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Abstract

We address the problem of bounding below the probability of error under maximum
likelihood decoding of a binary code with a known distance distribution used on a binary
symmetric channel. An improved upper bound is given for the maximum attainable
exponent of this probability (the reliability function of the channel).

1 Introduction

1.1 Preliminaries

We consider transmission with binary codes of length n over a binary symmetric channel
with crossover probability p. Let X = f0; 1gn be the n-dimensional Hamming space. Let
C(n;M = 2Rn) � X be a code of rate R and let xi 2 C be the transmitted vector. Under this
condition the probability that a vector y is received equals P (yjxi) = pjy+xij(1 � p)n�jy+xij;
where j � j is the Hamming weight. For a given set S � X let Pi (S) =

P
y2S P (yjxi):

For a vector x 2 C de�ne its Voronoi region D(x) as follows:

D(x) = fy 2 X : 8x02Cnx d(x; y) < d(x0; y)g:

Given that xi is transmitted the error probability of maximum likelihood decoding equals
Pe(xi) = Pi (XnD(xi)) : The (average) error probability of decoding for the code C equals

Pe(C; p) =
1

M

MX
i=1

Pe(xi):

Optimizing Pe(C; p) over all codes of a given rate R has received much attention in information
and coding theory [6], [10], [8], [7], [2], [4]. We will be interested in deriving lower bounds on
the error probability of the best possible code of a given size used over a given channel.

Let Bw; w = 0; 1; : : : ; n be the distance distribution of the code C: The problem that we
are considering is given the distance distribution to derive a lower bound on Pe(C; p): This
problem can be reformulated with a geometric avor: given the number Bw of the neighbors
of a codeword xi at a distance w, what can be said about the most unfavorable allocation of
those neighbors in terms of the probability Pi (XnD(xi)) ?
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One thing is easy to compute, namely the probability that the received vector y is closer
to some code vector xj than to xi: One would like then to bound the probability Pe(xi) below
by the sum of probabilities of the events fjy + xjj < jy + xijg for all the Bw vectors xj;
the problem is however that these events are not disjoint. We therefore face the following
questions. First, is it true nevertheless that asymptotically for large n and for certain values
of R and p the probability Pe(xi) essentially equals the sum of pairwise error probabilities?
Next, if not then how such an estimate can be re�ned to obtain a valid bound on Pe(xi)?

In this paper we will provide some answers to both questions improving over the previously
known lower asymptotic bounds for the error probability of the best possible codes of a �xed
rate R.

1.2 Notation and previous results

Let

E(R; p) = lim sup
n!1

1

n
log max

C�f0;1gn;R(C)=R

1

Pe(C; p)

be the largest attainable exponent of the error probability, also called the reliability of the
channel.

Let h(x) be the binary entropy and h�1(x) its inverse function. Denote by �GV(R) :=
h�1(1�R) the relative Gilbert-Varshamov distance corresponding to R and by

D(xky) = x log
x

y
+ (1� x) log

1� x

1� y

the information divergence between two binomial distributions (the base of logarithms is 2
throughout). Let

A(!) := ! log 2
p
p(1� p): (1)

The function

Esp(R; p) = D(�GV(R)kp)

is called the sphere packing exponent; it gives an upper bound on E(R; p) which is valid for
all code rates R 2 [0; 1� h(p)] and tight for high rates. For low rates the best known results
for a long time were given by the following theorem.

Theorem 1.

�A(�GV(R)) � E(R; p) � �A(�LP(R)): (2)

Here the lower bound is Gallager's \expurgation exponent" [6] and the upper bound is
due to [10], [8]. The function �LP(R) is the so-called JPL bound [9] on the relative distance
of codes of rate R de�ned as

�LP(R) := min
0����� 1

2

G(�; �)

where G(�; �) = 2�(1��)��(1��)
1+2

p
�(1��)

; h(�) = 1�R� h(�):
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The upper bound in (2) is based on the upper bound on the minimum distance of the
code. The upper bound in (2) was improved in [7] by relying on estimates of the distance
distribution of the code. The proof in [7] is composed of the two steps. The �rst part is
bounding the distance distribution of codes by a new application of the linear programming
method (similar ideas were independently developed in [1]). The estimate of the distance
distribution of codes of [7] has the following form.

Theorem 2. [7] For any family of codes of su�ciently large length and rate R and any
� 2 [0; 1=2] there exists a value !; 0 � ! � G(�; �) such that n�1 logB!n � �(R;�; !)� o(1);
where

�(R;�; !) = R� 1 + h(�) + 2h(�)� 2q(�; �; !=2) � ! � (1� !)h
��� !=2

1� !

�
;

� = h�1(h(�)� 1 +R); and where

q(�; �; !) = h(�) +

Z !

0
dy log

P +
p
P 2 � 4Qy2

2Q
;

where P = �(1 � �) � �(1 � �) � y(1 � 2y); Q = (� � y)(1 � � � y); is the exponent of the
Hahn polynomial H�n

�n (!n):

The second part of the proof in [7] is devoted to estimating the error probability of a code
given its distance distribution. The same approach was used in [2] to derive analogous results
for spherical codes and the Gaussian channel. The bound on the reliability of the Gaussian
channel of [2] was improved in [4]. The improvement was obtained by using a more accurate
method [3] of deriving bounds on Pe(C) for a code with a known distance distribution than
the one used in [7], [2].

The result of [7] has the following form (reformulated slightly from its original version):

Theorem 3.

E(R; p) � min
0���1=2

max
0����LP(R)

max
��!�G(�;�)

N (3)

where

N = max(��(R;�; !)�A(!);min(�A(�); B(!; �)�A(!)));

A(w) is de�ned in (1),

B(!; �) = �! � (1� !)h(p) +

max
�2[�p

2
;min(�

4
;p(1�!))]

�
�h

�
2�

�

�
+ (! � �=2)h

�
! � 2�

2! � �

�
+ (1� ! � �=2)h

�
p(1� !)� �

1� ! � �=2

��
:

(4)

Below we use the method of [3]-[4] to improve the estimate (3). The analysis of the relation
between the distance distribution and Pe(C; p) for the Hamming space turns out to be more
di�cult than for Rn . One of the issues to be addressed is the choice of decision regions in the
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estimation process. We suggest one choice which while still being tractable leads to improving
the estimates.

As it turns out, for low rates the estimate (3) simpli�es to

E(R; p) � �A(�LP(R))�R+ 1� h(�LP(R)): (5)

The improvement of (5) over the upper bound in (2) is in that it takes into account decoding
errors to all exp(n(R�1+h(�LP(R)))) neighbors of the transmitted vector as opposed to just
one such neighbor in (2). The results of the present paper are twofold: �rst, we expand the
applicability limits of the bound (5). Outside these limits we will derive a bound on E(R; p)
which is better than the result obtained from Theorem 3.

Recall from [10] that a straight-line segment that connects a point on Esp(R
0; p) with

a point on any other upper bound on E(R; p) is also a valid upper bound on E(R; p): In
particular, the common tangent to (5) and Esp(R; p) also gives an upper bound on E(R; p):

2 A Study of the Bound (3)

Let us derive a simpli�ed form of the bound (3)

Proposition 4. For some R0, a function of p, we have

E(R; p) �
( �A(�LP(R))�R+ 1� h(�LP(R)) 0 � R � R0

max
0����LP(R)

max
��!��LP(R)

min(�A(�); B(!; �) �A(!)) R0 � R: (6)

Proof. (outline) First let us prove that the term ���A(!) in N can be brought to the form
(5). For this let us take � equal to the value that furnishes the minimum in the de�nition of
�LP: It is known that � = 1=2 for R � 0:305. We then have q(1=2; �; !=2) = k(�; !); where
k(�; !) is the exponent of the Krawtchouk polynomial K�n(!n): Substituting this in � and
taking the derivative on ! of ���! logZ we �nd this function to be a growing function of !:
Hence the maximum on ! is obtained for ! = �LP(R): Substituting this together with k(�; !)
and performing simpli�cations we obtain the claim.

For R � 0:305 the minimum in the de�nition of �LP(R) is given by some � < 1=2: Fixing �
equal to this value we observe that the function � depends only on !: Therefore, it is possible
to check numerically (for instance, using Mathematica) that � increases on !: Substituting
! = �LP(R) together with the value of q(�; �; !) into � we again arrive at the bound (5).

It remains to show that for low code rates the maximum in N is achieved by the �rst of
the two terms. This is di�cult to verify analytically because of the complicated form of the
term B; however this can be veri�ed numerically for any given value of the probability p. The
example of p = 0:01 is shown in Fig. 1.

3 A New Bound

For notational convenience we shall write dij for the Hamming distance between two code-
words xi and xj. We shall write diy for the distance between a code word xi and an arbitrary
word y. Throughout w = !n, l = �n and d = �n. Let �; �;G(�; �) have the same meaning
as in (3).
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Theorem 5.

E(R; p) � min
0���1=2

max
0���G(�;�)

max
��!�G(�;�)

�
max(��(R;�; !)�A(!); B(!; �) �A(�))

�
(7)

where A and B are de�ned as in Equations (1) and (4) respectively.

Performing an analysis similar to that of the previous section we obtain

Theorem 6. For some R�
0, a function of p, we have

E(R; p) �
( �A(�LP(R))�R+ 1� h(�LP(R)) 0 � R � R�

0

max
0����LP(R)

max
��!��LP(R)

B(!; �) �A(�) R�
0 � R (8)

where A and B are de�ned as in Equations (1) and (4) respectively.

Example. To show that (7) improves over (3), let p = 0:01: Then from (6) we obtain
R0 � 0:271: From (7) we �nd that the bound (5) is valid for R � R�

0 � 0:388: See Figure 1
for a graph of the known error bounds including our new bounds.

Remark. Experience leads us to believe that the maximums in the equation are achieved
for ! = � = �LP(R) which would give us the bound

E(R; p) �
(

�A(�LP(R))�R+ 1� h(�LP(R)) 0 � R � R�
0

B(�LP(R); �LP(R))�A(�LP(R)) R�
0 � R

However this has proved too di�cult to verify analytically due to the awkward nature of the
� maximization term in the de�nition of B(!; �).

The basic idea of the estimation method is from [4] although we make some modi�cations
due to the fact that the observation space is discrete. To prove this theorem we start by
choosing a collection of sets fYijg, each corresponding to a pair of codewords (xi; xj), such
that Yij is outside the decoding region of xi and

Yij \ Yik = ; for all k 6= j:

Then we can bound the error probability in terms of these sets using the following inequality

Pe � 1

M

MX
i=1

X
j:dij=w

Pi (Yij) (w = 1; 2; : : : ; n):

One of the main questions in applying this inequality and further ideas of [4] is the choice of
the sets Yij . We construct the Yij 's via sets Xij � F

n
2 ; where

Xij = fy 2 Fn : diy = djy =
dij
2

+ p(n� dij)g:

To create the Yij 's from the Xij 's we randomly \prune" these sets so that the disjointness
condition is satis�ed. To accomplish this pruning we de�ne a set of codewords Ti = fxj :
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Figure 1: Bounds on the Error Exponent for the Binary Symmetric Channel for p = 0:01.
Curve (a) is a combination of the best lower bounds on the error exponent. Curve (b) is the
new upper bound given by Theorem 5. Curve (c) is the upper bound given by Theorem 3.
Curve (d) is the sphere-packing bound Esp(R; p). Note that Esp(R; p) is better than (b) from
R � 0:422; the straight-line bound (not shown) further improves the results.

dij = wg for each codeword xi. We then arbitrarily index all pairs (xi; xj) with dij = w by
integers sij . De�ne sets

T (i; j) = fk 2 Ti : sik < sijg:

We then get our Yij's as follows

Yij = Xij n [[k2T (i;j)Xik]:

These Yij satisfy the disjointness condition: assume there exists x 2 Yim \ Yin. Then x 2
Xim and x 62 S

k2T (i;m)Xik gives that sin > sim. However we also have x 2 Xin and
x 62 Sk2T (i;n)Xik and this gives that sim > sin which is a contradiction.

Instead of calculating Pi (Yij) directly we apply a \reverse union bound" to get

Pi (Yij) � Pi (Xij) (1�Kij);

where Kij =
P

k2T (i;j) Pi (Xik jXij).
The error probability for two codewords is given by the following well-known lemma.

Lemma 7. For all codewords xi and xj that are a distance w apart limn!1
1
n logPi(Xij) =

A(!); where A(!) is de�ned in (1).

Lemma 8. For all codewords xi, xj and xk such that dij = dik = w and djk = l we have
limn!1

1
n logPi (XikjXij) = B(!; �) where B(!; �) is de�ned in Theorem 4.
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Proof. First consider

Pi (Xik \Xij) =

min(l=2;p(n�w))X
i=0

 
l=2

i

!2 
w � l=2

w=2� i

! 
n�w � l=2

p(n� w)� i

!

pw=2+p(n�w)(1� p)n�w=2�p(n�w)

Then since

logPi (XikjXij) = logPi (Xik \Xij)� logPi (Xij)

substituting for Pi (Xij) from the previous lemma and taking the appropriate limits gives the
required result.

The following properties of B(!; �) can be veri�ed numerically.

Lemma 9. If ! � � � 2! then B(!; �) � B(!; !). If � � ! then B(�; �) � B(!; �)

Recall that the indexing of pairs to create the sets T (i; j) is done randomly. By linearity
of expectation there exists an indexing such that

Pe � 1

M

MX
i=1

X
j:dij=w

E (Pi (Yij)) (9)

This equation will be the basis for our new bound on the error exponent but before deriving
this bound we have two �nal preliminaries. Firstly we de�ne Bi

w to be the \local" distance
distribution, i.e., the number of neighbors of the ith codeword at distance w: Secondly we
shall say that a subset of codewords is of substantial size if its size has the same exponential
order as M . Note that for a family of codes (Ci)i�1 where Ci has length n and rate R, we
can consider (C

0

i)i�1, a family of codes were C 0
i is a substantially sized subcode of Ci, when

trying to bound the error exponent since

lim
n!1

R(C 0
i) = lim

n!1
R(Ci) = R

and

lim sup
n!1

1

n
log

1

Pe(C
0

i ; p)
� lim sup

n!1

1

n
log

1

Pe(Ci; p)

Theorem 10. Consider any code C of su�ciently large length n, rate R and with 1
n logB

i
!n �

f(!) for some ! and bounding function f . Construct Yij ;Xij and Kij as described above for
all (i; j) pairs with dij = !n. If fxj jKij > 1=2 for some ig is not a substantially sized subcode
then

1

n
log

1

Pe(C; p)
� �f(!)�A(!):
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Proof. Wlog. we can assume that Kij � 1=2 for all code words xi and xj in our code since
removing codewords in fxj jKij > 1=2 for some ig from our code gives a substantially sized
subcode in which Kij � 1=2 for all code words xi and xj. Hence

Pe(C; p) � 1

M

MX
i=1

X
j:dij=w

Pi (Yij) � 1

M

X
xi2C0

Bi
w min
j:dij=w

fPi (Yij)g

� 1

2
min

i;j:dij=w
(Bi

wPi (Xij)) � 2n(A(!)+f(!))+o(n):

Theorem 11. Consider any code C of su�ciently large length n and rate R and an ! 2
[0; 1]. Construct Yij ;Xij and Kij as described above for all (i; j) pairs with dij = !n. If
fxjjKij > 1=2 for some ig is a substantially sized subcode then there exists a 0 � � � 2!
such that there is a substantial number of codewords with at least 2�nB(!;�) neighbors. We
call � a \nuisance level" for !. Furthermore

1

n
log

1

Pe(C; p)
� B(!; �)�A(!):

To prove this we need the following lemmas.

Lemma 12. [5] Suppose that there are L balls of K di�erent colors. The number of balls
of a color k is rk. We are also given numbers nk; 1 � k � K. Suppose that all balls are
enumerated randomly by di�erent integers from 1 up to L. Let � be a random integer between
1 and L and let tk be the number of balls of color k with numbers between 0 and � . Then

P (tk � nk; k = 1; : : : K) � 1

4
min

1�k�K

nk
rk
:

We then can prove the following lemma:

Lemma 13. Recall that, for a given (i; j) pair, Kij is a random variable. Let dij = !n.
With respect to the random indexing of all the (i; k) pairs (where xk is any codeword such
that dik = !n) we have

P (Kij � 1=2) � 1

8(n+ 1)
min
l2�

2�nB(!;�)

Bi
w

where � = fl 2 [n] : Rw;l > Nw;lgg, Rw;l = fxk 2 C : dij = dik = w; djk = lg and

Nw;l =
2�nB(!;�)

2(n+1) .

Proof.

P (Kij � 1=2) = P

0
@ X
k2T (i;j)

Pi (XikjXij) � 1=2

1
A

� P

0
@ nX

l=0

X
k2T (i;j);djk=l

2nB(!;�) � 1=2

1
A

� P

 
nX
l=0

jT (i; j) [Rw;lj2nB(!;�) � 1=2

!

� P (jT (i; j) [Rw;lj � Nw;l8l 2 �) :
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Let there be a ball for each codeword in
S
lRw;l: Consider a ball from Rw;l to have color l.

Let nl = Nw;l Then let �l = jxm 2 Rw;l : sim < sij j Therefore

P (Kij � 1=2) � P (�l � nl8l 2 �)

By the previous lemma we have

P (�l � nl8l 2 �) � 1

4
min
l2�

nl
rl
:

The theorem then follows from the fact that jRw;lj � Bi
w.

Proof of Theorem 11. For each codeword x 2 fxjjKij � 1=2 for some ig there exists � from
Lemma 13 such that x has at least 2�nB(!;�) neighbors at relative distance �. Now since there
exists a substantial number of such x and there are only n distinct values of � there exists a
�1 such that a substantial number of the codewords have at least 2�nB(!;�1) neighbors at a
relative distance �1 and that

P (Kij � 1=2) � 1

8(n+ 1)

2�nB(!;�1)

Bi
w

:

Now

E (P (Yij)) = E

�
IKij�

1
2
Pi (Yij)

�
+ E

�
IKij>

1
2
Pi (Yij)

�
� E

�
IKij�

1
2
Pi (Yij)

�
� 2nA(!)

2
P

�
Kij � 1

2

�

and so from Lemma 13 and Eq. (9) we get

Pe � 1

M

MX
i=1

X
j:dij=w

E (Pi (Yij)) � 1

M

MX
i=1

X
j:dij=w

2nA(!)

16(n+ 1)
min
l2�

2�nB(!;�)

Bi
w

� 1

M

MX
i=1

2nA(!)

16(n+ 1)
2�nB(!;�) = 2n(A(!)�B(!;�))+o(n)

Proof of Theorem 5. Pick any code C of rate R and su�ciently large length n. By Theorem
2 there exists an ! 2 [0; G(�; �)] such that 1

n logB!n � �(!). As discussed in [2], [4], the code
C contains a subcode C 0 of size M 0 �M=n2 such that for all codewords xi in this subcode

1

n
logBi

!n > �(!);

where �(!) = �(R;�; !) is the same as in Theorem 2 . Since the subcode is substantially
sized we may now consider this subcode as our new code.
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For this choice of ! construct Yij;Xij and Kij for all (i; j) pairs with dij = !n. Hence by
Theorems 10 and 11 we get

1

n
log

1

Pe(C; p)
�
(

��(!)�A(!) if no nuisance level exists for !

B(!; �1)�A(!) if a nuisance level �1 exists for !

Hence we get

1

n
log

1

Pe(C; p)
� maxf��(!); B(!; �1)g �A(!):

Now if �1 � ! then B(!; �1) � B(!; !) and so we get

1

n
log

1

Pe(C; p)
� maxf��(!); B(!; !)g �A(!): (10)

If �1 < ! then we use the fact from Theorem 11 that for a substantial number of codewords xi,
Bi
�1n

� 2�nB(!;�1). We now construct new Yij ;Xij and Kij for all (i; j) pairs with dij = �1n.
Hence by Theorems 10 and 11 we get

1

n
log

1

Pe(C; p)
�
(

B(!; �1)�A(�1) if no nuisance level exists for �1
B(�1; �2)�A(�1) if a nuisance level �2 exists for �1

Hence we get

1

n
log

1

Pe(C; p)
� maxfB(!; �1); B(�1; �2)g �A(�1):

If �2 � �1 then B(�1; �2) � B(�1; �1) � B(!; �1) then

1

n
log

1

Pe(C; p)
� B(!; �1)�A(�1):

If �2 < �1 then we use the fact that for a substantial number of codewords xi, B
i
�2n

�
2�nB(�1;�2) and continue as before.

We continue in this manner and get a sequence ! > �1 > �2 : : : such that at step i we
get the bound

1

n
log

1

Pe(C; p)
� maxfB(�i�1; �i); B(�i; �i+1)g �A(�i):

This process terminates after at most n steps since there are only n possible values for the
nuisance level. At the last step, i = f , the nuisance level �f+1, if it even exists, is not less
than �f itself and therefore we have

1

n
log

1

Pe(C; p)
� maxfB(�f�1; �f ); B(�f ; �f+1)g �A(�f )

� maxfB(�f�1; �f ); B(�f ; �f )g �A(�f )

� B(!; �f )�A(�f ):
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Now for our code either this equation or Eq. (10) is valid and so, since our choice of C was
arbitrary among codes of rate R, we have shown that there exists ! and � � ! such that

min
C�f0;1gn;R(C)=R

1

n
log

1

Pe(C; p)
� max(��(!)�A(!); B(!; �) �A(�))

Therefore there exists ! 2 G(�; �) and � � ! such that

E(R; p) � max(��(!)�A(!); B(!; �)�A(�))
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