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Abstract

Let p = ef+1 be an odd prime for some e and f . In this paper, e-th residue sequences

of period p and their de�ning pairs are de�ned, and the problem of determining their trace

representations is reduced to that of determining their de�ning pairs, and the latter is

further reduced to that of evaluating the values of some e-tuples which are associated

with e-th residue classes, and some properties of those e-tuples are discussed. Finally,

trace representations and linear complexities of the binary characteristic sequences of all

the e-th residue cyclic di�erence sets modulo p with e � 12 and some other e-th residue

sequences are determined, based on the theory developed in this paper, and some open

problems are proposed.
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1 Introduction

Let p be an odd prime and F �
p = Fpnf0g be the cyclic multiplicative group mod p. In this

paper, we will investigate mainly the characteristic sequences of cyclic di�erence sets which
are some unions of cosets of the e-th powers in F �

p . These are called e-th residue cyclic
di�erence sets [1][2]. Existence and constructions for e-th residue cyclic di�erence sets are
well summarized in [1][2]. The characteristic sequences of e-th residue cyclic di�erence sets are
also called \cyclotomic sequences" due to their close relation with cyclotomic classes and/or
cyclotomic numbers [3][5][6].

Quadratic residue di�erence set sequences (also called as Legendre sequences) is perhaps
the most well-known class of e-th residue sequences. Its linear complexity has been determined
earlier in [26] and [21], later independently in [4]. Trace representation of these sequences of
period p which are Mersenne prime was determined in [20], and its full generalization in [16].
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Some generalization of Legendre sequences was given in [6] that gives some constructions for
balanced binary sequence pairs with desirable cryptographic properties, including their linear
complexity.

Trace representation and linear complexity of Hall's sextic residue di�erence set sequences
of period p which are Mersenne prime have been determined in [18]. It is well known that
there are only three such primes, namely, 31, 127, and 131071. Numerical computation was
enough to check the trace representation of these three cases in [18]. Linear complexity
of these sequences in general has been determined in [15]. It is a recent result that trace
representation of these sequences of period p � 7 (mod 8) is determined [17], leaving the case
where p � 3 (mod 8) open.

In this paper, trace representations and linear complexities of the binary characteristic
sequences of all the e-th residue cyclic di�erence sets modulo p with e � 12 are determined.
So are those of some other e-th residue sequences. Some of the results in this paper can be
found elsewhere, due to partial overlap with others. For example, the results on Legendre
sequences are simply a re-discovery based on the theory developed in this paper, and can be
found in many earlier papers.

2 e-th residue sequences and their trace representations

At �rst, we make some notations for this paper. We �x a pair (p; e), where p is an odd prime,
and e is a factor of p � 1, i.e., p = ef + 1 for some number f . We let F �

p = Fpnf0g be
the cyclic multiplicative group mod p, and let He = fxe j x 2 F �

p g, which is a subgroup of
F �
p made of all the e-th powers in F �

p . We let � be a primitive p-th root of unity, and let
< � >�=< � > nf1g, where < � > denotes the group generated by �. We let n be the order
of 2 mod p, and let c = (p � 1)=n. We call d , gcd(c; e) the d-parameter corresponding to
the chosen pair (p; e), and let c1 = c=d, and e1 = e=d. We know

ef = p� 1 = cn; (p� 1)=d = e1f = c1n; and (e1; c1) = 1: (1)

We denote by LC(s) the linear complexity of a binary sequence s, and denote by wH(�) the

Hamming weight of a tuple � over F , here F is the algebraic closure of the binary �eld F2.
We also let �(x) be 1 or 0 according to whether the integer x is odd or even, respectively.

De�nition 1 Let s = fs(t)jt � 0g be a binary sequence of period p = ef + 1. Then, we say

s is an e-th residue sequence if s(t) is constant on each of the cosets kHe = f kx j x 2 He g
of He in F �

p , that is, if s(t1) = s(t2) whenever t1He = t2He.

For examples, given any coset kHe, let bkHe
= fb(t)jt � 0g, where b(t) = 1 for t 2 kHe

and b(t) = 0 otherwise, then bkHe
is an e-th residue sequence. And two more examples: let

1 = fb(t)jt � 0g, where b(t) = 1 for all t; and let b� = fb(t)jt � 0g, where b(t) = 1 if t = 0
(mod p) and b(t) = 0 otherwise, then these two are also e-th residue sequences.

We will denote the sequence bkHe
simply by bk with k 2 F �

p . It is clear there are only e
distinct sequences in the set fbkjk 2 F �

p g, and they can be represented by bui , for 0 � i < e,
where u is any given generator of the group F �

p . It is clear that b1 = bu0 for any u, and that

1 = b� +
X
0�i<e

bui :
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The generating polynomial of each coset kHe is important in expressing the trace repre-
sentations of e-th residue sequences, it is de�ned as

ckHe
(x) =

X
i2kHe

xi (mod xp � 1); (2)

which will also be denoted simply by ck(x) where k 2 F �
p .

De�nition 2 Given a binary sequence s = fs(t)jt � 0g of period p, we say (g(x); �) form a

de�ning pair of s if s(t) = g(�t) for t = 0; 1; 2; :::, where g(x) is a polynomial modulo xp � 1
over F and � 2< � >�. We call g(x) the de�ning polynomial of s, and � the corresponding
de�ning element.

Theorem 3 Let p = ef + 1.

1. Let L be the set of all e-th residue sequences of period p. Then L is a vector space over

F2 of dimension 1+ e, and fbui j0 � i < eg[f1g is a basis of L over F2, where u is any

given generator of F �
p ; i.e., any e-th residue sequence in L can be expressed uniquely in

the form of

sa� = a�1 +
X
0�i<e

aibui; (3)

for some binary (1 + e)-tuple a� = (a�;a), a = (a0; a1; :::; ai; :::; ae�1).

2. Keep the notations in the above item, and let � 2< � >�. Corresponding to a� and �,
de�ne �

�� = a� + f
P

0�k<e ak;

�j =
P

0�k<e akc�uk+j (�)

and de�ne

g(x) = �� +
X

0�j<e

�jcuj (x): (4)

Then (g(x); �) is a de�ning pair of sa� .

3. Keep the notations in the above items. Then LC(sa�) = �(��) +wH(�)f , where

� = (�0; �1; � � � ; �i; � � � ; �e�1):

4. Keep the notations in the above items. Let sa� = fs(t)gt�0. With the knowledge of

the de�ning pair of sa� as shown in (4), its a trace representation can be obtained

immediately as follows:

s(t) = �� +
X
0�i<e

Trn1

0
BB@�i

X
0 � j < c;

j = i (mod e)

�u
jt

1
CCA ; 8t; (5)

where Trn1 (x) =
P

0�i<n x
2i is the trace of x from F2n to F2 [19].
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Theorem 4 Let p = ef + 1, and let d be the d-parameter corresponding to the chosen (p; e).
Keep the notation in Theorem 3.

1. The linear complexity of any e-th residue sequence of period p must be of the form

" + ke1f for some k 2 f0; 1; 2; :::; dg and " 2 f0; 1g. Moreover, denote by N"+ke1f the

total number of the e-th residue sequences of period p with the linear complexity being

equal to "+ ke1f . Then

N"+ke1f =

�
d
k

�
(2e1 � 1)k:

2. In the case when d = 1, we have Np�1 = Np = 2e � 1, and N0 = N1 = 1; moreover, let

sa� be the sequence as given in (3), then

LC(sa�) =

8<
:

p� 1 + �(a� + fwH(a)) if a 6= (0; 0; :::; 0);
1 if a = (0; 0; :::; 0); a� = 1;
0 otherwise:

3 e-tuples

Based on Theorem 3, one can �nd explicitly trace representations of e-th residue sequences
of period p = ef + 1, once an e-tuple of the form

cu(�) = (cu0(�); cu1(�); :::; cue�1 (�)) (6)

is evaluated for some u which is a generator of the group F �
p and � 2< � >�, where cui(�)

is the value of cui(x) at x = �. In order to evaluate each component of these e-tuples, we
need to study their properties. We consider the set C of the e-tuples cu(�) over all possible
generators u of F �

p and all � 2< � >�. That is,

C , fcu(�) j < u >= F �
p ; � 2< � >�g: (7)

Let 
 be the set of all possible e-tuples over F2n . It is known that C � 
. De�ne L
to be the cyclically left-shift-by-1 operator, and D� for 1 � � < e and (�; e) = 1 to be the
�-decimation operator over 
 given as

Lx = (x1; x2; � � � ; xe�1; x0); 8x = (x0; x1; :::; xe�1) 2 
; (8)

D�x = (x0; x�; x2�; :::; x(e�1)�); 8x = (x0; x1; :::; xe�1) 2 
: (9)

Let G , < fL;D� j gcd(�; e) = 1; 0 < � < e g > be the group generated by L and
those D�. It is well-known that for any i and � with (�; e) = 1, there exists j such that
D�L

i = LjD� [27]. We say two elements x and y in 
 are equivalent under the group G
(in short, G-equivalent) if there exists � 2 G such that �(x) = y, which will be denoted by
x � y. This implies that the set C in (7) is an equivalent class under the group G.

Theorem 5 Let c = (c0; c1; � � � ; ce�1) 2 C, then

1. ci 2 F2e1 for all i.
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2. c has �-conjugate property for some integer � which is coprime to e1 in the sense that

ci+dj = c2
�j

i 80 � i < e; 0 � j < e1:

Moreover, if c has the �-conjugate property, then D�(c) has the 1-conjugate property,

where �� = 1 (mod e1).

3. Let C = (ci;j) be the square matrix of size e associated with the tuple c, where ci;j = ci+j ,

0 � i; j < e, and the index i + j are computed mod e. Then C is invertible. As

a consequence, the e-tuple c has no smaller "period" than e. Let �i = Tre11 (ci) =P
0�j<e1

c2
j

i ; then

(a) �i =
P

0�j<e1
ci+dj for all i, and hence �i+dj = �i, for all 0 � i < d; 0 � j < e1.

(b)
P

0�k<d �k = 1,

(c) In case when d > 1, there exists at least one k in the range 0 � k < d such that

�k = 0.

4. For all i = 0; 1; :::; e � 1,

X
0�j<e

cjcj+i =

�
f + 1 (mod 2) if i � e�(f)

2 (mod e)
f (mod 2) otherwise;

where the subscripts j + i are computed mod e.

5. In the case when d = 1, which is the d-parameter corresponding to the chosen (p; e), the
e-tuple c is G-equivalent to an e-tuple of the form of � = (�; �2; : : : ; �2

e�1
) for some �,

where � is a root of an irreducible polynomial p(x) of degree e1 over F2, and Tr
e1
1 (�) = 1.

Let p = ef + 1, and let d be the d-parameter corresponding to the chosen pair (p; e) and
e1 = e=d. For any given generator u of F �

p , let

Pu , f�� + g�;u(x) j �� 2 F2; � = (�0; �1; � � � ; �d�1); �i 2 F2e1 g;

where
g�;u(x) =

X
0�i<d

X
0�j<e1

�2
j

i cui(x)
2j :

Then, for any given � 2< � >�, (g(x); �) is a de�ning pair of an e-th residue sequence of
period p if and only if g(x) 2 Pu. As a consequence, Pu = Pv for any generators u and v of
F �
p .

4 Applications

Based on the theory developed above, we may determine e-tuples cu(�) for some (p; e) with
e = 2; 4; 6; 8; 10, and then de�ning pairs and trace representations of the characteristic se-
quences of some well-known e-th residue cyclic di�erent sets modulo p can be determined
based on these values.
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Linear complexity and trace representation of Legendre sequence [25][1] of period p has
been discussed in [26][21][20][4][3][6][16], which can also be obtained from the item 2(b) of the
following Theorem together with the item 4 of Theorem 3.

Let p = 2f +1 be an odd prime and u be a generator of F �
p . Then, F

�
p = f0g [H2 [uH2,

where H2 is the set of quadratic residues mod p and uH2 = F �
p nH2 is the set of quadratic

non-residues mod p. Let s = fs(t)jt � 0g be the Legendre sequence of period p de�ned by
the following:

s(t) =

�
0 if t 2 H2

1 otherwise.
(10)

The item 1 of Theorem 3 implies that

s = 1 + bu0 ;

where 1 is the all-1 sequence. Note that a� = (a�; a0; a1) = (1; 1; 0). Therefore, from the item
3 of Theorem 3, s has a de�ning pair (g(x); �) where

g(x) = �� + �0cu0(x) + �1cu1(x);

where

�� = 1 + f; �j = c�uj (�); j = 0; 1:

Now, we need to determine the value of cu(�) = (cu0(�); cu1(�)) , (c0; c1). We need the
following:

Lemma 6 Keep the notations so far. Then, the parameter d is the maximum integer that

divides e and that xd = 2 has a solution in Fp.

Now, we distinguish two cases where 2 2 H2 or 2 62 H2.

Case 1 (2 2 H2): According to the quadratic reciprocity theorem, 2 2 H2 if and only if
p � 1; 7 (mod 8), which are equivalent to f � 0; 3 (mod 4), respectively. This implies
d = 2 from Lemma 6, and hence, e1 = 2=d = 1. It implies that ci 2 F2 for i = 0; 1.
Therefore, from the item 3 of Theorem 5, (�0; �1) = (c0; c1) = (1; 0) or (0; 1) according
to the choice of u and �. That is, C = f(1; 0); (0; 1)g.

Case 2. (2 2 uH2): This case corresponds to p � 3; 5 (mod 8), which are equivalent to
f � 1; 2 (mod 4), respectively. We have d = (2; c) = 1, and e1 = 2=d = 2, and hence,
F2 � F4 = F2e1 � F2n, and ci 2 F4 = f0; 1; !; !2g for i = 0; 1, where ! is a primitive
3-rd root of unity. From Theorem 5, the fact that d = 1 implies �0 = 1 = c0 + c1.
Therefore, ci 2 F4nF2 for i = 0; 1, and we have C = f(!2; !); (!; !2)g.

In conclusion, we may choose � 2< � >� such that for any given generator u of F �
p , we have

(cu0(�); cu(�)) =

8>><
>>:

(1; 0) if p = 1 (mod 8)
(0; 1) if p = 7 (mod 8)
(w2; w) if p = 3 (mod 8)
(w;w2) if p = 5 (mod 8);
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where ! 2 F4 is a primitive 3-rd root of unity. With � and ! chosen as in the above, (g(x); �)
is a de�ning pair of s, where

g(x) =
p+ 1

2
+

�
cu0(x) if p = �1 (mod 8)
wcu0(x) + w2cu1(x) if p = �3 (mod 8):

The linear complexity of s is given as

LC(s) = �(
p+ 1

2
) +

�
p�1
2 if p = �1 (mod 8)

p� 1 if p = �3 (mod 8):

Trace representation and linear complexity of Hall's sextic residue di�erence set sequences
[25][1] of period p have been discussed in [18][15][17] (except the trace representation for the
case p � 3 (mod 8)), which can be obtained from the item 2(b) of the following Theorem
together with the item 4 of Theorem 3, including the unsolved case p � 3 (mod 8).

Theorem 7 Let p = ef + 1 be a prime with e = 6 and f odd. Let d be the d-parameter

corresponding to the chosen (p; 6). Then

1. (Sextic residue sequences in general) There exist a generator u of F �
p and � 2< � >�

such that

cu(�) =

8>><
>>:

(0; 1; 1; 0; 1; 0) if d = 6;
(1; 0; w; 1; 0; w2) if d = 3;
(; 3; 2; 6; 4; 5) if d = 2;
(�; �2; �4; �8; �16; �32) if d = 1;

where w is a root of x2+ x+ 1,  is a root of x3 + x+ 1, and � = � or � = �+ 1 where

� is a root of x6 + x5 + 1 (and hence, �+ 1 is a root of x6 + x5 + x2 + x+ 1).

2. (Hall's sextic residue sequences) In the case when p = 6f+1 = 4z2+27 for some integer z,
let s be the Hall's sextic residue sequence of period p which is de�ned as the characteristic
sequence of the Hall's sextic residue di�erent set [10] D = H6 [ u3H6 [ uiH6, where

uiH6 is the coset containing 3. Then

(a) There exists a generator u of F �
p and � 2< � >� such that

cu(�) =

�
(0; 1; 1; 0; 1; 0) if p = 7 (mod 8)
(1; 0; w; 1; 0; w2) if p = 3 (mod 8)

(b) With the choice of u and � as in the above item, (g(x); �) is a de�ning pair of s,

where

g(x) =

�
cu0(x) if p = 7 (mod 8)
wcu0(x) +w2cu3(x) +

P
i=1;2;4;5 cui(x) if p = 3 (mod 8)

(c) The linear complexity of s is given as

LC(s) =

�
p�1
6 if p = 7 (mod 8)

p� 1 if p = 3 (mod 8):
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Theorem 8 Let p = ef + 1 with e = 4 and f odd. Then

1. There exists a generator u of F �
p with 2 2 uH4 and � 2< � >�, such that cui(�) =

(�; �2; �4; �8), where � = � or �+1, and � is a root of the polynomial x4+ x3+1 and is

a primitive 15-th root of unity, and hence, �+ 1 is a root of the polynomial
P

0�i�4 x
i

and is a primitive 5-th root of unity.

2. In case when p = 4f+1 = 1+4z2 for some integer z (for this case, it is known [25][1][2] that
H4 is a (p; (p� 1)=4; (p� 5)=16)-cyclic di�erence set mod p), let s be the characteristic

sequence of H4. Then s = 1 + bu0 , and it has a de�ning pair (g(x); �), where

g(x) =
X
0�i<4

�2
2+i

cui(x);

and � is described as in the item 1 above. As a consequence, LC(s) = p� 1.

3. In case when p = 9+4z2 for some integer z (for this case, it is known [25][1][2] thatH4[f0g
is a (p; (p + 3)=4; (p + 3)=16)- cyclic di�erence set mod p), let s be the characteristic

sequence of the di�erence set H4 [ f0g. Then s = 1 + b� + bu0 , and it has a de�ning

pair (g(x); �), where

g(x) = 1 +
X

0�i<4

(�2
2+i

+ 1)cui(x);

and � is described as in the item 1 above. As a consequence, LC(s) = p.

Theorem 9 Let p = ef + 1 with e = 8 and f odd, and assume d = 8, where d is the

d-parameter corresponding to (p; e). Then

1. There exist u and � 2< � >� such that cu(�) = (c0; c1; � � � ; c7); where

(c0; c1; � � � ; c7) = (1; 1; 0; 1; 0; 0; 0; 0); or its complement (0; 0; 1; 0; 1; 1; 1; 1):

2. In the case when p = 1 + 8z2 = 9 + 64y2 for some odd integers z and y (for this case,
it is known [25][1][2] that H8 is a (p; (p� 1)=8; (p� 7)=64)-cyclic di�erence set mod p),
let s be the characteristic sequence of H8. Then s = 1 + bu0 , and it has a de�ning pair

(g(x); �), where

g(x) =
X
0�i<8

c4+icui(x);

the indexes 4 + i is modulo 8, and ci is described as in the item 1 above.

3. In the case when p = 49 + 8z2 = 441 + 64y2 for some odd integers z and y (for this case,
it is known [25][1][2] that D = H8[f0g is a (p; (p+7)=8; (p+7)=64)-cyclic di�erence set
mod p), let s be the characteristic sequence of D = H8 [ f0g . Then s = 1 + b� + bu0 ,

and it has a de�ning pair (g(x); �), where

g(x) = 1 +
X
0�i<8

(c4+i + 1)cui(x);

the subscript 4 + i is computed mod 8, and ci is described as in the item 1 above.
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Theorem 10 Let p = 31, e = 10, and let s be the characteristic sequence of the cyclic

di�erence set D = H10 [ 11H10 = fi (mod 31) j i = 1; 5; 11; 24; 25; 27g [25][1]. Let � be a root

of the polynomial x5 + x2 + 1. Then

1. c11(�) = (c0; c1; � � � ; c9) , where c2j = ��7�2
4j
; c2j+1 = ��2

4j
; 0 � j < 5:

2. s = 1 + b1 + b11.

3. Let

g(x) = 1 +
X

0�j<5

�
�11�2

4j
c112j (x) + �18�2

4j
c112j+1 (x)

�
:

Then (g(x); �) is a de�ning pair of s.

5 Concluding remarks

In this paper, for the binary characteristic sequences (of period p) of all the cyclic di�erence
sets D which are some union of cosets of e-th powers in F �

p for e � 12, including the Hall's
sextic residue sequences for p � 3 (mod 8), their de�ning pairs, and then trace representations
and linear complexities are determined based on the evaluation of the e-tuples cu(�) . In
particular, linear complexities of all e-th residue sequences are determined whenever d =
gcd(e; (p� 1)=n) = 1, where n is the order of 2 mod p.

How to evaluate the e-tuple (cu0(�); :::; cue�1 (�)) for some u and � whenever a prime
p = ef + 1 is given seems to be an interesting problem. Theory provided in this paper has
given some way to do it, as we do for all the characteristic sequences of the e-th residue
cyclic di�erence sets for e � 12 including the Legendre sequences and the Hall's sextic residue
sequences, and many others. However, how to develop the theory for the general e with
p = ef + 1 is worth of studying further.

Open Problem: Which one among the two values � and �+1 the element � in Theorem 7
or in Theorem 8 takes has not been determined yet, and we do not know whether both values
will be taken when p changes; and the same problem for the tuple (c0; c1; � � � ; c7) in Theorem 9.

References

[1] L. D. Baumert, Cyclic Di�erence Sets, Lecture Notes in Mathematics, vol. 182, Springer-
Verlag, New York, 1971.

[2] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Canadian Math-
ematical Society Series of Monographs and Advanced Texts, vol 21., John-Wiley and
Sons, New York, 1998.

[3] T. Cusick, C. Ding, A. Renvall, Steam Ciphers and Number Theory, North-Holland
Mathematical Library, vol. 50, North-Holland/Elsevier, 1998.

[4] C. Ding, T. Helleseth, and W. Shan, "On the linear complexity of Legendre sequences,"
IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 1276-1278, 1998.

[5] C. Ding, T. Helleseth, K.Y. Lam, Several classes of binary sequences with three-level
autocorrelation, IEEE Trans. Inform. Theory, vol. 45, no. 7, pp. 2606{2612, 1999.

129



[6] C. Ding, T. Helleseth, K.Y. Lam, Duadic sequences of prime lengths, Discrete Mathe-

matics, vol. 218, no. 1-3, pp. 33-49, 2000.

[7] S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, CA, 1967; Revised
Edition, Aegean Park Press, Laguna Hills, CA, 1982.

[8] S. W. Golomb, "Construction of signals with favourable correlation properties," in Survey
in Combinatorics, A. D. Keedwell, Editor; LMS Lecture Note Series 166, Cambridge
University Press, pp. 1-40, 1991.

[9] G. Gong, Lecture Notes on Sequence Design and Analysis, pre-print, on the webpage of
http://calliope.uwaterloo.ca/�ggong, 2000.

[10] M. Hall Jr., "A Survey of Di�erence Sets," Proc. Amer. Math. Soc., vol. 7, pp. 975-986,
1956.

[11] D. Jungnickel, \Di�erence Sets," in Contemporary Design Theory edited by J. H. Dinitz
and D. R. Stinson, pp. 241-324, John Wiley & Sons, Inc., New York, 1992.

[12] J. -H. Kim, On the Hadamard Sequences, PhD Thesis, Dept. of Electronics Engineering,
Yonsei University, Feb. 2002.

[13] J. -H. Kim, M. Shin, and H. -Y. Song, "Linear complexity of Jacobi sequences," pre-print,
1999.

[14] J. -H. Kim and H. -Y. Song, "Existence of Cyclic Hadamard Di�erence Sets and its
Relation to Binary Sequences with Ideal Autocorrelation," Journal of Communications

and Networks, vol. 1, no.1, pp. 14-18, March 1999.

[15] J. -H. Kim and H. -Y. Song, \On the linear complexity of hall's sextic residue sequences,"
IEEE Trans. Inform. Theory, vol. 47, no. 5, pp. 2094{2096, June 2001.

[16] J. -H. Kim and H. -Y. Song, \Trace Representation of Legendre Sequences," De-

signs,Codes and Cryptography, vol. 24, no. 3, pp. 343-348, December 2001.

[17] J. -H. Kim, H. -Y. Song, and G. Gong, \Trace Function Representation of Hall's Sextic
Residue Sequences of Period p � 7 (mod 8)," to appear in Mathematical Properties of

Sequences and Other Related Structures, edited by J. -S. No, H. -Y. Song, T. Helleseth,
and V. Kumar, Kluwer, New York.

[18] H. -K. Lee, J. -S. No, H. Chung, K. Yang, J. -H. Kim, and H. -Y. Song, \Trace function
representation of Hall's sextic residue sequences and some new sequences with ideal
autocorrelation," in Proceedings of APCC'97. APCC, Dec. 1997, pp. 536{540.

[19] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Appli-
cations, vol. 20, Addison-Wesley, Reading, MA, 1983.

[20] J. -S. No, H. -K. Lee, H. Chung, H. -Y. Song and K. Yang, "Trace Representation of
Legendre Sequences of Mersenne Prime Period," IEEE Trans. Inform. Theory, vol. 42,
no. 6, pp. 2254-2255, Nov. 1996.

[21] A. Pott, \On Abelian Di�erence Set Codes," Designs, Codes and Cyptography, vol. 2,
pp. 263-271, 1992.

130



[22] R. A. Scholtz and L. R. Welch, \GMW Sequences," IEEE Trans. Inform. Theory, vol.
30, no. 3, pp. 548-553, 1984.

[23] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Com-

munications Handbook, Computer Science Press, Rockville, MD, 1985; revised edition,
McGraw-Hill, 1994.

[24] J. Singer, "A Theorem in Finite Projective Geometry and Some Applications to Number
Theory," Trans. Amer. Math. Soc., vol. 43, pp. 377-385, 1938.

[25] T. Storer, Cyclotomy and Di�erence Sets, Markham Publishing Co., Chicago, 1967.

[26] R. Turyn, "The linear generation of the Legendre sequences," J. Soc. Indust. Appl. Math.,
vol. 12, no. 1, pp. 115-117, 1964.

[27] N. Zierler, "Linear recurring sequences," J. Soc. Indust. Appl. Math., vol. 7, pp. 31-48,
1959.

131



132


