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Abstract

We consider the access control problem in a scenario where a group of users is divided
into a number of disjoint classes located at di�erent privilege levels, in such a way that
any class can access the private data of any of its descendant lower level classes, but the
opposite is not allowed. This multilevel security problem arises in organizations where a
hierarchical structure exists. Government, diplomacy and the military are examples of
such hierarchies.

The access control problem in a hierarchy can be solved by using a hierarchical key

assignment scheme, where a trusted central authority assigns an encryption key and some
private information to each class. For each class, the encryption key is used to protect
private data by means of a symmetric cryptosystem, while the private information is used
to compute the key assigned to each class lower down in the hierarchy.

In this paper we propose an information-theoretic approach to hierarchical key assign-
ment schemes. We consider schemes which are unconditionally secure against attacks
carried out by a coalition of classes of a certain size. We show a lower bound on the
amount of the private information that each class has to store and propose an optimal
construction for unconditionally secure hierarchical key assignment schemes.

1 Introduction

The access control problem deals with the speci�cation of users' access permission and is a

fundamental issue in any system that manages distributed resources, such as e-newspaper,

pay-TV subscription services, etc. The hierarchical access control problem is de�ned in a

scenario where the users of a computer system are organized in a hierarchy formed by a

certain number of disjoint classes, called security classes. A hierarchy arises from the fact

that some users have more access rights than others. For example, there are several situations

where supervisors have all the privileges to control the tasks of their subordinates, while the

subordinates have no privileges at all to access the supervisors' tasks. Similar situations

abound in other areas, particularly in the government and military.

The hierarchical access control problem can be solved by using a hierarchical key assign-

ment scheme, that is, a method to assign an encryption key and some private information to

each class. The encryption key will be used by each class to protect its data by means of a

symmetric cryptosystem. The private information will be used by each class to compute the

143



keys assigned to all classes lower down in the hierarchy. This assignment is carried out by a

central authority, the CA, which is active only at the distribution phase.

In a perfectly secure hierarchical key assignment scheme, the key assigned to each class Ci

is secure against a coalition of all the classes which are not entitled to access Ci's secret data,

i.e., even pooling together their private information, they cannot compute anything about

that key. The basic and straightforward perfectly secure hierarchical key assignment scheme

requires each class to memorize the encryption keys assigned to all classes lower down in the

hierarchy. The disadvantage of this solution is that it penalizes users in high level classes

requiring them to handle more information than users in low level classes. Given the high

complexity of such a scheme, a natural step is to trade complexity for security. We may still

require that the key assigned to each class is unconditionally secure, but only with respect to

an adversary controlling a coalition of classes of a limited size.

In this paper we design and analyze hierarchical key assignment schemes secure against

attacks carried out by coalitions of classes of a certain size. We prove a lower bound on

the size of the private information held by each class in such schemes. For perfectly secure

hierarchical key assignment schemes, we show that the basic straightforward scheme is optimal

with respect to the private information distributed to each class. We also show an optimal

construction for hierarchical key assignment schemes secure against attacks carried out by a

single class in a rooted tree hierarchy.

1.1 Related Work

The problem of reducing the inherent complexity of the basic straightforward hierarchical

key assignment scheme was �rst considered by Akl and Taylor [1], who proposed an elegant

solution for the general problem where the hierarchy on security classes is an arbitrary partial

order. In their scheme, each class is assigned a key that can be used, along with some public

parameters generated by the CA, to compute the key assigned to any class lower down in

the hierarchy. Subsequently, many researchers have proposed schemes that either have better

performances or allow inserting and deleting classes in the hierarchy.

The most used approach to hierarchical key assignment schemes (di�erent from the one

proposed in this paper) is based on unproven speci�c assumptions (e.g., [1, 2, 5, 6, 7, 8, 9,

10, 11]). We remark that our approach is information theoretic and indeed di�ers from the

above computational approach since it does not depend on any unproven assumption. Yet,

our bounds serve as foundations for the hierarchical access control problem in general, and in

particular allow us to formally prove the optimality of the basic and straightforward scheme

if we allow sets of classes of any size to collude against a single class.

2 The Model

In this section we present the hierarchical access control problem. Consider a set of users

divided into a number of disjoint classes, C1; : : : ; C`, called security classes. A security class

can represent a person, a department, or a user group in an organization. In accordance

with authority, position, or power, there is a binary relation � that partially orders the set

of classes C = fC1; : : : ; C`g. The poset (C;�) is called a partially ordered hierarchy. For any
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two distinct classes Ci and Cj, the notation Ci � Cj is used to indicate that the users in

Cj can access Ci's data. In the real world there are several examples of hierarchies where

an access control is required. Applications exist in business and in other areas of the private

sector, for example in the management of databases containing sensitive information or in

the protection of industrial secrets. Similar situations abound in other areas, particularly in

the government and military.

The partially ordered hierarchy (C;�) can be represented by a directed acyclic graph,

where each class corresponds to a vertex in the graph and there is an edge from class Cj

to class Ci if and only if Ci � Cj . Further, this graph can be simpli�ed by eliminating all

the edges which can be implied by the property of the transitive closure. Figure 1 shows an

example of a partially ordered hierarchy.

C4 C6

C1

C2 C3

C5

Figure 1: An example of a partially ordered hierarchy.

For any i = 1; : : : ; `, we de�ne the accessible set of Ci as the set of indices corresponding

to all descendant classes of Ci, including Ci itself, i.e., Ai = fj : Cj � Cig [ fig. A class Ci

such that Ai = fig is called a leaf class. Leaf classes correspond to the lowest security level in

the hierarchy. For any i = 1; : : : ; `, we also de�ne the forbidden set of Ci as the set of indices

corresponding to all classes that cannot access class Ci, i.e., Fi = fj : Ci 6� Cjg, where the

notation Ci 6� Cj is used to indicate that the users in Cj have no access to Ci's data. For

example, consider the partially ordered hierarchy of Figure 1. The accessible and forbidden

sets of each class are the following:

A1 = f1; 2; 3; 4; 5; 6g F1 = f2; 3; 4; 5; 6g
A2 = f2; 4; 5g F2 = f3; 4; 5; 6g
A3 = f3; 5; 6g F3 = f2; 4; 5; 6g
A4 = f4g F4 = f3; 5; 6g
A5 = f5g F5 = f4; 6g
A6 = f6g F6 = f2; 4; 5g

The hierarchical access control problem can be solved by using a hierarchical key assign-

ment scheme, where a trusted third party, called the central authority (CA), has the task to

assign a key and some private information to each class in the hierarchy. For any class Ci,

we denote by pi the private information sent by the CA to users in class Ci and by ki the

key assigned to class Ci. Moreover, we denote by Pi and Ki the sets of all possible values

that pi and ki can assume, respectively. Given a set X = fi1; i2; : : : ; ivg � f1; : : : ; `g, where

i1 < i2 < : : : < iv, we denote by P
X

and K
X

the set P
i1
� � � � � P

iv
and K

i1
� � � � � K

iv
,

respectively.
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In this paper, with a boldface capital letter, say Y, we denote a random variable taking

values on a set, denoted with the corresponding capital letter Y , according to some probability

distribution fPr
Y
(y)gy2Y . The values such a random variable can take are denoted by the

corresponding lower case letter. Given a random variable Y we denote by H(Y) the Shannon

entropy of fPr
Y
(y)gy2Y (we refer the reader to [3] for a complete treatment of Information

Theory).

We consider hierarchical key assignment schemes where the key assigned to each class

is unconditionally secure with respect to an adversary controlling a coalition of classes of

a limited size. Our schemes are characterized by a security parameter r, the size of the

adversary coalition. The maximum value that the security parameter r can assume is equal to

maxi=1;:::;` jFij, since any adversary coalition for class Ci can contain at most jFij classes. We

formally de�ne r-secure hierarchical key assignment schemes by using the entropy function,

mainly because this leads to a compact and simple description of the schemes and because

the entropy approach takes into account all probability distributions on the keys assigned to

the classes. An r-secure hierarchical key assignment scheme is de�ned as follows.

De�nition 2.1 Let (C;�) be a partially ordered hierarchy and let 1 � r � maxi=1;:::;` jFij.

An r-secure hierarchical key assignment scheme for (C;�) is a method to assign a key to each

class in such a way that the following two properties are satis�ed:

1. Any class allowed to access another class can compute the key assigned to that class.

Formally, for any i = 1; : : : ; `, and any j 2 Ai, it holds that

H(KjjPi) = 0:

2. Any coalition of at most r classes not allowed to access another class have absolutely

no information about the key assigned to that class.

Formally, for any j = 1; : : : ; ` and any X � Fj such that jXj � r, it holds that

H(KjjPX
) = H(Kj):

In Section 3.1 we will consider hierarchical key assignment schemes where each key is secure

against any coalition of classes having size at most r = maxi=1;:::;` jFij. In the following, these

schemes will be called perfectly secure hierarchical key assignment schemes. In Section 3.2 we

will restrict our attention to 1-secure hierarchical key assignment schemes, i.e., schemes such

that each key is secure against a single class trying to compute it.

3 Lower Bounds

In this section we prove lower bounds on the size of the private information held by each class

in any r-secure hierarchical key assignment scheme. In order to prove our results we need the

next de�nition.

De�nition 3.1 Let (C;�) be a partially ordered hierarchy. In any r-secure hierarchical key

assignment scheme for (C;�), for any i = 1; : : : ; `, a sequence of classes C1 : : : Cm is called

r-independent for Ci if the following properties are satis�ed:
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1. f1; : : : ;mg � Ai;

2. For any j = 2; : : : ;m, there exists a set Xj � Fj such that

(a) jXjj � r,

(b) f1; : : : ; j � 1g � [h2Xj
Ah:

For example, consider the hierarchy shown in Figure 1. It is easy to see that C4C2C1,

C5C2C1, C5C3C1, and C6C3C1 are 1-independent sequences for C1, whereas, C4C5C6C2C3C1

is a 5-independent sequence for C1. Moreover, C4C2 and C5C2 are 1-independent sequences

for C2, whereas, C4C5C2 is a 2-independent sequence for C2.

The next theorem states a lower bound on the size of the private information distributed

to each class in any r-secure hierarchical key assignment scheme.

Theorem 3.2 Let (C;�) be a partially ordered hierarchy. In any r-secure hierarchical key

assignment scheme for (C;�), for any i = 1; : : : ; `, if there exists an r-independent sequence

of classes C1 : : : Cm for Ci, then it holds that

H(Pi) �
mX

j=1

H(Kj):

Proof. Let Ci be a class and let C1 : : : Cm be an r-independent sequence for Ci. From 1. of

De�nition 3.1 and 1. of De�nition 2.1 it follows that H(KjjPi) = 0, for any j = 1; : : : ;m:

Hence, we have that

H(K1 : : :KmjPi) �
mX

j=1

H(KjjPi) = 0: (1)

Consider the mutual information I(Pi;K1 : : :Km): It holds that

H(Pi)�H(PijK1 : : :Km) = H(K1 : : :Km)�H(K1 : : :KmjPi): (2)

Since H(PijK1 : : :Km) � 0, from (1) and (2) it follows that

H(Pi) � H(K1 : : :Km): (3)

Since C1 : : : Cm is an r-independent sequence for Ci, from 2. of De�nition 3.1 we have that, for

any j = 2; : : : ;m, there exists a set Xj � Fj such that jXj j � r and f1; : : : ; j�1g � [h2Xj
Ah:

Therefore, from 2. of De�nition 2.1 it holds that

H(KjjPXj
) = H(Kj): (4)

Moreover, from 1. of De�nition 2.1 we have that

H(K1 : : :Kj�1jPXj
) �

j�1X

s=1

H(KsjPXj
) = 0:

Hence, it follows that

H(K1 : : :Kj�1jKjPXj
) � H(K1 : : :Kj�1jPXj

) = 0: (5)
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Consider the mutual information I(Kj;K1 : : :Kj�1jPXj
): It holds that

H(Kj jPXj
)�H(KjjK1 : : :Kj�1PXj

) = H(K1 : : :Kj�1jPXj
)�H(K1 : : :Kj�1jKjPXj

): (6)

Hence, from (5) and (6) it follows that

H(KjjK1 : : :Kj�1PXj
) = H(KjjPXj

): (7)

Therefore, it holds that

H(K1 : : :Km) = H(K1) +
mX

j=2

H(KjjK1 : : :Kj�1)

� H(K1) +
mX

j=2

H(KjjK1 : : :Kj�1PXj
)

= H(K1) +
mX

j=2

H(KjjPXj
) (from (7))

=
mX

j=1

H(Kj)(from (4). (8)

Hence, the lemma follows from equations (3) and (8).

In De�nition 2.1 we did not make any assumption on the entropies of random variables Ki

and Kj, for di�erent classes Ci and Cj. For example, we could have either H(Ki)>H(Kj)

or H(Ki) � H(Kj). Our results apply to the general case of arbitrary entropies of keys, but

for clarity we state the next result for the simpler case that all entropies of keys are equal,

i.e. H(Ki) = H(Kj) for all i; j 2 f1; : : : ; `g. We denote this common entropy by H(K).

Corollary 3.3 Let (C;�) be a partially ordered hierarchy. In any r-secure hierarchical key

assignment scheme for (C;�), for any i = 1; : : : ; `, if there exists an r-independent sequence

for Ci having length m, then it holds that

H(Pi) �m �H(K):

3.1 Perfectly Secure Hierarchical Key Assignment Schemes for Partially

Ordered Hierarchies

In this section we consider hierarchical key assignment schemes where each key is secure

against any coalition of classes having size at most r = maxi=1;:::;` jFij. These schemes are

called perfectly secure hierarchical key assignment schemes. We need the next de�nition.

De�nition 3.4 Let (C;�) be a partially ordered hierarchy. In any perfectly secure hierarchical

key assignment scheme for (C;�), for any i = 1; : : : ; `, any r-independent sequence of classes

for Ci is called an independent sequence for Ci.

For example, consider the hierarchy shown in Figure 1. It is easy to see that C4C5C6C2C3C1

is an independent sequence for C1. The next lemma shows how to construct an independent

sequence for each class Ci.
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Lemma 3.5 Let (C;�) be a partially ordered hierarchy. In any perfectly secure hierarchical

key assignment scheme for (C;�), for any i = 1; : : : ; `, there exists an independent sequence

of classes for Ci, whose length is jAij.

Proof. Let Ci be a class. We show how to construct an r-independent sequence of classes

for Ci having length jAij, where r = maxi=1;:::;` jFij. Let G be the direct acyclic graph corre-

sponding to classes whose indices belong to Ai and let CjAijCjAij�1 � � �C2C1 be the sequence

of classes output by the topological sorting on G. This sequence has the property that for

each edge (Cs; Ct) in G, i.e., such that Ct � Cs, the class Cs appears before than Ct in the

ordering. It is easy to see that C1C2 : : : CjAij is an independent sequence for Ci. Indeed,

f1; : : : ; jAijg = Ai and for any j = 2; : : : ; jAij, the set Xj = Fj satis�es Property 2. of

De�nition 3.1.

The next theorem easily follows from the previous lemma and from Corollary 3.3.

Theorem 3.6 Let (C;�) be a partially ordered hierarchy. In any perfectly secure hierarchical

key assignment scheme for (C;�), for any i = 1; : : : ; `; it holds that

H(Pi) � jAij �H(K):

Hence, each class Ci has to store a private information pi whose size is lower bounded by

the sum of the sizes of the keys assigned to all classes whose indices belong to the accessible

set Ai. This bound is tight. Indeed, the following basic and straightforward perfectly secure

hierarchical key assignment scheme meets it with equality.

Initialization phase

� The CA chooses a large prime number q.

Key generation phase

� For each class Cj , the CA randomly chooses a key kj 2 Zq.

Information distribution phase

� The CA sends the key kj to any class Ci such that j 2 Ai; over a private channel.

Figure 2: A perfectly secure hierarchical key assignment scheme.

For example, consider the hierarchy of Figure 1. The basic hierarchical key assignment

scheme distributes information as follows:

C1 gets (k1; k2; k3; k4; k5; k6) C2 gets (k2; k4; k5) C3 gets (k3; k5; k6)
C4 gets (k4) C5 gets (k5) C6 gets (k6)

It is easy to see that the scheme of Figure 2 satis�es De�nition 2.1. Indeed, each class Ci

gets the key kj assigned to any class Cj such that j 2 Ai, so Property 1. is satis�ed. As for

Property 2., since all keys are independently chosen by the CA, any jFij keys do not have any

information about the key ki assigned to class Ci. Finally, the scheme of Figure 2 meets the

bound of Theorem 3.6. Indeed, the users in class Ci receive exactly jAij keys, and the total

amount of this information is equal to jAij log q. Hence, the protocol is optimal with respect

to the size of the information distributed to users.
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3.2 Security against a Single Class for Partially Ordered Hierarchies

In the previous section we have shown the optimality of the basic and straightforward perfectly

secure hierarchical key assignment scheme. Given the high complexity of such an assignment

mechanism, a natural step is to trade complexity for security. Hence, in this section we

consider the lowest level of security, i.e., we restrict our attention to hierarchical assignment

schemes where each key is secure only against a single class in its forbidden set.

In the following, a sequence of m classes C1C2 : : : Cm�1Cm such that Cm � Cm�1 � � � � �

C2 � C1 will be called a path of length m. Given a class Ci, we will denote by hi the height

of Ci, i.e., the number of classes on the longest path from Ci to a leaf class in the hierarchy,

including the class Ci itself. For example, in the hierarchy shown in Figure 1, the sequence of

classes C1C2C4 is a path of length 3. The next lemma shows how to construct a 1-independent

sequence for each class Ci.

Lemma 3.7 Let (C;�) be a partially ordered hierarchy. In any 1-secure hierarchical key

assignment scheme for (C;�), for any i = 1; : : : ; `, there exists a 1-independent sequence of

classes for Ci whose length is hi.

Proof. Let Ci be a class at height hi. Hence, there exists a path of length hi starting in Ci.

W.l.o.g, let CiCi+1 : : : Ci+hi�1 be such a path. It is easy to see that Ci+hi�1 : : : Ci+1Ci is a

1-independent sequence for Ci.

The next theorem easily follows from the previous lemma and from Corollary 3.3.

Theorem 3.8 Let (C;�) be a partially ordered hierarchy. In any 1-secure hierarchical key

assignment scheme for (C;�), for any i = 1; : : : ; `, it holds that

H(Pi) � hi �H(K):

Hence, each class has to store a private information whose size is lower bounded by the

sum of the sizes of the keys assigned to the classes in the longest path from that class to a leaf

class. This bound is tight. Indeed, in the following we show a hierarchical key assignment

scheme for a particular kind of partially ordered hierarchy (the tree hierarchy) that meets it

with equality.

3.2.1 An Optimal Protocol for Tree Hierarchies

In this section we consider an important kind of partially ordered hierarchy: the rooted tree

hierarchy. The case of a rooted tree hierarchy was also considered by Sandhu [10] in the

computationally secure setting. In particular, Sandhu proposed a key assignment scheme

where each user holds exactly one key corresponding to its class and all users hold keys

having the same size. The key held by a class can be used to derive the keys of all descendant

classes. The bound of Theorem 3.8 shows that in the unconditionally secure setting we need

to distribute more information to each class, even if we require security only against a single

class.

In Figure 3 we show a 1-secure key assignment scheme for a rooted tree hierarchy with

maximum degree g and height h. In our scheme all keys assigned to classes have the same
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size, while the amount of private information distributed to each class depends on its height.

Our scheme satis�es Properties 1. and 2. of De�nition 2.1 (due to space constraints, the

proof is omitted and can be found in [4]). Moreover, the scheme is optimal with respect to

the private information held by each class. Indeed, each class Ci, at height hi, receives the

hi � 1 values (x1; : : : ; xhi�1) and its key ki from the CA. Hence, the size of the information

distributed to class Ci is equal to hi log q.

Initialization phase

� The CA chooses a large prime number q > h.

� The CA randomly chooses g pairs of integers (ai; bi) 2 Z�q � Z�q , for i = 1; : : : ; g, such
that the corresponding vectors are linearly independent. These pairs of integers are made
public.

� Then, the CA randomly chooses h integers (x1; x2; : : : ; xh) in Zq.

Key generation phase

� If Ci is the root class, then ki = xh.

� Let Ci be a class at height hi and let ki be the key assigned by the CA to class Ci.
Assume that the class Ci has gi � g children. W.l.o.g., let Ci1 ; : : : ; Cigi

be its children.
For any t = 1; : : : ; gi, the key for class Cit is computed by the CA as follows:

kit = atki + btxhit
mod q:

Information distribution phase

� Let Ci be a class at height hi > 1. The CA sends the hi � 1 values (x1; : : : ; xhi�1) to Ci

over a private channel. These values will be used by class Ci to compute the keys for all
classes in its accessible set. Moreover, the CA sends to Ci the key ki, computed in the
key generation phase.

� If Ci is a leaf class, i.e., hi = 1, then the CA sends to Ci only its key ki.

Figure 3: A 1-secure hierarchical key assignment scheme for a rooted tree hierarchy.

C4 C5 C6 C7

C1

C2 C3

(x1; x2; k1)

(x1; k2) (x1; k3)

(k4) (k5) (k6) (k7)

Figure 4: Information distributed by the 1-secure scheme of Figure 3.

Figure 4 shows an example of our scheme. The keys assigned to the classes in the rooted

tree of Figure 4 are computed as follows:
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k1 = x3 k2 = a1k1 + b1x2 mod q k3 = a2k1 + b2x2 mod q
k4 = a1k2 + b1x1 mod q k5 = a2k2 + b2x1 mod q k6 = a1k3 + b1x1 mod q

k7 = a2k3 + b2x1 mod q

Conclusions

In this paper we have proposed an information-theoretic approach to the access control prob-

lem in a hierarchy. Our approach does not depend on any speci�c unproven assumption. We

have considered hierarchical key assignment schemes which are unconditionally secure against

attacks carried out by a coalition of classes of a certain size. We have shown lower bounds

on the size of the private information held by each class and have proposed some optimal

constructions for unconditionally secure hierarchical key assignment schemes.

The same approach is extended in [4] to analyze key assignment schemes for any arbitrary

access control policy (i.e., where the set of classes is not necessarily a poset). There we also

show new bounds on the size of the information kept secret by each class and on the number of

random bits needed to set up a key assignment scheme. Moreover, we propose some optimal

constructions for such schemes.
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