
A Randomized E�cient Algorithm for DPA Secure

Implementation of Elliptic Curve Cryptosystems

S. Agagliate1, P. Guillot1, O. Orci�ere2

1 Canal+ Technologies,

34 place Raoul Dautry, 75516 Paris Cedex 15, France
2 Thales Communication,

66 rue du Foss�e blanc, 92231 Gennevilliers Cedex, France

Abstract

To counteract Di�erential Power Analysis attack on an Elliptic Curve Cryptosystem,
we propose to randomize an automaton realizing an e�cient algorithm to compute the
"exponentiation" k:P of a point P with exponent k . The advantage of the presented
method compared to [OA01] is to transform the exponent binary representation into a
ternary one using Horner's rule. This allows to simplify the addition point formulas and
to improve the computational time of 2% in comparison with the previous algorithm
presented in [MO90].

1 Introduction

Many cryptosystems for signature, encryption or key exchange use \exponentiation" in �nite
groups. There are many di�erent exponentiation algorithms : \Square and Multiply", \Win-
dow method" or \Ternary representation method". The implementation of such algorithm in
a smartcard without security considerations would allow Side-Channel Attacks, i.e. someone
may deduce a secret from an unintentional leak of information, such as computation timing or
power consumption. This paper is focused on software countermeasures against a Di�erential
Power Analysis attack (DPA) on Elliptic Curve Cryptosystems (ECC).

In the case of ECC, the �nite group is the group of points of an elliptic curve with additive
law. The most common operation used in ECC is the \exponentiation of a point P" : k 7! k �P
where k is any integer and P a �xed point (base point). ECC arithmetic is characterized by :

� equivalent cost for addition and subtraction unlike arithmetic over Fp where multipli-
cation is faster than division ;

� the use of projective coordinates may be more e�cient if one operand is normalized
(z = 1).

We propose to randomize an e�cient exponentiation algorithm for elliptic curve to coun-
teract DPA attack. The advantage of this method compared to [OA01] is to transform the
exponent binary representation in a ternary one with the Most Signi�cant Bit ordering (MSB
ordering or Horner's rule). Consequently we are able to use simpli�ed point addition formulas
with z-coordinate equal to one, which require less elementary operations.

11



In section 2 we present an overview of di�erent countermeasures found in literature. In
section 3, we present an automaton realizing the exponentiation algorithm based on Horner's
rule (paragraph 3.1) and the corresponding randomized automaton resilient to DPA attack
(paragraph 3.2).

2 Related work

Two di�erent types of methods are suggested in literature against DPA attack on ECC.
The �rst method consists of blinding variables in the computation of k:P : apply a random

transformation to base point P or exponent k. The modi�ed exponentiation is computed and
the expected result recovered. In [C99] J-S. Coron proposes two ways to blind the base point :
add a random point or randomize coordinates. In [JT01] M. Joye and C. Tymen propose to
randomize elliptic curve using isomorphism or �eld isomorphism. For blinding key, di�erent
solutions are suggested : an additive mask in [C99], a multiplicative mask in [TB02], a key
splitting in [CJ02], an overlapping window method in [IYTT02].

E. Oswald and M. Aigner give a completely di�erent point of view to counteract a DPA
attack in [OA01]. The authors propose to randomize the operations sequence itself during
exponentiation. Let us assume that one cannot distinguish double operation from add or
substract operation with only one power measurement. Because of the randomization, the
intermediate values are di�erent for a given exponentiation. This washes out the DPA bias
signal. In this article we propose to randomize an automaton realizing an e�cient exponen-
tiation algorithm based on Horner's rule.

3 A randomized e�cient algorithm as countermeasure against

DPA attacks

3.1 An Addition-subtraction chain algorithm based on Horner's rule

To speed up computation in an ECC, one may reduce the number of operations (additions
and doublings) during the exponentiation k � P The most natural idea is to use the binary
decomposition of k. The ordinary binary algorithm is \Add and Double", beginning compu-
tation with the Least Signi�cant Bit (LSB). Another method is to begin with MSB, then we
obtain the \Double and Add" algorithm (Horner's rule).

Besides we can choose between several coordinate systems. Generally a�ne coordinates
are not used because it requires an inversion in the base �eld, which is costly. To avoid the
inversion, projective or Jacobian coordinates may be used. The advantage of \Double and
Add" is that one of the addition operand is always the base point P . Consequently, we may
use a z-coordinate equals to one for the point P . Addition formulas are simpli�ed and the
computation of P +Q and consequently of k � P is speeded up.

Furthermore, on the additive group law of an elliptic curve, subtraction has the same
computational load as addition. This fact allows us to use a ternary representation of the
integer k as follows.

k =
n�1X

i=0

ki:2
i; where ki 2 f�1; 0; 1g

12



&%
'$

&%
'$

&%
'$

&%
'$

?

6

?

@
@
@
@
@
@@

�
�
�
�
�
��

�
�

�
�

�
��

@
@

@
@

@
@@

�
��

@
@@

@
@@

�
��

-

�

-

� ���

�� -
0 1

23

0 : 0

1

0 : 01

1 : 10

1 : 0

0

0 : 10

1 : 01

0 01

110

Figure 1: Deterministic MSB automaton

This representation is not unique. A Non-Adjacent Form (NAF) of k is a ternary rep-
resentation where \1" or \-1" are never adjacent. The NAF representation is unique for a
given k and its weight is the lowest among all the possible ternary representation weight.
The average number of additions/subtractions for a bit length n is n=3 (see [EK90],[Z93]). In
[R60] an algorithm is proposed to compute the NAF of k using LSB ordering. In [MO90] an
automaton is described to compute k � P starting with the LSB of k, with a minimal weight
ternary representation not equal to the NAF.

The automaton proposed here computes k �P through a other minimal weight ternary rep-
resentation. It reads k from MSB taking advantage of the simpli�ed point addition formulas
with z-coordinate equals to one.

The principle of this automaton is to use the two following transformations :

1a 7! 10a�11

1a01b 7! 10a10b�11;

with 1 = �1, a � 2 and b � 1 using 11 = 01 recursively.
The states of the new automaton are given by the following table :

13



State Figure (two last input bits) Name

0 (00) no block

1 (01) no block to block

2 (11) block

3 (10) block to no block

Block denotes a sequence of consecutive \1" from the input. The starting point of the
automaton is state 0. Each arrow corresponds to a transition from a state to an other, with
a conditional transition tagged \a:b", \a" being the input bit and \b" being the output
sequence if any. The output ternary representation does not require not to be stored, which
may be useful to implement in a low memory device such as a smartcard. We compute the
point Q = k � P on the y applying to output bits the following Horner type rules :

1 7! Q = 2Q; Q = Q� P
0 7! Q = 2Q
1 7! Q = 2Q; Q = Q+ P

Let us denote A
c
! B the path from state A to state (or exit) B with the transitional

condition c. Having a closer look at the automaton, we notice that there are only four cases
where the output sequence has adjacent 1 or 1.

covered path output bits

1
0:01
�! 0

1
�! 1

1:10
�! 2 0110

3
1:01
�! 2

0
�! 3

0:10
�! 0 0110

3
1:01
�! 2

0
�! 3

10
�! exit 0110

3
1:01
�! 2

1
�! exit 011

In each case, two adjacent "1" or "-1" are preceeded by at least two zeros. Thus it may
be easily transformed into a NAF without changing the weight :

00110 7! 01010

00110 7! 01010

0011 7! 0101

This proves that the resulting automaton sequence has a minimal weight.

The following table shows the various methods in terms of the average number of opera-
tions (multiplications or squares) required to compute the point Q = k � P . The integer k is
coded with n bits. The modi�ed Jacobian coordinates are used in the addtion formulas (see
[CMO98]).

Operations Add and Double Double and Add Morain-Olivos New Method

nb of op. for 2 � P 8 8 8 8

nb of op. for P +Q 19 14 19 14

nb of op. for k � P 17:5n 15n 14:3n 12:7n

14



&%
'$

&%
'$

&%
'$

?

?
@

@
@

@
@
@

@
@
@

@
@
@@I

@
@
@
@
@
@@

�
�

�
�

�
��

@
@

@
@

@
@@

�
��

@
@@

�
��

-

�

���

�� -
0 1

2

0 : 0

1

0 : 01

1 : 100 : 1

1 : 0

0 01

1

Figure 2: Suboptimal automaton

3.2 Randomization of the automaton

As mentioned before, the automaton shown on �gure 1 is e�cient to transform the binary
exponent representation in a ternary one. To secure it from a DPA attack, we randomize
the algorithm itself. The idea is to merge di�erent automata by introducing a random bit in
particular automaton states to choose one of them. Thus we create a new automaton with
randomized transitions. For �xed operands, the exponentiation will be computed in di�erent
ways. So the addition-subtraction sequence is unpredictable.

First, we de�ne an automaton which is to be merged with the automaton of �gure 1. Let
us remember that the latter uses the two following transformations :

1a 7! 10a�11

1a01b 7! 10a10b�11

for a � 2 and b � 1 using 11 = 01 recursively.
We consider now the automaton of �gure 2 which only uses the �rst transformation with

MSB. Thus the exit sequence 11 is allowed. The previous three states automaton carries out
this transformation. We remain on state 0 (no block) as long as there is a sequence of zeros.
When a one appears we go to state 1 (no block to block). If there is an other one then we
have a block : we go from state 1 to state 2 (block) and write "10" followed by "0" until the
number one appears. At the end of the block we go back to state 0.

15



Let us merge the automata of �gures 1 and 2 by introducing a random bit e from state
2 when the incoming exponent bit is 0. If e = 0 then we cover automaton 1 thus just go to
state 3. If e = 1 then we cover automaton 2 i.e. go to state 0 with outcoming \1".

This randomization changes the transition of the automaton. To increase the security of
this automaton against DPA attack, we use two additional randomizations. Now it deals with
synonyms in the ternary expansion.

Note that 01 = 11. We put a random bit e in state 1 when there is a zero incoming. If
e = 0 then we do not change anything, else we go to state 0 with outcoming 11 instead of 01.

Similarly, we introduce a random bit e in state 3 when there is a one incoming, and
randomly change the outcoming 01 by 11 on the transition to state 2. Therefore the �nal
randomized automaton is given in �gure 3.

The pseudo code corresponding to automaton 3 is the following :

Final_Randomized_Automaton(P, k=(k_m,..., k_1, k_0) with the MSB k_m==1) {

state=0; Q=O;

for (i=m;i>=0;i--) {

switch(state) {

case 0: if (k_i==1) state=1;

else Q:=2Q;

case 1: if (k_i==1) {state=2; Q:=2Q; Q:=Q+P; Q:=2Q;}

else {

e=rand(); state=0;

if (e==0) {Q:=2Q; Q:=2Q; Q:=Q+P;}

else {Q:=2Q; Q:=Q+P; Q:=2Q; Q:=Q-P;}

}

case 2: if (k_i==1) Q:=2Q;

else {

e=rand();

if (e==0) state=3;

else {state=0; Q:=2Q; Q:=Q-P;}

}

case 3: if (k_i==1) {

e=rand(); state 2;

if (e==0) {Q:=2Q; Q:=2Q; Q:=Q-P;}

else {Q:=2Q; Q:=Q-P; Q:=2Q; Q:=Q+P;}

}

else {state=0; Q:=2Q; Q:=Q-P; Q:=2Q; }

}

}

switch(state) {

case 0: Q:=2Q;

case 1: Q:=2Q; Q:=2Q; Q:=Q+P;

case 2: Q:=2Q; Q:=Q-P;

case 3: Q:=2Q; Q:=Q-P; Q:=2Q;

}

return Q;

}

16



&%
'$

&%
'$

&%
'$

&%
'$

?

6

?
@

@
@

@
@
@

@
@
@

@
@
@@I

@
@
@
@
@
@@

�
�
�
�
�
��

�
�

�
�

�
��

@
@

@
@

@
@@

�
��

@
@@

@
@@

�
��

-

�

-

� ���

�� -

-

�

0 1

23

rnd e

rnd ernd e

0 : 0

1

0 : 01 if e = 0

0 : 11 if e = 1

1 : 100 : 1 if e = 1

1 : 0

0 if e=0

0 : 10

1 : 01 if e = 0

1 : 11 if e = 1

0 01

110

Figure 3: Final randimized automaton

To compute the mean weight of the ternary representation, we use the following method :
A transition between two states is represented by a polynomial piX

i with i the outcoming
number of \1" or \-1" and pi the transition probability. We assume a uniform distribution
for the current exponent bit and the random bit e. For instance, the polynomial used for the
transition 1 �! 2 is given by 1=2X. The one for transition 1 �! 0 is 1=4X + 1=4X2. Let A
be the transition matrix with coe�cients ai;j the polynomials corresponding to the transition
i �! j. Let E be the input vector and S the output vector. If the exponent has n bits, then
Pn =t EAnS represents the weight probability enumerator polynomial. The weight mean
value is given by P 0

n(1).

The following table shows the results with uniformly distributed randomized transitions :

size of incoming exponent (n) 160 200 250 300

mean weigth of outcoming exponent(w) 68:8776 86:0204 107:449 128:878

ratio n=w 2:32296 2:32503 2:32669 2:32778

additional operations from automaton 1 10:7% 10:7% 10:7% 10:6%

additional operations from [MO90] �2:1% �2:2% �2:2% �2:2%

We assume that the cost of an addition (A) equals the cost of a substraction (S). The
doubling cost (D) is slightly less than A. In state 1 and 3 the cost of automaton 3 is 2D +A
if ki = 0; 1. The cost of new automaton is 2D+A except when ki = 0; e = 1 in which case it

17



is 2D + 2A. This shows that this automaton is not suitable to prevent SPA attack if we are
able to distinguish doubling from adding or substracting.

4 Conclusion

To compute the exponentiation k:P of point P with exponent k, we usually use additions and
doublings. We want to lower the number of additions. One way to do that is to introduce
a new operation : substraction. So we have to de�ne the sequence of additions, subtractions
and doublings needed to compute the exponentiation, the so-called "addition-substraction
chain".

This is equivalent to compute a ternary representation of exponent k which represents k
with �1; 0; 1 digits in base 2. This representation is computed from the binary representation
of integer k which represents integer k with 0; 1 digits in base 2. Contrary to the binary
expansion, the ternary expansion is not unique except in the non adjacent form case (NAF) :
two \1" or \-1" are not allowed to be adjacent in this form. In addition, the MSB ordering
(or Horner's rule) is chosen in order to use addition with a �xed point : the most signi�cant
binary bits of integer k are used �rst.

Using the binary bits of integer k using MSB ordering, we are able to compute on the
y its corresponding ternary bits : starting with a temporary point Q = 0, computing a \0"
corresponds to doubling the current point Q, computing a \1" corresponds to adding the base
point P to Q and computing a \-1" corresponds to substracting the base point P to Q. This
is the case only because Horner's rule is chosen. At the end the point k � P is computed in
the variable Q. This process de�nes the "addition-substraction chain" on the y.

We de�ne an automaton which compute the ternary bits on the y with

- four states (0; 1; 2; 3)
- eight transitions (0! 0; 0$ 1; 1! 1; 1! 2; 2$ 3; 3 ! 0)
- seven writing rules (writing nothing,\0",\-1",\01",\10",\0-1",\-10")

This automaton computes a minimal weight ternary expansion di�erent from NAF with
MSB ordering on the y. The automaton can be viewed as a set of transitions along with
writing rules : the current state and current bit determine the transition to be used. This
transition gives the new state along with the writing rules to output a ternary expansion of
integer k with Horner's rule on the y.

To counteract DPA attacks for an ECC, we propose a variant of this automaton with
one randomized transition and two randomized ternary expansion writing rules. The ternary
expansion computed is no longer of minimal weight. On the contrary, it randomly varies
each time it is computed for the same integer k. The new automaton chooses at random a
transition sequence among the two equivalent transition sequence : \2 ! 0" or \2! 3 ! 0"
and two randomized writing rules : replacing at random \01" by \1-1" and \0-1" by \-11" in
the ternary expansion of integer k.

The randomized algorithm increases the number of operations of approximately 10.7%
compared to the original one. Furthermore, since we read the exponent from the MSB, we
can use simpli�ed point addition formulas with z-coordinate equals to one. With modi�ed
Jacobian coordinates we have about 11.6% less operations than if we had used LSB to com-
pute an exponentiation. Therefore our randomized algorithm uses 2.2% less operations than

18



the non-randomized automaton beginning with the LSB described by Morain and Olivos in
[MO90].

References

[CJ02] C. Clavier, M. Joye : \Universal Exponentiation Algorithm - A First Step Towards
Provable SPA-Resistance"; Cryptographic Hardware and Embedded Systems {
CHES 2001, LNCS 2162, pp. 300-308, 2001

[CMO98] H. Cohen, A. Miyaji, T. Ono : \E�cient elliptic curve exponentiation using mixed
coordinates" ; Asiacrypt 98, LNCS 1514, pp. 51-65, 1998

[C99] J-S Coron : \Resistance against Di�erential Power Analysis for Elliptic Curve
Cryptosystems" ; Cryptographic Hardware and Embedded Systems - CHES'99,
LNCS 1717, pp. 292-302, 1999

[EK90] O. Egecioglu, C.K. Koc : \Fast modular exponentiation" ; In E.Arikan, editor,
Communication, Control and Signal Processing : Proceedings of 1990 Bilkent In-
ternational Conference on New Trends in Communication, Control, and Signal
Processing, pp.188-194, Bilkent Univ. Ankara, Turkey, 1990

[IYTT02] K Ito, J. Yajima, M. Takenaka, N. Torii : \DPA countermeasures by Improving
the Window Method" ; Cryptographic Hardware and Embedded Systems - CHES
2002, LNCS, 2002

[JT01] M. Joye, C. Tymen : \Protection against Di�erential Analysis for Elliptic Curve
Cryptography-An Algebraic Approach" ; Cryptographic Hardware and Embedded
Systems - CHES 2001, LNCS 2162, pp. 377-390, 2001

[MO90] F. Morain, J. Olivos : \Speeding up the computations on an elliptic curve using
addition-substraction chains" ; published in RAIRO Inform. Th�eor. Appl., 1990,
24, 6, p. 531-543.

[OA01] E. Oswald, M. Aigner : \Randomized Addition-Subtraction Chains as a Counter-
measure against Power Attacks" ; Cryptographic Hardware and Embedded Systems
- CHES 2001, LNCS 2162, pp. 39-50, 2001

[R60] G.W. Reitwieesner : \Binary Arithmetic" ; Advances in Computer, 1:231-308,1960

[TB02] E.Trichina, A.Bellezza : \Implementation of ECC with Built-in Counter Measures
against Side Channel Attacks" ; Cryptographic Hardware and Embedded Systems
{ CHES 2002, LNCS, 2002

[Z93] C.N. Zhang : \An improved binary algorithm for RSA" ; Computer Math. Applic.,
vol. 25, no. 6, pp. 15-24, 1993

19



20


