
Cryptanalysis of a Provable Secure Additive and Multiplicative

Privacy Homomorphism

Feng Bao

Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613

baofeng@i2r.a-star.edu.sg

Abstract

Additive and multiplicative privacy homomorphisms (PHs) are encryption transfor-
mations that map the addition and multiplication on plaintext to the addition and mul-
tiplication on ciphertext. PHs have important applications in encrypted data processing.
However, it has been shown that no PH can be secure against chosen-plaintext attack if
addition is the operation that can be mapped from plaintext to ciphertext. Hence the
best security an additive and multiplicative PH can achieve is to be secure against known-
plaintext attack, while for many applications of PHs such security is good enough. A new
additive and multiplicative PH is proposed in [7], and is claimed to be provably secure
against known-plaintext attack. In this paper we break the scheme with known-plaintext
attack and we need only a small number of known plaintext-ciphertext pairs. Our result
indicates that the security proof presented in [7] must be lacking rigour.

1 Introduction

The concept of PH (privacy homomorphism) was �rst proposed by Rivest, Adlemann and Der-
touzos in [11]. A PH is an encryption transformation that maps some operations on plaintext
to some operations on ciphertext. An additive and multiplicative PH keeps addition and mul-
tiplication from plaintext to ciphertext. If we denote a PH by Ek(:) and the corresponding
decryption by Dk(:), Ek is an additive and multiplicative PH if Dk(Ek(m1) + Ek(m2)) =
m1 +m2 and Dk(Ek(m1) � Ek(m2)) = m1 �m2. Please note that it is not accurate to write
Ek(m1) + Ek(m2) = Ek(m1 +m2) and Ek(m1) � Ek(m2) = Ek(m1 �m2) since Ek may be a
randomized encryption.

PHs are useful in encrypted data processing, such as secure computation of statistics [2],
[6]. A typical scenario of the application of PH is as follows. A client encrypts some sensitive
data and stores the ciphertexts to a remote database that provides storage service. When
the client needs to compute some statistics of the stored data, he may neither like to let the
database decrypt the ciphertexts and do the statistics computation on the plaintexts, nor like
to ask the database to transfer all the encrypted data to him. The best way is to ask the
database conduct the computation over the encrypted data and send the results back. He
then decrypts the results to get the statitics on plaintexts. PHs can also be applied in mobile
agent security [12], e-gambling [7], and some other applications [1], [8].

A recent work [4] on privacy-preserving statistics utilizes the homomorphic encryption
schemes in [10] and [9], which are PHs that map the addition on plaintext to the multiplica-
tion on ciphertext. The schemes of [10] and [9] are public encryption systems and hence are

43



quite expensive in computation. And only one operation on plaintext can be mapped to one
operation on ciphertext, which limits the application of the schemes in encrypted data pro-
cessing. Additive and multiplicative PHs are more 
exible and e�ective in privacy-preserving
statistics.

The �rst additive and multiplicative PH proposed in [11] was broken with known-plaintext
attack in [3]. It has been shown in [1] that no additive PH can be secure against chosen-
plaintext attack. Hence the best security an additive and multiplicative PH can achieve
is to be secure against known-plaintext attack. For many applications, such as the secure
statistics scenario described above, the security against known-plaintext attack is acceptable.
The client will not encrypt the data chosen by an attacker.

An additive and multiplicative PH was proposed in [5] and it stays secure against known-
plaintext attack so far. However, the scheme of [5] has a low e�ciency in multiplication
of ciphertexts. The main problem is that it is done in integer instead of modular integer.
Hence the products of the ciphertexts consist of the bigger and bigger integers, so that the
multiplication of ciphertexts is too heavy in computation.

In [7], a new additive and multiplicative PH is proposed and it is much improved in
multiplication e�ciency. All the computations are conducted in Zm for a public m. Moreover,
the scheme is claimed to be provably secure against known-plaintext attack with the proof
presented in the same paper.

In this paper, we show that the proof must be wrong since we can break the scheme with
known-plaintext attack. We only need a small number of plaintext-ciphertext pairs to recover
the secret key. There is no special requirement on the known pairs. The rest of the paper
is organized as follows. In Section 2, we introduce the PH scheme of [7]. In Section 3, we
present our attack. In Section 4, we give the performance analysis of the attack. Section 5
concludes the paper.

2 Description of the Privacy Homomorphism

We follow the same denotations adopted in [7].

Public Parameters

� d { An integer larger than 2, d > 2.
� m { A large integer (m > 10200). m should have many small divisors and at the same

time there should be many integers less than m that are co-prime with m.

d and m can be either shared by a group of users or owned by one user. In the latter
case, each user must generate his own d;m and publish them. It is also possible that a group
of users share m while choosing their own d. The attack presented in this paper is irrelevant
with whether the public parameters are shared or not.

Secret Key

� r { An integer co-prime with m.
� m0 { A factor of m.

Encryption

For a plaintext a 2 Zm0 and secret key k = (r;m0),

Ek(a) = (a1r mod m; a2r
2 mod m; � � � ; adr

d mod m)

44



where a1; a2; � � � ; ad is a random split of a such that a =
Pd

j=1 aj mod m0 for aj 2 Zm.

The encryption is a transformation from unknown domain Zm0 to fZmg
d. Unknown

encryption domain is also adopted in the schemes of [10] and [9].

Decryption

Dk((c1; c2; � � � ; cd)) =
dX

j=1

cj=r
j mod m0

Addition

They are done componentwise, i.e., between terms of same degree.

Multiplication

It works like in the case of polynomials: all terms are cross-multiplied in Zm.with a d1-
degree term by a d2-degree term yielding a (d1 + d2)-degree term; �nally, terms having the
same degree are added up.

Scalar Multiplication

Let c 2 Zm. De�ne c(c1; c2; � � � ; cd) = (cc1; cc2; � � � ; ccd). We have Dk(cEk(a)) =
(ca mod m0).

Before presenting our attack, we would like to brie
y review the scheme in [5] so that it is
easy to see how the e�ciency is improved in [7].

Scheme of [5] Plaintext domain is Zm where m = pq. m is public but p; q are secret. rp and
rq are the other two secret keys. Encryption of a 2 Zm is Ek(a) = ([a1rp mod p; a1rq mod q];
[a2r

2
p mod p; a2r

2
q mod q]; � � � ; [adr

d
p mod p; adr

d
q mod q]), where (a1; a2; � � � ; ad) is a random

split of a. The addition and multiplication are similar to those of [7] except that they are
done in integer instead of Zm. The di�erence of [7] from [5] is that the ciphertext domain
is known in [7] but unknown in [5]. Therefore the multiplication and addition can only be
conducted in integer in [5]. The computational complexity and the memory complexity are
improved from O(n2) in [5] to O(n) in [7] for a product of n ciphertexts.

3 Known-Plaintext Attack of the Scheme

In the scheme of [7], m0 is a secret that should not be obtained by others. This is the reason
whym is required to have many small divisors. In that case, it is not feasible to guess m0 since
there are too many possible combinations of m0. However, m is not supposed to be di�cult
to be factorized. In fact, factorizing m is not di�cult since m has many small divisors. The
scheme is not claimed to be secure based on the hardness of factorizing m.

Suppose we know the factorization of m, and we have some plaintext-ciphertext pairs.
We can quickly �gure out whether a prime factor p of m is also a factor of m0. By trying the
prime factors of m one by one, we can compute m0 and r very e�ciently.

Idea of the Attack Before going to the details of the attack, we describe it informally
for a quick understanding of the attack. Let a = a1 + a2 + � � � + ad mod m0 and Ek(a) =
(c1; c2; � � � ; cd) where cj = ajr

j mod m. Let p be a factor of m. If p is also a factor of m0, we
must have a = c1R + c2R

2 + � � � + cdR
d mod p for some R (R = 1=r mod p). If we have a

set of plaintext-ciphertext pairs, the R is same for all of them, i.e., the equation group has

45



a solution. If p is not a factor of m0, a = c1R + c2R
2 + � � � + cdR

d mod p holds with only a
probability 1=p, considering that (a1; a2; � � � ; ad) is a random split of a. Hence when we have
many known plaintext-ciphertext pairs, the equation group has no solution. In this way we
can try all the prime factors of m and determine m0 �nally.

Known-Plaintext Attack

Let m = pe1
1
pe2
2
� � � pett for primes p1; p2; � � � ; pt, and [bi; (ci1; ci2; � � � ; cid)], i = 1; 2; � � � ; n, be

n known plaintext-ciphertext pairs. We denote X mod p by [X]p.

1. First we check whether p1 is a factor of m0. De�ne fi(x) 2 Zp1 [x] for i = 1; 2; � � � ; n

fi(x) = [cid]p1x
d + � � �+ [ci1]p1x� [bi]p1

Try x = 0; 1; 2; � � � ; p1 � 1 and check if there is a solution such that fi(x) = 0 for all
i = 1; 2; � � � ; n. If yes, we denote the solution by R1 (R1 = [1=r]p1 in our setting) and
we assume that p1 is a factor of m0. We will show later that it is unlikely to have two
solutions. If there is no solution at all, we assume that p1 is not a factor of m

0. (Note. If
p1 is large, it is not e�cient to try x = 0; 1; 2; � � � ; p1 � 1. In that case, we can compute
the greatest common divisor gcd(f1(x); f2(x); � � � ; fn(x)) by Euclidean Algorithm. If
gcd(f1(x); f2(x); � � � ; fn(x)) = x� R1, that R1 is what we want. Another method is to
take x; x2; � � � ; xd as d variables and solve the linear equation group. See Section 4.)

2. If p1 is identi�ed as a factor of m0, we need to check whether p2
1
is a factor of m0 too.

From 1, we have
dX

j=1

[cij ]p1R
j
1
� [bi]p1 = 0 mod p1 (1)

for i = 1; 2; � � � ; n.

De�ne gi(x) 2 Zp2
1

[x] for i = 1; 2; � � � ; n

gi(x) =
dX

j=1

[cij ]p2
1

xj � [bi]p2
1

Substituting R2p1 +R1 into gi(x) = 0 for i = 1; 2; � � � ; n, we obtain

R2p1

dX

j=1

jRj�1
1

[cij ]p2
1

+
dX

j=1

[cij ]p2
1

Rj
1
� [bi]p2

1

= 0 mod p21 (2)

Due to (1) we have
dX

j=1

[cij ]p2
1

Rj
1
� [bi]p2

1

= 0 mod p1

Hence we obtain n linear equations modulo p1 for R2 from (2).

R2

dX

j=1

jRj�1
1

[cij ]p2
1

+

Pd
j=1[cij ]p2

1

Rj
1
� [bi]p2

1

p1
= 0 mod p1

If the solutions for the n equations are identical, we assume that p2
1
is a factor of m0

and take [1=r]p2
1

= R2p1 +R1. Otherwise we assume p2
1
is not a factor of m0.

46



3. If p21 is a factor of m0, we continue the process similar to 2 until we �nd the maximum
u � e1 such that pu

1
is a factor of m0. And we compute [1=r]pu

1
.

4. Perform 1, 2 and 3 for p2; p3; � � � ; pt. Finally we obtain m0. By Chinese Remainder
Theorem, we can also obtain [1=r]m0 , and therefore, [r]m0. m0 and [r]m0 can be used to
decrypt any ciphertext.

4 Performance Analysis of the Attack

Now we look at how large the n should be such that the attack has large successful probability.

Proposition 1. Let p be a prime and aij 2random Zp for i = 1; 2; � � � ; n and j = 0; 1; 2; � � � ; d.
Denote fi(x) =

Pd
j=0 aijx

j 2 Zp[x]. The probability that there exists a solution such that
fi(x) = 0 for i = 1; 2; � � � ; n is smaller than 1=pn�1.

Proof It is easy to see that

Probfthere exists a solutiong <
p�1X

x=0

Probffi(x) = 0ji = 1; 2; � � � ; ng

Proposition 2. Let p be a prime and aij 2random Zpe for i = 1; 2; � � � ; n and j = 0; 1; 2; � � � ; d.
Denote fi(x) =

Pd
j=0 aijx

j 2 Zpe [x]. The probability that there exists a solution such that
fi(x) = 0 for i = 1; 2; � � � ; n is smaller than 1=pen�1.

Proposition 3. Let p be a prime and aij 2random Zp for i = 1; 2; � � � ; n and j = 1; 2; � � � ; d.
Denote fi(x) =

Pd
j=1 aijx

j �
Pd

j=1 aijr
j. Then r is a solution such that fi(x) = 0 for i =

1; 2; � � � ; n. The probability that there exist two solutions such that fi(x) = 0 for i = 1; 2; � � � ; n
is smaller than (p� 1)=pn.

Since the plaintext is randomly split, those [cij ]p are random from Zp. If p is a factor of
m0, we have [bi]p =

Pd
j=1[cij ]p(1=r)

j mod p. The situation is similar to that of Proposition 3.
If p is not a factor of m0, [bi]p can be equally probable to be any element of Zp, which is the
situation of Proposition 1.

Solving Linear Equation Group In the Step 1 of the attack, we need to verify whether
the equation group fi(x) = 0, for i = 1; 2; � � � ; n, has a solution, and �nd the solution if a
solution exists. For small p, we can just compute fi(x) for x = 0; 1; � � � ; p � 1. When p is
large, we can solve the linear equation group

[cid]pxd + � � �+ [ci1]px1 � [bi]p = 0; i = 1; 2; � � � ; n

If there is no solution, p is not assumed to be a factor of m0. If there is a solution, check
whether xj = xj

1
mod p for j = 1; 2; � � � ; t. If yes, take p as a factor of m0. Otherwise, p is not

assumed to be a factor of m0.

Proposition 4. Let p be a prime and cij 2random Zp for i = 1; 2; � � � ; n and j = 1; 2; � � � ; d,
n > d. The probability that rank(v1; v2; � � � ; vn) = d is larger than 1 � 1=pn�d, where
vi = (ci1; ci2; � � � ; cid).

Proposition 4 guarantees that the linear equation group above either has one solution or
has no solution except for a negligible probability.

47



Successful Probability of the Attack

Let m = pe1
1
pe2
2
� � � pett . Suppose we have n known plaintext-ciphertext pairs, the probabil-

ity that the attack fails is smaller than

e1

pn�1
1

+
e2

pn�1
2

+ � � �+
et

pn�1t

Practical Situations Consider m > 10200, as recommended in [7]. When m � 10l, we havePt
i=1 ei � 10l=3. Hence Probffailg << (10l=3)(1=2n�1) (pi � 2).

m � 10200 m � 10300 m � 10400 m � 10500

n = 15 0.04 0.06 0.08 0.1

n = 20 0.0125 0.019 0.025 0.032

n = 25 0.00004 0.00006 0.00008 0.0001

Table 1: The up-bounds of the probabilities the attack fails

Table 1 only gives very loose up-bounds, where we take 1=2 as the up-bound of each 1=pi. In
practical situations each ei should not be large in order to get as many combinations of m0

as possible. The ideal situation is ei = 1. In that case most of pi's are larger than 10. Then
we can get much better up-bounds than Table 1.

If all pi's are larger than 10, we need only n = 6; 7; 9 to obtain the same results for the
situations of n = 15; 20; 25 in Table 1. That is, 10 known plaintext-ciphertext pairs make our
attack successful except for a small probability.

5 Conclusion

In this paper we break the PH scheme proposed in [7] by known-plaintext attack, which is
claimed to have provable security against known-plaintext attack. The result enforces the
opinion expressed in [14] that security proofs also need time to be validated through public
discussion. Before the validation, a cryptosystem with security proof is not superior than a
scheme without security proof. Sometimes the former may be even more harmful than the
latter since it may cause wrong trust. However, validating a security proof is by no means
a simple job. Even the widely believed (original) security proof of OAEP was found having
gap [13]. Therefore it may be a good practice to try various attacks to a new scheme even if
it has a security proof.

It might be an interesting topic for further research to design additive and multiplicative
PHs that are secure against known-plaintext attack meanwhile keep the size of the ciphertext
�xed (even after addition and multiplication), or to prove that no such PH exists.

References

[1] N. Ahituv, Y. Lapid and S. Neumann, "Processing encrypted data", Communications of
the ACM, vol. 20, no. 9, pp. 777-780, Sept 1987.

48



[2] G. R. Blakley and C. Meadows, "A database encryption scheme which allows the com-
putation of statistics using encrypted data", Proceedings of the IEEE Symposium on
Research in Security and Privacy, New York: IEEE CS Press, pp. 116-122, 1985.

[3] E. F. Brickell and Y. Yacobi, "On privacy homomorphisms", Proceedings of Euro-
crypt'87, Lecture Notes in Computer Science, Springer-Verlag, pp. 117-125, 1988.

[4] W. Du and M. J. Atallah, "Privacy-preserving cooperative statistical analysis", Proceed-
ings of the 2001 Annual Computer Security Applications Conference (ACSAC), ACM
SIGSAC, New Orleans, 2001.

[5] J. Domingo-Ferrer, "A new privacy homomorphism and applications", Information Pro-
cessing Letters, vol. 60, no. 5, pp. 277-282, Dec 1996.

[6] J. Domingo-Ferrer and R. X. Sanchez del Castillo, "An implementable scheme for secure
delegation of statistical data", Proceedings of ICICS'97, Lecture Notes in Computer
Science 1334, Springer-Verlag, pp. 445-451, 1997.

[7] J. Domingo-Ferrer, "A provable secure additive and multiplicative privacy homomor-
phism", Proceedings of ISC'2002, Lecture Notes in Computer Science 2433, Springer-
Verlag, pp. 471-483, 2002.

[8] J. Feigenbaum and M. Merritt, "Open questions, talk abstracts, and summary of discus-
sions", DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
2, pp. 1-45, 1991.

[9] T. Okamoto and S. Uchiyama, "An e�cient public key cryptosystem", Proceedings of
Eurocrypt'98, Lecture Notes in Computer Science, Springer-Verlag, pp. 308-318, 1998.

[10] P. Paillier, "Public key cryptosystems based on composite degree residue classes", Pro-
ceedings of Eurocrypt'99, Lecture Notes in Computer Science, Springer-Verlag, pp. 223-
238, 1999.

[11] R. L. Rivest, L. Adleman and M. L. Dertouzos, "On data banks and privacy homo-
morphisms", Foundations of Secure Computation, R. A. DeMillo et al, Eds. New York:
Academic Press, pp. 169-179, 1978.

[12] T. Sander and C. F. Tschudin, "Protecting mobile agents against malicious hosts", Pro-
ceedings of Mobile Agent Security, Lecture Notes in Computer Science 1419, Springer-
Verlag, pp. 44-60, 1998.

[13] V. Shoup, "OAEP reconsideration", Proceedings of Crypto'01, Lecture Notes in Com-
puter Science 2134, Springer-Verlag, pp. 239-259, 2001.

[14] J. Stern, D. Pointcheval, J. Lee and N. Smart, "Flaws in applying proof methodologies
to signature schemes", Proceedings of Crypto'02, Lecture Notes in Computer Science
2442, Springer-Verlag, pp. 93-110, 2002.

49



50


