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Introduction

We use the standard notation [n; k; d] to denote the parameters of a linear code C over GF (q).
As usual n stands for its length, k its dimension and d its minimal distance. We say that C
is an [n; k; d]-code over GF (q).

We say that the code C of parameters [n; k; d] is optimal if there is no [n; k; d + 1]-code.
We will refer to E. Brouwer's table ([2]) to get the known lower and upper bounds for the
minimal distance (given n and k). We will say that a code meets (resp. beats) the record if
it reaches the lower bound of Brouwer, (resp. if it gives a better lower bound).

In this paper, we consider truncated Reed-Muller codes obtained by evaluating polyno-
mials at a given subset of points in the projective plane.

Let PG(m; q) be the m-dimensional projective space over GF (q) and Hq(m; l) be the
GF (q)-vector space of all homogeneous polynomials of degree l in m-variables. Let 
 �
PG(m; q) be a subset of cardinal j
j = !. We consider an arbitrary order on the points of 
,
say 
 = fA1; : : : ; A!g. Then we de�ne a GF (q)-linear evaluation map

�
 : Hq(m+ 1; l) ! GF (q)!

P 7! (P (A1); : : : ; P (A!))

Its image �
(Hq(m+1; l)) is a linear code C
(m+1; l) over GF (q) of length !. Moreover,

if �
 is injective, then C
(m+ 1; l) has dimension
�m+l

m

�
. To shorten notations in the planar

case, we will denote C
(3; l) by C
(l).
When 
 = PG(m; q) we recover the so-called projective Reed-Muller codes ([3]). If 
 is

an algebraic subset then B�ezout's theorem gives a bound on the minimal distance as we see
in section 1 (following [6]).

The idea of the following sections is to take for 
 a (�; �)-arc in the projective plane which
is a subset of � points in PG(2; q) such that some � but no � + 1 are collinear. Then, we
generalize this idea and introduce the notion of a (�; �; 2)-arc in the projective plane and show
how it produces some new codes over GF (7), GF (8), GF (9) of dimensions 6 and 10.
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1 Codes from B�ezout's theorem

Let � be an absolutely irreducible projective curve of genus g over GF (q). The Hasse-Weil
bound says that its number of GF (q)-rational points satisfy j�(GF (q))j � q + 1 + 2g

p
q.

Curves which reach the Hasse-Weil bound are called maximal.

The following table gives, for small q, the precise upper bound for the maximum number of
GF (q)-rational points of a projective absolutely irreducible curve of given genus g :

q 2 3 4 5 7 8 9 11 13 16

g = 1 5 7 9 10 13 14 16 18 21 25
g = 2 6 8 10 12 16 18 20 24 26 33
g = 3 7 10 14 16 20 24 28 28 32 38

Table 1: maximal number of GF (q)-rational points

Let F 2 Hq(3; l) and denote by Z(F ) the locus of zeros of F in PG(2; q) and N(F ) =
jZ(F )j their number. If F is absolutely irreducible of degree l over GF (q), we have N(F ) �
q+1+ (l�1)(l�2)

2 b2pqc, since the genus g of the algebraic projective plane curve given by the

equation F = 0 of degree l is such that g � (l�1)(l�2)
2 (the equality holds if the curve de�ned

by the equation F = 0 is non-singular).

We illustrate the construction given in [6, Th 2.27], writing down the result obtained by
B�ezout's theorem :

Theorem 1.1 Let F 2 Hq(3; l
0) be such that F = 0 is the equation of an irreducible non-

singular plane curve. Let 
 = Z(F ) and l be an integer such that j
j > ll0. Then, C
(l) is a
linear code over GF (q) with parameters :

� n = j
j,
� d � n� ll0

� k =

( �l+2
2

�
if l < l0

ll0 + 1� �l0�1
2

�
if l � l0

To use 1.1, we are obviously interested in curves with many points (maximal curves for
instance) in order to get codes with good parameters.

Examples Take GF (7) as ground �eld.
Let 
 = Z(F ) where F = 0 is the equation of a projective non-singular maximal plane

curve of degree 3 (for instance we may take F = Y 3�X2Z+3Z3). Then C
(2) is a [13; 6; 7]-
code which is optimal.

Likewise, if 
 = Z(F ) where F = 0 is the equation of a plane maximal curve of degree
4, then C
(l) with l = 2; 3; 4 are codes of parameters respectively [20; 6;� 12], [20; 10;� 8],
[19; 15;� 4]. To compare with the parameters of records [20; 6; 12], [20; 10; 9], [19; 15; 4].
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2 Con�guration of lines in the plane

2.1 Arcs in the plane

Concerning all the notions of this section we refer to [1], [5] and [7] for a survey. A �-arc in
PG(2; q) is a set of � points no three of which are colinear. The maximum number of points
in a �-arc is denoted by m(2; q). We have

m(2; q) =

(
q + 1 for q odd
q + 2 for q even

More generally, a (�; �)�arc in PG(2; q) is a subset of � points such that some � but no �+1
are colinear. Again, we denote by m�(2; q) the maximum number of points in a (�; �)-arc.
We have the trivial values : m2(2; q) = m(2; q), mq+1(2; q) = q2 + q + 1 and mq(2; q) = q2

([5]). And for � � q � 1 here is the table of values m�(2; q) for small q :

q 3 4 5 7 8 9
�

2 4 6 6 8 10 10
3 9 11 15 15 17
4 16 22 28 28
5 29 33 37
6 36 42 48
7 49 55
8 65

Table 2: m�(2; q)

2.2 Truncated Reed-Muller codes

Let Nq(l;
) be the maximal number of zeros in 
 � PG(2; q) of a polynomial in Hq(3; l). We
also de�ne arc (
) to be the lowest integer � such that 
 does not contain any (�; � + 1)-arc.
We have the following :

Proposition 2.1 Let 
 � PG(2; q) and set ! = j
j. If Nq(l;
) < !, then the evalua-
tion map �
 restricted to Hq(3; l) is injective and its image C
(l) is a code of parameters

[!; (l+1)(l+2)2 ; ! �Nq(l;
)] over GF (q).

The di�erence between 2.1 and 1.1 is that instead of taking 
 to be all the GF (q)-rational
points of a maximal curve, we consider for 
 a (�; �)-arc with � as big as possible, namely
� = m�(2; q).

In general, it is di�cult to compute Nq(l;
). But when l = 1, we have an easy bound.
Indeed, when l = 1, we may compare codes of dimension 3 obtained by Theorem 1.1 (B�ezout
construction with l0 = 2) and those obtained from Proposition 2.1 (Arc construction with
� = 2).
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Examples

� Over GF (q), B�ezout construction gives [q+1; 3; q � 1]-codes, whereas Arc construction
gives [q + 1; 3; q � 1]-codes for q odd and [q + 2; 3; q]-codes for q even.

� For greater length, we can produce a lot of examples where Arc construction (together
with table 2) give better result than B�ezout construction (together with table 1).

For instance, over GF (7), B�ezout construction yields [13; 3; 10] and [20; 3; 16]-codes,
whereas Arc construction yields [15; 3; 12] and [22; 3; 18]-codes.

3 Quadric-arcs and codes

Since it is di�cult to compute Nq(l;
) in general, we may bound it. Let Iq(l) be the maximal
numbers of zeros in PG(2; q) of an absolutely irreducible polynomial in Hq(3; l). We clearly
have Iq(l) � q + 1 + (l � 1)(l � 2)

p
q by the Hasse-Weil bound.

As an application of 2.1 to codes of dimension 6, we have to bound Nq(2;
), namely to
bound the number of zeros of a polynomial P of degree 2 in a subset 
 of PG(2; q).

If P is absolutely irreducible (P is a conic) then we know that it has at most q + 1 zeros
in PG(2; q). And if P is reducible, namely a product of two linear factors, then the number
of its zeros in 
 is bounded by 2 arc (
).

So we get Nq(2;
) � max(q + 1; 2 arc (
)), which lead to the following result :

Proposition 3.1 If 2� � q + 1 then m�(2; q) > q + 1 and there is a code with parameters
[m�(2; q); 6;� m�(2; q) � 2�] over GF (q).

Example Let 
 be a (29; 5)-arc in PG(2; 7) (such an arc exists by Table 2). Since I7(2) �
7 + 1 = 8 by the Hasse-Weil bound, we have I7(2) � 2 arc (
) = 10 and hence we �nd a
[29; 6; 19]-code over GF (7) which meet the record.

Next, to get a more precise bound on Nq(2;
) we introduce the notion of quadric-arc.

D�e�nition A quadric arc or a (�; �; 2)-arc is a set of � points in PG(2; q) such that some
� but no � + 1 are the zeros (not counted with multiplicity) of a degree 2 polynomial. Let
m�;2(2; q) be the maximal number of points in a (�; �; 2)-arc.

It is di�cult to get in general exact values for m�;2(2; q). We give the following simple
ones :

Proposition 3.2 For all q, we have m4;2(2; q) = 4, m2q;2(2; q) = q2 and m2q+1;2(2; q) =
q2 + q + 1. Furthermore, we have the table of m�;2(2; q) for very small values of q :

q 2 3 4
�

5 7 7 8
6 9 10
7 13 13
8 16
9 21
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Table 3: m�;2(2; q)

For the proof and also in the following, we need the elementary result :

Lemma 3.3 Let a be such that m��1(2; q) < a � m�(2; q) and a � � > m�0(2; q). Then
m�+�0;2(2; q) < a.

Of course, we have the straightforward generalization of proposition 3.1 :

Proposition 3.4 There is a code of parameters [m�;2(2; q); 6;� m�;2(2; q) � �] over GF (q).

4 Examples and results

4.1 Codes of dimension 6

All the codes of this section are constructed using Proposition 3.4.

Remark that we have explicit generating matrices of the codes given below, since the
construction of maximal (�; �)-arcs and (�; �; 2)-arcs we used, can be in tables 2 and 3 can
be made explicit.

� Over GF (7) :
We have the elementary inequalities 13 � m6;2(2; 7) � 15. Since there is no code of
parameters [15; 6; 9] we deduce that m6;2(2; 7) � 14. Furthermore, if m6;2(2; 7) = 14
then we would get a new code [14; 6; 8]. Although, all the computation we have done
show only m6;2(7; 2) � 13.

We have also m8;2(2; 7) � 22 since I7(2) = 8.

Results : We construct 10 codes of dimension 6 and length � 29 which meet the record.

� Over GF (8) = GF 2[b] with b3 = b+ 1 :
We have 14 �m6;2(2; 8) � 15.

We have also the elementary inequalities 24 � m8;2(2; 8) � 28. In fact, a computation
on the set

f(0; 1; 0); (b2 ; b; 1); (b; 1; 1); (b + b2; b; 1); (1; b + b2; 1); (1 + b2; 1 + b2; 1);
(1 + b; b+ b2; 1); (1 + b+ b2; 1 + b2; 1); (1; 1; 0); (0; 1 + b; 1); (b2; b+ b2; 1);
(b; 1 + b; 1); (b + b2; b+ b2; 1); (1; 1; 1); (1 + b2; b2; 1); (1 + b; 1; 1); (1 + b+ b2; b2; 1);
(0; b2; 1); (b2; 1 + b; 1); (b; b2; 1); (b + b2; 1 + b; 1); (1; 1 + b2; 1);
(1 + b2; b; 1); (1 + b; 1 + b2; 1); (1 + b+ b2; b; 1); (b2 + b; 1; 0); (b2 + b+ 1; 1; 0)g

shows that m8;2(2; 8) � 27.

Results : We construct codes with parameters [27 � i; 6; 19 � i] which beat the record
for i 2 f0; 1; 2g,
We also construct 19 codes of dimension 6 and length � 43 which meet the record.
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� Over GF (9) :
We have the elementary inequalities 16 � m6;2(2; 9) � 17.

We have also m8;2(2; 9) = 28.

Results : We construct codes of parameters [48 � i; 6; 36 � i] for i 2 f0; 1; 2g, and also
[49; 6; 36], which beat the record.

We also construct 41 codes of dimension 6 and length � 65 which meet the record.

4.2 Codes of dimension 10

Using Proposition 2.1 with l = 3, we may construct codes of dimension 10. To estimate the
minimal distance, we have to bound Nq(3;
) for 
 � PG(2; q). For instance, the Hasse-Weil
bound gives

Nq(3;
) � max(q + 1 + 2
p
q; arc (
) +Nq(2;
)):

and also
Nq(3;
) � max(q + 1 + 2

p
q; arc (
) + q + 1; 3 arc (
)):

Results : Over GF (8), we construct [27 � i; 10; 15 � i]-codes which beat the record for i 2
f0; 1; 2g.

We construct also, over GF (7), GF (8) and GF (9), few other codes of dimension 10 which
meet the record.
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