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Abstract

To every two-weight linear code we associate a projective code. The original code

is projective if and only if the associated code is a two-weight code. We then derive

necessary conditions on those projective two-weight codes that are equivalent to their

associated codes.

This extended abstract summarizes some recent work of the author concerning linear codes
that have only two non-zero weights. To every two-weight code C is associated a projective
code P (actually, a pair of projective codes). It is then shown that the original code C is
itself projective if and only if the associated code P is a two-weight code. Finally, we derive
necessary conditions on the parameters of C under the hypothesis that C is equivalent to P
(or when C is equivalent to the complementary code of P ).

1 Introductory material

Throughout this extended abstract, Fq will denote a �nite �eld with q elements, N will denote
the natural numbers f0; 1; : : : g, and Q the �eld of rational numbers. All codes will be linear
over Fq , and we will always work with Hamming weights.

Let M be a k-dimensional vector space over Fq . Fix a basis for M , and let � denote the
standard Fq -valued dot product with respect to this basis. There is then an isomorphism
between M and its linear dual space M ] = HomFq (M; Fq ), where x 2 M maps to the linear
functional �x 2M ] given by �x(y) = x � y, y 2M .

We will describe linear codes using the notation of [13] and [14], as we now explain. Let
O be the set of 1-dimensional linear subspaces of M , and let O] be the set of 1-dimensional
linear subspaces of M ]. Up to equivalence, a linear code with underlying vector space M is
given by a pair C = (M;�), where � : O] ! N is a multiplicity function. The function �
encodes the number of times a particular column will appear in a generator matrix for C.
A linear code is projective if the only values of � are 0 or 1. Note that � having domain O]

means that codes never have the zero functional as a coordinate functional (no zero columns
in generator matrices).
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Remark 1.1 A number of authors have expressed linear codes in a manner similar to that
above. I patterned the use of linear functionals after the treatment by Assmus and Mattson
in [1]. I have discovered in retrospect that Slepian [9] and Peterson [7, pp. 41�] (the second
edition is [8]) use the phrase modular representation for what I call a multiplicity function.
Peterson proves the q = 2 case of Proposition 1.2, as we will see below.

Multiplicity functions are also essentially equivalent to the projective systems of Tsfasman
and Vl�adut� [10, p. 10] and the projective multisets of Dodunekov and Simonis [5, p. 1].

The projective codes associated to two-weight codes in Section 2 are special cases (��) of
the dual transforms discussed in [5, p. 14]. That paper's �-self-dual codes are the subjects of
the theorems in Section 3.

The notation R[O]] will mean the set of all functions from O] to R, and w denotes the
Hamming weight de�ned on Fq . (I.e., w : Fq ! N, with w(0) = 0 and w(a) = 1, for non-zero
a 2 Fq .) There is a natural homomorphism

W : N[O] ]! N[O]

given by

W (�)(x) =
X
�2O]

�(�)w(�(x)); (1.1)

for � 2 N[O] ], x 2 O. We will denote W (�) by w� for short. The function w� is simply the
Hamming weight function for the code C = (M;�). Please be aware that it is possible for a
non-zero x to have zero weight.

The homomorphism W extends to an isomorphism W : Q[O] ] ! Q[O], as described in
[13] and [14]. We will show this directly by inverting the matrix representing W . As (1.1)
makes clear, W is represented by a square matrix (which we will also call W ) whose rows
are indexed by elements x 2 O and whose columns are indexed by linear functionals � 2 O].
When we view the values of � as entries in a column vector with rows indexed by elements
� 2 O], we then get the values of W (�) to be entries in a column vector whose rows are
indexed by elements x 2 O. Abusing notation, we can say that W (�) =W�, where the right
hand side is matrix multiplication.

Making use of the isomorphism M ! M ], x 7! �x, described above, we will identify O]

with O; both are then identi�ed with the set of one-dimensional subspaces of M . In terms
of these identi�cations, the matrix W above is a square matrix of size (qk � 1)=(q � 1) with
entries indexed by non-zero elements x; y 2 M . (We will abuse notation by referring to an
element of O, i.e., a one-dimensional subspace of M , by one of the non-zero elements of M
that it contains. This should not cause much confusion.) The entry in row x and column
y is w(�y(x)) = w(y � x) = w(x � y), for non-zero x; y 2 M . We observe that this value is
independent of the choices of representatives of elements of O.

The following proposition is implicit in the work of Bogart, et al. [2] and is explicitly
described over F2 by Peterson [7, p. 42].

Proposition 1.2 Let M be a k-dimensional vector space de�ned over Fq . Then the matrix

W representing W : Q[O] ]! Q[O] has inverse matrix W 0, whose entry at the position indexed

by non-zero x; y 2M is

W 0
x;y =

(
�(q�1)
qk�1

; x � y = 0;
1

qk�1 ; x � y 6= 0:
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Proof. Let Hx = ker �x be the hyperplane in M consisting of elements orthogonal to x.
Observe that elements x; y 2 O are equal, as elements of O, if and only if Hx = Hy. Denote
by �Hx the set-theoretic di�erence �Hx =M nHx.

We �rst calculate the (x; x)-entry Px;x of the matrix product P = WW 0. The sum
Px;x =

P
z2OWx;zW

0
z;x splits into two sums, one with z varying over (the one-dimensional

subspaces of) Hx, the other with z varying over (the `one-dimensional subspaces' of) �Hx.
Since Wx;z = 0 for z 2 Hx, the �rst sum vanishes. In the other sum, where z 2 �Hx, we have
Wx;z = 1 and W 0

z;x = 1=qk�1. Thus, Px;x equals 1=q
k�1 times the number of `one-dimensional

subspaces' of �Hx. This latter number is the number of elements of �Hx (q
k�qk�1 = qk�1(q�1))

divided by q � 1; i.e., qk�1. We conclude that Px;x = 1.
Now suppose that x 6= y as elements of O. We decompose M into four subsets, each of

which is closed under non-zero scalar multiplication. Table 1 below describes the subsets, the
number of elements of O contained in each of the subsets, and the values of Wx;z and W 0

z;y

for z in the various subsets.

Table 1: Splitting M when x 6= y in O.
Subset Number of elements in O Wx;z W 0

z;y

Hx \Hy (qk�2 � 1)=(q � 1) 0 �(q � 1)=qk�1

Hx \ �Hy qk�2 0 1=qk�1

�Hx \Hy qk�2 1 �(q � 1)=qk�1

�Hx \ �Hy qk�2(q � 1) 1 1=qk�1

The sum Px;y =
P

z2OWx;zW
0
z;y then splits into four sums. Each sum is easy to evaluate,

given the values in Table 1. The reader will then verify that Px;y = 0 for x 6= y in O. �

Remark 1.3 The fact that W has an inverse matrix W 0 is another way to prove that the
homomorphismW : Q[O] ]! Q[O] is actually an isomorphism. Moreover, the classical version
W : N[O] ] ! N[O] is injective. This is essentially the proof of the MacWilliams extension
theorem due to Bogart, et al. [2].

2 Projective codes associated to two-weight codes

Our objective is to use the isomorphism W : Q[O] ] ! Q[O] to study linear codes with only
two non-zero weights. As above, we will identify O] and O. Suppose C = (M;�) is a linear
code with exactly two non-zero weights; we assume that � 2 N[O], so that multiplicities and
weights are natural numbers. Then there exist a1; a2 2 N, 0 < a1 < a2, such that w�(x) = a1
or w�(x) = a2 for x 2 O.

Let Si = fx 2 O : w�(x) = aig. By the two-weight assumption, O is the disjoint union of
S1 and S2. Using the Si we de�ne two new linear codes. Let Pi = (M; 1Si), where 1Si is the
indicator function for the subset Si � O. The codes Pi are projective codes. The codes P1; P2

are complementary projective codes in the sense their collections of coordinate functionals (as
subsets of O]) are disjoint and together give all possible coordinate functionals in O].

Let !1 = W (1S1) be the weight function associated to the projective code P1. The
following theorem describes the multiplicity function � of C in terms of S1, a1, and a2.

Theorem 2.1 Let M be a k-dimensional vector space over Fq . Let C = (M;�) be a two-

weight code, with weights a1 < a2 and associated subsets Si = fx 2 O : w�(x) = aig. Let s1
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denote the number of elements of S1. Let P1 be the projective code P1 = (M; 1S1), with weight

function !1 =W (1S1). Then the multiplicity function � on O (identi�ed with O]) satis�es

�(x) =
a1
qk�1

(q!1(x)� (q � 1)s1) +
a2
qk�1

(1 + (q � 1)s1 � q!1(x)) : (2.1)

Proof. Fix x 2 O. Among the s1 elements y 2 S1, there are !1(x) of them satisfying
x � y 6= 0; the remaining s1 � !1(x) elements y 2 S1 satisfy x � y = 0. Since Hx = ker�x has
(qk�1�1)=(q�1) one-dimensional subspaces, there are (qk�1�1)=(q�1)�s1+!1(x) elements
y 2 O n S1 that satisfy x � y = 0. The remaining (qk � 1)=(q � 1)� (qk�1 � 1)=(q � 1)�!1(x)
elements y 2 O n S1 satisfy x � y 6= 0. Aligning these counts with the appropriate values of
entries in W 0 leads one to the following expression.

�(x) =a1

�
1

qk�1
!1(x)�

q � 1

qk�1
(s1 � !1(x))

�

+ a2

�
1

qk�1

�
qk � 1

q � 1
�
qk�1 � 1

q � 1
� !1(x)

�

�
q � 1

qk�1

�
qk�1 � 1

q � 1
� s1 + !1(x)

��
:

The reader will verify that this expression simpli�es to the one in the statement of the
theorem. �

Remark 2.2 When a1 = a2, the formula for � reduces to �(x) = a1=q
k�1. This gives another

proof of a theorem of Bonisoli [3] on linear one-weight codes. Other proofs of this result appear
in [5, Proposition 4], [7, p. 43] (for q = 2), [11, Theorem 4], and [14, Remark 8.3].

Theorem 2.3 If a two-weight code C = (M;�) is projective, then its associated projective

codes P1 and P2 are two-weight codes. Conversely, given a projective two-weight code P1,

there are unique values for a1 < a2 so that C is a projective two-weight code with associated

code P1.

Proof. Since P1 and P2 are complementary projective codes, the weight functions !1 and !2

of P1 and P2 satisfy !1(x) + !2(x) = qk�1, for all x 2 O. Thus, P1 is a two-weight code if
and only if P2 is a two-weight code.

Suppose the two-weight code C is projective, i.e., �(x) = 0 or 1 for all x 2 O. It is
clear from (2.1) that if !1(x) = !1(y), then �(x) = �(y). For the purposes of establishing a
contradiction, suppose that P1 is not a two-weight code. If !1 takes on only one value, then
all the values of � are the same. That makes C a simplex code, which is a one-weight code.

For the other possibility, suppose !1 takes on values b1 < b2 < � � � < br on subsets
Ti = fx 2 O : !1(x) = big. The set O is the disjoint union of the Ti. If r > 2, then � must
take on the same value (0 or 1, say 1 for illustration) on at least two subsets, without loss of
generality, say T1 and T2. Equation (2.1) then gives the following system of two equations in
the variables a1 and a2 (the �rst equation holding for x 2 T1, the second for x 2 T2).

1 =
a1
qk�1

(qb1 � (q � 1)s1) +
a2
qk�1

(1 + (q � 1)s1 � qb1)

1 =
a1
qk�1

(qb2 � (q � 1)s1) +
a2
qk�1

(1 + (q � 1)s1 � qb2)
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The system is invertible, because b1 < b2. Since the values of � on the left hand side are the
same, we conclude that a1 = a2; contradiction.

For the converse, given that !1 takes on only values b1 < b2 on subsets T1 and T2, it is
easy to solve the system of equations to �nd a1 and a2 that yield C as a projective two-weight
code. In fact, one �nds that it is necessary that �(x) = 1 for x 2 T1 and that �(x) = 0 for
x 2 T2. Indeed, in the alternative, let us try to solve the following system of equations for a1
and a2. (The factor of q

k�1 has been moved to the left side.)

0 = a1 (qb1 � (q � 1)s1) + a2 (1 + (q � 1)s1 � qb1)

qk�1 = a1 (qb2 � (q � 1)s1) + a2 (1 + (q � 1)s1 � qb2)

Subtracting the �rst equation from the second yields

qk�1 = a1q(b2 � b1)� a2q(b2 � b1) = �q(a2 � a1)(b2 � b1):

Since a1 < a2 and b1 < b2, the right side is negative, while the left side is positive. �

To summarize, suppose C = (M;�) is a projective two-weight code, with weights a1 < a2
and Si = fx 2 O : w�(x) = aig. Then P1 = (M; 1S1) is also a projective two-weight code,
with weights b1 < b2 and Ti = fx 2 O : !1(x) = big. As the proof of Theorem 2.3 shows,
� = 1T1 , the indicator function for the subset T1 � O. Denote the numbers of elements in the
sets Si and Ti by si and ti, respectively. Observe that the roles of C and P1 are reversible.
If we start with the projective two-weight code P1, then its associated projective two-weight
code is precisely C. This means that there is another set of equations like (2.1) with the roles
of C and P1 reversed. The consequences of these two sets of equations follow.

Theorem 2.4 The following equations hold, relating the parameters of C and P1.

(a2 � a1)(b2 � b1) = qk�2 (2.2)

(q � 1)s1a1 + (qk � 1� (q � 1)s1)a2 = qk�1(q � 1)t1 (2.3)

(q � 1)t1b1 + (qk � 1� (q � 1)t1)b2 = qk�1(q � 1)s1 (2.4)

Idea of proof. After a little manipulation, (2.1) becomes the following system of equations,
the �rst one holding for x 2 T1, the second for x 2 T2.

qk�1 = a1 (qb1 � (q � 1)s1) + a2 (1 + (q � 1)s1 � qb1) (2.5)

0 = a1 (qb2 � (q � 1)s1) + a2 (1 + (q � 1)s1 � qb2) (2.6)

Subtracting these equations, as in proof of Theorem 2.3, yields (2.2).
The counterparts to (2.5) and (2.6), when the roles of C and P1 have been reversed, are

the following.

qk�1 = b1 (qa1 � (q � 1)t1) + b2 (1 + (q � 1)t1 � qa1) (2.7)

0 = b1 (qa2 � (q � 1)t1) + b2 (1 + (q � 1)t1 � qa2) (2.8)

Results (2.3) and (2.4) follow from manipulating and inverting (2.5){(2.8). �

Equations (2.3) and (2.4) also follow from summing the weights of all the elements of C
and P1, respectively.
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3 Restrictions on projective two-weight codes

We now state some restrictions on the parameters of a projective two-weight code C, under
the hypothesis that C is equivalent to its associated projective two-weight code P1 or to the
complement P2 of P1. In fact, we need not assume that the codes are equivalent, just that
they have the same parameters.

For technical reasons related to (2.2), we need to assume that q is not a square.

Theorem 3.1 Assume q is not a square, and that a projective two-weight code C is equivalent

to its associated projective two-weight code P1. (More generally, just assume that b1 = a1,
b2 = a2 and t1 = s1.) Then

1. k is even, say k = 2t;

2. a2 � a1 = qt�1;

3. for some integer u > 1, a2 = qt�1u and s1 = u(qt � 1)=(q � 1).

Idea of proof. From (2.2) and the hypotheses we have (a2 � a1)
2 = qk�2. Since q is not a

square, we conclude that k is even, say k = 2t, and that a2�a1 = qt�1. The remaining result
follows from manipulating (2.2){(2.4). �

Theorem 3.2 Assume q is not a square, and that a projective two-weight code C is equivalent

to its complementary associated projective two-weight code P2. (More generally, just assume

that b1 = qk�1 � a2, b2 = qk�1 � a1 and t1 = (qk � 1)=(q � 1)� s1.) Then

1. k is even, say k = 2t;

2. a2 � a1 = qt�1;

3. for some integer u > 1, a2 = qt�1u and (q � 1)t1 = (qt + 1)(u� 1).

Idea of proof. The proof is similar to that of Theorem 3.1. �

Example 3.3 Suppose that M has dimension k = 2t over F2 , and that E1; E2; : : : ; EN are
linear subspaces of dimension t. Suppose that Ei \Ej = f0g for all i 6= j. De�ne a projective
code C = (M;�) by having � equal 1 on points of O lying on the union of the Ei, and
� equaling 0 elsewhere. For 1 < N < 2t + 1, C is a projective two-weight code, with C
having the same parameters as P1, namely a1 = b1 = (N � 1)2t�1, a2 = b2 = N2t�1, and
s1 = t1 = N(2t � 1). If N = 1, some nonzero elements have zero weight. If N = 2t + 1, the
union of the Ei equals all of O, and C is a one-weight simplex code.

These codes arise in Dillon's partial spread family of bent functions [4].

Example 3.4 Let M have dimension k = 4 over F2 . Let T1 consist of �ve points: a basis
for M (that's four points) and their sum. One then calculates that t1 = 5, a1 = 2, a2 = 4,
s1 = 10, b1 = 4, and b2 = 6. The code C has the same parameters as the complementary
code P2.

These codes arise in connection with the Maiorana-McFarland bent functions [6], [12]. In
fact, for dimension k = 4 over F2 , there are 384 Maiorana-McFarland bent functions. Of these
bent functions, 120 give rise to the code of Example 3.3 (with N = 2), 120 give rise to the
complementary projective code to the code of Example 3.3, 72 give rise to the code of this
example, and 72 give rise to the complementary projective code to the code of this example.

458



Acknowledgments I thank J. Wolfmann and Ph. Langevin for introducing me to this
problem, one of the referees for suggesting the discussion in Remark 1.1, and E. S. Moore for
encouragement and support.

References

[1] E. F. Assmus, Jr. and H. F. Mattson, Error-correcting codes: An axiomatic approach,
Inform. and Control 6 (1963), 315{330.

[2] K. Bogart, D. Goldberg, and J. Gordon, An elementary proof of the MacWilliams theorem

on equivalence of codes, Inform. and Control 37 (1978), 19{22.

[3] A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars
Combin. 18 (1984), 181{186.

[4] J. F. Dillon, Elementary Hadamard di�erence sets, Ph.D. thesis, University of Maryland,
1974.

[5] S. Dodunekov and J. Simonis, Codes and projective multisets, Electron. J. Combin. 5
(1998), no. 1, Research Paper 37, 23 pp. (electronic).

[6] R. L. McFarland, A family of di�erence sets in non-cyclic groups, J. Combin. Theory
Ser. A 15 (1973), 1{10.

[7] W. W. Peterson, Error-correcting codes, The MIT Press, Cambridge, Mass. 1961.

[8] W. W. Peterson and E. J. Weldon, Jr., Error-correcting codes, The M.I.T. Press, Cam-
bridge, Mass.-London, 1972.

[9] D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203{234.

[10] M. A. Tsfasman and S. G. Vl�adut�, Algebraic-geometric codes, Mathematics and its Ap-
plications (Soviet Series), vol. 58, Kluwer Academic Publishers Group, Dordrecht, 1991.

[11] H. N. Ward and J. A. Wood, Characters and the equivalence of codes, J. Combin. Theory
Ser. A 73 (1996), 348{352.

[12] J. Wolfmann, Bent functions and coding theory, Di�erence sets, sequences and their
correlation properties (Bad Windsheim, 1998) (A. Pott, P.V. Kumar, T. Helleseth, and
D. Jungnickel, eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 542, Kluwer
Acad. Publ. Dordrecht, 1999, pp. 393{418.

[13] J. A. Wood, The structure of linear codes of constant weight, Proceedings of the Inter-
national Workshop on Coding and Cryptography, Paris, INRIA, 2001, pp. 547{556.

[14] , The structure of linear codes of constant weight, Trans. Amer. Math. Soc. 354
(2002), no. 3, 1007{1026.

459



460


