
A Wrap Error Attack against NTRUEncrypt

Tommi Meskanen1;2 and Ari Renvall1

1Department of Mathematics, University of Turku

20014 Turku, Finland
2Turku Centre for Computer Science

20520 Turku, Finland

Abstract

We present a chosen plaintext attack on the NTRU encryption system. We assume
that the attacker can detect wrap errors, that the blinding polynomial is generated from
three parts (as speci�ed in the standards) and that the attacker has a big database of
carefully selected plaintexts. The attack is based on the fact that wrap errors occur more
frequently if blinding polynomials with larger coe�cients are used.

1 Introduction

The NTRU cryptosystem was �rst introduced in 1998 [HPS]. Since then, several minor
modi�cations have been introduced, but the main ideas have remained the same. For di�erent
versions of NTRU see [NTRU]. At the moment NTRU is also being standardized, see [EESS]
and [P1363.1]. We follow the system and notations as given in [EESS].

The peculiar property of NTRU is that decryption does not always succeed. There is a
possibility that to decrypt one ciphertext several decryption attempts have to be made. It
might even happen that decryption fails completely. Fortunately the probabilities of these
events are so small that normally it does not matter too much. However, the security of an
earlier version of NTRU was susceptible of this property. In [JJ] Jaulmes and Joux presented
a chosen-ciphertext attack, where the attacker changed a legal cryptotext a little to observe
if the decryption still succeeded. Based on that information the attacker then could quite
easily �nd out information about the private key.

After attacks like this NTRU was changed. It now includes what they call the Fujisaki-
Okamoto Self-Referential Technique to block cryptotexts that are not rightfully generated.

Our attack is somewhat similar to that of [JJ], as also we try to �nd the private key by
observing whether the decryptor phases problems during decryption. However, we use only
legally produced ciphertexts.

The paper is organized as follows. In chapter 2 we describe the NTRU encryption system.
Special emphasis is put to features relevant from the point of view of our attack. Chapter 3
then describes the attack. An example of realistic size is given in chapter 4, and chapter 5
has some �nal remarks.

327

2 The NTRUEncrypt System

The basic objects of NTRU are polynomials in the ring R = Z[x]=(xN�1). These polynomials
are frequently reduced modulo p and q, the small and large modulus. The large modulus q is
an integer, so reduction modulo q is performed by reducing the coe�cients of the polynomial
modulo q. The small modulus p is a polynomial p = 2 + x, and it is easy to see that
representatives modulo p are (almost) exactly the binary polynomials in R.

Polynomials with \small" non-negative coe�cients play an important role in NTRU. Let
a(x) =

P
aix

i and denote

T (d) =fa(x) 2 R j ai � 0;
X

ai = dg;

TB(d) =fa(x) 2 R j ai 2 f0; 1g;
X

ai = dg

Key generation

In NTRU N , p and q are system wide parameters, and thus public information.
The private key f 2 R is of the form f = 1+ p � F , where the standard gives two options

for F . Either it is a randomly selected binary polynomial from TB(df), or F = f1 � f2 + f3
with each fi 2 T (dfi). From the point of view of our attack it does not matter which option
is selected.

The public key h is obtained by selecting the polynomial g from TB(dg) and computing
h = f�1�g (mod q). The polynomial g is not needed after the key generation, and thus needs
not to be remembered. Despite this, our attack aims to reveal g, after which the private key
f can be computed from g and h.

The generation methods of f and g, as well as the values of df (or dfi) and dg are public
information.

Encryption

NTRU is a probabilistic public key cryptosystem, hence one plaintext message has several
possible encryptions.

Encryption of message m is performed by �rst selecting a message representative i and a
blinding polynomial r, and then computing the ciphertext

e = i+ r � p � h (mod q):

The selection of i and r is performed by �rst choosing some random data b and then computing
i = '(m; b) and r = �(m; b). Without going into details, i will be a random looking binary
polynomial. Also, the mapping ' is e�ciently invertible: given i it is possible to compute m
and b. There are options for the generation of r. Either it will be a binary polynomial from
TB(dr), or it will be computed as r = r1 � r2 + r3, where each ri 2 T (dri). In any case r will
be a polynomial from T (dr). Our attack will assume the latter option.

Decryption

Decryption starts by computing

a = f � e (mod q):

328

It is easily veri�ed that a = � (mod q), where

� = f � i+ p � r � g:

Moreover, since all polynomials involved are \small", it is very likely that all coe�cients of
� lie within a certain interval of length q. If this is the case, the decryptor can reduce the
coe�cients of a to this interval and obtain �. As f = 1 (mod p), reduction modulo p then
gives i.

However, it is possible that the decryptor will not get the correct �. Then there are two
alternatives.

� The coe�cients of a were reduced to a wrong interval of length q (wrap failure).

� The di�erence between the smallest and largest coe�cient of � is larger than q (gap
failure).

Whether either of these cases has happened is checked by re-encryption: from the obtained
message representative i0 one computes m0 and b0, and further r0 = �(m0; b0). Then from i0

and r0 one gets the encryption e0. If e = e0 then also i = i0 and decryption has succeeded. If
e 6= e0, then either a wrap or a gap failure has occurred, or e was not a valid encryption at
all. The decryptor must assume that the reason was a wrap failure. To recover (s)he reduces
the coe�cients of a to a di�erent interval, until decryption succeeds (or he decides that it was
not a wrap failure and quits).

The candidate for the proper interval is �rst selected as [A;A+ q), where A (or actually
A+ q=2) is the (expected) average coe�cient of �. This is easily obtained if �(1) is known.
Clearly �(1) = f(1)i(1)+p(1)r(1)g(1), where only i(1) is unknown. But �(1) = a(1) (mod q),
so i(1) (mod q) can be computed. As i is a random binary polynomial, it is very probable
that N=2� q=2 � i(1) < N=2+ q=2. Making this assumption one gets the average decryption
coe�cient A and the �rst guess on the proper interval. A wrap (or gap) error occurs only if
at least one coe�cient di�ers by q=2 from the average.

There are at least two reason to adopt the \check back" decryption algorithm. Decryption
always produces some candidate message representative i0. If a wrap or gap failure has
occurred, then i0 is incorrect. Using the method above one can check whether this is the case.
Secondly, this method guarantees that the encryptor can create a valid cryptotext e only if he
knows the corresponding plaintext m. This plaintext awareness property is advantageous from
the point of view of hindering some most powerful cryptographic attacks, such as adaptive
chosen cryptotext attacks [Ble]. And speci�cally, it is a valid counter-measure against the
reaction attack presented in [JJ].

3 The Attack

Our attack is based on the observation that blinding polynomials r with big coe�cients
generate wrap errors more frequently than polynomials with small coe�cients. Therefore, by
a careful selection of pairs (m; b) (which determine r), one can make the wrap probability
rather big. And the probability gives us useful information on the private key.

Throughout this chapter we assume that the parameter set ees251ep1 of [EESS] is used.
Thus, N = 251, p = 2+x and q = 128. The private key f is of the form f = 1+ p �F , where
F 2 T (72) (and thus f 2 T (217)). The polynomial g is binary with 72 1's: g 2 TB(72).

329

We assume that the blinding polynomial is generated from three parts: r = r1 � r2 + r3,
where each ri 2 T (8) (algorithm 3.3.3.2 in [EESS]). Most coe�cients of ri's are therefore 0,
only few equal 1. Also a 2 (or bigger) is possible, but they are few and far between. It follows
that also the coe�cients of r are very small: r 2 T (72). Most coe�cients are 0's and 1's (as
the average is 72=251). However, also larger values appear; this time more frequently than
in ri's. The main tools in our attack are polynomials which have a suitably big number of
\large" coe�cients (� 4 or 5, for instance).

As noted earlier, the wrap failure occurs if at least one coe�cient of � = f � i+ p � r � g
di�ers by q=2 from the average. Our goal is to

� Generate such pairs (m; b) that the wrap probability correlates with the coe�cients of
p � g;

� Increase the wrap probability to such a level that the di�erences in the probabilities are
e�ciently detectable.

These goals are achieved by generating pairs (m; b) such that the resulting blinding polynomial
r has some large coe�cients. In the following we denote r =

P
rix

i, g =
P
gix

i and � =
p � g =

P
�ix

i. Clearly, �i 2 f0; 1; 2; 3g, and if we learn �i then both gi and gi�1 are revealed.
For example, if �i = 3 then gi = gi�1 = 1. Also, the 72 indices i for which �i � 2 are exactly
those for which gi = 1.

We increase the wrap probability by trying to make some coe�cient of � � r (and hence
also �) exceptionally large. Suppose that �u+ij = 3 and that rv�ij are large for some indices
u, v and i1; : : : ; is (additions in sub indices are reduced modulo N). Then all of the large
coe�cients rv�ij contribute partly to the same coe�cient of � � r. More speci�cally, the
coe�cient of xu+v in � � r is at least 3 �

Ps
j=1 rv�ij . As the rest non-zero coe�cients of r

contribute to random terms in � � r, it is obvious that wrap failures become more frequent
than normally.

The attack consists of four steps. The �rst step attempts to locate four 3's of �. After
the second step we should have learned 15 3's of �. In the third step we spot the rest of �'s
coe�cients that are at least 2, thus revealing g. The �nal step consists of counting the private
key f from g and the public key.

In steps 1 and 2 we use blinding polynomials with four coe�cients ri � 4. For this purpose,
denote by Mk

4�4(i0; : : : ; i3) a set of k pairs (m; b) such that for some u 2 f0; 1; : : : ; 250g the
coe�cients ru+ij � 4 (j = 0; 1; 2; 3), where r = �(m; b). In step 3 we use blinding polynomials
with one coe�cient at least 5. A set of pairs (m; b) resulting in this kind of blinding polynomial
is denoted by M1�5.

All probabilities given below are estimates based on our implementations.

3.1 First step

Our �rst goal is to locate four big coe�cients of � = p � g (or actually in one of its cyclic
shifts xu � �). For this purpose we encrypt messages in the sets M1000

4�4 (i0; i1; i2; i3). Clearly,
the quadruples (i0; i1; i2; i3) corresponding to four 3's of � induce high wrap probability. In
this case the large coe�cients of r contribute to some term of � � r by 4 � 4 � 3 = 48, and
therefore this term of � has a fair chance of exceeding the average by q=2 = 64, thus causing a
wrap failure. Therefore the set M1000

4�4 (i0; i1; i2; i3) that most frequently induces wrap failures
most probably gives �u�i0 = �u�i1 = �u�i2 = �u�i3 = 3 (for some index u).

330

Fortunately it is not necessary to go through all sets M1000
4�4 (i0; i1; i2; i3). The average

number of 3's in � is 72 � 71

251
� 20, and therefore a random guess of four indices has a

reasonable chance (roughly 1%) of hitting four 3's in one of �'s rotations. Therefore, if we
randomly select, say, 1000 quadruples and select the one that causes the most wrap failures,
most probably we have found four 3's.

In our tests we made 1000 guesses for (i0; i1; i2; i3), generated 1000 encryptions for each
such quadruple, and observed the number of wrap failures. The probability that this process
found four 3's in � turned out to be 90%. In most of the erroneous cases one 3 was in fact 2.
With 200 sets of 200 messages the probability of success was 1

6
and with probability 40% we

had found three 3's and a 2.

3.2 Second step

In the �rst step we learned i0, i1, i2 and i3 such that �u�i0 = �u�i1 = �u�i2 = �u�i3 = 3 for
some u. Next we exploit these to �nd more large coe�cients of �. More speci�cally, the goal
is that after this step we have found 15 3's (or possibly some 2's among them) in �. Note
that the probability that � has at least 15 3's is roughly 97%.

We encrypt the messages in M1000
4�4 (i0; i1; i2; k), M

1000
4�4 (i0; i1; i3; k), M

1000
4�4 (i0; i2; i3; k) and

M1000
4�4 (i1; i2; i3; k) for all 0 � k � 250, k 6= ij. The wrap probability depends in this case

on the coe�cient �u�k: the higher the wrap probability, the bigger �u�k. We make the
assumption that the 11 k's with the highest wrap probabilities give 11 big coe�cients �u�k

(3's and possibly a few 2's among them).
This approach has one problem. It is possible that, for example, for some v 6= u the

coe�cients of xv�i0 ; xv�i1 ; xv�i2 in � are also 3's. In this case there is a good chance that
�u�k is selected to be big, although it is not. Fortunately we have a good chance of detecting
such situations, as then the number of wrap errors generated byM1000

4�4 (i0; i1; i2; k)'s di�er from
other three cases and are more frequent. If this is the case, we can replace M1000

4�4 (i0; i1; i2; k)
by some M1000

4�4 (i0; i1; i4; k), where most probably �u�i4 = 3 based on the other three cases.
If we had found four 3's in step 1 and used the sets of 1000 messages, the sum of 15 indices

found in step 2 was in our tests always at least 41. On the other hand, if we had found three
3's and a 2, the sum of 15 indices was at least 41 in half of our tests and at least 37 with
probability 90%.

Using the sets of 200 messages and four known 3's the sum of the 15 indices was at least
41 with probability 70% and always at least 37. With three 3's and one 2 the sum was at
least 37 with probability 1

3
.

3.3 Third step

To start with, we have spotted 15 3's (or 2's) in � �xu for some u. Our strategy is to test the
largeness of the remaining terms one at a time. We also test whether the already known big
coe�cients really are big.

Let �u�j be the coe�cient to be examined, and assume that �u�i0 , : : : , �u�i14 are known
to be big. We use blinding polynomials r with one peak: rv � 5 for some v. Moreover,
we assume that

P
14

`=0 rv�j+i` � 25. (If j = i` then the term rv is excluded from the sum.)
Assuming that the average of known big coe�cients �u�i` is at least 2:5, then the coe�cient
of xu+v�j in r �� is at least 2:5 � 25+5 ��u�j . The consequence is that wrap failures are quite
probable, and the probability is strongly in
uenced by �u�j.

331

We test each index �u�j by selecting and encrypting (say) 1000 pairs (m; b) such that
the resulting blinding polynomial satis�es the conditions above. Then we sort the indices
u � j according to the number of wrap failures. The 72 highest wrap failure rates gives us
the 72 big �u�j 's (those that equal 2 or 3). And, as already observed, these values reveal the
polynomial g � xu.

Our tests have shown that this step is the most accurate and can correct the possible
errors we have made in the previous steps.

When the sum of the 15 indices of step 2 was 41 and we used sets of 1000 messages this
step revealed � practically always. With sets of 200 messages we failed to spot in average
four 1's in g. In the case where the sum of the 15 indices was 37 and we used sets of 1000
messages, we failed to spot in average one 1 in g.

It seems impractical to construct a su�ciently large database of pairs (m; b) for every
16-tuple of indices u; i0; : : : ; i14. Fortunately this is not necessary. It is su�cient to have a
database of pairs (m; b) such that the resulting blinding polynomial has the required peak.
If the peak value is � 5, then roughly one out of 30 peak polynomials can be used to test
�u w.r.t. indices i0, : : : , i14. Hence, a database of 30000 pairs (m; b) that result in a peak
polynomial gives roughly 1000 suitable pairs for each to be tested index.

3.4 Computing the private key f

Let us �nally show how to compute the private key f from the polynomial g we already
learned. Denote (x) = xN�1

x�1
= x250 + x249 + x248 + � � �+ 1. As decomposes into 5 prime

factors of degree 50, with a very high probability gcd(h;) = 1 in Z2[x], where h = f�1 � g
(mod 128) is the public key. Thus using the Extended Euclidean algorithm we can �nd out
the polynomials H0, a and b such that

h �H0 � a � = 1� 2b:

We also have

h �H0 =1� 2b (mod)

h �H0 � (1 + 2b) =1� 4b2 (mod)

h �H0 � (1 + 2b)(1 + 4b2) =1� 16b4 (mod)

h �H0 � (1 + 2b)(1 + 4b2)(1 + 16b4) =1� 256b8 (mod):

The polynomial H = H0 � (1 + 2b)(1 + 4b2)(1 + 16b4) is called the pseudo inverse of h in the
ring Z128[x]=(x

251 � 1).
We have

g �H = f � f�1 � g �H = f � h �H = f (mod ; 128);

where f�1 is the inverse of f modulo x251 � 1 in Z128[x]. Therefore

f = g �H + c � (mod x251 � 1; 128)

for some c 2 Z128. From the condition

f(1) = g(1) �H(1) + c � (1)

we obtain c = (217� 72 �H(1)) � 251�1 (mod 128):

332

3.5 The complexity

At the �rst step we needed the decodings of one million messages. At the two other steps we
needed 988 000 and 251 000 decoded messages. In total 2 239 000.

It is stated at the NTRU web page that for one type of smart card the decryption takes
less that 40 ms. It would take 24 hours to complete this attack on that smart card not
counting the time needed for data transfer.

It is also stated by NTRU that a 800MHz Pentium III computer can perform 4975 de-
cryptions per second. With this speed the attack would be complete in 7.5 minutes.

As mentioned, we assume that the blinding polynomial r is constructed from three parts:
r = r1�r2+r3, where each ri 2 T (8). The parts ri are generated (algorithm 3.3.3.2 of [EESS])
by selecting 8 random indices j0, : : : , j7 (repetitions allowed) and setting ri = xj0 + : : :+xj7 .
In theory the random indices are not random, they are determined by the messagem, random
data b and some speci�ed pseudo-random number generator. However, a similar distribution
of r's is obtained via random selection (assuming the security of the used PRNG).

In the attack we needed two types of blinding polynomials. The following probabilities
are obtained by generating blinding polynomials randomly:

About one out of 8000 pairs (m; b) results in a blinding polynomial r = �(m; b) with four
coe�cients at least four. Such polynomials are needed for about 8�105 quadruples (i0; i1; i2; i3),
one thousand per quadruple. The computation of these seems to be the most demanding task
of the attack. In fact, the whole database requires approximately 40 giga bytes of memory.
With a moderately fast PC one could calculate 100 000 blinding polynomials per second.
With this speed it would take about two years to complete the database. With hundred of
these computers the time required would be a little over a week.

Roughly one out of 250 pairs (m; b) results in a blinding polynomial r = �(m; b) with one
coe�cient at least �ve. These polynomials are fast to �nd and the generation can be done
online. No database is required.

It should be noted that if the parts ri are required to be binary polynomials, it is a
lot harder to generate r's with coe�cients big enough. Therefore the construction of the
databases takes a longer time, or alternatively one could modify the attack to use somewhat
smaller blinding polynomials resulting in a lower success probability. Anyway, it would still
be possible to apply the attack.

4 An example

In the next we show an example of this attack:
We attack a system with private key f , public key h = f�1�g (mod q). Just for reference,

we list the coe�cients of the polynomials f and � = (2+x)�g from the smallest to the largest
exponent:

f : 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 0; 0; 2; 3; 3; 1; 0; 0; 0; 2; 1; 2; 1; 0; 0; 0; 0; 0; 0; 2; 3; 3; 5; 2; 0; 0; 0; 0;

2; 1; 0; 0; 0; 0; 0; 2; 3; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 2; 3; 3;

1; 2; 1; 2; 3; 3; 3; 3; 1; 0; 0; 2; 5; 4; 1; 0; 0; 0; 0; 0; 2; 1; 2; 3; 1; 0; 0; 2; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1;

0; 2; 1; 0; 2; 1; 0; 0; 2; 1; 2; 3; 1; 0; 0; 0; 0; 2; 1; 0; 0; 0; 2; 1; 4; 2; 0; 2; 3; 1; 0; 4; 4; 1; 0; 2; 1; 0; 0; 0; 2; 1;

2; 1; 0; 0; 0; 2; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 2; 1; 0; 0; 0; 0; 0; 4; 4; 3; 1;

0; 0; 2; 1; 2; 3; 3; 1; 0; 2; 1; 0; 0; 0; 0; 2; 1; 0; 2; 1; 2; 3; 1; 0; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1; 0

333

k wrap errors
0 4+2+2+7=15 2
1 1+1+7+3=12 1
2 2+2+4+7=15 2
3 0+1+3+0=4 0
4 0+0+1+3=4 0
5 1+1+1+1=4 0
6 1+1+1+3=6 1
7 6+0+2+7=15 2
8 0+1+2+7=10 0
9 1+1+1+2=5 0
10 0+1+2+2=5 0
11 2+0+0+2=4 0
12 2+0+0+2=4 0
13 0+0+2+2=4 0
14 0+1+2+1=4 0
15 0+0+4+4=8 0
16 2+5+5+2=14 1
17 8+5+6+6=25 3
18 2+7+6+6=21 2
19 1+1+3+5=10 0

k wrap errors
20 2+4+1+9=16 1
21 n/a 3
22 8+2+13+4=27 2
23 2+2+5+1=10 0
24 2+0+0+3=5 0
25 2+2+1+1=6 0
26 1+0+4+2=7 0
27 0+2+2+0=4 0
28 2+3+4+3=12 0
29 1+0+2+4=7 0
30 1+0+3+3=7 1
31 4+4+7+4=19 2
32 1+2+3+6=12 1
33 6+8+6+7=27 3
34 2+3+9+1=15 2
35 1+1+3+1=6 0
36 0+0+4+2=6 0
37 0+0+1+1=2 0
38 0+1+1+4=6 0
39 0+4+2+6=12 1

k wrap errors
40 10+5+10+15=40 3
41 3+3+4+10=20 2
42 1+2+7+9=19 0
43 0+0+4+3=7 0
44 1+0+2+6=9 0
45 1+0+2+2=5 0
46 0+2+0+1=3 0
47 0+1+1+3=5 0
48 0+2+0+4=6 0
49 1+1+2+2=6 0
50 2+2+3+4=11 1
51 7+1+3+5=16 2
52 2+0+10+2=14 1
53 1+1+7+5=14 2
54 0+0+2+0=2 0
55 0+0+0+3=3 0
56 0+0+1+5=6 0
57 1+1+2+0=4 0
58 2+1+2+1=6 0
59 1+4+3+1=9 1

k wrap errors
60 4+7+12+7=30 3
61 8+8+11+5=32 3
62 4+9+21+14=48 3
63 1+3+12+1=17 2
64 1+1+3+0=5 1
65 0+2+5+5=12 2
66 2+0+3+4=9 0
67 0+1+0+7=8 0
68 1+2+3+0=6 0
69 0+1+0+0=1 0
70 0+3+6+1=10 1
71 6+6+4+8=24 3
72 6+9+7+10=32 3
73 4+5+9+2=20 2
74 1+2+3+1=7 1
75 0+4+5+6=15 2
76 3+0+9+1=13 0
77 0+1+0+2=3 0
78 5+3+4+5=17 1
79 1+5+3+2=11 2

Table 1: Step 2. Wrap error counts for the �rst 80 k's. In the last column there is the
corresponding coe�cient of x217�k in �.

�: 0; 0; 0; 0; 2; 1; 2; 1; 0; 2; 1; 2; 3; 3; 3; 1; 2; 1; 0; 0; 0; 2; 1; 2; 1; 0; 0; 2; 1; 2; 1; 0; 2; 1; 0; 0; 0; 2; 1; 2; 1; 0;

0; 2; 1; 0; 0; 2; 1; 0; 2; 3; 1; 0; 0; 2; 3; 3; 3; 3; 1; 0; 0; 2; 1; 2; 3; 1; 0; 0; 0; 0; 0; 2; 1; 0; 0; 2; 3; 1; 2; 3; 1; 2;

1; 0; 2; 1; 0; 0; 0; 2; 1; 0; 2; 1; 0; 0; 2; 1; 0; 2; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 0; 2; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 2; 1; 0; 2; 1; 2; 1; 0; 0; 2; 1; 2; 3; 3; 1; 0; 0; 0; 0; 2; 1; 2; 3; 3; 3; 1; 0; 0; 0; 0; 0; 2; 1; 2; 1;

0; 0; 0; 0; 0; 0; 0; 0; 2; 3; 1; 0; 0; 0; 0; 2; 3; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 2; 3; 1; 0; 2; 3; 1; 0; 0; 0; 0; 0; 0; 0; 0;

2; 1; 0; 0; 0; 2; 1; 2; 1; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 0; 0; 2; 1; 0; 2; 1; 0; 0; 0; 0; 0; 0; 2; 1

Step 1: We randomly select 1000 quadruples and sets M1000
4�4 (i0; i1; i2; i3). After all one

million encrypted and decrypted messages we select the best quadruple (21; 159; 204; 205)
that resulted in 11 wrap errors. We guess that for some index u we have �u�21 = �u�159 =
�u�204 = �u�205 = 3. The attacker does not know for sure if this is true, but we see that it
is for u = 217.

Step 2: For indices k 2 f0; 1; : : : ; 79g, we encrypt messages in the setsM1000
4�4 (21; 159; 204; k),

M1000
4�4 (21; 159; 205; k), M

1000
4�4 (21; 204; 205; k) and M

1000
4�4 (159; 204; 205; k) and count the num-

ber of wrap errors. Results can be seen in table 1. We have included (in the last column) the
coe�cients �217�k. Of course, the attacker does not know them (yet), but it clearly demon-
strates the correlation between them and the number of wrap errors induced. We add the 11
k's with largest wrap error rates to the four indices picked in step 1. The 15 indices are then

17; 18; 21; 22; 33; 40; 41; 60; 61; 62; 71; 72; 159; 204; 205:

Note that we only examined about one third of the indices, and therefore �217�k < 3 for some
picked k's. But it does not matter, as step 3 still �nds all big coe�cients of � �x217. Naturally
more reliable results are obtained if we go through all indices.

Step 3: The next task is to �nd 1000 suitable pairs (m; b) 2 M1�5 for each index k 2

334

k errors
0 105 2
1 46 1
2 85 2
3 19 0
4 16 0
5 27 0
6 46 1
7 101 2
8 43 0
9 9 0
10 16 0
11 14 0
12 19 0
13 29 0
14 15 0
15 19 0
16 72 1
17 192 3
18 140 2
19 39 0
20 45 1
21 208 3
22 131 2
23 25 0
24 13 0
25 23 0
26 21 0
27 18 0
28 20 0
29 20 0
30 44 1
31 93 2
32 59 1
33 216 3
34 105 2
35 23 0

k errors
36 23 0
37 18 0
38 19 0
39 52 1
40 217 3
41 129 2
42 48 0
43 40 0
44 24 0
45 13 0
46 18 0
47 17 0
48 36 0
49 20 0
50 44 1
51 125 2
52 62 1
53 105 2
54 22 0
55 14 0
56 25 0
57 19 0
58 24 0
59 53 1
60 210 3
61 222 3
62 228 3
63 116 2
64 38 1
65 100 2
66 23 0
67 16 0
68 18 0
69 22 0
70 47 1
71 201 3

k errors
72 202 3
73 116 2
74 46 1
75 107 2
76 30 0
77 18 0
78 48 1
79 101 2
80 45 1
81 91 2
82 26 0
83 53 1
84 91 2
85 48 0
86 41 0
87 49 0
88 23 0
89 22 0
90 21 0
91 17 0
92 15 0
93 26 0
94 13 0
95 44 1
96 101 2
97 30 0
98 21 0
99 11 0
100 43 1
101 108 2
102 27 0
103 16 0
104 19 0
105 23 0
106 21 0
107 20 0

k errors
108 19 0
109 21 0
110 16 0
111 8 0
112 24 0
113 44 1
114 94 2
115 60 1
116 101 2
117 25 0
118 41 1
119 117 2
120 29 0
121 16 0
122 42 1
123 104 2
124 26 0
125 41 1
126 93 2
127 13 0
128 11 0
129 18 0
130 60 1
131 97 2
132 22 0
133 54 1
134 105 2
135 55 1
136 200 3
137 122 2
138 52 1
139 197 3
140 137 2
141 26 0
142 16 0
143 50 1

k errors
144 110 2
145 18 0
146 14 0
147 19 0
148 14 0
149 27 0
150 70 1
151 197 3
152 117 2
153 51 1
154 108 2
155 40 0
156 19 0
157 43 1
158 203 3
159 199 3
160 214 3
161 205 3
162 113 2
163 17 0
164 22 0
165 63 1
166 223 3
167 116 2
168 30 0
169 38 1
170 118 2
171 26 0
172 25 0
173 68 1
174 116 2
175 30 0
176 22 0
177 47 1
178 97 2
179 46 1

k errors
180 94 2
181 22 0
182 23 0
183 17 0
184 53 1
185 116 2
186 37 0
187 50 1
188 98 2
189 52 1
190 121 2
191 25 0
192 19 0
193 72 1
194 121 2
195 67 1
196 109 2
197 32 0
198 19 0
199 16 0
200 33 1
201 88 2
202 55 1
203 208 3
204 221 3
205 227 3
206 136 2
207 40 1
208 115 2
209 28 0
210 42 1
211 93 2
212 49 1
213 95 2
214 34 0
215 29 0

k errors
216 23 0
217 23 0
218 42 1
219 81 2
220 29 0
221 19 0
222 14 0
223 13 0
224 22 0
225 29 0
226 45 1
227 92 2
228 22 0
229 48 1
230 105 2
231 40 0
232 24 0
233 23 0
235 13 0
235 50 1
236 91 2
237 28 0
238 12 0
239 19 0
240 18 0
241 11 0
242 14 0
243 18 0
244 18 0
245 10 0
246 19 0
247 49 1
248 95 2
249 27 0
250 56 1

Table 2: Step 3. Wrap error counts for all k's. In the last column there is the corresponding
coe�cient of x217�k in �.

f0; 1; : : : ; 250g (as described earlier). Again, we observe the number of wrap errors encoun-
tered (table 2). We make the guess that the 72 largest wrap counts { anything over 80 here
{ correspond to 2's and 3's in some rotation of �. If this guess is correct, we have a rotation
of the polynomial g. In our case the guess is indeed true: we have learned g � x217. However,
the attacker must proceed to the next step to check the validity of the obtained g.

Step 4: Let g0 be the polynomial found in step 3. The �nal task is to compute f 0 such that
f 0�1 � g0 = h (mod q), where h is the public key. Applying the method described earlier we
obtain f 0 = f � x217, and the key is broken.

In this example we have not used the actual messages that generate useful blinding poly-
nomials. Instead, for steps 1 and 2 we have selected random binary polynomials with weight
56 and added 4 to required 4 coe�cients. For step 3 we have selected random binary poly-
nomials with weight 45, added 5 to one coe�cient and distributed the rest of the weight, 22,

335

randomly between the speci�ed 15 coe�cients.

5 Remarks and Conclusion

We conclude this article by listing some remarks on the attack.
The starting assumption in our attack is that wrap failures are detectable for the attacker.

An obvious method for this is to measure the time decryption takes. To make the attack im-
possible, one could make the decryption algorithm constant time, as if wrap failures occurred
every time. A more e�cient way would be to simulate wrap failures every now and then.
Also, the decryption machinery could count the number of wrap failures it faces. If they
occur too frequently, the key should be changed.

The counter-measure we would like to recommend is to always require that the blinding
polynomial r is binary. Speci�cally r should not be constructed from two or more \smaller"
parts.

The generation of the required databasesM4�4 andM1�5 can (and must) be done o�-line.
The workload of generating these sets could be divided to the whole internet, for example.
The same library can be used to break any NTRU key.

Our attack is by no means optimized; most probably similar ideas can be used to extract
g more e�ciently. For example, one could use blinding polynomials with di�erent patterns or
even larger coe�cients. Also we have not taken into account that the coe�cients of � obey
a certain pattern. For example, a 3 is always preceded by another 3 or a 2. And �nally, it
is not necessary to get g exactly. If we have an pretty close approximation of it, we can use
some lattice reduction methods to extract f (and g).

References

[Ble] Daniel Bleichenbacher, Chosen Ciphertext Attacks against Protocols Based on the RSA
Encryption Standard PKCS#1, Advances in Cryptology - Crypto '98, Springer-Verlag,
1992.

[EESS] E�cient Embedded Security Standard (EESS) #1: Draft 4, Consortium for E�cient
Embedded Security, March, 2002.

[HPS] Je�rey Ho�stein, Jill Pipher and Joseph H. Silverman, NTRU: A Ring-Based Public
Key Cryptosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June 1998,
J.P. Buhler (ed.), Lecture Notes in Computer Science 1423, Springer-Verlag, Berlin, 1998,
267-288.

[P1363.1] IEEE P1363.1. Standard Speci�cation for Public-Key Cryptographic Techniques
Based on Hard Problems over Lattices.

[JJ] �Eliane Jaulmes and Antoine Joux, A Chosen-Ciphertext Attack against NTRU, Advances
in Cryptology - Crypto 2000, Lecture Notes in Computer Science 1880, Springer-Verlag,
Berlin, 2000, 20-35.

[NTRU] www.ntru.com.

336

