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Abstract

An electronic voting scheme is a mechanism in which voters can securely vote and
several authorities can collect these votes to calculate the result. Several voting schemes
exist ([3, 4, 14]) and most of them are based on three cryptographic concepts: mix-nets,
blind signatures or homomorphic encryption. Another potential primitive for electronic
voting is given by group signature schemes, which allow a group member to anonymously
sign messages on behalf of the group. Unfortunately, such signature schemes are not
directly usable in electronic voting. This is why we introduce in this paper a variant of
group signature schemes, called (electoral) list signature schemes, in which the signatures
cannot be opened by anybody and are linkable if (and only if) they have been produced
within the same \sequence" (typically an election day). We give a concrete example
of a list signature scheme. Then, we design an electronic voting scheme based on this
new concept. Our solution is surprisingly simple (only one connection to a database)
and e�cient (only a few proofs of knowledge), while satisfying the fundamental needs
of security in electronic voting. Finally, it is a very convenient solution for both on-line
voting (via Internet for example) and o�-line voting (using electronic voting booths).

1 Introduction

Group signature schemes have been introduced in 1991 by Chaum and van Heyst [10]. They
allow members to sign a document on behalf of the group in such a way that the signatures
remain anonymous and untraceable for everyone but a designated authority, who can recover
the identity of the signer whenever needed (this procedure is called \signature opening").
Moreover, this type of signature must be unlinkable for everybody but the authority (no
one else can decide whether two di�erent valid signatures were computed by the same group
member or not). There are many applications to group signature schemes and folklore even
claims that they can be applied to electronic voting ([1]), each voter signing his vote with a
group signature. However, this claim seems wrong as two group signature properties conict
with electronic voting requirements. First of all, a vote should never be \open" since nobody
should know the vote of any voter. Second, if two signatures by the same voter were unlink-
able, then he could produce several votes for the same election.
This is the reason why we modify security properties of group signature schemes so as to
obtain a variant called (electoral) list signature schemes. This sort of signature achieves
the same properties as group signature schemes except two. First, the signatures cannot be
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\opened" by anybody. Second, it is possible to link two signatures of the same person dur-
ing a so-called sequence (for example an election day), while unlinkability related to distinct
sequences remains preserved.
So the �rst contribution of this paper is to introduce the notion of list signature scheme, by
describing the di�erent phases and the security properties. Then we describe a scheme that
�ts all these properties, based on Ateniese et al. group signature scheme [1].

An electronic voting scheme is a protocol allowing voters to securely vote by interacting
with a set of authorities who collect the votes and calculate the result of the election. Also,
there are some basic security requirements for such schemes: protection of the con�dentiality
of voters (anonymity), detection of voters' cheating (two votes by the same voter, duplication
of votes) and detection of authorities' cheating (tampered results, publication of partial re-
sults). Moreover, there are two types of electronic voting: on-line voting (or remote voting, for
example via Internet) and o�-line voting (by using a voting machine or an electronic polling
booth).
Several papers present schemes for electronic voting ([3, 4, 14]). Most of them use (at least)
one of the following cryptographic primitives: mix-nets ([8]), blind signatures ([9]) or ho-
momorphic cryptosystems. There are also other papers such as [15] which uses a variant
of group signature schemes similar to our list signatures. However authors of [15] seem to
use unpractical group signature schemes (Chaum and van Heyst's ones). Furthermore, their
scheme requires each voter to connect several times to various authorities, and the possibility
to make a group signature is valid for one election only. Finally, their \linkable" group sig-
natures can be \opened".
In this paper, we suggest a new electronic voting scheme which is surprisingly simple once
given a list signature scheme. Our solution requires only one voter's connection for each elec-
tion (versus three connections for the blind signature solution) and is very e�cient (only a
few proofs of knowledge, contrary to the homomorphic cryptosystem solution) while meeting
all the security requirements introduced above.

The paper is organized as follows. Section 2 de�nes the new concept of list signature schemes,
presents an example of such a scheme and studies its security. Section 3 describes the new
electronic voting scheme and studies its security. Finally, we conclude in Section 4.

2 List Signature Schemes

This section presents a new type of signature scheme, which is di�erent from group signature
schemes in that (1) they cannot be \opened" and (2) they are linkable all along a sequence. A
very close variant of our list signature schemes has been proposed in [6] but without the notion
of sequence (their proposal corresponds to group signatures that are linkable and optionally
non-\openable").

2.1 De�nitions and Properties

A list signature scheme implies various entities: a Trusted Authority (TA) who will register
new list members, a Revocation Authority (RA) who will be responsible for the revocation
of list members and users (Ui) who will be list members.
The concept of list signature scheme can be de�ned as follows:
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De�nition 1. A list signature scheme is a digital signature scheme that consists of the fol-
lowing algorithms:
- Setup: generation of parameters and public keys.
- Join: protocol between a new user and TA that permits the new user to obtain his signature
capability (made of a private key and a certi�cate).
- Revocation: RA removes the signature capability of a revoked user.
- Update: each valid user modi�es his own keys after the modi�cation of the set of users (i.e.
after an execution of the Join or Revocation algorithm).
- Organization of a Sequence: generation of speci�c parameters to a particular sequence (and
only this one).
- Signature: a valid user can anonymously sign a message of his choice within a particular
sequence.
- Veri�cation: everybody can check the validity of a signature made by a valid user within a
particular sequence.

De�nition 2. A secure list signature scheme satis�es the following properties:
(i) Correctness: a signature produced by a valid user is always valid.
(ii) Unforgeability: only valid users are able to sign messages.
(iii) Anonymity: given a valid list signature, it is infeasible for anyone to identify the actual
signer.
(iv) Partial Linkability: within a sequence, anybody is able to say if two valid signatures were
produced by the same user.
(v) Partial Unlinkability: deciding whether two valid signatures from two di�erent sequences
were computed by the same valid user is infeasible.
(vi) Coalition-Resistance: a colluding subset of group members should not be able to generate
a valid signature.
(vii) Revocability: RA is always able to remove signature capability of any user.

2.2 An Example of List Signature Scheme

Our proposed list signature scheme is based on the Strong-RSA assumption (independently
introduced by Bari�c and P�tzmann [2] and by Fujisaki and Okamoto [13]), and on the deci-
sional Di�e-Hellman assumption in groups of unknown order. It is based on the proposal of
Ateniese et al. [1] using the revocation mechanism of Camenisch and Lysyanskaya [7].
Throughout the paper, the symbol k will denote the concatenation of two strings. The symbol
; will denote the empty string. The notation \x 2R E" means that x is chosen uniformly
at random from the set E. Moreover, PK(�=f(�; : : : ))(m) will be a signature of knowledge
on message m of a value � that veri�es the predicate f (we call a signature of knowledge a
signature derived from a zero-knowledge (honest-veri�er) proof of knowledge using the Fiat-
Shamir heuristic [12]). Finally, the set QR(n) will correspond to the set of all quadratic
residues modulo n.

2.2.1 Setup Protocol

We have to introduce some security parameters. We will need integers � > 1, k and lp.
Moreover, �1, �2, 1 and 2 will denote lengths (see [1] for more details). Let us de�ne
� =]2�1 � 2�2 ; 2�1 + 2�2 [ and � =]21 � 22 ; 21 + 22 [. Furthermore, we will need a collision-
resistant hash function H : f0; 1g� ! f0; 1gk .
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The initial phase involves TA and RA generating the set of keys:

TA: - Select distinct primes p0
1
and q0

1
(size lp), such that p1 = 2p0

1
+ 1 and q1 = 2q0

1
+ 1

are primes.
- Compute the modulus n1 = p1q1.
- Choose random elements a, a0, b, g, h 2R QR(n1) (of order p

0

1
q0
1
).

RA: - Select distinct primes p0
2
and q0

2
(size lp), such that p2 = 2p0

2
+ 1 and q2 = 2q0

2
+ 1

are primes and such that n1 and n2 = p2q2 are relatively prime.
- Choose a random element u 2R QR(n2) (of order p

0

2
q0
2
).

- Set up (empty for now) Eadd and Edel.

At the end of this protocol, we note the list public key PK = (n1; n2; a; a0; b; g; h; u), the
TA's private key SKTA = (p0

1
; q0

1
) and the RA's private key SKRA = (p0

2
; q0

2
).

2.2.2 Join Protocol

This algorithm is based on the Ateniese et al. one ([1]) using the revocation mechanism of [7]
and all zero-knowledge proofs of knowledge can be found in this paper. It takes into account
that there are two distinct authorities (and therefore two distinct moduli), one for the list
certi�cate and one for the revocation.
During this protocol, a new list member Ui will obtain from TA and RA a private key xi and
a member certi�cate [Ai; ei; ui] such that axia0 = Aei

i (mod n1) and ueii = u (mod n2).
At the end of the Join protocol, TA creates a new entry f[Ai; ei; ui],Identity of Uig in the
membership database and RA keeps in mind the certi�cate for further modi�cation of the
user list (see Sect. 2.2.3) and modi�es u in the following way: u := uei (mod n). The whole
join protocol is similar to the combination of the one of [1] and of [7].

2.2.3 Revocation/Update Protocols

In case of a revocation of the list member Uk (whose certi�cate is Ak; ek; uk)), RA has to
modify u in the following way: u := u1=ek (mod n2). He then modi�es Edel := Edel [ fekg
and publishes each value.
After a Join protocol, all members Uj (using Eadd) have to make the following modi�cation
of their key: uj := ueij (mod n2).
After a Revocation protocol, each user Uj 6= Uk (using Edel) has to do the following compu-
tations: uj := ubju

a (mod n2) where a and b are such that aej + bek = 1.

In both cases, the user Uj always knows a couple (ej ; uj) such that u
ej
j = u (mod n2).

2.2.4 Organization of a Sequence

Before the beginning of a new sequence, TA publishes the representative of the sequence,
that is a random integer m 2R QR(n1). This is a public integer that will be used by every
signer during this sequence. The representatives of di�erent sequences must be uncorrelated.
In particular, it must be infeasible to compute the discrete logarithm of one representative
w.r.t. the one of any other sequence.
A simple solution can be to compute m = (H 0(date))2 (mod n1) where date is, for example,
the date of the beginning of the sequence and H 0 : f0; 1g� ! f0; 1g2lp is a collision-resistant
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hash function. Consequently, everybody can verify the validity of this random element by
performing the same computations.

2.2.5 Signature

During the signature phase, the user Ui proves that he knows a membership certi�cate and
that he uses the representative of the sequence. The main tool is a proof of knowledge of a
discrete logarithm with respect to di�erent modulus (see e.g. [5]).

First of all, Ui generates random values w;w1; w2; w3 2R f0; 1g2
lp
and then computes:

(i) T1 = Aib
w (mod n1) (ii) T2 = gw (mod n1)

(iii) T3 = geihw (mod n1) (iv) T4 = mxi (mod n1)
(v) T5 = geihw1 (mod n2) (vi) T6 = uih

w2 (mod n2)
(vii) T7 = gw2hw3 (mod n2)

We can modify them1, and then Ui has to make the following signature of knowledge:
U = PK(�; �; ; �; �; �; �; �; �=a0 = T�

1
=(a�b) (mod n1)^1 = T�

2
=g (mod n1)^T2 = g�

(mod n1)^T3 = g�h� (mod n1)^ T4 = m� (mod n1)^T5 = g�h� (mod n2)^ T7 =
g�h� (mod n2) ^ u = T�

6
=h� (mod n2) ^ 1 = T�

7
=(g�h�) (mod n2))(M).

The list signature of M is then (T1; T2; : : : ; T7; U).

2.2.6 Veri�cation

A veri�er V can check the validity of a signature (T1; T2; : : : ; T7; U) by simply verifying the
signature of knowledge.
Moreover, everyone who has access to all signatures for a particular sequence can easily see if
a user has signed twice or more by observing the value of T4. The user cannot cheat (by using
another value) because T4 is linked with T1 by the proof of knowledge and the private key xi
(remember that the equation implying T1 can also be written T ei

1
= a0a

xibwei (mod n1)).

2.2.7 Security of the Proposed List Signature Scheme

In this section, we examine the security of our list signature scheme. We �rst need to introduce
the two following theorems.

Theorem 1. (Coalition-resistance)
Under the Strong-RSA Assumption, a certi�cate of the list signature scheme [Ai; ei] with
xi 2 �, ei 2 � and Ai = (a0a

xi)1=ei (mod n1) can be generated only by TA provided that the
number K of certi�cates that TA issues is polynomially bounded.

As the Join algorithm is similar to the one describe by Ateniese et al., the proof of this
theorem directly follows the one of their theorem (see [1] for more details). We now state the
main theorem of this section:

1Using Aei
i = a0a

xi (mod n1) and ueii = u (mod n2), (i) can also be written as T ei
1

= Aei
i b

wei = a0a
xibwei

(mod n1) and then a0 = T ei
1
=(axibwei) (mod n1); (ii) can also be written as T ei

2
= gwei (mod n1) and then 1 =

T ei
2
=gwei (mod n1); (vi) can also be written as T ei

6
= ueii h

w2ei = uhw2ei (mod n2) and then u = T ei
6
=(hw2ei)

(mod n2) and (vii) can also be written as T ei
7

= gw2eihw3ei (mod n2) and then 1 = T ei
7
=(gw2eihw3ei)

(mod n2).
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Theorem 2. (Existential Unforgeability)
Under the Strong-RSA Assumption and in the random oracle model, the signature protocol is
existentially unforgeable against adaptative chosen messages attacks.

The list signature scheme is based on a zero-knowledge (honest veri�er) proof of knowledge
and we can conclude the theorem using the result of [16].
We can now study the security of our proposal by giving evidence that our scheme veri�es all
properties introduced in De�nition 2.
(i) Correctness: by inspection.
(ii) Unforgeability: this is a consequence of Theorems 1 and 2 and of the fact that neither TA
nor RA can create a new database entry if one of them does not want to (TA cannot compute
ui and RA cannot compute Ai).
(iii) Anonymity: as Theorem 2 holds and as all commitments are statistically hiding ones
(see [7] for details), the only way to break the anonymity is to determine, from a certi�cate
[Ai; ei; ui], if the three discrete logarithms logb T1=Ai, logg T2 and logh T3=g

ei and if the two
discrete logarithm logm T4 and loga C2 are respectively equal. This is infeasible under the
Decisional Di�e-Hellman assumption.
(iv) Partial Linkability: the signer cannot forge T4 = mxi (mod n) since he/she is obliged to
use m and his own xi which is linked to T1 = Aib

w = (a0a
xi)1=eibw (mod n) by the signature

(see Theorem 2).
(v) Partial Unlinkability: this is a valid property under the hypothesis that each representa-
tive of each sequence is chosen independently of former ones (in our case, �nding the discrete
logarithm of the representative of a sequence in the base of ancient ones must be infeasible).
Then, if m and ~m are two di�erent representatives of two di�erent sequences, a user Ui will
compute T4 = mxi (mod n) and ~T4 = ~mxi (mod n). By the Decisional Di�e-Hellman As-
sumption, it is infeasible to learn anything about xi. Furthermore, as the Theorem 2 holds
and as the Sign protocol implies statistically hiding commitments (see [7]), the problem of
linking two signatures can be reduced to the problem of deciding whether the three discrete
logarithm logb T1= ~T1, logg T2= ~T2 and logh T3= ~T3 are equal. This is infeasible under the Deci-
sional Di�e-Hellman assumption.
(vi) Coalition-Resistance: this follows from Theorems 1 and 2.
(vii) Revocability: the revocation protocol follows from the paper of Camenisch and Lysyan-
skaya ([7]) and then, the same security arguments can be applied.

3 A New Electronic Voting Scheme

We now present our voting scheme, based on list signatures introduced in previous section.

3.1 Electronic Voting

An electronic voting scheme is a set of protocols allowing all legitimate voters (and only them)
to vote and a set of authorities to collect votes and calculate the result. There are several
required security properties for such schemes. formally speaking:

De�nition 3. The following properties must be satis�ed by a secure electronic voting scheme:
(i) Democracy: only registered voters are allowed to vote and no voter can vote twice.
(ii) Anonymity: all votes must be secret.
(iii) No Partial Results: it is impossible to perform partial tabulation before the end of the
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poll.
(iv) Public Veri�ability: any party can check that ballots are correctly cast, that only invalid
ballots are discarded, and that the outcome of the election is consistent with the valid cast
ballots.
(v) Receipt-freeness: the voter must not be able to prove to a third party the way he voted.

3.2 Preliminaries

3.2.1 Overview

That our proposal uses a list signature scheme allows us to directly achieve the two �rst se-
curity requirements (democracy and anonymity). In addition, we use an anonymous channel
(a channel in which it is impossible to link the sender of the message and the message itself,
e.g. a cybercafe or a mix-nets) so as to achieve full anonymity of voters.
To meet the third security requirement, each voter encrypts his vote with a public key corre-
sponding to a private one only known by one authority (or shared by several authorities (see
Sect. 3.2.2)). If we trust this authority (or at least one of the authorities), the votes will not
be decrypted until the end of the ballot.
Various entities participate to the electronic voting scheme: the Authority (the entity who
is in charge of the election by generating all necessary data for the good execution of the
protocols), the Voter Vi (a person who is allowed to vote) and the Group of scrutineers (the
set of entities involved in the cryptosystem (see Sect. 3.2.2)). Finally, a public database (the
bulletin board) will collect all ballot papers.

3.2.2 Cryptosystem

Our solution needs a cryptosystem which is semantically secure (the ciphertext discloses no
partial information about its plaintext beyond the length of that plaintext). Moreover, if
it is possible to trust a single authority, we can then use a classical cryptosystem (e.g., the
El Gamal cryptosystem which is known to be semantically secure). But if this assumption
cannot be made, it is desirable to use a threshold decryption.
A (t; n) threshold scheme (t � n) is a method by which n users obtain a secret share from
an initial secret. Any t or more users who put in common their shares can easily recover the
initial share but any group knowing only t� 1 or fewer shares cannot. Well-known solutions
are based either on a modi�cation of the El Gamal encryption scheme or on the Paillier
cryptosystem (see [3]).

3.3 Description

3.3.1 Registration of Voters

Our electronic voting scheme has several phases. During the �rst one, each voter executes
the Join protocol with TA in order to obtain the capacity of making a list signature: he is
now registered in the electoral list and can participate in all future elections. An example
of list signature scheme is showed in Sect. 2 and, for the rest of this paper, we will denote
by SigListe;Vi(M) the list signature of the message M by the user Vi. If a voter is no longer
authorized to vote after the last election (this can occur for various reasons), the �rst authority
can delete his/her right of signing by using the revocation algorithm (see Sect. 2).
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3.3.2 Preparation of the Election

Before an election, the �rst authority (or another one) prepares it by choosing sequence
parameters. This authority runs the \organization of a sequence" algorithm (see Sect. 2.1
and 2.2.4). Then, all valid voters can vote in this election (and, consequently, can vote only
once). The group of scrutineers publishes an encryption public key and each one keeps secret
his share of the decryption private key. We will denote by EPKe

the encryption algorithm
(using the public key PKe) and DSKe the decryption algorithm used by scrutineers who share
the private key SKe.

3.3.3 Ballot Progress

During the ballot progress, the voter Vi �rst makes his choice vi. He then performs the fol-
lowing:

- Compute si = SigListe;Vi(vi).
- Compute di = EPKe(vi; si).
- Put (di) into the database through an anonymous channel (e.g. mix-nets or a
cybercafe).

3.3.4 Counting of Votes

At the end of the ballot, the database contains all ballots of all voters (who have participated
in this election). The group of scrutineers can then collect all these ballots and start counting
the votes. They use the distributed decryption algorithm and the veri�cation algorithm of
the list signature scheme (see Sect. 2.2.6 for details) and do the following for each entry of
the database.

- Take the next entry of the database (di)
- Obtain (si; vi) = DSKe(di).
- Verify the list signature scheme si with the message vi.
- Test if this voter has not yet voted (which is possible due to the property of partial
linkability of the list signature scheme2).
- Put (di; si; vi) in the database.
- Modify the result of the election in accordance with vi.

At the end of the counting, the group of scrutineers publishes their private key SKe so that
everybody can make the same counting as they have done.

3.4 Security Properties

We briey give strong evidence that our scheme veri�es all properties introduced in Sect. 3.1.
(i) Democracy: this property is veri�ed as only allowed voters can obtain a valid certi�cate to
make a list signature of their ballot. TA knows to which it has provided a member certi�cate
and then would not do it twice for a same person. Furthermore, we have seen that neither
TA nor RA can create fake voters (see Sect. 2.2.7). Finally, as the list signature scheme is
secure, and since each election takes place within a single sequence of a list signature scheme,

2Scrutineers have to make a comparison between the current signature (and more particularly T4, see
Sect. 2.2.6) and ancient ones. This type of comparison is inherent in all known electronic voting systems.
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each voter can vote only once. In fact, if a valid voter tries to vote twice, scrutineers could
notice it (see Sect. 2.2.6).3

(ii) Anonymity: this property is achieved since the list signature is anonymous and partially
unlinkable and since the ballot is sent through an anonymous channel. Furthermore, the en-
crypted ballot paper reveals nothing about the sender as the public key of the cryptosystem
is the same for all voters.
(iii) No Partial Results: there cannot be partial results under the hypothesis that at least
one member of the group of scrutineers is honest. In this case, this one would not want to
decrypt votes before the end of the ballot and as our proposal use a threshold cryptosystem,
the presence of all scrutineers is required. Furthermore, the semantic security of the public
key cryptosystem ensures that nothing is revealed concerning the vote vi.
(iv) Public Veri�ability: follows from the fact that the decryption private key will be revealed
and that everybody (even a simple observer) can follow the evolution of the database (and
then notice a non valid modi�cation of it). Consequently, at the end of the counting of votes,
everybody can do the same work as scrutineers have done.
(v) Receipt-freeness: with our solution, each voter can prove for whom he had voted. This
seems to be inherent in case of on-line voting but can be solved by using a smart card in case
of o�-line voting (see [4] for example).
Moreover, each voter can prove that he participated in the election by proving that he pro-
duced one entry of the database (without revealing which one). This proof will not be
presented in this paper and is based on the proof of OR introduced by Cramer et al. (see [11]
and [17] for details).

4 Conclusion

In this paper, we have presented a new type of signature scheme, a variant of group signature,
called list signature. We have proposed an example of such a scheme and shown that it
veri�es all required security properties. In particular, signatures produced in this scheme are
provably coalition-resistant and existentially unforgeable under the Strong-RSA Assumption.
After that, we have proposed an electronic voting scheme that makes use of this new concept.
This scheme, a simple combination of a list signature scheme and of a (threshold) semantically
secure cryptosystem, allows to meet very easily the fundamental requirements of security in
electronic voting.
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