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Abstract

We show that repeated-root cyclic codes over a �nite chain ring are not principally

generated. Repeated-root negacyclic codes are principally generated if the ring is a Galois

ring of characteristic 2, but in other cases they are not principally generated. We also

prove results on the structure, cardinality and Hamming distance of repeated root cyclic

and negacyclic codes.

1 Introduction

When studying cyclic codes over �nite �elds, most authors assume from the outset that the
length n of the code is not divisible by the characteristic p of the �eld. This ensures that
xn � 1, and therefore the generator polynomial of any cyclic code, will have no multiple
factors, and hence no repeated roots in an extension �eld. Cyclic codes where pjn were called
'repeated-root cyclic codes' and have been studied in [5] and [15] (strictly speaking, only codes
where pjn and the generator has multiple factors were called repeated-root codes, but we will
use this term to refer to all codes with pjn). We will call 'simple root cyclic codes' the codes
where n is not divisible by p.

Cyclic codes over a �nite ring rather than a �eld have been studied over the last few years,
motivated by the seminal paper [8]. Throughout this paper R will denote a �nite chain ring,
R its residue �eld and p the characteristic of R. A cyclic code of length n over R is an ideal in
R = R[x]=hxn�1i. The structure of such codes was described in [4, 9] for R = Zpa, and in [13]
for the more general case of a �nite chain ring. Again, it is assumed in the aforementioned
papers that n is not divisible by p i.e. we are dealing with simple root cyclic codes. The
case of repeated-root cyclic codes was less studied. The structure of cyclic codes over a �nite
chain ring (covering both the simple-root and repeated-root case) was described in [14] and
connections to Gr�obner bases were made. Similar results on the structure of ideals appear in
[11], but the connection with codes and Gr�oebner bases is not investigated. For the particular
cases of n = 2e or n = 2k, with k odd, repeated-root cyclic codes over Z4 were studied in [1]
and [3] respectively.

Negacyclic codes of length n over R are ideals in Q = R[x]=hxn + 1i. Again, it is usually
assumed that p does not divide n and we will distinguish between repeated-root and simple-
root negacyclic codes according to whether p divides n or not. Simple-root negacyclic codes
over Z4 have been studied in [16].

417



In this paper we are studying several issues regarding repeated-root cyclic and negacyclic
codes over a �nite chain ring R. In Section 3 we generalise a result of [6] and use it to show
that where pjn, R is not a principal ideal ring. So in general repeated-root cyclic codes are
not principally generated. This is in contrast to the situation for the simple-root cyclic codes,
which are always principally generated, see [4]. The same holds for simple-root negacyclic
codes. For repeated-root negacyclic codes the situation is slightly more complicated: Q is
not a principal ideal ring when p 6= 2 or p = 2 = char(R). However, when p = 2 and R is a
Galois ring, Q is a principal ideal ring.

In Section 4 we recall the structure of repeated-root cyclic codes from [14] and use it
to generalise results from [12] to the case of repeated-root codes. Namely in Section 5 we
determine the cardinality of a cyclic code and in Section 6 we show that the Hamming distance
of a repeated-root cyclic code over R equals the Hamming distance of a certain, explicitly
constructed, repeated-root cyclic code over the residue �eld of R.

Finally, in Section 7 we show that the results of Sections 4, 5 and 6 hold, with minor
modi�cations, for negacyclic codes as well.

2 Notation

Throughout this paper R will denote a �nite chain ring which is not a �eld. Recall that a
�nite chain ring is a �nite ring whose ideals are linearly ordered. Examples of �nite chain
rings include Zpa with p a prime and a � 1 and Galois rings. The main properties of R that
are used in this paper are collected below:

Proposition 2.1 A �nite chain ring R is a local principal ideal ring with maximal ideal
N (R), the nilradical of R; the elements of R n N (R) are units. Let  be a �xed generator of
N (R) and � the nilpotency index of  i.e. the smallest positive integer for which � = 0.
(i) The distinct proper ideals of R are hii, i = 1; : : : ; � � 1.
(ii) For any element r 2 R n f0g there is a unique i and a unit u such that r = ui, where
0 � i � � � 1 and u is unique modulo ��i.
(iii) For any r 2 R, if ri = 0 then r 2 h��ii.

From now on,  and � will be as in Proposition 2.1. We will denote by R = R=N (R)
the residue �eld of R and by the prime number p the characteristic of R. Recall that the
characteristic of R will then be a power of p.

We will also denote by r the image of an element r 2 R under the canonical projection
from R to R. This projection extends naturally to a projection from R[x] to R[x].

Example 2.2 (i) For R = Zpa we have  = p, � = a, R = Zp and r = r mod p.
(ii) If R is a Galois ring R = GR(pa;m) = Zpa[x]=hti with t a basic irreducible polynomial of
degree m, then  = p, � = a, R = GF(pm) and r = r mod p.

A cyclic code of length n over R is an ideal in R = R[x]=hxn � 1i. A negacyclic code of
length n over R is an ideal in Q = R[x]=hxn + 1i.

A polynomial over a �eld is called square-free if it has no multiple irreducible factors in
its decomposition. The square-free part of a polynomial over a �eld is the product of all its
distinct irreducible factors.
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3 Repeated-root cyclic codes are not principally generated

It was shown in [4, Corollary of Theorem 6] that simple-root cyclic codes over Zpa are always
principal ideals. Using the same technique the result can be generalised as follows ([13,
Theorem4.6], cf. also [6]):

Theorem 3.1 Let f 2 R[x] be a monic polynomial such that f is square-free. Then R[x]=hfi
is a principal ideal ring.

Hence simple-root cyclic and negacyclic codes over R are principally generated.
For repeated-root codes cyclic codes it was proven in [1] and [3] that for R = Z4 and

n = 2e or n = 2k with k odd, the codes are not principally generated.
To examine the general case we will need the following theorem, which is a modi�ed

version of [6, Theorem 4], generalised from R = Zpa to R a �nite chain ring. The proof is
similar and has been included in the Appendix for completeness.

Theorem 3.2 (cf. [6]) Let f 2 R[x] be a monic polynomial which is not square-free. Let
g; h 2 R[x] be such that f = gh and g is the square-free part of f . Write f = gh+ u with
u 2 R[x]. Then R[x]=hfi is a principal ideal ring i� u 6= 0 and u and h are coprime.

Corollary 3.3 With the notations of Theorem 3.2, if f and h have a non-trivial common
factor as polynomials in R[x], then R[x]=hfi is not a principal ideal ring.

Proof. If u = 0, by Theorem 3.2, R[x]=hfi is not a principal ideal ring. So let us assume
u 6= 0. Let d 2 R[x] be the non-trivial common divisor of f and h. Write f = df1 and
h = dh1 with f1; h1 2 R[x]. We have df1 = gdh1 + u, hence u = d(f1 � gh1). This means
d(f1 � gh1) = 0, which implies (f1 � gh1) = 0, since d 6= 0. Hence all coe�cients of f1 � gh1
are divisible by  so we can write f1 � gh1 = u1 for some u1 2 R[x]. Then u = du1,
so u = du1. Hence u and h are not coprime, since they have d as a common factor. By
Theorem 3.2 we can now infer that R[x]=hfi is not a principal ideal ring. �

Theorem 3.4 Assume pjn. Then:
(i) R is not a principal ideal ring.
(ii) If p 6= 2 or if p = 2 and char(R) = 2 then Q is not a principal ideal ring.
(iii) If  = p = 2 (in particular if R is a Galois ring with p = 2) then Q is a principal ideal
ring.

Proof. Since pjn, we can write n as n = kpb for some b � 1 and p 6 jk. In R[x] we have:

xkp
b

� 1 = (xk � 1)p
b

xkp
b

+ 1 = (xk + 1)p
b

since

�
pb

i

�
� 0 mod p for all 0 < i < pb and (�1)p

b

= �1 if p is odd and (�1)p
b

= 1 = �1

if p = 2.
(i) Putting f = xn � 1, g = xk � 1 and h = (xk � 1)p

b
�1 with f; g; h 2 R[x] we have that

f = gh and g is the square-free part of f . Note that xk � 1 divides f = xkp
b

� 1 in R[x].
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Hence xk � 1 is a common factor of f and h, so by Corollary 3.3 R is not a principal ideal
ring.

(ii) If p 6= 2, put f = xn + 1, g = xk + 1 and h = (xk + 1)p
b
�1 with f; g; h 2 R[x]. We

have that f = gh and g is the square-free part of f . Since pb is odd, xk + 1 is a factor of
f = xkp

b

+ 1. Hence xk + 1 is a common factor of f and h, so by Corollary 3.3 Q is not
a principal ideal ring. Now assume p = 2 and char(R) = p = 2. Then 1 = �1 in R, so
R[x]=hxn + 1i = R[x]=hxn � 1i in this case, i.e. Q = R is not a principal ideal ring.

(iii) Now p = 2 and  = p = 2. We put f = xn + 1, g = xk + 1 and h = (xk + 1)2
b
�1 with

f; g; h 2 R[x]. We have that f = gh and g is the square-free part of f . There is a u 2 R[x]
such that f = gh+ 2u. We will determine now u. We have:

�2u = gh� f = (xk + 1)2
b

� (xk2
b

+ 1) =
2b�1X
i=1

�
2b

i

�
xki

By Kummer's Theorem we know that all

�
2b

i

�
with i = 1; : : : ; 2b � 1 are divisible by 4,

except for

�
2b

2b�1

�
, which is divisible by 2 but not by 4. Hence: u = xk2

b�1

. Obviously u is

coprime to h, hence by Corollary 3.3 Q is a principal ideal ring. �

4 Generators for repeated-root cyclic codes

We recall below [14, Theorem 4.2]. As usual, elements of R are identi�ed with polynomials
of degree less than n.

Theorem 4.1 Let C � R be a non-zero cyclic code. Then C admits a set of generators

C = hj0g0; : : : ; 
jsgsi

where 0 � s � � � 1 and
(i) 0 � j0 < � � � < js � � � 1
(ii) gi monic for i = 0; : : : ; s,
(iii) n > deg(g0) > deg(g1) > : : : > deg(gs),
(iv) ji+1gi 2 hji+1gi+1; : : : jsgsi for i = 0; : : : ; s� 1.
(v) j0(xn � 1) 2 hj0g0; : : : ; jsgsi
Moreover this set of generators is also a strong Gr�obner basis.

Remark 4.2 Note that this is a structure theorem for both simple-root and repeated-root
cyclic codes. Conditions (iv) and (v) imply that gsjgs�1j : : : jg0jx

n � 1. For the simple root case
we show in [14, Theorem 4.3] that conditions (iv) and (v) can be replaced by the stronger con-
dition gsjgs�1j : : : jg0jx

n�1 retrieving thus the structure theorems of [4] and [13]. For repeated-
root codes, conditions (iv) and (v) cannot be improved in general: there are codes for which
no set of generators of the form given in Theorem 4.1 has the property gsjgs�1j : : : jg0jxn � 1
(see [14, Example 3.3]).
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5 The cardinality of cyclic codes over a �nite chain ring

In [13, Theorem 4.5] we determine the cardinality of a simple-root cyclic code over a �nite
chain ring. The result can be generalised to arbitrary cyclic codes (repeated-root or simple
root) as follows:

Theorem 5.1 Let C be a cyclic code given by a system of generators as in Theorem 4.1.
Then

jCj = jRj
P

s

i=0(��ji)(di�1�di)

where di = deg(gi) for i = 0; : : : ; s and d
�1 = n.

Proof. By Theorem 4.1, the set of generators G = fj0g0; : : : ; jsgsg is also a strong Gr�obner
basis. Hence for any g 2 R[x] with deg(g) < n we have that g represents a codeword in C i�
g strongly reduces to 0 w.r.t. G. Let g be such a polynomial. No matter what polynomial in
G is used at each reduction step, the �nal result of reducing g will still be 0. We can therefore
impose that we will always use jigi with minimum possible i. The reduction becomes then
unique and yields polynomials v0; : : : ; vs 2 R[x] with g =

Ps
i=0 vi

jigi, deg(vi) < di�1 � di
and vi unique modulo ��ji for i = 0; : : : ; s. There are therefore jRj(��ji)(di�1�di) possibilities
of choosing each vi. �

6 The Hamming distance of repeated-root cyclic codes over a

�nite chain ring

For simple-root cyclic codes over R it was shown in [12] that their Hamming distance coincides
with the Hamming distance of certain, explicitly constructed, simple-root cyclic codes over
R. Here we will show that the same happens for repeated-root cyclic codes.

We will denote by dH() and wtH() the Hamming distance and Hamming weight, respec-
tively.

Theorem 6.1 Let C be a cyclic code given by a set of generators as in Theorem 4.1. We
have: dH(C) = dH(hgsi).

Proof. By [12, Theorem 4.2] we know that dH(C) = dH(C \ h��1i) = dH((C : ��1))
where (C : ��1) is the ideal quotient (C : ��1) = fg 2 Rj��1g 2 Cg . (The main idea in the
proof of this result is that multiplying a codeword by  decreases its weight, so when looking
for words of minimum Hamming weight in C is su�ces to look in C \ h��1i. The second
equality follows from the fact that for any g 2 R, both ��1g and g have non-zero coe�cients
exactly in those positions where g has unit coe�cients, and so wtH(

��1g) = wtH(g).)
We have C \ h��1i = h��1gsi as the set of generators in Theorem 4.1 is also a strong

Gr�obner basis and we can reduce any element of C \ h��1i to 0 using only jsgs. Hence
(C : ��1) = fg 2 Rj��1g 2 h��1gsig = hgs; i and (C : ��1) = hgsi. We have therefore

dH(C) = dH((C : ��1)) = dH(hgsi) as required. �

Hence if C is a repeated-root cyclic code, its Hamming distance equals the Hamming
distance of hgsi. The latter is a repeated-root cyclic code over the �nite �eld R for which the
results of [5] and [15] concerning the Hamming distance apply.

421



7 Negacyclic codes

The results in Sections 4, 5 and 6 also hold for negacyclic codes, reformulated accordingly.
We obtain valid theorems if we replace "C is a cyclic code" by "C is a negacycyclic code"
and xn � 1 by xn + 1 in Theorems 4.1, 5.1 and 6.1.

8 Appendix

Proof of Theorem 3.2

It is known that a �nite ring is principal i� its radical is principal (see [2, Propositions 8.7
and 8.8] and also [7, Lemma 3]). The ring R[x]=hfi is �nite.

It is easy to see that N (R[x]=hfi) = hgi and N (R[x]=hfi) = hg; i.
Assume �rst that u 6= 0 and u and h are coprime. We will show that the radical is

principal, namely hg; i = hvi where v = g + b and b 2 R[x] is such that b = g= gcd(g; u).
To visualise the divisibility relationships between di�erent polynomials in this proof, the

following diagram may be useful. The regions that overlap (viewed vertically) represent
common factors.

u
b

h

g
f

We have that g and u� bh are coprime, since any factor of g is either a factor of u or a
factor of bh but not both. By [10, Theorem XIII.4], g and u � bh are coprime so there are
polynomials A;B;w 2 R[x] such that 1 = Ag +B(u� bh). Multiplying by  we obtain

 = Ag + B(u� bh)

= A(v � b) +B(u� bh)

= Av +B(f � gh� (v � g)h)� 2Ab

= v(A�Bh)� 2Ab

Multiplying the last equation by ��2; ��1; : : : ; 1 and using each result in the next equation
we obtain, successively:

��1 = ��2v(A�Bh)� �Ab = ��2v(A�Bh) 2 hvi

��2 = ��3v(A�Bh)� ��1Ab 2 hvi
...

 = v(A�Bh)� 2Ab 2 hvi

We proved therefore that  2 hvi and now g 2 hvi immediately follows. Hence hg; i = hvi.
For the converse result, assume that hg; i is a principal ideal and let v be its generator.

Since hg; i = hgi = hvi we can assume that v = g. Write v as v = g+ w for some w 2 R[x].
Since  2 hvi, there are A;B 2 R[x] such that  = Af + Bv. Hence 0 = Af + Bv =
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Agh + Bg = g(Ah + B). We have therefore that B is divisible by h i.e. there are B1; c
such that B = hB1 + c. Now  = Af + Bv becomes  = A(gh + u) + (hB1 + c)v =
h(Ag + b1v) + (Au+ cv). So h divides 1�Au+ cv = 1�Au+ cg. By de�nition, h divides
g, so h divides 1�Au. If u was zero, then we would have that h divides 1, which is a
contradiction. Also, if there was a non-trivial common factor of h and u, that common factor
would be a factor of 1, which is again a contradiction. Hence we obtained that u 6= 0 and u
and h are coprime, as required.
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