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Abstract

For any q = 2l > 2 and any m such that (m; q-1) = 1 a nonlinear code Pq(m) over

the �eld F = GF (q) with parameters (q(� + 1); q2(��m); d � 3q), where � = qm�1
q�1 ,

is constructed. If d = 3q this set of parameters generalizes that of the classical binary
Preparata code. The equality d = 3q is established in the following cases: (1) for a
series of initial admissible values q and m such that qm < 2100; (2) for m = 3; 4 and any
admissible q, and (3) for admissible q and m such that there exists a number m1 with
m1jm and d(Pq(m1)) = 3q. We apply the approach of [8]: the code P is a Reed{Solomon
representation of a linear over the Galois ring R = GR(q2; 4) code P dual to a linear code
K with parameters near to those of generalized linear Kerdock code over R.

1 Basic notions

Here we continue investigations of the paper [11]. Let R = GR(q2; 4) be a Galois ring with
identity e of characteristic 4 and cardinality q2, q = 2l, l � 1. Then (see e.g. [5, 9]) the
top-factor R = R=2R of the ring R is a �eld of q elements, the set

�(R) = fr 2 R : rq = rg = fr 2 R : rjRj = rg
has cardinality q and is called the (Teichmueller) coordinate set of the ring R. Any element
r 2 R is a unique sum r = r0+2r1, where rt = 
t(r) 2 �(R), t = 0; 1. If we de�ne � on �(R)
by the rule u� v = 
0(u + v) then (�(R);�; �) is a �eld GF (q). In the following we denote
F = �(R).

Let
F = �(R) = f!0 = 0; !1 = e; : : : ; !q�1g

and 
� : R! F q be the map acting on an element r = r0 + 2r1 2 R by the rule


�(r) = (r1; r1 � !1r0; : : : ; r1 � !q�1r0): (1)

Then 
�(R) is a [q; 2; q � 1]q Reed{Solomon code over F = GF (q) and therefore the map 
�
is called RS-map [8]. Note that if q = 2, i.e. if R = Z4, then 
� is the so called Gray map
from [7].

�The work was partially supported by RFFR grants 99-01-00941, 99-01-00382.
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With any h-code P � Rh over the ring R we can associate an RS-representation P =

h� (P) � F qh. It is a code of the length qh over F , consisting of all words


h� (~u) = (
�(u(0)); : : : ; 
�(u(h� 1)); ~u 2 P: (2)

So P is a concatenation of the code P over R and a linear over F code 
�(R). Note
that if P is a subgroup of the group (Rh;+) then P is distance invariant [2]. In this case
the Hamming distance d(P ) of the code P equals to the minimum of Hamming weights of
nonzero words of P [8, 9].

If P is a linear code over R i.e. P � RR
h (is a submodule of the R-module RR

h), we
call P an (R; 
�)-linear code (and sometimes brie
y an R-linear code). An R-linear code P is
distance invariant but may be nonlinear.

2 Main construction and results

Here we suppose that q = 2l; l � 1. Let S = GR(q2m; 4) be a Galois extension of the degree m
of the Galois ring R = GR(q2; 4) with Teichmueller coordinate set

�(S) = f� 2 S : �q
m

= �g = f� 2 S : �jSj = �g:

Any element � 2 S is a unique sum � = �0 + 2�1, where �t = 
t(�) 2 �(S), t = 0; 1. If we
de�ne a new operation � on �(S) by the rule u � v = 
0(u + v) then (�(S);�; �) is a �eld
GF (qm) and the �eld F = �(R) = f� 2 S : �q = �g is a sub�eld of Q = �(S).

Let us take an element � 2 Q� of order ord � = � = qm�1
q�1 and de�ne PR(m) as a linear

code of the length h = �+ 1 over the ring R with check matrix

H = Hq(m) =

�
e e e : : : e
0 e � : : : ���1

�
:

It is easy to see that this code is a free R-module of the rank � � m. We shall call its
RS-representation Pq(m) = 
h� (PR(m)) the generalized Preparata code. Note that if q = 2
then � is a primitive element of the �eld Q and if m is odd then P2(m) is the original binary
Preparata code in the form of the paper [7] with parameters expressed as

(2m+1; 22(2
m�1�m); 6) = (q(� + 1); q2(��m); 3q):

If q � 4 then the following statement gives a necessary condition for the equality d(Pq(m)) =
3q.

Proposition 1 If q � 4; (m; q � 1) > 1 then d(Pq(m)) = 3(q � 1).

Proof. The condition (m; q � 1) > 1 is equivalent to the condition (�; q � 1) > 1 and means
that �k = a 2 F n f0; eg for some k 2 1;�� 1. Then the elements �k and e are roots of
the polynomial G(x) = x2 � (a + e)x + e 2 R[x] with invertible coe�cients. Now it is not
di�cult to see that the word ~v 2 Rh with the only 3 nonzero coordinates e;�(a+ e); e in the
appropriate places belongs to the code P . Thus d(Pq(m)) � jj
�(~v)jj = 3(q � 1). 2

One of our main results is
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Theorem 2 If q = 2l � 4 and (m; q � 1) = 1 then the generalized Preparata code Pq(m) is a
(q(�+ 1); q2(��m); d � 3q)-code over the �eld F = GF (q). Moreover, if q � 4 and m is even
then d(Pq(m)) 2 f3q; 4(q � 1)g.
Proof. Let P = Pq(m). To prove the inequality d(P ) � 3q we note �rst that P is a distance
invariant code and contains the zero word, hence d(P ) is equal to the minimal weight of the
non zero words 
�(~v) 2 P , where ~v 2 P. Let ~v 2 P n~0 and si = si(v) (i = 0; 1) be the number
of coordinates of the word ~v that belong, respectively, to R n 2R and 2R n 0. Then

k
�(~v)k = s0(q � 1) + s1q = (s0 + s1)q � s0: (1)

Note that s0 > 2. Indeed, let H be the image of the matrix H under the natural homomor-
phism S ! S = GF (qm), then s0 6= 1 since the matrix H does not contain zero columns,
and s0 6= 2 since s0 = 2 means that some column of the matrix H is equal to another one
multiplied by some coe�cient from R which is also impossible. Then (1) and the condition
q > 4 imply that the desired inequality is a consequence of the following statement: if s0 = 3
then s1 > 0.

Suppose, on the contrary, that s0 = 3, s1 = 0. Then for some suitable 0 � a < b < c < �
and va; vb; vc 2 R� we have

va�
a + vb�

b + vc�
c = 0 and va + vb + vc = 0: (2)

Therefore, multiplying both sides of the �rst equality by (va�
a)�1 we get

e+ u�k = (e+ u)�l; u 2 R�; 0 < k < l < �: (3)

Now we will show that this is impossible. Let u = u0 + 2u1, where us = 
s(u) 2 �(S). Then

u0 6= 0 and u0 6= e (4)

since in the latter case (3) implies u�
k
= e and �

k 2 R
�
which is invalid because (q�1;m) = 1

(i.e.


�
� \R

�
= feg).

Let � be the automorphism of S over R such that �(�) = �2 for any � 2 �(S) [3, 5]).
Applying � to both sides of (3) we obtain

e+ �(u)�2k = (e+ �(u))�2l: (5)

Denote �k = � and �l = �. The one can rewrite (5) as

e+ (u20 + 2u21)�
2 = (e+ (u20 + 2u21))�

2: (6)

Taking squares of both sides of (3) we obtain

e+ 2u0�+ u20�
2 = (e+ 2u0 + u20))�

2: (7)

Subtracting (6) from (7) we arrive to an equality

2(u20�+ u21�
2) = 2(u0 + u21)�

2; (8)

which is equivalent to the following relation in the �eld (�(S);�; �):
u0�� u21�

2 = (u0 � u21)�
2: (9)
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Note now that reducing (3) modulo 2 we get the following:

e� u0� = (e� u0)�

and e� u0 6= 0 in view of (refcondu0). Thus

� = (e� u0�)(e� u0)
�1:

Then from (9) we deduce

(u0�� u21�
2) = (u0 � u21)(e� u20�

2)(e� u20)
�1:

It follows that � is a root of the polynomial

(u30 � u21)x
2 � (u30 � u0)x� (u0 � u21) 2 �(R)[x]:

It is evident that this polynomial has a root x = e, so the its other root � must also belong
to �(R), a contradiction.

In order to prove the last statement of the Theorem note that if m is even then the
element � = �k, where k = qm�1

q2�1
has the order q + 1 and is a root of the polynomial

F (x) = (x��)(x��q) = x2+ax+e 2 R[x], where a = �
q
+ � =2 f0; eg since q > 2. Therefore

elements � and e are roots of the polynomial G(x) = (x�e)F (x) = x3+g2x
2+g1x�e 2 R[x],

where g1; g2 2 R�. Now it is easy to see that the word ~v 2 Rh with only 4 nonzero coordinates
�e; g1; g2; e in the appropriate places belongs to the code P. Thus d(Pq(m)) � jj
�(~v)jj =
4(q � 1). It is enough now to note that according to (1) for any ~v 2 Rh the condition
3q � jj
�(~v)jj � 4(q � 1) implies jj
�(~v)jj 2 f3q; 4(q � 1)g. 2

For the �rst three initial values of m we can prove the following \exactness property" of
the Theorem 2.

Proposition 3 d(Pq(2)) = 4(q � 1) for arbitrary q = 2l.

Note, by the way, that d(Pq(2)) = 4(q � 1) = 3q for q = 4 and d(Pq(2)) > 3q in other
cases.

Proposition 4 d(Pq(m)) = 3q for m = 3; 4 and any q = 2l such that (q � 1;m) = 1.

Sketch of the proof of Propositions 3, 4. In view of the Theorem 2 in order to prove Proposition
4 (Proposition 3) it is enough to show that the code PR(m) (resp. the code PR(2)) contains
(resp. does not contain) a word of the Hamming weight 3 with coordinates in 2R. The
code PR(m) contains such a word if and only if there is a linear dependence over the �eld F
between some three columns of the check matrix H de�ned above and being considered as a
matrix over the �eld F , or, equivalently, that there exist two numbers k; l 2 1;�� 1 and an
element � 2 P n f0; 1g such that

e+ ��k = (e+ �)�l: (10)

(in this Proof we use for brevity the notation + instead of � for the addition in F .) One can
eliminate l by taking �-th power of the both sides:

(e+ ��k)� = (e+ �)� = (e+ �)m: (11)
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The left part of (11) has the following expression:

(e+ ��k)� = (e+ ��k)(e+ ��kq) : : : (e+ ��kq
k�1

) =

�m(��1 + �k)(��1 + (�k)q) : : : (��1 + (�k)q
k�1

):
(12)

Let � = ��1 and

fk(x) =
m�1Y
i=0

(x� (�k)q
i

= xm + f
(k)
m�1x

m�1 + : : :+ f
(k)
1 x+ f

(k)
0 : (13)

Thus fk(x) is a power of the minimal polynomial of the element �k, hence fk(x) 2 F [x] and

f
(k)
0 = e. Rewriting (12) we obtain

(e+ ��k)� = �mfk(�) = e+ f
(k)
m�1�+ : : :+ f

(k)
1 �m�1 + �m: (14)

Equations (11) and (14) imply that solvability of (10) is equivalent to the equality

e+ f
(k)
m�1�+ : : :+ f

(k)
1 �m�1 + �m =

mX
i=0

�
m
i

�
�i; (15)

i.e. to the equality

m�1X
i=1

�
f
(k)
m�i +

�
m
i

��
�i�1 = 0 (16)

for some � 2 F n f0; eg and k 2 1;�� 1. Consider the polynomial

hk(x) =
�
f
(k)
m�1 +m

�
+

�
f
(k)
m�2 +

�
m
2

��
x+ : : :+

�
f
(k)
1 +

�
m

m� 1

��
xm�2: (17)

It follows that solvability of (10) is equivalent to existence of such element �k that the poly-
nomial hk(x) has a root � in F n 0.

If m = 2 then hk(x) = f
(k)
m�1 = f

(k)
1 6= 0 has no roots in F . So Proposition 3 is proved.

Consider the case m = 3. Now we have

hk(x) = (f
(k)
2 + e) + (f

(k)
1 + e)x;

and it is su�cient to prove that there exists an element � = �k such that

f
(k)
1 6= e and f

(k)
2 6= e: (18)

If f
(k)
1 = e then fk(x) = x3+ f

(k)
2 x2+ x+1 is irreducible, so the number of such polynomials

is not greater than q � 1 (the polynomial x3 + x2 + x+ e = (e+ x)3 does not belong to this
family), so these polynomials can not have more than 3(q�1) roots in the group � = h�i. An
analogous argument shows that the number of roots of irreducible polynomials of the form

fk(x) = x3 + x2 + f
(k)
1 x+ 1 in � is also not greater than 3(q � 1). Thus there are not more

than 6(q � 1) elements � = �k 2 � such that the condition (18) is not satis�ed. Note �nally
that

j�j � 6(q � 1) = q2 + q + 1� 6q + 6 = q2 � 4q + 4� (q � 3) = (q � 2)2 � (q � 3) > 0
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for any q � 4. Hence there are elements in � such that the condition (18) is ful�lled.
Case m = 4 can be settled with similar but more elaborate arguments. In this case we

have
hk(x) = f

(k)
3 + f

(k)
2 x+ f

(k)
1 xm�2;

and it is su�cient to prove that there exists an element � = �k such that

f
(k)
1 = 0; f

(k)
2 6= 0; f

(k)
3 6= 0:

This fact is proved using the properties of quadrics over a �eld of characteristic 2. 2

By computation we have also the following

Proposition 5 The equality d(Pq(m)) = 3q is true for all values of q = 2l � 4 and m such
that qm < 2100 and (q � 1;m) = 1.

These results allow us to \enlarge" the in�nite set of generalized Preparata codes with
d(Pq(m)) = 3q, using the following properties of the function d(Pq(m)).

Proposition 6 Under the conditions of Theorem 2 if m1jm then d(Pq(m)) � d(Pq(m1)). In
particular if (q � 1;m) = 1, m1jm and d(Pq(m1)) = 3q, then d(Pq(m)) = 3q.

Proof. It is enough to note that any column of the matrix Hq(m1) can be considered as a
column of the matrix Hq(m). 2

The similar reasons give

Proposition 7 Under the conditions of Theorem 2 if k 2 N; (qk � 1;m) = 1 and

qm � 1

q � 1
j q

km � 1

qk � 1

then
d(Pq(m)) = 3q ) d(Pqk(m)) = 3qk:

Proposition 8 For a prime m the condition
qm � 1

q � 1
j q

km � 1

qk � 1
is equivalent to (m;k) = 1.

These results allow us to formulate the following

Conjecture. The equalities d(Pq(2)) = 4(q � 1); d(Pq(m)) = 3q hold for any q = 2l, m > 2
and �

m is odd if q = 2;
(m; q � 1) = 1 if q > 2:

Note that in order to prove this Conjecture it is su�cient, in according to Propositions 4,
6, to prove it only for prime values of m. For example, using the Proposition 5, we can state
that for q = 4 the minimal value of m in question is m = 53.
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3 A code linearly dual to the Preparata code

Let Ko be the code dual to a linear code K � RR
h relative to the standard scalar product.

Then again Ko � RR
h and we shall call the R-linear code

K? = 
h� (Ko) � F qh

(linearly) R-dual to the (R-linear) code K.
In [4, 5] Z4-linearity of the classical binary Kerdock (2m+1; 22(m+1); 2m � 2�)-code, where

m is odd and � = [m=2] (see [1]), was discovered. Further in [7] it was noted that the classical
binary Preparata code with parameters

(2m+1; 22(2
m�1�m); 6)

is Z4-dual to the binary Kerdock code. Simultaneously in [6] a generalized Kerdock code
Kq(m) over any Galois �eld F = GF (q), q = 2l, l > 1 with parameters

(n; n2; ((q � 1)=q)(n�p
n)); n = qm+1;m is odd

was constructed. This code has the form Kq(m) = 
h� (KR(m)), where KR(m) � RR
h is a

special linear code of the length h = qm, called the basic linear code (see below).
However the attempts to build a generalized Preparata code by analogy with [7] as a

code R-dual to Kq(m) were unsuccessful: for q > 2 the code Kq(m)? = 
h� (KR(m)o) has the
distance 3(q � 1) (see [8] and [10] for R = Zq2; q | prime, odd). So the distance formula
of such \generalization" of Preparata code is not a generalization of the distance of original
binary Preparata code: for q = 2 we have 3 instead of 6 = 3q. Nevertheless, this very
construction was called in [10] the generalization of Preparata code. We have proposed above
some alternative approach to the de�nition of this notion. Now we compare the parameters
of the code R-dual to Pq(m) with those of the generalized Kerdock code.

The code PR(m)0 dual to the initial linear code PR(m) consists of all words ~v = (v(0) : : : v(h� 1))
of the length h = �+ 1 such that for some � 2 S, c 2 R

v(i) = TrSR(��
i) + c; i = 0; h� 2; v(h� 1) = c; (19)

where TrSR(x) is the trace-function from S onto R, TrSR(x) =
P

� �(x), � spans the group of
automorphisms of S over R). We shall denote it by KR[�].

Note that if we substitute in (19) the primitive element � of the �eld Q instead of the
element � of order � and take h = qm, then we obtain the basic linear code for the generalized
Kerdock code: KR[�] = KR(m).

In the considered case we shall call KR[�] the reduced basic code and denote it by Kred
R (m).

Correspondingly we shall call the code Kred
q (m) = 
h� (Kred

R (m)) the reduced (generalized)
Kerdock code.

Proposition 9 If n is the length and C the cardinality of the reduced Kerdock code Kred
q (m)

then
n = q(� + 1) =

q

q � 1
(qm + q � 2); C = q2(m+1) = ((q � 1)n� q2 + 2q)2:

If q = 4; (m; q � 1) = 1, then the distance d of this code satis�es the inequalities

4m � 4[
m

2
] � d � 4m � 17

3
� 4m2 + 2
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In comparison with the parameters (n; n2; q�1
q
(n�pn) of the generalized Kerdock code over

F the cardinality C of our code is greater: C ' (q � 1)2n2, but the distance is less. The last
inequalities allow to state that for q = 4 there is the equality

d =
q � 1

q
(n� c(m)

p
n); where 6:54 � c(m) � 0:577 � 2m�2�; � = [m=2]:

Apparently the last estimations are rather rough.
First of all note that in addition to the well known fact that

P2(3) = K2(3) = Kred
2 (3)

is a (16; 28; 6)2-code, we have now that

P4(2) = Kred
4 (2)

is a (24; 46; 12)4-code. In particular c(2) � 1:77.
The following results of calculations for q = 4 allow to conjecture that for m > 4 really

3 � c(m) � 2.

m n 4m � 4� d 4m � 17

3
2m + 2 c(m) =

n� q�1
q
dp

n

2 24 12 12 -4 1.77

4 344 240 238 167 1.44

5 1368 1008 962 845 2.31

7 21848 16320 16146 15661 2.17

8 87384 65280 65048 64087 2.21

For the indicated values of m the Hamming weight enumerators of the code Kred
4 (m) were

calculated. The possible values of weights of the codewords are the following.
For m = 2:

4m + i � 2� + 2; i 2 f�3;�1; 0; 1g;
d = 12 = 4m � 3 � 2� + 2:

For m = 4:
4m + i � 2� + 2; i 2 �5; 5;
4m + i � 2�+1; i 2 �2; 3;
d = 238 = 4m � 5 � 2� + 2:
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For m = 5:
4m + i � 2�+1 + 2; i 2 f�8;�5; 5g;

4m + i � 2�+1; i 2 f�5;�3;�1; 1; 3; 5g;
d = 962 = 45 � 8 � 23 + 2:

For m = 7:

4m + i � 2� + 2; i 2 f�30;�26;�22;�21;�19; 21; 23; 25; 29g;

4m + i � 2�+1 + 8; i 2 f�13; 9; 11g;
4m + i � 4�; i 2 f�1; 1g;

d = 16146 = 4m � 4 � 4� + 18:

For m = 8:
4m + i � 2�+1 + 2; i 2 �14; 13;

4m + i � 2�+1 � 8; i 2 f�15;�12; 12; 14; 17g;
4m + i � 4�; i 2 �1; 1;

d = 65048 = 4m � 2 � 4� + 24:

Thus if the Conjecture formulated in the previous section is true then we can say that
Z4-duality of binary Kerdock and Preparata codes is in some sense casual result. In fact
the code R-dual to the generalized (in our sense) Preparata code over GF (2l) is the reduced
Kerdock code Kred

q (m) which is equal to the generalized Kerdock code Kq(m) only if q = 2.
The authors are grateful to Professor A. V. Mikhalev for helpful discussions of the text of

this paper.
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