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Abstract

Several attempts have been made to strengthen the security of the GPT public key
cryptosystem which is based on maximal rank distance codes, the Gabidulin codes. One
of them is to publish a subcode instead of a full code in the hope that the subcode does
not expose the structure of the code. In this paper we present an algorithm that recov-
ers a parent Gabidulin code for a random subcode of it. When the di�erence between
dimensions of the subcode and code itself is not too high the algorithm is of polynomial
complexity. Consequently we show that publishing a pure subcode (without any distor-
tion) makes the cryptosystem either insecure or the system falls outside the region of
practical interest.

1 Maximal Rank Distance Codes | the Gabidulin Codes

Let FN be a �nite �eld with qN elements, and let F1 be the base �eld of q elements; q is a
power of a prime. Let x = (x1; x2; : : : ; xn) 2 Fn

N . The rank weight, or simply rank, r(xjF1)
of x over F1 is de�ned as the maximal number of xi that are linearly independent over F1.

The rank distance dr(x;y) between two vectors x and y, x;y 2 Fn
N , is the rank of the

di�erence x� y: dr(x;y) = r(x� yjF1). For any linear (n; k) code C the rank distance dr is
de�ned by dr = minfr(xjF1) j x 2 C;x 6= 0g.

In this paper we are concerned with subcodes of Gabidulin rank codes. A (n; k) Gabidulin
code Cg over FN is de�ned by its generator matrix

G =

2
6666664

g1 g2 � � � gn

g
[1]
1 g

[1]
2 � � � g

[1]
n

g
[2]
1 g

[2]
2 � � � g

[2]
n

...
...

. . .
...

g
[k�1]
1 g

[k�1]
2 � � � g

[k�1]
n

3
7777775
; (1)

where gj 2 FN are all linear independent over F1, j = 1; : : : ; n; g[i] = gq
i

means the i-th
Frobenius power of g.
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Any matrix of the form (1) is called a Frobenius matrix induced by the generating vector
g = (g1; g2; : : : ; gn). A parity check matrix of the code Cg is also a Frobenius matrix

H =

2
66664

h1 h2 � � � hn

h
[1]
1 h

[1]
2 � � � h

[1]
n

...
...

. . .
...

h
[n�k�1]
1 h

[n�k�1]
2 � � � h

[n�k�1]
n

3
77775 (2)

with generating vector h = (h1; h2; : : : ; hn), r(hjF1) = n.
The code Cg has the minimum rank distance dr = n � k + 1 and it reaches the upper

bound for the rank distance [1], hence this is a maximal rank distance code. For Cg there
exists fast decoding algorithms correcting any errors of rank up to tr =

�
(dr � 1)=2

�
.

2 Cryptosystems Using Subcodes of Gabidulin Codes

A public key cryptosystem of a McEliece-type that uses Gabidulin codes is the GPT cryp-
tosystem. The public key in this system is a matrix

Gpub = SG+X; (3)

where G is given by (1), S is a k � k non-singular scramble matrix, and X is a randomly
chosen k � n distortion matrix such that r(XjF1) = t1 < tr, where t1 is a design parameter.
Here r(XjF1) is the column rank of X over the �eld F1 de�ned as the maximal number of
columns that are linearly independent over F1.

A vector of a plaintext m 2 Fk
N is encrypted as

c =mGpub + e =mSG+ (mX+ e); (4)

where e is a randomly chose arti�cial vector of errors of rank r = tr � t1 or less. Decryption
is performed by decoding the vector c to obtain mS and then m.

Two attacks against GPT PKC were invented by Gibson. They recover a decoder for the
published code, or equivalently they �nd a representation of the public key

Gpub = S0G0 +X0; (5)

where S0 is non-singular, G0 is of the form (1), and r(X0jF1) � r(XjF1).
The �rst attack on average requires O(n3qsN ) arithmetical operations in FN , where s =

min r(X0jFN ), and the minimum is taken over all decompositions of the form (5).
The complexity of the second attack is estimated as O(k3+(k+t1+2)fqf(k+2)) operations,

here t1 = min r(X0jF1), and the minimum is taken over all decompositions of the form (5), s
is de�ned above. Gibson claims that in almost all cases in practice f = max(0; t1 � 2s), and
it is known how to choose X so that the expected value of f = t1 � s.

In the light of these attacks, several modi�cations of the GPT PKC were introduced. One
of them is to use a subcode of Gabidulin code instead of the code itself. Originally this idea
was implemented in paper [2] by replacing a square matrix S in (3) for a rectangular one:

eGpub = SpG+X; (6)
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where Sp is (k � p) � k matrix over FN of rank k � p picking out a subcode Cp from the
code Cg.

Another implementation was proposed in [5], where authors used a Niederreiter-type sys-
tem publishing a parity-check matrix of the subcode Cp

Hp = T

�
H

A

�
; (7)

where T is a non-singular (n � k + p) � (n � k + p) matrix, H is given by (2), A | some
p� n matrix de�ning the subcode.

However, as cryptanalysis is concerned the system with key (7) can be regarded as ex-
tremely simpli�ed version of the system with key (6): Put in (6) X = 0 and compute Sp from
the equation SpGA

T = 0.
The rationale behind the design of the system assumed that a subcode is not a Gabidulin

code itself, and what is more that the subcode has no obvious algebraic structure that enables
recovering a fast decoding algorithm for the subcode both for a cryptographer and cryptana-
lyst. It is also supposed that the minimum rank distance of the subcode is strictly less than
n� k + p+ 1 and it is taken to be equal to dr = n� k + 1, thus de�ned by the parent code.
Therefore, for decrypting messages in both systems the parent code (either given by matrix
G or H) is only needed. Thus, to break both systems it is enough to recover any parent
Gabidulin code in canonical form (1) or (2) for the given subcode.

3 Recovering a Parent Code for a Subcode

In this paper, we show that a system with public key Hp is insecure for any interesting
parameters in practice. To do this we present an algorithm that computes a parent code for
a random subcode of a Gabidulin code in polynomial time.

Split the matrix H into three parts H = [H1 H2 H3], where H1 | the �rst n�k columns
of H, H2 | next p columns, H3 is the last k�p columns of H. Similarly, split the generating
vector h = (h1 h2 h3).

Denote ` = n� k + p.
Without loss of generality, assume that the �rst ` columns of Hp forms a non-singular

matrix. Since H1 is non-singular, Hp can be rewritten as

Hp = T�

�
H1 H2 H3

O Ep B

�
(8)

for some non-singular T�, where O | p� (n� k) all-zero matrix, Ep is the identity matrix
of order p.

Reduce Hp to a systematic form

Hsyst
p = [E` R] :

It is readily shown that

R =

�
R13 �R12B

B

�
;
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where R13 = H�1
1 H3, R12 = H�1

1 H2.
Thus, the matrix A may equivalently be represented in the form A = [O Ep B] and in

fact is known.
We are going to show how the matrix H can be reconstructed on the basis of Hp: Using

elements of the matrix R we derive and solve a system of linear equations in the unknown
components of h. Hence a parent code for the given subcode will be found.

Notice that [H1 H2]R = H3, in other words

[H1 H2 H3]

�
R

�Ek�p

�
= 0: (9)

Let the matrix B have exactly v linearly independent over F1 rows, 0 � v � p. Then B
can be written as

B = PBBbase; (10)

where Bbase | a v � (k � p) matrix, all rows of which are linearly independent over F1, and
PB is some p� v matrix over F1 of rank v. Equation (9) turns into

[H1 H
�

2 H3]

2
4R13 �R�

12Bbase

Bbase

�Ek�p

3
5 = 0; (11)

where H�

2 =H2PB, R
�

12 = R12PB =H�1
1 H�

2.
The matrix H� = [H1 H

�

2 H3] is a Frobenius (k� p)� (n� p+ v) matrix with generating
vector h� = (h1 h

�

2 h3), h
�

2 = h2PB, and r(h�jq) = n� p+ v.
Let Rj be the j-th column of the matrix

R� =

2
4R13 �R�

12Bbase

Bbase

�Ek�p

3
5 : (12)

Denote by R
[i]
j the column Rj , each component of which is raised to the qi-th power. Form

a matrix

GT
R =h
R

[N ]
1 R

[N�1]
1 � � �R

[N�n+k+1]
1 R

[N ]
2 R

[N�1]
2 � � �R

[N�n+k+1]
2 � � �R

[N ]
k�p � � �R

[N�n+k+1]
k�p

i
: (13)

By some obvious manipulations equation (11) is transformed into the following linear equation

h�GT
R = 0: (14)

The matrix GR consists of (k� p)(n� k) rows and n� p+ v columns. Assume that there
are more rows than columns in this matrix, i.e., (k � p)(n � k) � n� p + v. Otherwise the
rate Rp of the subcode will be too low: Rp < 1=(n� k) = 1=(dr � 1).

Lemma 1. Let the rank of Bbase is b. Then the rank rG of GR satis�es the following bounds

n� p� 1 � rG � n� p� 1 +min(v; b(n� k)):
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Proof. (Sketch.) Any matrix Bbase of rank b may be represented as a product Bbase = B1B2,
where B1 and B2 are v� b and b� (k�p) matrices both of rank b. It can be shown that rows
of GT

R corresponding to the matrix Bbase are a matrix C = C1C2, where C1 is a v� b(n� k)
matrix. Therefore, the rank of C does not exceed min(v; b(n� k)).

It is easy to prove that among the remaining rows of GT
R there are exactly n�p�1 linearly

independent ones. Thus, the rank ofGR upper-bounded by the value n�p�1+min(v; b(n�k))
and lower-bounded by n� p� 1.

A more accurate lower bound for rG other than given by Lemma has not been established.
However, a lot of simulations were conducted using the computer algebra system Magma.
The matrix B was chosen randomly (using Magma's built-in pseudo-random number gener-
ator), the values of v lay within the range 1 to p, and values of b were in the range from 1
through min(v; k � p). For di�erent �elds of characteristic q = 2 and extension degree from
N = 24 through N = 64, code lengths n � N , and for di�erent p = 1; : : : ; k�2 and dr > 2, in
every examined case the rank ofGR was exactly on the upper bound n�p�1+min(v; b(n�k)).

Apparently there exist matrices B such that rG is strictly less than n�p�1+min(v; b(n�
k)). But most likely a fraction of these matrices among all possible v� (k� p) matrices B is
extremely low, and we did not encounter them in our simulations.

If the rank of GR is exactly rG = n�p+ v� 1, then by solving equation (14) we compute
the vector h� (to be more correct, we compute a multiple of h� which de�nes the same code).
If rG < n� p+ v � 1, then a space of solutions of dimension

m = n� p+ v � rG (15)

will be found. We are interested in solutions (vectors h�) whose rank is exactly n� p+ v. If
m is a small value, then it is expected that only a few trials will be needed to �nd h� with
independent coordinates, and the total cost is estimated by O(nm) operations. If m is large
enough, then solving (14) for h� requires O(nmqN(m�1)) operations in FN .

Once h� is found, the matrices H1, H
�

2, and H3 are known.

To �nd a full H the matrix H2 is needed. Since

h2PB = h�2; (16)

and h�2 with PB are known, solve this equation for h2 as follows. Let some v rows of PB , say
the upper ones, are independent. All components of h must be independent over F1, so choose
the last p� v components of h2 to be linearly independent of each other and of components
of h1, h3, and h

�

2. Then the �rst v components of h2, corresponding to a non-singular v � v
submatrix of PB are easily calculated from (16).

Thus, a complete algorithm of recovering a parent Gabidulin code Cg for a given subcode
Cp and computing decomposition (8) is as follows.

A l g o r i t hm.

1. Calculate a systematic form of the parity-check matrix Hp of the subcode: Hsyst
p =

[Em R]. Put the matrix A to be the lower p rows of Hsyst
p : A = [O Ep B].

2. Calculate the row rank v of B over F1. Represent B = PBBbase, where Bbase is a
v � (k � p) matrix containing all independent rows of B, PB is some p � v q-ary
matrix.
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3. Calculate matrices R� and GR according (12) and (13).

4. Solve equation (14) for h�. Put h� = (h1 h
�

2 h3).

5. Choose randomly p� v components of h2 so that they would be linearly independent of
each other and of components of h�. The rest v components of h2 compute from (16)
as described earlier.

6. Using h = (h1 h2 h3), compute H = [H1 H2 H3].

7. Solve equation Hp = T
�
H

A

�
for a matrix T.

The complexity of the algorithm is estimated by

Wparent = O(3N3 + nmqN(m�1)) (17)

operations in F1, where m is given by (15). For an arbitrary subcode (by choosing arbi-
trary Sp) and subject to p � n � k with high probability m � 1, and the algorithm is
polynomial.

Depending on a given subcode the algorithm can recover

Nparent(n; p; v) � (qN � qn�p+v)(qN � qn�p+v�1) : : : (qN � qn�1) � qN(p�v)

di�erent parent Gabidulin codes in canonical form.

4 The security of the system based on subcodes

Resistance of a Niederreiter-type system with key (7) to the presented algorithm substantially
depends on the balance between p and n�k. If p � b(n�k), then the algorithm is polynomial.
To make system secure the value b must be small enough. However, we have to choose b > 3,
otherwise it becomes possible to apply the �rst Gibson attack to R13 �R12Bbase to recover
H1 and H3, and then H2 with complexity O(N3qbN ) operations.

So p has to be chosen several times greater than n�k. Since p < k, the choice of parameters
for a secure system will be restricted to n � k and k � p. This means that the parent code has
a very small rank distance, and the subcode is of very small dimension. Remember that we
can only use correcting ability of the parent code when encrypting/decrypting messages. Thus
a selection p > b(n � k) making system secure to structural attacks will make it vulnerable
to direct (decoding) attacks.

For instance the example of the system given in [5] with q = 2, N = n = 32, k = 24,
p = 4 and size of the public key (in systematic form) of 7680 bits will be broken on a PC
within less than a second. A secure system can be built for n = N = 44, k = 36, p = v = 18,
b = 2 with Wparent � 295 and public key of 20592 bits. The published code can then be
decoded as a random one in 279 operations in F1 [6]. It is easy to see that this system does
not reveal any advantages over the original GPT PKC: for n = N = 44, k = 18, r = 5,
t1 = 8, s = 2 the best known structural attack requires 287 operations in FN and the code
can be decoded in 2100 operations in F1 with the same 20592 published bits. Moreover the
GPT PKC has twice as higher the information rate: 0; 620 versus 0; 294 (see also notes on
the information rate in [2]).
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5 Conclusion

We presented an algorithm recovering a parent Gabidulin code for any its subcode. When
the di�erence p between dimensions of the code and the subcode is not to great the algorithm
has polynomial complexity. This algorithm fully breaks the system presented at ISIT'2002 [5]
for any interesting in practice parameters. When the algorithm becomes computationally
infeasible (p is close to k) then that system turns out to be inferior to the GPT PKC (in
security and information rate) let alone other applications of codes in rank metric [3, 4].

Moreover, since the matrix B is known it may well happen that there is an improvement
that keeps the algorithm polynomial for any values of p.

Still on subcodes of Gabidulin codes a secure cryptosystem can be built. It was the lack of
an explicit distortion in the public key (7) that made the system vulnerable to the presented
algorithm. Careful choice of a subcode and the distortion matrix X in (6) could prevent
cryptanalysis.
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