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Abstract

Let V be a Fn�linear maximum rank distance (MRD) (n; k; d) code over the �eld Fn:

All the code words are n�vectors over Fn: One refers to this code as a code in the vector

representation. It also can be represented as a set M of n�n matrices over the base �eld
F1 by some mapping B : Fn =) Fn

1
: Thus a code vector g = (g1; g2; : : : ; gn); gj 2 Fn;

is (reversibly) mapped to a code matrix M = (Mi;j); Mi;j 2 F1; i; j = 1; 2; : : : ; n: One
refers to the set M as a code in the matrix representation.

The set MT of all transposed code matrices CT is known as the transposed rank code
in the matrix representation. It can be rewritten as a code in the vector representation by
the inverse map B�1 but this code is only F1�linear, not necessarily Fn�linear. Hence
no fast decoding algorithms are known for transposed rank codes.

In this paper, we consider a special class of MRD codes based on symmetric ma-
trices. We show that some mapping exists for the set MT such that resulted code is
the Fn�linear code in the vector representation. This property allows more exible fast
decoding algorithms.

1 Introduction

Codes in rank metric (or, in brief, rank codes) are of interest to communications, cryptography,
space-time coding, etc., [1, 2, 3]. Rank codes can be considered in a vector or in a matrix
representation. We remind some notations and de�nitions.

Let F1 = GF (q) be a base �eld and let Fn = GF (qn) be an extension of degree n of the
�eld F1.

Let Fn�n
1 be a normalized space of square matrices of order n over F1: The rank norm of

a matrix G 2 Fn�n
1 is de�ned as ordinary rank of this matrix, i.e., the maximal number of

rows (or, columns) which are linearly independent over F1: We denote the rank norm of G as
rank(G): The rank distance between G1 and G2 is de�ned as d(G1; G2) = rank(G1 �G2):

A (matrix) code M � Fn�n
1 is any set of matrices. A code M is said to be F1-linear

(or, simply linear) if any linear combination of code matrices with coe�cients in F1 is a code
matrix too. Given a code M one can construct a code MT =

�
GT : G 2M

	
where GT means

the transposed matrix. The code MT is called the transposed code (given M). It is clear that
many characteristics of M and MT ; such as code distance, weight distribution, linearity, and
others are identical.

Let Fn
n be a normalized vector space of dimension n over Fn where the rank norm of a

vector g = (g1; g2; : : : ; gn); g 2 Fn
n ; is de�ned as the maximal number of coordinates gj which

are linearly independent over the base �eld F1: We denote the rank norm of g as r(g):
A code V � Fn

n is said to be F1-linear if a linear combination of code vectors with
coe�cients in F1 is a code vector too. A code V � Fn

n is said to be Fn-linear if a linear
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combination of code vectors with coe�cients in Fn is a code vector too, or, equivalently, if V
is a subspace of Fn

n : A code can be F1-linear but not Fn-linear.
Let 
 = f!1; !2; : : : ; !ng be a basis of the extension �eld Fn over the base �eld F1. Each

element � 2 Fn can be uniquely represented in the form

� = b1!1 + b2!2 + : : :+ bn!n = (!1; !2; : : : ; !n)

0
BBB@
b1
b2
...
bn

1
CCCA ; (1.1)

where bi 2 F1; i = 1; : : : ; n. Thus Eq (1.1) de�nes a one-to-one mapping

B
 : Fn ) Fn
1 ; (1.2)

i.e., each element of � 2 Fn is uniquely mapped into a column vector b = (b1; b2; : : : ; bn)
T 2

Fn
1 : Each column b = (b1; b2; : : : ; bn)

T 2 Fn
1 is uniquely mapped into the element � using

inverse mapping B�1



(1.1).
De�ne one-to-one mapping vectors g = (g1; g2; : : : ; gn) 2 Fn

n into matrices G 2 Fn�n
1

by
the formula

B
(g) = G = (B
(g1); B
(g2); : : : ; B
(gn)): (1.3)

Mapping (1.3) being applied to a chosen vector code V � Fn
n gives a matrix code M =

B
(V) � Fn�n
1 . It is clear that B
 is norm- and distance-preserving mapping: r(g) =

rank(B
(g)); rank(G) = r(B�1


(G)): Hence given B
 we can say on the vector or matrix

representation of a code and use vector or matrix notations by context.
The vector representation is more convenient to describe code constructions and decoding

algorithms (see, e.g., [1]) while the matrix representation is useful in the coding modulation
area, for example, in the theory of space-time codes (see, e.g., [3]).

One can construct new codes in rank metric using known codes. Let a code V be given in
the vector representation. Let two bases 
 and e
 be given. Then construct a new code VT

as follows:

V

B


�! M �!M
T
B�1
e

�! V

T : (1.4)

We call VT the transposed code in the vector representation. Note that bases 
 and e
 can
be di�erent.

The code VT preserves all the distance properties of the code V with the only exception.
If the code V is Fn-linear then V

T may not be Fn-linear though it is still F1-linear. This is a
grave disadvantage since fast decoding algorithms are known only for Fn-linear codes.

We illustrate this with the following example.

Example 1 Let q = 2 and V be F3-linear code

V=
�
(0; 0; 0); (1; �; �2); (�;�2; �3); (�2; �3; �4); (�3; �4; �5); (�4; �5; �6); (�5; �6; 1); (�6; 1; �);

	
;
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where � is a root of the irreducible polynomial f(x) = x3+x+1: Let B
 be de�ned by relations
1$ (1; 0; 0)T ; �$ (0; 1; 0)T ; �2 $ (0; 0; 1)T : Then M is a set of 3� 3 matrices over the �eld
GF (2):

M0 =

0
@0 0 0
0 0 0
0 0 0

1
A ; M7 =

0
@1 0 0
0 1 0
0 0 1

1
A ; M1 =

0
@0 0 1
1 0 0
0 1 1

1
A ; M2 =

0
@0 1 1
0 0 1
1 1 1

1
A ;

M3 =

0
@1 1 1
0 1 1
1 1 0

1
A ; M4 =

0
@1 1 0
1 1 1
1 0 1

1
A ; M5 =

0
@1 0 1
1 1 0
0 1 0

1
A ; M6 =

0
@0 1 0
1 0 1
1 0 0

1
A :

If we transpose these matrices and convert them into vectors by B�1


; we get the code

V
T=
�
(0; 0; 0); (1; �; �2); (�2; 1; �4); (�4; �2; �5); (�5; �4; �3); (�3; �5; �6); (�6; �3; �); (�;�6; 1);

	
which is not F3-linear, only F1-linear.

In this paper, we show that for a special class of linear maximum rank distance (MRD) codes
V there exist bases 
 and e
 such that both V and transposed code VT are Fn-linear.

2 A class of MRD codes

From now on we consider binary �elds only, i.e., q = 2:
The standard generator matrix of a linear maximum rank distance code in the vector

representation has a form [1]

G =

2
66664

g1 g2 � � � gn
g21 g22 � � � g2n
g2

2

1 g2
2

2 � � � g2
2

n

� � � � � � � � � � � �

g2
k�1

1 g2
k�1

2 � � � g2
k�1

n

3
77775 ; (2.5)

where g1; g2; : : : ; gn are linearly independent over the base �eld F1.
These codes achieve the Singlton bound d = n� k + 1 for code rank distance.
The �rst row of the generator matrix (2.5) generates an Fn-linear (n; 1; n) code. It is shown

in [4] that there exists so-called symmetric representation for this code such that a transposed
code is also Fn-linear. In this case all the code matrices in the matrix representation are
symmetric.

We consider a class of MRD codes (2.5) for which the �rst row de�nes a (n; 1; n) subcode
with the symmetric representation. We refer to these codes as MRD codes based on symmetric
matrices.

The main statement is as follows.

Theorem 1 (Main) Let V be a Fn-linear MRD (n; k; d) code based on symmetric matrices
with generator matrix (2.5). Then the corresponding transposed code VT is also a Fn-linear
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MRD (n; k; d) code based on symmetric matrices with generator matrix

G =

2
666664

g2
n�k+1

1 g2
n�k+1

2 � � � g2
n�k+1

n

g2
n�k

1 g2
n�k

2 � � � g2
n�k

n

� � � � � � � � � � � �

g2
n�1

1 g2
n�1

2 � � � g2
n�1

n

g1 g2 � � � gn

3
777775
: (2.6)

In Section 3, matrix and vector representations of an extension �eld are described. Proof
of the Main theorem is given in Section 4.

3 Matrix and vector representations of an extension �eld

Let � be a root of an irreducible primitive monic polynomial

f(�) = �n + an�1�
n�1 + an�3�

n�2 + : : :+ a1�
1 + a0: (3.7)

Then � is a primitive element of an extension �eld Fn. The elements �j; j = 1; 2; : : : ; 2n � 1
are all non zero elements of Fn. Moreover, for i 6= j, we have �i � �j = �k:

Let A be an n�n matrix over the base �eld F1. We say that the matrix A represents the
�eld Fn) if and only if all the powers Aj; j = 1; 2; : : : ; 2n � 1 are distinct, A2n�1 = In, where
In is the identity matrix of order n, and Ai �Aj = Ak; i 6= j.

A matrix A represents the extension �eld Fn with image � if and only if its characteristic
polynomial det(�In�A) coincides with the irreducible primitive polynomial f(�) of Eq (3.7).

There exist many matrices representing the extension �eld Fn with the same image �.

Lemma 1 Let C be a matrix representing the �eld Fn with image �. Let Q be a non singular
matrix in F1 of order n: Then the matrix A = Q�1CQ also represents the �eld Fn with image
�.

Proof. Matrices C and A = Q�1CQ are similar. Hence they have identical characteristic
polynomials.

It is known (see, e.g., [5]) that the companion matrix C of the polynomial (3.7)

C =

0
BBBBB@

0 0 : : : 0 �a0
1 0 : : : 0 �a1
...

... : : :
...

...
0 0 : : : 0 �an�2
0 0 : : : 1 �an�1

1
CCCCCA

(3.8)

represents the �eld Fn with image � since the characteristic polynomial of this matrix is f(�)
from Eq (3.7). By Lemma 1, all the other matrices representing the same �eld are of the form
A = Q�1CQ; where Q is a square nonsingular matrix of order n over the base �eld F1:

Denote A[j] the jth column of a matrixA:Note that for non zero column b=(b1; b2; : : :; bn)
T

2 Fn
1 there exists the only integer j such that b = Aj[1]:
Let A be a matrix representing the �eld Fn with image �. De�ne one-to-one mapping BA

by relations

BA(0) = (0; 0; : : : ; 0)T ; BA(�
j) = Aj[1]; j = 1; : : : ; 2n�1; (3.9)
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(we use notation BA instead of more general notation B
.) We say that BA de�nes the vector
representation of the �eld Fn with image �:

For a vector g = (g1; g2; : : : ; gn); gj 2 Fn; we de�ne

BA(g) = (BA(g1); BA(g2); : : : ; BA(gn)):

Thus G = BA(g) is an n� n matrix in F1:

Lemma 2 Let � 2 Fn: Then

BA(��) = ABA(�):

Proof. If � = 0 then nothing to prove. If � 6= 0 then � = �s for some integer s: Therefore

BA(��) = BA(�
1+s) = A1+s[1] = AAs[1] = ABA(�):

Corollary 1 Let g 2 Fn
n and BA(g) = G: Then BA(�g) = ABA(g) = AG and, inversely,

B�1A (AG) = �B�1A (G): By recursion, for integer s; B�1A (AsG) = �sB�1A (G) = �sg:

Corollary 2 Let g 2 Fn
n : Let R be a n�m matrix in F1: Then

BA(gR) = BA(g)R:

4 Proof of the Main theorem

It is shown in [4] that symmetric matrices A = AT exist representing binary �elds Fn: From
now on, we consider only symmetric matrices A:

Choose the �rst row in the generator matrix (2.5) asB�1A (In); i.e., the vector representation
of the identity matrix In:

g0 = (g1; g2; : : : ; gn) = B�1A (In) = (�i1 ; �i2 ; : : : ; �in); (4.10)

where i1 = 0:
The next row g1 can be represented as

g1 = (g21; g
2
2; : : : ; g

2
n) = (�2i1 ; �2i2 ; : : : ; �2in):

Let D = BA(g1) be the n� n nonsingular matrix in F1:

Lemma 3

g1 = g0D:

Proof. It follows from Corollary 2

g1 = B�1A (D) = B�1A (InD) = B�1A (BA(g0)D) = g0D:

For s = 0; 1; 2; : : : ; n� 1; de�ne

gs = (g2
s

1 ; g
2s

2 ; : : : ; g2
s

n ): (4.11)
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Lemma 4

gs = gs�1D = g0D
s: (4.12)

Proof. We have from Lemma 3 that g2j =
Pn

i=1 giDij ; where Dij are binary entries of the

matrix D: Hence, jth coordinate of the vector gs is g
2s

j =
Pn

i=1 g
2s�1

i Dij ; or, gs = gs�1D:

Lemma 5 Let as = B�1A (As) be the vector representation of the matrix As. Then

as = (�s+i1 ; �s+i2 ; : : : ; �s+in): (4.13)

Proof. We have using Corollary 1 as = B�1A (As) = B�1A (AsIn) = �sB�1A (In) = �sg0 =
(�s+i1 ; �s+i2 ; : : : ; �s+in):

Corollary 3

g0A = �g0 = (�1+i1 ; �1+i2 ; : : : ; �1+in);

or, equivalently,
Pn

s=1 gsAsj = �1+ij; j = 1; : : : ; n; where Asj are (binary) entries of the
matrix A:

Proof. It is enough to prove that mapping BA of both sides are identical. BA(g0A) =
BA(g0)A = InA = A: On the other hand, BA(�g0) = ABA(g0) = AIn = A:

Lemma 6

Ds 6= In; 1 � s � n; Dn = In: (4.14)

Proof. Vectors gs; s = 0; 1; : : : ; n� 1 are linearly independent [5]. Therefore Ds 6= In; 1 �
s � n�1: On the other hand, gn = g0D

n = (g2
n

1 ; g2
n

2 ; : : : ; g2
n

n ) = (g1; g2; : : : ; gn) = g0: Hence,
Dn = In:

Lemma 7

DA = A2D: (4.15)

Proof. Calculate

B�1A (DA) = B�1A (D)A = g1A = (
nX
i=1

g2iAij; j = 1; : : : ; n)

= ((
nX
i=1

giAij)
2; j = 1; : : : ; n) = (�2+2i1 ; �2+2i2 ; : : : ; �2+2i2) = �2g1:

Hence

BA(B
�1

A (DA)) = DA = BA(�
2g1) = A2BA(g1) = A2D:
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Lemma 8 For r; s = 0; 1; : : : ; n� 1;

DrAs = A2sDr: (4.16)

Proof. It follows from Lemma 7 using some iteration procedure. For example,

DA2 = (DA)A = (A2D)A = A2(DA) = A2(A2D) = A22D;

or,

D2A=D(DA) = D(A2D) = (DA)(AD) = (A2D)(AD) = A2(DA)D = A2(A2D)D = A22D2;

etc.

Lemma 9

DT = AuDn�1 (4.17)

for some integer u.

Proof. Transpose matrices in (4.15) and note that A is the symmetric matrix: DTA2 =
ADT = DTDAD�1; or, DTDA = ADTD: Thus the matrix DTD commute with A and
should be equal to degree, say, u of A. We have DT = AuD�1 = AuDn�1: (In fact, one can
prove that DT = Dn�1 but we use this fact without proof).

It follows from this Lemma that

(DT )jAs = A2sDn�j : (4.18)

Let Fn-linear MRD code V be given de�ned by the generator matrix

G =

2
666664

g0
g1
...
gk�2
gk�1

3
777775
; (4.19)

where rows gs are de�ned by Eq (4.10, 4.11).
Let an information vector u of dimension k be given by u=("0�

m0 ; "1�
m1 ; : : :; "k�1�

mk�1);
where "j 2 f0; 1g and 0 � mj � 2n � 1 are integers. Then a code vector is equal to

g(u) = uG =
k�1X
j=0

"j�
mjgj:

The corresponding code matrix is as follows

M(u) = BA(
k�1X
j=0

"j�
mjgj) =

k�1X
j=0

"jBA(�
mjgj) =

k�1X
j=0

"jA
mjDj : (4.20)
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The transposed code matrix is

M(u)T =
k�1X
j=0

"j(D
T )jAmj : (4.21)

By Eq (4.18), it can be rewritten as

M(u)T =
k�1X
j=0

"jA
2
mj
Dn�j : (4.22)

This means that the transposed code VT in vector representation can be described as

eg(u) = B�1A (M(u)T ) =
k�1X
j=0

"jB
�1

A (A2
mj
Dn�j) =

k�1X
j=0

"j�
2
mj
gn�j:

In turn, this expression shows that the transposed code VT is Fn�linear and may be given
by the following generator matrix

eG =

2
666664

gn�k+1
gn�k
...
gn�1
g0

3
777775
=

2
666664

g2
n�k+1

1 g2
n�k+1

2 � � � g2
n�k+1

n

g2
n�k

1 g2
n�k

2 � � � g2
n�k

n

� � � � � � � � � � � �

g2
n�1

1 g2
n�1

2 � � � g2
n�1

n

g1 g2 � � � gn

3
777775
: (4.23)

If we denote eg1 = g2
n�k+1

1 ;eg2 = g2
n�k+1

2 ; : : : ; egn = g2
n�k+1

n ; then the generator matrix eG can
be rewritten in the canonical form of Eq (2.5):

GTr =

2
66664

eg1 eg2 � � � egnegq
1

egq
2

� � � egqneg221 eg222 � � � eg22n
� � � � � � � � � � � �

eg2k�11 eg2k�12 � � � eg2k�1n

3
77775 : (4.24)

5 Conclusions

We proposed Fn�linear MRD codes based on symmetric matrices such that corresponding
transposed codes are also Fn�linear MRD codes. This allows to use either fast decoding
based on columns of received corrupted code matrix, or fast decoding based on rows that
matrix, or both.
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