
Windows may have no backdoors but its documentation has some!

Baptiste DAVID (C + V)O Lab

When I was young, my grandmother always told me that without the right tools, we could not

succeed... This is perfectly true. To be honest with you, I'm not a great handyman. And when I want

to drive a nail into a wall, in general, I read the documentation which advices to use a hammer and

hit on the nail. It's what I do with more or less success… With a hammer, it is easy and fast to reach

on the goal. But what happens if the documentation advises you to use a Stradivarius violin to do

so?!!

To illustrate the point, let’s talk about memory protection of a process. Why such a topic? Usually,

since a long time, almost everything has been already written about. Yes, it’s pretty right, when we

where at school, we learn everything about shared memory, who can write and who can read… If you

have spent few hours in security courses, you have seen the same case with writing and execution1.

But the story of memory protection, in truth, doesn’t end there…

To sum things up, we saw read xor write (R^W) and write xor executable (W^X) when we were

novice programmers [1] [2], but it still misses to us read xor executable (R^X). And this is where our

adventure begins… Once upon a time…

What does mean R^X? It just means that the op-codes you run are not readable. The main objective

behind that, is about to make a sort of big black box in which he could write our secret instructions

away from prying eyes. In short, the op-codes of your programs (and by extension their features)

that you could write would be "confidential in memory". Formally, it’s an interesting feature to

protect your code from any oafish competitors…

To do so, no choice, we need to interact with the system here because it’s the OS which manage the

memory in the computer... Before all, we just have to solve one question: Windows or Linux? We

threw a coin in the air, stack, and let’s choose windows (the coin is simulated by Windows random

API).

On msdn, two major functions are available for us: VirtualAlloc[Ex] [3] and VirtualProtect[Ex] [4]. The

first is used to allocate a buffer with the rights we want, the second to change the rights of an

allocated buffer. The main argument that interests us is the fourth to the first function and the third

for the second function. This argument is called Memory Protection Constants [5]. Specifically, it

allows you to choose what type of rights you want to give to a memory section (ie: +rwx). No need to

read very far to find our solution, the first is the good.

1
 The last point of writing and execution is about to prevent the case of polymorphic code in memory when we

execute and write op-codes in the same buffer (note that this type of protection is useless because it is possible
to do this kind of thing sequentially).

Without being myself a native English speaker, I understand that it means when the memory is set to

this mode, it is only executable. Wonderful, it’s what we want! A small and smart implementation

should quickly bring us what we want. I'm old school and I did it in x86 assembly (it can also be done

in C easily). I will explain it progressively to make this as clear as possible.

The first thing to do is to allocate a buffer which will be able to receive our secret op-codes. Nothing

complicated here, we just call the function we saw earlier. The rights for the buffer are a priori read

and write (not executable at all).

Then we write the secrets op-codes as expected.

Of course, if my op-codes are stored in clear text in my data section (as it's the case here), there is no

secret, but we can well imagine that they come from an encrypted file or any other source. In

addition, the goal here is to make a proof of concept, nothing more. The op-codes written here do

not do anything special; it's just a function which returns 1. I say it because we will reuse this fact

latter. The op-codes are as follows:

Well, now that everything has been done, we just need to change the rights of our buffer to make it

only executable and run it. It is relatively simple to do with the VirtualProtect function.

The call to the buffer worked well and the value returned by the function is 1 (proof that the function

has been well executed, that’s why we explained our op-code function before).

As we have started to check if everything worked well, we can verify that our buffer is not writable.

It's very simple; we just need to try to replace the op-codes in the buffer by some others without

affecting the rights of the buffer.

The result expected is – of course – the one we have: Access violation when writing... Normal, it’s

written on the msdn that it’s supposed to result in an access violation with the PAGE_EXECUTE

memory constant protection.

We could take for granted that the buffer is not readable. Nevertheless, to be definitely sure, we

checked this option. The code to do so is obvious; we just need to try to store in a register the op-

codes stored in the buffer (without changing the rights of the buffer again). Here, we try to store the

first op-codes of the buffer in ebx.

Close tour eyes, you will get a surprise… And what a surprise we’ve got!

The code works even if it’s not supposed to work! Indeed, there is no access violation, at the

opposite of what we had with the attempt to write into the buffer. Here, the op-codes are all stored

in ebx, which proves that the protection has completely failed2. The main question is about to know

why we can read the data stored in the buffer without any error.

A first answer, I supposed, was because I am on 64-bit architecture and because I wrote a code in

assembly x86, the 32-bit emulation of Wow64 could have a problem. Okay, why not, I redid the code

in x64.

2 it seems that the op-codes are stored upside down, it is normal, the memory is managed in little endian.

Without suspense, the result is exactly the same than the x86 code. We cannot write but we can read

and execute... The problem is not in our implementation, but - for us and at that point - it comes

from Windows. Two possibilities: The first is about the OS itself which is bugged and what we have

found is a confidential issue for all the codes which use this feature proposed by Windows all over

the world. The second possibility is about an “error” which is narrated in the msdn (and we could

wonder about how the documentation on the msdn is made)…

If the first possibility is not from our responsibility but the second can quickly have a solution. It

suffices to continue the reading of the msdn about Memory Protection Constants. The constant just

after the one we tested is:

Today's question is: What is the difference between PAGE_EXECUTE and PAGE_EXECUTE_READ? If

we understood that PAGE_EXECUTE_READ gave to the memory read-only and execute rights, but it

seems that PAGE_EXECUTE is identical… So, if it's confusion on the msdn - we could believe it - but

why does Microsoft have two different constants which share the same behavior?

For an answer, we sent an email with a report similar to this one to the security support of Microsoft.

This one is displayed as fallow.

Just over 24 hours later, we had received an answer from Microsoft.

Before anything else, I want to thank Microsoft for their prompt response and the interest they have

shown for our problem. However, the answer is not very satisfactory. The fault does not appear to

come from Microsoft, but from Intel architecture processors. What does that mean? Simply that

Microsoft (great friend with Intel by the way) has implemented features that do not exist on the

Intel’s processors. Here, there are two possibilities. Either Microsoft takes us for a ride or they’ve

made a huge mistake in their documentation.

To try to see the true from the false, I implemented an equivalent code on Unix to test if what works

on Windows works on Linux too. The implementation is freely inspired from [9].

The result is similar to the one observed under Windows. But unlike Windows, Linux does not claim

that it is possible to have executable-only rights on the processes memory [6]. This experience is

therefore in the direction of the response of Microsoft and it helps to confirm that the memory

protection is dependent to the processor [7].

In truth, the processor has a registry NX that allows it to manage the memory protection [10]. In the

same way that OpenBSD was a pioneer in this field with its W^X feature [11], it is only possible for a

processor to prevent the access of a piece of memory only with write or (exclusive or) execute rights

(of course, both are possible). But, there is nothing about the only executable rights. It’s possible to

have no rights on a piece of memory, but it’s not useful in our case because we couldn’t execute any

more our code…

In conclusion, in the absence of alternatives, it is not possible to guarantee the confidentiality of op-

codes executed in memory, even if Windows has promised it in its documentation. It is almost as if

we promised you a magic hammer which sings when you hit nails. Except that, in truth, you have a

rusty hammer which bends nails. It is not just about that the tool is not good. But it is rather as if we

promise to a child a candy without giving it to him. It's really frustrating when you are this child…

At the end, one may ask about "why" such an error is in the msdn. By falsely suggest that this feature

can protect your codes, it is a good way to spy on your best features that you want to protect. Based

on the fact that, only those who have something to hide, hide it, others do not... Here, we do not

allow you to hide anything. In truth, we highlight, for those who know what to watch, what you want

to hide. It’s worth!

 If we had wrong mindset, we could think that this story may result in a vey interesting backdoor. A

vey interesting because it is useful and easy to refute if someone find it (claim that it's an

unfortunate omission or confusion is so easy). In addition, the correction of this error, in the way that

Microsoft envisages it, is completely mad. We take an eraser and we erase the documentation, even

if this could be an advantageous feature for software engineer… We just have to continue to sleep,

to dream and to believe in fairy tales.

Note that all the paper has been perform without the use of reverse engineering. Every thing which

has been described here has been studied indirectly by the interaction between the system and the

features implemented in our codes. It is amazing what we can find when we just try to do what is

written in the documentation...

Bonus: Does-it work in ring0? Just to help you to make your own opinion, consider

ZwAllocateVirtualMemory [8] and check what you can do with the last argument ULONG Protect. The

protection rights seem to be the same. The question is simple, does it work better? Of course… And

nothing is provided in the remarks or elsewhere in page [8] to clarify the possible limits of the use.

Surprising isn’t it?

DAVID Baptiste.

Ps: Thanks to Sébastien and Clarisse for their help.

References:

[1] Memory protection, http://en.wikipedia.org/wiki/Memory_protection, Wikipedia, 13/03/2013

[2] Executable space protection, http://en.wikipedia.org/wiki/Executable_space_protection,

Wikipedia, 02/02/2013

[3] VirtualAlloc function (Windows), http://msdn.microsoft.com/en-

us/library/windows/desktop/aa366887(v=vs.85).aspx, MSDN, 26/10/2012

[4] VirtualProtect function (Windows), http://msdn.microsoft.com/en-

us/library/windows/desktop/aa366898(v=vs.85).aspx, MSDN, 26/10/2012

[5] Memory Protection Constants (Windows), http://msdn.microsoft.com/en-

us/library/windows/desktop/aa366786(v=vs.8).aspx, MSDN, 20/10/2012

[6] mprotect - set protection on a region of memory, http://man7.org/linux/man-

pages/man2/mprotect.2.html, man pages, 14/08/2012

[7] Memory protection on an OS, http://stackoverflow.com/questions/15045375/memory-

protection-on-an-os, StackOverflow, 23/02/2013

[8] ZwAllocateVirtualMemory routine, http://msdn.microsoft.com/en-

us/library/windows/hardware/ff566416(v=vs.85).aspx, MSDN, 3/12/2013

[9] 8.9 mprotect: Setting Memory Permissions,

http://www.informit.com/articles/article.aspx?p=23618&seqNum=10, informit, 12/11/2001

[10] NX bit, http://en.wikipedia.org/wiki/NX_bit, Wikipedia, 02/03/2013

[11] W^X, http://en.wikipedia.org/wiki/W^EX, Wikipedia, 07/03/2013

