Windows may have no backdoors but its documentation has some!
Baptiste DAVID (C + V)° Lab

When | was young, my grandmother always told me that without the right tools, we could not
succeed... This is perfectly true. To be honest with you, I'm not a great handyman. And when | want
to drive a nail into a wall, in general, | read the documentation which advices to use a hammer and
hit on the nail. It's what | do with more or less success... With a hammer, it is easy and fast to reach
on the goal. But what happens if the documentation advises you to use a Stradivarius violin to do
so?!!

To illustrate the point, let’s talk about memory protection of a process. Why such a topic? Usually,
since a long time, almost everything has been already written about. Yes, it’s pretty right, when we
where at school, we learn everything about shared memory, who can write and who can read... If you
have spent few hours in security courses, you have seen the same case with writing and execution™.
But the story of memory protection, in truth, doesn’t end there...

To sum things up, we saw read xor write (R*W) and write xor executable (W”X) when we were
novice programmers [1] [2], but it still misses to us read xor executable (R*X). And this is where our
adventure begins... Once upon a time...

What does mean R*X? It just means that the op-codes you run are not readable. The main objective
behind that, is about to make a sort of big black box in which he could write our secret instructions
away from prying eyes. In short, the op-codes of your programs (and by extension their features)
that you could write would be "confidential in memory". Formally, it’s an interesting feature to
protect your code from any oafish competitors...

To do so, no choice, we need to interact with the system here because it’s the OS which manage the
memory in the computer... Before all, we just have to solve one question: Windows or Linux? We
threw a coin in the air, stack, and let’s choose windows (the coin is simulated by Windows random
API).

On msdn, two major functions are available for us: VirtualAlloc[Ex] [3] and VirtualProtect[Ex] [4]. The
first is used to allocate a buffer with the rights we want, the second to change the rights of an
allocated buffer. The main argument that interests us is the fourth to the first function and the third
for the second function. This argument is called Memory Protection Constants [5]. Specifically, it
allows you to choose what type of rights you want to give to a memory section (ie: +rwx). No need to
read very far to find our solution, the first is the good.

! The last point of writing and execution is about to prevent the case of polymorphic code in memory when we
execute and write op-codes in the same buffer (note that this type of protection is useless because it is possible
to do this kind of thing sequentially).

Constant/value Description

Enables execute access to the committed region of pages. An attempt to read from or
PAGE_EXECUTE

write to the committed region results in an access violation.
0x10

This flag is not supported by the CreateFileMapping function.

Without being myself a native English speaker, | understand that it means when the memory is set to
this mode, it is only executable. Wonderful, it's what we want! A small and smart implementation
should quickly bring us what we want. I'm old school and | did it in x86 assembly (it can also be done
in C easily). | will explain it progressively to make this as clear as possible.

;~ Allocate a buffer to store our own op-codes.

invoke VirtuwalRAlloc, NULL, 15, MEM COMMIT, PAGE READWRITE
mov dwMemlp, eax

.if (eax = 0

}
invoke MessageBox, NULL, addr msgError, addr m=gTitle, ME OK
X0Or eax, =ax
ret
.endif

The first thing to do is to allocate a buffer which will be able to receive our secret op-codes. Nothing
complicated here, we just call the function we saw earlier. The rights for the buffer are a priori read
and write (not executable at all).

Then we write the secrets op-codes as expected.

lea ebx, OpCodes ;~ The adress of the buffer in the .data
;~ section where the op-codes are stored

mov ecx, dwSizelOpcodes s~ Number of op-codes to write.

;~ Fill the buffer allocated with the op-codes.

@@:

movzx edx, BYTE ptr [ebx]
mov BYTE ptr [eax], dl
inc eax
inc ebx

loop @B

Of course, if my op-codes are stored in clear text in my data section (as it's the case here), there is no
secret, but we can well imagine that they come from an encrypted file or any other source. In
addition, the goal here is to make a proof of concept, nothing more. The op-codes written here do
not do anything special; it's just a function which returns 1. | say it because we will reuse this fact
latter. The op-codes are as follows:

.data

CpCodes EYTE 055h ;~ push ebp
EYTE 08bh, 0Oech ;~ mov ebp, esp
BEYTE O0b8h, 001h, 00h, 00h, 0O0Oh 5~ mov eax, 1
BYTE 08bh, 0OeSh ;~ mov esp, ebp
BYTE 05dh ;~ pop ebp

H
ot

BYTE Oc3h e

Well, now that everything has been done, we just need to change the rights of our buffer to make it

only executable and run it. It is relatively simple to do with the VirtualProtect function.

H I
invoke WV
if (eax = 0

invoke Me

r
invoke Vi e, dwMemOp, 15, MEM DECOMMIT

WULL, addr msgErrorBis, addr msgTitle, ME

The call to the buffer worked well and the value returned by the function is 1 (proof that the function

has been well executed, that's why we explained our op-code function before).

@ CPU - main thread, module OpCodeTu

HE4E1EFC|] . ES 210688604 CALL <JMP.%kernel3Z2.UVirtualFree LuirtualFree
wa4ElEzl|| . 3308 AOR EAK, EHA

. L2 RETH
dEqEiosd || > AL le3e4a8a | MOU ERX, DWORD PTR DS:C48208181
HE4E 1629 FFDG CALL ER:

. Al 18304808 | FQU EAX,DWORD PTR DS: (4836181
da4Eleo(] . BB18 MOL EBX, DWORD PTR DS:LERK]

Registers (FPU)

BRI |
FEFBEnaE
BEESESCS
Ba48308C OpCodsTu. AE4a3000
Ba1sFFac

A1 SCCaA

As we have started to check if everything worked well, we can verify that our buffer is not writable.
It's very simple; we just need to try to replace the op-codes in the buffer by some others without

affecting the rights of the buffer.

e T =+ oy e pmmmd e e 5 e
;~ Let's try t

mov DWORD ptr [=ax], 90%0905%0h ;~ Horm

3ly, 1lmposSsS]

The result expected is — of course — the one we have: Access violation when writing... Normal, it’s
written on the msdn that it’s supposed to result in an access violation with the PAGE_EXECUTE

memory constant protection.

Access violation when writing to [ABIEARAA]
Access wiolation when writing to [BEZEBQRDE]
Access wiolation when writing to [BEIEQEO0E]

aadall| Ba4E1a52
a6l Ba4n1as3
BBl pEdn1asz

BEA40
FEIAIASEH]] . SB18 MO EB:, OWORD PTR O5: CEAX]

. CYBE S989@9838| M0V DWORD PTR DS5: [ERXI, Y82E9096
ARGAT RS5O AR ARARARA FIISH dAAA

rFrFreeTuns = MFM DFCAMMTT

We could take for granted that the buffer is not readable. Nevertheless, to be definitely sure, we
checked this option. The code to do so is obvious; we just need to try to store in a register the op-
codes stored in the buffer (without changing the rights of the buffer again). Here, we try to store the

first op-codes of the buffer in ebx.

mov eax, dwMemDp ~ We store the adres=s of the buff
mov ebx, [=sax]

Close tour eyes, you will get a surprise... And what a surprise we’ve got!

Boaniona|| » AL 10284888 | MOW EFR, DWORD PR DSz L480616] | Regizters (FPL

pad4ainga(l . FFOA CHLL ER: ERX BE248088
pE4E1BsE(] - AL 18364886 ML ER, OWORD PTR OS: [4683816] ECY GAEE1GRRS
aE4aifeEf] » SE18 MaL EBx, OWORD PTR OS: CEAX] ED* GAERESESCS

. 52 BE4E8EEE FUSH A&EEE FreeTy EEx BESECZEEE
BE4a1eey () . 60 @F FUSH BF |-5i.EE* = ESF GBA1SFF2C
AAdAT A9 O FFEE 1ARAR4ARAT PIISH NMORN PTR NS=T4ASATAT Addre= i s A——a

The code works even if it's not supposed to work! Indeed, there is no access violation, at the
opposite of what we had with the attempt to write into the buffer. Here, the op-codes are all stored
in ebx, which proves that the protection has completely failed”>. The main question is about to know
why we can read the data stored in the buffer without any error.

A first answer, | supposed, was because | am on 64-bit architecture and because | wrote a code in
assembly x86, the 32-bit emulation of Wow64 could have a problem. Okay, why not, | redid the code
in x64.

? it seems that the op-codes are stored upside down, it is normal, the memory is managed in little endian.

mow r3, O4h

mov r8, 00001000h
mowv rdx, 20

mov rox,

call Virtualflloc

mow gwMemCp, rax
or rax, rax

je _ main end

lea rbkx, CpCodes
mow rcx, gwSizelpcodes

@B@:
mov dl, BYTE ptr [rbx]
mov BYTE ptr [rax], dl
inc rax
inc rbx

loop EB

mowv rcx, gwHemOp

lea r9, CldProtect
mow rZ, 10k
mow rdx, 20
call VirtualProtect

or rax, rax
je _ main free memory

mowv rax, gwMemip
call rax

;~ Let's try to read...
mowv rax, gwHemOp
mowv rbx, [ra=x]

; mov DWCRD ptr [rax], O

_ main free memory:
mow r2, 20000

mow rdx, 20

mowv rcx, gwMemOp
call VirtualFree

_ main end:
call ExitProcess

i~ PAGE_R
s~ MEM COMMIT
s~ 5Bize of the buffer allocated.

READWRITE

;~ Ho special preferences.

s~ Allocate the memory for the buffer (in +rw).

s~ Jif (rax == 0

- If error,

s~ .endif

go to end.

s~ The address of the buffer in the data section where the op-codes are stored.
s~ Counter for the loop to know how much op-codes to write in the buffer.

;~ Get the op-code to write.

;~ Write it in the buffer allocated previously.

s~ Write all the op-codes.

s~ The base address of the buffer allocated with the op-codes.
s~ Offszet to get the old walue for protection.

;~ PAGE EXECUTE

s~ 5ize of the buffer allocated.

s~ Make the buffer executable (and only executable, which means (+x)).
s~ J1if (rax == 0)

i If error, go to free memory and then end.

s~ .endif

;~ Ready to call the buffer of op-codes.

;~ Let's make the call (let's check if it's really executable).

;~ Load in rax register the current address of the buffer.

s~ Should be an access violation, but it's not, why 2!!

;~ Impossible due to the restriction, ok, it's normal.

; MEM DECOMMIT
s~ Size of the buffer allocated.
The
ee

address of the buffer to desallocate.

B
?
h.]

2 the buffer allocated at the beginning.

s~ End of process.

Without suspense, the result is exactly the same than the x86 code. We cannot write but we can read

and execute... The problem is not in our implementation, but - for us and at that point - it comes

from Windows. Two possibilities: The first is about the OS itself which is bugged and what we have

found is a confidential issue for all the codes which use this feature proposed by Windows all over

the world. The second possibility is about an “error” which is narrated in the msdn (and we could

wonder about how the documentation on the msdn is made)...

If the first possibility is not from our responsibility but the second can quickly have a solution. It

suffices to continue the reading of the msdn about Memory Protection Constants. The constant just

after the one we tested is:

Constant/value Description

Enables execute access to the committed region of pages. An attempt to read from or
PAGE_EXECUTE write to the committed region results in an access violation.
0x10 This flag is not supported by the CreateFileMapping function.

Enables execute or read-only access to the committed region of pages. An attempt to
PAGE_EXECUTE READ write to the committed region results in an access violation.
0x20
Windows Server 2003 and Windows XP: This attribute is not
supported by the CreateFileMapping function until Windows XP with
5P2 and Windows Server 2003 with SP1.

Today's question is: What is the difference between PAGE_EXECUTE and PAGE_EXECUTE_READ? If
we understood that PAGE_EXECUTE_READ gave to the memory read-only and execute rights, but it
seems that PAGE_EXECUTE is identical... So, if it's confusion on the msdn - we could believe it - but
why does Microsoft have two different constants which share the same behavior?

For an answer, we sent an email with a report similar to this one to the security support of Microsoft.
This one is displayed as fallow.

Répondre Répondre & tous Transférer W - B~ =] @n & X 25 - 0

Security issue with the memory protection

DAVID Baptiste

A secure@microsoft.com

Ce: Eric.FILIOL a-ouest.fr

outes les pi e
(] 64.asm 3 Ko)

Piéces jointes: (2] écharg
[] «86.asm (2 Kaj:

- Vous avez transféré ce message le12/03/201318:12.

Sir,

In my quality as researcher for the Operational Cryptology and Virology Laboratory (France), I would like to submit you a problem we have discover in the Windows API which might result in a system's vulnerability. The problem is on the
versions of Windows 7 and Windows 8 (x64). These are the versions we tested, but it is possible that others versions are affected.

The problem is about the rights to the process memory. When we allocate memory, we can choose the memory protection (with VirtualAlloc it's the third argument). At that point, there is no problem and we chose to allocate the buffer with the
rights of reading and writing (PAGE_READWRITE). Then, we can write, in the buffer allocated, some opcodes as data. Now we can change the rights of the buffer so that it becomes only executable (no longer readable or writable). We do that with
the function VirtualProtect and the memory protection constant used is PAGE_EXECUTE

This constant is clearly defined in http://msdn.microsoft.com/en-us/library/windows/desktop/aa366786(v=vs.85).aspx and it is written about: “Enables execute access to the committed region of pages. An attempt to read from or write to the

committed region results in an access violation. This flag is not supported by the CreatefileMapping function.”

After testing, we find that the opcodes are executable and not writable, as expected. However, they are perfectly readable. In agreement with the quote made just above from the msdn, it should not be the case. Technically, an application that uses
this feature has its opcodes readable, even if this one didn't want that. This issue compromises the confidentiality of the opcodes from a program.

Our tests have been done on Windows 7 Pro SPA) and Wmijuws 8 Pro (x64).

Just over 24 hours ater, We had received an answer from Microsoft.
You will find, attached to this email, tow codes in assembler which are commented to prove what we explained. One code is written in assembler Intel %86, the other in x64. The x86 has been compiled with Microsoft (R) Macro Assembler Version
6.14.8444 and the %64 with Microsoft (R) Macro Assembler (x64) Version 11.00.51106.1. Both show the same results (we can read the executable only opcodes). If you can not compile the codes in assembler, we can provide to you the executables.

T may be us that make a mistake and misunderstand the msdn. But in this case, what is the difference between PAGE_EXECUTE and PAGE_EXECUTE_READ?

Asg this problem has been found after a process of research from us, we inform you that we will publish this result on our bleg (cve-lab.blogspet.com) in 2 or 3 weeks. We assume that this time is sufficient for you to solve the problem. We do not
knowy if this issue will receive a CVE number, in which case, thank you communicate it to us.

Waiting for your reply,
Best regards,

DAVID Baptiste.

+ Microsoft Security Response Center [secure@microsoft.co.. @« @& & adions-
En réponse au message de DAVID Baptiste, mar. 17:44

A: DAVID Baptiste

Cc: FILOL Eric; Microsoft Security Response Center [secure@microsoft.com]

Hello David,

Thank you for your report. Intel %86 and %64 does not support an execute only{non-readable) page. We are looking to

update the MSDM documentation to clarify this limitation.

Best Regards,
MNate

Before anything else, | want to thank Microsoft for their prompt response and the interest they have
shown for our problem. However, the answer is not very satisfactory. The fault does not appear to
come from Microsoft, but from Intel architecture processors. What does that mean? Simply that
Microsoft (great friend with Intel by the way) has implemented features that do not exist on the
Intel’s processors. Here, there are two possibilities. Either Microsoft takes us for a ride or they've
made a huge mistake in their documentation.

To try to see the true from the false, | implemented an equivalent code on Unix to test if what works
on Windows works on Linux too. The implementation is freely inspired from [9].

int main (int argc, char *argv[], char *envp[]){
int fd;
struct sigaction sa;
unsigned char value = 0;

/* Install segv_handler as the handler for SIGSEGV. */
memset (&sa, 0, sizeof (sa));

sa.sa handler = &segv_handler;

sigaction (SIGSEGV, &sa, NULL);

/* Allocate one page of memory by mapping /dev/zero. Map the memory
as write-only, initially. */
alloc _size = getpagesize (};

fd = open ("/dev/zero”, 0 RDONLY);
memory = mmap (NULL, alloc_size, PROT WRITE, MAP_PRIVATE, fd, 0);
close (fd);

/* Write to the page to obtain a private copy. */
memory[0] = @xff;

/* Make the memory unwritable. */
mprotect (memory, alloc size, PROT EXEC);

value = memory[8]; /* Try to read the value. #*/

printf("The value 1 Bx%%02 , value); /% It works ! */
/# A1l done; unmap the memory. #/

printf ("all done ;

munmap (memory, alloc size);
return 0;

The result is similar to the one observed under Windows. But unlike Windows, Linux does not claim
that it is possible to have executable-only rights on the processes memory [6]. This experience is
therefore in the direction of the response of Microsoft and it helps to confirm that the memory
protection is dependent to the processor [7].

In truth, the processor has a registry NX that allows it to manage the memory protection [10]. In the
same way that OpenBSD was a pioneer in this field with its WAX feature [11], it is only possible for a
processor to prevent the access of a piece of memory only with write or (exclusive or) execute rights
(of course, both are possible). But, there is nothing about the only executable rights. It’s possible to
have no rights on a piece of memory, but it’s not useful in our case because we couldn’t execute any
more our code...

In conclusion, in the absence of alternatives, it is not possible to guarantee the confidentiality of op-
codes executed in memory, even if Windows has promised it in its documentation. It is almost as if
we promised you a magic hammer which sings when you hit nails. Except that, in truth, you have a
rusty hammer which bends nails. It is not just about that the tool is not good. But it is rather as if we
promise to a child a candy without giving it to him. It's really frustrating when you are this child...

At the end, one may ask about "why" such an error is in the msdn. By falsely suggest that this feature
can protect your codes, it is a good way to spy on your best features that you want to protect. Based
on the fact that, only those who have something to hide, hide it, others do not... Here, we do not
allow you to hide anything. In truth, we highlight, for those who know what to watch, what you want
to hide. It’s worth!

If we had wrong mindset, we could think that this story may result in a vey interesting backdoor. A
vey interesting because it is useful and easy to refute if someone find it (claim that it's an
unfortunate omission or confusion is so easy). In addition, the correction of this error, in the way that
Microsoft envisages it, is completely mad. We take an eraser and we erase the documentation, even
if this could be an advantageous feature for software engineer... We just have to continue to sleep,
to dream and to believe in fairy tales.

Note that all the paper has been perform without the use of reverse engineering. Every thing which
has been described here has been studied indirectly by the interaction between the system and the
features implemented in our codes. It is amazing what we can find when we just try to do what is
written in the documentation...

Bonus: Does-it work in ring0? Just to help you to make your own opinion, consider
ZwAllocateVirtualMemory [8] and check what you can do with the last argument ULONG Protect. The
protection rights seem to be the same. The question is simple, does it work better? Of course... And
nothing is provided in the remarks or elsewhere in page [8] to clarify the possible limits of the use.
Surprising isn’t it?

=

wQueryFull AttributesFile .
Protect [in]

ZwQuerylnformationFile Bitmask containing page protection flags that specify the protection desired for the committed region of pages.
ZwQueryInformationToken The possible values are:

ZwQueryKey

ZwQueryObject Flag Meaning

ZwQueryQuotalnformationFile PAGE_MNOACCESS No access to the committed region of pages is allowed. An attempt to read, write,
ZwQuerySecurityObject or execute the committed region results in an access violation exception, called a

general protection (GP) fault.

=

wQuerySymbolicLinkObject

ZwQueryValueKey PAGE_READONLY Read-only and execute access to the committed region of pages is allowed.
ZwQueryVolumelnformationFild An attempt to write the committed region results in an access violation.
ZwReadFile . . - . .

PAGE_READWRITE Read, write, and execute access to the committed region of pages is allowed.
ZwSetEaFile If write access to the underlying section is allowed, then a single copy of the
FwhetEvent pages is shared. Otherwise the pages are shared read only/copy on write.
ZwSetInformationFile

PAGE_EXECUTE Execute access to the committed region of pages is allowed. An attempt to read
ZwSetInformationThread or write to the committed region results in an access violation.
ZwSetInformationToken

PAGE_EXECUTE_READ xecute and read access to the committed region of pages are allowed. An

wSetQuotalnformationFile

=

attempt to write to the committed region results in an access violation,
wSetSecurityObject

=

DAVID Baptiste.

Ps: Thanks to Sébastien and Clarisse for their help.

References:

[1] Memory protection, http://en.wikipedia.org/wiki/Memory_protection, Wikipedia, 13/03/2013

[2] Executable space protection, http://en.wikipedia.org/wiki/Executable_space_protection,
Wikipedia, 02/02/2013

[3] VirtualAlloc function (Windows), http://msdn.microsoft.com/en-
us/library/windows/desktop/aa366887(v=vs.85).aspx, MSDN, 26/10/2012

[4] VirtualProtect function (Windows), http://msdn.microsoft.com/en-
us/library/windows/desktop/aa366898(v=vs.85).aspx, MSDN, 26/10/2012

[5] Memory Protection Constants (Windows), http://msdn.microsoft.com/en-
us/library/windows/desktop/aa366786(v=vs.8).aspx, MSDN, 20/10/2012

[6] mprotect - set protection on a region of memory, http://man7.org/linux/man-
pages/man2/mprotect.2.html, man pages, 14/08/2012

[77 Memory protection on an OS, http://stackoverflow.com/questions/15045375/memory-
protection-on-an-os, StackOverflow, 23/02/2013

[8] ZwAllocateVirtualMemory routine, http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566416(v=vs.85).aspx, MSDN, 3/12/2013

[9] 8.9 mprotect: Setting Memory Permissions,
http://www.informit.com/articles/article.aspx?p=23618&seqNum=10, informit, 12/11/2001

[10] NX bit, http://en.wikipedia.org/wiki/NX_bit, Wikipedia, 02/03/2013

[11] WAX, http://en.wikipedia.org/wiki/W"EX, Wikipedia, 07/03/2013

