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This paper continues the research published in [1, 2, 3, 4]. It was shown in [1] that a
perfect code is uniquely determined by its vertices in the middle levels of a hypercube, and
the concerned formula was obtained in [2] and [3]. In [4] it was proved that the vertices in
the h-th level, h � (n� 1)=2, of the code of length n uniquely determine all code vertices in
the lower levels. In this paper we derive the reconstruction formula. As in [3, 4], centered
functions, which are the generalization of perfect codes, are the subject of the consideration.
The question on reconstruction of perfect binary codes was also investigated in [5], where a
way to reach a formula was speci�ed.

We are planning the following. Let us introduce vector F j of 0-centered function f values
at all vertices of the j-th level of the hypercube and an auxiliary vector U j of the same
dimension, j � (n+ 1)=2. Suppose that the vector F h is known. Our main goal is to �nd an
expression of the vector F j presentation for any j � h, using the vector F h; h � (n + 1)=2,
(Theorem 2). Three steps are undertaken. First, we express the vector F j in terms of the
vector U j. Second, we de�ne the vector U j using the vector Uh. Third, we determine the
vector Uh in terms of the vector F h. The �rst step consists of combinatorial calculations
(Lemmas 1, 2, 3 and 4). The second containing Lemma 5 is obvious. The last step is
accomplished using the theory of association schemes (Lemma 6).

Section 1 contains essential de�nitions and facts on centered functions and the theory of
association schemes. In section 2 we present technical combinatorial Lemmas 1, 2 and 3.
Section 3 includes lemmas corresponding to the three above mentioned steps and the main
theorem.

1 De�nitions and essential facts

We denote n-dimensional vector space over GF (2) by En and call it a hypercube. Let us
consider Hamming metric in En, i. e. Hamming distance �(x;y) between vertices x and y of
the hypercube is equal to the number of positions where the vertices di�er. Hamming weight
wt(x) of vertex x is equal to the number of nonzero positions of x. De�ne a partial ordering
on En: x � y if xi � yi; i = 1; : : : ; n, where x = (x1; : : : ; xn) and y = (y1; : : : ; yn).

Denote by Wr a set of all vertices with weight r and call it the r-th level of the hypercube.
We use a special symbol for the middle level: A = W(n+1)=2. The Johnson distance g(x;y)
between vertices x;y 2Wh; h = 0; : : : ; n, is a half of the Hamming distance between them.

A perfect binary single-error-correcting code C (brie
y a perfect code) of length n is a
subset of En such that the set of all balls of radius 1 with centers in C forms a partition of
the hypercube.

A #-centered function f : En ! R is a function such that the sum of its values in a ball
of the radius 1 equals to #. It is easy to see that the characteristic function of a perfect code
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is 1-centered. An arbitrary function is #-centered if and only if this function is the sum of a
0-centered function and the constant #-centered function. Hence, without loss of generality
we can consider only 0-centered functions.

Let f : En ! R be a 0-centered function. We can prove

Proposition 1. A function f : En ! R is 0-centered if and only if f is a linear combination
of functions

fa(x) = (�1)ha;xi; x 2 A:

Moreover, if a function ' : A! R is de�ned by a formula

'(a) =
X
x�a

f(x); (1)

then the following statement is true.

Proposition 2. Let f : En ! R be a 0-centered function and x 2 En. Then

f(x) =
1

2(n�1)=2

X
a2A

(�1)ha;xi'(a): (2)

The function ' is referred to as the Fourier transformation of the function f .
The following theorem was proved in [4].

Theorem 1. Let f be an arbitrary 0-centered function, j � h � (n+1)=2, and x 2Wj. Then
the value of the function f at the vertex x is uniquely determined by the values f(z); z 2Wh.

From the proof of this theorem it was not clear how to obtain the corresponding formula.
Another approach is suggested in the paper.

Some concepts and statements of the theory of association schemes are useful to remind.
By Ek(x;h) denote the Eberlein polynomial:

Ek(x;h) = Ek(x;h; n) =
kX

j=0

(�1)j
 
x
j

! 
h� x
k � j

! 
n� h� x
k � j

!
:

The Johnson association scheme is a set of all vertices of the h-th level Wh with relations
Ri; 0 � i � h, such that

(x;y) 2 Ri () g(x;y) = i:

These relations can be described by their incidence matrices Dh
i , i.e. square (0,1)-matrices

of size jWhj � jWhj, rows and columns of which correspond to the vertices of Wh and the
elements are

(Dh
i )x;y =

(
1; if g(x;y) = i;
0; otherwise:

The set of incidence matrices Dh
i ; i = 0; : : : ; h, forms a basis of a vector space which is an

algebra called the Bose-Mesner algebra of the scheme. This algebra has another basis which
consists of primitive idempotents Jhi ; i = 0; : : : ; h, such that

hX
i=0

Jhi = E; (Jhi )
2 = Ji; Jhi J

h
j = 0; 0 � i; j � h; i 6= j:

From these properties follows

446



Proposition 3. Let the matrix P be invertible and be a linear combination of association
scheme idempotents, i.e. there exist nonzero coe�cients �i 2 R; i = 0; : : : ; h, such that
P =

Ph
i=0 �iJi. Then P�1 =

Ph
i=0 �

�1
i Ji.

The following interdependence between two mentioned bases of Bose-Mesner algebra holds:

Dh
k =

hX
i=0

Ek(i;h)J
h
i ; (3)

Jhi =
1

jWhj

hX
k=0

qi(k;h)D
h
k ; (4)

where
qi(j;h) =

�i
vj
Ej(i;h);

�i =
n� 2i+ 1

n� i+ 1

 
n
i

!
; vj =

 
h
j

! 
n� h
j

!
:

2 Preliminary lemmas

In this section we are going to prove some technical lemmas. Let us introduce some notation.
Throughout the paper f : En ! R denotes a 0-centered function. Let x 2Wj. Denote

u(x) =
X

a2A; a�x

'(a); (5)

�l(x) =
X

a2A; ha;xi=l

'(a); (6)

dm(x) =
X

y2Wm; y�x

u(y): (7)

We will use the following vectors:
� is the vector of the values for ' at all vertices belonging to the middle level A =W(n+1)=2;
F j is the vector of the values for f at all vertices belonging to the j-th level Wj; j = 0; : : : ; h;
U j is the vector of the values for u at all vertices belonging to the j-th level Wj; j = 0; : : : ; h.

Our main goal is to �nd the expression of the vector F j for any j � h over the vector F h.
Now we are ready to carry out our threestep plan (see introductory comments).

Lemma 1. Let x 2Wj and m � j. Then

dm(x) =
1 

(n+ 1)=2 �m
j �m

! jX
l=m

 
l
m

! X
z2Wj ; hx;zi=l

u(z): (8)
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Proof. It easy to see that for any vertex y 2Wm; m � j;

u(y) =
1 

(n+ 1)=2�m
j �m

! X
z2Wj ; z�y

u(z):

Hence, according to (7),

dm(x) =
X

y2Wm; y�x

1 
(n+ 1)=2 �m

j �m

! X
z2Wj ; z�y

u(z):

The number of entries of the summand u(z) in this double sum depends only on the scalar
product of vertices x; z 2Wj and is equal to

jfy 2Wm : y � x; y � zgj =

 
hx; zi
m

!
:

Hence formula (8) is true. 5

Lemma 2. Let x 2Wj and m � j. Then

dm(x) =
jX

t=m

 
t
m

!
�t(x): (9)

Proof. The proof is similar to the proof of Lemma 1. By de�nitions (6) and (7) we have

dm(x) =
X

y2Wm; y�x

X
a2A; a�y

'(a):

In the last sum the number of entries of the summand '(a) depends only on the scalar product

of vertices x 2 Wj and a 2 A. This number is equal to the binomial coe�cient

 
ha;xi
m

!
.

Hence the formula (9) is true. 5

Lemma 3. Let x 2Wj and l � j. Then

�l(x) =
jX

m=l

(�1)m+l

 
m
l

!
dm(x): (10)

Proof. From Lemma 2 for any x 2Wj we get the following matrix equation:

d(x) =M j�(x);

where
d(x) = (d0(x); d1(x); : : : ; dj(x))

T ;

�(x) = (�0(x); �1(x); : : : ; �j(x))
T
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and M j is the triangular matrix of size (j + 1)� (j + 1) with elements (M j)kt =

 
t
k

!
.

The vector �(x) is required. So it is necessary to invert the matrixM j. The matrix (M j)�1

exists because M j is a triangular matrix with nonzero diagonal. We can check directly that

the matrix (M j)�1 consists of the elements (M j)kl = (�1)k+l
 

l
k

!
. In fact,

(M j(M j)�1)kl =
lX

t=k

(�1)t+l
 

l
t

! 
t
k

!
=

(
1; if k = l;
0; otherwise:

The last equation is well known. Finally, �(x) = (M j)�1d(x) and we get (10). 5

3 Main result

The principal lemmas and the main theorem are included in this section. In Lemma 4 we
present the vector F j as a linear transformation of the vector U j. This linear transformation
is inverted in Lemma 6. In Lemma 5 we express the vector U j in terms of the vector Uh. Our
main goal is to �nd the expression of the vector F j for any j � h in terms of the vector F h.

Let us introduce a square matrix Bj ; j � (n + 1)=2, of size

 
n
j

!
�

 
n
j

!
. Its rows

and columns correspond to vertices of the j-th level Wj of the hypercube and its elements are
uniquely determined by the scalar products of vertices x; z 2Wj, i.e. the row corresponds to
the vertex x and the column corresponds to the vertex z, then the element (Bj)xz in this row
and this column is de�ned as

(Bj)xz = �j(hx; zi); where (11)

�j(t) =
1

2(n�1)=2

tX
l=0

tX
m=l

(�1)m

 
t
m

! 
m
l

!
 

(n+ 1)=2�m
j �m

! : (12)

Note that the martix Bj is a linear combination of the incidence matrices of the Johnson
association scheme: Bj =

Pj
t=0 �

j(t)Dj
j�t:

Lemma 4. Let j � (n+ 1)=2. Then

F j = BjU j: (13)

Proof. Let x be a vertex of weight j. From (2) and (6) we have

f(x) =
1

2(n�1)=2

X
a2A

(�1)ha;xi'(a) =
1

2(n�1)=2

jX
l=0

(�1)l�l(x):

From Lemma 2 it follows that

f(x) =
1

2(n�1)=2

jX
l=0

jX
m=l

(�1)mdm(x)

 
m
l

!
:
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Using lemma 1 we get

f(x) =
1

2(n�1)=2

jX
l=0

jX
m=l

(�1)m

 
m
l

!
 

(n+ 1)=2�m
j �m

! jX
t=m

 
t
m

! X
z2Wj ; hx;zi=t

u(z):

After changing the order of the summation we get:

f(x) =
1

2(n�1)=2

jX
t=0

0
@ X
z2Wj ; hx;zi=t

u(z)

1
A tX

l=0

tX
m=l

(�1)m

 
m
l

! 
t
m

!
 

(n+ 1)=2 �m
j �m

! =

=
X
z2Wj

u(z)�j(hx; zi):

This expression gives us (13). 5

Denote by Ljh; j � h � (n+1)=2, a matrix of size

 
n
j

!
�

 
n
h

!
, which rows correspond

to the vertices of the j-th level Wj of the hypercube and columns correspond to the vertices
of the h-th level Wh of the hypercube. If y 2 Wj and x 2 Wh, then the element (Ljh)y;x in
the corresponding row and column is

(Ljh)y;x =

8><
>:
 
h
j

!�1
; if y � x;

0 ; otherwise:

(14)

Lemma 5. Let j � h � (n+ 1)=2. Then

U j = LjhUh: (15)

This lemma is easy, so its proof is omitted.
The following lemma is central in the paper.

Lemma 6. Let h � (n+ 1)=2. Then the matrix Bh is invertible and

(Bh)�1 =
1 
n
h

! hX
k=0

 
hX

i=0

qi(k; h)Ph
t=0 �

h(t)Eh�t(i;h)

!
Dh

k ; (16)

where Dh
k ; k = 0; : : : ; h, are the incidence matrices and qi(k;h); Ej(i;h); i; j; k = 0; : : : ; h,

are the parameters of the Johnson association scheme and the values �h(t); t = 0; : : : ; h, are
de�ned by (12).

Proof. Theorem 1 was proved in [4]. Moreover, it was proved that the vector F h can be
an arbitrary vector of the concerned dimension. Therefore, the linear transformation Bh is
invertible. We get from Lemma 4 that all elements of the martix Bh depend only on the
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scalar products of the vertices of the h-th level Wh. So B
h is a sum (with coe�cients) of the

incidence matrices of the Johnson association scheme:

Bh =
hX

t=0

�h(t)Dh
h�t:

This allows using of the properties of the association scheme. First we change the basis of
Bose-Mesner algebra (using (3)):

Bh =
hX
i=0

 
hX
t=0

�h(t)Eh�t(i; h)

!
Jhi :

Then we use the proposition 3:

(Bh)�1 =
hX

i=0

 
hX
t=0

�h(t)Eh�t(i; h)

!�1
Jhi :

Third, we change (using (4)) the basis of Bose-Mesner algebra a second time and get the
equation (16). 5

Now we are ready to formulate and prove the main theorem.

Theorem 2. Let f : En ! R be an arbirtary 0-centered function and j � h � (n + 1)=2.
Then the vector F j of the function f values over the j-th level of the hypercube is a linear
transformation of the vector F h of the function f values over the h-th level and

F j = BjLjh(Bh)�1F h; (17)

where the matrices Bj; Ljh; (Bh)�1 are de�ned by (11), (12), (14), (16).

Proof. The proof is a straightforward application of Lemmas 4, 6 and 5.

Remark 1. Let C be a perfect code, � be its characteristic function and all code vertices in
the h-th level of the hypercube be known, h � (n+ 1)=2. To reconstruct all code vertices in
the j-th level j � h, we apply Theorem 2 to the 0-centered function �� 1=(n+ 1).
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