

The art of making bad jokes :
from the easiest to the most effective

DAVID Baptiste & FILIOL Eric
bdavid@et.esiea-ouest.fr
filiol@esiea.fr

mailto:bdavid@et.esiea-ouest.fr

Agenda :

Introduction :

→ Malware and bad jokes ?

I) The art of paralyzing users :

→ The screen
→ The mouse
→ The keyboard
→ The system

II) Malware and the Internet :

→ Attacking the reputation of one person by downloading prohibited pictures.
→ Transfering the user's documents by mail.

III) Some more complex malware :

→ Create a companion virus with a polymorphic payload.
→ Create K-ary viruses (Filiol 2007).

IV) Conclusions :

→ General Conclusions

V) Appendix :

Why create bad jokes or malware ?

→ For fun ?

→ Revenge (against a boss, a colleague, a competitor, an enemy, etc…)

→ Get a reputation

→ Paralyze an opponent

→ Economic interest (blackmail, paralysis of competitive economic activities,
 spam activities...)

→ Theft of confidential data (credit card, other documents ...)

→ Industrial espionage

→ Mafia activities or unofficial military operations

Introduction :

Types of malicious actions and famous examples :

→ Paralyze the actions of the user (Sasser).

→ Create panic (I Love You, Michelangelo).

→ Spy users (Trojan : Back Orifice).

→ Ransom users (PGPCoder or GPCode).

The simplified steps of malware :

The art of paralyzing users (with demos and explanation of code) :

→ Screen :

→ Use the screensaver.
→ Draw on the desktop !

→ Mouse :

→ Jail the mouse in a window.
→ Invert its movements.
→ Prevent the use of clicks.

→ Keyboard :

→ Neutralize most of the keys.

→ System :

→ Prevent the launch of programs.

I) The art of paralyzing users :

Attack against the screen :

1) Use the screensaver to do it :

→ Use the SendMessage function explained in the MSDN.
SendMessage(

 __in HWND hWnd,
 __in UINT Msg,
 __in WPARAM wParam,
 __in LPARAM lParam

);
Where :

→ hWnd is a handle to the windows which will receive the message. If this argument is
HWND_BROADCAST ((HWND)0xffff), the message is sent to all top-level windows in the
system.

→ Msg is the message to be sent. Here, we will use WM_SYSCOMMAND (0x0112).

→ wParam is additional message-specific information. Here, according to
WM_SYSCOMMAND we will control the monitor with SC_MONITORPOWER (0xF170).

→ lParam is another additional message detal. With the use of SC_MONITORPOWER,
we have the choice to use :

→ -1 (the display is powering on)
 → 1 (the display is going to low power)
 → 2 (the display is being shut off)

Attacks against the screen :

2) Draw on the screen :

→ Get a handle on the desktop. (function : GetDesktopWindow();)

→ Get a special handle in order to draw on the desktop. (function : GetWindowDC();)

→ Create tools to draw on the desktop. (CreateSolidBrush(), CreatePen())

→ In an infinite loop : (while(1){ /* … */})

→ Draw a big black rectangle. (function : Rectangle();)

Advantage → Fast.

Disadvantage → Just a single color.

→ Draw pixel by pixel (or area by area).

Advantage : → Possibility of making real drawings (skulls, hearts, etc...)

Disadvantage : → Slow.

Attacks against the mouse :

1) Jail the mouse in a window :

→ Create a Window (with Perl/Tk for example).

→ With the functions of Perl Tk (rootX (), rooty (), pointerx (), pointery ()) takes the
cursor position.

→ In an infinite loop :

→ Check the position of the cursor.
→ If the cursor tries to go out of the window :

→ Set the cursor at the center of the window with
MouseMoveAbsPix() function extracted from the
Win32::GuiTest module.

→ Ideas to go further :

→ Prevent windows from closing :
$windows->protocol("WM_DELETE_WINDOW", sub { return; });

→ Prevent the use of interrupt signals for the program :
$SIG{INT} = sub { return; };

Attacks against the mouse :

2) Invert the mouse mouvements :

→ Detection of the position of the mouse at all times.

→ If there is a movement :

→ Calculate the difference between the initial position and the new one.

→ Calculate the speed of the cursor.

→ Determine the opposite position.

→ Move the cursor to the opposite position
 from where it should have been.

Attacks against the mouse :

3) Prevent the use of clicks.

→ Use the low level hook system from Windows.

→ Install a low level hook on the mouse.

→ Wait for messages from Windows (GetMessage(&MSG, NULL, 0, 0))

→ Broadcast windows messages on the hooks. (TranslateMessage() DispatchMessage())

→ In the HookProc, do not dispatch messages which say that the left button has been
 pressed. if (wParam == WM_LBUTTONDOWN) { return 1; }

Attacks against the keyboard :

Goal : Put an hook on the keyboard and do not spread the intercepted messages.

→ Possibility to use SetWindowsHookEx (); TranslateMessage (); DispatchMessage ();
as seen previously for the mouse (but the hook is set with WH_KEYBOARD_LL).

→ Using RegisterHotKey() and GetMessage () is also an intersting possibility.

→ Do not dispatch messages once they are intercepted.

The problem of taskmanager (ctrl+alt+sup) :

To Disable the Taskmanager, in the registry of windows :

In HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policies\System

→ Set the key DisableTaskMgr to 1.

→ To really hook the ctrl + alt + sup, it would be necessary to go
into kernel mode and make a driver that filters the keyboard.

Attacks against the system :

The goal is to prevent the launch of new programs :

→ In Perl :

→ Use the Win32::Process::List module.

→ Create the list of current processes with Win32::Process::List->new();

→ View the processes using GetProcesses();

→ In an infinite loop :

→ If there is a new process :

→ Kill it with the API or a system call.

→ If it's not possible

→ Throw an exception.

From iAwacs 2010 : DAVID Baptiste

Attacking the reputation of one person by downloading prohibited pictures.

→ In Perl :

→ Downloading an image from the web with LWP::Simple.

→ Use get() method to do that.

→ Write the image in binary mode (use of binmode function).

→ Save the image in a hidden directory.

→ The FireWall of Windows 7 doesn't react.

II) Malware and the Internet :

Transfer the user's documents by mail.

→ Browse the user's files to search an index in order to determine if files are interesting or
not.

→ When an interesting file is selected :

→ Read the file.

→ Use the module Net:: SMTP in order to send the file by mail.

→ Write the mail in accordance with the structure (the header and the body) of a mail.

How to create a simple polymorphic virus :

Goal : Create a companion virus with a polymorphic payload.
→ In Perl :

→ Use the payload from the jailed mouse.
→ To decrypt them, put the encrypted payload and the code, into another Perl script.
→ Load the Perl code decrypted from the script attacked.
→ Run the code decrypted by the attacked script.

III) Some more complex malware :

Creat K-ary viruses (Filiol 2007) :

→ The two parts of the virus create a self-checking "circle" in order
 to revive one of them if necessary.

→ Use CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS,0);
 in order to get a handle on the process list.

→ Use the structure PROCESSENTRY32 from the
 Windows API to access the different process
 informations.

→ First take the list of running processes, and then check the
 presence of the viruses.

→ If one part of the virus disappears from the list of running
 processes, relaunch it.

IV) General Conclusion :

From a human point of view :

→ The reasons for creating malware are numerous. That means that many people may
find reasons to creat malware.

→ Anyone can creat malware.

→ The hardest part may be about to find an idea for the viral payload.

From a technical point of view :

→ A large number of malware concern only small automation tasks.

→ Using the Windows API makes a lot of actions possible on the system.

→ The use of internet opens very interesting possibilities for remote control and spying.

→ Ease of use and action concerning scripting languages (Python, Perl, JavaScript,
Ruby)...

→ Usability of the Windows API with C language.

If you have any questions, I would be happy to answer them...

Thank you very much for your attention.

Appendix A : Perl Reminders :

The scalar values :
Represented by : $

Ex : → $a = 42;
→ $str = « I'm a string !\n »;

The Arrays :
Represented by : @

Ex : → @t = (1, 2, 3, 4);
→ @b = (« toto », 42, « foo »);

→ The access to the first element is given by : $b[0] (ie : toto).
→ The access to the last element is given by : $b[$#b] ↔ $b[-1] (ie : foo)

The hash tables :
Represented by : %

Ex : → %hash = (key => value);
→ $hash{$key} = $value;

The Scalar references :
Represented by : \$

Ex : → $A = 42; $refA = \$A; %hash = (foo => bar); $refHash = \%hash;
 → print $$refA; # (ie : 42).
 → print $refHash→{foo}; # (ie : bar).

Perl Reminders :

The conditions :

→ if (cond) { }
→ swtich { case : }
→ else { } or elsif (cond) { }

The main loops :

→ while(cond){ }
→ do { } while(cond);
→ for(initialization ; condition; increment) { }
→ foreach (@tab) { }
→ goto.

The operator conditions :

→ == : means equal between two scalars.
→ >= or <= : are the inequality operators.
→ eq ne : means equal or not equal between two strings.
→ cond ? True : False : is the ternary operator.
→ || && or and not xor : are the condition operators used in the conditions.
→ =~ : the operator which is used with the regular expressions.

Perl Reminders :

Some array functions :

Perl code :

#! /usr/bin/perl -w # Called the Shebang

my @t = (1,2,3,4); # Is an array, the '#' is used for comments.
unshift(@t,-1,0); # @t = (-1, 0, 1, 2, 3, 4)
my $f = shift(@t); # @t = (0, 1, 2, 3, 4) and $f = -1
push(@t, 5, 6); # @t = (0, 1, 2, 3, 4, 5, 6)
my $l = pop(@t); # @t = (0, 1, 2, 3, 4, 5) and $l = 6

The subroutines :

→ Create a function : sub foo {
my $arg1 = shift;
my $arg2 = shift;
… do something …
return $toBeReturned;

}

Concerning the modules :

Load a module : use myModule;
Access to a subroutine in the module : function() or myModule::function();

Appendix B : Use the shortcut as trigger :

Goal : Creating a trigger modulated by the user.

→ Using shortcuts in order to create the trigger.

→ Launch arbitrary code before the execution of the application referenced by the
Shortcut.

→ Try to change the behavior of programs launched from shortcuts..

The tools to do that :

→ In Perl :
→ use Win32::Shortcut; # Module to handle shortcuts.
→ The elements of the shortcuts in the Shortcut module :

→ Path, ShortPath ↔ The target of the shortcut.
→ WorkingDirectory ↔ The working directory.
→ Description ↔ An optional description given to the shortcut.
→ ShowCmd ↔ The condition of the window in which the program will

be executed
→ Hotkey ↔ The hotkey associated with the shortcut.
→ IconLocation ↔ The file that contains the icon for the shortcut.
→ IconNumber ↔ The number of the icon for the shortcut in the file

pointed by IconLocation
→ Argument ↔ The arguments associated with the shell link object.
→ Filename ↔ The filename of the shortcut file opened.

Use the shortcut as trigger :

For directories :

For files :

Use the shortcut as trigger :

For the files :

→ Normal Use :

→ Attack of the shortcut :

Use the shortcut as trigger :

For the directories :

→ Normal Use :

→ Attack of the shortcut :

Appendix C : Use the url to dispatch information for a computer under attack :

→ The goal is to send
information taken by a
keylogger on an attacked
computer to the computer
of the attacker.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide24
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

