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Abstract

The question if there exist non normal bent functions was an open question for several
years, as for most of the standard constructions for bent functions it is obvious that
they are normal. In this paper we give the �rst non normal bent function and even an
example for a non weakly-normal bent function. These examples belong to a class of bent
functions found in [8], namely the Kasami functions. The non-normality of these functions
was veri�ed by using a computer algorithm. We furthermore give a construction which
extends these examples to higher dimensions. With this extension we have an in�nite set
of non normal and non weakly-normal bent functions. In the third section we prove the
normality of some bent functions derived by modi�cations of the Maiorana-McFarland
type.
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1 Introduction

The main complexity characteristics for Boolean functions on F
n
2 which are relevant to cryp-

tography are the algebraic degree and the nonlinearity. But other criteria have also been
studied. One of them is the question if there exists a space of dimension n

2 such that the
restriction of a given function is constant (resp. a�ne) on this space. We call the functions
for which such a space exists normal (resp. weakly-normal). The notion of normality has
been introduced for the �rst time by Hans Dobbertin in [9]. He used this notion to construct
balanced functions with high nonlinearities: it is shown in [3] that if a bent function f is
constant on an n

2 -dimensional 
at E, then f is balanced on each of the other cosets of the

at. H. Dobbertin used this idea to construct balanced functions with high nonlinearities.
Since that time the question if there exist non normal bent functions was open. For arbitrary
Boolean functions, it was shown in [9], that for increasing dimension nearly all functions are
non normal. Furthermore, there exist Boolean functions on F

n
2 whose restrictions to any

k-dimensional 
at are non-a�ne if k � � log2(n) with � > 1 [4].

Let n = 2m be an even number. We recall some de�nitions:

De�nition 1 Given a function f : Fn2 ! F2 , the function

a 2 F
n
2 7! fw(a) =

X
x2Fn2

(�1)f(x)+ha;xi
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is called the Walsh transform of f . Moreover, the fw(a); a 2 F
n
2 are called the Walsh coe�-

cients of f .

De�nition 2 A function f : Fn2 ! F2 is called bent if for all a 2 F
n
2 with a 6= 0

X
x2Fn2

(�1)f(x)+f(x+a) = 0:

This property is equivalent to the fact that all the Walsh-Coe�cients are �2m.

De�nition 3 The dual function ~f of a bent function f is de�ned by the property

fw(a) = (�1)
~f(a)2m:

The dual of a bent function is also bent.

De�nition 4 A function f : Fn2 ! F2 is called normal if there exists a 
at of dimension m
such that f is constant on this 
at.

As bentness is invariant under addition of a�ne functions it is natural to consider a general-
ization of De�nition 4.

De�nition 5 A function f : Fn2 ! F2 is called weakly-normal if there exists a 
at of dimen-
sion m such that the restriction of f to this 
at is a�ne.

A function f is weakly-normal if and only if there exists an element a 2 F
n
2 such that

f(x) + ha; xi is normal.

The Hamming Weight of a bent function f is
P

x2Fn2
f(x) = 2n�1 � (�1)

~f(0)2m�1. It is
known that if a bent function is normal with respect to a 
at U then it is balanced on all
cosets of U . This implies that, if f is constant on a 
at of dimension m, the value of the
corresponding constant is ~f(0).

An easy counting argument shows that there must exist non normal functions of n variables
for n � 10, but the question if there exist non normal bent functions was an open problem
for several years. In Section 2 we present the �rst non normal bent function and even a
non weakly-normal bent function. In Section 3 we prove the normality of some modi�ed
Maiorana-McFarland bent functions.

2 Non Normal Bent Functions

The functions that turned out to be non normal are Kasami functions. This class of bent
functions was found by Dobbertin and Dillon in [8] and some of the functions in this class
seemed to be good candidates for non normal bent functions.

The Kasami functions are de�ned as follows:

De�nition 6 Let d = 22k � 2k + 1 with (k; n) = 1 and � 2 F2n . Then we call

f�;k : F2n ! F2

with

f�;k(x) = Tr(�xd)

a Kasami function.
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Under some conditions these functions are bent.

Theorem 7 Let k and f�;k be as in De�nition 6.
If n is not divisible by 3 and � =2 fx3jx 2 F2n g then f�;k is bent

Proof. The proof can be found in [8]. �

For some values of n it is possible to show, that the Kasami functions are always normal.

Lemma 8 Let n = 2m with m even. The Kasami power functions

f : F2n ! F2

x 7! Tr(�xd)

are normal.

Proof. First note that gcd(d; 2n � 1) = 3, i.e.

U = fxd j x 2 F
�
2n g = fx3 j x 2 F

�
2n g

and there exist �1; �2 =2 U such that

F
�
2n = U [ �1U [ �2U:

In the case where 4jn we will show, that �1; �2 can be chosen in F2m . It is su�cient to show
that there exists x 2 F2m such that x =2 U . Let g be a generator of F2m . g is in U if and only

if g
2n�1
3 = 1. But,

g
2n�1
3 = g

(2m�1)(2m+1)
3

= g(2
m+1) 2

m
�1
3 6= 1

as 2m + 1 is not divisible by 3 if m is even. So we can choose �1 = g and �2 = g2. Note that
if �0 = �cd for some c 2 F

�
2n then f�;k(cx) = f�0;k(x) for all x 2 F2n . Thus we can assume

that � is in f1; g; g2g � F2m . So for x 2 F2m we get

f�;k = Tr(�xd)

= TrF2m =F2 (TrF2n =F2m (�x
d))

= TrF2m =F2 (�x
dTrF2n =F2m (1))

= 0 :

This proves the lemma. �

So we can only hope to get non normal Kasami functions for m odd. Furthermore, as
all quadratic bent functions are normal, only the case k 6= 1 is interesting. As it is known
that all bent functions on F

6
2 are normal, the �rst possibility for a Kasami function to be non

normal is n = 10.
We found out that for n = 10 all the Kasami functions are normal but by addition of a

linear function they can be modi�ed into non normal functions.
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Fact 1 Let � 2 F4nF2 � F210 . Then there exists � 2 F210 such that the function

f : F210 ! F2

with

f(x) = Tr(�x57 + �x)

is non normal.

Veri�cation. This can be veri�ed using the algorithm described in [6]. �

Furthermore we found that for n = 14 and k = 3 the corresponding Kasami functions are
non weakly-normal.

Fact 2 Let � 2 F4nF2 � F214 . The function

f : F214 ! F2

with

f(x) = Tr(�x57)

is non weakly-normal.

Veri�cation. By using the algorithm described in [6]. �

These results are veri�ed with a computer algorithm, proving these results theoretically
is still an open problem. We state the following conjecture.

Conjecture 9 All non quadratic Kasami functions on F22m with m not divisible by 2 and
m � 7 are non weakly-normal.

The following lemma is a generalization of Theorem 4.5 of [10].

Lemma 10 Let f : Fn2 ! F2 be a Boolean function. The following properties are equivalent:

1. f is (weakly) normal

2. The function

g : Fn2 � F2 � F2 ! F2

(x; y; z) 7! f(x) + yz

is (weakly) normal

Proof. 1.) ) 2.) : We assume that f is normal, i.e. there exists a n
2 dimensional 
at E,

such that f jE is constant. We de�ne:

E0 = (E � f0g � f0g) [ (E � f1g � f0g)

which is a n+2
2 dimensional 
at. It is easy to see that gjE0 = c i.e. g is normal. Furthermore

if f is linear on E then g is linear on E0.
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1.) ( 2.) : We now assume that g is weakly-normal, i.e there exists a n+2
2 dimensional


at E, 
 2 F
n
2 and �; � 2 F2 such that

h(x; y; z) = g(x; y; z) + �y + �z + h
; xi

takes the same value, c, on E. We claim that f(x) + h
; xi is normal.
For a; b 2 F2 we de�ne

Eab = fx 2 F
n
2 j(x; a; b) 2 Eg:

Then, f(x) + h
; xi is constant on all 
ats Ea;b since for all x 2 Eab,

f(x) + h
; xi = h(x; a; b) + ab+ �a+ �b = c+ ab+ �a+ �b : (1)

If one of the 
ats Eab has dimension � n
2 we are done.

If this is not true, all the 
ats Eab have dimension n
2 � 1. Furthermore, since the union

of all Eab is a 
at, all Eab are cosets of the same subspace U : Eab = U + xab. Moreover,
x��� 6= x���. Otherwise, for any element (x; ��; �) in E, (x; �; ��) belongs to E. Then, if we
consider two elements (x; ��; �) and (x0; �; �) in E, we obtain that

(x; ��; �) + (x; �; ��) + (x0; �; �) = (x0; ��; ��)

belongs to E. Thus, both (x0; �; �) and (x0; ��; ��) lie in E, implying that h(x0; �; �) =
h(x0; ��; ��). But,

h(x0; �; �) = f(x0) + �� + �+ � + h
; x0i

and

h(x0; ��; ��) = f(x0) + ���� + ���+ � �� + h
; x0i

= f(x0) + �� + �+ � + 1 + h
; x0i

= h(x0; �; �) + 1 ;

which leads to a contradiction. Therefore, since x��� 6= x���, the set E��� [ E��� is a 
at of
dimension n

2 . Moreover, we deduce from (1) that

8x 2 E���; f(x) + h
; xi = c+ � �� + �+ � �� = c+ ��

and

8x 2 E���; f(x) + h
; xi = c+ ��� + ���+ � = c+ �� ;

implying that f(x) + h
; xi is constant on E��� [E���. The special case 
 = 0 and � = � = 0
shows that if g is normal then f is normal as well. �

According to Lemma 10 (applied recursively), if f is a Boolean function on F
n
2 and if f 0

is a quadratic bent function on F
n0
2 , then f is (weakly) normal i� g(x; y) = f(x) + f 0(y) is

(weakly) normal. The question if this is true for any normal bent function f 0 is still open. The
important observation from our point of view is, that if the function f in the above lemma is
bent, then g is also bent.

With Fact 1 and Fact 2 we get:

Fact 3 There exist non normal bent functions of n variables for all even n � 10 and non
weakly-normal bent functions for all even n � 14.
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3 Modi�ed Maiorana-McFarland Bent Functions

We consider functions derived from the Maiorana-McFarland family by adding an indicator
function of a 
at E. In particular we are interested in functions described in [3] and below.
These functions are all of the following form:

f : Fm2 � F
m
2 ! F2

f(x; y) = hx; �(y)i+ h(x) + �E(x; y)

where � : Fm2 ! F
m
2 is a permutation, h : Fm2 ! F2 is an arbitrary function and �E is the

characteristic function of E:

�E(x; y) : F
m
2 � F

m
2 ! F2 ;

�E(x; y) = 1 i� (x; y) 2 E:

For some of these functions we shall show that they are normal, or at least weakly-normal.

Carlet's construction

Carlet considers only the special situation, where E is of the form ~E � F
m
2 for a subspace ~E

of Fm2 . We denote the characteristic function � ~E�Fm2
(x; y) simply by � ~E(x) to simplify the

notation.
The bent functions constructed in [3] are described in the following theorem.

Theorem 11 [3] Let E be any linear subspace of Fm2 , and � be a permutation on F
m
2 such

that for any element � of Fm2 , the set ��1(�+E?) is a 
at. Then the function

f(x; y) = hx; �(y)i+ �E(x)

is bent.

It is obvious that these functions are normal, because f restricted to f0g � F
m
2 equals 1.

Therefore, in order to �nd non normal bent functions in a similar way, we consider a small
appropriate generalization which can be proven in the same way as Carlet's original result
and which involves also a function h as the general form of the MM-construction requires.

Lemma 12 Let E and � be as in Theorem 11, and h be a Boolean function on F
m
2 , such that

for any element � of Fm2 , the function h is a�ne on ��1(�+E?). Then

f(x; y) = hx; �(y)i+ h(y) + �E(x)

is bent.

Lemma 13 All bent functions f de�ned in Lemma 12 are normal.
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Proof. We assume w.l.o.g that �(0) = 0 and h(0) = 0. We �rst consider the case that h is
not constant on ��1(E?). Then, we �nd an element y0 2 ��1(E?), with h(y0) = 1. De�ne
the hyperplane

S = fx 2 F
m
2 : hx; �(y0)i = 1g;

then it is clear that S \ E = ; since �(y0) 2 E?. Therefore, the restriction of f to the
m-dimensional 
at

(S � f0g) [ (S � fy0g)

is constant and equal to 0.
If h is constant on the 
at ��1(E?) then f(x; y) is constant and equal to 1 + h(y) on the

n-dimensional 
at E � ��1(E?). �

Note that the �rst part of the above proof shows that actually every function derived
from the Maiorana-McFarland family by adding an indicator function of the form �E�Fm2

is
weakly-normal.

Canteaut's construction

Another class of bent functions can be derived from the Maiorana-McFarland functions by
adding an indicator function of a linear subspace E of Fm2 � F

m
2 with codimension 2. This

construction is based on some properties of the derivatives of the dual function. Recall that
the derivative of a Boolean function on F

n
2 , f , with respect to any direction a 2 F

n
2 is the

Boolean function Daf : x 7! f(x+ a) + f(x).

Proposition 14 [1, 2] Let f be a bent function of 2m variables, m � 2. Let a and b be two
distinct nonzero elements of F2m2 and E = ha; bi?. Then, the function f +�E is bent if and

only if the dual function, ef , satis�es DaDb
ef = 0.

Note that this result can also be derived from [3, p. 94]. The previous proposition enables
us to derive some new bent functions from the Maiorana-McFarland family. From now on,
we use an explicit description of the scalar product via the trace mapping: F

m
2 is identi�ed

with the �nite �eld of order 2m, F2m , and the linear functions are the mappings y 7! Tr(by)
on F2m , where b describes F2m and Tr is the trace function from F2m to F2 . The scalar
product of two elements x and y then corresponds to Tr(xy). As an example, the following
corollary exhibits a bent function obtained from the MM-family by the construction described
in Proposition 14.

Corollary 15 Let m = gk where g is odd and k > 1. Let

s = 1 +

g�1
2 �1X
i=0

(2k � 1)2(2i+1)k:

Let �,� and � be three nonzero elements in F2m such that � has order (2k�1), Tr(�2(�2+�)) =
0 and Tr(�(�2 + �)) = 0. Then, the 2m-variable function

g(x; y) = Tr(xys) + Tr(�y3s) + Tr(x+ �y)Tr(�x+ �2k�1�y)

is bent and does not belong to the completed version of the Maiorana-McFarland family.
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Proof. Let f be the 2m-variable bent function in the Maiorana-McFarland family de�ned by

f(x; y) = Tr(xys) + Tr(�y3s) :

Let a = (1; �), b = (�; 2k�1�) and V = ha; bi?. From Prop. 14, we deduce that g is bent if
and only if DaDb

ef = 0. Let x 7! xd be the inverse of x 7! xs over F2m , i.e. d = 2m�1 + 2k�1.
The dual ef of f is given by [7, p. 91]:

ef(x; y) = Tr(xdy) + Tr(�(xd)3s) = Tr(xdy) + Tr(�x3) :

We obtain after some calculations that, for this choice of �, � and �, DaDb
ef = 0, implying

that g is bent.
Now, g belongs to the completed MM-family if and only if there exists an m-dimensional

subspace U � F
2m
2 such that DuDvg = 0 for any u; v 2 U [7, page 102]. We can prove

that U = F
m
2 � f0g does not satisfy this condition. Thus, if g belongs to the completed

MM-class, there exist two nonzero distinct elements u; v 2 F
2m
2 with u 62 F

m
2 � f0g such

that DuDvg = DuDvf + DuDv�V = 0. This implies that DuDvf is constant on F
2m
2 .

By computing DuDvf , we deduce that the function DuDvf is constant only if there exist
�; � 2 F

�
2m , � 6= �, such that

(x+ �+ �)s + (x+ �)s + (x+ �)s + xs = 0; 8x 2 F2m ;

or if there exist �; � 2 F
�
2m such that

x 7! Tr(�((x+ �)s + xs))

is constant on F2m . Using the expression of s, we can then prove that none of these conditions
is satis�ed (see e.g. [1]). �

However, we can prove that any function derived from the Maiorana-McFarland fam-
ily by adding the indicator function of a linear subspace of codimension 2, as described in
Proposition 14, is normal.

Lemma 16 Let � be a permutation on F
m
2 and �i be arbitrary Boolean functions on F

m
2 . For

any nonzero � and � in F2m , � 6= �, the function

g(x; y) = Tr(x�(y)) + Tr(�x)Tr(�x) + �1(y)Tr(�x) + �2(y)Tr(�x) + �3(y)

is normal.

Proof. Let
E = fx 2 F2m : Tr(x) = Tr(�x) = 0g = h1; �i?

The function g restricted to y 2 ��1(E?) can be represented as

g(x; y)jFm2 ���1(E?) = Tr(�x)Tr(�x) + �1(y)Tr(�x) + �2(y)Tr(�x) + �3(y)

by changing the functions �i appropriately.
For a �xed y 2 ��1(E?) we denote gy(x) := g(x; y). The support of gy is either a coset

of E or the complement of a coset of E. We have

E? = f0; �; �; �+ �g:
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Thus, there are four possibility to choose y. At least for two di�erent values y0 and y1 the
support of gy0 and gy1 has the same size. W.l.o.g we assume that the size of the support of
gy0 and gy1 is #E. Now, it follows that gy0(x) = gy1(x) = 0 for x in the a�ne hyperplane
(c0 +E) [ (c1 +E), where the ci + E, i = 0; 1 are di�erent cosets of E. Hence g is constant
on the m-dimensional 
at

f(c0 +E) [ (c1 +E)g � fy0; y1g:

�

Theorem 17 Let � be a permutation of Fm2 and h be an arbitrary Boolean function on F
m
2 .

Let E be a linear subspace of Fm2 � F
m
2 of codimension 2 such that

f(x; y) = Tr(x�(y)) + h(y) + �E(x; y)

is bent. Then, f is normal.

Proof. Let E = h(�1; �2); (�1; �2)i?. If dimh�1; �1i < 2, then f belongs to the Maiorana-
McFarland class, implying that it is normal. Actually, a bent function f of 2m variables
belongs to the completed MM-class if and only if there exists an m-dimensional subspace
V � F

2m
2 such that DaDbf = 0 for any (a; b) 2 V [7, page 102]. Here, we obviously have that

DaDbf = 0 for any a; b 2 F
m
2 � f0g.

Now, if �1 and �1 are two nonzero distinct elements of Fm2 , f corresponds to the sum
of Tr(x�(y)) + Tr(�1x)Tr(�1x) + �1(y)Tr(�1x) + �2(y)Tr(�1x) + �3(y) and a linear mapping.
From the previous lemma, we deduce that f is normal. �

References

[1] A. Canteaut and P. Charpin. Decomposing bent functions. IEEE Transactions on Infor-
mation Theory, 2003. To appear.

[2] A. Canteaut and P. Charpin. Decomposing bent functions. In Proceedings 2002 IEEE
International Symposium on Information Theory, page 42, Lausanne, Switzerland, July
2002. IEEE.

[3] C. Carlet. Two new classes of bent functions. In Advances in Cryptology - EURO-
CRYPT'93, number 765 in Lecture Notes in Computer Science, pages 77{101. Springer-
Verlag, 1994.

[4] C. Carlet. On cryptographic complexity of boolean functions. In Finite Fields with
Applications to Coding Theory, Cryptography and Related Areas (Proceedings of Fq6),
pages 53{69. Springer-Verlag, 2002.

[5] P. Charpin. Normal Boolean functions. Preprint, 2003.

[6] M. Daum, H. Dobbertin and G. Leander. An algorithm for checking normality of Boolean
functions. In Proceedings of the 2003 International Workshop on Coding and Cryptography
(WCC 2003).

[7] J.F. Dillon. Elementary Hadamard Di�erence sets. PhD thesis, University of Maryland,
1974.

99



[8] J.F. Dillon and H. Dobbertin. New Cyclic Di�erence Sets with Singer Parameters. In
Finite Fields And Applications. To appear.

[9] H. Dobbertin. Construction of bent functions and balanced Boolean functions with high
nonlinearity. In Fast Software Encryption - FSE'94, number 1008 in Lecture Notes in
Computer Science, pages 61{74. Springer-Verlag, 1995.

[10] S. Dubuc-Camus. Etude des fonctions Bool�eennes d�eg�en�er�ees et sans corr�elation. PhD
thesis, Universit�e de Caen, 1998.

[11] R. L. McFarland. A family of noncyclic di�erence sets. J. Combin. Theory Ser. A,
15:1{10, 1973.

100


