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Abstract

For any ¢ = 2! > 2 and any m such that (m,q-1) = 1 a nonlinear code Py(m) over
the field F = GF(q) with parameters (¢(A + 1),¢*“~™ d > 3¢), where A = q::ll,
is constructed. If d = 3¢ this set of parameters generalizes that of the classical binary
Preparata code. The equality d = 3¢ is established in the following cases: (1) for a
series of initial admissible values ¢ and m such that ¢™ < 21%0; (2) for m = 3,4 and any
admissible ¢, and (3) for admissible ¢ and m such that there exists a number m; with
mq|m and d(P,(m1)) = 3q. We apply the approach of [8]: the code P is a Reed—Solomon
representation of a linear over the Galois ring R = GR(¢?,4) code P dual to a linear code
K with parameters near to those of generalized linear Kerdock code over R.

1 Basic notions

Here we continue investigations of the paper [11]. Let R = GR(¢%,4) be a Galois ring with
identity e of characteristic 4 and cardinality ¢®, ¢ = 2!, 1 > 1. Then (see e.g. [5, 9]) the
top-factor R = R/2R of the ring R is a field of ¢ elements, the set

,(R)y={reR: r"=r}={reR: T|ﬁ|:r}

has cardinality ¢ and is called the (Teichmueller) coordinate set of the ring R. Any element
r € R is a unique sum r = ro + 271, where 7, = y(r) €, (R), t = 0,1. If we define ® on , (R)
by the rule u ® v = yo(u + v) then (, (R),®,-) is a field GF(q). In the following we denote
F=,(R).
Let
F=,(R)={wy=0,w1=¢,... ,wg_1}

and v«: R — F7 be the map acting on an element r = ry + 2r; € R by the rule
’}/*(7”) = (7”1,7"1 Dwirg,... , 71 D wq_lTo). (1)

Then ~v.(R) is a [g,2,¢ — 1]; Reed—Solomon code over F' = G'F(q) and therefore the map 7,
is called RS-map [8]. Note that if ¢ = 2, i.e. if R = Z4, then ~, is the so called Gray map
from [7].
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With any h-code P C R" over the ring R we can associate an RS-representation P =
Y2 (P) C F*. Tt is a code of the length gh over F, consisting of all words

7(@) = (1(u(0)),.. ,plu(h — 1)), TE€P. (2)

So P is a concatenation of the code P over R and a linear over F code 7y.(R). Note
that if P is a subgroup of the group (R",+) then P is distance invariant [2]. In this case
the Hamming distance d(P) of the code P equals to the minimum of Hamming weights of
nonzero words of P [8, 9].

If P is a linear code over R ie. P < rR" (is a submodule of the R-module rR"), we
call P an (R, ~«)-linear code (and sometimes briefly an R-linear code). An R-linear code P is
distance invariant but may be nonlinear.

2 Main construction and results

Here we suppose that ¢ = 2,1 > 1. Let S = GR(¢*™,4) be a Galois extension of the degree m
of the Galois ring R = GR(¢?,4) with Teichmueller coordinate set

L(S)={8eS: g =py={Bes: =3}

Any element 3 € S is a unique sum 3 = [y + 261, where 3; = v(8) €, (S), t = 0,1. If we
define a new operation @ on , (S) by the rule u ® v = yo(u 4+ v) then (, (5),®,-) is a field
GF(¢™) and the field F =, (R) ={8 € S: (37= [} is a subfield of Q =, (5).

Let us take an element £ € Q* of order ord§ = A = q;n__ll and define Pr(m) as a linear
code of the length h = A 4+ 1 over the ring R with check matrix

e e e ... e
H = Hy(m) = ( 0 e & ... go1 )
It is easy to see that this code is a free R-module of the rank A — m. We shall call its
RS-representation Py(m) = v*(Pr(m)) the generalized Preparata code. Note that if ¢ = 2

then ¢ is a primitive element of the field @ and if m is odd then Py(m) is the original binary
Preparata code in the form of the paper [7] with parameters expressed as

(2mFL, 9227 1mm) 6y = (g(A +1), ¢4 ™), 3).

If ¢ > 4 then the following statement gives a necessary condition for the equality d(FP,(m)) =
3q.

Proposition 1 If ¢ >4, (m,q—1)>1 then d(Py(m)) =3(q —1).

Proof. The condition (m,q — 1) > 1 is equivalent to the condition (A,q — 1) > 1 and means

that €* = a € F'\ {0,e} for some k € I,A—1. Then the elements ¢* and e are roots of

the polynomial G(z) = 2 — (a + e)x + e € R[z] with invertible coefficients. Now it is not

difficult to see that the word # € R® with the only 3 nonzero coordinates e, —(a + ¢€), e in the

appropriate places belongs to the code P. Thus d(Py(m)) < ||7«(?)|| =3(¢ — 1). m|
One of our main results is
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Theorem 2 If ¢ =2' > 4 and (m,q — 1) = 1 then the generalized Preparata code Py(m) is a
(g(A +1),¢*2=™) d > 3q)-code over the field F = GF(q). Moreover, if ¢ > 4 and m is even
then d(Fy(m) € {34, 4(q — D)},

Proof. Let P = Py(m). To prove the inequality d(P) > 3¢ we note first that P is a distance
invariant code and contains the zero word, hence d(P) is equal to the minimal weight of the
non zero words v.(7) € P, where 7 € P. Let # € P\ 0 and s; = s;(v) (i = 0,1) be the number
of coordinates of the word ¢ that belong, respectively, to R\ 2R and 2R \ 0. Then

[17+(@)|| = s0(q — 1) + s1¢ = (50 + 51)q — S0. (1)

Note that so > 2. Indeed, let H be the image of the matrix H under the natural homomor-
phism S — S = GF(¢™), then sy # 1 since the matrix H does not contain zero columns,
and sy # 2 since sy = 2 means that some column of the matrix H is equal to another one
multiplied by some coefficient from R which is also impossible. Then (1) and the condition
g > 4 imply that the desired inequality is a consequence of the following statement: if so = 3
then s; > 0.

Suppose, on the contrary, that so = 3, s; = 0. Then for some suitable 0 <a <b<c <A
and vg, v, V. € R* we have

€% + &Y + v, =0 and vy + vp +ve = 0. (2)
Therefore, multiplying both sides of the first equality by (v,&*)~! we get

e+utf =(e+u)E, weR, 0<k<I<A. (3)
Now we will show that this is impossible. Let u = ug + 2u;, where us = v5(u) € , (S). Then

uwg#0 and wupFe (4)

since in the latter case (3) implies Hgk =cand Ek € R" which is invalid because (q—1,m) = 1
. — —* _
(ie. ()R = {e}).
Let ¢ be the automorphism of S over R such that o(a) = o? for any a € , (9) [3, 5)).
Applying o to both sides of (3) we obtain
e+o(u)e™ = (e+a(u))é. (5)
Denote ¥ = o and ¢! = 8. The one can rewrite (5) as
e+ (ud 4 2ud)a? = (e + (ud + 2u2))3% (6)
Taking squares of both sides of (3) we obtain
e+ 2uga + uda® = (e 4 2up +ud)) 3% (7)
Subtracting (6) from (7) we arrive to an equality
2uga +uia?) = 2(up + uf)s?, (8)
which is equivalent to the following relation in the field (, (S),®,):

uper ® ula® = (uo ® u?)3%. (9)
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Note now that reducing (3) modulo 2 we get the following:
e ®upa = (e D ug)fS
and e ® up # 0 in view of (refcondu0). Thus
8= (e ®upa)(e ®ug)™ "
Then from (9) we deduce
(o ® u2a?) = (up ® u?)(e @ uda?)(e ®ud)~t.

It follows that « is a root of the polynomial

2

(ud ® u?)2? @ (ud ® wo)z ® (uo ® u?) €, (R)[z].

It is evident that this polynomial has a root x = e, so the its other root a must also belong
to, (R), a contradiction.

In order to prove the last statement of the Theorem note that if m is even then the
element o = &*, where k = % has the order ¢ + 1 and is a root of the polynomial
F(z)=(z—a)(x—a) =22 +azx+e € R[z], where @ = £ +¢ ¢ {0,€} since ¢ > 2. Therefore
elements a and e are roots of the polynomial G(z) = (z —e)F(z) = 2® + g222 + 17— e € R[z],
where g1, g2 € R*. Now it is easy to see that the word # € R with only 4 nonzero coordinates
—e, 91,92, ¢ in the appropriate places belongs to the code P. Thus d(P,(m)) < ||7(9)]| =
4(q —1). Tt is enough now to note that according to (1) for any @ € R* the condition
3q < [ly«(9)I| < 4(g — 1) implies || (?)|| € {3¢,4(¢ — 1)}- o

For the first three initial values of m we can prove the following “exactness property” of
the Theorem 2.

Proposition 3 d(P,(2)) = 4(g — 1) for arbitrary ¢ = 2'.

Note, by the way, that d(Py(2)) = 4(¢ — 1) = 3¢ for ¢ = 4 and d(P,(2)) > 3¢ in other
cases.
Proposition 4 d(P,(m)) = 3¢ for m = 3,4 and any q¢ = 2" such that (g —1,m) = 1.

Sketch of the proof of Propositions 3, 4. In view of the Theorem 2 in order to prove Proposition
4 (Proposition 3) it is enough to show that the code Pr(m) (resp. the code Pgr(2)) contains
(resp. does not contain) a word of the Hamming weight 3 with coordinates in 2R. The
code Pr(m) contains such a word if and only if there is a linear dependence over the field F’
between some three columns of the check matrix H defined above and being considered as a
matrix over the field F, or, equivalently, that there exist two numbers £,/ € 1,A — 1 and an
element a € P\ {0,1} such that

e+att = (e +a). (10)

(in this Proof we use for brevity the notation + instead of @ for the addition in £'.) One can
eliminate [ by taking A-th power of the both sides:

(e+ath)® =(e+a)® =(e+a)™ (11)
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The left part of (11) has the following expression:

1

(e+ath)? = (€+a§k)(e+a§kq)...(e—i—a{qu* ) = 12)
am(a_l +§k)(a_1 + (fk)q) . (a_l + (é.k)qk—l).
Let f =o' and
m—1
fi(@) = J[ (@ — €7 =a™ + 12 a4t P+ g (13)
=0

Thus fi(z) is a power of the minimal polynomial of the element ¢*, hence fix(z) € Flz] and

fék) = e. Rewriting (12) we obtain

(e + ot =amfi(B) =e+ [P a+ ...+ fFaml 4 om (14)

Equations (11) and (14) imply that solvability of (10) is equivalent to the equality
m m .
e+ ffflla + ...+ fl(k)am_l +a™ = Z ( . > o', (15)

i.e. to the equality

1

ml((’“)+(i>>a“=0 (16)

=

for some o € F'\ {0,e} and k € 1,A — 1. Consider the polynomial

ha(w) = (£32, +m) + (f('”) (72”)>x+...+(f’“)+(m7f1))xm—2. (17)

It follows that solvability of (10) is equivalent to existence of such element &* that the poly-
nomial hy(z) has a root a in F'\ 0.
If m = 2 then hy(z) = f(kll = l(k) # 0 has no roots in F. So Proposition 3 is proved.
Consider the case m = 3. Now we have

hi(z) = (£ +e)+ (fF + e)a,

and it is sufficient to prove that there exists an element § = ¢* such that
k k
P #e and f #e. (18)

If fl(k) = e then fi(z) = 2 + fZ(k)xZ + x + 1 is irreducible, so the number of such polynomials
is not greater than ¢ — 1 (the polynomial 3 + 22 + z + e = (e + )3 does not belong to this
family), so these polynomials can not have more than 3(g— 1) roots in the group = = (£). An
analogous argument shows that the number of roots of irreducible polynomials of the form
fe(z) = 23 + 2% + fl(k)x + 1 in E is also not greater than 3(¢ — 1). Thus there are not more
than 6(¢ — 1) elements § = £¥ € = such that the condition (18) is not satisfied. Note finally
that

2 —6(g—1)=q¢’+q+1-60+6=¢"—4g+4—(¢—3)=(q—2)—(¢—3)>0
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for any ¢ > 4. Hence there are elements in = such that the condition (18) is fulfilled.
Case m = 4 can be settled with similar but more elaborate arguments. In this case we
have
i) = £+ (00 1 (e

and it is sufficient to prove that there exists an element § = ¢* such that
i =0, g5V #0 1P #0
This fact is proved using the properties of quadrics over a field of characteristic 2. a

By computation we have also the following

Proposition 5 The equality d(P,(m)) = 3q is true for all values of ¢ = 2" > 4 and m such
that ¢™ < 2190 and (¢ —1,m) = 1.

These results allow us to “enlarge” the infinite set of generalized Preparata codes with
d(P,(m)) = 3¢, using the following properties of the function d(F,(m)).

Proposition 6 Under the conditions of Theorem 2 if mi|m then d(Py(m)) < d(Py(m1)). In
particular if (g —1,m) =1, mi|m and d(P,(m1)) = 3¢, then d(P,;(m)) = 3q.

Proof. 1t is enough to note that any column of the matrix Hy(m1) can be considered as a
column of the matrix Hy(m). O

The similar reasons give
Proposition 7 Under the conditions of Theorem 2 if k €N, (¢* —1,m) =1 and

" -1
qg—1

qkm_l
¢ -1

then
d(Py(m)) = 3g = d(P,x(m)) = 3¢".

m_l‘qkm
-1 qk,1

Proposition 8 For a prime m the condition a is equivalent to (m,k) = 1.
These results allow us to formulate the following

Conjecture. The equalities d(Py(2)) = 4(q — 1), d(P,(m)) = 3q hold for any ¢ = 2!, m > 2

and
m s odd if g =2,
(myq—1)=1 ifqg>2.

Note that in order to prove this Conjecture it is sufficient, in according to Propositions 4,
6, to prove it only for prime values of m. For example, using the Proposition 5, we can state
that for ¢ = 4 the minimal value of m in question is m = 53.
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3 A code linearly dual to the Preparata code

Let K° be the code dual to a linear code K < rR" relative to the standard scalar product.
Then again K° < pR" and we shall call the R-linear code

Ky = bk €

(linearly) R-dual to the (R-linear) code K.

In [4, 5] Zglinearity of the classical binary Kerdock (27F1,22(m+1) 9m _ 92 code, where
m is odd and A = [m/2] (see [1]), was discovered. Further in [7] it was noted that the classical
binary Preparata code with parameters

(2m+1, 22(2”" —1—m)7 6)

is Z4-dual to the binary Kerdock code. Simultaneously in [6] a generalized Kerdock code
K,(m) over any Galois field F = GF(q), ¢ = 2!, > 1 with parameters

(n,n%, (g = 1)/g)(n = v/n)), n=¢™*,mis odd

was constructed. This code has the form K,(m) = v*(Kr(m)), where Kr(m) < pR" is a
special linear code of the length h = ¢™, called the basic linear code (see below).

However the attempts to build a generalized Preparata code by analogy with [7] as a
code R-dual to K,(m) were unsuccessful: for ¢ > 2 the code K,(m); = y*(Kg(m)°) has the
distance 3(q — 1) (see [8] and [10] for R = Z2,q — prime, odd). So the distance formula
of such “generalization” of Preparata code is not a generalization of the distance of original
binary Preparata code: for ¢ = 2 we have 3 instead of 6 = 3¢q. Nevertheless, this very
construction was called in [10] the generalization of Preparata code. We have proposed above
some alternative approach to the definition of this notion. Now we compare the parameters
of the code R-dual to P,(m) with those of the generalized Kerdock code.

The code Pr(m)° dual to the initial linear code Pr(m) consists of all words 7 = (v(0)...v(h — 1))
of the length A = A + 1 such that for some « € S, c € R

v(i) = Tri(a) +¢, i=0,h—2, wvh—1)=c, (19)

where Tr3,(z) is the trace-function from S onto R, Tri(z) =Y, o(x), o spans the group of
automorphisms of S over R). We shall denote it by KLr[¢].

Note that if we substitute in (19) the primitive element £ of the field @ instead of the
element ¢ of order A and take h = ¢™, then we obtain the basic linear code for the generalized
Kerdock code: Kr[¢] = Kr(m).

In the considered case we shall call Kg[¢] the reduced basic code and denote it by Kjs?(m).
Correspondingly we shall call the code K;Ed(m) = yM(Kd(m)) the reduced (generalized)
Kerdock code.

Proposition 9 If n is the length and C the cardinality of the reduced Kerdock code K;e‘l(m)
then
q
n=gAdt+l) = To"+g-2), O= ¢ = ((¢ - Dn — ¢* +29)".
If q=4,(m,q — 1) = 1, then the distance d of this code satisfies the inequalities

4m—4[%12d24m—g.4%+2
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In comparison with the parameters (n,n2, %(n —+/n) of the generalized Kerdock code over

F the cardinality C of our code is greater: C' ~ (q — 1)2n?, but the distance is less. The last

inequalities allow to state that for ¢ = 4 there is the equality

qg—1
q

d=

(n —¢(m)y/n), where 6.54 > c(m) > 0.577- 222 X = [m/2].

Apparently the last estimations are rather rough.
First of all note that in addition to the well known fact that

Py(3) = Ky(3) = K5°(3)

is a (16,28,6)2-code, we have now that

Py(2) = K§*(2)

is a (24,4%,12)4-code. In particular ¢(2) ~ 1.77.
The following results of calculations for ¢ = 4 allow to conjecture that for m > 4 really
3 >c(m) > 2.

m n 4m 4 | d 4mf%2m+2 c(m)n}ild
2 24 12 12 -4 177
4 344 240 238 167 1.44
5 1368 1008 962 845 2.31
7 21848 16320 16146 15661 2.17
8 87384 65280 65048 64087 2.21

For the indicated values of m the Hamming weight enumerators of the code K}°¥(m) were
calculated. The possible values of weights of the codewords are the following.
For m = 2:
442042, e {-3,-1,0,1},

d=12=4m—-3.2 12,
For m = 4:

4™ 472V +2, i€ —5,5;

4m 4 e T3

d=238=4m—5.2" + 2.
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For m =5:
4m 42 49 e {8,755}

4m g ML e (-5,73,-1,1,3,5);
d=962=4%—8-23+2.
Form=T7:
4m 4 i-20 42, i e {—30,-26,—22,—21,—19, 21,23, 25,29};
4™ 4 ML 8 e {<13,9,11);
am 4N ie {=1,1)
d=16146 = 4™ —4-4* +18.

For m = 8:
47" 4 M 49 e —14,13;

4m4 i M 8 e {—15,712,12,14,17};
4™ 44> e =1L,
d = 65048 = 4™ — 2 - 4> 1 24,

Thus if the Conjecture formulated in the previous section is true then we can say that

Zy-duality of binary Kerdock and Preparata codes is in some sense casual result. In fact

the

code R-dual to the generalized (in our sense) Preparata code over GF(2!) is the reduced

Kerdock code K;e‘l(m) which is equal to the generalized Kerdock code K4(m) only if ¢ = 2.

The authors are grateful to Professor A. V. Mikhalev for helpful discussions of the text of

this paper.
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