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Abstract

We introduce the notion of designs in the Grassmannian spaces, link it to a certain

family of orthogonal polynomials of several variables, establish lower bounds for these

designs and prove that these lower bounds are upper bounds for the size of codes in a

certain sense.

1 Introduction.

The problem of packings, and related combinatorial questions, in the Grassmanian spaces
Gm;n of m-dimensional subspaces of Rn have been investigated in a series of recent papers
(see [4], [5]). Moreover, Grassmannian codes are now used in the transmission of information
through the so-called space-time codes.

The results presented here are due to the author, together with Renaud Coulangeon,
Gabriele Nebe, and Eichii Bannai (see references [2] and [1] where the proofs of the results
summarized here can be found).

The notion of designs was developped in many situations, over spaces which are 2-point
homogeneous, or more generally on which lives a Q-polynomial association scheme. Originaly
this is the work of Delsarte, Goethals and Seidel. The Grassmannian space has none of these
properties, although it is homogeneous for the action of the orthogonal group and symmetric.

Despite of that, with the help of group representation, we introduce a notion of designs,
and link it to the zonal polynomials related to the Grassmannian space. These are symmetric
polynomials of m variables, if m is the dimension of the subspaces of Rn under consideration,
and are orthogonal. Then, we establish lower bounds for the size of these designs.

Our notion of codes in the Grassmannian space does not refer to the choice of a speci�c
distance on this space. It is the natural de�nition in our context, because the lower bounds
for the size of designs are upper bounds for that notion of codes.

2 Designs on Grassmannian spaces.

Let Gm;n denote the real Grassmannian space, which is the space of m-dimensional subspaces
of Rn , together with the transitive action of the real orthogonal group O(n). The starting
point is the decomposition of the space of complex-valued squared module integrable functions
L2(Gm;n) under the action of O(n). One has:

L2(Gm;n) = ��H
�
m;n (1)
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where the sum is over the partitions � = �1 � � � � � �m � 0 with even parts �i � 0 mod 2,
and the spaces H�

m;n are isomorphic to the irreducible representation of O(n) canonically
associated to �, and denoted V �

n (see [9]). The degree of the partition � is by de�nition
deg(�) :=

P
i �i, and its depth, denoted depth(�) is the number of its non-zero parts.

De�nition 2.1 A �nite subset X of Gm;n is called a t-design if one of the following equivalent
properties is satis�ed:

(i) For all f 2 H�
m;n and all � with 0 � deg(�) � t,R

Gm;n
f(p)dp = 1

jXj

P
x2X f(x).

(ii) For all f 2 H�
m;n and all � with 2 � deg(�) � t,

P
x2X f(x) = 0.

There is a nice caracterization of the designs in terms of the zonal functions of Gm;n. It
is a classical fact that the orbits under the action of O(n) of the pairs (p; p0) of elements
of Gm;n are caracterized by their so-called principal angles (�1; : : : ; �m) 2 [0; �=2]m. We de-
note yi := cos2(�i). The polynomial functions on Gm;n � Gm;n which are invariant under
the simultanuous action of O(n) are the polynomials in the variables (y1; : : : ; ym), and are
isomorphic to the algebra C [Y1 ; : : : ; Ym]

Sm of symmetric polynomials in m variables. More-
over, there is a unique sequence of polynomials P�(Y1; : : : ; Ym) indexed by the partitions
into even parts, such that C [Y1 ; : : : ; Ym]

Sm =
P

� CP� , P�(1; : : : ; 1) = 1, and the function :
p 2 Gm;n ! P�(y1(p; p

0); : : : ; ym(p; p
0)) de�nes, for all p0 2 Gm;n, an element of H�

m;n. These
polynomials have degree deg(�)=2. They are explicitely calculated in [10].

Theorem 2.2 Let X � Gm;n be a �nite set. Then,

(i)
P

p;p02X P�(y1(p; p
0); : : : ; ym(p; p

0)) � 0.

(ii) The set X � Gm;n is a t-design if and only if for all �, 2 � deg(�) � t,

X

p;p02X

P�(y1(p; p
0); : : : ; ym(p; p

0)) = 0:

It is worth noticing that, in the case m = 1, this notion coincides with the notion of
designs in the real projective space introduced in [7] (or equivalently to antipodal spherical
designs); the corresponding polynomials are Jacobi polynomials.

3 Constructions of designs

In [2], we have pointed out two di�erent constructions of designs in Grassmannian spaces.
The �rst type arises by considering m-dimensional sections of a n-dimensional lattice. This
construction is well-known in the case m = 1, and standard lattices like the root lattice E8

or the Leech lattice �24 give rise to nice designs of the projective space. We show that in
the general case m � 1 this is also the case. Another construction considers orbits on the
Grassmannian of �nite subgroups of O(n).

Theorem 3.1 Let G be a �nite subgroup of O(n). Let m0 � n=2 be a �xed integer. The
following properties are equivalent:
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(i) For all m � m0, and for all p 2 Gm;n, the orbit G � p of p under the action of G is a
t = 2k-design.

(ii) The representation of G provided by the space V �
n for the even partitions � with 2 �

deg(�) � 2k and depth(�) � m0 does not contain the trivial character.

Some examples of �nite groups G satisfying the conditions of previous theorem are pointed
out in [2]. A very nice example is also the Cli�ord group Ck, of degree 2

k. After the results of
[11], the tensor invariants of this group come from self-dual binary codes. Since the �rst non
trivial such code arises in length 8, the Cli�ord group holds the property of the theorem for
t = 6 (and for all depths). Hence, all its orbits on the Grassmannians are 6-designs. Examples
of such sets arise in [5].

4 Bounds on codes and designs.

In order to give the best possible bounds, we need to introduce the oriented Grassmannian
space G�m;n and its decomposition. We have:

G�m;n ' SO(n)=SO(m)� SO(n�m)) ' O(n)=SO(m)�O(n�m);

which is a 2 to 1 covering of Gm;n. The orbits under O(n) of pairs (~p; ~q) 2 G
�
m;n�G

�
m;n can be

likewise parametrized by (m+1)-tuples (�; t1; � � � ; tm), where t1; � � � ; tm are de�ned as above,
and � 2 f�1g measures the relative orientation of p and q.

The structure of L2(G�m;n) as an O(n)-module is well-known, and is given for instance in
[9], p. 546. We have the following decomposition

L2(G�m;n) =
M

H�
m;n

in pairwise orthogonal non isomorphic irreducible O(n)-submodules H�
m;n, the sum being over

partitions � = �1 � �2 � : : : �m � 0, with �i � �j mod 2 for all (i; j). We call these parti-
tions m-admissible, or admissible for short. They split into odd and even, according to the
parity of the �i. The class of the O(n)-representation H�

m;n is denoted V �
n , and its dimension

is denoted d�. It is worth noticing that we recover L2(Gm;n) as a subspace, corresponding to
the sum of the H�

m;n over the even partitions �.
The already introduced polynomials P� zonal polynomials of the Grassmannian space are

a special basis of the algebra C [Y1 ; � � � ; Ym]
Sm ; the zonal plynomials of the oriented Grassman-

nian form a basis of the algebra C [Y1 ; � � � ; Ym]
Sm[�]; with �2 = Y1 � � � Ym. The polynomials

associated to odd partitions belong to �C [Y1 ; � � � ; Ym]
Sm and will be denoted �P�(Y1; : : : ; Ym)

where P� has degree deg(�)�m
2 .

We introduce now a notion of codes in the Grassmannian space Gm;n.

De�nition 4.1 Let f(Y1; � � � ; Ym) be a symmetric polynomial such that f(1; � � � ; 1) = 1. A
�nite subset D of the Grassmannian space Gm;n is a f -code, if for any pair (p; q) of distinct
elements in D one has

f(y1(p; q); � � � ; ym(p; q)) = 0:
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It is worth noticing that, if y1(p; q) + � � � + ym(p; q) belongs to a given set S when (p; q)
belongs to D2, p 6= q, then D is an f -code for f =

Q
s2S(Y1 + � � �+ Ym� s) and the degree of

f equals the cardinality of S. We recover here the notion of an s-code introduced in [6] (and
maybe in previous work of Delsarte).

The following notion of type is consistent with [7] De�nition 5.4.:

De�nition 4.2 The type of an f -code is 1 if Y1 � � � Ym divides the polynomial f(Y1; � � � ; Ym),
and 0 otherwise.

For any integer k, we de�ne

Hk =
M

j�j�k
� admissible

H�
m;n:

It decomposes, according to the parity of the partitions, as Hk = H+
k �H�

k , and we have, for
the respective dimensions d�k of H�

k ,

d+k :=
X

j�j�k
� even

depth(�)�m

d�; resp. d
�
k :=

X

j�j�k
� odd

depth(�)�m

d�:

Then, we have the following results:

Theorem 4.3 Let D � Gm;n be a 2k-design. Then

jDj � maxfd+k ; d
�
k g: (2)

If equality holds in (2), then D is an f -code for f = 1
d+
k

P
j�j�k
� even

d�P� if d+k � d�k , or for

f = Y1���Ym
d
�

k

P
j�j�k
� odd

d�P� if d+k < d�k .

Theorem 4.4 Any f -code D in Gm;n satis�es

jDj � d+k (3)

where k = 2deg f . If moreover f is of type 1, then

jDj � d�k (4)

where k = 2deg f �m. Whenever equality holds in (3), resp. (4), then

f =
1

d+k

X

j�j�k
� even

d�P�; resp. f =
Y1 � � � Ym

d�k

X

j�j�k
� odd

d�P�;

and D is a 2k-design.
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