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Abstract

A conjecture by Canteaut and Dobbertin states that if n is even, then every permu-
tation of Fn

2
is a�ne on some 2-dimensional a�ne subspace of Fn

2
. We prove that the

conjecture is true for n = 4 and for quadratic permutations of Fn
2
. The conjecture is

actually a claim about (AGL(n; 2);AGL(n; 2))-double cosets in permutation group S(Fn
2
)

of Fn
2
. We give a formula for the number of (AGL(n; 2);AGL(n; 2))-double cosets in S(Fn

2
)

and classify the (AGL(4; 2);AGL(4; 2))-double cosets in S(F4
2
).

Keywords. almost perfect nonlinear function, general a�ne group, general linear group,
permutation group, quadratic function.

1 Introduction

Let Fq be the �nite �eld with q elements. In a block cipher, the ciphertext of a plaintext x 2 F
n
2

is obtained by applying a composition of several round functions to x; each round function
is a permutation of Fn2 . Let F : Fn2 ! F

n
2 be such a round function. To resist di�erential

cryptanalysis, the distribution of the values of the function F (x + a) + F (x) should be as
uniform as possible for every 0 6= a 2 F

n
2 ([6]). A function F : Fn2 ! F

n
2 is called almost

perfect nonlinear (APN) if for every a; b 2 F
n
2 with a 6= 0, the equation

F (x+ a) + F (x) = b

has either 0 or 2 solutions x ([1]). Therefore ideal candidates for round functions are permu-
tations of Fn2 winch are APN. When n is odd, such permutations exist. For an easy example,
one can identify F

n
2 with F2n and let F (x) = x3 ([1]). For even n, Canteaut and Dobbertin

[2] made the following conjecture.

Conjecture 1.1 If n is even and F is a permutation of Fn2 , then F is not APN.

The above conjecture can be formulated in terms of a�nity of permutations of Fn2 on 2-
dimensional a�ne subspaces. Recall that for a�ne spaces A and B over F2 , a map f : A! B
is called a�ne if f(a1+ a2+ a3) = f(a1) + f(a2) + f(a3) for all a1; a2; a3 2 A. Conjecture 1.1
is equivalent to
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Conjecture 1.2 Let n be even and let � be a permutation of F
n
2 . Then � is a�ne on a

2-dimensional a�ne subspace A of Fn2 , i.e., �(A) is a 2-dimensional a�ne subspace of Fn2 .

Throughout the paper, S(X) always denotes the group of all permutations of a set X.
Thus S(Fn2 ) is the permutation group of Fn2 . The group of invertible a�ne transformations
of Fn2 , i.e., the general a�ne group AGL(n; 2), is a subgroup of S(Fn2 ). Conjecture 1.2 is
equivalent to

Conjecture 1.3 Let A0 = f(x1; x2; 0; � � � ; 0)T : xi 2 F2g � F
n
2 . When n is even,

S(Fn2 ) = AGL(n; 2) � SA0 �AGL(n; 2); (1.1)

where SA0 = f� 2 S(Fn2 ) : �jA0 = idg is the stabilizer of A0 in S(Fn2 ). (In (1.1), the
multiplication is the operation of the group S(Fn2 ).)

In this paper, we report some partial results on the above conjectures and suggest a group
theoretic approach to the problem.

Section 2 contains some miscellaneous results. We prove that Conjectures 1.1 { 1.3 are
true for n = 4. We also show that the normalizers of AGL(n; 2) and GL(n; 2) in S(Fn2 )
are themselves. In Section 3, we study the a�nity of elements in S(Fn2 ) using directional
derivatives. In particular, we show that Conjectures 1.1 { 1.3 are true for permutations of Fn2
with quadratic component functions.

Recall the if H and K are subgroups of a group G and g 2 G, the (H;K)-double coset
with representative g is HgK. Equation (1.1) means that every (AGL(n; 2); AGL(n; 2))-
double coset in S(Fn2 ) has a representative in SA0 . This suggests the importance of the
structure of (AGL(n; 2); AGL(n; 2))-double cosets in S(Fn2 ). In Section 4, we give a formula
for computing the number of (AGL(n; q); AGL(n; q))-double cosets in S(Fnq ). The number of
(AGL(4; 2); AGL(4; 2))-double cosets in S(F42 ) is 302; the number of (AGL(5; 2); AGL(5; 2))-
double cosets in S(F52 ) is astronomical. In Section 5, we �nd representatives for the 302
(AGL(4; 2); AGL(4; 2))-double cosets in S(F42 ) using a computer. This classi�cation answers
all questions about a�nity of permutations of F42 .

Because of the nature of an extended abstract, some proofs are omitted.

2 Miscellaneous Results

Since there are counter examples to Conjectures 1.1 { 1.3 for odd n, one might hope to
use them to build a counter example to the conjectures for even n However, the following
proposition shows that this approach is not likely to be easy.

Proposition 2.1 Let A = f
� 0
v

�
: v 2 F

n�1
2 g � F

n
2 . Assume that � 2 S(Fn2 ) such that

�(A) = A. Then � is a�ne on a 2-dimensional a�ne subspace of Fn2 .

Proof.
Assume to the contrary that � is not a�ne on any 2-dimensional subspace. Let

�(

�
0
v

�
) =

�
0

�(v)

�
; �(

�
1
v

�
) =

�
1

�(v)

�
; v 2 F

n�1
2 ;
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where � and � are permutations of Fn�12 . Then � and � are not a�ne on any 2-dimensional
subspace of Fn�12 . Fix any 0 6= a 2 F

n�1
2 . The map

v 7�! �(v) + �(v + a)

is 2-to-1 from F
n�1
2 to F

n�1
2 n f0g. (Otherwise, � would be a�ne on a 2-dimensional a�ne

subspace of Fn�12 .) Let

D(�) = f�(v) + �(v + a) : v 2 F
n�1
2 g � F

n�1
2 n f0g:

Then jD(�)j = 2n�2. In the same way, D(�) � F
n�1
2 n f0g and jD(�)j = 2n�2. Hence

D(�) \D(�) 6= ;, i.e.,

�(u) + �(u+ a) = �(v) + �(v + a)

for some u; v 2 F
n�1
2 . Then � is a�ne on the 2-dimensional a�ne subspace

n�0
u

�
;

�
0

u+ a

�
;

�
1
v

�
;

�
1

v + a

�o
:

�

By a k-frame, we mean an a�nely independent subset X � F
n
2 with jXj = k + 1, i.e., a

(k+1)-element subset of Fn2 which spans a k-dimensional a�ne subspace. If X and Y are two
k-frames of Fn2 , then any bijection f : X ! Y can be extended to an element in AGL(n; 2).

Lemma 2.2 (i) Let � 2 S(Fn2 ). Then there exists an n-frame X � F
n
2 such that �(X) is also

an n-frame.
(ii) Let e1; � � � ; en be the standard basis of Fn2 and let e0 = 0 2 F

n
2 . Then

S(Fn2 ) = AGL(n; 2) � Se0;e1;��� ;en �AGL(n; 2);

where Se0;e1;��� ;en is the stabilizer of e0; e1; � � � ; en.

Proof.
Omitted. �

Theorem 2.3 Conjectures 1.1 { 1.3 are true for n = 4.

Proof.
By Lemma 2.2 (ii), we only have to prove Conjecture 1.2 for � 2 Sfe0;e1;��� ;e4g, i.e., for
permutations of F42 which stabilize ei (0 � i � 4). There are 11! such permutations and the
claim is easily veri�ed using a computer. The theorem also follows from the classi�cation of
(AGL(4; 2);AGL(4; 2))-double cosets in S(F42 ) in Section 5. �

For �; � 2 S(Fn2 ), we say � and � are equivalent (� � �) if � and � are in the same
(AGL(n; 2);AGL(n; 2))-double coset of S(Fn2 ).

Corollary 2.4 Let n be even, � 2 S(Fn2 ), and identify F
n
2 with F2n . Then � is a�ne on a

2-dimensional a�ne subspace of F2n if one of the following is true.
(i) � � f for some permutation polynomial f of F2n such that f 2 F22 [x].
(ii) 4 j n and � � f for some permutation polynomial of f of F2n such that f 2 F24 [x].
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Proof.
(i) is obvious since f maps F22 to F22 .

(ii) f maps F24 to F24 . By Theorem 2.3, f is a�ne on a 2-dimensional a�ne subspace of
F24 . �

Proposition 2.5 The normalizer of AGL(n; 2) in S(Fn2 ) is AGL(n; 2).

Proof.
Omitted. �

Proposition 2.6 The normalizer of GL(n; 2) in S(Fn2 ) is GL(n; 2).

Proof.
Omitted. �

3 Quadratic Permutations of Fn2

It is well known that the algebra of functions from F
n
2 to F2 is

Pn = F2 [X1; � � � ;Xn]=(X
2
1 �X1; � � � ;X

2
n �Xn):

Also recall that the rth order Reed-Muller code of length 2n is R(r; n) = ff 2 Pn : deg f � rg.
Let � = (f1; � � � ; fn)T be a function from F

n
2 to F

n
2 where fi 2 Pn. We de�ne

deg � = max
1�i�n

deg fi:

When n is odd, the counter example to the conjectures, f(x) = x3 : F2n ! F2n , is a quadratic
permutation of F2n . Thus it is natural to ask if the conjectures are true for quadratic permu-
tations of F2n when n is even. We will see that the answer is positive.

Let F : Fn2 ! F
m
2 be any function and let a 2 F

n
2 . We de�ne

DaF : F
n
2 �! F

m
2

x 7�! F (x+ a) + F (x)

Lemma 3.1 Let � = (f1; � � � ; fn)T : Fn2 ! F
n
2 be any function such that � is not a�ne

on any 2-dimensional a�ne subspace of Fn2 . Let � = (f2; � � � ; fn)T : Fn2 ! F
n�1
2 and e1 =

(1; 0; � � � ; 0)T 2 F
n
2 . If De1f1 is a constant, then

De1� = (De1f2; � � � ;De1fn)
T : f0g � F

n�1
2 ! F

n�1
2

is a bijection.

Proof.
Assume the contrary. Then there exist a; b 2 f0g � F

n�1
2 , a 6= b, such that

�(a+ e1) + �(a) = �(b+ e1) + �(b):

But since f1(a+ e1) + f1(a) = (De1f1)(a) = (De1f1)(b) = f1(b+ e1) + f1(b), we have

�(a+ e1) + �(a) = �(b+ e1) + �(b);
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i.e., � is a�ne on the 2-dimensional a�ne subspace fa; b; a+e1; b+e1g. This is a contradiction.
�

For any f 2 Pn, de�ne

N(f) = fa 2 F
n
2 : Daf = constantg:

Corollary 3.2 Let � = (f1; � � � ; fn)
T : Fn2 ! F

n
2 be any function such that � is not a�ne on

any 2-dimensional a�ne subspace of Fn2 . Then N(f1) \N(f2) = f0g.

Proof.
Otherwise, we may assume that e1 2 N(f1) \ N(f2). Then both De1f1 and De1f2 are
constants, which is impossible by Lemma 3.1. �

Theorem 3.3 Let n be even and let � = (f1; � � � ; fn)
T 2 S(Fn2 ) such that

dimF2

�
hf1; � � � ; fni+R(2; n)

�
=R(2; n) � 1; (3.1)

where hf1; � � � ; fni is the linear span of f1; � � � ; fn. Then � is a�ne on a 2-dimensional a�ne
subspace of Fn2 .

Proof.
Of course, we may assume that n � 4. Because of (3.1), we may assume that f1; � � � ; fn�1 2
R(2; n). For each f 2 R(2; n), its homogeneous part of degree 2 corresponds to an n � n
symmetric matrix A over F2 whose diagonal entries are 0. The quadratic rank of f , de-
noted by rank(f), is rank(A). It is well known that dimN(f) = n � rank(f). For any
0 6= (c1; � � � ; cn�1) 2 F

n�1
2 , we have rank(c1f1 + � � � + cn�1fn�1) � n � 2. (Otherwise, the

Hamming weight of
Pn�1

i=1 cifi is j
Pn�1

i=1 cifij = 2n�1 � 2
n
2
�1 6= 2n�1. Then � = (f1; � � � ; fn)

T

cannot be a permutation of Fn2 , which is a contradiction.) Therefore

dimN(c1f1 + � � �+ cn�1fn�1) � 2 for all 0 6= (c1; � � � ; cn�1) 2 F
n�1
2 :

We claim that there exist (u1; � � � ; un�1); (v1; � � � ; vn�1) 2 F
n�1
2 n f0g, (u1; � � � ; un�1) 6=

(v1; � � � ; vn�1), such that

N(u1f1 + � � �+ un�1fn�1) \N(v1f1 + � � �+ vn�1fn�1) 6= f0g:

Otherwise, ��� [
(c1;��� ;cn�1)2F

n�1
2 nf0g

N(c1f1 + � � �+ cn�1fn�1)
��� � 1 + 3(2n�1 � 1) > 2n;

which is a contradiction.
Through a suitable linear transformation, we may assume that (u1; � � � ; un�1) = (1; 0; � � � ; 0)

and (v1; � � � ; vn�1) = (0; 1; 0; � � � ; 0). Then N(f1)\N(f2) 6= f0g. By Corollary 3.2, � is a�ne
on a 2-dimensional a�ne subspace of Fn2 . �

Corollary 3.4 Let n be even. If � 2 S(Fn2 ) and deg � � 2, then � is a�ne on a 2-dimensional
a�ne subspace of Fn2 .
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4 Number of AGL(n; q); AGL(n; q))-Double Cosets in S(Fnq )

Let p be a prime and q a power of p. In this section we work with Fq instead of F2 . In fact,
the q-ary case does not require any extra work.

The group AGL(n; q)�AGL(n; q) acts on S(Fnq ): For (f; g) 2 AGL(n; q)�AGL(n; q) and
� 2 S(Fnq ),

(f; g)(�) = f � � � g�1:

The orbits of this action are precisely the (AGL(n; q); AGL(n; q))-double cosets in S(Fnq ). By
Burnside Lemma, the number of (AGL(n; q); AGL(n; q))-double cosets in S(Fnq ), denoted by
N(n; q), is given by

N(n; q) =
X
f;g2C

1

jcentAGL(n;q)(f)j � jcentAGL(n;q)(g)j
jF (f; g)j;

where C is a system of representatives of the conjugacy classes of AGL(n; q), centAGL(n;q)(f)
is the centralizer of f in AGL(n; q), and

F (f; g) = f� 2 S(Fnq ) : f�g
�1 = �g:

We have

jF (f; g)j

=
��f� 2 S(Fnq ) : f = �g��1g

��
=

(
0; if f and g are of di�erent cycle types;

(�1!�2! � � � )(1�12�2 � � � ); if f and g are both of cycle type (�1; �2; � � � ) ` qn;

where (�1; �2; � � � ) ` qn means that (�1; �2; � � � ) is a partition of qn, i.e., �i � 0 and 1�1 +
2�2+ � � � = qn. That f is of cycle type (�1; �2; � � � ) means that in the decomposition of f into
disjoint cycles, there are �i cycles of length i. For each � = (�1; �2; � � � ) ` qn, put

C� = ff 2 C : f is of cycle type �g:

Then we have

N(n; q) =
X

�=(�1;�2;��� )`qn

(�1!�2! � � � )(1
�12�2 � � � )

hX
f2C�

1

jcentAGL(n;q)(f)j

i2
: (4.1)

To use formula (4.1), we have to know three things: (i) a system C of representatives of
the conjugacy classes of AGL(n; q), (ii) jcentAGL(n;q)(f)j for every f 2 C, and (iii) the cycle
type of every f 2 C.

Items (i) and (ii) have been determined in [3] and [4]. Elements in C form a 3-parameter
family f�;t;B where � = (�1; �2; � � � ) is a partition with j�j = 1� + 2�2 + � � � � n, t � 0 is a
certain integer and B is a representative of conjugacy classes of GL(n� j�j; q) which has no
eigenvalue 1. (See [3] for the details.)

As for (iii), let (�1; �2; � � � ) be the cycle type of f 2 C and put Fix(f) = fx 2 F
n
q : f(x) =

xg. Then for integer k � 1, we have

jFix(fk)j =
X
ijk

i�i:
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By M�obius inversion, we obtain

i�i =
X
kji

�(
i

k
)jFix(fk)j;

where � is the classical M�obius function. Thus

�i =
1

i

X
kji

�(
i

k
)jFix(fk)j:

Therefore we only have to determine jFix(fk)j for f 2 C and k � 1. We use �p to denote the
p-adic order function.

Proposition 4.1 In the above notation, we have��Fix(fk�;0;B)�� = q
P

i �iminfi;p�p(k)g+null(Bk�I); (4.2)

and for t > 0,

��Fix(fk�;t;B)�� =
(
q
P

i �iminfi;p�p(k)g+null(Bk�I); if p�p(k) > t;

0; if p�p(k) � t:
(4.3)

Proof.
Omitted. �

Using a computer we �nd that

N(4; 2) = 302

and

N(5; 2) = 2; 569; 966; 041; 123; 938; 084:

5 Classi�cation of (AGL(4; 2); AGL(4; 2))-Double Cosets in S(F42)

To �nd representatives of (AGL(4; 2); AGL(4; 2))-double Cosets in S(F42 ) , by Lemma 2.2
(ii), we only have to search through permutations of F42 which �x 0; e1; � � � ; e4. The search
is complete when 302 mutually non equivalent permutations have been found. Note that for
�; � 2 S(F42 ), � � � if and only if �f��1 2 AGL(4; 2) for some f 2 AGL(4; 2). The indicator
functions of all 2-dimensional subspaces of F42 generate the Reed-Muller code R(2; 4) ([5]).
Since dimR(2; 4) = 24 � 1 � 4 = 11, we can �nd 2-dimensional subspaces V1; � � � ; V11 of F42
such that their indicator functions form a basis of R(2; 4). Then �f��1 2 AGL(4; 2) if and
only if X

x2Vi

�f��1(x) = 0 for 1 � i � 11:

In this way, we have found the representatives of the (AGL(4; 2); AGL(4; 2))-double cosets
in S(F42 ) using a computer. However, the list of representatives is too long to be included in
this paper. Using this classi�cation, we can answer all questions concerning the a�nity of
permutations of F42 . In particular, we �nd that every element in S(F42 ) is a�ne on at least 7
two-dimensional a�ne subspaces of F42 .
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