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Abstract

Artin's braid groups provide a promising background for cryptographical applications.

Several braid based key agreement protocols have been described, but few authentication

or signature schemes have been proposed. We introduce three authentication schemes

based on braids. Two of them are zero-knowledge interactive proofs of knowledge. Then

we discuss their possible implementations, involving normal forms or an alternative braid

algorithm, called handle reduction, which can achieve good e�ciency under speci�c re-

quirements.

1 Introduction

In the recent years, beginning with [14], several authors proposed to build cryptographi-
cal schemes using noncommutative groups, in particular Artin's braid groups [1, 2, 13, 4]
where the word problem is easy and the conjugacy problem is algorithmically di�cult, thus
providing one-way functions. The aim of this paper is twofold. Firstly, we propose three
authentication schemes designed for braid groups: the braid schemes considered so far dealt
with key exchange and con�dentiality, thus not providing means of authentication. Secondly,
we propose a new way of implementing braid operations, namely using braid words and the
so-called handle reduction algorithm. Not only is such an implementation very e�cient in
practice, but it is also well suited for the schemes we shall describe, and, more generally, for
all braid schemes where using unique representatives of the braids is not necessary.

The paper is organized as follows. In Section 2, we state the di�cult problems based
on braid groups that we shall rely on. In Section 3, we describe our authentication schemes
and study their theoretical security. In Section 4, we present classical ways of computing
with braids, and analyze the security of the associated implementations of our protocols. In
Section 5, we introduce a second, radically new approach consisting in using non-normal braid
words together with a reduction algorithm, and we discuss its e�ciency and security.

2 Di�cult braid problems

For n > 2, Artin's braid group Bn is de�ned to be the group with presentation

h�1; : : : ; �n�1 ; �i�j = �j�i for ji� jj > 2, �i�j�i = �j�i�j for ji� jj = 1i: (2.1)

We refer the reader to any textbook about braids, for the usual geometrical interpretation of
each element of the group Bn by an n-strand braid: the idea is that every n-strand braid dia-
gram can be encoded in a word in the letters ��1

i by slicing it into a concatenation of elemen-
tary diagrams with one crossing, and using �i for the diagram where the ith strand crosses
over the (i+1)st one. Then, the relations of (2.1) correspond to the notion of ambient isotopy,
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as shown by E. Artin. Notice the sum of the exponents �1 of a braid word in the letters ��1

i

depends only on the braid b it represents. We call this sum e(b) the exponent sum of b.
The �rst important point here is that braid groups are in�nite noncommutative groups

which are eligible for practical computations: there exist in particular e�cient ways of spec-
ifying a braid and of computing with braids (see Section 4 below). The second important
point is the existence of di�cult problems for which no feasible solution is known. The main
problem suitable for cryptography is the following:

Conjugacy Search Problem(CSP): Given a braid b in Bn, and a conjugate b0 = sbs�1

of b, �nd a witness, i.e., �nd s0 satisfying b0 = s0bs0�1.

In [10], Garside gives an algorithm solving the CSP, and improvements of his algorithm have
been proposed [6, 9]. Nevertheless, the CSP has no polynomial-time solution up to now, and
it is considered infeasible to solve the CSP for su�ciently large braids [12].

Note that only variants of this problem, all reducing to the CSP, have been used in braid-
based cryptography so far. In our �rst scheme we use the following variant:

Diffie-Helmann-like Conjugacy Problem (DHCP): Given a braid b in Bn, and the
braids b0 = sbs�1 and b00 = rbr�1, where s and r lie in two subgroups of Bn that commute one
with the other, �nd the braid sb00s�1 (= rb0r�1).

The connection between this problem, explicitly introduced in [13], and the CSP is similar to
the one between the Di�e-Helmann Problem and the Discrete Log Problem. The DHCP is
obviously reducible to the CSP, but it is expected to be as hard. A last problem is :

Root Problem (RP) (for exponent e): Assuming that the braid b0 is an e-th power in Bn,
�nd an e-th root of b0, i.e., �nd b satisfying be = b0.

It is proved in [15] that the RP is decidable, but the only known algorithm consists in enumer-
ating several conjugacy classes related with the initial braid b0, a process which is exponential
in essence. In practice, the RP looks even more di�cult than the CSP.

3 Three authentication schemes

We present three public-key entity authentication schemes. Scheme I is a two-pass scheme
based on the DHCP and is perfectly honest-veri�er zero-knowledge. The other two schemes
are iterated three-pass protocols. One is based on the CSP only, and the other on the CSP and
the RP. Both are zero-knowledge in a theoretical in�nite framework. Notice that our second
scheme is the �rst braid-based scheme relying only on the CSP, so it resists the existing attacks
against variants of the CSP. The level of security of the schemes can be parameterized by
modifying the size of the braid speci�ers in use, in particular the braid index n.

3.1 Scheme I

Scheme I is derived from the key agreement scheme proposed in [13], and relies on the di�culty
of the DHCP. It uses the trick that braids involving disjoint families of strands commute. The
data consist of a public key, which is a pair of braids, and of A's private key, also a braid.

We denote by LBn (resp. UBn) the subgroup of Bn generated by the �i's with i < bn=2c
(resp. i > bn=2c). The point is that the subgroups LBn and UBn commute. We assume that
H is a �xed collision{free hash function, thus thwarting active attacks (practical choices for
H, using the Burau representation or braid operations, are in the full version of the paper).
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� Phase 1. Key generation

- (i) Choose a public braid p in Bn such that the DHCP for p is hard enough;
- (ii) A(lice) chooses a secret braid s in LBn, her private key; she publishes p

0 = sps�1;
the pair (p; p0) is the public key.
� Phase 2. Authentication phase

- (i) B(ob) chooses a braid r in UBn, and sends the challenge x = rpr�1 to A;
- (ii) A sends the response y = H(sxs�1) to B, and B checks y = H(rp0r�1).

Proposition 3.1. Scheme I is a perfect honest-veri�er ZK interactive proof of knowledge of s.

The proof is detailed in the full version of the paper.

3.2 Scheme II

We describe now two authentication schemes belonging to the family of zero-knowledge
schemes [8, 11]; they consist in repeating a three-pass process several times so as to guarantee
the required level of security. The probability that a dishonest prover is authenticated is 1=2k,
where k is the number of repetitions. The �rst scheme is based only on the di�culty of the
CSP, thus avoiding various existing attacks of the variants of the CSP, namely against the
DHCP and the Multiple Conjugacy Problem [1].

� Phase 1. Key generation:
- (i) Choose a public braid p in Bn, so that the CSP for p is hard;
- (ii) A(lice) chooses a secret braid s in Bn, her private key; she publishes p

0 = sps�1; the
pair (p; p0) is the public key.
� Phase 2. Authentication phase: Repeat the following exchanges k times, with k a
polynomial function of the size of the braid speci�ers:

- (i) A chooses a random braid r, and sends x = rpr�1 to B(ob);
- (ii) B sends a random bit � to A;
- (iii) For � = 0, A sends y = r to B, and B checks x = ypy�1;
- (iii0) For � = 1, A sends y = rs�1 to B, and B checks x = yp0y�1.

Remark 3.2. Scheme II can be used without change when the braid group Bn is replaced with
another (�nite or in�nite) noncommutative group G in which the CSP is di�cult.

In the general framework of a group G|so, in particular, in the case of Bn|we have
the natural notion of a right-invariant probability measure, namely a measure P satisfying
P (A) = P (fxa;x 2 Ag) for each a in G, uniform probability measure being a special case.

Proposition 3.3. Whenever the probability distribution of r at Step 2(i) is right-invariant,
Scheme II (in Bn, or, more generally, in any group G where the CSP is di�cult) is a zero-
knowledge interactive proof of knowledge of s.

Proof (sketch). { Completeness: In Step 2(iii), we have y = r, so x = ypy�1. In Step 2(iii0),
using y = rs�1 and p0 = sps�1, we get x = rpr�1 = (rs�1)(sps�1)(rs�1)�1 = yp0y�1. So Bob
accepts a correct answer at each step, so he accepts Alice's proof of identity with probability 1.

{ Soundness: The proof follows the scheme of [8]. If an entity A' is authenticated with
nonnegligible probability, then some level of the truncated execution tree of (A', B) has at
least half of its vertices having two sons, i.e., vertices where A' is able to answer both questions
of B. This yields a polynomial algorithm �nding a vertex with two sons. Hence, from the
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knowledge of A', one can extract in polynomial time a braid behaving like the private key of
Alice, so Scheme II is sound.

{ Zero-knowledge: We consider the following probabilistic Turing machine M :
- Step 1: M randomly selects a bit " and a braid y;
- Step 2: For " = 0, M computes x = ypy�1; for " = 1, it computes x = yp0y�1;
- Step 3: M initiates a protocol with B, sends x to B; B replies with the bit "0;
- Step 4: For " = "0, M outputs the triple (x; "; y), otherwise it resets to Step 1.

Since the probability distribution of r in the authentication protocol is assumed to be right-
invariant, we obtain the same probability distribution for the y's generated byM as for Alice's
ones. Moreover, since in case " = 1 we have x = ysps�1y�1, i.e., x = (ys)p(ys)�1, using the
same assumption, we obtain the same probability distribution for the x's arising for " = 0
and those arising for " = 1. As a consequence, B cannot distinguish the two cases, and the
probability to have " = "0 is equal to 1=2. This implies that the computation cost of the
machine M is in average 2k operations, and, therefore, that M is a polynomial time machine
provided that k itself is polynomial in the size of the initial data.

3.3 Scheme III

Our second ZK scheme involves the RP together with the CSP for the same braid. Here we
give the description for exponent e = 2; the other cases are similar.

� Phase 1. Key generation:
- A(lice) chooses a secret braid s in Bn and computes p = s2, so that the CSP for s and p,

and the RP for p are di�cult; public key is p, private key is s.
� Phase 2. Authentication phase: Repeat the following exchanges k times:

- (i) A chooses a random braid r, and sends x = rpr�1 to B(ob);
- (ii) B sends a random bit � to A;
- (iii) For � = 0, A sends y = r to B; then B checks x = ypy�1;
- (iii0) For � = 1, A sends y = rsr�1 to B; then B checks x = y2.

Proposition 3.4. Scheme III is a zero{knowledge interactive proof of knowledge of s, pro-
vided an element of the conjugacy class of the secret key is published and the probability
distribution of r at Step 2(i) is right-invariant.

In the proof, which is detailed in the full paper, we assume that a braid s0 of the conjugacy
class of s is published at Phase 1, as conjugates of s would be disclosed in any case.

4 Implementations using normal forms

In practical implementations, we have to replace the in�nite braid group Bn by some �nite
subset, and it is unclear how a right-measure could be de�ned on such a subset. So, in such
implementations, Schemes II and III do not remain zero-knowledge. However, we shall see
here how to adapt the schemes so as to retrieve practical indistinguishability.

4.1 Specifying a braid

Before discussing implementations, we �rst need to know how braids are represented. Several
solutions exist. In this section, we consider the most common one, which consists in choosing
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a normal form, i.e., choosing one distinguished representative for every braid. However, we
can also work with arbitrary representatives, as we will see in Section 5.

� Greedy normal form. When the braid group Bn is introduced as in Section 2, a braid
is an equivalence class of words with respect to the equivalence relation � generated by
the relations (2.1). Every braid can be speci�ed by di�erent braid words, but we can avoid
ambiguities by resorting to a normal form, i.e., by de�ning distinguished words, called normal,
so that each braid is represented by a unique normal word. In terms of implementation, the
most practical normal form is the greedy normal form of [7]. It is associated with an automatic
structure, which in particular implies that the normal form of a length ` braid word can be
computed in O(`2) steps [7]. The greedy normal form is the way braids are speci�ed in [13].

�Permutations. There exists a natural surjective mapping of Bn to the symmetric group Sn.
This mapping is non-injective, but there exists a canonical way to choose for every permu-
tation � a braid word b� that projects onto �. Now, let �n be Garside's fundamental braid
word �n = (�

1
)(�

2
�
1
) : : : (�n�1

�n�2
: : : �

2
�
1
). The normal n-strand braid words considered

above happen to have the form �k
nc�1 : : : b�`, where k is an integer, and (�1; : : : ; �`) is a se-

quence of permutations in Sn. Hence we can encode a normal braid word by the associated
sequence (k; �1; : : : ; �`). Conversely, we can associate to every sequence (k; �1; : : : ; �`) as
above the braid word �k

nc�1 : : : b�`. If this word is normal, we naturally say that the sequence
(k; �1; : : : ; �`) is normal. The point is that there exists an e�cient algorithm [7] which,
starting with an arbitrary sequence (k; �1; : : : ; �`), computes the unique normal sequence
(k0; �0

1
; : : : ; �0`0) representing �

k
nc�1 : : : b�`. Therefore, sequences of permutations also provide a

good solution for working with braids.
If a braid b is represented by the normal sequence (k; �1; : : : ; �`), we de�ne the in�mum,

supremum, and normal lengths of b by inf(b) = k, sup(b) = k+ ` and lgh(b) = `, respectively.

4.2 Implementations of Schemes II and III

When it comes to implementation in a �nite background, Schemes II and III lose their the-
oretical zero-knowledge properties. Indeed, we use some �nite alphabet A (consisting of the
letters ��1

i , or of permutations plus one integer), and we draw words in the set A` of all words
over A of length `. This yields a random draw in the �nite set B`

n of all braids in Bn that can
be speci�ed (in at least one way) by a word in A`, i.e.,

B`
n = f[w] ; w 2 A`g;

where [w] denotes the braid represented by w. There is no known draw over A` that would
induce the right invariant distribution over B`

n required for Proposition 3.3, so we cannot
design a probabilistic Turing machine simulating the exchanges in Scheme II for " = 1.

4.3 Scheme II'

The problem lies in the probability distributions of the instances of the form (x; 1; y): indeed,
the distribution of the braids rs�1 with r in B`

n can be in general distinguished from that of
braids r chosen randomly in B`

n. To avoid this problem, we consider a variant of Scheme II,
called Scheme II'. We show that Scheme II' is, in fact, as secure as Scheme II itself, and we
give statistical arguments supporting practical indistinguishability.

Let us assume here that braids are speci�ed using normal sequences of permutations. So A
denotes the set of all permutations of n objects, and Alice is supposed to choose random words
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n sup(r) = sup(s) sup(p) sup(rpr�1)/ awaited value sup(rs�1)/ awaited value

20 10 20 29.98 / 30 9.99 / 10
30 10 20 30.00 / 30 10.00 / 10
50 15 30 45.00 / 45 15.00 / 15

Table 1: Supremum length of rpr�1 and rs�1 when r; p; s are random positive (i.e., satisfying
inf r = inf p = inf s = 0 ) braids of given sup (samples of 10,000 braids).

uniformly in A`. We de�ne Scheme II' by introducing the following changes in Scheme II:
- the private key s satis�es inf(s) = 0, i.e., there is no �n in the normal word expansion of s,
and sup(s) = `; these values are public, and so is the exponent sum e(s).
- the public key p0 is chosen in B`

n, and p is deduced using p = s�1p0s.
The di�erence with Scheme II is that, in Scheme II', the characteristics of p and p0 are
exchanged. This change induces no problem, as p and p0 play symmetric roles:

Proposition 4.1. Scheme II' and Scheme II have the same security.

The proof is in the full version of the paper, the point being that the instances of the CSP
Scheme II' relies on are just as di�cult as the corresponding instances in Scheme II.

By construction, Scheme II' has the same ideal zero knowledge properties (Proposition 3.3)
as Scheme II. We now give a statistical argument based on a length analysis supporting the
claim that, for Scheme II', the distinguishability introduced by the restriction to a �nite set
of braids provides no useful information. Some other arguments are in the full paper.

Proposition 4.2. For every prover A, there exists a probabilistic polynomial-time Turing
machine, which recreates for each B its view of the communication between A and B with a
probability distribution that is indistinguishable through statistical length analysis of the data.

The proof is detailed in the full version of the paper. The point is that, for an overwhelming
proportion of pairs of braids (r; a), we have inf(ra) = inf r+inf a and sup(ra) = sup r+sup a,
and similar relations for conjugacy (see Table 1). Straight computation shows that the braids
e�ectively transmitted by A, and those generated by the Turing machine, have the same
in�mum and supremum lengths and exponent sum for n > 30, so they are indistinguishable
by length analysis, which is the main statistical mean of distinction for braids.

We thus have discussed the security for an implementation of Scheme II when braids are
speci�ed using sequences of permutations, or, equivalently, of normal words. Similar security
results are obtained when braids are speci�ed using arbitrary braid words. Finally, analogous
results hold when Scheme II is replaced with Scheme III.

4.4 Choice of the parameters

When braids are represented using a normal form, the choice of the public and private keys
ensuring security of the schemes depends only on the bounds making the CSP, the DHCP
and the RP di�cult. From the considerations in [13], it arises that, when braids are speci�ed
using sequences of permutations, parameters ensuring su�cient security and e�ciency are
n = 30 (n = 60 in the case of Scheme I) and products of 15 random permutations. When
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braids are represented using greedy normal braid words, for the same values of n, choosing
braid words of length at least 1; 000 guarantees at least the same level of security as the values
given for products of permutations.

5 Implementations using braid reduction

We describe now implementations of a new type, based on a braid algorithm called handle
reduction. They are very 
exible, but require speci�cations to ensure a good level of security.

5.1 Non unique speci�ers.

The implementations of Section 4 involve unique expressions of the braids: in each case, a
braid is encoded into a unique object, and it is speci�ed by a unique word over some alphabet,
whose letters may be �i's (in the case of normal words), or permutations (as in 4.1).

At least in some cases, this uniqueness is not needed. This is especially the case when
braids are used for authenticating entities, as in the schemes described here: authentication
requires to check equivalence only, hence it may be suitable to use non-unique representatives.

5.2 Handle reduction of braids

The previous principles can be implemented by using an e�cient solution for the word problem
of Bn involving no normal form, namely the handle reduction method of [5]. Handle reduction
is an algorithmic procedure that takes a braid word w as input and returns an equivalent
braid word red(w). From an algorithmic point of view, reducing a braid word is simpler than
computing its greedy normal form (at least 20 times faster for the sizes under consideration),
but, on the other hand, reduction does not yield a normal form, as w � w0 does not imply
red(w) = red(w0) in general. We refer to [5] for a description of the method, also included in
the full version of the paper. For our current purpose, the point is the following:

Proposition 5.1. Let w;w0 be braid words. Then w and w0 are equivalent if and only if the
braid word w�1w0 reduces to the empty word.

Table 2 shows some statistics for the number of reduction steps and the average time
needed to reduce a random braid in terms of the braid index (i.e., the size of the alphabet)
and the number of crossings (i.e., the length of the words).

n = 8 n = 16 n = 32 n = 64

` = 256 0.85 (88) 0.35 (22) 0.18 (6.4) 0.07 (2.1)

` = 1; 024 28 (1,974) 7 (385) 2.5 (81) 1.3 (21)

` = 4; 096 1,333 (35,966) 621 (18,617) 88 (2,188) 24 (358)

Table 2: Statistics for handle reduction: average CPU time in millisec. and (bracketed)
average number of reduction steps in terms of the braid index n and the length ` of the words

Let A denote here the alphabet f��1

1
; : : : ; ��1

n�1
g, and let Bn denote the set of all n-strand

braid words, i.e., the set of all words over A. As previously, for w in Bn, we denote by [w]
the braid represented by w. Let us consider Scheme II. The data used by Alice and Bob are
now braid words, and equality is replaced by equivalence everywhere. So, Phase 1 becomes
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� Phase 1. Key generation:
- (i) Choose a public braid word p;
- (ii) A(lice) chooses a secret braid word s, her private key; she publishes p0 � sps�1; the

pair of braid words (p; p0) is the public key.

We must specify the choice of the public key p0. With unique braid speci�ers there is one
possible choice for p0 only by de�nition. Now we use arbitrary braid words, so we must explain
how to choose p0 among the braid words equivalent to sps�1. This means we have to choose
some function S of Bn to itself mapping every braid word to an equivalent braid word. We
call S the scrambling function, as the security of the exchanges will rely on the impossibility
of recovering the word w from the word S(w). So, our implementation of Scheme II becomes

� Phase 1. Key generation:
- (i) Choose a public braid word p;
- (ii) A(lice) chooses a secret braid word s, and publishes p0 = S(sps�1); public key is the

pair of words (p; p0); private key is the word s.
� Phase 2. Authentication phase: Repeat the following exchanges k times:

- (i) A chooses a random braid word r, and sends x = S(rpr�1) to B(ob);
- (ii) B sends a random bit � to A;
- (iii) For � = 0, A sends y = r to B, and B checks that x�1ypy�1 reduces to ";
- (iii0) For � = 1, A sends y = S(rs�1), and B checks that x�1yp0y�1 reduces to ".

5.3 Choice of a scrambling function

When using non-unique speci�ers, the security of our schemes do not rely only on the instances
of the di�cult braid problems which are published/transmitted, but also on the words chosen
to publish/transmit these instances. Hence, we have to introduce requirements about how
the instances of the involved braid problems are speci�ed using non-unique words:

Recovering the braid [s] from the words p and S(sps�1) must be infeasible. (5.1)

Recovering the braid [s] from the word S(s2) must be infeasible. (5.2)

A �rst, natural solution is to de�ne the scrambling function S to be a unique, distinguished
braid representative, for instance

De�ne S(w) to be the normal form of w.

For such a choice, (5.1) and (5.2) are merely equivalent to their braid counterparts, and the
security of our schemes is guaranteed for typical values of the parameters similar to those
considered in [13] and mentioned above.

We argued that the advantage of using arbitrary braid words and handle reduction is to
avoid computing normal forms, so using normal form for the scrambling process may appear
paradoxical. Let us observe that such a choice could be relevant, especially in the case of the
non-symmetric Schemes II and III. Here Alice (the prover) would have to compute normal
forms|which we said has a non-negligible computation cost|but Bob (the veri�er) only has
to check braid equivalences, what he can easily do using braid word reduction, which, in
particular, requires very little memory.

A second, di�erent, solution is to construct a scrambling function using handle reduc-
tion. What makes Requirement (5.1) more di�cult than its braid counterpart is that the
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word S(sps�1) may contain information about the pre�xes of sps�1, so in particular about s
or its equivalence class [s]. Now assume that we can de�ne S so that the following condition
holds:

No proper pre�x of S(w) is equivalent to a (proper) pre�x of w. (5.3)

Then the only piece of information we can extract from, say, the words p and S(sps�1) is the
braid [p] and the braid [sps�1], and we are back to the CSP for �nding [s]. The argument is
similar for S(s2), so we can consider that, if a function S satisfying Condition (5.3) is available,
then the requirements of Section 3 are satis�ed under the same theoretical assumptions as
above about the CSP and the RP.

We claim this can be (su�ciently) achieved using handle reduction for scrambling, namely

� De�ne S(w) to be red(w), i.e., the result of reducing w.

This de�nition makes sense, as the braid word red(w) is equivalent to w in every case.
Condition (5.3) is not ful�lled in general: if the initial word w is reduced, i.e., contains no
handle, then red(w) is equal to w, so, in particular, w and red(w) have many pre�xes in
common. However, we detail in the full version of the paper how to choose the parameters so
as to avoid the problem, namely by de�ning the public key p to be a word of the form p�1

1
p2,

where p1 and p2 are positive braid words (no letter ��1

i ) of equal length and, moreover, their
classes are large with respect to some linear ordering of Bn.

There is still another possible choice of the scrambling function involving another braid
algorithm called word reversing, which mainly consists in replacing some very short subwords
in the braid word we are scrambling by equivalent, but di�erent, subwords.

5.4 Zero knowledge property

In Section 4, we adapted Scheme II and de�ned Scheme II' so as to reach practical indis-
tinguishability in the zero-knowledge part of the proof. Scheme II' is still relevant when
non-unique speci�ers are used, and the result about the indistinguishability of the braids is
still valid. However, in the current case, we also have to obtain a similar result for the words
that are exchanged, and not only for the braids they represent, i.e., we have to check that the
exchanged reduced (or scrambled) words are indistinguishable in terms of length and of com-
mon subwords. The �rst point follows from the fact that the braid word s0 used in the proof
of Prop. 4.2 has the same length as the private key s; the second point is true provided the
private key is chosen as explained above. Thus Scheme II' satis�es the same zero knowledge
properties in the framework of non-unique speci�ers as in that of normal forms.

5.5 Normal form vs. reduction

Comparing the di�erent implementations we have proposed is not obvious, as random draws
over products of permutations or generators ��1

i give radically di�erent distributions on Bn.
In the full paper, we put the emphasis on the use of braid word reduction, as implementations
using normal forms already appear in literature. Namely, we justify the fact that using braid
words together with handle reduction is an e�cient solution, as it avoids attacks based on
the fact that the permutational length is small, like the one considered in [12].
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6 Conclusion

In this paper, we have proposed the �rst authentication schemes specially designed for braid
groups. The �rst of them is a two-pass protocol relying on the Di�e-Hellman variant of the
CSP, while the two other ones are iterated three-pass protocols based on the CSP and/or RP.
We have discussed the security of these schemes and given evidence that none of them leaked
any useful information on the secret key, even though traditional zero knowledge models
cannot apply to the braid groups, which are in�nite. Finally, we have addressed in a detailed
manner the issue of implementing these protocols. We have pointed out the relevance of the
so-called handle reduction for authentication schemes, as this method allows one to e�ciently
verify the equivalence of two braid words without requiring to compute a normal form.
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