
Results on linear codes meeting the Griesmer bound from

results on t-fold (N �K)-blocking sets in PG(N; q)

S. Ferret�, L. Storme, P. Sziklai and Zs. Weiner

Abstract

Minihypers in �nite projective spaces have been used greatly to obtain results on linear
codes meeting the Griesmer bound. Minihypers are particular t-fold (N � K)-blocking
sets in �nite projective spaces PG(N; q). Our goal is to use characterization results on
t-fold (N �K)-blocking sets to obtain new characterization results on minihypers; thus
leading to new results on linear codes meeting the Griesmer bound.

1 Introduction

In coding theory, the Griesmer bound [8, 16] states that if there exists a linear [n; k; d; q] code

for given values of k; d and q, then n �Pk�1
i=0

l
d
qi

m
= gq(k; d), where dxe denotes the smallest

integer greater than or equal to x.
The question arises whether there exists a linear [n; k; d; q] code whose length n is equal to

the lower bound gq(k; d). This coding-theoretical problem can be translated into a problem
on minihypers in projective spaces. Let PG(N; q) be the N -dimensional projective space over
the �nite �eld of order q.

De�nition 1 (Hamada and Tamari [13]) Let F be a set of f points in PG(N; q), where
N � 2 and f � 1. If jF \Hj � m for every hyperplane H in PG(N; q) and jF \Hj =m for
some hyperplane of PG(N; q), then F is called an ff;m;N; qg-minihyper.

Hamada showed that for d = qk�1�Ph
i=1 q

�i , there is a one-to-one correspondence between
the set of all non-equivalent [n; k; d; q] codes meeting the Griesmer bound and the set of all
projectively distinct fPh

i=1 v�i+1;
Ph

i=1 v�i
; k�1; qg-minihypers [9]; where vl = (ql�1)=(q�1),

for any integer l � 0. Let G = (g1 � � � gn) be a generator matrix for a linear [n; k; d; q] code,
d < qk�1, meeting the Griesmer bound. Then the set PG(k � 1; q) n fg1; : : : ; gng is the
minihyper linked to the linear code meeting the Griesmer bound. This idea of studying the
minihypers linked to linear codes meeting the Griesmer bound is in fact the idea of using
anticodes ([15, Ch. 17,x6] and [4]).

The classical examples of linear codes meeting the Griesmer bound are of Belov, Lo-
gachev and Sandimirov. We describe them by using the link with minihypers. Consider
in PG(k � 1; q) a disjoint union of �0 di�erent points, �1 disjoint lines, : : : , �k�2 disjoint
(k � 2)-dimensional subspaces, where 0 � �i � q � 1 for 0 � i � k � 2. Then such a set
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de�nes a fPk�2
i=0 �ivi+1;

Pk�2
i=0 �ivi; k � 1; qg-minihyper. The linear codes associated to these

minihypers are the linear codes meeting the Griesmer bound, discovered by Belov, Logachev
and Sandimirov [1].

Strong classi�cation results on minihypers, so on linear codes meeting the Griesmer bound,
for general values of n; k; d and q, were obtained by Hamada, Helleseth and Maekawa, and by
Ferret and Storme.

Theorem 2 (a) (Hamada, Helleseth, Maekawa [11, 12]) A fPh
i=1 v�i+1

;
Ph

i=1 v�i
; k � 1; qg-

minihyper, with h � p
q, is the pairwise disjoint union of a �0-,: : : ,�h-dimensional subspace

of PG(k � 1; q).
(b) (Ferret and Storme [5]) Let F be a fPs

i=0 �ivi+1;
Ps

i=0 �ivi; k� 1; qg-minihyper, wherePs
i=0 �i < 2

p
q, q > q0. Then F consists of the pairwise disjoint union of either:

(1) �s subspaces PG(s; q); �s�1 subspaces PG(s� 1; q); : : : ; �0 points,
(2) one subgeometry PG(2l + 1;

p
q), for some integer l with 1 � l � s, �s subspaces

PG(s; q); : : : ; �l+1 subspaces PG(l+1; q); �l�p
q�1 subspaces PG(l; q); �l�1 subspaces PG(l�

1; q); : : : ; �0 points,
(3) one subgeometry PG(2l;

p
q), for some integer l with 1 � l � s, �s subspaces PG(s; q); : : : ;

�l+1 subspaces PG(l + 1; q); �l � 1 subspaces PG(l; q); �l�1 � p
q subspaces PG(l � 1; q); �l�2

subspaces PG(l� 2; q); : : : ; �0 points.

So the results of Hamada, Helleseth and Maekawa show that the linear codes meeting the
Griesmer bound, corresponding to the minihypers satisfying the conditions of Theorem 2 (a),
are of Belov-Logachev-Sandimirov type.

For
Ps

i=0 �i �
p
q + 1, q square, new examples of minihypers, so of linear codes meeting

the Griesmer bound, start appearing (see Theorem 2 (b)).
In Theorem 2 (b), the main di�culty in improving the results of Hamada, Helleseth and

Maekawa is the possible occurrence of Baer subgeometries �r = PG(r;
p
q) in the minihyper

when q is square. When such a Baer subgeometry PG(r;
p
q) occurs within the minihyper, it

is reconstructed from the planes PG(2;
p
q) inside �r. The methods of [5] however only make

this possible for
Ps

i=0 �i < 2
p
q.

Recently, a new approach for studying minihypers has been used. This new approach
involves the use of a closely related geometrical structure; namely that of a t-fold (N �K)-
blocking set in PG(N; q).

2 Multiple blocking sets in �nite projective spaces

De�nition 3 A t-fold (N �K)-blocking set in PG(N; q) is a set B of points of PG(N; q)
intersecting every K-dimensional subspace in at least t points. A t-fold (N �K)-blocking set
B of PG(N; q) is called minimal when no proper subset of B is still a t-fold (N �K)-blocking
set.

A 1-fold (N �K)-blocking set of PG(N; q) is also simply called an (N �K)-blocking set
of PG(N; q).

Classical examples of (N �K)-blocking sets of PG(N; q) are:

1. A subspace PG(N �K; q) of PG(N; q).
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2. Cones with an m-dimensional vertex �m and base a Baer subspace PG(2(N �K�m�
1);

p
q), for some m with maxf�1; N � 2K � 1g � m � N �K � 1. These cones are

called Baer-cones and will be denoted by h�m; PG(2(N �K �m� 1);
p
q)i.

The Bose-Burton theorem states that the subspaces PG(N �K; q) of PG(N; q) are the
smallest (N �K)-blocking sets of PG(N; q).

Theorem 4 (Bose and Burton [3]) The subspaces PG(N �K; q) are the smallest (N �K)-
blocking sets of PG(N; q).

Recently, Bokler managed to include Baer-cones in a general characterization result on
(N �K)-blocking sets.

Theorem 5 (Bokler [2]) Suppose B is a minimal (N �K)-blocking set of PG(N; q), N � 2,
q square and q � 16. If jBj � vN�K+1 +

p
qvN�K, then B contains a Baer-cone with an

m-dimensional vertex and base a Baer subspace PG(2(N �K�m�1);
p
q), for some m with

maxf�1; N � 2K � 1g � m � N �K � 1.

There is an obvious way of constructing t-fold (N �K)-blocking sets in PG(N; q); simply
consider a union of t pairwise disjoint di�erent (N � K)-blocking sets in PG(N; q). For
instance, a disjoint union of t of the classical examples of (N �K)-blocking sets in PG(N; q)
considered above.

The examples obtained in this way also have the property of having a small cardinality.
The question arises whether it is possible to characterize, for t small, minimal t-fold

(N �K)-blocking sets in PG(N; q) of small cardinality as being the disjoint union of t of the
classical examples of (N �K)-blocking sets in PG(N; q) considered above.

This is indeed possible.
The crucial part of our techniques was a generalization of the following important result

on minimal (N �K)-blocking sets.

Theorem 6 (Sz}onyi and Weiner [17]) Let B be a minimal (N�K)-blocking set in PG(N; q),
q = ph, p > 2 prime, h � 1, of size less than 3(qN�K + 1)=2. Then every subspace that
intersects B in at least one point, intersects B in 1 (mod p) points.

This 1 (mod p) result gives important information which can be used to obtain charac-
terization results on such minimal (N �K)-blocking sets.

3 New results on t-fold (N �K)-blocking sets

The results of the preceding theorem have been extended to the following theorem.

Theorem 7 (Ferret, Storme, Sziklai and Weiner [7]) Let B be a minimal t-fold (N � K)-
blocking set in PG(N; q), q = ph, p > 2 prime, h � 1, of size less than (t+ 3=2)(qN�K + 1).
Then every K-dimensional subspace intersects B in t (mod p) points, and any subspace of
dimension less than K intersects B in 0; 1; : : : ; t (mod p) points.
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The preceding result plays the crucial role in our techniques. For t small, let B be a
minimal t-fold (N �K)-blocking set in PG(N; q) of small cardinality. The preceding result
enables us to obtain a lot of information on the possible intersections of B with the subspaces
of PG(N; q). And it enables us to reconstruct all the t di�erent minimal (N �K)-blocking
sets in PG(N; q) which form the t-fold (N �K)-blocking set B. We obtained the following
characterization result on minimal t-fold (N �K)-blocking sets.

Theorem 8 (Ferret, Storme, Sziklai and Weiner [7]) Let B be a minimal t-fold (N � K)-
blocking set in PG(N; q), q = ph, p prime, h � 1, where t � p=2, and where jBj � tjPG(2(N�
K);

p
q)j.

Then B is the union of t pairwise disjoint subspaces PG(N �K; q) and/or Baer-cones.

The goal of theorems of this type on t-fold (N �K)-blocking sets in PG(N; q) is to obtain
improvements to the known results (Theorem 2) on minihypers in �nite projective spaces.

4 Results on minihypers following from results on t-fold (N �

K)-blocking sets

Minihypers in �nite projective spaces are particular examples of t-fold (N �K)-blocking sets
in projective spaces.

Theorem 9 (Hamada [10, Theorem 2.5]) Let K be any integer, 1 � K < n. If F is a
fPN�K

i=0 �ivi+1;
PN�K

i=1 �ivi;N; qg-minihyper, with 0 � �i � q � 1, i = 0; : : : ; N � K, with
�N�K 6= 0, then F is an �N�K-fold (N �K)-blocking set in PG(N; q).

This means that results on (multiple) (N�K)-blocking sets are of interest for linear codes
meeting the Griesmer bound.

For instance, as indicated in the title of the article of Bose and Burton [3], the character-
ization result of Theorem 4 proves the uniqueness of the MacDonald codes. More precisely,
the result of Theorem 4 characterizes the fvN�K+1; vN�K ;N; qg-minihypers as being sub-
spaces PG(N �K; q). Since the minihypers are completely characterized, the corresponding
linear codes meeting the Griesmer bound are completely characterized, and these are the
MacDonald codes.

We concentrate on ftvN�K+1+
PN�K�1

i=0 �ivi+1; tvN�K +
PN�K�1

i=0 �ivi;N; qg-minihypers

F , with jF j � tjPG(2(N �K);
p
q)j, with t � p=2 and with

PN�K�1
i=0 �i � t

p
q.

These minihypers are t-fold (N�K)-blocking sets in PG(N; q), but a priori, it is not known
whether they areminimal t-fold (N�K)-blocking sets or non-minimal t-fold (N�K)-blocking
sets.

Namely, for certain parameters, minihypers can be non-minimal (multiple) (N � K)-
blocking sets.

For instance, consider a minihyper F in PG(4; q) which is the disjoint union of a plane
� and a line L. Then F is a fq2 + 2q + 2; q + 2; 4; qg-minihyper. And F is a 2-blocking set
of PG(4; q) since it intersects every plane, but it is non-minimal as a 2-blocking set since the
occurrence of the plane � is su�cient for F to be a 2-blocking set.

One must pay attention to this fact that certain minihypers could be non-minimal (multi-
ple) (N�K)-blocking sets, for the result of Theorem 8 is formulated for minimal (multiple)
(N �K)-blocking sets.
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We therefore proceed as follows to obtain results on minihypers using the results on
minimal (multiple) (N �K)-blocking sets in PG(N; q).

Theorem 9 states that a ftvN�K+1+
PN�K�1

i=0 �ivi+1; tvN�k+
PN�K�1

i=1 �ivi;N; qg-minihyper
F , with 0 � �i � q � 1, i = 0; : : : ; N � K � 1, t 6= 0, is a t-fold (N � K)-blocking set in
PG(N; q).

Then F might be a minimal or non-minimal t-fold (N �K)-blocking set in PG(N; q), but
in either case, it contains a minimal t-fold (N �K)-blocking set in PG(N; q). We selected
the parameters in the description of F in such a way that Theorem 8 can be applied.

This then gives us a limited number of possibilities for a large subset of F ; described as
a disjoint union of t subspaces PG(N �K; q) and/or Baer-cones h�mi

; PG(2(N �K �mi �
1);

p
q)i, �1 �mi � N �K � 2. We investigated the di�erent possibilities and we were able

to eliminate the Baer-cones h�mi
; PG(2(N �K�mi�1);

p
q)i for which 0 � mi � N�K�2.

This is formulated in the following theorem.

Theorem 10 (Ferret, Storme, Sziklai and Weiner [7]) A ftvN�K+1+
PN�K�1

i=0 �ivi+1; tvN�K+PN�K�1
i=0 �ivi;N; qg-minihyper F , with jF j � tjPG(2(N � K);

p
q)j, with t � p=2 and withPN�K�1

i=0 �i � t
p
q, contains a minimal t-fold (N �K)-blocking set of PG(N; q) which is the

union of t pairwise disjoint subspaces PG(N�K; q) and/or subgeometries PG(2(N�K);
p
q).

This sometimes makes it possible to completely characterize the corresponding minihyper.
We explain this by giving a particular characterization result.

Theorem 11 (Ferret, Storme, Sziklai and Weiner [7]) A ft(q2+ q+1)+ �1(q+1)+ �0; t(q+
1) + �1; 4; qg-minihyper F , with t � 2, t small, and �1 + �0 � t

p
q, is the union of t pairwise

disjoint PG(4;
p
q).

Proof: Using Theorem 10, it is known that F contains the union of t pairwise disjoint planes
PG(2; q) and/or subgeometries PG(4;

p
q).

It is impossible that there is a plane in this disjoint union since two planes in PG(4; q)
always intersect in at least a point, and a plane always intersects a subgeometry PG(4;

p
q).

So, F contains the union of t pairwise disjoint subgeometries PG(4;
p
q).

Then, from the condition �1+ �0 � t
p
q, it follows �1 = t

p
q and �0 = 0. Hence, F is equal

to the union of t pairwise disjoint Baer subgeometries PG(4;
p
q). �

This latter result already gives a new characterization result on minihypers, so on linear
codes meeting the Griesmer bound (see also Theorem 2).

For minihypers with more general parameters, the research is still going on. We expect to
obtain complete characterizations for ftvN�K+1+

PN�K�1
i=0 �ivi+1; tvN�K+

PN�K�1
i=0 �ivi;N; qg-

minihyper F , with jF j � tjPG(2(N �K);
p
q)j, with t � p=2 and with

PN�K�1
i=0 �i � t

p
q,

for which the parameters �i, i = 0; : : : ; N �K � 1, satisfy certain supplementary conditions.

5 Links with results of Ward

Recently, the following result on the weights of linear codes over prime �elds meeting the
Griesmer bound was proven by Ward [18].
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Theorem 12 (Ward [18]) Let C be a linear [n; k; d; p] code over the prime �eld GF (p) meeting
the Griesmer bound. If pe is the maximal power of the characteristic p which divides the
minimum distance d of C, then all the weights of C are divisible by pe.

This result imposes severe conditions on the possible weights of C when pe divides the
minimum distance d.

The importance of Theorems 6 and 7 is similar to the importance of the conditions on the
possible weights of the linear code meeting the Griesmer bound, described in the preceding
theorem.

Every minihyper which is also a minimal (multiple) (N � K)-blocking set in PG(N; q)
satisfying the conditions of Theorems 6 and 7 has by these theorems conditions on the possible
intersection sizes with the subspaces.

This information plays a crucial role in characterizing these minihypers.
Since we are studying linear codes meeting the Griesmer bound using a geometrical ap-

proach, we also wish to remark that an alternative proof of the above mentioned theorem of
Ward on the divisibility of linear codes meeting the Griesmer bound was presented by Landjev
and Rousseva [14] at the Third EuroWorkShop on Optimal Codes and Related Topics, June
10-16, 2001, Sunny Beach, Bulgaria. This alternative proof also uses a geometrical approach
to linear codes.

6 Remark

We wish to remark that the results of this abstract were also presented at the Eight In-
ternational Workshop Algebraic and Combinatorial Coding Theory, September 8-14, 2002,
Tsarskoe Selo, Russia [6].

At that conference, the general ideas of the methods were presented. The new results
presented in this extended abstract are the determination of the upper bounds on t and jBj
in the statement of Theorem 8, and the exact description of the minimal t-fold blocking sets
inside the minihypers described in Theorem 10.
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