n)

Some further elementary calculations — carried out exactly in [22] — finally yield the formula
in the theorem. (q.e.d.)

Let us finally discuss the connection to the Mills — Robbins — Rumsey determinants

2n—2 /. .
B (2t} J 25—t
Tn(a:,;t)det(; (tz) <2jt>x ) , (2.6)
= 4,j=0,...,n—1

where y is a nonnegative integer (discussed e. g. in [15]). For p = 0,1 it is 15, (1, ) = a
- the Hankel determinants in (2.4). Stanley [21] conjectured T,(1,1) to be the generating
function for alternating sign matrices invariant under a reflection about a vertical axis (cf.
also [15]. This has recently been proved by Kuperberg [10].

An alternating sign matriz is a square matrix with entries from {0,1,—1} such that i) the
entries in each row and column sum up to 1, ii) the nonzero entries in each row and column
alternate in sign. An example is

0 0 1 00
0 1 -1 10
1 -1 1 —-11
0 1 -1 10

0 0 1 00

The alternating sign matrix conjecture concerns the total number of n x n alternating
sign matrices, which was conjectured by Mills, Robbins, and Rumsey to be ]'[;”;01 ((35:]'1))!!'
The problem was open for fifteen years until it was finally settled by Zeilberger [25]. The
development of ideas is described in Bressoud’s book [4]. There are deep relations to Statistical
Mechanics, since the configuration of water molecules in “square ice” can be described by an
alternating sign matrix.

Recently, it has been discovered [19] that the formula for the total number of alternating

sign matrices also arises as a Hankel determinant where the entries in the matrix are the coef-
1-(1-92)1/3
3z

ficients of the generating function . An appropriate combinatorial interpretation of
these numbers might yield a new and simpler proof of the alternating sign matrix conjecture.

III. Catalan — like Numbers and the Berlekamp — Massey Algorithm

In this section we shall study two — dimensional arrays {(m,j), m,j = 0,1,2,... and the
matrices Lp, = (I(m, j))m,j=0,1,...n—1 defined by

l(m,j) = T(z™ - tj(x)), (3.1)

where T is the linear operator defined under (1.9). Application of the three—term—
recurrence

tj(z) = (x — aj)tj1(z) = Bjatj—(z)

(cf. (1.17)) and the linearity of T yield the recursion
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I(m,j) =1m—1,7+1) + ajpr1l(m —1,5) + Gil(m — 1,5 — 1) (3.2)
with initial values [(m,0) = cp, [(0,7) =0 for 5 # 0 (and Gy = 0, of course). Especially,

l(m,m) =cob1B2 - Bm, m+1,m)=cob1f2- - Bmlar +az+ ...+ ams1) (3.3)

We shall point out two connections of the matrices L, to Combinatorics and Coding
Theory. Namely, for the case that 3; = 1 for all j the matrices L, occur in the derivation
of Catalan — like numbers as defined by Aigner in [1]. They also can be determined in order
to find the factorization L, = A, - UL, where A, is a nonsingular Hankel matrix of the form
(1.1) and U, is the matrix (1.12) with the coeflicients of the orthogonal polynomials in (1.8).
Via formula (3.3) the Berlekamp — Massey algorithm can be applied to find the parameters
a; and (; in the three — term recurrence of the orthogonal polynomials (1.8).

Aigner in [1] introduced Catalan — like numbers and considered Hankel determinants
consisting of these numbers. For positive reals a and s Catalan — like numbers C’ﬁ;f’s) are
defined as entries b(m, 0) in a two — dimensional array b(m, j), m =0,1,2,...,7 =0,1,...,m,
with initial conditions b(m,m) =1 for all m = 0,1,2,..., b(0,5) = 0 for j > 0, and recursion

b(m,0) =a-b(m —1,0) +b(m —1,1),

b(m,j) =b(m—1,7—1)+s-b(m—1,7) +b(m—1,5+1) for j =1,...,m. (3.4)

The matrices B, = (b(m, j))m,j=0,...,n—1, obtained from this array, have the property that
B, - B! is a Hankel matrix with determinant 1. In the example below the binomial coefficients
(*™+1) arise as B,

1

3 1

10 5 1
35 21 7 1

126 84 36 9 1

In [1] it is further shown that C’g’l) are the Motzkin numbers, /7(,3’2) are the Catalan

)

3,3 .
numbers and Cﬁn are restricted hexagonal numbers.

Important for the decoding of BCH codes is also a decomposition of the Hankel matrix
Ap = VoD,V as a product of a Vandermonde matrix V;,, its transpose V;! and the diagonal
matrix D,. Here the parameters in the Vandermonde matrix are essentially the roots of the
polynomial #,(z). This decomposition was already discovered by Baron Gaspard Riche de
Prony [18] (rather known as the leading engineer in the construction of the Pont de la Concorde
in Paris and as project head of the group producing the logarithmic and trigonometric tables
from 1792 - 1801).

Via (3.3) the parameters r; in the Berlekamp — Massey algorithm presented below will be

explained in terms of the three — term recurrence of the orthogonal polynomials related to
the Hankel matrices A,,.
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Peterson [17] and Gorenstein and Zierler [8] presented an algorithm for the decoding of
BCH codes. The most time—consuming task is the inversion of a Hankel matrix A, asin (1.1),
in which the entries ¢; are syndromes resulting after the transmission of a codeword over a
noisy channel. Matrix inversion, which takes O(n?®) steps was proposed to solve equation
(1.7). Berlekamp found a way to determine the a, ; in (1.7) in O(n?) steps. His approach was
to determine them as coefficients of a polynomial u(x) which is found as appropriate solution
of the “key equation”

F(z)u(z) = q(z) mod 21!,

Here the coefficients co, . .., co; up to degree 2t of F'(z) can be calculated from the received
word. Further, the roots of u(x) yield the locations of the errors (and also determine ¢(x)).
Motivated by the application in Coding Theory one is interested in finding polynomials of
minimum possible degree fulfilling the key equation. This key equation is solved by iteratively
calculating solutions (qi(z),ur(z)) to F(x)ug(z) = qr(z) mod 2**1, k =0,...,2t.

The algorithm is presented by Berlekamp in [2]. Massey [13] made a slight simplification
of Berlekamp’s algorithm and derived it as a problem in the design of linear feedback shift
registers (cf. also [3], p. 180).

A sequence of shift registers (¢;,u;(z)), j =1, ..., 2n—2is constructed, where {; denotes
the length (the degree of u;) and

u](x) = ]',]wj + bj,]',lajj_l + ...+ b]',lx + 1.
the feedback—connection polynomial of the j—th shift register. The Berlekamp — Massey
algorithm works over any field and will iteratively compute the polynomials u;(x) as follows
using a second sequence of polynomials v;(z).

Berlekamp — Massey Algorithm: Let uo(z) = 1,v9(xz) = 1 and {p = 0. Then for
j=1,...,2n — 2 set

Z
T]' = Z bj',l,tcj',lft, (35)
t=0
fj = (5](] — fjfl) + (1 — 5]')@',1, (36)

w(@) ) _ L =iz ) [ uj-i(z)
( vj(év) ) N ( 6]- ~1/7‘j (1—6j)x ) ( Uj—l(iv) ) ) (37)

P 1 ifr;#0and 20;_; <j—-1
7710 otherwise

where
(3.8)

The relation of Berlekamp’s algorithm to continued fraction techniques was pointed out
by Mills [14] and thoroughly studied by Welch and Scholtz [24].

Several authors (e. g. [11], p. 156) state that the proof of the above recurrence is quite
complicated or that there is need for a transparent explanation. We shall see now that the
analysis is much simpler for the case that all principle submatrices of the Hankel matrix A,
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are nonsingular. As a useful application, then the r;’s yield the parameters from the three —
term recurrence of the underlying polynomials.

So, let us assume from now on that all principal submatrices A;, i < n of the Hankel matrix

Ay are nonsingular. For this case, Imamura and Yoshida [9] demonstrated that {; = {;_; = £
for even j and {; = j — {1 = % for odd j such that ¢; is 1 if j is odd and 0 if j is even
( 25 (x)
ug;(z)
This means that there are only two possible recursions for uj(x) depending on the parity

of j, namely

then are the convergents to F(z)).

T24 T25-1
L rugjo(x), uzj-1(x) = ugja(x) — L= uy;_4(x).
T25—-1 r25-3

uzj(2) = uzjr(e) -
So the algorithm is simplified in (3.6) and we obtain the recursion

upi(x) \ _ (1= w5t —raaw | uss()
()= (e ) (o). 9

By the above considerations we have the following three-term recurrence for ug;(z) (and
also for g;(x) with different initial values).

ro; T
ugj(z) = (1 — 2 z)ugj—2(x) — £91:21@]',4(91:).
T2j—-1 253

Since the Berlekamp - Massey algorithm determines the solution of equation (1.7) it must
be

2y (3) = 1(2).

as under (1.8). This is consistent with (1.17) where we consider the function F(1) instead
of F(x). By the previous considerations, for ¢;(x), we have the recurrence

j T
) ti(e) — () (3.10)
2j—1 T25-3

Equation (3.10) now allows to give a simple interpretation of the calculations in the single
steps carried out in the course of the Berlekamp — Massey algorithm for the special case that
all principle submatrices of the Hankel matrix A, are nonsingular.

Proposition 3.1: Let A, be a Hankel matrix with real entries such that all principal
submatrices 4,7 = 1,...,n are nonsingular and let T be the linear operator mapping T'(z!) =
c; as in (1.9). Then for the parameters r; obtained via (3.5) it is

rojo1 =T (@™t 1(x)) = cobifBo - Bj—1

roj = ajT(a:j_l . t]',l(x)) = o102 - /3]',101]', (3.11)

where a; and f1,...,0j—1 are the parameters from the three-term recurrence of the or-
thogonal polynomials ¢;(z), 7 =0,...,7.

Proof: The proposition, of course, follows directly from (3.10), since the three — term

recurrence immediately yields the formula for the r;’s. Let us also verify the identities directly.
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From the considerations under (3.5) to (3.10) it is clear that the degree of uaj_s is j —1. Hence

in this case bgj,g,]' = b2j,2,j+1 =...= bgj,g,gj,g =0in (35) and
j—1 j—1
_ _ 2j—2—t
Tojo1 = 3 baj_zcrja¢ = 3 baj_o T (x™>7F)
t=0 t=0

= t=0 =

j—-1 j-1 Jj—1
=T (Z sz_z,tl'2]2t> =T (1‘]1 Z sz_z,tmjlt) =T (:vjl Z sz_z,j_l_tfvt>
t=0 t=0

=T(x7"j_1(z)) = cof1B2+ Bj—1

j—1
=T (x]_l Z ajl,ta:t)
t=0

where the last equation follows by (3.3). A similar calculation shows that

. Toi_ - . -
roj =T (m]t]—_l(m) — 77;] ;m] lt]‘_z(m)> =T (m]tj_l(x) — ﬂj_ll'] lt]‘_z(w))
j—

since by the previous calculation :::1 = f3j_1. So by (3.3) further

.=
roj = 00/31,32 - -,3]'71 [(011 +ay+ ...+ a]') — (al +ay+...+ ajfl)] = Cgﬂlﬂg - -,3]'7101]'.

Remarks:
1) Observe that with Proposition 3.1, the Berlekamp — Massey algorithm can be applied

to determine the coefficients o; and 3; from the three — term reccurence of the orthogonal
polynomials ¢;(x). From the parameters ry;_; obtained by (3.5) in the odd steps of the

iteration 3;_; = ::j—:; can be immediately calculated, and in the even steps o = T;_zil is
. e ey _ det(4)det(4; o) o det(ay)
obtained. By (1.15) and (1.19) it is 81 = ey = 7(16%(14]_71)27 . Hence r9j_1 = 7det(A]-il)’

which means that the Berlekamp — Massey algorithm also yields a fast procedure to compute
the determinant of a Hankel matrix.

2) By Proposition 3.1 the identity (3.5) reduces to Z{:o ajiCjtt = cof1P2 - - - 3j where the
ajt are the coefficients of the polynomial ¢;(x), the 3;’s are the coeflicients in their three —
term recurrence and the ¢;’s are the corresponding moments. For the classical orthogonal
polynomials all these parameters are usually known, such that one might also use (3.5) in the
Berlekamp — Massey algorithm to derive combinatorial identities.

3) The number wall algorithm due to Conway — also motivated by continued fractions —
was recently presented as a cookbook for linear feedback shift registers [12].
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