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Abstract

Methods using physical objects as cryptographic devices is a subject of several ongoing
projects, [2, 4]; results were reported even in the Science Magazine [5]. We investigate the
simplest case, when the physical object merely supplies a cryptographic key which should be
extracted from a single (or a set of) measurements. The \randomness" of the physical object
is guaranteed by physical laws. The object behaves as a real key, but duplication and forgery
is prevented by the actual physical properties of the object. Subsequent measurements of the
same object yield di�erent results; the extracted cryptographic key, however, must remain
the same with high probability. Whenever the key is needed, it is extracted freshly from the
physical object.

The total data given by a measurement is grouped into a single point of an appropriately
chosen phase space. Physical objects are identi�ed with the result of an ideal measurement.
Real measurements yield other points of the phase space \su�ciently close" to the ideal one.
Cryptographic keys are assigned to objects; the key should be recovered unambiguously from
any measurement of the object. For each possible cryptographic key we consider the subset
of the phase space whose points correspond to physical objects with that key. The collection
of these sets form a geometric code.

We identify three important parameters. The advantage is an upper bound on the expected
number of random objects one has to generate until a \valid" one is found, i. e. the associated
point yields a cryptographic key. The error tolerance tells us how punctuate we must be
in the measurements so that the key could be recovered. Finally, the security bounds the
probability of each particular key. Under quite natural assumptions on the phase space, we
prove a necessary condition these parameters must satisfy; and give examples which show
that our condition is tight up to constants. We also take a look at our assumptions on the
phase space.

1 Introduction

Geometrical codes arise naturally when cryptographic keys are generated by observing an
appropriately generated physical object. Such methods were investigated intensively, see,
e. g., [2, 4, 5]. We consider the scenario when these objects, also referred to as cryptographic
tokens, are used for identi�cation, or to guarantee originality or uniqueness. Cryptographic
tokens can be attached to DVD's, whose contents are then encoded by keys extracted from the
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tokens. As token duplication, by assumption, is prohibitively expensive, this would prevent
DVD duplications too. Originality of a paper based document can be proved o�-line when
a token is attached to the paper, and the issuing authority digitally signs the content of the
document together with the key extracted from the token. Attaching tokens to plastic cards
can prevent unauthorized duplications when the digital signature of the extracted key and
relevant card information is also stored on the card.

A cryptographic token can be any physical object which can be measured repeatedly, and
it can be an intrinsic part of the whole object or may be externally introduced. There are
several patents for cryptographical tokens. The system in [6] uses magnetic �bers randomly
sprinkled and embedded in a thin substrate. To read the identity token, a magnetic read
head is passed along the substrate. [7] uses variable translucency when a sheet of paper is
illuminated with a light source, and the data is read by an optical reader. Another patent
[8] uses small conducting particles embedded in an insulating substrate and uses microwaves
to read information. For a throughout overview of patents, see [4], where a token made
of micron-scale glass spheres cured into optical-grade epoxy is investigated. For paper-based
documents the token can be the collection of special �bers embedded into the paper substance;
the measurement is scanning the paper under ultraviolet light.

The measurement results in a collection of digitized bulk data, coming from a scanner, from
one, or several sampling devices. The data goes through �ltering, smoothing, thresholding,
maybe further sophisticated evaluation techniques are used as well. The preprocessing stage
reduces the amount of data signi�cantly, but { supposedly { retains all important physical
parameters of the measured object. Finally, based on the preprocessed data, a cryptographic
key, or extract, is generated.

In this paper we concentrate on a single aspect of this process, namely how the measure-
ment error a�ects the extracted key. In this respect the preprocessing stage can be considered
to be part of the measurement, or can be thought as part of the key-extracting procedure.
The physical object is identi�ed by the result of an ideally performed measurement. All other
measurements yield results which di�er from the ideal one, but are \su�ciently close," what-
ever this expression means. As we expect, the same cryptographic key should be generated
from di�erent measurements of the same object, thus su�ciently close measurements must
yield the same extract.

In one of the possible scenarios the result of a measurement is a digitized, gray-scale
picture consisting of, say, 1 million pixels. Each pixel has intensity which is a real number
between 0 (black) and 1 (white); the whole picture thus can be considered as a single vector
(point) in the 1 million dimensional Euclidean space. Two pictures are \close enough," if the
average pixelwise discrepancy is smaller than, say, 0.01. In other words, the distance between
two points (pictures) is measured in L1-norm, and we tolerate error up to distance 0.01 times
1 million = 10,000. Instead of working with the pixels, we can transform the picture into
the frequency domain. Similarity of pictures are often measured by how close they are in
the frequency domain. Small scale noise or large scale systematic error can be �ltered out
quite easily simply weighing high and low frequencies with small coe�cients. Using discrete
frequency values, the data can also be represented as a sequence of real numbers { that is, as
a point in a high dimensional Euclidean space; and closeness is measured again by a certain
norm in that space.

In our model we assume that such a measurement yields a single point in a certain phase

space T . \Closeness" is measured by some distance function, thus, in particular, T is a metric
space. Physical objects (tokens) are identi�ed by the result of the ideal measurement, that
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is, by a point in T . As tokens are random objects, we also have a probability distribution �
on the phase space, where for a subset A of T , �(A) tells us the probability that a randomly
produced object lies in A.

Given the result of a measurement, that is, a point p in T , some procedure, whose exact
details are irrelevant at the moment, tells us what the extracted cryptographic key is. For
each possible key k we denote by Ak the set of objects (tokens) to which the key k has been
assigned. When the object p 2 T is measured, the result is some p0 2 T su�ciently close to
p, that is the distance between p and p0 is bounded by some positive ". The key extracted
from p0 should be the same as the one extracted from p.

How cryptographic keys are assigned to measurements is determined uniquely by the
collection of the sets Ak as k runs over all possible keys. Properties of this system have an
intricate connection to the geometrical properties of the sets Ak, thus we called this collection
a geometrical code.

Geometrical codes have three important parameters: advantage, security, and error toler-

ance. The advantage � is an upper bound on how many random tokens should be generated
on the average until a \valid" one is found, i. e. until the associated point in the phase space
T is in one of the sets Ak. If the advantage is large then, with high probability, many tokens
should be discarded until we get a usable one. If the advantage is near to 1 then almost
all tokens are good. It would be ideal to have advantage exactly one, however, under our
assumptions it is impossible to achieve. The error tolerance " tells us that the error we make
in a measurement is at most ". That is, if p0 is the result of measuring a token p 2 Ak,
then the distance between p and p0 is less than ". As the extract k should also be recovered
from p0, the "-neighborhoods of the Ak's must be disjoint. Finally, the security parameter �
bounds the probability of the sets Ak. This parameter ensures that a particular key can be
generated, or replicated, with small enough probability only.

In Section 2 we give formal de�nitions, and state our main result about parameters of
geometrical codes. In Section 3 we give examples, showing that our bound is tight up to a
constant in several important cases. We take a look on our assumptions on the phase space;
�nally the last section contains conclusions.

2 De�nition

The phase space M is a collection of point which has a metric and a measure as well. The
distance between points x and y of M will be denoted by d(x; y). The (open) ball of radius
r around p 2M is the set of all points whose distance from p is less than %. We denote this
ball by p+ % as follows:

p+ %
def
= fx 2M : d(x; p) < %g:

Given any subset A of the phase space M , the (open) %-neighborhood of A is the union of the
balls p+ % where p runs over the elements of A:

A+ %
def
=
[
fp+ % : p 2 Ag:

We say that A+ % is the result of fattening A by %. From the triangle inequality it follows
immediately that fattening A+ %1 by %2, the result is included in A+ (%1 + %2). We call the
metric at whenever this inclusion is never proper for positive %1 and %2, that is if for all A
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and positive %1, %2 we have

(A+ %1) + %2 = A+ (%1 + %2): (1)

X-Mozilla-Status: 0000 X-Mozilla-Status2: 00000000

Apart from being a metric space, a measure � is also given on M so that all balls are
measurable. We assume also that � is homogeneous in the sense that all balls of equal radius
have the same measure. The volume (i. .e. the measure) of a ball of radius % is denoted by
V (%). We assume also that this V is continuous, strictly increasing, and takes all positive
real numbers. Given a measurable set A � M , let r(A) be the radius of the ball which has
the same measure as A, namely

�(A) = V (r(A)):

We �x furthermore a measurable subset T of the phase space M with �(T ) = 1 whose
elements correspond to the possible outcomes of the measurements. For A � T , we interpret
the measure �(A) as the probability that the outcome is an element of A.

As an example, M can be the n-dimensional Euclidean space IRn with the usual (Eu-
clidean) distance, T be the n-dimensional unit cube, and � be the Lebesgue measure. This
corresponds to the case when points of the unit cube (the phase space) are generated uni-
formly.

De�nition 1 A geometrical code of size m is a collection A1, : : : , Am of disjoint measurable
subsets of T . The code has

security �, if �(Ak) � � for all k;

advantage �, if �(
S
Ak) � 1=�; and

error tolerance " if the "-neighborhood of Ak is in T , and (Ai+")\(Aj+") = ; whenever
i 6= j.

The security parameter tells us that no particular key can be obtained with probability
exceeding �. Typical values are 2�50 or smaller. The advantage says how many tokens we
must produce on the average until we get a usable one; typically this value should be in the
range between 1:5 and 100. The error indicates how punctuate we should be in measuring:
making an error up to " will not yield unrelated keys. Our goal is to get estimates on " given
security and advantage.

As keys are derived from the sets Ak, we might require all keys to have the same prob-
ability, i. e. all Ak should have the same measure, or at least they should not di�er too
much. Also, the sets Ak must be \simple" enough so that deriving the key k should not pose
computational problems.

De�nition 2 The phase space M has the Brunn-Minkowski property, if for all measurable
sets A we have

�(A+ ") � �((p+ r(A)) + "):

In other words, fattening any measurable set it grows at least as much as it would if it were
a ball. If the metric is at, then the inequality can be written in the more succinct form of

r(A+ ") � r(A) + ":
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From this form it is easy to see that rescaling the metric does not a�ect whether the space
has the Brunn-Minkowski property. X-Mozilla-Status: 0000 X-Mozilla-Status2: 00000000

The celebrated Brunn-Minkowski inequality says [1] that the n-dimensional Euclidean
space with the usual metric and Lebesgue measure has the Brunn-Minkowski property. There
are several generalizations of this theorem, we shall briey recall some of them later.

We have all de�nitions at our disposal to state and proof our theorem, which, of course,
is not in the most general form.

Theorem 1 Suppose the phase space M is at, has the Brunn-Minkowski property, and the

function V (%), giving the volume of the ball of radius %, is log-concave. Then any geometrical

code with advantage �, security � and error tolerance " satis�es the inequality

" � V �1(��)� V �1(�): (1)

Proof Suppose the geometrical code consists of the measurable sets A1, : : : , Am. Let
r(Ak) = ak, that is ak is the radius of the ball which has the same measure than the set
Ak. As M is at, we can apply the Brunn-Minkowski property in the second form yielding
r(Ak + ") � r(Ak) + " = ak + ". In other words, Ak + " has measure at least as large as the
ball with radius ak + ":

�(Ak + ") � V (ak + "): (2)

Let moreover a be the radius of the ball which has the measure �, i. e. a = V �1(�). As the
code has security �, �(Ak) � � for all key k, which gives ak � a for all k.

Both ak + " and a are inside the interval (ak; a+ "), and if ak + " divides this interval in
the ratio � to 1 � �, then a divides it in the ratio 1 � � to �. By assumption the function
log V is concave, thus

log V (ak + ") � (1� �) log V (ak) + � log V (a+ ");

log V (a) � � log V (ak) + (1� �) log V (a+ "):

Adding them up and rearranging we get

V (ak + ") � V (a+ ")

V (a)
� V (ak):

By (2) the left hand side is at most �(Ak+"), and the sets Ak+" are pairwise disjoint subsets
of T , consequently their sum cannot exceed the measure of T :

1 = �(T ) �
X
k

V (a+ ")

V (a)
� V (ak) = V (a+ ")

V (a)

X
k

V (ak) � V (a+ ")

V (a)
� 1
�

since V (ak) is the measure of Ak, thus
P

k V (ak) = �(
S
Ak) � 1=�. Noting that V (a) = �,

we get (1).
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3 Examples

In our �rst example M is the n-dimensional Euclidean space IRn with the usual distance and
measure. The domain T of the codes can either be the unit cube, or the n-dimensional ball
of volume 1. The volume of the n-dimensional ball of radius % is

V (%) = n%
n where n =

�n=2

(n=2)!
:

Clearly V (%) is log-concave, and IR
n has the Brunn-Minkowski property (see [1]), thus we

can use Theorem 1. Estimating k! by (k=e)k, (1) becomes

" �
r
2�e

n
�1=n

�
�1=n � 1

�
: (3)

If the dimension n is at least ten times as large as log� then the last factor can be replaced
by (log �)=n. Keeping � and � �xed, the right hand side takes its maximal value at n =
0:66 log(1=�) independently of �. Then (3) simpli�es to

" � 2

3
e2=3

p
2�e

log�

log(1=�)
� 5:37

log�

log(1=�)
: (4)

For � = 2�50 and � = 1:5 this gives the bound " � 0:01 with n around 23.

We can also construct geometric codes with parameters quite close to the bound in (3).
Cut out small cubes of edge length �1=n + 2" from T , and then shrink each small cube from
its center until its edge becomes �1=n (and then its volume will be �). These sets will form
a geometric code with security � and error ". The advantage depends on how many small
cubes we can cut out of T . For simplifying the calculations, suppose that T is the unit cube.
As the edge length of the small cubes is �1=n + 2", one can cut out�

1

�1=n + 2"

�n
�
�

1

�1=n + 2"
� 1

�n
;

small cubes out of T , where [x] is the integer part of x. Thus the code has advantage �
whenever �

1

�1=n + 2"
� 1

�n
� � 1

�
;

which holds if

" � 0:5�1=n
�
�1=n 1

1 + (��)1=n
� 1

�
: (5)

If (��)1=n is small enough, then this is within a factor of 10
p
n of the theoretical.

In general, if @T denotes the measure of the boundary of T , then we can cut out of T at
least

1� �
p
n@T

�n

small cubes with edge length �. If we assume x = �
p
n@T to be smaller than one half, then

we can use 1�x=n to approximate (1�x)1=n, which shows that the code will have advantage
� whenever

" � 0:5�1=n

0
BBB@�1=n 1

1 +
@Tp
n
(��)1=n

� 1

1
CCCA :
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The constant times (��)1=n error term is the boundary error, which comes from the fact that
parts close to the boundary of T are wasted. This is proportional to the surface of T and
diminishes as � tends to zero. The discrepancy between the main constants 0:5 here andp
2�e=n in (3) comes from the packing error, namely that n-dimensional balls cannot be

packed tightly.

Keeping the Lebesgue measure, we can use other metric in IR
n. One general type of

metric comes from a norm jjxjj. The distance of the points (vectors) x and y is the norm of
their di�erence:

d(x; y)
def
= jjx� yjj:

This metric is always at, and \balls" are convex sets. Consequently these spaces also have
the Brunn-Minkowski property ([1]). The volume of the ball of radius % is V (%) = c � %n,
where c is the volume of the unit ball B1 = fx 2 IR

n : jjxjj < 1g. As the function V (%) is
log-concave, we can apply Theorem 1 which gives the theoretical bound

" � 1

c1=n
�1=n

�
�1=n � 1

�
: (6)

We also do have constructions in this general case, too. In fact, we have a geometric code
inside T consisting of congruent parallelepipeds whenever

" � 1

(n!)1=nc1=n
�1=n

0
BBB@�1=n 1

1 +
@'Tp
n
(��)1=n

� 1

1
CCCA :

Apart from the boundary error the two bounds agree up to the constant (n!)1=n � n=e.

We have seen examples where the phase space was the n-dimensional Euclidean space and
the metric was generated from an arbitrary norm. These phase spaces share several natural
properties; we note particularly the following ones:

(i) the metric is translation invariant, that is the distance between a and b is the same as
the distance between a+ x and b+ x;

(ii) the metric is at;

(iii) it generates the standard Euclidean topology;

(iv) the measure is homogeneous.

Now we show that our estimate in Theorem 1 applies for all phase spaces de�ned on the
n-dimensional vectors, requiring only these properties.

Theorem 2 Suppose the phase space M is de�ned on the points of the n-dimensional Eu-

clidean space, and it satis�es properties (i){(iv) above. Then any geometrical code in this

space satis�es the inequality of Theorem 1.

We have an example that condition (ii) is essential for Theorem 2 to hold. In that example
the space is the two-dimension Euclidean space with Lebesgue measure, and a strange distance
function. As Theorem 1 fails, this space cannot have the Brunn-Minkowski property either.

107



4 Conclusion

We have de�ned an abstract mathematical model of a practical problem, namely extracting
reliably a cryptographic key from a physical object. The model accounted for three important
parameters: security, advantage, and error tolerance. We have established a basic inequality
between these values, based on geometrical properties of the underlying phase space.

We investigated in detail cases when this phase space is the Euclidean n-dimensional space
with the usual Lebesgue measure, but not necessarily the standard metric. We have shown
constructions which achieved the theoretical bounds within certain error terms. Two types
of error were identi�ed. The boundary error comes from the fact that the code cannot use
points near to the boundary of the phase space T . This error becomes negligible when the
size of individual codes tends to zero. The packing error measures how compactly can the
space be packed with \balls." This error term is una�ected by the choice of the parameters.

Constructions also had further nice properties. All code sets were of the samemeasure, and
they were cubes or parallelepipeds, thus had trivial structure and admit e�ective encoding.

We took a closer look at our assumptions on the phase space. One of them is a general-
ization of the celebrated Brunn-Minkowski theorem; another one is a strange restriction on
the metric, namely that the metric space must be at. We proved that atness has inter-
esting consequences: the volume of the ball with radius r can grow at most exponentially;
furthermore on phase spaces de�ned on n-dimensional vectors atness (together with natural
homogeneity assumptions) ensures our estimate to hold. We also gave an example for an
otherwise nice phase space where this atness falls short. Constructions in the hyperbolic
space close to the bound given by Theorem 1 would also be of interest, as well as investigating
other esoteric geometries.

Problems discussed here originated from investigating o�-line authentication using cryp-
tographic tokens. Tokens are produced by a random process, they are cheap, but duplicating
and copying is prohibitively expensive. The token is measured, a key is generated, and the
key plus the relevant information is digitally signed. When checking authenticity, the token is
measured again, the extracted key is regenerated, and the digital signature is checked. After
measuring the token, signal processing techniques are used to reduce the data into several
hundred (or maybe a few thousand) real numbers. Subsequent measures are expected to yield
small variation in these numbers, thus \closeness" might be de�ned by some distance function.
Being this the case, our results give a theoretical bound on how punctuate we must be on
the measurements (error tolerance) given the amount of independent bits we want to extract
from the tokens (security) and the percentage of the waste in generating tokens (advantage).
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