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Abstract

For a code C = C(n;M) the level k code of C, denoted Ck , is the set of all vectors
resulting from a linear combination of precisely k distinct codewords of C. We prove
that if k is any positive integer divisible by 8, and n = k, M = �k � 2k then there
is a codeword in Ck whose weight is either 0 or at most n=2 � n( 1

8 �
6

(4��2)2 ) + 1. In

particular, if  < (4��2)2=48 then there is a codeword in Ck whose weight is n=2��(n).
The method used to prove this result enables us to prove the following: Let k be an integer
divisible by p, and let f(k; p) denote the minimum integer guaranteeing that in any square
matrix over Zp, of order f(k; p), there is a square submatrix of order k such that the sum
of all the elements in each row and column is 0. We prove that lim inf f(k; 2)=k < 3:836.
For general p we obtain, using a di�erent approach, that f(k; p) � p(k= ln k)(1+ok(1)).

1 Introduction

For standard coding theory notations the reader is referred to [6]. The minimum weight of a
code C is the smallest Hamming weight of a codeword of C other than zero. Coding theory
bounds such as Plotkin's bound or the Linear Programming bound show that if the dimension
of a binary code is large enough as a function of its length, then some linear combination
has a small Hamming weight. In other words, the code spanned by the codewords of C has
small minimum weight. In this paper we present an alternative coding theory bound for the
code obtained by �xed size linear combinations. For a positive integer k, let Ck denote the
code obtained by linear combinations of precisely k distinct codewords of C. In particular,
C1 = C, and if C is a linear code then Ck � C. We call Ck the level k code of C. Let w(Ck)
denote the minimum weight of Ck. Notice that if k is odd then w(Ck) can be very large.
Indeed, consider a code C = C(n;M) where M is the size of the code and n is the length of
the codewords, and assume the �rst n � dlogMe coordinates of all codewords are one. We
can still have all M codewords distinct, and clearly, for such a code, w(Ck) � n�dlogMe for
all odd k. (If we allow C to contain repeated words we can even have all coordinates of all its
members being 1). Thus, to avoid this non-interesting case, we assume k is even. ForM � k,
let w(k; n;M) denote the maximum possible value of w(Ck) ranging over all codes of size M
and length n. A theorem of Enomoto et al. [3] shows that w(k; k � 1;M) = 0 for M � 2k
and the result is tight. In general, however, no nontrivial bound is known. It is interesting
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to �nd general cases which guarantee that w(k; n;M) is signi�cantly less than n=2. In this
paper we present a nontrivial bound of this type. Our main result is the following:

Theorem 1.1 Let k be divisible by 8. Let C = C(n;M) be any code with M � 2k. Put
M = �k and n = k. Then, either 0 2 Ck or else

w(Ck) � n

2
� n

�
1

8
� 6

(4� � 2)2

�
+ 1:

In particular, if  < (4� � 2)2=48 then w(Ck) = n=2��(n).

The constants appearing in Theorem 1.1 are not optimal. It is not di�cult to obtain somewhat
better constants for speci�c values of � and , but we prefer a general statement at the price
of some loss in the constants. For example, Theorem 1.1 gives w(64; 800; 640) � 396 and
w(64; 640; 640) � 315. Theorem 1.1 is an application of a more general technical lemma,
Lemma 2.2 proved in Section 2, whose proof has another interesting application. Let A be
a matrix over Zp. A submatrix B of A is called zero-sum if the sum of all elements in each
row and in each column of B is zero. Consider the following Ramsey-type extremal problem:
Let f(k; p) denote the least integer such that any square matrix of order f(k; p) over Zp has
a square submatrix of order k which is zero-sum. Standard Ramsey-type arguments show
that f(k; p) is �nite for all k = 0 mod p. If p does not divide k then the all one matrix shows
that f(k; p) is in�nite. The problem of determining f(k; p) was �rst raised in [1]. It is proved
there that lim inf f(k; 2)=k � 4, lim inf f(k; 2)=k � 2 and lim inf f(k; 3)=k � 20 (in fact, the
authors show that f(k; 2) � 4k(1+ok(1)) for all even k). It is conjectured there that for every
prime p, lim inf f(k; p)=k � cp where cp is a constant depending only on p. The conjecture is
open for all primes except p = 2; 3. Using the proof method of Lemma 2.2 and the theorem
of Enomoto et al. mentioned above we are able to show that lim inf f(k; 2)=k < 3:836. We
also present a nontrivial upper bound for f(k; p) (which is, however, still very far from the
conjectured O(k) upper bound).

The rest of this note is organized as follows: In Section 2 we prove Theorem 1.1 and the
lemmas that are needed for its proof. In Section 3 we present the application to zero-sum
square matrices.

2 The proof of the main result

The main tool in the proof of Theorem 1.1 is a more general lemma whose proof is presented
next. Before we state the lemma we need a de�nition. Let s and r be positive integers where
s � r. For v 2 (Z2)

s let zv(r) denote the fraction of r-subvectors of v whose sum of coordinates
is odd. Let z(s; r) denote the maximum of zv(r) ranging over all v 2 (Z2)

s. This quantity
can be expressed in terms of the minimum possible value of the corresponding Krawchouk
polynomial (see., e.g., [6] for the de�nition and some properties of these polynomials). Triv-
ially, if r is odd then z(s; r) = 1. However, when r is even it is not di�cult to show that when
s � r=2, z(s; r) is close to 0:5 for large s. We shall be interested, however, in more precise
approximations and in �xed values of r. An easy exercise gives that z(s; 2) = s=(2(s � 1))
when s is even and z(s; 2) = (s + 1)=(2s) when s is odd. However, for r � 4 there seems to
be no nice formula.

Another tool that we use is a theorem of Enomoto et al. [3] also mentioned in the
introduction:
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Lemma 2.1 [[3]] Let t be an even integer. If s � t�1 then any sequence of at least 2t vectors
from (Z2)

s contains a t-subsequence whose sum is zero. �

We are now ready to prove the following lemma.

Lemma 2.2 Let k = 0 mod 4 and let r be any positive integer dividing k=4. Suppose C =
C(n;M) is a binary code with M � k + k=(2r). Then, either 0 2 Ck or else

w(Ck) � (n� k=(2r) + 1)z(b2rM=kc � 1; 2r):

Proof: Partition each v 2 C into two parts, va and vb where va consists of the �rst k=(2r)�1
coordinates, and vb consists of the remaining coordinates (if n � k=(2r)� 1 take va = v and
there is no vb). Let A = fva : v 2 Cg (although the vectors in A are not necessarily
distinct, we consider each va as labeled by the original vector v, and in this sense, they are
distinct). Since k=(2r) is even and since M � k=r, we have, by Lemma 2.1, that there exists
A1 � A with jA1j = k=(2r) such that the sum of all vectors in A1 is zero. Throwing the
vectors of A1 away from A we can repeat this process and �nd another set of k=(2r) vectors
whose sum is zero. We can repeat this process precisely d = b2rM=kc � 1 times obtaining
subsets of vectors A1; : : : ; Ad, that correspond to disjoint subsets of vectors of C, such that
the sum of the k=(2r) vectors in Ai is zero for i = 1; : : : ; d. Since M � k + k=(2r) we have
d � 2r. If n � k=(2r) � 1 we have that the sum of the vectors in A1; : : : ; A2r is a sum
of k distinct vectors of C. Since this sum is zero, we have 0 2 Ck and we are done. We
therefore assume n � k=(2r). Let Bi = fvb : va 2 Aig. For each j = 1; : : : ; n � k=(2r) + 1
let uj = fu1j ; : : : ; udjg be de�ned by uij =

P
vb2Bi

vjb . Let Uj denote the family of (2r)-sets
of f1; : : : ; dg for which the corresponding (2r)-subvector of uj has an odd number of ones.

By de�nition, jUj j � z(d; 2r)
�
d
2r

�
. Hence,

Pn�k=(2r)+1
j=1 jUjj � (n� k=(2r) + 1)z(d; 2r)

�
d
2r

�
. It

follows that there exists a (2r)-set U such that if B0 = [i2UBi then
P

vb2B0 vb contains at most
(n� k=(2r) + 1)z(d; 2r) ones. Notice that jB0j = 2rk=2r = k. Now let C 0 = fv : vb 2 B0g.
Clearly

P
v2C0 v 2 Ck and has at most (n� k=(2r) + 1)z(d; 2r) ones. �

It is interesting to obtain general cases where w(Ck) is signi�cantly less than n=2. If we
use Lemma 2.2 with r = 1 we can obtain such a statement only when n < M .

Proposition 2.3 Let k = 0 mod 4. Suppose � � 2 is an integer. Then, for any code
C = C(n;M) with M � �k and n < �k, 0 2 Ck or else w(Ck) � n=2� (�k�n)=(4�� 2)+1.

Proof: Clearly we may assume M = �k. Put n = k. We use Lemma 2.2 with r = 1.
Using the fact that z(2� � 1; 2) = 1=2 + 1=(2(2� � 1)) we get that either 0 2 Ck or else
w(Ck) � (n� k=2 + 1)(1=2 + 1=(2(2� � 1))). Now,

�
n� k

2
+ 1

��
1

2
+

1

2(2� � 1)

�
� k

�
 � 1

2

��
1

2
+

1

2(2� � 1)

�
+ 1 =



2
k � k

� � 

2(2� � 1)
+ 1 =

n

2
� �k � n

4� � 2
+ 1: �

The real power of Lemma 2.2 is demonstrated when r � 2. In this case we can show that
even if n > M we can still have w(Ck) � n=2 ��(n). In fact, we can have n=M as large as
we want, assuming M is su�ciently large (but still M = O(k)). It turns out that using r = 2
already su�ces for this purpose. Before we complete the proof of Theorem 1.1, we need to
provide a tight upper bound for z(s; 4).
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Lemma 2.4 For s � 7, z(s; 4) � 0:5 + 6=s2.

Proof: Consider a binary vector of length s. Let x denote its Hamming weight. The number
of 4-subvectors with an odd number of ones is (s � x)

�
x
3

�
+ x

�
s�x
3

�
. Hence, we need to show

that for all s � 7,
(s� x)

�x
3

�
+ x

�s�x
3

�
�
s
4

� � 1

2
+

6

s2
:

Consider the numerator of the left-hand-side of the last inequality as a real polynomial (of
degree 4) of x (which can be expressed in terms of the corresponding Krawchouk polynomial).
Its derivative is a polynomial of degree 3, and x = n=2 is a root of the derivative and is a
local minimum. The other two roots are local maxima (yielding the same value, and hence
each is also a global maxima) and they are (s �p

3s� 4)=2. The value at these maxima is
s4=48� s3=8 + 17s2=48� s=2 + 1=3. Hence,

(s� x)
�
x
3

�
+ x

�
s�x
3

�
�s
4

� � s4=48� s3=8 + 17s2=48� s=2 + 1=3�s
4

� =
1

2
+
s2=8� 3s=8 + 1=3�s

4

� :

It follows that for s � 7,

z(s; 4) � 1

2
+
s2=8� 3s=8 + 1=3�

s
4

� =
1

2
+

3(s� 1)(s� 2) + 2

s(s� 1)(s� 2)(s � 3)
=

1

2
+

3

s(s� 3)
+

2

s(s� 1)(s � 2)(s � 3)
� 1

2
+

6

s2
: �

Proof of Theorem 1.1: Since k = 0 mod 8 we can use r = 2 in Lemma 2.2. Let C =
C(n;M) be any code with M � 2k. M = �k and n = k. By Lemma 2.2, either 0 2 Ck

or else w(Ck) � (n� k=4 + 1)z(b4�c � 1; 4). Assuming the latter, and since � � 2, we have
b4�c � 1 � 7, so using Lemma 2.4 we get

w(Ck) � (n� k=4 + 1)

�
1

2
+

6

(b4�c � 1)2

�
< k

�
 � 1

4

��
1

2
+

6

(4� � 2)2

�
+ 1 =

n

2
� n

8
+

6n

(4� � 2)2
� 6k

4(4� � 2)2
+ 1 <

n

2
� n

�
1

8
� 6

(4� � 2)2

�
+ 1: �

It is easy to see from Theorem 1.1, that whenM grows, our upper bound for w(Ck) approaches
n=2� n=(8). When M becomes very large we can gain some more as demonstrated by the
following simple example: Suppose m � 9n20:1n, n = k with, say,  � 1. We can �nd 9n
vectors that agree on the �rst 0:1n coordinates. Putting M 0 = 9n and n0 = 0:9n we have
M 0 = 10n0, 0 = 0:9 and �0 = 9. By Theorem 1.1 we have

w(Ck) � n0

2
�n0

�
1

80
� 6

(36 � 2)2

�
+1 = 0:45n�n

�
1

8
� 5:4

(36 � 2)2

�
+1 � 0:45n� n

9
+1:

3 Zero sum square matrices

In the following upper bound for lim inf f(k; 2)=k we use Lemma 2.2 without change. In fact,
the following theorem supplies an upper bound for f(k; 2) valid for all k = 0 mod 12.
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Theorem 3.1 Let k = 0 mod 12. Every square binary matrix of order at least 50447k=13008+
2221=2168 has a square submatrix of order k which is zero sum. In particular lim inf f(k; 2)=k <
3:879.

Proof: Let A be a square binary matrix of order n � 50447k=13008 + 2221=2168. Clearly
we may assume n � 1 < 4k. We consider the �rst n � 1 rows of A as codewords of an
(n; n � 1) binary code. Since k = 0 mod 12 we can use Lemma 2.2 with r = 3. Since
23 < 6(n� 1)=k < 24 we have, by Lemma 2.2, that there are k rows of A whose sum contains
at most (n�k=6+1)z(22; 6) ones. The maximum number of 6-subvectors with an odd number
of ones of a vector v 2 (Z2)

22 is obtained when v has 5 or 17 ones and it is 37757. Thus,
z(22; 6) = 37757=74613 = 2221=4389. It follows that there are k rows of A whose sum has at
least

n�2221

4389
(n�k

6
+1) =

2168

4389
n+

2221

26334
k�2221

4389
� 2168

4389

�
50447k

13008
+

2221

2168

�
+

2221

26334
k�2221

4389
= 2k

zeroes. Thus, A has a submatrix B with k rows and 2k columns, such that the sum of all
rows of B is zero. Ignoring the last row of B, and using Lemma 2.1 with t = k and s = k� 1
we have a submatrix B0 of B with k columns and k rows such that sum of all rows of B0 is
zero and the sum of all columns is a vector whose �rst k � 1 coordinates are zero. However,
the last coordinate must also be zero since the total number of ones in B0 is even. Hence B0

is a zero sum square submatrix of order k. �
The choice of r = 3 in the proof of Theorem 3.1 is optimal. A similar approach using

r = 2 yields the constant 144=37 > 3:89 instead of the constant 50447=13008 < 3:879 that
appears in Theorem 3.1. However, using r = 2 applies to all k = 0 mod 8. Using values of
r � 4 again yields inferior results. This is because z(s; r) � 0:5, by a simple probabilistic
argument. Now if r � 5 take n = 3:89k and then the number of ones in the sum of the k
rows guaranteed by Lemma 2.2 is not less than (3:9k � k=2r)=2 � 1:9k so there are less than
3:89k � 1:9k < 2k guaranteed zeroes and we cannot de�ne B as in the proof of Theorem 3.1.
Thus, even a constant of 3:89 cannot be guaranteed in this way. For r = 4 one can check
speci�cally that the obtained constant is inferior.

A slightly better upper bound for lim inf f(k; 2)=k is obtained using the following idea,
that supplies an upper bound for f(k; 2) valid for large k that is of the form k = 12q where
q is a prime power. The following coding theory bound has been proved by Bassalygo et al.
in [2] using a theorem of Frankl and Wilson [5]:

Lemma 3.2 Let � � 0:5. For every n su�ciently large, if �n is twice a prime power and C
is a linear code of dimension dn that does not contain the weight �n then

d � 1�H(�) +H(�=2)

where H(x) = �x log2(x)� (1� x) log2(1� x) is the binary entropy. �

We therefore obtain the following corollary:

Corollary 3.3 For every su�ciently large m for which m=2 is a prime power, the following
holds: Every binary matrix with d1:41me rows and d5:95me columns has m columns whose
sum is the zero vector of (Z2)

d1:41me.
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Proof: Choose m su�ciently large such that n = d5:95me is su�ciently large for the param-
eter � = m=n � 1=5:95 in Lemma 3.2 and so that � > 1=5:9449. Let A be a binary matrix
with d1:41me rows and n columns. Consider the linear code C whose parity check matrix is
A. The dimension of C is at least n� d1:41me > 4:54m� 1 > 0:763n. Now, since

1�H(�) +H(�=2) < 0:763

it follows from Lemma 3.2 that C contains the weight �n = m. In particular, there are m
columns whose sum is zero. �

Corollary 3.3, together with (a slightly modi�ed) version of Lemma 2.2 give the following:

Theorem 3.4 For k su�ciently large for which k=12 is a prime power, f(k; 2) < 3:836k+1.

Proof: Assume m is su�ciently large and chosen as in Corollary 3.3. Put k = 6m. Let A be
a square matrix of order t > 3:836k = 23:016m. By Corollary 3.3 we can arrange the rows of
A such that the sum of all m rows sm+1; : : : ; (s+1)m is zero in the �rst d1:41me coordinates,
for each s = 0; : : : ; 17. For each of these 18 sums, let Si denote the vector corresponding to
the remaining t�d1:41me coordinates of the corresponding sum vector. As in Lemma 2.2, we
can �nd a set of 6 vectors of the Si such that their sum has at most z(18; 6)(t�d1:41me) ones.
This implies the existence of 6m = k rows of A whose sum has at least t�z(18; 6)(t�d1:41me)
zeroes. Since z(18; 6) = 26=51 we have t� z(18; 6)(t � d1:41me) � 12m = 2k. Thus, A has a
submatrix B with k rows and 2k columns, such that the sum of all rows of B is zero. As in
Theorem 3.1 we get that there exists a zero sum square submatrix B0 of order k. �

We conclude this section with an upper bound for f(k; p). In fact, our upper bound
follows from a proposition which is a (weak) analog of the theorem of Enomoto et al. for Zp

instead of Z2. For k a multiple of p, let g(k; p) be the minimum integer that guarantees that
in any sequence of g(k; p) elements of (Zp)

k there is a k-subsequence whose sum is zero. The
theorem of Enomoto et al. gives, almost immediately, that g(k; 2) � 4k � 1 for all even k.
In fact, using a theorem of Olson [7] we can get g(k; 2) � 2k + 1 whenever k is a power of 2.
In [1] it is proved that g(k; 3) � 15k � 8 if k is a power of 3. For p > 3 there is no known
linear bound for g(k; p) which holds for in�nitely many values of k. A trivial upper bound
is obviously (k � 1)pk + 1. A much smaller upper bound (but still, a non polynomial one) is
given in the following theorem:

Proposition 3.5 Let p be a �xed prime. For in�nitely many values of k,

g(k; p) � p(k= ln k)(1+ok(1))

Proof: Let r be a positive integer. Let k be the smallest integer such that k=p is divisible by
all 1 � s � r. Clearly, k=p is obtained by multiplying appropriate powers of all primes q up to
r, where each prime q is raised to the maximum power xq for which q

xq � r. Hence k=p < r�(r)

where �(r) is the number of primes up to r. It is well known that �(r) � (1 + o(1))r= ln r,

and hence k=p < er(1+or(1)). Now, suppose m satis�es
�
m�kr2

r

� � pkrrpr+1. We claim that
g(k; p) � m. Consider a sequence of m vectors from (Zp)

k. By the pigeonhole principle, there
is a family T of at least t � pr+1rr r-subsequences, such that for each U 2 T , the sum of all r
vectors of U is the same. It is well-known that in any family of at least (p�1)r+1r! < t distinct
(but non necessarily disjoint) sets, each with r elements, there is a delta system with p petals
[4]. In other words, there are p sets in the family such that the common intersection of all
of them is identical to the intersection of any two of them. Hence, there are U1; : : : ; Up 2 T ,
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where \p
i=1 = S and (Ui n S) \ (Uj n S) = ; for i 6= j. Putting Wi = Ui n S we have that the

sum of all the vectors in Wi is the same for all i = 1; : : : ; p. Hence the sum of all vectors in
[p
i=1Wi is zero (in Zp). Now, r � jWij = r� jSj � 1. Putting r� jSj = q1 we have found q1p

distinct vectors whose sum is zero. Recall that k is divisible by q1p. Deleting these q1p vectors
and repeating this process kr=p times we have kr=p disjoint subsequences of qip vectors for
i = 1; : : : ; kr=p, such that the sum of the vectors in each subsequence is zero. There exist
some 1 � s � r such that qi = s for at least k=p distinct values of i. k=(ps) < k=p is an integer
and we can therefore select k=(ps) sequences of size sp each. The union of these sequences is
a sequence of k vectors whose sum is zero, as required. Now, m = p(k= ln k)(1+ok(1)) satis�es�
m�kr2

r

� � pkrrpr+1 and the result follows. �
It remains to show the relation between f(k; p) and g(k; p). Let z(s; k; p) denote the

minimum possible fraction of k-subvectors of a vector v 2 (Zp)
s whose sum is divisible by

p. This generalizes the de�nition of z(s; k) = 1 � z(s; k; 2) appearing in Section 2. It is
proved in [1] that z(s; k; p) � 21�p(1� ok(1)) for k � s=2. This, together with an immediate
counting argument, shows that in any matrix over Zp with s � 2k rows and t columns there is
a submatrix with k rows and t21�p(1�ok(1)) columns such that the sum of the rows is zero. By
de�nition of g(k; p), if t21�p(1� ok(1)) � g(k; p) then there is a square zero-sum submatrix of
order k. Since t > s, it follows that any square matrix of order t over Zp has a square submatrix
of order k which is zero-sum. Hence f(k; p) � 2p�1g(k; p)(1 + ok(1)). By Proposition 3.5 we
have that for in�nitely many values of k, f(k; p) � 2p�1p(k= ln k)(1+ok(1)) = p(k= ln k)(1+ok(1)).
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