
An Algorithm for Checking Normality

of Boolean Functions

Magnus Daum Hans Dobbertin Gregor Leander

Ruhr-Universit�at Bochum, Postfach 102148, 44780 Bochum, Germany

fdaum,dobbertin,leanderg@itsc.rub.de

Abstract

Normality and weak normality are important properties of Boolean functions, which are
de�ned via the existence of a flat ful�lling certain criteria. Since at the moment there
are no mathematical methods known to check and even more to disprove such properties
without looking at all ats in some way, we usually have to do kind of an exhaustive
search and check for every single at, whether it ful�lls the criteria or not.
In this article we present an algorithm which ful�lls this task in a much shorter time.
The general idea is to do the exhaustive search for smaller flats and then combine them
recursively to �nd all flats on which the function is a�ne. This tricky way of enumerating
all pertained ats is the main part of the algorithm which might be also adaptable to
other properties besides normality.
With the help of this algorithm we were able to disprove the (weak) normality of some
explicit examples of new bent functions recently found by Dillon and Dobbertin, thus
solving an open question about the existence of non normal and non weakly-normal bent
functions, which was proposed by Dobbertin. Additionally we present another application
of the described algorithm, namely checking whether a given bent function is of Maiorana-
McFarland type.

Key words: algorithm, Boolean function, bent function, normal function

1 Introduction

In cryptography Boolean functions are used in many di�erent areas, the probably most im-
portant being the design of S-Boxes for symmetric encryption. Besides the algebraic degree
and the nonlinearity, the property of normality is one of the most important criteria to un-
derstand the structure of a Boolean function. But as it is de�ned via the existence of a flat
ful�lling certain criteria, it is very hard to check. Thus it is not surprising that the question
about the existence of non normal bent functions, as proposed by Dobbertin in [Dob], has
been open for a long time. But with the help of the algorithm presented in this article, we
were able to verify that some explicit examples of recently found bent functions (see [DD])
are non normal, thus solving this open question. This is described in [CDDL] in more detail.

Let n = 2m be an even number. Then normality is de�ned as follows:

133

De�nition 1.1

A Boolean function f : F2
n ! F2 is called normal if there is a coset of an m-dimensional

subspace such that f is constant on this coset.

Instead of cosets of m-dimensional subspaces of F2
n in the following we will just speak of ats

of dimension m. As many of the often studied properties of Boolean functions (e.g. bentness)
are invariant under addition of a�ne functions it is natural to consider a generalization of
this de�nition:

De�nition 1.2

A Boolean function f : F2
n ! F2 is called weakly-normal if there is a at of dimension m

such that the restriction of f to this at is a�ne.

A function f is weakly-normal if and only if there is an a 2 F2
n such that f(x) + ha; xi is

normal. Thus every function f(x)+ha; xi with a 2 F2
n is weakly-normal, if f is weakly-normal.

Checking (weak) normality of a function usually needs one to take into account all flats of
dimension m to check whether f is constant (a�ne) on one of them. One possible but rather
complex way of doing this would be to do an exhaustive search on all ats of dimension m.
In this article we present an algorithm, which, given a Boolean function f : F2

n ! F2 , is able
to compute a list of all flats of dimension m of F2

n on which f is a�ne in much less time than
needed for an exhaustive search.

Additionally besides checking normality this algorithm can also be used to check whether a
given bent function is a Maiorana-McFarland bent function, as it is described in Section 6.

2 General Idea

The main idea of the algorithm presented in this article is to make use of the fact that a
Boolean function which is a�ne on a flat A is also a�ne on all flats contained in A.
Even more the function is either constant on A and hence constant on all flats or we can �nd
two flats A0; A1 � A with dim(A0) = dim(A1) = dim(A)� 1 and A = A0 [A1 such that the
function is 0 on A0 and 1 on A1. In the latter case, of course, the function is also constant on
all flats of A0 and A1 respectively.

Hence, it su�ces for a given Boolean function, �rst to determine the flats of a "small" di-
mension t0 on which the function is constant and then to combine these spaces to get those
flats of dimension m on which the function is a�ne.

So the general structure of the algorithm can be described as follows:

Algorithm 2.1

Input: a Boolean function f : F2
n ! F2 , a starting dimension t0

Output: a list of all flats on which f is a�ne

For all subspaces U of F2
n with dim(U) = t0 do

Determine all flats a+ U with f ja+U = 0 and f ja+U = 1 resp.

134

Combine pairs (a1 + U; a2 + U) with f ja1+U = f ja2+U = 0 and f ja1+U = f ja2+U = 1 resp.

to get flats a1 + ~U = a1+ < U; a1 + a2 > of dimension t0 + 1

with f j
a1+~U = 0 and f j

a1+~U = 1 resp.

Repeat the last step for new flats with equal ~U up to dimension m� 1

Combine pairs of flats (a1 + Û ; a2 + Û) with dim(Û) = m� 1

(independent of whether f j
ai+Û

is 0 or 1)

to get those flats of dimension m on which f is a�ne

Output these ats of dimension m

To implement this algorithm e�ciently and prove the correctness of the optimized version,
we �rst have to make some de�nitions.

3 De�nitions and Notations

In this article we represent vectors u 2 F2
n as n-tuples u = (u1; : : : ; un), ui 2 F2 , we denote

the index of the leftmost 1 in this representation by

�(u) := max fi 2 f1; : : : ; n+ 1g j uj = 0 for 1 � j < ig

and for a vector space U � F2
n we de�ne �(U) := f�(u)ju 2 Unf0gg.

By using the standard lexicographical ordering < on F2
n, i.e.

u > v , (�(u) < �(v) or (�(u) = �(v) and ((u�(u)+1; : : : ; un) > (v�(v)+1; : : : ; vn))

we can de�ne a unique representation of subspaces U � F2
n:

De�nition 3.1

An ordered basis u1; : : : ; uk 2 F2
n of U is called a Gauss-Jordan basis (GJB) if

u1 > : : : > uk and (uj)�(ui) = 0 8 i 6= j:

Using this lexicographical ordering is also very e�cient for implementations as it corresponds
directly to the natural ordering on the integers we get by considering (u1; : : : ; un) as binary
representation of

Pn
i=1 ui � 2

n�i.

Lemma 3.2

For each vector space U � F2
n there is one unique GJB.

Proof:

Will be included in the full version of this article.

With the notation of �(u) we can also de�ne the complement �U of a vector space U as

�U := fa 2 F2
n j ai = 0 8i 2 �(U)g

and it is obvious that U \ �U = f0g and thus U � �U = F2
n because of dimensional reasons. So

all flats of the form a+ U can be uniquely represented as �a+U with �a 2 �U .

135

4 Details of the Algorithm

The main data structure of the presented algorithm is a list of all flats of the form a+U (for
a given U) on which the given function f is constant:

De�nition 4.1

Let f : F2
n ! F2 , u1; : : : ; uk 2 F2

n and c 2 f0; 1g.
If (u1; : : : ; uk) is a GJB of U then let

Cu1;::: ;ukc (f) :=
�
a 2 �U j f ja+U = c

	

and Cu1;::: ;ukc (f) := ; otherwise.

Using the ideas of Section 2 and the notation of a GJB in order to get each flat only once,
we obtain the following relation between lists belonging to di�erent dimensional spaces:

Lemma 4.2

For f; u1; : : : ; uk; c as in De�nition 4.1 and for all a; b 2 F2
n the following equivalence holds:

a; b 2 Cu1;::: ;ukc (f)
a < b; a+ b < uk
ui;�(a+b) = 0 for 1 � i � k

9=
; , a 2 Cu1;::: ;uk;a+b

c (f)

Proof:

Will be included in the full version of this article.

As for every a 2 C
u1;::: ;uk+1
c (f) we can write b = a + uk+1 such that a 2 Cu1;::: ;uk;a+b

c (f) this
lemma gives a criterion on how to determine all C

u1;::: ;uk+1
c (f) for di�erent uk+1 if we know

Cu1;::: ;ukc (f).

This can be done even more e�ciently by using the following two ideas:
We can avoid the a < b checks and many a+ b < uk checks by storing the elements of C in a

sorted list. Checking ui;�(a+b) = 0 can be done more e�ciently if we once evaluate û :=
kW

i=1
ui

(where
W

means that componentwise OR of the vectors ui, i.e. ûj =
k

max
i=1

((ui)j)) and then

only check if û�(a+b) = 0.

Another useful criterion to make the computation more e�cient is given by the following
corollary:

Corollary 4.3

For f : F2
n ! F2 , u1; : : : ; uk 2 F2

n, c 2 f0; 1g and l 2 f1; : : : ; k � 1g:

��Cu1;::: ;uk�l
c (f)

�� � 2l � jCu1;::: ;ukc (f)j

Proof:

Will be included in the full version of this article.

Similar to Lemma 4.2 we get the following relations between the flats of dimension m on
which f is a�ne and the lists C

u1;::: ;um�1
c (f) corresponding to dimension m� 1:

136

Lemma 4.4

Let a+ U � F2
n be a at of dimension m. Then the following statements are equivalent:

i) f ja+U is a�ne

ii) f ja+U is constant

or
9subspace U 0 � U : dim(U 0) = m� 1
9~u 2 UnU 0 : U = U 0 _[(~u+ U 0)
9c 2 f0; 1g

9=
; such that

�
f ja+U 0 = c

f ja+~u+U 0 = 1� c

iii)
9subspace U 0 � U : dim(U 0) = m� 1

with GJB u1; : : : ; um�1

9a0 2 a+ U 0; b0 2 (a+ U)n(a+U 0)

9=
; such that a0; b0 2

S
c2f0;1g C

u1;::: ;um�1
c (f)

Proof:

Will be included in the full version of this article.

This lemma shows that, in order to �nd all ats on which f is a�ne, it su�ces to compute
the lists C

u1;::: ;um�1
c for GJBes of all subspaces of dimension m� 1.

Together with Corollary 4.3 we can conclude that if we have computed Cu1;::: ;ukc (f), c 2 f0; 1g,
we only have to consider pairs of elements of these lists if

jCu1;::: ;ukc (f)j � 2m�k or
�
jCu1;::: ;ukc (f)j � 2m�k�1 and

��Cu1;::: ;uk1�c (f)
�� � 2m�k�1

�
,

because otherwise there is no chance to �nd a flat on which f is a�ne by considering lists of
the form C

u1;::: ;uk;~uk+1;::: ;~um�1

c (f).

As described in Section 2 the main idea of the algorithm is to begin with a starting dimension
t0 and to compute the lists C

u1;::: ;ut0
c (f) which we need just by enumerating all corresponding

ats and checking directly. Then the lists corresponding to higher dimensions can be generated
recursively as described in Lemma 4.2.

So what we need to complete the algorithm is an e�cient way to enumerate all initial parts
u1; : : : ; ut0 of GJBes of subspaces of dimension m� 1.

If we take a look at the de�nition of a GJB it is obvious that this can easily be done by
looping over all increasing sequences 1 � �1 < �2 < : : : < �t0 � m + 1 + t0 and all integers
zi;j 2

�
0; : : : ; 2�j+1��j�1 � 1

	
with 1 � i � t0, i � j � t0 and de�ning

(ui)j =

�
0 if j < �i or j 2 f�i+1; : : : ; �t0g
1 if j = �i

and �lling in the gaps with the binary repre-

sentations hzi;ji2 of the integers zi;j as shown in the following scheme:

1 : : : �1 : : : �2 : : : �3 : : : �t0 : : : n

u1 = 0 : : : 1 hz1;1i2 0 hz1;2i2 0 : : : 0 hz1;t0i2
u2 = 0 : : : : : : 1 hz2;2i2 0 : : : 0 hz2;t0i2
u3 = 0 : : : : : : 1 : : : 0 hz3;t0i2

. . .
...

...
ut0 = 0 : : : : : : 1 hzt0;t0i2

137

Additionally we only have to consider such sets u1; : : : ; ut0 for which the hamming weight of�Wt0
i=1 ui

�
�t0+1;::: ;n

is not greater than m� �t0 + 1 + t0, as otherwise it cannot be completed

to a GJB of dimension m� 1.

Finally we just have to enumerate all a 2 �U for U = hu1; : : : ; ut0i. This can be done similarly
to the enumeration of the ui themselves just by de�ning a�i = 0 for i = 1; : : : ; t0 and �lling
in the gaps with all possible binary representations of integers.

So the whole algorithm can be described as follows (some of the ideas described above to
make the algorithm even more e�cient | e.g. storing the Cs in sorted order | are omitted
in order to make this description more readable, but they are easily implemented into this
algorithm):

Algorithm 4.5

Input: a Boolean function f : F2
n ! F2 , a starting dimension t0

Output: a list of all flats on which f is a�ne

for all GJBes u1; : : : ; ut0 with hammingweight
��Wt0

i=1 ui
�
�t0+1;::: ;n

�
� m� �t0 + 1 + t0 do

for all a 2 hu1; : : : ; ut0i do

if f(a+
P

�i � ui) = c 8 � 2 F2
t0 then append a to C

u1;::: ;ut0
c

Combine(C
u1;::: ;ut0
0 ; C

u1;::: ;ut0
1 ; (u1; : : : ; ut0); t0)

using the recursive subroutine

Combine(C0; C1; (u1; : : : ; uk); k):

if (k < m� 1)

then if (jC0j < 2m�k�1 or (jC0j < 2m�k and jC1j < 2m�k�1)) then C0 := ;

if (jC1j < 2m�k�1 or (jC1j < 2m�k and jC0j < 2m�k�1)) then C1 := ;

û :=
Wk

i=1 ui

for all c 2 f0; 1g; a; b 2 Cc : a < b do

if (û�(a+b) = 0 and a+ b < uk) then append a to Cu1;::: ;uk;a+b
c

for all uk+1 2 F2
n : uk+1 < uk do

Combine(C
u1;::: ;uk+1
0 ; C

u1;::: ;uk+1
1 ; (u1; : : : ; uk+1); k + 1)

else for all a; b 2 C0 [C1 : a < b do

output "f is a�ne on a+ hu1; : : : ; uk; a+ bi"

In order to choose an optimal starting dimension t0 we have to take a closer look at some
complexity evaluations.

138

5 Complexity Evaluations

In this section we will evaluate the complexity of the described algorithm, especially in de-
pendence on the chosen starting dimension t0. This will then lead to a suggestion on how to
optimally choose t0.

In order to be able to make a proper complexity evaluation we have to assume that f is a
random Boolean function. We will then evaluate the expected complexity of the algorithm.

The time complexity evaluations will be split into two parts, the complexity of the "exhaustive
search" part in the main loop and the recursive "combining" part:

Exhaustive search:

The number of subspaces of dimension t0 in F2
n is

t0�1Q
i=0

2n�i�1
2t0�i�1

� 2(n�t0)t0+1, and thus the

number of flats of this dimension is about

2(n�t0)t0+1 � 2n�t0 = 2(n�t0)(t0+1)+1:

As checking whether a function is constant on a given subset needs at most two comparisons
and three evaluations of f on average, we expect a complexity of about 2(n�t0)(t0+1)+2 steps
in the "exhaustive search" part.

E.g. for n = 14 and n = 16 this estimation gives the following concrete complexities:

n = 14 :
t0 1 2 3 4 5 6 7

log2(compl.) 28 38 46 52 56 58 58

n = 16 :
t0 1 2 3 4 5 6 7 8

log2(compl.) 32 44 54 62 68 72 74 74

>>From these tables we can see that it is not feasible to check normality by pure "exhaustive
search" for these choices of n as this obviously corresponds to using the above described
algorithm with t0 = m and that has an expected complexity of about 258 and 274 steps
respectively.

Combining:

Let Tt be the combined expected complexity of all calls of Combine(: : : ,t) concerning some
dimension t. Then for t < m�1 this complexity Tt mainly depends | besides the complexity
Tt+1 of further recursive calls of Combine| on the average size S of the inputted lists C0 and
C1. As the main part of Combine is a loop over all unordered pairs of C0 and C1 respectively,
in which mainly two comparisons are performed, the complexity can be estimated as

2 �

�
S

2

�
� 2 � 2 � S2:

As f is supposed to be random, the expected size St of C
u1;::: ;ut
c (f) (i.e. a list corresponding

to a subspace of dimension t) is St = 2�2
t
� 2n�t, since the probability that f(x) = c for all

2t elements x in one of the corresponding flats is 2�2
t
for a random function f and there are

2n�t ats corresponding to the subspace hu1; : : : ; uti.

As described in the sections above due to the extra conditions Combine(: : : ,(u1; : : : ; ut); t)

is only called once for each subspace hu1; : : : ; uti and as we have a number of
Qt�1

i=0
2n�i�1
2t�i�1

139

subspaces of dimension t the expected total complexity for all calls of Combine(: : : ,t)
concerning some dimension t < m� 1 is about

Tt = Tt+1 + 2 � S2
t �

t�1Y
i=0

2n�i � 1

2t�i � 1
) Tt � Tt+1 � S2

t 2
(n�t)t+2 = 2�2

t+1+(n�t)(t+2)+2:

The expected complexity of one call of Combine(: : : ,m � 1) should also be about 2 � S2,
as in this case we loop over all unordered pairs of C0 [C1, which is a set of size 2S, but we
perform only 1 operation per pair. Thus for dimension m� 1 we get

Tm�1 � 2�2
m+(n�m+1)(m+1)+2:

Finally we can say that the expected total complexity Tt0 of all calls of Combine in the main
loop of the algorithm can be written as

Tt0 =
m�2X
t=t0

(Tt � Tt+1) + Tm�1 �
m�1X
t=t0

2�2
t+1+(n�t)(t+2)+2:

As before for the "exhaustive search" part, for the "combining" part we get the following
exemplary complexities for n = 14; n = 16:

n = 14 :
t0 1 2 3 4 5

log2(Tt0) 43 43 41 30 1

n = 16 :
t0 1 2 3 4 5

log2(Tt0) 52 52 51 42 15

Combined with the table of the complexities for the "exhaustive search" part this table shows
that for n = 14 and n = 16 a proper choice for the starting dimension seems to be t0 = 2 or
t0 = 3.

Obviously in the complexity evaluation described so far, we have not taken into account the
restrictions on the hammingweight of the vectors in the GJBes in the main loop and the
if-statements concerning jCcj, which are very hard to analyze exactly. But these tweaks on
the algorithm should have not much inuence on the choice of t0 and, of course, they only
decrease the complexity of the algorithm such that the above described complexities can be
seen as estimations of "upper bounds" on the complexity of the algorithm.

An actual implementation of the algorithm which we made on a Pentium IV with 1,5 GHz in
C++, needed about 50 hours for n = 14 and t0 = 3.

6 Applications

6.1 Checking Normality

The �rst application is to check whether a given Boolean function is (weakly) normal or not.

In order to check weak normality with the algorithm we can do the following: We just run
the algorithm with the given function and in the case that we come to the point where

140

the algorithm would output "f is a�ne on ...", we stop the execution and output that f is
weakly-normal. In the case that the algorithm does not output anything, we know that f is
non weakly-normal.

In order to only check normality we just change the else-part of the Combine function from
looping over all pairs in C0 [C1 to looping over all pairs in C0 and C1 separately and we may
also change the if-statements concerning jCcj accordingly. Then again as in the case of weak
normality we just need to check if the algorithm outputs anything (then f is normal and we
can stop) or not (then f is non normal).

Checking normality is interesting in particular for bent functions, as it was an open question
for several years, if there are non normal or even non weakly-normal bent functions.

With the help of the algorithm presented here, we were able to verify that some explicit
examples of bent functions recently found by Dillon and Dobbertin in [DD], are non normal
or non weakly-normal respectively. More details on this can be found in [CDDL].

6.2 Maiorana-McFarland Functions

The second application of the algorithm we want to describe here is the problem to decide
whether a given bent function is a Maiorana-McFarland bent function.

De�nition 6.1 Let � : Fm2 ! F
m
2 be a permutation and h : Fm2 ! F an arbitrary boolean

function. Then

f : Fm2 � F
m
2 ! F

with

f(x; y) = hx; �(y)i+ h(y)

is called a Maiorana-McFarland function.

We call MM the class of all functions which are equivalent to a Maiorana-McFarland function
under a�ne transformations.

A result of Dillon which can be found in [Dil] gives a characterization of MM bent functions
by stating the following :

Lemma 6.2

Let f : Fn2 ! F2 be a bent function. Then the following properties are equivalent:

i) f is a MM bent function.

ii) There exists a subspace U of dimension m such that the derivative of f with respect to
every 2-dimensional subspace of U is constant.

Due to the follwing lemma it is possible to use the algorithm described above to determine
whether a function is in MM or not.

Lemma 6.3

Let f : Fn2 ! F2 be a bent function. The following properties are equivalent:

141

i) f is a MM bent function.

ii) There exists a subspace U of dimension m such that the function f is a�ne on every
coset of U .

The proof of this Lemma is obvious and as the algorithm described in this paper outputs
every coset of dimension m on which f is a�ne, this property can be checked easily.

In practice this means that for n = 8 we can decide whether a bent function is of the MM
type in less than a second, for n = 10 in less than a minute and even for n = 14 in a few days.

The possibility to determine if a given function is of the MM type can be used to compute
an experimental bound on the number of bent functions for n = 8 as follows:

By generating "random" bent functions and checking whether they are of the MM type as
described before, the ratio q of the number of MM-type bent functions to the number of
all bent functions can be estimated. Then, if �8 is the number of MM-type functions in 8
variables, the number of all bent functions can be estimated as 1

q
�8.

There are two problems that need further research:

First the number �8 of MM-functions for n = 8 is not known exactly. The MM functions all
are a�ne equivalent to hx; �(y)i+h(y), where � is a permutation and h an arbitrary Boolean
function. The number of functions of this form is 22

m

(2m!). The problem is to determine the
length of the orbit under the action of the group AL(n) of all a�ne transformations. This
length is equal to #AL(n) i� there are no A 2 AL(n) such that f � A = f . We computed
the length of the orbit for randomly chosen MM-type functions, but it would be much more
satisfying to have a theoretical result.

The second problem is that the generation of bent functions for n = 8 usually uses hill-
climbing algorithms and this algorithms might �nd MM-type functions more or less often
than they should. A �rst step to check this can be to determine the above ratio for n = 6 and
compare it with the proper ratio, which in this case is known (see [Pre]).

References

[CDDL] Canteaut, Anne,Daum, Magnus,Dobbertin, Hans, and Leander, Gregor, \Nor-
mal and Non Normal Bent Functions\, submitted.

[Dil] Dillon, John F., \Elementary Hadamard Di�erence-Sets", Ph.D. Thesis, 1974.

[DD] Dillon, John F., and Dobbertin, Hans, \New Cyclic Di�erence Sets with Singer
Parameters", in \Finite Fields and Applications", to appear.

[Dob] Dobbertin, Hans, \Construction of bent functions and balanced Boolean functions
with high nonlinearity", Fast Software Encryption (Proceedings of the 1994 Leuven
Workshop on Cryptographic Algorithms), LNCS 1008, pp. 61-74, 1995.

[Pre] Preneel, Bart, \Analysis and Design of Cryptographic Hash Functions", Ph.D. The-
sis, 1993.

142

