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1 Introduction

Boolean functions on the space Fm
2 are not only important in the theory of error-correcting

codes, but also in cryptography, where they occur in private key systems. In both cases, the
properties of these systems depend on the nonlinearity of a Boolean function. The nonlinearity
is linked to the covering radius of the Reed-Muller codes. It is also an important parameter
for symmetric cryptosystems (cf. the thesis by C. Fontaine [8] or the recent papers by C.
Carlet [2, 3]).

It is useful to have at one's disposal Boolean functions with highest nonlinearity as have
shown W. Meier and O. Sta�elbach in [12], and K. Nyberg in [14]. These functions have been
studied in the case where m is even, and have been called \bent" functions (cf. J. Dillon
[5]). For these, the nonlinearity is well known, we know how to construct several series of
them, but we do not know yet their number, nor their classi�cation (cf. works by Carlet, in
particular the paper of C. Carlet and A. Klapper [4]).

In the case where m is odd, the situation is quite di�erent. We do not know the value of
the maximal nonlinearity except for m = 3; 5; 7, and we have only an asymptotic conjecture
(cf. for instance P. Langevin [10]).

In this article, I want to show that one can get some insight in this theory from the study
of random polynomials, which have been a subject of study since as far as the works of Paley
and Zygmund. Indeed, the problem of the research of the maximum of the nonlinearity comes
down to minimize the Fourier transform of Boolean functions. It is a problem analogous to
Fourier series on the real torus, where one wants to minimize the transform of these functions
on Z which take values �1 for a �nite set (and 0 elsewhere), or one wants to minimize
the values of polynomials with coe�cients �1 (random polynomials) on the set of complex
numbers of module 1.

In this work, we have been inspired by the works of R. Salem and A. Zygmund [18] and by
J-P. Kahane [9] on random polynomials, and we have transposed them on Boolean functions.
In this way, we �nd an evaluation of the mean of the maximum of the absolute values of the
Fourier transforms of Boolean functions, which is not very far from the theoretical minimum
value 2m=2. This gives an evaluation of the average nonlinearity of these functions. We �nd
again in particular the fact that most of the Boolean functions have a high nonlinearity, a
result already proved recently by D. Olejar and M. Stanek [15] and independently by C. Carlet
[3] (see theorem 4.1 and remark after it).

Moreover, by transposing a work of D. Newman and J. Byrnes [13] on the norms in L4

of polynomials, we studied also a weaker conjecture about the sum-of-square indicator of
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Boolean functions. This criterion has been introduced by Xian-Mo Zhang et Yuliang Zheng
[19] and it is linked to propagation criterion for the Boolean functions. Its relation with
nonlinearity has been studied in [1].

This paper is an extended abstract of the paper [17] which contains complete proofs of
these results.

2 Preliminaries

2.1 Boolean functions

Let m be a positive integer and q = 2m.

De�nition 2.1 A Boolean function with m variables is a map from the space Vm = Fm
2 into

F2.

A Boolean function is linear if it is a linear form on the vector space Fm
2 . It is a�ne if it

is equal to a linear function up to addition of a constant.

2.2 Nonlinearity

De�nition 2.2 We call nonlinearity of a Boolean function f : Vm �! F2 the distance from
f to the set of a�ne functions with m variables:

nl(f) = min
h a�ne

d(f; h)

where d is the Hamming distance.

One can show that the nonlinearity is equal to

nl(f) = 2m�1 � 1

2
S(f)

where
S(f) = max

v2Vm

��� X
x2Vm

(�1)(f(x)+v�x)
���

and v � x denote the usual scalar product in Vm. We call S(f) the spectral amplitude of the
Boolean function f .

2.3 The covering radius of the Reed-Muller code of the �rst order

This spectral amplitude is linked to the covering radius of the Reed-Muller code.
Indeed the Reed-Muller code Rm of order 1 on Vm is the vector space of a�ne Boolean

functions on Vm. The covering radius rm of the code is the highest nonlinearity of Boolean
functions on Vm.
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2.4 Known results, conjecture

The covering radius of the Reed-Muller code of the �rst order is well known. For an even
dimension m, bent functions reach the lower bound 2m=2 of spectral amplitude. For odd m,
2m=2

p
2 has been a long time the only known lower bound of S(f).

In 1983, Patterson and Wiedemann [16] have shown that one can do better for m � 15.
They have exhibited a Boolean function f in V15 such that

S(f) =
27

32
215=2

p
2:

They have conjectured that
min
f

S(f) � 2m=2 (1)

2.5 Case of the torus on R

The Fourier series on the torus (that is on the group of complex numbers of module equal
to 1) present an analogous problem. Let us replace the functions x 7�! (�1)v�x for v 2 Vm,
which are characters of Vm by characters of the torus x 7�! eisx for s 2 Z.

An analogous conjecture is then

lim
n
min

kPn
0 as;ne

isxk1p
n

= 1

where as;n = �1. So, it claims that there exists a sequence of polynomials Pn(z) =
Pn

s=0 as;nz
s

with as;n = �1, and a sequence of positive numbers �n which tend to zero such that for all
jzj = 1, jPn(z)j � (1 + �n)

p
n.

Several authors such as J. E. Littlewood [11], and P. Erd�os [7] have asked for the same
problem. The latter has conjectured that on the contrary there exists � > 1 such that for
all integer n and complex number z of module 1, one has jPn(z)j � �

p
n. J-P. Kahane ([9])

solved the problem for complex coe�cients as;n of module 1. He has proved that in this case,

lim
n
min

kPnk1p
n

= 1. But nothing has been done for the initial problem. Moreover, Kahane

used to solve this problem exponentials of the form e�in
2=a. He then works out a polynomial

which solves almost the problem and he adjusts this polynomial by using a probabilistic
argument. The exponentials Kahane uses are exponentials of quadratic forms in n, but in
our case they do not give any complete result for odd dimensions m.

3 The space of Boolean functions with an in�nity of variables

To study asymptotically Boolean functions, we will need the notion of Boolean functions with
an in�nity of variables and we will introduce a probability measure on them to be able to
state almost sure results.

3.1 The space B

We recall that Vm = Fm
2 . We de�ne V1 as being the space of in�nite sequences of elements

of F2 which are almost all equal to zero. We de�ne then Bm as being the algebra of Boolean
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functions on Vm and B = B1 as being the algebra of Boolean functions on V1. We have the
restriction mappings

�m : B1 �! Bm : f 7�! fm = f jVm :

We will consider the equiprobability on Bm and we will endow B with a probability which will
be the Haar measure on it with total mass 1. In other words, for each f 2 Bm, the probability
of the event ��1m f = fg 2 B j g jVm= fg is given by

P(��1m f) =
1

2q

where q = jVmj = 2m.

4 Distribution of S(f)

We have by Parseval identity, for f 2 Bm:
p
q � S(f) � q

We will show that in fact S(f) is rather close to
p
q.

4.1 Upper bound of S(f)

The following result shows that few Boolean function have a high spectral amplitude.

Theoreme 4.1 If f is a Boolean function on Vm, and � a positive real, one has

P
�
S(f) � (1 + �)

p
2q ln q

�
� 1

q2�
:

Remark 4.1 This theorem is a particular case of a theorem by J-P. Kahane (Theorem 1,
Chapter 6 in [9]) which we have stated here in the case of Boolean function with optimized
constants. Recently, Olejar and Stanek in one hand, and Carlet in the other hand proved this
result by independent proofs, using approximations of sums of binomial coe�cients [15, 3].

Corollary 4.1 We have almost surely

lim sup
q

S(fm)

2m=2
p
m
�
p
2 ln 2

where f is in the space B.

4.2 Lower bound of S(f)

The following theorem shows that the spectral amplitudes of most Boolean functions are not
too small. It is inspired by Salem and Zygmund [18] who deal with the real torus.

Theoreme 4.2 If f is a Boolean function on Vm, for all � such that 0 < � < 0:2 there exists
a constant B positive and depending only of � such that

P

 
S(f) <

�1
2
� 2�

�p
q ln q

!
<

B

q�
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Corollary 4.2 We have almost surely

lim inf
m

S(fm)

2m=2
p
m
�
p
ln 2

2

where f is in the space B.

4.3 Sketches of the proofs

Here I explain the main ideas of the proof. Complete proofs can be found in [17].
They come from the following three ingredients. We denote by E(X) the expectation of a

random variable X on Bm.

� If X is a positive square integrable random variable, if 0 < a < 1 and b > 1, one gets
these simple formulas (see for instance [9], Chapter 1):

(1� a)2
E2(X)

E(X2)
� P

�
X � aE(X)

�
(2)

P
�
X � bE(X)

�
� 1

b
: (3)

� In the previous relations, we take X = exp �S(f). We have to estimate E(exp �S(f)).
We �rst introduce

c�f (u) = X
x2Vm

(�1)(f(x)+u�x) and Iq =
1

q

X
u

exp(�c�f (u)): (4)

We can compare E(Iq) with E(exp �S(f)):

E(Iq) � E(exp �S(f)) � 2qE(Iq):

The �rst inequality is obvious, the second comes from the fact that S(f) = c�f (u) or
�c�f(u) for at least one value of u 2 Vm.

� One can compute the expectation of exp(�c�f (u)), using the fact that the random vari-
ables exp(�(�1)(f(x)+u�x)) (on the space Bm) are independent:

E(exp(�c�f (u))) = Y
x2Vm

E(exp(�(�1)(f(x)+u�x))) =
Y

x2Vm
cosh(�):

From this, one gets by elementary computations:

exp
��2q

2
� �4q

�
� E(Iq) � exp

 
�2q

2

!
;

One gets in the same way

E(I2q ) �
�
1 +

exp
�
q�2

�
q

�
exp

�
q�2

�
:
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4.3.1 Proofs of upper bound

We plug in these estimations into relation (3) to get

P

�
exp (�S(f)) � 2qb exp

�
q�2=2

��
� 1

b

A good choice of the parameter � leads to the proof.

4.3.2 Proofs of lower bound

In this case, we have to plug in the estimations of E(exp �S(f)) into relation (2):

(1� a)2
exp

�
�2q � 2�4q

�
�
1 + exp(q�2)

q

�
exp (q�2)

� P
�
exp �S(f) � a exp

��2q
2

� �4q
��

whence

(1� 2a)exp (�2�4q)
�
1� exp

�
q�2

�
q

�
� P

�
S(f) � ln a

�
+

�q

2
� �3q

�
if exp(q�2)

q < 1. Again a good choice of the parameter � leads to the proof.

4.3.3 Proofs of the corollaries

One uses the Borel-Cantelli lemma (cf. [9], x 1.6).

5 The sum-of-square indicator

Let us go back using an idea of D. Newman and J. Byrnes [13]. They have remarked that, in
the case of Fourier series on Z, the norm in L4 of

P
n�eint had a nice expression. It is the

same for Boolean functions. For f a Boolean function on Vm, let us denote

�f =
1

q

X
x2Vm

c�f (x)4 = kc�fk44
where c�f is de�ned in (4). It happens to be the sum-of-square indicator introduced by Zhang
and Zheng [19]. We remark that 22m � �f � S(f)4: Consequently, the conjecture (1) implies
a weaker conjecture:

Conjecture 5.1 If f runs over the Boolean functions on Vm, one has

lim
m

min
f2Vm

�f
22m

= 1:

We have the following simple expression for �f .

Lemme 5.1 If f is a Boolean function on Vm,

�f = q2 +
X
a6=0
a2Vm

Xa with Xa =

0@ X
x2Vm

(�1)f(x)+f(x+a)
1A2
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5.1 Distribution of �f

From lemma 5.1, one can compute the expectations E(�f ) and E(�2f ). This computation

reduces to the computation of expressions like E
�
(�1)f(x1)+f(x2)+f(x3)+���+f(xr)

�
for xi 2 Vm.

Lemme 5.2 One has

E
�
(�1)f(x1)+f(x2)+f(x3)+���+f(xr)

�
= 0 or 1:

The expectation E
�
(�1)f(x1)+f(x2)+f(x3)+���+f(xr)

�
is equal to 1 if and only if for every y 2 Fn

2

there is an even number of xi equal to y, that is if and only if there exists a partition of
fx1; x2; x3; : : : ; xrg in sets containing two equal elements.

From this lemma, one gets

Proposition 5.1 If f is a Boolean function on Vm then

E(�f ) = 3q2 � 2q;

E(�2f ) � 64q � 100q2 + 28q3 + 9q4:

Using these expectations one can prove the following proposition, using the inequality of
Bienaym�e-Tchebiche� (See for instance [9], x 1.6.).

Proposition 5.2 If f is a Boolean function on Vm, and t a positive real number,

P

 �����fq2 � 3 +
2

q

���� � t

!
� 40

t2q

Corollary 5.1 If f 2 B, one has almost surely lim
m

�fm
22m

= 3:

5.2 Asymptotic results

From lemma 5.1, we have
�f
q2

� 1 =
1

q

X
a6=0

Ya

with Ya =
1
qXa. We can prove an asymptotical result about the distribution of the random

variable Ya, but we have only a conjecture about the distribution of �f .

5.2.1 Convergence of the distribution of the random variable Ya

Using the fact that the random values (�1)f(x)+f(x+a) are independent on the hyperplane
orthogonal to a, we deduce that the distribution of 1p

q

P
x2Fm

2

(�1)f(x)+f(x+a) converge in law

to a gaussian law. We deduce a limit for its square.

Proposition 5.3 The distribution of Ya =
1
qXa converges in law to the distribution of density

1

2
p
�x

e�x=41(x>0):
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5.2.2 A conjecture about the distribution of �f

By the previous proposition, the random variables Ya have almost the same distribution.
They seem to be almost independent. In view of the central limit theorem, one may therefore

conjecture, that the sequence
1p
q

X
a6=0

Ya converges in law to the Gaussian law N (0; 40) with

density
1p
80�

e�x
2=80.

This conjecture and the conjecture that lim
m

min
f2Vm

�f
22m

= 1 would follow from a better

understanding of E(�nf ), or of the E(Xp1
a1 : : : X

pq
aq ). Indeed let us de�ne

�q(u) =
1

q
ln E

�
exp

�
u
X
a6=0

Ya
��

If we prove that �(u) = limq!1 �q(u) exists for every u 2 R (in�nite values are allowed)
plus some technical conditions, we would deduce by a theorem on large deviation [6], the
conjecture 5.1, that is for given �, for every q large enough, there exists f such that

�f
q2

� 1 < �:
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