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Abstract

A subset C of vertices in a connected graph G = (V;E) is called (r;� l)-identifying
if for all subsets L � V of size at most l, the sets I(L), consisting of all the codewords
which are within graphic distance r from at least one element in L, are di�erent. The
main result of the paper is that the minimum possible density of a (1;� 2)-identifying
code in the triangular grid is 9=16.

1 Introduction

Let G = (V;E) be an undirected, connected graph, which may be �nite or in�nite, and C a
nonempty subset of the vertex set V . For any vertex v 2 V , and any S � V we denote

Br(v) = fu 2 V j dG(u; v) � rg;

and
Br(S) =

[
v2S

Br(v):

where dG(c; v) denotes the graphic distance between c and v, i.e., the number of edges on any
shortest path between them. We further denote

Ir(v) = C \Br(v);

and for every L � V ,
Ir(L) = C \Br(L):

We say that C is (r;� l)-identifying (r > 0) if the sets Ir(L) are di�erent for all choices of L
of size at most l. Because Ir(;) = ;, all the sets Ir(L) are nonempty, when L is nonempty. If
V is �nite, we de�ne the density of C to be jCj=jV j. The elements of C are called codewords.

The study of identifying codes was initiated in [18], and such codes can be used in main-
taining multiprocessor architectures using the following scheme. We can represent the mul-
tiprocessor architecture as a graph G = (V;E): each vertex corresponds to a processor, and
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each edge to a bidirectional link between two vertices. Let us assume that at most l of the
processors are malfunctioning. We choose a set of vertices | the code | and each vertex in
the chosen set performs a test of its r-neighbourhood (the vertex itself included), and sends
a central controller the message YES, if it detected problems, and NO, otherwise. So each
vertex sends just one bit of information to the central controller. We would like to choose our
set in such a way that based on the YES/NO answers from the elements of the chosen set,
we can identify which (at most l) processors are malfunctioning.

A related problem, in which r = 1, and the chosen vertices do not test themselves, but
only their neighbours, leads to the study of locating-dominating sets; see, e.g., [11] and [19].

In this paper we consider exclusively the triangular grid.
From now on distance always means the Euclidean distance unless stated otherwise.
The vertex set of the triangular grid T is

V = fi(1; 0) + j(
1

2
;

p
3

2
) j i; j 2 ZZg;

and there is an edge between any two points at distance one. We denote

v(i; j) = i(1; 0) + j(
1

2
;

p
3

2
):

The neighbours of v(i; j) are therefore the points

v(i� 1; j + 1); v(i; j + 1); v(i+ 1; j); v(i+ 1; j � 1); v(i; j � 1); v(i � 1; j): (1)

Denote by Rn the set of vertices v(i; j) with jij � n and jjj � n. The density of a code C in
T is de�ned to be

D(C) = lim sup
n!1

jC \Rnj
jRnj :

We also consider the graphs Tn = (V (Tn); E(Tn)), n � 3: their vertex set V (Tn) consists
of all v(i; j) with i; j 2 f0; 1; : : : ; n�1g and as in T , every vertex v(i; j) has the six neighbours
in (1), but now the indices are modulo n. We say that Tn is obtained from the subgraph of
T with vertex set fv(i; j) j i; j = 0; 1; : : : ; n� 1g by wrapping around.

In general, it is known [1] that the density of an (r;� 1)-identifying code is at least
2=(6r + 3), and that there exists an (r;� 1)-identifying code with density 1=(2r + 4) if r � 0
mod 4, and density 1=(2r+2) otherwise. For small values, better bounds can be found in [3].
The best possible density of a (1;� 1)-identifying code is 1=4; see [18].

In this paper we show that the optimal density of a (1;� 2)-identifying code in the in�nite
triangular grid T is 9=16. For l � 3, no (r;� l)-identifying codes exist (cf. Section 2). We
also show that if n � 16 is divisible by four, then the smallest (1;� 2)-identifying code in the
graphs Tn has 9n2=16 codewords. The results of this paper are from [14].

Several other architectures have also been considered: in particular the square lattice (see
[18], [1], [3], [6], [7], [10], [12] and [15]), the king lattice (see [2], [9], [13]) and the hexagonal
mesh (see [9], [3], [8]). For identifying codes in binary hypercubes, see, e.g., [18], [16] and
their references. Complexity issues have been considered in [4], [5], [10], [16] and [17].

2 The results

Given two vertices u and v, we say that u covers v, and vice versa, if u and v are neighbours
or they are the same vertex.
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(A)

(B)

(C)

v(i,j) v(i,j)

v(i,j)

Figure 1: The three patterns.

Because always

Ir(v(i; j); v(i; j � 2)) = Ir(v(i; j); v(i; j � 1); v(i; j � 2));

there are no (r;� l)-identifying codes for l � 3.
From now on we consider the case l = 2 and r = 1. We write I(v) and I(L) instead of

I1(v) and I1(L); and refer to them as the I-sets of v and L (with respect to C).
The next theorem states that if a code is (1;� 2)-identifying, then there is at least one

codeword in each of the patterns depicted in Figure 1 (and the ones obtained from them by
rotations) and vice versa.

Let �k (k 2 ZZ) denote a rotation of the graph T by an angle of �k=3 (counter-clockwise)
with respect to the origin. The image of a set S � V under the mapping �k is denoted by
�k(S). Notice that we consider the graph drawn as in Figure 1 and hence always �k(S) � V .

Theorem 2.1. [14] A code C � V is (1;� 2)-identifying if and only if it has properties (A),
(B) and (C), by which we mean that for every (i; j) 2 ZZ

2 and k 2 f0; 1; 2; 3; 4; 5g, the sets

�k(v(i; j); v(i� 1; j); v(i + 1; j � 1)) (A)
�k(v(i; j); v(i; j � 1); v(i+ 2; j); v(i + 3; j � 1)); (B)

�k(v(i; j); v(i; j + 2); v(i+ 1; j + 2); v(i+ 3; j); v(i + 3; j � 2); v(i+ 2; j � 2)) (C)

each contain at least one codeword of C.

It is easy to check that the code of Figure 2 has the properties (A), (B) and (C), and
therefore we obtain the following result.

Theorem 2.2. The code of Figure 2 is (1;� 2)-identifying and has density 9=16.

The fact that this construction is optimal comes from Theorem 2.5.
From now we assume that n � 11 for Tn. A result similar to Theorem 2.1 is valid for the

graphs Tn.

De�nition 2.1. Assume that C is a code in Tn. De�ne

C1 = fv(i; j) 2 T j v(i mod n; j mod n) 2 Cg;
where k mod n denotes the least non-negative residue of k modulo n.

We say that code C has property (A) (resp. (B), (C)) if C1 does.
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Figure 2: An optimal (1;� 2)-identifying code (part). Codewords are marked by black circles.
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Theorem 2.3. [14] A code C � Tn, n � 11, is (1;� 2)-identifying in Tn if and only if it has
the properties (A), (B) and (C).

Assume that C � Tn. Let N denote the set of non-codewords among the vertices.
If the condition (A) is satis�ed by C � V (Tn), then

jI(x)j �
�

4 if x 2 N
3 if x 2 C

and this implies that
7jCj � 3jCj+ 4jN j = 3jCj+ 4(n2 � jCj);

and hence C must have density at least 1/2. For n even, one can construct such a code
by taking all the points on every second horizontal row as codewords. Using the method
introduced later, the lower bound 1=2 also works for the in�nite graph T . The pattern (B)
does not change the situation. However, the condition (C) alters the game a lot.

Theorem 2.4. For n � n0, the density of a (1;� 2)-identifying code in Tn is at least 9=16.

Proof. The rather technical proof is omitted here (for the complete proof see [14] pages 11{
21).

Using this we now easily obtain the main result of this paper.

Theorem 2.5. The smallest possible density of a (1;� 2)-identifying code in the in�nite
triangular grid T is 9=16.

Proof. Let C be a (1;� 2)-identifying code in T . Assume that n � n0, where n0 is as in
Theorem 2.4. We claim that the code

F = (Rn+2 nRn) [ (C \Rn)

viewed as a code in T2n+5 is (1;� 2)-identifying. The code F consists of the "frame" Rn+2nRn

and the "picture" C\Rn. In F
1 we paste together in�nitely many copies of F . If two vertices

of T belong to di�erent copies of the picture, they are at least graphic distance �ve apart
(because the frame consists of two full layers around the picture, and one has to cross two
frames). Consequently, no pattern (A), (B) or (C) in T can contain points from two di�erent
pictures of F1. Hence, every pattern (A), (B) and (C) in T hits one of the frames (and then
certainly contains a codeword of F1) or lies completely within one of the pictures (and again
contains at least one codeword, because C has the properties (A), (B) and (C)). This shows
that F is (1;� 2)-identifying in T2n+5 by Theorem 2.3, and by Theorem 2.4,

jC \Rnj � jF j � 8(2n+ 3) � 9

16
(2n+ 5)2 � 8(2n+ 3)

and hence

lim sup
n!1

jC \Rnj
jRnj � 9

16
:

It is also interesting to consider the graphs Tn themselves and prove a �nite version of
Theorem 2.5.
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Theorem 2.6. If n � 16 and n is divisible by 4, then the minimum possible cardinality of a
(1;� 2)-identifying code in Tn equals 9n2=16.

Proof. If C � Tn is (1;� 2)-identifying, then by Theorem 2.3 it has the properties (A), (B)
and (C), i.e., C1 satis�es (A), (B) and (C). By Theorem 2.1, C1 is (1;� 2)-identifying. The
density of C is the same as the density of C1, and hence at least 9=16 by Theorem 2.5.

To obtain a (1;� 2)-identifying code C � Tn with cardinality 9n2=16 we can take the
intersection of Figure 2 with Tn: the periodicity properties of Figure 2 guarantee that there
are no problems with the wrapping around.
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