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Abstract

In this paper homomorphic cryptosystems are designed for the �rst time over any
�nite group. Applying Barrington's construction we produce for any boolean circuit of
the logarithmic depth its encrypted simulation of a polynomial size over an appropriate
�nitely generated group.

1 Homomorphic cryptography over groups

1.1. De�nitions and results. An important problem of modern cryptography concerns
secret public-key computations in algebraic structures. There is a lot of public-key cryptosys-
tems using groups (see e.g. [7, 8, 9] and also Subsection 1.3) but only a few of them have a
homomorphic property in the sense of the following de�nition.

De�nition 1.1 Let H be a �nite nonidentity group, G a �nitely generated group and f :
G ! H an epimorphism. Suppose that R is a right transversal of ker(f) in G, A is a set
and P : A ! G is a mapping such that im(P ) = ker(f). A triple S = (A;P;R) is called a
homomorphic cryptosystem over H with respect to f , if the following conditions are satis�ed
for a certain integer N � 1 (called the size of S):

(H1) the elements of the set A are represented by words in a certain alphabet; one can get
randomly an element of A of size N within probabilistic time NO(1),

(H2) the elements of the group G are represented by words in a certain alphabet; one can test
the equality of elements in G and perform group operations in G (taking the inverse and
computing the product) in time NO(1), provided that the sizes of corresponding words
are at most N ,

(H3) the set R, the group H and the bijection R ! H induced by f , are given by the list
of elements, the multiplication table and the list of pairs (r; f(r)), respectively; jRj =
jH j = O(1),

(H4) the mapping P is a trapdoor function, i.e. given a word a 2 A of the length jaj an
element P (a) can be computed within probabilistic time jajO(1), whereas the problem
INVERSE(P ) is computationaly hard, while it can be solved by means of some additional
secret information,
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where for any mapping P : A ! G we de�ne INVERSE(P ) to be the problem of testing
whether given g 2 G belongs to im(P ) and yielding a random element a 2 A such that
P (a) = g whenever g 2 im(P ).

Remark 1.2 Having random generating in the set A one can easily generate elements of the
group G in a form P (a)r, a 2 A, r 2 R.

In a homomorphic cryptosystem S the elements of H playing the role of the alphabet of
plaintext messages are publically encrypted in a probabilistic manner by the elements of G
playing the role of the alphabet of ciphertext messages, all the computations are performed
in G and the result is decrypted to H. More precisely:

Public Key: homomorphic cryptosystem S.

Secret Key: INVERSE(P ).

Encryption: given a plaintext h 2 H encrypt as follows: take r 2 R such that f(r) = h
(invoking (H3)) and a random element a 2 A (using (H1); the ciphertext of h is the element
P (a)r of G (computed by means of (H2) and (H4)).

Decryption: given a cyphertext g 2 G decrypt as follows: �nd the elements r 2 R and a 2 A
such that rg�1 = P (a) (using (H4)); the plaintext of g is the element f(r) of H (computed
by means of (H3)).

The main result of the present paper consists in the construction of a homomorphic
cryptosystem over arbitrary �nite nonidentity group; the security of it is based on the di�culty
of the following slight generalization of the factoring problem FACTOR(n;m): given a positive
integer n = pq with p and q being primes (of the same size), a number m � 2 of a constant
size such that G=(Z�

n)
m �= Z

+
m where G = fg 2 Z

�

n : Jn(g) 2 f1; (�1)m (mod 2)gg with Jn
being the Jacobi symbol, and a transversal of (Z�

n)
m in G, �nd the numbers p; q. In addition,

we assume that mjp� 1 and GCD(m; q� 1) = GCD(m; 2), although one could get rid of this
extra assumption.

Theorem 1.3 Let H be a �nite nonidentity group and N 2 N. Then one can design a homo-
morphic cryptosystem S(H;N) of the size O(N) over the group H; the problem INVERSE(P )
where P is the trapdoor function, is probabilistic polynomial time equivalent to the problems
FACTOR(n;m) for appropriate n = exp(O(N)) and m running over the divisors of jHj.

First a homomorphic cryptosystem for a cyclic group H is designed in Section 2, in this
case the group G is a �nite Abelian group. Then in Section 3 a homomorphic cryptosystem
is yielded for an arbitrary H, in this case the group G being a free product of certain Abelian
groups produced in Section 2. In Section 4 we recall the result from [1] designing a polynomial
size simulation of any boolean circuit B of the logarithmic depth over an arbitrary unsolvable
group H (in particular, one can take H to be the symmetric group Sym(5)). Combining this
result with Theorem 1.3 provides an encrypted simulation of B over the group G: the output
of this simulation at a particular input is a certain element g 2 G, and thereby to know the
output of B one has to be able to calculate f(g) 2 H, which is supposedly to be di�cult
due to Theorem 1.3. We mention that a di�erent approach to encrypt boolean circuits was
undertaken in [13].
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1.2. Discussion on complexity and security. One can see that the encryption proce-
dure can be performed by means of public keys e�ciently. However, the decryption procedure
is a secret one in the following sense. To �nd the element r one has to solve in fact, the mem-
bership problem for the subgroup ker(f) of the group G. We assume that a solution for
each instance g0 2 ker(f) of this problem must have a \proof", which is actually an element
a 2 P�1(g0). Thus, the secrecy of the system is based on the assumption that �nding an ele-
ment in the set P�1(g0) i.e. solving INVERSE(P ) is an intractable computation problem. On
the other hand, our ability to compute P�1 enables us to e�ciently implement the decryption
algorithm. One can treat P as a proof system for membership to ker(f). Moreover, in case
when A is a certain group and P is a homomorphism we have the following exact sequence
of group homomorphisms

A
P
!G

f
!H!f1g (1)

(recall that the exact sequence means that the image of each homomorphism in it coincides
with the kernel of the next one).

The usual way in the public-key cryptography of providing an evidence of the security of a
cryptosystem is to �x a certain type of an attack (being an algorithm) of cryptosystems and to
prove that a cryptosystem is resistant with respect to this type of an attack. The resistancy
means usually that breaking a cryptosystem with the help of the �xed type of an attack
implies a certain statement commonly believed to be unplausible. The most frequently used
in the cryptography such statement (which we involve as well) is the possibility to factorize
an integer being a product of a pair of primes. Thus a type of an attack we �x is that to
break a homomorphic cryptosystem means to be able to solve INVERSE(P ) (in other words,
reveal the trapdoor).

Notice that in the present paper the group H is always rather small, while the group G
could be in�nite but being always �nitely generated. However, the in�nitness of G is not an
obstacle for performing algorithms of encrypting and decrypting (using the trapdoor informa-
tion) since G is a free product of groups of a number-theoretic nature like Z�

n; therefore one
can easily verify the condition (H2) and on the other hand this allows one to provide evidence
for the di�culty of a decryption. In this connection we mention a public-key cryptosystem
from [3] in which f was the natural epimorphism from a free group G onto the group H (in-
�nite, non-abelian in general) given by generators and relations. In this case for any element
of H one can produce its preimages (encryptions) by inserting in a word (being already a
produced preimage of f) from G any relation de�ning H . In other terms, decrypting of f
reduces to the word problem in H. In our approach the word problem is solvable easily due
to a special presentation of the group G (rather than given by generators and relations).

1.3. Cryptosystems based on groups. To our best knowledge all known at present
homomorphic cryptosystems are more or less modi�cations of the following one. Let n be the
product of two distinct large primes of size of the order log n. Set G = fg 2 Z�

n : Jn(g) = 1g
and H = Z

+
2 . Then given a non-square r 2 G the triple (A;P;R) where

R = f1; rg; A = Z
�

n; P (g) : g 7! g2;

is a homomorphic cryptosystem over H with respect to the natural epimorphism f : G! H
with ker(f) = fg2 : g 2 Z

�

ng (see [4]). We call it the quadratic residue cryptosystem. It
can be proved (see [4]) that in this case solving the problem INVERSE(P ) is not easier than
factoring n, whereas given a prime divisor of n this problem can be solved in probabilistic
polynomial time in log n.
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It is an essential assumption (being a shortcoming) in the quadratic residue cryptosystem
as well as other cryptosystems cited below that its security relies on a �xed a priori (proof
system) P . Indeed, it is not excluded that an adversary could verify whether an element of
G belongs to ker(f) avoiding making use of P , for example, in case of the quadratic residue
cryptosystem that would mean verifying that g 2 G is a square without providing a square
root of g. Although, there is a common conjecture that verifying for an element to be a square
(as well as some power) is also di�cult.

Let us mention that a cryptosystem from [12] over H = Z
+
n (for the same assumptions on

n as in the quadratic residue cryptosystem) with respect to the homomorphism f : G ! H
where G = Z

�

n2
and ker(f) = fgn : g 2 Gg, in which A = G and P : g 7! gn, is not

homomorphic in the sense of De�nition 1.1 because condition (H3) of it does not hold. (In
particular, since jGj � jHj2, one can inverse P in a polynomial time in jHj.) By the same
reason the cryptosystem from [10] overH = Z

+
p with respect to the homomorphism f : G! H

where G = Z
�

p2q
and ker(f) = fgpq : g 2 Gg (here the integers p; q are distinct large primes

of the same size) is also not homomorphic (besides, in this system only a part of the group
H is encrypted).

We note in addition that an alternative setting of a homomorphic (in fact, isomorphic)
encryption E (and a decryption D = E�1) was proposed in [7]. Unlike De�nition 1.1 the
encryption E : G! G is executed in the same set G (being an elliptic curve over the ring Zn)
treated as the set of plaintext messages. If n is composite, then G is not a group while being
endowed with a partially de�ned binary operation which converts G in a group when n is
prime. The problem of decrypting this cryptosystem is close to the factoring of n. In this
aspect [7] is similar to the well-known RSA scheme if to interprete RSA as a homomorphism
(in fact, isomorphism) E : Z�

n ! Z�

n, for which the security relies on the di�culty of �nding
the order of the group Z�

n.
We complete the section by mentioning some cryptosystems using groups but not being

homomorphic in the sense of De�nition 1.1. The well-known example is a cryptosystem
which relies on the Di�e-Hellman key agreement protocol. It involves cyclic groups and
relates to the discrete logarithm problem [8]; the complexity of this system was studied
in [2]. Some generalizations of this system to non-abelian groups (in particular, the matrix
groups over some rings) were suggested in [11] where secrecy was based on an analog of the
discrete logarithm problems in groups of inner automorphisms. Certain variations of the
Di�e-Hellman systems over the braid groups were described in [5]; here several trapdoor
one-way functions connected with the conjugacy and the taking root problems in the braid
groups were proposed. Finally it should be noted that a cryptosystem from [9] is based
on the monomorphism Z

+
m! Z

�

n by means of which x is encrypted by gx (modn) where n; g
constitute a public key; its decrypting relates to the discrete logarithm problem and is feasible
in this situation due to special choice of n and m.

2 Homomorphic cryptosystems over cyclic groups

In this section we present an explicit homomorphic cryptosystem over a cyclic group of an
orderm > 1 whose decription is based on taking m-roots in the group Z�

n for a suitable n 2 N.
It can be considered in a sense as a generalization of the quadratic residue cryptosystem over
Z
+
2 . Throughout this section given n 2 N we denote by jnj the size of the number n.
Given a positive integer m > 1 denote by Dm the set of all pairs (p; q) where p and q are
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distinct odd primes such that

p� 1 = 0 (modm) and GCD(m; q � 1) = GCD(m; 2): (2)

Let (p; q) 2 Dm, n = pq and Gn;m be a group de�ned by

Gn;m = fg 2 Z�

n : Jn(g) 2 f1; (�1)
m (mod 2)gg: (3)

Thus Gn;m = Z
�

n for an odd m and [Z�

n : Gn;m] = 2 for an even m. In any case this group
contains each element h = hp � hq such that hhpi = Z

�

p and hhqi = Z
�

q where hp and hq
are the p-component and the q-component of h with respect to the canonical decomposition
Z
�

n = Z
�

p � Z
�

q. From (2) it follows that m divides the order of any such element h and
f1; h; � � � ; hm�1g is a transversal of the group Gmn;m = fgm : g 2 Gn;mg in Gn;m. This implies
that Gn;m=G

m
n;m

�= Z
+
m where the corresponding epimorphism is given by the mapping

fn;m : Gn;m ! Z
+
m; g 7! ig

with ig being the element of Z+
m such that g 2 Gmn;mh

ig . From (2) it follows that ker(fn;m) =
Gmn;m = im(Pn;m) where

Pn;m : An;m ! Gn;m; g 7! gm

is a homomorphism from the group An;m = Z
�

n to the group Gn;m. In particular, we have the
exact sequence (1) with A = An;m, P = Pn;m, f = fn;m, G = Gn;m and H = Z

+
m. Next, it is

easily seen that any element of the set

Rn;m = fR � Gn;m : jfn;m(R)j = jRj = mg

is a right transversal of Gmn;m in Gn;m. Set

DN;m = fn 2 N : n = pq; (p; q) 2 Dm; jpj = jqj = Ng:

Theorem 2.1 Let H be a cyclic group of order m > 1. Then given N 2 N and n 2 DN;m

one can design a homomorphic cryptosystem Sn(H;N) of the size O(N) over the group H;
the problem INVERSE(P ) where P is the trapdoor function, is probabilistic polynomial time
equivalent to the problem FACTOR(n;m).

3 Homomorphic cryptosystems using free products

Throughout the section we denote by WX the set of all the words w in the alphabet X; the
length of w is denoted by jwj. We use the notation G = hX;Ri for a presentation of a group
G by the set X of generators and the set R of relations. Sometimes we omit R to stress
that the group G is generated by the set X . The unity of G is denoted by 1G and we set
G# = G n f1Gg. Finally, given a positive integer n we set n = f1; : : : ; ng.

3.1. Calculations in free products of groups. Let us remind the basic facts on free
products of groups (see e.g. [6, Ch. 4]). Let G1; : : : ; Gn be �nite groups, n � 1. Given a
presentation Gi = hXi;Rii, i 2 n, one can form a group G = hX; Ri where X = [i2nXi (the
disjoint union) and R = [i2nRi. It can be proved that this group does not depend on the
choice of presentations of hXi;Rii, i 2 n. It is called the free product of the groups Gi and
is denoted by G = G1 � � � � �Gn; one can see that it does not depend on the order of factors.
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Without loss of generality we assume below that Gi is a subgroup of G and Xi = G#
i for all i.

In this case G �WX and 1G equals the empty word of WX . Moreover, it can be proved that

G = fx1 � � � xk 2WX : xj 2 Gij for j 2 k; and ij 6= ij+1 for j 2 k � 1g: (4)

Thus each element of G is a word of WX in which no two adjacent letters belong to the same
set among the sets Xi, and any two such di�erent words are di�erent elements of G. To
describe the multiplication in G let us �rst de�ne recursively the mapping WX ! G, w 7! w
as follows

w =

�
w; if w 2 G,
: : : (x � y) : : :; if w = : : : xy : : : with x; y 2 Xi for some i 2 n,

(5)

where x � y is the product of x by y in the group Gi. One can prove that the word w is
uniquely determined by w and so the mapping is correctly de�ned. In particular, this implies
that given i 2 n we have

x1 � � � xk 2 Gi , x1 � � � xk = xj1 � � � xjk0 (6)

where fj1; : : : ; jk0g = fj 2 k : xj 2 Gig. Now given g; h 2 G the product of g by h in G
equals gh.

Lemma 3.1 Let G = G1 � � � � � Gn, K = K1 � � � � �Kn be groups and fi be an epimorphism
from Gi onto Ki, i 2 n. Then the mapping

' : G! K; x1 � � � xk 7! fi1(x1) � � � fik(xk) (7)

where xj 2 Gij , j 2 k, is an epimorphism. Moreover, 'jGi = fi for all i 2 n.

Let H be a �nite nonidentity group and K be the free product of cyclic groups generated
by all the nonidentity elements of H. Set

R(0) = fh(mh) 2WH# : h 2 H#g;

R(1) = fh(i)h0 2WH# : h; h0 2 H#; 0 < i < mh; h
i � h0 = 1Hg;

R(2) = fhh0h00 2WH# : h; h0; h00 2 H#; h0 62 hhi; h � h0 � h00 = 1Hg

where h(i) is the word of length i � 1 with all letters being equal h, mh is the order of h 2 H
and � denotes the multiplication in H. Then one can see that

K = hH#;R(0)i (8)

and there is the natural epimorphism  0 : K ! H 0 where H 0 = hH#;R(0) [ R(1) [ R(2)i.
Since relations belonging to R(i), i = 0; 1; 2, are satis�ed in H, we conclude that ker( 0)h1 6=
ker( 0)h2 whenever h1 and h2 are di�erent elements of H (we identify 1K and 1H). On the
other hand, it is easy to see that any right coset of K by ker( 0) contains a word of length at
most 1, i.e. an element of H . Thus K = [h2H ker( 0)h, the mapping

 : K ! H; k 7! hk (9)

where hk is the uniquely detemined element of H for which k 2 ker( 0)hk, is an epimorphism
and ker( ) = ker( 0).
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3.2. Main construction of a homomorphic cryptosystem. Let H be a �nite
nonidentity group and N be a positive integer. We are going to describe a homomorphic
cryptosystem S(H;N) of size O(N) over the group H . Suppose �rst that H is a cyclic group
of an order m > 1. Then we set S(H;N) = Sn(H;N) where n 2 DN;m. If H is not a cyclic
group, then S(H;N) is de�ned as follows.

Let H# = fh1; : : : ; hng where n is a positive integer (clearly, n � 3). Set DN;H =
[i2nDN;mi where mi is the order of the group Ki = hhii. Given i 2 n choose ni 2 DN;mi

and set Si = (Ai; Pi; Ri) to be the homomorphic cryptosystem Sni(Ki; N) with respect to the
epimorphism fi : Gi ! Ki. Without loss of generality we assume that Gi is a subgroup of
the group Z�

ni
. Set

G = G1 � � � � �Gn; f =  � '; (10)

where the mappings ' and  are de�ned by (7) and (9) respectively, with K = K1 � � � � �Kn.
From Lemma 3.1 and the de�nition of  it follows that the mapping f : G ! H is an
epimorphism from G onto H.

To de�ne a proof system for membership to ker(f) (see Subsection 1.2) we set

X' = X [A0 X = [i2nGi n ker(fi); A0 = [i2nAi; (11)

all the unions are assumed to be the disjoint ones. Denote by ! the transitive closure of the
binary relation ) on the set WX' de�ned by

v ) w i� w = x�1x0vx; v; w 2WX' (12)

where x 2 X [f1Ag and x0 2 A0[f1Ag with 1A being the empty word of WX' . Thus v ! w

if there exist words w1 = v; w2; : : : ; wl = w of WX' such that wi ) wi+1 for i 2 l� 1. We set

A' = fa 2WX' : 1A' ! ag; P' : A' ! G; a1 � � � ak 7! P'(a1) � � �P'(ak) (13)

where P'jX = idX and P'jAi = Pi for all i. We observe that if v 2 ker(') and v ) w for
some v; w 2 WX' then obviously w 2 ker(') (see (12)). By induction on the size of a word
this implies that P'(A') � ker('). Next, set

A = fr 2WR : f(r) = 1Hg; P : A ! G; a 7! a (14)

where R = [i2nRi. It is easily seen that the restriction of ' to the set R' = G\WR induces
a bijection from this set to the group K. This shows that R' is a right transversal of ker(')
in G. Finally we de�ne

A = A' �A ; P : A! G; (a; b) 7! P'(a)P (b): (15)

Let R be a right transversal of ker(f) in G, for instance one can take R = f1Gg[fr
0

igi2n where
r0i is the element of Ri such that  (r0i) = hi, i 2 n. One can prove that S(H;N) = (A;P;R)
is a homomorphic cryptosystem satisfying the requirements of Theorem 1.3.

4 Encrypted simulating of boolean circuits

Let B = B(X1; : : : ;Xn) be a boolean circuit and H be a group. Following [1] we say that a
word

h
Xl1
1 � � � h

Xlm
m ; h1; : : : ; hm 2 H; l1; : : : ; lm 2 n; (16)
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is a simulation of size m of B in H if there exists a certain element h 2 H# such that the
equality

h
xl1
1 � � � h

xlm
m = hB(x1;:::;xn)

holds for any boolean vector (x1; : : : ; xn) 2 f0; 1g
n. It is proved in [1] that given an arbitrary

unsolvable group H and a boolean circuit B there exists a simulation of B in H, the size
of this simulation is exponential in the depth of B ( in particular, when the depth of B is
logarithmic O(log n), then the size of the simulation is nO(1)).

We say that the circuit B is encrypted simulated over a homomorphic cryptosystem with
respect to an epimorphism f : G ! H (we use the notations from De�nition 1.1) if there
exist g1; : : : ; gm 2 G, and a certain element h 2 H# such that

f(g
xl1
1 � � � g

xlm
m ) = hB(x1;:::;xn) (17)

for any boolean vector (x1; : : : ; xn) 2 f0; 1g
n. Thus having a simulation (16) of the circuit B

in H one can produce an encrypted simulation of B by choosing randomly gi 2 G such that
f(gi) = hi, i 2 m (in this case, equality (17) is obvious). Now combining Theorem 1.3 with
the above mentioned result from [1] we get the following statement.

Corollary 4.1 For an arbitrary �nite unsolvable group H, a homomorphic cryptosystem S
of a size N over H and any boolean circuit of the logarithmic depth O(logN) one can design
in time NO(1) an encrypted simulation of this circuit over S.

The meaning of an encrypted simulation is that given (publically) the elements
g1; : : : ; gm 2 G and h 2 H# from (17) it should be supposedly di�cult to evaluate
B(x1; : : : ; xn) since for this purpose one has to verify whether an element g

xl1
1 � � � g

xlm
m belongs

to ker(f). On the other hand, the latter can be performed using the trapdoor information.
In conclusion let us mention the following two known schemes of interaction (cf. e.g. [13])
based on encrypted simulations.

The �rst scheme is called evaluating an encrypted circuit. Assume that Alice knows a
trapdoor in a homomorphic cryptosystem over a group H with respect to an epimorphism
f : G! H and possesses a boolean circuit B which she prefers to keep secret, and Bob wants
to evaluate B(x) at an input x = (x1; : : : ; xn) (without knowing B and without disclosing
x). To accomplish this Alice transmits to Bob an encrypted simulation (17) of B, then
Bob calculates the element g = g

xl1
1 � � � g

xlm
m and sends it back to Alice, who computes and

communicates the value f(g) to Bob.
In a di�erent setting one could consider in a similar way evaluating an encrypted circuit

BH(y1; : : : ; yn) over a group H (rather than a boolean one), being a sequence of group op-
erations in H with inputs y1; : : : ; yn 2 H. The second (dual) scheme is called evaluating at
an encrypted input. Now Alice has an input y = (y1; : : : ; yn) (desiring to conceal it) which
she encrypts randomly by the tuple z = (z1; : : : ; zn) belonging to Gn such that f(zi) = yi,
i 2 n, and transmits z to Bob. In his turn, Bob who knows a circuit BH (which he wants to
keep secret) yields its \lifting" f�1(BH) to G by means of replacing every constant h 2 H
occurring in BH by any g 2 G such that f(g) = h and replacing the group operations in H by
the group operations in G, respectively. Then Bob evaluates the element (f�1(BH))(z) 2 G
and sends it back to Alice, �nally Alice applies f and obtains f((f�1(BH ))(z)) = BH(y)
(even without revealing it to Bob).
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