HESAM
UNIVERSITE N\ & Mstiers

ECOLE DOCTORALE SCIENCES ET METIERS DE L’INGENIEUR
[Laboratoire de recherche - Campus d’Angers]

THESE

présentée par : Baptiste DAVID
soutenue le : 07 décembre 2021

pour obtenir le grade de : Docteur A’HESAM Université

préparée o : Ecole Nationale Supérieure d’Arts et Métiers

Spécialité : Informatique

Nouvelles approches de la sécurité informatique reposant sur
la vision offensive et bas-niveau des systemes.

New trends in offensive, low level-based computer security.

THESE dirigée par :
[Monsieur FILIOL Eric]

Jury

Mme Mirna DZAMONJA Associate Professor, Institut de Recherche en In- Rapporteur
formatique Fondamentale (CNRS-Université de
Paris)

Mme Antonella SANTONE Associate Professor, Department of Engineering Rapporteur
(SSD ING-INF/05), University of Sannio

M. Johann BARBIER Directeur d’études, Alten Examinateur

Mme Samia BOUZEFRANE Professeure des universités, Laboratoire Examinatrice
CEDRIC, Conservatoire National des Arts
et Métiers

M. Maroun CHAMOUN Full professor, Université Saint Joseph Examinateur

M. Eric FILIOL Full professor, ENSIBS, Vannes & National Re- Examinateur

search University High School of Economics,

Moscou Lomonossov
M. Bimal ROY Full professor, Indian Statistical Institute Examinateur
M. Igor ZDOBNOV Engineer, Doctor Web, Ltd. Invité

— Thesis manuscript — Page 2 on 619

Page 3 on 619 — Thesis manuscript —

A ma famille, a vous qui m’avez tant donné et que j’aime tant.
Ces quelques mots dérisoirs pour vous exprimer toute ma gratitude.
Plus que du bonheur, c’est un privilege que de vous avoir a mes cotés.

"Et puis, il y a ceux que l'on croise, que l'on connait a peine, qui vous disent un mot, une phrase, vous
accordent une minute, une demi-heure et changent le cours de votre vie.” — Victor Hugo

— Thesis manuscript — Page 4 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Remerciements

Il n’en est a laventure aucune plus expresse que de vivre des rencontres dans sa vie. Car de ces rencontres
se construisent des idées, des projets, des amitiés et qui parfois, changent une vie. Ce sont ces rencontres qui
m’ont permis de réaliser ce travail de recherche qui n’aurait pas été possible sans leur plein concours et soutien.
Qu’ils en soient ici remerciés pour celles et ceux qu’il m’est donné de citer.

En tout premier lieu, je tiens a remercier mon directeur de these, le professeur Eric Filiol, pour la confiance
et I’honneur qu’il m’accorda en acceptant d’encadrer ce travail doctoral. Pour votre temps, pour votre disponi-
bilité, pour votre liberté d’esprit, pour votre dynamisme, pour votre rigueur, pour votre bienveillance malgré
tous mes défauts (et ils sont inénarrables) et plus simplement pour tout ce que vous avez su faire naitre en moi.
Il y a eu des moments uniques de bonheur, de satisfaction, de doute, de rire et de joie. Des moments simples
et des moments exceptionnels qui font que la vie d’'un homme bascule & jamais. Il y a eu aussi ces moments si
difficiles qu’ils vous brisent le coeur. C’est dans ces moments que vous avez su montrer ce que veulent dire les
mots de dignité, de grandeur et d’humanisme. Je n’aurais pas voulu un autre directeur de these que vous. Vous
m’étes a jamais une source d’inspiration insatiable.

Je remercie également Igor Zdobnov et plus généralement ’entreprise Dr Web pour m’avoir accueilli en
séjour doctoral a Saint-Petersbourg. Outre l'activité technique et scientifique qui fut particulierement dense,
ce séjour doit beaucoup a votre accueil chaleureux. Il est rare de rencontrer des personnes aussi talentueuses
dans tant de domaines. Nos discussions a baton rompu et cet humour si particulier bercent mes souvenirs d’une
certaine nostalgie. Merci pour ces moments.

Il m’est impossible d’oublier Afianian Amir avec qui nous avons si souvent échangé pour ’écriture de notre
article. Merci d’avoir partagé avec moi cette aventure bien que nous ne nous soyons jamais rencontrés.

Je souhaite aussi exprimer toute ma gratitude a l’ensemble de mes collegues qui ont su m’entourer avec
bienveillance. A Maxence Delong pour tous ces moments partagés. Que ce soit dans nos travaux communs de
recherche ou dans la lutte a dépasser les fatalités inhérentes a la médiocrité... Notre amitié c’est forgée dans le
pire, mais surtout pour le meilleur.

Plus directement, je veux remercier Pierre-Francois Maillard, Francois Plumerault et Mathilde Venault avec
lesquels j’ai eu 'insigne honneur de partager certains de mes travaux de recherche. Pour le temps passé ensem-
ble, votre soutien, pour ’ensemble de votre travail et les relectures nocturnes de Mathilde. Savoir que j’ai pu
contribuer & vous aider & devenir ce que vous étes aujourd’hui est un honneur sans pareil que vous m’avez fait.
Vous étes — et de loin — ma plus grande fierté au sein de ce doctorat.

Aussi, ces travaux n’auraient pu exister sans le soutien affectif et moral de tant de mes amis. Qu’il me soit
ici possible de citer Alain, Amir, Aurélien, Bruno, Cédric, Clarisse, Elizabeth, Guillaume, Jean-Michel, Kévin,
Laurence, Laurent, Matthieu, Michel, Morgane, Nicole, Patrice, Paul, Philippe, Pierre, Stéphanie, So’ et Susan...

Il me faut enfin citer 'ESIEA dans le cadre de laquelle cette these fut réalisée, malgré tout. En ce sens, il
couvient de saluer ici Monsieur Da Rugna pour avoir apporté, in fine, le quantum de sérénité nécéssaire pour
l’achevement de ces travaux.

Plus généralement, ce travail est dédié a tous ces enseignants qui m’ont appris que seul le savoir pouvait
triompher contre ’obscurantisme. J’espere humblement que ce travail saura rendre hommage a ce qu’ils ont pu
m’apporter.

— Thesis manuscript — Page 6 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Remerciements

List of Tables

List of Figures

Résumé

Abstract

1 Introduction

1

2
3
4

1
2

w

General presentation Lo
Context of this research work
Problem and Significance L L
Roadmap o
4.1 Structure of the thesis e
4.2 Mlustrated representation of the thesis
4.3 Reading improvements Lo
4.4 Publication proceedings L
2 Protection at development level: backdoor in compilers
Introductiono
State of the art e e e
2.1 Different instances of backdoor oo Lo
2.2 Definition of a software backdoor o o
2.3 Backdoor at development timeo Lo
First approach L
Macro assembly and ml mistake with Boolean negation operator
4.1 Context . . . o o e e
4.2 MASM assembler
4.3 Operators from MASM compiler L
4.4 Use of NOT operator with MASM compiler
4.5 Bug in MASM compiler e
4.6 Explanation of the bug in MASM compiler
How to build a sneaky backdoor with ml compiler bug?
5.1 Context of the backdoor
5.2 Description of bug consequences in order to insert a backdoor
5.3 Creation of the backdoor
Correction about the bug in MASM
6.1 Reporting of the bug
6.2 Potential corrections of the bug oL
6.3 Effective solution deployed by Microsoft
Conclusion
7.1 Impacts and achievements

12

19

21

23

25
25
25
27
29
29
31
33
34

— Thesis manuscript — Page 8 on 619

7.2 Postmortem documentation L oL 73

7.3 Future of this work 74

7.4 Research contributionso L 75

3 Protection of analyzed executable files: malware 77
1 Introduction Lo 77
2 State of the art L 79
2.1 Preliminaries L L e 79

2.2 Manual Dynamic Analysis Evasion 0 81

2.3 Automated Dynamic Analysis Evasion L 0 0oL 89

2.4 A Brief Survey on Countering Malware Evasion 95

2.5 Conclusion about the state-of-the-art 0 0o 96

3 New manual dynamic analysis evasion technique on debuggers 97
3.1 INT 3 mishandling exploitation L o 98

3.2 Wrong jump interpretationo Lo 104

3.3 Partial instruction prefix handling L oL L 106

3.4 Unsupported instruction oL L o 108

3.5 Conclusion about exploiting of Windbg flaws 109

4 New universal dynamic analysis evasion technique 111
4.1 Introduction L e e e 111

4.2 Preliminaries e e e e 111

4.3 Method of detection L 112

4.4 Detection of analysis environment Lo oo 119

4.5 Improvement of the test campaign and reproducibility of results 128

4.6 Limitations and further improvements 137

5 Future work and broader approach Lo o 143
6 Conclusion e e 148
6.1 Reminder of the achievements e 148

6.2 Research contributions 149

4 State of the art about Windows keyboard management 151
1 General introduction oL e 151
1.1 About keylogger threat and the organization of the following chapters 151

1.2 Introduction about keyboard technology oL, 154

2 Keystroke from hardware keyboard Lo 155
3 PS/2technology 160
3.1 Presentation of PS/2 technology 160

3.2 Kernel interface with a device and scan code sets 161

3.3 Handling PS/2 by Windows 164

4 USB and HID technology e 168
4.1 USB protocol o o e e 169

4.2 HID protocol e 189

4.3 Research Contributions 231

5 Kbdclass and Windows subsystem L Lo 232
5.1 Transition from kernel to user mode architecture 232

5.2 Broadcast of keystrokes by the system with Window Messages 275

5.3 Other means to access keyboard L L L 312

5.4 Miscellaneous about keyboard oL L oo 332

5.5 Research contributions L L e 341

5 Keyloggers and existing anti-keylogger solutions 343
1 Keyloggers history o e 343
2 Hardware keyloggers o e 344
2.1 Direct access hardware keylogger devices. o o 344

2.2 Indirect access hardware keylogger devices oo 349

2.3 Protection against hardware keylogger oo oo 350

Page 9 on 619 — Thesis manuscript —

3 Software keyloggers L 352

3.1 Firmware keylogger L 352

3.2 Kernel-mode keylogger L 354

3.3 User-mode keylogger 364

4 Anti-keylogger solutions L e 369

4.1 Passive solutions e e 370

4.2 Active solutions L e 372

4.3 Industrial solutions L 393

44 Conclusion about anti-keylogger solutions 414

5 Research contributions Lo 417

6 Gostxboard solution 419

1 Problem and definition of the need Lo 419

1.1 Objectives sought o L 419

1.2 About to secure administrator applications requirement 420

1.3 General considerations about our solution L0 Lo 421

2 General architecture of the solution L L 422

3 Genesis of the project e 424

4 Detailed architecture of GostBoard solution 425

4.1 GostBoard WDM driver e e 425

4.2 Ciphering scan codes for keystrokes L o oL o 442

4.3 Ciphering keys and exchange procedure 452

4.4 Protecting the protected application and its cipher keys 458

4.5 GostBoard DII o 467

4.6 Self-defense mechanisms L L 475

5 Going further current limitations Lo 491

5.1 Improving cipher key protection against crash-dump 491

5.2 Multi-processes management Lol oL 492

5.3 Crash of the protected process e 493

5.4 Protection at deeper level in the device stack 493

5.5 Limitation with low level keyboard hook procedure 494

5.6 Original protection based on HID source driver 497

6 Conclusion 502
6.1 General conclusion about GostxBoard solution and the research work produced to secure

keyboard 502

6.2 Limits and future work 507

6.3 Research contributions 509

7 Miscellaneous projects 511

1 Introduction L e 511

2 Doctoral stay achievements L 511

2.1 Published projects e 512

2.2 Unpublished projects during the doctoral stay 518

3 Third party productions 527

3.1 Superfetch documentationo 527

3.2 UEFT ciphering system o e 534

3.3 Detection of Crawler Traps based on new metric distances for data-mining 539

4 Research contributions Lo 548

8 Conclusion & Future research work 549

1 Conclusion to the methodology used in thisstudy 549

2 Contribution and significance carried out by our study 550

2.1 Improving security at the software compilation level 550

2.2 Piece of news about backdoors nowadays L oL 951

2.3 Improving automatic malware analysis by preventing evasion 552

24 Improving anti-keylogger securityo 553

— Thesis manuscript — Page 10 on 619

2.5 General conclusion about the methodology presented in this research work 555

Bibliography

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2

Results of compilation of an undefined code with two different compilers. 52
Different use of NOT operator with MASM compiler. 57
View of compiled code when using NOT operator with MASM compiler. 58
Trust table of the final condition in code 2.6. L. 65
Trust table of the trapped condition from source code point of view. 66
Trust table of the compiled trapped condition with ml compiler. 66
Initial code to correct. L L e 70
Classification and comparison of malware anti-debugging techniques. 88
Classification and comparison of malware sandbox evasion techniques. 95
Classification and comparison of countermeasure tactics against evasive malwares. 96
Results of DBI framework detection test. 123
Results of debuggers detection test. L 126
Results of hypervisor detection test. L 127
Test with two host environments, unstressed. 0oL 134
Test with two host environments, in stressed conditions. 135
Test with two guest environments, unstressed. o oL 135
Test with two guest environments, in stressed conditions. 136
Test in the guest environments, fully stressed with only 100 tests per instance of CPUID instruction. 136
Result from test with our measures of dispersion based on the median for host machines. 142
Result from test with our measures of dispersion based on the median for guest machines. 142

List of different scan codes from all different scan code sets — IBM PS/2 Model 50 and 60

Technical Reference. o . o e 163
Speeds of USB devices among different norms. oo oL 169
PID Types extracted from USB documentation. 173
Standard Device Descriptor. L 179
USB Configuration Descriptor. 179
USB Interface Descriptor. 180
USB Endpoint Descriptor. o . o e e e e 181
Format of Setup Data. 182
Standard Device Requests codes. L 183
Descriptor Types codes. o e 183
HID Descriptor. o o o e e 195
Interface 0 HID Report Descriptor Keyboard. 198
Structure used as Input and Output from HID report given in table 4.12. 198
HID class-specific requests. 199
List of functions used to update the foreground threads. 277
Numeric pad codes translations. L 304
Value used by MapVirtualKeyEx function to perform translation. 305
List of hooks types with their scope associated (from [1, 2]). 322
Evaluation of SpyShelter software as an anti-keylogger solution. 397
Evaluation of KeyScrambler software as an anti-keylogger solution. 402

11

— Thesis manuscript — Page 12 on 619

5.3
5.4
5.5
5.6

6.1
6.2

7.1

Evaluation of Zemana Keystrokes Encryption SDK as an anti-keylogger solution. 407
Evaluation of LMT Anti Logger solution. 408
Evaluation of GuardedID as an anti-keylogger solution. 413
General resume of the different industrial solutions. L. 413
Summary of the drawbacks of the different proposed solutions. 451
General resume of the GostxBoard solution compared with similar requirements from Table 5.6. 506

Function initials and their meaning in SysMain (Superfetch). 529

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18

Representation of the thesis architecture (1/2). Lo L. 31
Representation of the thesis architecture (2/2). o0 oL 32
Detection of the backdoor by the Linux kernel team. 43
Modification of compiler by Ken Thompson. 45
Insertion of a bug each time a pattern matches in the source code. 46
Csmith’s finding bugs procedure. L 48
Resume of Bauer’s strategy to patch sudo program in order to insert the backdoor thank to

LLVM compiler. e e e 49
Decompilation of the code generated from Visual Studio 2018.. 52
Decompilation of the code generated from GCC. 53
Equivalent code in C and in assembly x86 language. 55
Disassembly of code in figure 2.2.o L 55
List of symbols used in MASM officially supported. 56
Evaluation of complex statements with MASM operators. 57
Documentation about the precedence of the NOT operator. 57
Disassembly of code compiled in figure 2.3. Lo 59
Decompiled code from the one compiled in figure 2.4. oo 61
Decompiled correction for the proposed solution. L oL oL 71
MASM updated version is now using error A2154 to prevent such bug to be exploited. 71
Timeline about compiler’s backdoor evolution in history. 72
Representation of the sandbox concept with different technical tools. 80
Interpretation of the debug break instruction before execution. 99
Interpretation of the debug break instruction after execution. 99
Iustration of the correct disassembling of ”int 3h™. 101
Iustration of the incorrect disassembling of ”int 3h” by Windbg. 101
Correction to cancel side effect of the misinterpretation from Windbg. 101
View of the assembly code executed where there is no Windbg. 102
Graphical view of the Windbg’s detection procedure. 104
Correct interpretation under AMD CPU but misinterpretation on Intel CPU due to the prefix

USed. . . .o 106
What will be executed on an Intel CPU with the provided opcodes. 106
Hlustration of the assembly semantic by Intel [3]. o o0 oL 107
Mustration of undocumented use of REX prefix in assembly semantic. 107
Misinterpretation of code by Windbg due to REX prefix.. 108
The code provided in figure 3.13 should be interpreted like this one. 108
Unsupported instruction should be interpreted asanop. 108
Unsupported instruction is not correctly interpreted by Windbg which tries to provide an irrele-

vant meaning to it.o Lo Lo 108
Instance of unsupported CPU instruction interpreted as nop. 109
Extract from Intel documentation [4] explaining how to perform cross-modifying code between

two threads. L e 113

— Thesis manuscript — Page 14 on 619

3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40

3.41
3.42

3.43

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

Intel’s cross-modifying code procedure. L e 114
Modified cross-modifying code procedure. 115
Basic detection mechanism oL Lo 115
Regular execution of our method without analysis environment. 116
Execution of our method on an analysis environment. 117
Debugger detection mechanism oL L Lo 125
Virtual machine detection mechanism Lo Lo 127
Comparison of the ROC curves for the different CPUs. 129
Detection rate of the method with server hardware configuration. 130
Detection of Docker under Windows. oL L 131
Detection of Docker under MacOS. 131
Detection of Docker under Linux. Lo 131
Detection rates according to the host/Guest operating system used. 132
Windows host machine. 133
Windows guest on Windows host. o 133
Linux Host. o o e 133
Linux on Linux. 0 0 o e e e 133
Windows on Linux. Lo e e 133
3 logical cores on 4 are overloaded at 100 % of activity. 134
Tests from host machine. 139
Tests from guest machine. L 139
Example of test on a host machine which has a correlation coefficient close to zero (and thus seen

S A GUESE). 140
Illustration of simple procedure about how to protect code in an executable file. 145
Ilustration of a chain of different source of noise, each opening the access to the next when the

environmental key is correct. L Lo 146
Timeline of the evolution of malware protections, taken from [5]. 147
Top malware families - extracted from [6]. oL L Lo 152
Plan of the next chapters dealing with keylogger threat management. 153
IBM PC Model F Type 1 keyboard device. 155
Keyboard IBM-PC model F type 1 mechanism from top without key. 156
Bottom barrel plate with hammers. 156
Bottom cover removed to get access to the metal bar that makes contact between the hammers

and the PCB underneath. 156
Capacitive PCB representing the electronic matrix of keys. 156
Keyboard matrix integrated circuit manager. oL 157
Intel 8048 keyboard controller. L L 157
Logical diagram representing the circuit given in Figure 4.8. 158
Logical diagram representing the circuit given in Figure 4.9. 159
Representation of DIN connector. e e 160
Presentation of the architecture between the keyboard and the host’s motherboard. 161
Interaction between keyboard and host with interruption ports. 165
PS/2 keyboard device stack.o 167
Rubber ducky dongle used to emulate a keyboard with pre-recorded sequences of keystrokes. The

technologies behind this type of device are direct applications of USB and HID protocols. 168
Different types of formats used by USB devices. 169
USB three definitional areas. 170
USB bus topology. o 171
PID Format as defined in USB [7] 172
Shape of USB packets. 174
Scheme of USB host and devices interactions. L oo 174
USB descriptors hierarchy. 178
Tllustration of a configuration descriptor with a single interface but two alternate settings. 180
Tllustration of a configuration descriptor with a single interface and three endpoints. 181

Page 15 on 619 — Thesis manuscript —

4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36

4.37
4.38

4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46

4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66

4.67
4.68
4.69
4.70

4.71
4.72

4.73
4.74

WinUsb architecture on Windows Operating System. 184
Screenshot from the device manager about keyboard’s information. 186
Current architecture of USB drivers stack in Windows. 188
From [8], direction of the exchanges on HID pipes. 191
From [3], all USB descriptor structures and HID descriptors. 192
Generic Ttem Format. oL oL 193
Nlustration of the right-handed coordinate system recommended in HID (with mouse, for instance).195
Hierarchy between different HID descriptors. 195
Detailed view of hierarchy between different components in HID descriptor classes. 197
Simplified view of HID architecture on Windows. 200
Content of HidRegisterMinidriver shows us how registration is performed by hooking original IRP

callback routines of caller mini-driver. L 202
Driver stack for a generic HIDClass device with optional and required vendor-supplied components.203

Types of WDM Drivers given in the device call stack. The lowest is the number on the picture,

the closer to hardware the driver is. L L 204
Iustration of a link collections array. o 205
Calls to HidP_TranslateUsageAndPagesTol8042ScanCodes routine in kbdhid.sys driver. 209
Pseudo-code of KbdHid_AutoRepeat routine from kbdhid.sys driver. 209
Pseudo-code of KbdHid_AddDevice routine from kbdhid.sys driver. 210
Pseudo-code of KbdHid_StartRead routine from kbdhid.sys driver. 212
Pseudo-code of the beginning of KbdHid_ReadComplete routine from kbdhid.sys driver. 213
Pseudo-code about debug purposes in KbdHid_ReadComplete routine from kbdhid.sys driver. . . . 213
Pseudo-code about handling changes in keystrokes for KbdHid_ReadComplete routine from kbd-

hid.sys driver. oL e e 214
Pseudo-code about auto-repeat in KbdHid_ReadComplete routine from kbdhid.sys driver. 215
Pseudo-code about talkative keyboards in KbdHid_ReadComplete routine from kbdhid.sys driver. 215
Pseudo-code of HidP_TranslateUsageAndPagesTol8042ScanCodes from hidparse.sys driver.. 217
Pseudo-code of HidP_TranslateUsage from hidparse.sys driver. 218
Pseudo code of HidP_AssociativeLookup routine. L. 218
Pseudo code of HidP_StraightLookup routine. 218
Beginning of the content of HidP_KeyboardToScanCodeTable. 219
Content of the sub-table HidP_KeyboardSubTables. 219
Pseudo-code of HidP_KeyboardKeypadCode routine from hidparse.sys. 220
Pseudo-code of HidP_KbdPutKey routine from hidparse.sys. 220
Representation of the internal routines notifications in the keyboard HID stack for a pressed key. 222
Representation of the architecture of HID keyboard drivers with exported API. 223
Hardware identifiers linked with the keyboard device.. 224
Physical device name associated by the keyboard. o oo 224
View from WinObj software where our one of our HID keyboard interface is selected. 225
Iustration of the 16-bit Windows synchronous message system. 233
Ilustration of the Win32 asynchronous message system. 234
Entry point of csrss.exe application on Windows 10. L oL 237
Entry point called for winsrv.dll module by csrss. oL oo o 239
Part of UserServerDllInitialization in winsrvext.dll, initialization of the provided parameter with

useful callbacks. L e 240
Callback SrvCreateSystemThreads from winsrvext.dll and registered by UserServerDllInitialization. 241
Function StartCreateSystemThreads from winsrvext.dll. 241
Part of NtUserCallNoParam from win32kfull.dll. 242
List of routines which can be used via NtUserCallXxx routines selected via an index provided as

first parameter. L L e e e e e e e e e e 242
Extract from the code of xxxCreateSystemThreads routine in win32kbase.sys.. 243
Beginning of RawlnputThread routine from win32kfull.sys — Initialization and wait for notifica-

tlon events. L 245
Content of SetWinlogonHotKeys routine. o o 246

Content of SetPenHotKeys routine. 246

— Thesis manuscript — Page 16 on 619

4.75 Setup of RawlnputThread routine from win32kfull.sys — Initialization of keyboard devices and

desktop. . . . o L e 247
4.76 Winlogon desktop used to handle UAC. 248
4.77 Simplified pseudo-code of RIMRegisterForlnputWithCallbacks routine (from win32kbase.sys). . . . 251
4.78 Simplified pseudo-code of CBaselnput::RIMCallBack routine (from win32kbase.sys). 252
4.79 Code from CBaselnput::Read routine (from win32kbase.sys). 253
4.80 Simplified pseudo-code of RIMReadlnput routine (from win32kbase.sys). 254
4.81 Content of RIMStartDeviceRead routine from win32kbase.sys. 255
4.82 Simplified pseudo-code of rimInputApc routine (from win32kbase.sys). 257
4.83 General illustration of read operation with a HID keyboard device. Note the double IRP procedure

engaged from each part of kdbclass.sys. L o 258
4.84 Beginning of the xxxRegisterForDeviceClassNotifications routine in win32kfull.sys. 260
4.85 Pseudo-code of the win32kbaseAccessProceduresStream routine in win32kbase.sys. 267
4.86 End of RawlnputThread routine from win32kfull.sys — legacy procedure. 269
4.87 Pseudo-code of the RitTakeOver routine in win32kfull.sys. 271
4.88 Pseudo-code of the PrepareForMasterInputThreadTakingOver routine in win32kfull.sys. 272
4.89 List of routines held by gapfnScSendMessage value in win32kfull.sys. 273
4.90 List of routines held by ServerHandlers value in win32kfull.sys. 273
4.91 View of the different routines able to call xxxActivateWindowWithOptions in win32kfull.sys.. . . . 276
4.92 Part of pseudo code of OnReadNotificationlsValidGuiThreadContext routine in win32kfull.sys. . . . 278
4.93 Tree view of calling routines to CitProcessForegroundChange from win32kbase.sys. 279
4.94 Locations of the flags and values used in the |IParam parameter when a key down message is

received (from [9]). . . .« . L 284
4.95 Beginning of the HidpRegisterDevicelnterface routine in hidclass.sys. 289
4.96 Beginning of the KbdHidCreate routine in kbdhid.sys. 289
4.97 Pseudo-code of the KeyboardClassCreate routine in kbdclass.sys. 290
4.98 Pseudo-code of the NtUserSendInput routine in win32kfull.sys. 297
4.99 Extract from the pseudo-code of the EditionHandleSonarKeyEvent routine in win32kfull.sys. . . . 298
4.100Pseudo-codes of zzzStartSonar and DrawSonar routines in win32kfull.sys. 299
4.101Ilustration about the translation performed in xxxNumpadCursor routine with ausNumPadCvt

table from win32kbase.sys. L 300
4.102List of routines held in aNLSVKFProc value from win32kbase.sys. 300
4.103Different phases of translation with the corresponding API to go from one phase to another. . . . 303
4.104End of the pseudo-code of win32kbaseNtUserMapVirtualKeyEx routine from win32kbase.sys. . . . 303
4.105Content of the keyboard layout file internal structure retrieve for the call to InternalMapVirtu-

alKeyEx routine. L 303
4.106Representation of the scan code content for the numeric pad. 304
4.107Dump of the tables layout structure provided to InternalMapVirtualKeyEx routine. 306
4.108 Assembly code from a portion of InternalMapVirtualKeyEx routine in the case where the translation

is performed with MAPVK_VK_TO_VSC flag. 307
4.109Extract of the pseudo-code from InternalMapVirtualKeyEx routine called with MAPVK_VK_TO_VSC

flag as a final search in the numeric pad. Lo L Lo 308
4.110Assembly code from a portion of InternalMapVirtualKeyEx routine in the case where the translation

is performed with MAPVK_VK_TO_CHAR flag. 309
4.111Extract from the pseudo-code of NtUserGetKeyboardState routine in win32kfull.sys to report the

current content of the keyboard for an input thread. 314
4.112Pseudo-code of IsKeyStateCached routine in win32base.sys. 315
4.113Pseudo-code of GetKeyState function in user32.dll. 316
4.114Pseudo-code of GetAsyncKeyState function in win32kbase.sys. 318

4.115The aDeviceTemplate structure holding all information to communicate with a given device type. 339
4.116Extract from InputApc routine used to notify the read callback routine associated with the device
in aDeviceTemplate global structure. 339

5.1 Summary of the tree architecture of the different keylogger threats. 344
5.2 Usual connection between PS/2 keyboard and computer. 345

Page 17 on 619 — Thesis manuscript —

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30

5.31

5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43

6.1
6.2
6.3

6.4

6.5
6.6
6.7
6.8

Keylogger lies between PS/2 keyboard and computer. 345
KeyGrabber USB device. o e e 346
Evolution of the product range at Keelog company. Note the reduction in length. 346
Plugged version of KeyGrabber Forensic Keylogger. 346
KeyGrabber Forensic Keylogger length. L 346
Usual USB keyboard view. e e 346
Hardware keylogger impact in the USB device tree organization. 346
Iustration of KeyGrabber Forensic Keylogger Cable from Keelog. 348
Dedicated circuit to be inserted in a targeted keyboard. L. 348
Already trapped keyboard with an embedded malicious printed circuit board. 348
Example of contact less keylogger from [10]. 350
Commercial electronics SCRC50 cable contact less keylogger. 350
Various possibilities of infection from the UEFL. 354
Job proposal for a keylogger development. Lo oo 363
Tlustration of a decoy architecture to fool keyloggers and preserving the whole system. 374
General architecture of NoisyKey project. L 375
Architecture of niosykey.dll. 375
Integration of keyboard shadowing with the driver stack of an HID keyboard from [I1]. 378
Ilustration of the sequences between user’s keystrokes and decoyed ones. It is not hard to find
user’s relevant information inside log files for keylogger’s managers. 381
Example of random layout from [12].o oo 384
Example of random layout from [13]. Lo 384
Example of random layout from [14]. oo 384
Nlustration of a random keyboard with hidden key’s content from [15]. 384
Interaction of a Virtual-Machine Monitor and Guests (from [16]). 388
Windows 10’s general architecture with VBS security activated (from [17]). 392
General SpyShelter anti keylogger rules manager. Lo 395
SpyShelter single application filter. Lo 395
Setup procedure from SpyShelter proposes to install the Keystroke Encryption driver which is
marked as an experimental feature.o Lo 395
KeyScrambler is available in several versions. The difference belongs in the list of software to
protect supported. Lo 398
KeyScrambler uses a specific bar to display the content of ciphered keyboard data. 398
Iustration of the possible architecture used by KeyScrambler. 400
Pseudo code of the function recording the KeyCrypt’s window messages handler. 405
List of functions targeted for hook procedure. Lo oL 405
Part of the trampoline hook procedure used. 405
Slides from the technical documentation of the Zemana KeyCrypt SDK project. 406
Hook function in the DIl called by the original function. 407
Post-callback used after original hooked function has been called. 407
Iustration of LMT Anti Logger extracted from a youtube video. 408
What keyloggers see. L 410
Architecture used by GuardedID. 410
How GuardedID works with its own self-monitoring capability. 411
General architecture of our protection solution. L oL 423
System-supplied driver stacks for USB keyboard and mouse/touchpad devices. 437
Filtering architecture as given where the UpperFilter value for keyboard is defined with "GostxBoard,
kbdclass, Ctri2Caps™ o L e 439
View from OSR’s DeviceTree software on our virtual machine, configured with two keyboards
(PS/2 & USB/HID) running Ctrl2Caps and GostxBoard drivers. 440
Simplified view of the cipher transformation on scan codes used by our solution. 444
Keys that are kept as cryptosystem output are in white. Keys which are in grey should be avoided.444
Transposition from scan code toindex. L L 445

Our ciphering system for scan codes based on a random shuffled permutation. 446

— Thesis manuscript — Page 18 on 619

6.9
6.10
6.11

6.12
6.13

6.14
6.15

6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

6.25

6.26

7.1
7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9
7.10
7.11

7.12

7.13
7.14
7.15
7.16
7.17
7.18
7.19

7.20
7.21
7.22
7.23
7.24
7.25
7.26

Basic principle of the keyboard key cryptographic system with over-ciphering. 447
Illustration of the algorithm used for the cryptographic chain implementation. 447
Illustration of the cipher and the decipher procedures. Note that intermediate ciphered values

are all deciphered until we have a value from the input set. 448
Use of the cryptographic system as a pseudo-random generator to protect scan codes. 448
Transform the original allowed output set of values to only draw allowed values whatever is the

random value index. e e e 450
Illustration or a regular driver object with dispatch routinesset. 454
Hooked dispatch routines for monitoring purpose by a third party driver (monitoring dispatch

routines are inred). Lo e 454
Possible system power state transitions, extracting from [18]. 465
Pseudo code illustration of GostxBoardlInitiateSession function to initiate protection with the driver.469
Illustration of steal focus when the driver still ciphers. 473
Illustration of steal focus with protection stopped. L. 474
Windows boot process consists of several phases (extracted from [19]). 476
Tree architecture of the EFI partition. 479
Secure Boot and Trusted Boot illustrates the boot process (freely inspired from [19]).. 481
Booting procedure before Windows 8. Lo 489
Booting procedure with secure boot and ELAM technology able to control third party drivers

and ensures that antivirus driver has been correctly loaded. 489
Device tree representing the drivers and their associated device objects with a HID source driver

(from [20]). « o o o 498
Illustration of the proposed solution. 500
Tllustration of the different steps to perform a classical DIl injection procedure. 513
Code written by the developer. 513
Equivalent code the first time the function is called. 0oL 513
Simplified view of the interactions present in IMAGE_DELAYLOAD_DESCRIPTOR structure.514

Replacement of the original IMAGE_DELAYLOAD_DESCRIPTOR structure by the one used
for injection purpose. Note that the generic exported function by the process is resolved in blue
on the figure when resolved by the process. L 516
Injection procedure based on the generic function used to interface the first delayed function call. 517
General representation of the protected folders against unexpected software trying to access files. 519

General resume of the anti-ransomware directory protection solution. 520
Regular access provided to Word. 521
Access denied to third party software. 521
Packing process with an original executable file packed with a packer producing the packed

executable file. oL 521
General view of a packed file. This one uses the depacking payload to extract the original file in

memory before executing it. That way, the original file is hidden in the packed file. 522
General view of our tool able to manage the classification of polymorphic packers. 524
Classification of a new element in our unsupervised data-mining clustering system. 525
SysMain global operation. e 530
SysMain internal databases construction process. Lo 531
SysMain internal databases reading process. 531
Content of the cache concerning WinRar software, as referenced by SysMain in the Cache Manager.532
Illustration of the UEFI boot procedure in two stages. The first from the ship on the motherboard

and the second a boot partition on the hard drive disk.00 535
PI Architecture Firmware Phases (extracted from [21]). 536
Basic architecture of Intel computer with AHCI interface. 537
Different layers of the SATA protocol model. 537
Intel Minnowboard Turbot computer. 538
Access to the mother board on a laptop. L 538
Electronic setup for flashing the contents of the machine’s BIOS/UEFL. 538
General resume of the procedure used to cluster web-pages in different families. 544

Page 19 on 619 — Thesis manuscript —

7.27 Overlapping rates computed between regular web-sites vs trapped ones. It helps to measure the
impact of bad detection of cluster by a given distance. L. o547

— Thesis manuscript — Page 20 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Résumé

La compréhension de la sécurité informatique passe nécessairement par une réelle maitrise des briques de
technologies élémentaires qui constituent son socle et par une compréhension des dynamiques qui motivent
I’émergence de nouvelles menaces.

C’est dans cet objectif que les travaux de recherche de cette these ont été menés. Il nous tenait a coeur
d’intégrer une vision duale, c’est-a-dire autant offensive que défensive, pour faire face aux menaces actuelles et
a venir. Tant par une connaissance tres technique que par la maitrise des dynamiques liées aux contraintes de
I'attaquant, il a été ici possible de concevoir des outils a la fois offensifs et défensifs.

Les présents travaux visent a améliorer la défense de plusieurs systemes apres une phase préalable de recherche
des failles dans ces derniers. Ainsi nous avons travaillé sur plusieurs axes pour offrir une solide défense dans
la profondeur. Dans un premier temps, nous avons amélioré la sécurité du compilateur MASM en découvrant
une faille présente depuis plus de 20 ans, qui permettait jusqu’alors & un attaquant d’introduire silencieusement
des backdoors lors de la compilation des programmes. Nous avons également dévoilé de nouvelles techniques
d’évasion pour les malwares dans ’objectif de mieux anticiper ces dernieres. Une de ces techniques permet de
détecter n’importe quel type d’environnement d’analyse automatique utilisé de nos jours. Au meilleur de notre
connaissance, aucune autre technique ne propose de telles capacités opérationnelles. Enfin, nous nous sommes
penchés sur le fonctionnement des keyloggers, grace a un travail inédit de documentation des mécanismes in-
ternes de Windows 10 par rétro-conception.

Cette étude nous a permis d’élaborer une solution contre les keyloggers, qui est plus performante que
I’ensemble de celles existant & ce jour. De la correction de vulnérabilités trouvées dans un compilateur a la
conception de nouvelles techniques d’évasion, nous nous sommes assurés d’apporter des solutions innovantes
pour améliorer la sécurité des systemes a long terme. Cela par le biais d’outils que nous avons construit pour
neutraliser les keyloggers, par la conception de méthodes de forensic basées sur I’analyse du service Superfetch,
par la découverte de nouvelles techniques de détection de crawler-traps, par ’étude de systeme de chiffrement
total basés sur 'UEFI et enfin par a la création d’algorithmes de classification de malware. Ces différentes
recherches ont abouti sur de nombreux résultats, dont la parution de la CVE-2018-8232, I’édition d’articles
scientifiques et de publication dans des conférences internationales académiques et de hacking telles que Defcon
ou Black Hat US.

En conclusion, nous avons cherché a privilégier des travaux qui visent a analyser, évaluer et améliorer la
sécurité d’un projet a différents niveaux. C’est pourquoi beaucoup de domaines ont été abordés car la sécurité
informatique est un domaine global et finalement multidisciplinaire, qui nécessite bien souvent des compétences
transverses. Ce qui fait que nos travaux ceuvrent avant tout a sécuriser I'information traitée par un systeme
automatisé, de sa collecte, de son traitement a son stockage tout en s’assurant qu’aucune menace ne puisse agir
contre des programmes s’exécutent conformément a ce qui est attendu.

Mots-clés : sécurité informatique, programmation bas niveau, rétro-conception, malware, vision offensive,
keylogger.

21

— Thesis manuscript — Page 22 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

Understanding computer security requires a strong knowledge of the underlying technologies and a deep aware-
ness of the origin of today’s threats. To help the community facing the new challenges of computer security,
our research is based on these fundamentals.

One of our goal was to include in our work, both of the offensive and defensive approaches, to best meet
the requirements of the fight against cyber threats. Starting with a technical background and knowing the
attacker’s point of view allowed us to design both offensive and defensive tools.

Our work aims at enhancing the defense of several systems by first looking for vulnerabilities in them. Thus,
we worked on several axes to provide a strong defense in depth. At first, we improved the security of MASM
compiler by exploiting a vulnerability that has been present for more than 20 years. It had allowed to silently
introduce backdoors at compilation time. On the other hand, we developed new evasion techniques for mal-
ware, in order to better manage them. One of these techniques allows to detect any type of automatic analysis
environment used nowadays. At the best of our knowledge, there is no other technique able to produce similar
results with such operational consequences. Finally, we managed keyloggers threat thanks to an extensive and
unpublished documentation of Windows 10 internal mechanisms, achieved through a reverse engineering pro-
cess. Within this context, we proved that it is possible to produce a solution above those existing at the moment.

From the correction of the vulnerability found in the compiler to the design of new evasion techniques, we
made sure to bring innovative architectures to improve the security of the systems in the long run. This has been
achieved through the tool we built to prevent users from being victims of keyloggers, through the new forensic
methods we elaborated based on the Superfetch service, though the new techniques we discovered to detect web
crawler-traps, though the studies done about UEFI full encryption system and though the algorithms created
to classify malicious programs.

All this research work has been published in different academic and hacking international conferences, in-
cluding DefCon and Black Hat USA in addition to several scientific articles and CVE-2018-8232. In conclusion,
we have privileged works that aim to analyze, evaluate and enhance the security of a project at different levels.
Many domains have been covered because computer security is a global and ultimately multidisciplinary field,
which often requires cross-disciplinary skills. The idea is to always secure the information processed by an
automated system, from its collection, its processing to its storage, while ensuring there is no threat acting
against programs which are running as expected.

Keywords: cyber security, kernel programming, reverse engineering, malware, offensive, keylogger.

23

— Thesis manuscript — Page 24 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1

Introduction

1 General presentation

Why do we need security in computer science? After all, what we call computers nowadays are nothing more
than power supplied machines made of metal, cables and plastic. What would security have to do with what
are, in the end, only high-performance calculators? Asking such a question forgets the preponderant usage that
we have of these machines. They durably changed the world since the second half of the twentieth century. Con-
nected through Internet networks and the miniaturization leading part of their development make it difficult to
imagine to pass one day without a smart-phone, a laptop, a computer... We entrust them with the management
of our lives, that is to say our finances, our habits, our contacts, our exchanges our colleagues, friends, our most
intimate secrets (professional, medical, intimate), our time... What would be the consequences if it would be
possible to deliberately tamper with these devices? Who can predict the magnitude of the disaster if it would
be possible for an entity to collect all the data stored on these machines? This is the role of security: to prevent
these painful questions from being asked, because there is no good answer to them.

If the interest about security is understood, the question to what can be done to improve it arises. Not a
week goes by without news of a hacking incident. And this is only the tip of the iceberg. McAfee Labs claimed
in a report to detect 419 threats per minute in Q2 2020, an increase of almost 12% over the previous quarter
[22]. This observation is nothing but new since malware and threat landscape was already in a growth in 2000s
[23] and projections about nowadays are not better [24]. Regarding vulnerabilities exploited by malware, 18,352
have been identified in 2020 (where some of them could be exploited as backdoors or 0-days) [25]. If a proof
was needed, these observations on the evolution of the threat from an antivirus company show that the issue of
security is far from being over. And it is precisely on the topic to see how it is possible to improve the security
of a computer system that this thesis was written.

The question is therefore to know how it is possible to secure or more directly to improve the security of
a computer system. On the one hand, we are convinced that security is intimately linked to what rules the
technology in its most intimate aspects. Building something safe is impossible if it is not perfectly understood.
More directly, we cover our problems by a technical low level aspect, in the sense that we try to be as close as
possible to the hardware used by computer. On the other hand, with an original approach used in this study,
we took the attacker point of view to better attempt to improve the security of a system. From the offensive
point of view, we propose to better understand the causes and consequences that allow a potential attack a
system. From the offensive point of view, it is possible to test the existing systems. From the offensive point
of view, we can find new attacks and thus anticipate by correcting or proposing adapted defenses. Because the
final objective is to provide better security.

2 Context of this research work

The protection of a computer system can be done in two different ways. Either we deal with the causes that can
potentially cause this system to no longer act as expected, or we deal with the possible consequences resulting

25

Chapter 1 — Thesis manuscript — Page 26 on 619

from these causes on the system.

Dealing with the causes that may contribute to compromising the security of a system can be done in differ-
ent ways. On the one hand, simply by avoiding introducing a flaw in the system at conception or, on the other
hand, at implementation time. This is easier said than done. Systems are designed by men and women who
are inherently fallible. Of course, it is possible to design tools or procedures to automate controls and increase
security. But these tools are not silver bullets since they are created by humans and therefore, they are also
prone to be imperfect. Errors can come from negligence or be intentional (in the case of backdoor). Of course,
this situation is not hopeless. Between an imperfect system and no system at all, there is an obvious choice.
Moreover, while perfection is desirable, it is not always necessary to reach it to get good results.

When designing a security system, it is always better to address the causes of a potential problem than their
consequences. For the same reason that it is better to avoid fire than having to extinguish it, this guarantees a
greater reliability of the system over time and the possibility of continuing to build on solid foundations. In our
IT context, this means being interested in security design, code quality, secure programming, code evaluation
procedures, unit testing and more generally what we can call DevSecOps [26, 27]. Guarantee that what is
developed does what it is supposed to do, without adding flaws or doing more than what is expected.

In addition to ensuring the security of software, security mechanisms can be used to prevent the execution
of potentially malicious code. This is commonly known as antiviral detection. The objective is to analyze any
program hosting on a computer before it is executed. In practice, antivirus is trying to guess by analyzing
a given program whether there are potentially dangerous behaviors. There are several strategies for doing
this [28, 29]. On the one hand, old fashion style, by performing a static analysis by examining the program,
looking for occurrences of malware pattern without running any code from the analyzed program. There are
several ways of doing this, but a distinction is generally made between deterministic models (which look for
a specific and known element from malware samples) and heuristic models, which determine probabilistically
the susceptibility of the target to be malicious. In this last case, it provides the possibility to find known or
unknown malware by looking for pieces of code that look to be "malware-like,” instead of looking for specific
known signatures from former samples.

On the other hand, it is possible to perform dynamic detection methods by running the code and observing
its behavior. By checking the activity of the evaluated program, antivirus is trying to model the program’s
behavior by making a distinction between allowed actions from those that are suspected or forbidden [30]. In
practice, antivirus are not logging all instruction executed by a process (it would be too long and too complex).
Instead of, it focuses on all relevant actions such as access to file system, registry, network, devices, other pro-
cesses and other relevant resources. By comparing the observed behavior from the one previously recorded of
known malware programs (or malicious strategies), it is possible to detect and even to prevent the malicious
action from occurring by reacting in time. Such an operation can be performed in two different ways: either
manually with a human piloting a tool, or automatically with a dedicated tool. Each solution has its advan-
tages and disadvantages. Of course, malware samples are not passive facing such dynamic analysis and they try
to probe such analysis environment in order to stop their malicious behavior before detection or to evade analysis.

When it is no longer possible to prevent an attack before it occurs, then care must be taken to reduce its
scope. In practice, threats do not always take the form of an executable program on a hard disk, downloaded
and executed by the user. In many cases, the exploitation of a vulnerability allows to execute code remotely
[31, 32] and thus to perform malicious actions on the target. This way, programs that are analyzed and consid-
ered to be safe can become the vector of attacks. In such a case, there is a design flaw or programming error in
the targeted process and it was not possible to detect it before execution. Therefore, the consequences must be
addressed by reducing malicious opportunities.

We come to the point where we have to deal with the potential consequences of an illegitimate action in the
system. Ideally, we should be able to permanently contain all malicious actions undertaken. But unfortunately
this is not possible for at least two reasons. On the one hand, if the malicious action comes from a legitimate
process but is vulnerable to a remote takeover (by any means), then the malicious code will act with the rights of
the process and it will inevitably be able to initiate the same actions as the latter (but perhaps with illegitimate

Page 27 on 619 — Thesis manuscript — Chapter 1

intentions). On the other hand, in case an attacker manages to see malicious code executed in its own dedicated
process, then everything depends on the rights inherent to this process.

It is precisely with the objective of limiting the threat and its consequences that security can be conceived.
For this purpose, two approaches are possible. The first one is based on a global approach by limiting the scope
of the processes running on the machine. In a way, this corresponds to the real-time action provided by an
antivirus software that monitors file access or network traffic. In a more specific way, it could be a sandbox
or containerization solution, that is to say the process runs in a controlled environment where its actions are
observed in order to neutralize the dangerous ones.

The other approach consists in securing a particular action or a process. The idea here is to protect a
particular resource to allow access only to trusted elements and to act with maximum security. This can be
technologies like the Trusted Platform Module (TPM) [33] with hardware support, but also a software approach
with security-enhanced programs. We oscillate here between the general protection of the system to avoid
malicious actions and the individual protection which reinforces the access to the resources of a given process.
This approach aims to mitigate the consequences of a possible security breach.

When we combine these various modes of defense, we observe that they overlap, acting in layers, like a
continuous mesh. The fact of designing the security of a system as a series of sub-systems, where the possible
failure of one is handled by another sub-system, and so on, is what is called defense in depth. The protection
of the whole system is provided through several independent methods. The main idea is to provide different
layers of security at different levels where potential issues could be. It is precisely with this idea that this thesis
was built.

3 Problem and Significance

The general question we are trying to answer in this thesis is to know how, through the offensive approach, it
is possible not only to make rise new threats, but also to know how it is possible, by having a deep knowledge
of the system, to neutralize old threats and potentially new ones. The problem exposed here is to attempt to
improve the knowledge in computer security. By finding (and fixing) any kind of vulnerabilities in software. By
creating protection tools. By improving knowledge on the subject, both by studying the existing threat and by
anticipating what it could be.

Problem 1: General problem covered by this study.

How to propose more efficient security solutions through an offensive and low-level approach in computer
security?

Obviously, dealing with computer security, it is not possible to cover such a large topic in a single thesis. It is
too vast a field. That is why we chose to illustrate our approach by selecting an example of defense from offensive
approach in three different cases. The idea is to deal with different sub-problems in order to bring a better
understanding of computer systems, but also to counter and prevent current and future threats. Moreover, it
seemed coherent to us to concentrate our efforts on a single environment, i.e. the latest operating system from
Microsoft: Windows 10. According to diverse statistical sources, it is the most widely used operating system
for desktop PCs worldwide (with approximately 78 % market share) [34, 35].

A first problem is the security of software development. As explained, in addition to the absence of flaws
written inadvertently in a program, it is necessary to ensure that the code programmed is the one that will
be executed on the machine. In practice, to create a program, the developer writes the source-code in a given
programming language and it is then processed to produce an executable file. This processing phase is called
compilation. What is not well understood today is whether it is possible to exploit a bug in the compilation
phase to successfully introduce a vulnerability into the compiled code. There are academic studies that tend
to show that this is theoretically possible or constructions that come close to this, but without making strong
assumptions to justify certain characteristics. These assumptions are significant because such attacks remain

Chapter 1 — Thesis manuscript — Page 28 on 619

quite theatrical. In addition, they are considered as minor since they have always been promptly corrected when
very few had happened.

Problem 2: Improving security at the software compilation level.

Is it possible to deliberately introduce a backdoor into software at compile time in a stealthy and effective
way?

Knowing a real attack exploiting real vulnerabilities present for a long time will provide a benefit since it
will prove two points. The first is that compilers, as any other software, are prone to error stealthy exploitable
for nasty goals. More directly, an error could be exploited directly in an operational context. The second is
that such issue should be taken more seriously because security is not only about what has been written in the
original source-code.

The second problem is to focus on malware evasion methods to avoid analysis. Indeed, as explained, in
order to prevent a malicious program from running, it is still necessary to be able to analyze it. And it goes
without saying that malware samples do their best to avoid this. In this area, there are several gaps. Firstly, the
techniques used are varied and depend on the analysis tools used and the method of analysis beyond (manual or
automatic). In practice, surveys can be focus only on a subset of the techniques used [36] or depicted in a trivial
way without any detailed overview [37, 38]. Their is a real lack for a comprehensive classification regrouping all
different known evasion techniques. Secondly, there is a lack in anticipating new trends in evasion techniques.
There is a real need to portray the current trends and evaluating new evasion methods in a synthetic way. And
finally, there is no generic method of escape today. By generic, we mean the ability to act on any analysis
environment used. And by method, we mean a functional and reliable technique with a very high probability
rate of success.

Problem 3: Improving automatic malware analysis by preventing evasion.

Is it possible to efficiently detect and evade automatic malware analysis environments?

In all cases, this will allow us to have a synthetic vision on the state of the threat, but also to potentially
produce a taxonomy more likely to help the industry and academia. In this end, being able to produce new
evasions would not only address potential future evasions (or current unknowingly ones) but would also disarm
malware from trying to use these methods again. Let us note finally that a generic method of escape would have
a scientific interest in the sense that it would constitute, from a conceptual point of view, a kind of "holy grail”
for malware. Being concerned with such methods (and especially by the way these techniques can be designed)
can help to better design the defenses implemented by the analysis systems.

Finally, our third problem was to deal with a particular threat to mitigate its nasty consequences. In our
case, we focused on keyloggers. Why keyloggers? Because keyloggers are threats that have been used since a
long time and their actions are still embedded in the most modern malware. Can they be easily detected? The
answer is no [39, 11, 40]. As we will see in this study, a keylogger is ultimately nothing more than a program that
interfaces with the keyboard. The difference with a legitimate program is what it does with the received data.
Basing a detection on a behavior close to the one from legitimate software programs is a hard task. May be too
hard. This is why there is an interest in neutralizing the threat, rather than trying to characterize it. This is an
area that has been studied both academically [41, 42, 43, 44] and industrially (Chapter 5, section 4.3). If each
of the presented approaches is interesting, the proposed solutions (when they go beyond the concept stage) are
sometimes approximate or unable to really neutralize the threat. Several points are misunderstood today. On
the one hand, by the nature of the threat, its capabilities and means of action, it is hard to completely defeat it.
On the other hand, for some cases, technical concepts specific to operating system make these solutions either
useless or dangerous for the user.

Page 29 on 619 — Thesis manuscript — Chapter 1

Problem 4: Improving anti-keylogger security.

Is it possible to neutralize keylogger threat on a Windows 10 operating system at running time?

The interest of research in this area is very clear: make systems free from the threat of keyloggers. If it is
not possible to remove these parasites because they are hard to detect, it is nevertheless possible to improve the
symbiosis with them by preventing them from collecting sensitive information. The direct interest of this type
of study is to allow the design of software programs that are keylogger-safe. In addition, the study of existing
solutions, sometimes presented in a critical light, also helps to point out weaknesses and potential solutions to
provide improved solutions. Finally, the complete study of the functioning of the keyboard within a computer
brings an unprecedented understanding of the internal mechanisms of the Windows 10 operating system.

Generally speaking, the interest of this thesis is twofold. On the one hand, it suits our idea of defense in
depth. Thus, we conceive security since the design of the software (by practicing quality development, secure,
especially fed by the sometimes critical analysis that we could carry on the third party projects observed) in-
cluding all different steps of the development (from source-code to the compilation phase). This design takes
also care about performance requirements, user’s experience, guaranteeing privacy and everything that makes a
quality software. Then, we are dealing with the possibilities for malware to evade analysis. The idea is always
to prevent the execution of the potential threat. And besides an exhaustive survey on the state about evasion
techniques (which can help to detect them), there is also an interest in anticipating the future threats in order
to better understand it and eventually to defeat it. Finally, assuming that the detection of the threat may have
failed or that it is simply out of reach, we try to neutralize it anyway. We attempt to highlight a global approach
against cyber threats.

On the other hand, the second interest of this thesis is the documentation work about computers and
technology. A better understanding of closed systems like Windows or some malware helps to design better
defenses, to design better tools and — with a great humility — to try to modestly improve the meaning about
very complex or unknown concepts. This study is an unique opportunity to detail unpublished and highly
specialized knowledge.

4 Roadmap

4.1 Structure of the thesis

The construction of this thesis is in line with the problem and sub-problems explained previously. It is essen-
tially composed of four main parts, sometimes broken down into several chapters.

The first part is composed of by Chapter 2 which aims to introduce of a backdoor by the operational ex-
ploitation of a vulnerability within the MASM compiler. The idea in this chapter is to show that it is quite
possible to exploit a decades-old vulnerability in a compiler used in the industry to introduce a backdoor. More
directly, we will show how to introduce a mechanism specifically written (but harmless) in a source code that
allows a third party to gain a remote access to the system driven by the program compiled from this source
code. First, we will show an unknown vulnerability in the MASM compiler that allows to silently change the
meaning of the generated source code in some situations. Then, we will expose the proof of feasibility of the
introduction of a backdoor by explaining step by step how to proceed. Finally, we will explain how the flaw was
fixed by Microsoft and the implications that such a disclosure could potentially have.

The second part is focused on protection used by malware against analysis. In France, in 2019, nearly 45 %
of small and medium-sized companies had suffered a cyber attack according to Daniel Benabou [45]. And the
consequences can be dramatic. This is why malware analyzing matters, to prevent such dramatic consequences.
This part is composed by Chapter 3 only. By first exposing an exhaustive state-of-the-art about evasion tech-
niques used by known malware, we propose a classification of different evasion techniques to make a distinction
between manual and automatic dynamic analysis evasion. After a brief survey on countering malware evasion,
we will provide two new evasion techniques, one against manual and one against automatic dynamic analysis
evasion. In the first case, we will be interested in the analysis tools called debuggers to fault them. By various

Chapter 1 — Thesis manuscript — Page 30 on 619

original methods, we will see how to deceive a human analyst in front of such a tool and in the case of the
Windbg debugger, we will be able to detect the use of a debugger at runtime. In the second case, we will see
a generic method able to evade all dynamic analysis environment tools with a high rate of success. In this
section, discussing the exploitation of undocumented mechanisms on Intel processors, we crafted a new evasion
method for debuggers, virtual machines and Dynamic Binary Instrumentation tools. Finally, we will discuss
the evaluation (through a test campaign), the reliability and possible improvements of this method.

The third part aims to deal with the case of keyloggers. It is divided into three chapters. In Chapter 4, we
will discuss about technical background behind keyboard technology. The latter exposes the technical charac-
teristics of a keyboard from the physical pressure of a key to the reception of the signal sent from the device by
an application under Windows. For this, we will talk about the communication protocols used by keyboards,
namely the PS/2 protocol and the most modern USB/HID protocol. We will then see in detail how the infor-
mation received from the physical device is processed by the kernel of Windows operating system, according to
each protocol. From there, we will continue our study by explaining how Windows gathers information from
two different protocols and then processes received keystrokes to be exploitable by any applications (includ-
ing keyboard layout management, translation from different languages, special character generations, special
system signals such as CTRL4+ALT+DEL and so on). Finally, we will see in an exhaustive and detailed way
how (user-mode) applications can recover data from the keyboard, whether they are directly displayed on the
screen or not. This long chapter covers all the technical background in order to be able to deal with keylogger
technology (which relies on the keyboard) and solutions to neutralize them.

Chapter 5, we will establish the state-of-the-art of the keylogger threat which can be located at different
levels (hardware or software). For various reasons, we have chosen to focus on the software threats, because it
is the easiest one to broadcast. From the latter, we will try to present the various possible methods of action
for keyloggers, based on explanation given in chapter 4. Once the knowledge of the different threats has been
established, we will propose a state-of-the-art of the solutions that exist today to counter the keylogger threat.
Starting from academic solutions, we will make the difference between active and passive solutions. The first
ones aim at detecting keyloggers (as a traditional antivirus would do) and the second ones aim at providing a
proactive action on the threat by neutralizing it at runtime. This is such passive solutions that we are trying
to improve here. This is why we finish the state-of-the-art by studying the existing industrial solutions. In
this study, we take a critical look at existing solutions, emphasizing advantages of certain methods as noting
the weaknesses of others. For the sake of consistency, our approach is based mainly on research papers in the
academic case and also on statements from software vendors. It is not as precise as reverse engineering, but
our objective is not to technically document existing solutions, but rather to analyze the strategies in order to
propose a solution that synthesizes all their advantages while limiting the weaknesses.

Once the technical knowledge of the underlying system has been acquired and once the knowledge of the
threat and the existing solutions, it remains for us to propose our own solution in Chapter 6. The latter starts
by expressing the specifications of our solution. The goal is not to deal with all possible software keylogger
threats (this would not be technically possible, which we will be showed), but to deal with the most possible
ones. In practice, our objective is to protect a given software equipped with our protection solution. This one
is guaranteed to receive the contents of the keyboard in a secure manner, without restricting either the user
experience or performances and especially without any possibility for a user-mode keylogger to gain access to it.
Our solution is described in its architecture and with relevant implementation details. Then, we will presents
the limits of our solution. That way, we will propose improved possibilities to push the limits and the associated
price with these improvements. Finally, it will be an opportunity to propose ideas for different solutions that
could potentially present interesting results.

Chapter 7 is a prelude to the conclusion given in Chapter 8. In Chapter 7, we will briefly present all the
projects carried out in the framework of this thesis and which have not been presented in the framework of
this document. For the sake of space mainly, for the sake of preserving some intellectual property sometimes,
and for the sake of coherency also. A thesis is often the occasion to see many subjects and our researches
allowed us to explore different possibilities and different directions during our experiments. Nevertheless, the
work presented here has sometimes been published and we will refer to the reader, whenever necessary, to the
appropriate references for more details.

Page 31 on 619 — Thesis manuscript — Chapter 1

Finally, Chapter 8 will resume all our work, including the different answer of the different problems exposed
in section 3. The objective is also to step back and discuss the research methodology employed and the potential
implications of the research presented in this document.

4.2 Tllustrated representation of the thesis

For the sake of readability, we propose to give in Figures 1.1 and 1.2 a representation of the plan of the thesis
in the shape of a flowchart. This aims to show the sequence of the different chapters, the main documentation,
reverse engineering and research work done by ourselves. We also highlight the different stages of publications
during this thesis.

Chapter II: Protection at development level: backdoor in compilers

Backdoor
- Definition of backdoor in software.
- Existing work about backdoor in software an compilers.

State of the art

- Macro assembler.

- History of MASM assembler.

- NOT operator in MASM assembler.
- Behavior of NOT operator.

MASM com piler
(%86 assembly compiler)

Vulnerability found in
MAMS compiler

- Explaitstion of NOT operstor bug

Backkdor insertion in each
software compiled with
MASM

- Step-by-step backdoor insertion in & software

- Publications st
- C0cOn 2018 (Indis)
-Zero night 2018 (Russis)
- Microsoft fixed thevulnerability with OVE-2018-8232

Vulnerability fix
&
Publication

Chapter Ill: Protection of analyzed executable files: malware

- Publications in: ACM Computar Survey.

- Thefirst comprehensive survey of dynamic analysis
evasion tactics that offers = thorough dlassification.

- Dapendent or independent detection classfication

Analysis evasion

State of the art

Publication

- Thesetof all analysis tools that require manual control
- 15 diff erent methods clustered in 7 tactics.

- Theset of all analysis tools that do not requirg -Set of different
Manual Dynamic Analysis Automated Dynamic manual control Countering Malware techniques
EemEn Analysis Evasion - Spiit in two different groups: virtualz2d or Evasion used tocounter

emulated sandboxes.
- 17 different methods clustared in & tactics.

makware evasion.

- New detection method able to detect all kind automated dynamic
analysisenvironments VM, Debugger, DBI).
- Based on the exploitation of Intzl CPU Iske of documentation behavior

‘Wrong jump interpretation

Universal detection method

Partial instruction prefix
handling

- Detection of environments:
- DBl & Debuggers: 100% of success no fakse postive.
- Virtual machines: 905 of success few false positive
-Virtusl machines detzction czn be improved with pre-calibration.

Test evaluation
INT 3 mishandling

exploitation

-4 different methods to.

bypass debugger analysis.
-1 new method capable of
detecting a debugger
sutomatically.

- Exploitation of an old bug
in Windbg [never corrected).

Unsupported instruction

e Legend:
Publication - Publicatian in JOVHT.
- Publication read and tested by mastar

desres students

Documentstion wark:

Feedbacks

Reverse engineering work

Mix of documentation and reverse
- Feedback taken into to improve the enginesring work
detection method

- New test svalustion process...

Detection method
improvement

Publication
‘Own reszarch work

Mix of documentation and our own
reszarch work

- Publication in ICVHT.
- Windbg's bug forwarded to Microsoft.

Publication work

Unpublished work

HETan

Figure 1.1: Representation of the thesis architecture (1/2).

Chapter 1

— Thesis manuscript —

Page 32 on 619

Protection against keylogger malware

- Presentation of F§/2 technology.

- Handling PS/2 by Windows.

- All keyboard access means:

- Kernel interface with 2 device and scen code st

Ps/2

- Virtusl key codesand keyboard lsyout
- Transiation of virtusl key code into scan-codeinto characters.

- Window Messages, asynchronous access, hook and DirectX.

State of the art

Keyboard technologie

State of the art

Windows internals.

Keyboard interface

uss

State of the art

USB + HID

State of the art

Chapter IV: State of the art about Windows keyboard management

-HID and Wi

- Debugging

- Raw input thresd management.

- Initislizstion and resd from sensors.,
- Broadeast of keystrokes by the system with Window Messazes.
-Foreground thread and keyboard's focus.

- S standard

- USB packets, pipes and communication protocol.
-USB and hast configuration.

- US8 device initialization with the system

- Human Interface Device HID).

- USB interface usad to define usagels) of = device humans.
- HID intarface and report descriptors.

- HID standard requests.

- USB HID code t Windows custom scan-code sat.

ndows kernel (interfsce/parsing/data transfer].

HID components.

- Direct access to the
physical machine
- Always 3 physical device
- Active and passive keylogzers.

- Basad on UEFI or bootkit mahware
- Executed before the 0S.

- Can be presant on hard drive or
matherboard.

- Keylogger detection:
- Detection based on AP
used by an application.
- Detection based on keylogzer
side effects.

Hardware
Keyloggers technalogy

Firmware
Keyloggers technology

Passive solutions

Software
Keyloggers

technology

Kemel-mode
Keyloggers technology

Anti-Keyloggers technology

Active solutions

Chapter V: Keyloggers and existing anti-keylogger solutions

-Software used to record keystrokes.
-Can be installed remately,

User-mode

- Software used to neutralize keylogger activity.

Industrial selutions

Keyloggers technology

- Driver [kerne-made) software.
- SSDT hooking or dedicated drivars.
- For instance: Cirl2Caps, ISR or KbFilter.

- Application (user-mode) software.
- Keylogger with keyboard focus.
- Keylogzer without keyboard focus

- Keylogger neutralization
- Dacoy techniques.
- Dynamic keybosrd layout.
- Hypervisor basad security.

- Analysis madewith
official documentation.
- 5 different solutions analyzed
- Few are free orare open-source

- Cipher operation on scan code received

Keystroke protection

application

limitations.

Our new solution

Specifications

General architecture

Protection of protected

Going further
&

Self-protection

- Free, open-source and correctly documented

- Secureany text captured from the keybosrd,

- Serure both administrator and non-sdministrator applications.

- Ensure self-protection of the defense solution

- Do notintroduce 2 source of instability for protected applications.

- Do notimpsct the userexperience | prefersbly fire and forget software

Details about the driver used to protect keystrokes.
Cipher keystrokes are transmitted through the susl Windows message system queue.

- Improvement of existing features.

Chapter VI: Gostxboard solution

- Protaction of cipher key ©
- Inside Driver and spplications.
- Protection against « debugger ? attcks.

- Protects the system from malicious.
attacks szaint it

- Hew

based

Chapter Vil: Miscellaneous projects

- Contributions during the
doctoral with Dr Web company.
- Public =nd private work.

ew DIl

jection technigue

Nuit du hack 2017

Doctoral stay achievements.

Polymorphic packer
detection

Anti-ransomware driver

Stealth virtual analysis

environment

Miscellaneous projects

Black Hat 2020

rd party productions

- Workwith ESEA students.
- Publication of projects on different areas,

Superfetch

UEFI ciphering

MISC (x3)

Crawler-traps detection

ForSE Malta + JICY

Figure 1.2:

Representation of the thesis

architecture (2/2).

Page 33 on 619 — Thesis manuscript — Chapter 1

4.3 Reading improvements

This thesis is relatively dense and lengthy. The reason is mainly due to the high level of technical details that
is sometimes given in some chapters. Of course, it would have been possible to synthesize most of these details,
but it is also necessary to see that these technical details are subtleties that sometimes allow to orient a choice
in a given direction. This helps to justify why something is done that way rather than the other way. From our
point of view, on key point of research is precisely to allow to justify technical choices and thus to allow develop
optimal solutions with respect to the specifications. It is also, for those who would be passionate, the way to
dive into the internal mechanics of the Windows 10 operating system.

Nevertheless, it can be long and boring. This thesis also takes this point into account. Chapter 4 is par-
ticularly responsible for the length of this thesis. It gathers the technical details of the keyboard operation in
Windows 10. These details matter and they represent a singular contribution of the thesis because to the best
of our knowledge, there is no publication of any kind that explains at this level of detail the internal functioning
of a keyboard under Windows.

In order not to make the reading of the manuscript too fastidious, the reader can choose to omit Chapter 4
that could be considered as superfluous without altering the understanding of the text. In order to understand
Chapters 5 and 6, the reader must have a minimum knowledge about the Windows operating system and the
functioning of standards that control the interaction between devices and operating systems in general. The
assimilation of this minimum becomes easier thanks to the additional information that we thought necessary to
include in Chapter 4 in order to avoid additional references to numerous sources, when they exist, since some
details given in this study are unpublished.

In order to allow the initiated reader to be able to omit Chapter 4 without inconvenience, we propose to
write boxes within this chapter resuming relevant points. These boxes are numbered and referenced within
the text of the chapter, generally at the beginning of a section or sub-section or directly in the text whenever
required. Each box holds key points written in a concise way, either to resume what is presented in the following
lines of text (a green Resume box) or to the technical detail about how a specific procedure is implemented (a
red Key-Point box). These boxes are referred to in the following chapters whenever a specific point is men-
tioned. It aims to resume a position or the main points described in the following text. For instance, if we need
information to know how the translation between scan-codes and virtual key codes is performed, we can refer
to Key-Point 4.45. Reading the Key-Point is supposed to be enough to understand the main points explained
in this document. Nevertheless, the reader willing to extend his or her knowledge on a given box is invited to
read the rest of the section referencing this particular point, for more details.

This reading improvement is mostly used with Chapter 4, but not only. Indeed, for the sake of coherency and
hoping it could help to read our long study, this system of boxes has been used in the whole document. That
way, it helps to understand the main arguments developed in this study while keeping details and explanations
in the main corpus of text.

In addition, for ease of reading, it is possible to read each part independently. The four parts have been
written with the assumption that if the reader has a minimum of knowledge in computer science, we will provide
the necessary references to help the understanding of the topics that could not be developed in each part. This
also explains why the bibliography is important here. Since we are basing ourselves on the Windows operating
system, the MSDN’s documentation is our only reliable source of documentation. Then, it is necessary to
refer to specific points in its wide documentation rather than referencing it globally. Doing it globally would
prevent the reader from being able to identify the exact page from which a given statement is taken in our study.

Finally, at the end of each section and chapter, there is another box that summarizes the key points provided.
The idea is to highlight the important contributions coming from us. Our contributions to what did not exist
or our contribution to situations that were imperfectly understood before. It allows the reader to make the
difference between what already existed and what our work brings. Finally and whenever possible, we take the
liberty of describing the significance of our research in certain cases.

Chapter 1 — Thesis manuscript — Page 34 on 619

4.4

Publication proceedings

Patents and industrial contributions

Baptiste David, CVE-2018-8232, A Tampering vulnerability exists when Microsoft Macro Assembler im-
properly validates code, aka ”Microsoft Macro Assembler Tampering Vulnerability.”, This affects Mi-
crosoft Visual Studio, July 10th 2018, https://cve.mitre.org/cgi—-bin/cvename.cgi?name=
CVE-2018-8232.

International peer-reviewed journals

Venault, Mathilde and David, Baptiste, "Superfetch: the famous unknown spy”, Journal of Computer
Virology and Hacking Techniques, June 2021, 17. 1-14. 10.1007/s11416-020-00370-y.

Baptiste David and Maxence Delong and Eric Filiol. ”Detection of Crawler Traps: Formalization and
Implementation Defeating Protection on Internet and on the TOR Network (extended version)”. Journal
of Computer Virology and Hacking Techniques, volume 17, issue 3, August 2020.

Franpis Plumerault and Baptiste David, ”DBI, debuggers, VM: gotta catch them all”. Journal of Computer
Virology and Hacking Techniques, July 2020. https://doi.org/10.1007/s11416-020-00371-x

Franpis Plumerault and Baptiste David. ”Exploiting flaws in Windbg: how to escape or fool debuggers from
existing flaws”, Doi: 10.1007/s11416-020-00347-x, Journal in Computer Virology and Hacking Techniques,
volume 16, Issue 2, Januray 2020, pp. 173-183.

Amir Afianian and Salman Niksefat and Babak Sadeghiyan and David Baptiste, ” Malware Dynamic Anal-
ysis Fvasion Techniques: A Survey”, ACM Computing Surveys, Volume 52, Issue 6, November 2019,
https://doi.org/10.1145/3365001

Baptiste David and Eric Filiol and Kévin Gallienne. ”Structural Analysis of Binary Ezecutable Headers
for Malware Detection Optimization”. Journal in Computer Virology and Hacking Techniques, volume 13,
Issue 2, April 2016, pp. 87-93.

Books and chapters

Eric Filiol and Baptiste David and Paul Irolla, ”Les virus informatiques”, Chapitre des Techniques de
I'Ingénieur, H5440, October 2017 (extended and updated version from 2007).

ArXiv publication

Baptiste David, "How a simple bug in ML compiler could be exploited for backdoors?”, November 27th,
2018, arXiv:1811.10851, https://arxiv.org/abs/1811.10851

International conference with committee and proceedings

Maxence Delong and Baptiste David and and Eric Filiol, ”Detection of Crawler Traps: Formalization and
Implementation - Defeating Protection on Internet and on the TOR Network”, 4th International Workshop
on FORmal methods for Security Engineering - ForSE 2020, February 25-27th 2020, Valletta, Malta.

Maxence Delong and Eric Filiol and Baptiste David. "Investigation and surveillance on the Darknet: an
architecture to reconcile legal aspects with technology”. ECCWS 2019 18th European Conference on Cyber
Warfare and Security, July 4-5th, 2019, Coimbra, Portugal.

Baptiste David and Eric Filiol and Kévin Gallienne and Olivier Ferrand, ”Heuristic and Proactive IAT/EAT-
based Detection Module of Unknown Malware”, 15th European Conference on Cyber Warfare and Security
(ECCWS) 2016, ACPI, pp. 84-93, Bundeswehr University, July 7-8th, 2016, Munich, Germany.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8232
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8232
https://doi.org/10.1007/s11416-020-00371-x
https://doi.org/10.1145/3365001
https://arxiv.org/abs/1811.10851

Page 35 on 619 — Thesis manuscript — Chapter 1

International conference with committee

e Mathilde Venault and Baptiste David, "Superfetch: Everything you need to know about privacy”, COcOn
2020, September 18th 2020, Kochi, India.

e Mathilde Venault and Baptiste David, ”Fooling Windows through Superfetch”, Black hat USA 2020, August
2020, Las Vegas, USA.

e Baptiste David, ” Vulnerability in compiler leads to stealth backdoor in software (extended version)”, Zero
night 2018 conference, November 20th, 2018, Saint-Petersburg, Russia, https://2018.zeronights.
ru/en/reports/vulnerability-in-compiler-leads-to-stealth-backdoor-in-software/

e Baptiste David, "Vulnerability in compiler leads to perfect stealth backdoor in software”, International
Cyber Security and Policing Conference C0cOn, October 5-6th, 2018, Kochi, India. https://is-ra.
org/c0c0On/2018/speakers/agenda/

e Baptiste David, ”Shall We Play a Game: How to Fool Antivirus Software”, 15th Nuit du Hack, June 2017,
Eurodisney, Marne-la-Vallée, France.

e Baptiste David and Paul Amicelli, "How to Secure the Keyboard Chain II”, COcOn 2015 (CyOps Con),
International Cyber Security and Policing Conference 2015, August 20th-21st, 2015, Kochi, India.

e Paul Amicelli and Baptiste David, ”How to Secure the Keyboard Chain”, DefCon conference 23, August
6-9th, 2015, Las-Vegas. https://www.youtube.com/watch?v=W5B-zjaDzfU

Technical press articles

e Pierre-Franpis MAILLARD and Armand ITO and Solene SPRENGER and Baptiste DAVID, ANALYSE
UEFI AVEC WINDBG. Multi-System & Internet Security Cookbook (MISC), number 108, March 2020,
pages 22-30.

e Pierre-Franpis MAILLARD and Armand ITO and Solene SPRENGER and Baptiste DAVID, L’UEFI,
PROGRAMMATION UEFI. Multi-System & Internet Security Cookbook (MISC), number 107, January
2020, pages 68-74.

e Pierre-Franpis MAILLARD and Armand ITO and Solene SPRENGER, and Baptiste DAVID, L’UEFI,
AU C(EUR DU SYSTEME. Multi-System & Internet Security Cookbook (MISC), number 105, November
2019, pages 68-75.

Workshop and teaching activities during seminars

e David Baptiste and Pierre-Franpis Maillard, " Reverse engineering: Reverse engineering and ROP gadget,
how to take the control of the system”, Cocon 12, Pre-conference workshops, 10-11 November, 2021, Kochi,
India. https://india.cOcOn.org/ws_11

e David Baptiste, ”Reverse engineering: how to break (badly used) cryptography”, Cocon 12, Pre-conference
workshops, 25-26th September, 2019, Kochi, India. https://india.c0cOn.org/ws_11

e Baptiste David and Franpis Plumerault, ”Reverse engineering under Windows 10 with malware analysis”,
Cocon 11, Pre-conference workshops, October 03-04th, 2018, Kochi, India. https://is-ra.org/
c0cOn/2018/workshop/pre—-conference-workshop/

https://2018.zeronights.ru/en/reports/vulnerability-in-compiler-leads-to-stealth-backdoor-in-software/
https://2018.zeronights.ru/en/reports/vulnerability-in-compiler-leads-to-stealth-backdoor-in-software/
https://is-ra.org/c0c0n/2018/speakers/agenda/
https://is-ra.org/c0c0n/2018/speakers/agenda/
https://www.youtube.com/watch?v=W5B-zjaDzfU
https://india.c0c0n.org/ws_11
https://india.c0c0n.org/ws_11
https://is-ra.org/c0c0n/2018/workshop/pre-conference-workshop/
https://is-ra.org/c0c0n/2018/workshop/pre-conference-workshop/

Chapter 1 — Thesis manuscript — Page 36 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 2

Protection at development level: backdoor
in compilers

1 Introduction

Secure development of software involves to master the entire software creation process and toolchain. Generally,
security starts at the time codes are written. Of course, there are many sources for good practices in program-
ming [46, 47]. To err is human. This is why there are a lot of tools [48, 49] able to provide an automatic analysis
about security of the source code written (without executing it). Such tools are called static code analysis tool
[50] and they all have qualities and drawbacks [51, 52, 53, 54] without being able to be perfect [55]. Technically
speaking, static analysis is perform on the source code of the software, looking for specific patterns responsible
for potential bugs which could lead to security issues. It is a kind of development companion able to find bugs
automatically which are nowadays automatically integrated in software of Integrated Development Environment
(IDE), such as the one of Visual Studio 2019 [56]. But the security provided by static analysis is not perfect
and this is why the security cannot rely only on static analysis.

To improve the security, dynamic code analysis is possible. Such analysis is performed on a compiled ex-
ecutable file which is tested as execution time (hence the term ”dynamic”). The analysis can be done under
two different assumptions. The first is within a white box context with access to the source code of the tested
application. The other assumption is without the source code. In such a case, we analyze the execution trace
and the interactions with the environment. Note the use of fuzzing technology [57, 58, 59] in this case. At the
opposite of static code analysis, this one does not necessarily need the source code since it only requires the
executable files holding the software. There are numerous tools able to provide dynamic analysis [60] but most
of them are based on Dynamic Binary Instrumentation (DBI) where instrumentation refers to the possibility
to control, at execution time, different sections of the code executed. The main idea of such a tool lies in the
possibility to decompile! original code before and during execution. The goal is to modify the code in order to
inject specific code between execution of two sections of the original code. More details and further information
can be found here [(1].

Usually DBI frameworks are hard to develop [(62]. This is why a lot of tools are based on a small number
of existing DBI engines [60], customized for different purposes [63, 64, 65, 66]. Among the best known DBI
framework [67], we have Pin from Intel [68], DynamoRIO [69], Valgrind [70], QEMU [71] and FRIDA [72]. We
can also find other tools such as ANaConDA [73] and QBDI [74]. All of these tools have different performances
[75], depending on the codes tested and architecture choices made by each of these DBI. Note that it is possible
to have mixed approaches [(62] and per programming language tools [76]. In our case, DBI can be used in
conjunction of fuzzers [77] that generate input data to the software and where DBI framework provides the
possibility to observe how the software reacts to the provided input.

1Decompiling an executable file can be seen as a way to get a certain version of the original source code. Of course, this version
is complete but less easy to analyze. Note that if a code is executable, this one is always readable at least with the elementary
instructions composing it by the CPU, giving us a sort of ”source code”.

37

Chapter 2 — Thesis manuscript — Page 38 on 619

Generally, a mix of static and dynamic analysis can be considered as enough to guarantee the security of
developed software [78] even if it is not perfect [79]. Indeed, static analysis allows us to verify that there is no
known dangerous pattern in the written code. Dynamic analysis allows us to test, empirically, that the program
does not react badly to certain inputs given. These methodologies are generally integrated in the DevSecOps
[30, 81] process. But, between writing the source code (which can be statically analyzed) and the executable
program (which can be dynamically analyzed), there is one step that is not mentioned: compilation. This
procedure is generally not audited and therein lies the rub. Indeed, debuggers are software as any others. It
means they are written from source code, by humans, who sometimes, make mistakes. These mistakes result in
bugs and unexpected behaviors which can be exploited to introduce a malicious code or a backdoor.

In this chapter, we are going to focus on the security of the process of compilation. To illustrate our
research work, we propose to exploit a flaw in an existing debugger to insert an operational backdoor during the
development a given software. Even if it has been discussed as theoretically possible before by different authors,
this technical result has never been shown as technically feasible before us, at least publicly. After this general
introduction, we are defining the notion of backdoor and we are presenting a state of the art in section 2 about
different types of backdoor inserted during development. Then, we are going to focus in section 4 on MASM
compiler which presented a flaw when compiling a specific code of macro assembler. This will allow us present
in section 5 how to exploit this flaw when writing specific assembly code. Finally in section 6, we will present
the patch provided by Microsoft to avoid MASM compiler to be exploited by our technique.

Page 39 on 619 — Thesis manuscript — Chapter 2

2 State of the art

IZ"™ We propose a survey on different definitions about backdoor in compilers to finally propose that
synthesizes all of them.
45 There is no universal definition of what a backdoor is (it depends on the operational context).

#5 There is a difference between a vulnerability in a software (a bug that can be exploited for spe-
cific and potentially malicious purposes) and a backdoor (a mechanism that provides privileged
access to an attacker).

B5" We present an historical and technical state-of-the-art of different backdoor techniques within
compilers.

#5 We propose to define 4 possible levels where to introduce a backdoor: source-code, compiler,
installation and running time.
#£5 We examine advantages and disadvantages of each technique.

#5 We show that in the case of compilers, there have never been really operational release.

2.1 Different instances of backdoor

Key Point 2.1:

IZ" A "backdoor” does not have a universal and formal definition in literature.

#5 But several terms are regularly used: obtain privileged access, intentionally hidden, unin-
tended bugs, exploitable, deniable or unexpected or arbitrary computation...

We must be direct and recognize that the notion of backdoor? does not have a universal and formal definition.
There is no consensus. A backdoor can be realized by many actors, which can be powerful as a state [32] or
coming from industrial world such as device manufacturers [33, 84]. Overall, the purpose of a backdoor is to
obtain any privileged access to a given system. A backdoor differs from a classic vulnerability that is exploited
to achieve the same end by the developers’ own willingness to leave a code voluntarily vulnerable (where a
vulnerability can generally be considered involuntary from the developer). It is the intentional dimension that
makes the difference.

It must be acknowledged that the blatant lack of real-world backdoor examples is not to help to define
precisely this type of object. As explained in [85], documented real-world backdoors are generally simplistic,
relying on intentionally hard-coded credentials (a password composed of static data or hard-coded credentials is
compared with strcmp function) [36], intentionally hidden authentication interface® [34], or "unintended” bugs
easily exploitable [37, 88]. More example about such real world backdoors can be found in [39, 90].

In the academic literature, despite their relative scarcity, there are several definitions of what a backdoor
could be. The work from Thomas and Francillon [85] summarizes all that could be defined as relevant. In
[91], authors aims to show how to design a deniable bugdoors for microcontroller firmware. Their goal is to
modify an interrupt in TinyOS system to make its handler function vulnerable to a given attack. To increase
the stealthiness of their action, they are manipulating run-time state and by using several exploits which can
be chained from the interrupt, they are going to perform arbitrary computations.

Another solution is to design a trigger-based malware to remain undetected over the long term [92]. And
to prevent detection, authors are hiding their code by embedding it in unaligned instructions. Indeed, Intel

2And not a trap door which is specific to cryptography.
3Examples could be found on: https://pwnies.com/previous/2016/best-backdoor/ or https://pwnies.com/
previous/2017/best-backdoor/.

https://pwnies.com/previous/2016/best-backdoor/
https://pwnies.com/previous/2017/best-backdoor/
https://pwnies.com/previous/2017/best-backdoor/

Chapter 2 — Thesis manuscript — Page 40 on 619

x86 assembly supports variable-length instruction sets. It means that assembly instructions can be encoded on
different a variable number of bytes, which makes starting point of code highly relevant. That way, disassembly
of codes depends where the analysis starts in memory. Shifted from one bytes, the disassembly shows a totally
different code. With this stealth technique, using a crafted trigger bugs to implement covert control transfers
to this code is enough to finish the backdoor.

In [93], authors compromise the firmware of a commercial off-the-shelf hard-drive to design a stealth rootkit
that replaces arbitrary blocks from the disk while they are written, providing a data replacement backdoor. With
a performance overhead less than 1 %, authors shows that it is possible to establish a communication channel
with the backdoored disk in order to infiltrate commands and to ex-filtrate data. Then it is possible to link
this communication channel with others channel (such as internet connection) to allow a full remote and easy
access to the malicious system. Such design is close to some rootkit technologies, for instance one based on PCI
exploitation [94].

Still about technical backdoor mechanisms, [35] authors talk about "NOBUS” (i.e., NObody But US) vul-
nerabilites by the NSA [95] and those associated with APT actors [96] which belong outside of the literature...
These are usually advanced solutions implemented by highly competent states or criminal groups. The objec-
tives are diverse and it is difficult to attribute authorship.

Another approach, more academic, is to see the backdoor as a system of weird machines and finite-state
machines. Both [97] and [98] present ways of affecting the flow of computation in order to find new means
to perform and to drive unexpected or arbitrary computation. For short, they define models to force normal
systems to execute programs written in those models as a mean to implement backdoor-like functionality. In
[99], Dullien Thomas provide many clear definition and formal definitions that help to better understand the
concepts of exploit, wired machine, and how programming of a weird machine leads to exploitation. According
to the authors of [35], much of [99] serves as inspiration for their work.

2.2 Definition of a software backdoor

IZ” We propose our own definition based on previous literature work and operational requirements.

From these various approaches, it is possible to start building a definition of what a backdoor can be. To
proceed, we will start from the approach given in [35]. In this last paper, authors first present the notion of
backdoor as given in [100]. For them, ”a backdoor is a mechanism surreptitiously introduced into a computer
system to facilitate unauthorized access to the system”. This definition is interesting because it describes the
expected goal (privileged access - the "why”) but it says nothing about the means to achieve it (the "how”). In
[101], a high level classification of backdoors is provided to classify backdoors in three groups: system backdoors
(compromise the underlying operating system), application backdoor (legitimate software modified to bypass
security mechanisms under certain conditions) and crypto backdoors (intentionally designed weaknesses in a
cryptosystem for particular keys or clear-text messages access). If the difference between system backdoors and
application backdoor may appear a bit artificial (one can be used in the case of the other and vice versa), the
distinction can be seen as the difference between conceptual (crypto, mathematical) and technical (computer,
programmed) backdoors.

In a synthetic way, [85] presents a definition which is intended to be at the junction of the various papers
previously mentioned. In an approach that is intended to be very formal (and which goes beyond the scope of
our chapter, since the authors of [35] are determined to propose detection models), we can try to summarize
their approach by retaining four criteria necessary for a backdoor. To be a defined as a backdoor, as code must
be composed of:

e A pivotal component able to active the backdoor: its trigger mechanism ;

e To activate the trigger, a backdoor must present a type of input source ;

Page 41 on 619 — Thesis manuscript — Chapter 2

e Since the goal is to switch from normal system state to the backdoor-activated state, a code is responsible
to handle the backdoor behavior: the backdoor payload ;

e The goal of the payload is to get an escalated privileges, privilege abuse or unauthenticated access, i.e., a
privileged state.

That way, it is possible to define a backdoor. The definition given in [35] as been rewritten to avoid the
specific vocabulary driven by the analysis of state machines, specific to the research of authors and beyond the
scope of ours.

An intentional construct contained within a system that serves to compromise its expected security
by facilitating access to otherwise privileged functionality or information. Its implementation is
identifiable by its decomposition into four components: input source, trigger, payload, and privileged
state, and the intention of that implementation is reflected in its complete or partial (e.g., in the case
of bug-based backdoors) presence within expected system, but not the observed system containing
it.

This definition is interesting because it highlights essential aspects that characterize a backdoor. However,
it does not focus on important aspects of a backdoor, especially in modern attacks, nowadays. Especially, we
can talk about the secrecy that surrounds the backdoor and the possibility of denying the real involvement of
the perpetrator. In addition, operationally, a backdoor does not need to be triggerable. The example of [93]
where the hard disk is trapped shows the perpetual activity of the malicious mechanism, even if it remains also
possible to control it on command. This is why, perhaps, such a definition could be further improved with these
notions.

In our case, we are going to focus on inserting such a malicious feature in a software at development time. It
means that we suppose that it is possible for the attacker to manipulate directly the source code of the targeted
software. We also suppose that the source code can be audited by a perfectly capable human or software. It
means, for our attacker, that this one has to hide the real purpose of the code he is writing. Hiding from the
eyes of any auditor but not from the eyes of the computer which is about to execute its software.

According to our context and for the sake of simplicity, we propose to keep as definition of a backdoor the
following definition.

In a software, a backdoor is a feature, unknown from the original user, introduced deliberately in order
to provide over a long period of time a third party access to a privileged part in a given software.

The goal is to allow the designer of the backdoor to get an access which is not supposed to hold. It can
performed through the access to a resource used by the software (data, devices, etc). Or it can be done via the
ability to deactivate the software remotely (denial of service). Finally, it could change silently the behavior of
this one in an unexpected way (code update). In the case of a software backdoor, one can draw the four the
main objectives of a backdoor to add to the original definition.

1. Be persistence: Must survive to reboot and re-installation.
2. Be secret: Once it is known, this one is no more usable.

3. Be deniable: Allow the attacker to pretend it is not his fault (possibility to legitimately apologize with
"it’s a bug”).

4. Be stealth: Hard to detect at analysis time and hard to detect at running (exploitation) time.

Historically, in 1974, the US Air Force published [102] the results of a vulnerability analysis of Multics*
operating system which was consider as the most secure one at that time. In the section 3.4.5.1 of USAF’s

4nttps://multicians.org/history.html

https://multicians.org/history.html

Chapter 2 — Thesis manuscript — Page 42 on 619

document, authors are defining different classes of backdoors as different possibilities to insert a backdoor in a
system. Technically, they are considering four possibilities to insert a backdoor during the implementation of a
software during the life-cycle of that one. The life-cycle of a software is as given in the following list.

1. Writing the source code ;
2. Compiling the source code ;
3. Broadcast and download the compiled software ;

4. Installing the compiled software.

Even if it is not present (because it would not be possible to do it such a way in the past), it might also
be interesting to add in-memory execution techniques to manipulate the operation of targeted software [103].
In the idea, one executable running code modifies another in memory before the latter is executed. Thus, at
execution, the subsequent actions performed differ from those originally programmed.

As part of our state-of-the-art, we are going to focus on the two first steps. The two last steps can be covered
quicker [102] since they are not directly part of the development (and out of our scope). But for the sake of
completeness, we can say that the introduction of backdoor at broadcast or downloads phase requires to modify
the software between the server where the software (or its installer) lies and the computer of the victim. This can
be done by controlling intermediate router where the software transit or by obtaining the possibility to redirect
the distribution channel through which the software passes. Of course, in case of use of secure technologies for
file transfer (HTTPS, SSL, TLS, IPSec, etc.), it is mandatory to bypass the security provided by them. Note
that this principle can be extended to software update, especially if the HTTPS connection is not checked with
certificate pinning techniques [104].

The last case supposes that the system of the victim is already compromised. During installation of the
software, the corrupted system recognizes the software to introduce, at running time, a backdoor in the installed
software. This action can be performed once for all during installation where executable files are directly modified
on the disk. Or it can be performed at execution time (in memory) each time the software is about to be running.
In such a case, the system injects code directly in the memory of the targeted process. In this chapter, we focus
on the second case only, during the compiling step.

2.3 Backdoor at development time

A backdoor can be inserted at development time using different techniques. We are going to cover many of
them, keeping the historical point of view as a guideline. Technically, it is hard to point the first backdoor in
software world (it could be Easter eggs®) and it is out of scope of this manuscript. To keep things simple we
are going to cover some of the most well-known types of backdoor at development level. The goal is not to be
exhaustive but to illustrate the pros and cons of each example we present.

2.3.1 Source code backdoor

Key Point 2.2:

IZ” Tt is possible to insert a backdoor in a software during its development.

#5 This approach is done directly within the source code of the targeted software.

#5 The operation can be done with closed or open source code.

IS” Historically, there are some public examples of such situations.

SEaster eggs are not really a backdoor but rather a joke or an unexpected feature. But even though the goal is different, the
technical design is similar to a backdoor.

Page 43 on 619 — Thesis manuscript — Chapter 2

The first type of backdoors presented are may be the most easiest one to implement. It is about inserting a
trap door at source code level. It means an attacker is modifying or writing a source code to insert a vulner-
ability in the software. Famous real examples exist about such situation. The case of the database Interbase
[105] which had in its source code a shadow user (username: politically” with password: “correct”) from 1994
to 2001, when the source code of the Interbase project had been released by its editor Borland. The fact that
the project was close-source at that time and the lack of control allowed such a vulnerability to remain for years.

Another famous case lies in the NSAKEY plot [106] which appears as a symbol leak from Windows NT 4.0
operating system. If Microsoft’s operating system remains close-source, it is possible to retrieve symbols from
the compiled code for debug purposes [107]. In a version of these symbols, it appears a value called " NSAKEY”
which has given rise to quite a few fantasies. Some explanations have been given by Microsoft [108] and experts
[109]. Whatever is the reality of that cold case, this plot illustrates that leaks of information are still possible
even if the source code is not available.

The most famous source code backdoor is maybe the attempt tried on the source code of the Linux’s kernel
in 2003 [110]. Indeed, in the file kernel/exit.c, an attempt to change the condition "current->uid == 0” to an
assignation “current->uid = 0” was enough to allow a call of the function sys_wait4() with specific arguments
to gain root access. If the trick was nice, it remains it has been promptly detected by the developers team.
It is the direct application of the Linux community’s source code control that validates the modifications. An
illustration of mail exchanges after detection of the backdoor is illustrating in figure 2.1. Note that this attempt
would never had been able to corrupt the mainline kernel, since the repository where the code has been modified
may not be the one used by the kernel at that time [110].

[prev in list] [next in list] [prev in thread] [next in thread]

List: linux-kernel

Subject: RE: BK2CVS problem

From: "Chad Kitching" <CKitching () powerlandcomputers ! com>
Date: 2003-11-05 22:48:09

[Download message RAW]

From: Zwane Mwaikambo

> > + if ((options == (__ WCLONE| WALL)) && (current->uid = 0))
> > + retval = -EINVAL;

>

> That looks odd

>

Setting current->uid to zero when options WCLONE and WALL are set? The
retval is dead code because of the next line, but it looks 1ike&n attempﬂ
to backdoor the kernel, does it not? o

To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@vger.kernel.org

More majordomo info at http://vger.kernel.org/majordomo-info.html

Please read the FAQ at http://www.tux.org/lkml/

[prev in list] [next in list] [prev in thread] [next in thread]

Figure 2.1: Detection of the backdoor by the Linux kernel team.

One last example is about Cisco Unified Videoconferencing product. In 2010, Florent Daigniere discovers
many security vulnerabilities in this CISCO project [111], allowing remote access in FTP or SSH by pre-registered
user accounts which cannot be modified or removed. Similar in consequences from the backdoor in Interbase,
the backdoor lies in the configuration of the Unix system embedded on CISCO products and not directly in the

Chapter 2 — Thesis manuscript — Page 44 on 619

source code modification. Sometimes, modifying the environment or configuration files is enough to introduce
a backdoor.

Of course, many other examples could be presented here. Generally speaking, all critical flaws in software
could be interpreted as potential backdoors. But it is forgetting that to be qualified as backdoor, it is still neces-
sary to be able to prove the real will of the developer to leave or to introduce a given flaw. From the famous rule
of thumb that states "never attribute to malice that which is adequately explained by stupidity”, a lot of flaws
could fall under this statement. A good example of bad bugs which could be interpreted as potential backdoor
may lie in the context of the Pwnie Awards ceremony®. Taking place during the Blackhat USA conference, this
is an annual awards ceremony celebrating the achievements and failures of security researchers and the security
community. Listing all the rewarded failures”, there is a special award for the "Lamest Vendor Response”. Some
of them, by the delay® [113] to fix a bug or by the bad faith? of the software developers could be interpreted as
potential backdoor if unfortunately incompetence was not a sadly more credible option.

Recently, cyber-criminals tried to corrupt an open-source library used by a crypto-money application to
steal customers’ Bitcoins [114]. Technically, the BitPay company uses a third-party NodeJS package used in its
Copay and BitPay applications. This NodeJS package had been modified to load malicious code which could
be used to capture users’ private keys. The problem has of course been detected and fixed. But this shows the
ingenuity of the attackers, who do not necessarily attack companies’ projects (to which they do not have access
since they are only modified by companies) but to their projects’ dependencies. It also shows the need to take
a broad look at the notion of secure programming for a given project.

But it is possible to draw the main consequences of a try to backdoor a software by directly manipulating its
source code. The first lies in the observation of how easy it is to modify the source code directly. In case of lack
of control or with the help of complicity, it is possible to introduce backdoor in software. But, it requires to take
care of side effects and soon or later, the backdoor will be discovered. Anyone not in the conspiracy reading the
source code or by a release in future time is enough to break secrecy. Then, taking into account open-source
world, it becomes even more complex to hide a code modification which would result in a vulnerability to the
eyes of experimented developers.

2.3.2 Historical compilers backdoor

Key Point 2.3:

IZ" A compiler backdoor aims to introduce a flaw automatically and silently in a software during the
compilation phase.

5 Historically, US Air Force is the first the publish report [102] about such a threat — but the
report was confidential.
#£5 Ken Thompson is the author of the first publicly published paper [115] about such a threat.

#5 Ken Thompson presupposes that a compiler has already been trapped and used by the victim.
This is a strong assumption from an operational point of view.

#£5 Tn both cases, the threat is quite theoretical and mentioned as a possibility.

We must explain first what means a backdoor in a compiler. Technically speaking and as explained before
at length, a backdoor is a mechanism which allows to bypass the security mechanisms in a software. Since the
compiler is not a security component in itself, it does not make sense to try to introduce a backdoor in the

Shttps://pwnies.com/about/

"https://pwnies.com/previous/

8 According to [112], in 2005, three vulnerabilities were discovered in gmail but were never fixed because they were believed to
be unexploitable in a default installation. In 2020, Qualys Security team re-discovered these vulnerabilities and was able to exploit
one of them remotely in a default installation. https://pwnies.com/previous/2020/lamest-vendor-response/

9Western Digital’s MyPassword Drive user a cipher system to protect data stored on the driver. The cipher keys used are
actually just redundant copies of a 32bit rand value repeated over and over, making the keys impossible ... to lose https:
//pwnies.com/previous/2016/lamest-vendor-response/

https://pwnies.com/about/
https://pwnies.com/previous/
https://pwnies.com/previous/2020/lamest-vendor-response/
https://pwnies.com/previous/2016/lamest-vendor-response/
https://pwnies.com/previous/2016/lamest-vendor-response/

Page 45 on 619 — Thesis manuscript — Chapter 2

compiler. But it makes sense to trap the compiler so that it is going to introduce automatically a backdoor in
the software it is about to compile. By abuse of language, we might talk about backdoor in compiler to refer to
the fact that the compiler is trapped in order to trap the software it builds.

Compiler backdoor is the first time publicly described in the document coming from the USAF [102] about
the security of Multics operating system. It starts from the observation that the system could be compromised
by the provider of the operating system if any patches would be applied to binary object files of the system.
The countermeasure proposed was to recompile the system from source code, since that one was owned by the
Pentagon. However, if there is a backdoor in the compiler of the system (which was at the time a PL/T compiler
for Multics operating system), it means a backdoor could have been maintained in the system despite compila-
tion of a secure and audited source code. Even worst, even if PL/I compiler source code was available to the
US department of defense, to compile it a first time, it would have required a compiled version of the compiler.
This one would possibly include a backdoor and the ability to maintain its own existence by recompiling itself
while keeping the original backdoor. Thirty years later, authors of the USAF report published a new paper
[116] where they reported lessons from that evaluation. According to the authors, observations from compilers
security would lead to the Trusted Computer System Evaluation Criteria (TCSEC) [117] Class A1 requirement
for "generation of new versions from source using a compiler maintained under strict configuration control”.

What makes the compiler backdoor famous is the paper of Ken Thompson [115] who took his inspiration
from the rapport written by USAF. At that time, Thompson was not able to correctly cite that document,
but according to [116], he updated his paper [118] once original authors from USAF provided him the real

references. Thompson’s idea is simply to put into practice what he read. From a given C compiler, he modified
an existing pattern from the C parser to produce another compiled code than the expected one. The figure 2.2
is a recomposition from his original paper [115].

¢ =next(); ;= next();

iffc 1= "\\") ific 1= "\\")
return(c); return(c);

c = next(); ¢ =next();

iflc == "\\") iflc == "\\")
return{"\\'); return(’\\");

if(c == 'n’) if(c == ’n’)
return{’\n’); m{('\n’),

c=="'v") ' T ific == ‘v’)

return(”\v’ = return(1 \)

Figure 2.2: Modification of compiler by Ken Thompson.

From the possibility of modifying the output of the compiler when a given pattern matches in the provided
source code, it is possible for Thompson to introduce what he called a ”bug” each time such situation occurs.
This is illustrated in figure 2.3 extracted from Thompson’s original paper.

The figures provided are a bit different from explanations provided by Thompson in its paper. Indeed, he
considers what he calls a bug if it has been introduced not deliberately, since it is deliberate in his case, it should
be called a ”Trojan horse”. Then, Thompson claimed that he modified the Unix C compiler to inject his Trojan
horse to a program. His goal was to modify the program responsible to manage user’s login to secretly give
him root access. In addition, he talked about the possibility to add a new pattern to trap the compiler itself.
Since compilers are compiled from compilers’ generated executable, he proposed to compile a modified version
of the compiler with a non-trapped compiler. The compiled compiler is supposed to have a recon pattern able
to match in its own source code. In such a case, compilation of the compiler from its source code (removed
from the inserted bug) with the backdoored compiled version of the compiler will perpetuate insertion of the
backdoor in the newly compiled compiler. Undetectable, even if the source code of the compiler is open. On
sentence from his conclusion is: ”No amount of source-level verification or security will protect you from using
untrusted code”.

Chapter 2 — Thesis manuscript — Page 46 on 619

compile(s)
char ss;

iffmatch(s, “pattern1”)) {
compile (“bug1”);

return;

]

if(match(s, “pattemn 27)) |
compile (“bug 2);
return;

Figure 2.3: Insertion of a bug each time a pattern matches in the source code.

One legitimate criticism can be done on Thompson’s paper. The author announces a lot of results and
exploits but he does not explain how he gets them technically. The figures are naive and they do not explain
how to reproduce the results. While legitimate security considerations may be taken into account to explain
this lack of details, this paper should also be seen as a theoretical presentation of what could be done when it
could be potentially applied to real-life cases.

David Wheeler in his PhD thesis [119] is giving the answer about the credibility of Thompson’s paper. In
a conversation on a public forum, Jonathan Thornburg [120] explains by publishing extracts of mail exchanges
the reality of Thompson’s work. Even if Thompson wrote a compiler which was able to compile backdoored
software, this compiler never left Bell Labs. Thompson’s exploit has always been limited by a laboratory envi-
ronment and it has never been used operationally, at least in what Wheeler says.

If Thompson’s idea is a good one, it is not less complex to put it into practice. To do so, the victim must use a
compiler that has already been compromised. There is nothing obvious about distributing a modified compiler.
Moreover, given the rather sensitive nature of this type of software, it’s inconceivable that the identity of the
distributor would be not known. This reduces the capacity for denial in case of discovery. Finally, directly
modifying compiler to introduce a backdoor might seem to be an operational dead end.

Page 47 on 619 — Thesis manuscript — Chapter 2

2.3.3 Modern compilers backdoor

Key Point 2.4:

I~ We introduce the notion of "modern compilers backdoor” to make the difference with the historical
ones (Key-Point 2.3).

#£5 Historical backdoor in compilers assume that a compiler has already been trapped and that
the user uses it already.

45 This is equivalent to install a malware (i.e. the backdoored compiler) on the user’s machine.

#5 A malware could already modify generated executables from a developer’s machine without
needing to infect the compiler.

5 A more operational (and modern) version aims at using a compiler as it is.

BZ" Modern compiler backdoor uses a vulnerability already present in the compiler used by everyone
to introduce a backdoor in a compiled software.

#£5 Compilers are software like any other: they have bugs too.

#5 This presupposes to find a vulnerability that can be exploited in the compiler.

£5 The vulnerability allows to miscompile some very specific lines of code and thus to introduce
a malicious behavior.

BZ" If few examples that have seldom been published, they are far from being fully operational.

5 They use bugs already fixed in the compilers.

£5 They often require writing abstruse source code to achieve their goals.

If it is not desirable to modify a compiler to deliberately introduce a flaw, perhaps it is possible to exploit
an already existing one in the compiler. As surprising as it may seem, compilers are not perfect and they can
have bugs. In the mind of most developers, the compiler must not perform any error since these ones are very
complicated to find. Indeed, when a bug occurs, the first reflex is about to search any error from source code
and not blaming the compiler. Source code defines the logic the created program is supposed to follow. And
error coming from a correct source code which would result in an unexpected behavior could be very hard to
find. Compilers are supposed to be reliable since software logic depends on them.

But compilers are just regular software which implies they can hold bugs. But compiler bugs are semi-
mythical, not because they do not exist but because they are hard to find [121]. There are different types of
bugs for a compiler. The firsts are those about to make crash the compiler. They are not relevant for us since
they do not produce any executable file. The second type is about to force the compiler to silently miscompile
a program. As explained in [122], such behavior can result in an incorrect execution and even security vulner-
abilities in the miscompiled program. Bugs from compilers are supposed hard to detect since they can only be
triggered under specific circumstances, they may go unnoticed during software development and they surface
only after deployment.

Bugs in compilers are documented [121, 123, 124] and there are even statistics about them [125]. Most of the
time, bugs come from aggressive compiler optimization or bad assumptions they make to achieve them [123].
According to [126], bugs come from optimization safety checks which are inadequate [124], static analyses which
are unsound, or transformations which are flawed. This can be due to strange conditions written or side effects
of programming language incorrectly managed. To find codes which are able to produce miscompilations, it
is possible to write fuzzer tools, such as Csmith [126]. This fuzzer found hundreds of bugs in production C
compilers such as GCC and LLVM, including ones which had been corrected with a top priority by compilers’
authors. Also, there are fuzzers for different programming languages, such as jsfunfuzz [127] which is popular
JavaScript fuzzer. According to the creators of Csmith [126], the bugs they are tracking are out of reach for
current and future automated program-verification tools because the specifications that need to be checked were

Chapter 2 — Thesis manuscript — Page 48 on 619

never written down in a precise way, if they were written down at all. The design of Csmith lies on automati-
cally generating randomized C program and then performs a test harness to check the C code produced is valid
before compiling the program using several compilers, each providing an executable file. Then, Csmith runs the
different executable files and it compares the outputs. Knowing the source code is the same for all compilers, if
there is a difference in the output, it means that a compiler does not generate the expected code. The process
used by Csmith can be resumed in figure 2.4 extracted from [126].

Csmith
compiler 1 r.'nrnpil er2 compiler 3
execute execute execute

bug —= compare = no bug
minority output majarity

Figure 2.4: Csmith’s finding bugs procedure.

Csmith is not the first tool but the evolution of an already existing tools [128, 129, 130, 131, 132, 133]
which has been driven by adding the possibility to contain complex code using many C language features while
ensuring that the expected output of generated code is expected to be unique. From the Csmith project, other
developments have also emerged, such as Orion [122] known as Athena tool. Based on a method called Equiv-
alence Modulo Inputs (EMI) [134], the objectives was to use Markov Chain Monte Carlo (MCMC) techniques
with the help of effective samples source code projects to allow a generation of various programs. According
to authors’ paper [122], their results show that this approach is very effective in finding deep bugs that require
long sequences of sophisticated mutations on the seed program. Athena tool found 72 new bugs in GCC and
LLVM with most of them fixed, a large proportion with a top priority. Research keeps going on that field with
recent publications [135].

A relevant point is to get the ability to generate bugs in compilers but to keep them able to produce code
without neither any error code nor warning. It means that the compiler silently miscompiled the given program.
This is what [126] calls a ”silent wrong-code error”. Note that there are studies about inaccurate warnings and
lacks of warnings generated from compilers [136]. It is precisely this type of silent bug, which produces a valid
code without warning that is relevant for us, especially about designing a backdoor. Indeed, such bugs able to
silently generate wrong-code is perfect to be introduced in the source code at development time. This is that
idea which drove the work of Bauer & Co in [137] and at a lesser degree [138] (which is quite specific).

Bauer [137] decided to reuse the idea of Ken Thompson [115] (however without ever citing him) to modify the
program responsible to manage login of users so that an error in a compiler will guarantee a privilege escalation
bug. The targeted program was sudo version 1.8.13 on Unix system. To proceed, he used the bug number 15940
in Clang/LLVM 3.3, released in June 2013 thank to a fuzzing tool used by Ishiura Lab Compiler Team [139].
The bug is as follows:

il int x = 1;
int main (void) {

3 if (5% (3 xx) +2!=4)
__builtin_abort () ;

return 0O;

13

If we follow the logic written in that C code, the output’s program is supposed to exit normally and to return
zero. But compiled with the bugged version of LLVM compiler, it aborts, meaning it enters in the condition,
which should not happen. No warning is given at compilation time as explained in the bug’s report [139]. From
that observation, Bauer proposes to patch sudo source code so that when it is compiled using Clang/LLVM 3.3,

Page 49 on 619 — Thesis manuscript — Chapter 2

the sudoers file is bypassed and any user can become root. His code is inserted at plugins/sudoers/parse.c:220.
The main issue he is facing is that the code able to trigger the compiler’s bug is anything but discreet. Who
would really write such a confuse code? Even if author hopes it will not pass a real code review, he pro-
poses a strategy to try to proceed whatsoever. Applying different patches in different part of the project during
a patient campaign over time. A resume of the strategy of code proposed by Bauer [137] is provided in figure 2.5.

userlist matchesfsudo user.pw, L&us=>

\/'ﬁ;or_matrh =|usorli:‘-1 mmcln-*‘ sudo_ user.pw,
S —

USCTS
continue;

| debug continue (f user_match != ALIOW) ,

"No user match, #ontinuing o
searchn®):

#define [debug continuef condition , dbg_Ivl,
str.__.) {
if [NORMALIZE DEBUG_LEVELQdbg _lvl)

)\
A
N
W lcondition)) { Y
N
A
!

sudo_debug

continue ;

(/x FPerfect hash function for mapping debug

levels to_intended verbosity =/

td e

(5% (3 = (d)) + 2)

Figure 2.5: Resume of Bauer’s strategy to patch sudo program in order to insert the backdoor thank to LLVM
compiler.

Bauer claims that if his plan is correctly executed, it "would surely succeed sometimes”. It should be noted
that there are no further arguments to support Bauer’s proposal. Even if it is possible to "hide” few lines of
code within a large project, the fact remains that the incriminated lines are still indeed there. In addition, the
question arises to how the code lines are inserted.

Even if the author tries to be convincing, there may be a matter of doubt about the proposed logic... Who
can believe that deliberately obfuscating code in an open source project, especially on a critical security part
of the code, has any chance of being accepted by any reviewer? And even worse, who would believe that a
dubious comment (circled in blue in figure 2.5) could be enough to dull the vigilance of experts who usually
deal with such a program? Who can legitimize the insertion of code defined by several obfuscated macros in
a code that was basically clear and unambiguous? And how can we deny or plead error in good faith if the
scam is one day discovered? It will be difficult to deny the facts after having put so much energy into hiding
the trick. And as explained in section 2.2, a backdoor must be deniable as a last resort. The problem is to
use a bug — certainly exploitable — but which cannot be integrated into a code under at least a plausible reason.

This observation rises an interesting question about the efficiency and the operability of compilers’ bugs
found with the help of fuzzer techniques. In 2019, an article from Marcozzi & Co. [110] explains that if fuzzing
tools have been proven to find hundreds of errors in most widely-used compilers such as GCC and LLVM [141],
little attention has been given to know if the bugs found by fuzzing tools are present in real-world applications.

From a sample of compilers’ bugs, they showed that almost half of the bugs could have an impact on gener-
ated executable files from real-world applications. But the impact is only limited to a small number of functions
which lead to a small number of test suite failures. In addition, sources of bugs reported to compilers’ authors
are shared between those coming from fuzzing tools and from real developers since they are impacted during
development. Such observation mitigates the impact about the number of bugs found in studies presenting
results from fuzzing campaigns.

Chapter 2 — Thesis manuscript — Page 50 on 619

Finally, they explain that consequences of compilers’ bugs have no semantic impact or that they would
require very specific runtime circumstances to trigger an execution divergence. More directly, the fact that
the bugs identified by fuzzers only concern a marginal number of cases in real-world applications since major
bugs — probably written by real developers — are quickly reported to the compilers’ authors, this means that
there are few really exploitable bugs left. Moreover, the exploitable ones often require such special conditions
during execution that it is very difficult to trigger them (which is why they might have escaped the attention
of application authors). Not to mention the fact that these specific conditions require dubious tricks to insert
vulnerable instructions into the source code [137].

This leaves us with the conclusion that if fuzzing tools are useful to find existing bugs in compilers, they are
nowadays used by some researchers to insert backdoors at compilation time in software. Recent works about
compiler fuzzing is the main evidence of this. But this method is not perfect and far from being operational.
On the first hand, it requires a bug which is exploitable, which means to deal only with bugs resulting in silent
wrong-code generation. Such class of bugs is far from being common. On the other hand, even if such bugs
exist, they are far from being naturally present in real-world software and hard to exploit at runtime since they
are present in marginal part of applications, as [140] explained it.

2.3.4 Wrapping everything up

IZ” In this sub-section, we have taken up all the elements about compilers backdoor to define a gap
present in the research today.

#£3 Tn practice, this means using an 0-day vulnerability in a compiler in order to silently and
efficiently introduce a backdoor in a compiled software.

\. J

The present state of the art, without trying to be perfectly exhaustive, gives us the main developments and
ideas underlying the insertion of backdoor when writing or compiling source code. If the case of insertion during
writing was quickly dismissed as quite difficult to be correctly achieved in practice nowadays, especially to insert
a backdoor for long-term purpose, the one about the compilation brings higher hopes. From the USAF report’s
predictions to ideas popularized by Thompson, a path has been opened. The emergence of fuzzing techniques
is a blatant illustration of this. Even if fuzzing techniques are initially focused on the objective of correcting
the bugs they found, some researchers are beginning to present works oriented towards attacking and exploiting
these bugs to introduce backdoors.

However, there are always some capacity shortages. The first is that the proposed solutions are far from
being operational. Ken Thompson supposed the victim already uses a backdoored compiler which is far from
being obvious, except considering that we can control the broadcast of such backdoored software. But in such
a case, it is equivalent to directly executing code on the victim’s machine. With such assumption, it is possible
to do much better than just exploiting a backdoored compiler... More directly, this hypothesis violates one the
fundamental law in security which says: 7if we can persuade you to run something, it is not your machine any-
more” [142]. Tt is not surprising that the security cannot be maintained under such conditions. This is why using
an already existing flaw in a compiler is more desirable. But then again, there are a few subtleties. Notwith-
standing the fact that not all existing bugs are so easily exploitable, this also implies that we have got unknown
bugs from developers’ compiler. Otherwise bugs could be patched and not exploitable anymore. As a conse-
quence, this means that the approaches about using already known bugs are irrelevant. And, all the researches
about compilers’ backdoors use known and already fixed bugs. We can always assume that the victim is using
a compiler that is not up to date but it is an assumption that goes beyond of the scope of an operational context.

Finally, all the attacks presented here have one thing in common: they never got beyond the stage of an
idea on paper or a proof of concept locked up in a laboratory. And it is finally from this observation that our
work starts. The objective is to achieve a backdoor that maximizes the benefits of the various techniques while
bypassing the operational limits observed to date. More directly, we are looking to create a backdoor, as defined
in section 2.2, with the following properties:

Page 51 on 619 — Thesis manuscript — Chapter 2

e Exploit a bug from a compiler to insert a backdoor ;

e The bug must be unknown (0-day vulnerability) ;

e It must be from the class of bugs which silently generates wrong-code ;

e It must be usable for quite a long time (not being too obvious or too suspiciously obfuscated) ;

e It must be possible to legitimately justify the code inserted in the source code to generate the bug.

3 First approach

Resume 4:

B5” We will show in this subsection that it is possible to exploit a flaw in any C compiler to produce a
different behavior.

#£5 We use a lack of precision in the C language standard to exploit the free interpretation left to
the different compilers.

#5 Tt is possible to find code constructions in C that allow to produce, for the same code compiled
with two different compilers, two different results.

One approach to have a flaw in a debugger which can survive for a long time is to exploit not a bug but
a lack of explanation in the programming language. A solution is to abuse of existing undefined behavior in
compilers. For instance, with C language, it is not hard to find examples of such constructions [143, 144]. To
take an example, one might wonder what would be the value of i = 0 after executing that line of code:

[i = i++ + 1; // Undefined behavior.

Code 2.1: Example of undefined behavior with C language when compiled.

Of course, the previous code is not important enough to introduce a backdoor. Let us consider a more
important one in the following code:

int i =0, j = 0;
char *tab = NULL;

tab = (char x)calloc (10, sizeof(char));
if (tab == NULL){

__abort_operation ();

return;

}

// Undefined operation.
tab[++1] = 4++i;

printf(”Value of i: 0n%02d.\n", i);
for(j = 0; j < 10; j++) {
printf(”\t0x%02x —> 0x%02x.\n", j, tab[j]);

Code:

We can imagine that tab value is used to drive execution of another array full of pointers of code. For the
sake of simplicity, we only kept the relevant part of the code. In such a case, the function pointer at index i is
executed if and only if the i*" value is initialized in the tab array. We propose to compile this code with two
different compilers. The first is the one coming from Microsoft Visual Studio [145, 146] and the second one is
GCC!'0, Compilation happens without any warning and the result of execution is given in table 2.1.

The first observation is that ¢ is equal to 2 in both cases. This makes sense since at the end, two incremental
operations have been performed on that value. The difference lies in the content of the array tab. In the case

Onttps://geec.gnu.org/

https://gcc.gnu.org/

Chapter 2 — Thesis manuscript — Page 52 on 619

[1] Value of 1 : ©ne2.
Ox00 Ox00
Oxe1 Bx00
Ox02 Ox02
ox83 8x00
Ox04 Ox00

Code compiled with GCC Code compiled with Visual Studio 2018

o o

D0 O -
® ®
DIDND

1:
T
L
a1
02

3
04

Table 2.1: Results of compilation of an undefined code with two different compilers.

of GCC, the value at index 1 is equal to 2. And in the case of Visual Studio, the value at index 2 is equal to 2.
Explanation of the difference comes from the way the two compilers are interpreting the order of execution for
the given instructions.

If we examine the compiled code generated from Visual Studio code with IDA!! software, we show in fig-
ure 2.6 that the procedure has been divided in three parts. The first part is about allocation with the call to the
calloc function. The return value (the address of the allocated buffer) is returned through RAX register. This
one is tested to check the allocation succeeded. Then, in the right block of code designating the case where the
allocated would have been a success, a direct access is done in memory to store at offset 2 the value equals to
2 with "mov byte ptr [rax+2], 2”. This is due to an optimization at compilation time which pre-compute the
expected value when dealing with constants.

; int _ cdecl main(int argc, const char xxargu, const char =xenup)
main proc near

arg_0= quord ptr 8

push rdi

sub ¥sp, 26h

nov edx __; Size
1 ecx, [rdx+9] ; Count

call cs:__imp_calloc
nov rdi, rax H ﬂlloca@ result stored in rax and rdi.
test rax, rax
jnz short loc_1460010A8

—— v

FE T EE
call cs:__imp_GetLastError
moy edx, eax | | — 8: _
lea rcx, Format ; “[-1 Error : calloc has failed with Stat"..(nov edx;"2 p]
call printf [Ffmeu—_ [rsp+28h+arg_0], rbx
Ror eax, eax lea rcx, alValue0fIBnO2d ; "[i] Value of i : Bn%62d.\n"
add rsp, 26h nov byte ptr [rax+2], 2 ; Store at offset 2 the value 2.
pop rdi call printf
retn Xor ebx, ebx
nop duword ptr [rax+66h]
nop duword ptr [rax+rax+00000000h]

T

Figure 2.6: Decompilation of the code generated from Visual Studio 2018.

The case of GCC compiled code is a bit more complex. The code generated is represented in figure 2.7 and
it has been split in four different steps. After the allocation of the buffer with a call to calloc function, if this
one succeeded, we execute the step one. This step can be seen as ++i instruction which means that ¢ is equal
to one. The step two aims computing the base address of the buffer allocated plus the current value of ¢ (ie:
i = 1 at that point). The step three corresponds to the second incremental operation, which means ++i thus
1 = 2. Finally, in step four, we are storing the current value of 7 in the base address computed in step two. That
explains why at offset one the value stored is equal to 2 with GCC compiled code.

ll'nttps ://www.hex-rays.com/products/ida/

https://www.hex-rays.com/products/ida/

Page 53 on 619 — Thesis manuscript — Chapter 2

call calloc
nov [rbp+array], rax
cmp [rbp+array], 8 ; Test allocation.
jnz short _ allocation_success ; Compute ++i {set i to one here).
A J
il e =
__allocation_success: ; Compute ++i (set i to one here).
(:) add [rbp+i], 1
mov eax, [rbp+i] ; Set the content of i to eax.
(:) movsxd rdx, eax ; Copy the content of rax (ie: 1) to rdx.
mov rax, [rbp+array] ; Rax is now the base address of the array.
add rax, rdx ; Add to the base address of array the offset store in i (die: 1).
add [rbp+i], 1 ; Add one to 1.
mov edx, [rbp+1] ; Get the content of 1 to rdx.
‘, mov [rax], dl ; Store the content of the new i value to array[1].
mov eax, [rbp+1]
mov edx, eax
lea rcx, alValueOfIOnO2d ; "[i] Value of i : @n%02d.\n"
call printf
mov [rbp+var_4], ©
jmp short loc_4815AD

Figure 2.7: Decompilation of the code generated from GCC.

By adopting two different strategies to compile the same source code, two different compilers can produce
two different outputs. The good point with this technique lies in the possibility to exploit such a trick for a
long time and for legitimate purposes. No warning of any kind is displayed by default and operations written
are legitimate. But this choice is not perfect.

On the first hand, if C norm does not define precisely execution order of such undefined constructions, it
does not means the strategy taken by one compiler is not going to change from versions to versions of the
compiler. Moreover, undefined constructs are inevitably strange for an experienced developer who will always
prefer simpler and more efficient code. It is unlikely that in a serious project such codes would have a chance
of being inserted in this way. Projects such as Open Source Security Foundation'? are good to illustrate the
standards and seriousness that some companies integrate in the development of their projects.

On the second hand, it is necessary to potentially play on the differentiation between several types of compil-
ers. Changing from one compiler to one other can potentially cause a software to stop working and thus reveal
the backdoor introduced in the code. This is normally a limited risk (there is usually no change of compiler
for a given project), but an evolution in certain compiler design choices or any new features (especially about
optimization) may produce different results and highlight the backdoor mechanism (or at least remove it by
correcting what appears to be a wired bug).

This solution hybrid between source code backdoor and compiler is not sufficient enough to produce an
acceptable result. But it rises the ability of compilers to make arbitrary choices in compiling code. Nevertheless,
such point can be potentially interesting.

2https://openssf.org/

https://openssf.org/

Chapter 2 — Thesis manuscript — Page 54 on 619

4 Macro assembly and ml mistake with Boolean negation operator

Key Point 2.5:

IS~ MASM (Microsoft Macro Assembler) compiler is used since decades to develop assembly code in
Microsoft environment.

#5 Tn particular, it can be used part of development of critical programs such as firmware, drivers,
mathematical libraries...

IZ" The MASM compiler offers a facility for writing assembly code called ”Macro Assembler”.
#5 This is one of the key reasons for MASM’s success.
I~ MASM compiler does not correctly handle a conditional operator in assembler.

#5 We found this bug in the MASM compiler with the NOT operator.

#£3 The construction is perfectly valid (according to MASM’s documentation) and it produces
neither any error nor warning.

£5 Tn practice, MASM ”forgets” the NOT operator in a specifically crafted condition.
#5 This is a bug in MASM that can be exploited for malicious purposes (section 5).

4.1 Context

During our researches, we have been brought to work with different compilers, including assembly ones. As-
sembly language is not unique and there are plenty of different assembly languages (one can thing about x86,
x64, ARM, PowerPC, Alpha AXP, MISC, etc) which refer to different architectures and different CPU vendors.
This is due to the fact that each CPU manufacturer is designing its own specifications which forces to get one
assembly language per CPU family. The main advantage of the C language, for instance, is to be able to provide
a large possibility to act at low level while keeping a sufficient level of abstraction to support multiple CPU
architectures. But, we need sometimes to deal with assembly languages directly. This is the case whenever
we have to review firmware codes, some drivers, UEFI framework, reverse-engineering operations, etc... And it
could happen to translate some project from an assembly language into another, from time to time, when we
need to port one application on another CPU family. The bug presented in the following section might not be
unrelated to this situation...

4.2 MASM assembler

IZ" Tn this subsection, we explain some of the points that made the success of MASM compiler.

#£3 One of these important points is the use of operators that make assembly code look like C
code.

Writing assembly code directly is reputed to be hard and complicated. Facilities provided by more ab-
stracted languages are not present. It means that implementing simple algorithms can be a complicated task
for developers. But it is easy to find documentation to know how to program in assembly language, especially
on popular architectures such as x86 assembly family from Intel [147]. In the 32 bits CPU’s family, compatible
with Intel, there are different compilers. This is due to historical reasons. The same way, there are different
assembly syntaxes (AT&T and Intel for the most famous ones). And, since there are (old) different compilers of
assembly, it means there are different languages, such as GoAsm, NASM or MASM. The last one, MASM [118]
which stands for Microsoft Macro Assembler [149], is famous by the ease it provides, since 1981, to implement
programs thanks to the use of its macro code [150, 151]. This compiler has been developed by Microsoft and
it is still present in the last versions of Visual Studio. It can be used internally for optimization purposes or
directly when compiling code directly written in assembly language. One can note that MASM compiler did

Page 55 on 619 — Thesis manuscript — Chapter 2

not have major change from decades and it could have been used directly in projects such as UEFI, firmware,
drivers, hypervisor, antivirus, operating system, optimized libraries used for calculation, etc...

Assembly language is less complicated than people usually think. Not far from C language, this one handles
for us the management of the stack, the different calling conventions of functions and program’s control flow by
conditions and loops. These are the main differences from a technical point of view. By experience, beginners
in assembly programming have difficulties in handling conditions. In C, writing conditions is a quite simple task
and the same can be performed with assembly language, as displayed in Figures 2.8.

mov eax, [ebp+08h] ; Get ’a’ value.
cmp [ebp+0CH], eax ; Check content of 'b’ from "a’.
fr./ jnz _ cut_of_cond ; Jump out of condition it is not egual.
ff It's a condition. ; Otherwise, continue.
ff cmp [ebp+l10h], 26 [Check the content of ‘b’ with 26.
. o je __out_of_cond ; If it does not match, go out of condition.
if{a == b && c 1= 248){
Iy [oual FE | ; Code if condition is true.
}
_ _out_of_ cond: ; Code after the condition’s content.

nop

Figure 2.8: Equivalent code in C and in assembly x86 language.

To understand the assembly code, the reader must take into account that local values are stored on the stack
in x86 assembly and, in our example, are referenced from EBP register used as base pointer. The instruction
cmp can be viewed as the subtraction between two values with the content of each variable preserved (only the
resulting EFLAG register is modified, according to the logic of the operation). In case of equality, the difference
is zero, otherwise it is not, which explains why jne (jump not equal) instruction is used there.

For obvious reasons, it is more interesting to write algorithms and complex structures than purely technical
codes. Macro assembly such as MASM provides facilities for developers to help developers in conditions writing.
Something equivalent, close to C language, can be written as given in code 2.2 below. The code is compiled
with the help of ml [152] tool. The command ml is the short name of MASM compiler used as executable name
to access the MASM compiler in Visual Studio [151].

mov eax, dword ptr [ebp+08h]

.if (eax == dword ptr [ebp+0Ch]) && (dword ptr [ebp+10h] != 26)
nop ; Relevant code when condition is met.
.endif

Code 2.2: "Rewritten of code in Macro Assembly (MASM).”

Easier to read, useful for long development, this code is halfway between C and assembly code (note the
use of brackets does not change complexity here). Compiled with ml and disassembled with a debugger such as
Windbg, the result is provided in the figure 2.9.

nainlnain+0=26:

010bl03e 8b4508 nov eax,dvord ptr [sbp+8]

010b1039 3b450c cmp gax, dvord ptr [ebp+0Ch

010blo3c 7507 jne main!main+0x35 (djmﬂﬂh) Eranch
nain!maint+l=zle:

010b103e 837d101a cmp dword ptr [ebp+l0h]. 1Al

nloblo4d42 7401 je main!main+0x35 (Eﬁﬂﬂﬁ) Eranch
main!maint+l=z3d:

0105104 1] nop

naihlmain+0=x35:

01051045l nop

010blo4e 90 nop

Figure 2.9: Disassembly of code in figure 2.2.

Chapter 2 — Thesis manuscript — Page 56 on 619

The code is built in order to force the program to jump at 0x010b1045 if one of the condition is not met.
Otherwise, the program continues its normal flow to reach 0x010b1044.

4.3 Operators from MASM compiler

Key Point 2.6:

¥~ MASM proposes a NOT operator (symbol ”!”) uses to negate a condition or a value.

#£5 Tn practice, what is wrong (i.e. 0) becomes true (i.e. 1) and wvice versa.

£ Tts use is correctly documented with many examples of use in MASM’s documentation.

According to MASM’s official documentation [153], in addition to AND conditions, MASM compiler sup-
ports many more operators such as OR or NOT. It is easy to find different examples of code illustrating the use
of these operators in official MASM’s documentation. The figure 2.10 resumes all of these symbols.

Expression Operators

The binary relational cperators in MASM 6.1 are the same binary operators used in C. These operators
generate MASM compare, test, and conditional jump instructions. High-level control instructions

include:

Operator Meaning

== Equal

= Not equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

& Bit test

1 Logical NOT >

&% —Logical AND

Il Logical OR
A condition without operators (other than !) tests for nonzero as it does in C. For example, .WEILE
(:z) is the same asl-‘.':—::.'_E {(z != 0).and .WHILE (!x) isthe same as .WHILE (x == :}.l

Figure 2.10: List of symbols used in MASM officially supported.

These symbols can be used with registers or values. Moreover, these ones can also be used in conditions or
complex expressions. Here again, official documentation is providing details about. An extract from documen-
tation is provided in figure 2.11.

In our case, we are going to focus on NOT operator noted with the symbol ”!”. This operator has a high
precedence from other operators. This is directly documented from the documentation and reported in fig-
ure 2.12.

Finally, it comes different examples using the NOT operator. These ones are extracted in table 2.2 from
official documentation and they illustrate the different possibilities to use the NOT operator with values, flags
and registers. This last point matters since it will allow us to define the bug we exploit in MASM compiler.

Page 57 on 619 — Thesis manuscript — Chapter 2

Expression Evaluation

The assembler evaluates conditions created with high-level control structures according to short-circuit
evaluation. If the evaluation of a particular condition automatically determines the final result (such as a
condition that evaluates to false in a compound statement concatenated with AND), the evaluation

does not continue.

For example, in this WHILE statement,

-WEILE (ax > 0) && (WORD PIR [b=:]

the assembler evaluates the first condition. If this condition is false (that is, if AX is less than or equal
to 0), the evaluation is finished. The second condition is not checked and the loop does not execute,
because a compound condition containing && requires both expressions to be true for the entire
condition to be true.

Figure 2.11: Evaluation of complex statements with MASM operators.

Precedence Level

As with C, you can concatenate conditions with the && operator for ator for OR, and
the ! operator for negate. The precedence level is !, &8, and |l¢With ! having the highest priority. Dike
expressions in high-level languages, precedence is evaluated lefiton

Figure 2.12: Documentation about the precedence of the NOT operator.

; Finally, if we ave searched all szTok characters,
; and land here, we have a mismatch and we increment
Search by one and start over.

Table 2.2: Different use of NOT operator with MASM compiler.

Chapter 2

— Thesis manuscript —

Page 58 on 619

4.4 Use of NOT operator with MASM compiler

Key Point 2.7:

IZ” The NOT operator works as expected for simple samples.

In the following example, we build two codes to illustrate the action of the NOT operators from macro
assembly to generated opcodes by the ml compiler. On the left column, we test whether the value stored in eax
is different from zero or not. If it is not, instruction mov edx, 1 is executed. Otherwise, we go to the following
nop instruction. On the right column, the condition is negated, it means if the value stored in eax is zero, then,
the instruction mov edx, 1 is now executed. This is represented in table 2.3 where each source code and compiled
code are represented per column.

No negation Negation
mov eax, dword ptr [ebp+04h] mov eax, dword ptr [ebp+04h]
Lif eax Lif leax
mov edx, 1 ; Conditien 1is true. mov edx, 1 ; Condition is true.

.endif .endif

nop nog
0040103 8b4504 now sax,dvord ptr [ebp+d] 0040103c 8b4504 mow eax, dvord ptr [ebp+d]
0040103f 0ObcO or =ax, eax 0040103f Obe0 or Sax, 2ax
00401041 7405 Jje main!mnain+0=z10 (EEREEE) 00401041 7505 jne main!main+0=10 {[ETREIESE
00401043 ballo00000 nov edx, 1 00401043 ball0o00000 nov ed=x. 1

IEE 20 nop 0040104 el nop

Table 2.3: View of compiled code when using NOT operator with MASM compiler.

The test operation is performed by or eax, eax instruction in both cases. This specific operation could look
like a no operation since it is not supposed to perform any modification on eax content. That is the goal in a
sense it preserves the content of the value but set specific flags in EFLAG register to allow conditional instruction
to work according to the content of eax, especially if eax is zero or not.

The difference comes in the conditional jump instruction which is performed right after. In the first case,
je which stands for "jump near if equal” means that the jump operation is performed when flag zero is set to
one (ZF=1). In other word, if the result of or eax, eax would set ZF to one if eax was zero. In such a case,
the jump will be executed and the instruction provided if condition is met would be skipped (going to nop in-
struction). Or course, if content of eax is different from zero, the instructions inside the if statement are executed.

For the second case, the conditional jump is now jne which is the opposite version of je. The condition is
met when the zero flag is set to zero (ZF=0). From a logic point of view, it is a negation of the first case. Until
that point, everything works correctly as expected. This point is important since it proves that code written
for MASM compiler can legitimately uses NOT operator since the compiler provides the logic written in source
code.

4.5 Bug in MASM compiler

Key Point 2.8:

IS” Unfortunately, when used in the context of a multiple condition, the NOT operator is no longer
interpreted correctly.

#£5 Tt is ignored by the compiler which skips and ignores it.

Issues come when we raise the level of complexity in conditions. Consider the following conditions:

“.if eax == l!ebx

Page 59 on 619 — Thesis manuscript — Chapter 2

2 mov eax, 2
.endif
.if (leax) == ebx
q mov eax, 3
.endif
.1f eax == ebx
1(mov eax, 4
.endif

Code 2.3: ”Use of NOT operator in different conditions.”

For obvious reasons, all of them are supposed to produce different results, according to the values stored
in eax and ebx. Technically speaking, a condition such as (eax == lebx) could be rewritten as (eax == (ebx
== 0)) to be more understandable. The same applies for ((leax) == ebx) and the use or the lack of brackets
do not change anything for the compiler (according to the precedence of NOT operator defined in MASM of-
ficial documentation [153]). Because all conditions are different, they all should be computed differently (use
of different op-codes or conditional jumps, for instance) since each describes a different condition to be met.
Compilation with ml does not give any warning nor error. In consequence, the main question stands in the
following disassembly (Figure 2.3) of these conditions where all conditions are compiled in the exactly same way.

push ebp

mov ebp, esp

cmp eax, ebx

jnz short loc_46161A
—

loc_48161A: ™

cnp eax, ebx)
jnz short loc_481821

i
loc_461021:
cmp eax, ebx

jnz short loc_401028

\

loc_u4061828:
eax, ebx)
j short loc_48182F
L]
FEE] FEIE]
nop nop
jmp short loc_uB1038| |jmp short loc_uB10838| |jmp short loc_u01030 loc_u48102F:

] o

sl _2 23

Figure 2.13: Disassembly of code compiled in figure 2.3.

Each condition is built in the same manner (cmp eax, ebx followed by a conditional jump if not equal — jne
— to the next condition) despite the fact they are differently written in source code and thus all different from
a logic point of view. From the ml compiler point of view, eax == ebx is the same than (leax) == ebx, which
is obviously wrong. Any debugging session is enough to confirm the logic written originally in the source code
is not respected at generation time by the compiler.

Chapter 2 — Thesis manuscript — Page 60 on 619

-

4.6 Explanation of the bug in MASM compiler

To understand which error has been made by ml compiler, we wrote an equivalent code in C, compiled it with
visual studio compiler and reversed it with IDA software. The C equivalent code 2.4 is written with the con-
straint to retrieve two values from the user. This design is implemented to prevent the compiler to perform any
optimization in the backyard which could remove the two variables.

#include <tchar.h>
#include <Windows.h>

int _tmain(int argc, LPTSTR argv[]) {

int a = 0;

int b = 0;

//

// Ask two numbers to prevent compiler’s optimization with constants.
//

_tprintf (_T(”Get number a ? 7));
scanf_s ("%d” , &a);

_tprintf (_T(”Get number b 7 7));
scanf_s ("%d”, &b);

// Perfom the same test than those written in assembly.

//
if(a = !b){
_tprintf (_T(”First!\n”));
if(la — b){
_tprintf(_T(”Second!\n”));
}
if(a = b){
_tprintf (_T(?Third!\n”));
}
return 0;

}

Code 2.4: ”C code supposed to test NOT condition.”

Decompiled code 2.4 is a piece of cake to check how the Visual Studio compiler built this source code.
Given in figure 2.14, difference with the code compiled with ml is blatant. The first block of code is dedicated
to retrieve values from the user. Then, the first condition (a == !b) is computed by the use of a temporary
value stored on the stack. This one is computed in blocs 2 and 3 by the use of instruction "mov [ebp+tmp],
number” where number corresponds to the boolean result of the check performed on b value with instruction
"cmp [ebp+b], 0”. Indeed, according to the value stored in b, a temporary local value is set to one or zero (second
and third block) to be finally compared to a value at the end in the forth bloc. In other words, the negation of
b is stored in a shadow local value (stored on the stack) to be used in the comparison next. The same applies
for the next conditions (in such a case, the temporary value is defined from value a, according to the source code).

Comparing with what the C compiler did, we can conclude where is the issue with ml compiler. For short,
C compiler uses a temporary value to compute the negation of a given local value, what ml compiler does not.
An explanation could sit in the lack of capacity of ml to build its own local values. Even if MASM is perfectly
capable to handle local values in a function [154], it does not do it with operators. The guessed reason would
be to not use the stack behind the developer’s back. Indeed, in critical situation, the value of the head of the
stack (stored in ESP register) could be at its limit address. In such a case, using the stack to store a shadow
value would result in a memory invalid address access, rising an exception, which is not exactly the behavior
that a developer could expect.

In brief, ml’s bug resides in the use of negation operator in an equality (or inequality) test. Every code which
follows the pattern ”! <register/value/memory>" is eligible to be incorrectly compiled. This bug is introduced

Page 61 on 619 — Thesis manuscript — Chapter 2

push offset a?GetNumbera? ; “[?] Get number a 7 "
call j_wprintf

add esp, 4

lea eax, [ebp+a] ; var_a

push eax

push offset ab 5 d

call j_scanf_s ; Get Number *a‘.

add esp, 8

push offset a?GetNumberB? ; “[?] Get number b 7 *

call j_wprintf

add esp, 4
lea eax, [ebp+b]
push eax

push offset aD ted

call j_scanf_s Get NHumber 'b°.
add esp, 8
cmp [ebp+b], 8 ; Check if 'b' is null.
@ jnz short loc_W414E74 ; If "b’ is non null, set it to zero. @
7 ‘ 7 ‘
P I
mowv [ebp+tmp], 1 ; If 'b' is pull, set tmp
; variable to 1. loc_414E74: ; If 'b' is non null, set it to zero.
jmp short loc_M14E7E ; In eax, set the content of "a’.| |mov [ebp+tmp], B
1]
Yy
- 5 In eax, set the content of 'a".
mowv eax, [ebp+a]
cmp eax, [ebp+tmp] ; Tmp is viewed as "tb"'.
jnz short loc_414E96 ; Same procedure, just use
; tmp as "ta'.

LA

offset alFirst ; "[i] First tyn”
j_wprintf
esp, 4

Figure 2.14: Decompiled code from the one compiled in figure 2.4.

by a bad management of the value negated. Indeed, the use of NOT operator changes the content of the value
inside the condition. Out of the condition, the negated value is not supposed to be altered. The lack of use
of temporary variable to hold the result of the operator leads to misinterpret the condition, resulting that a
wrong-code is silently generated. Note that regular negation from a single value (for instance: ".if leax”) or a
full condition (such as: ”.if |(condition)”) is perfectly fine since it is the test instruction or the conditional jump
which is impacted in that case.

Chapter 2 — Thesis manuscript — Page 62 on 619

5 How to build a sneaky backdoor with ml compiler bug?

Resume 6:

IZ” We exploit the vulnerability in MASM to produce valid source code that implements a backdoor.
#£5 We explain how to transform the vulnerability in MASM to silently introduce a backdoor in
a program compiled with it.
#£5 We reuse the context proposed by Ken Thompson [115] to trick a user authentication program
as [137] did.

#3 We explain the step-by-step methodology to be used to successfully implement a backdoor
without breaking the original program.

5.1 Context of the backdoor

Key Point 2.9:

IS” We exploit a vulnerability in MASM that allows us to silently change the logic of written conditions.

#£5 Triggering the vulnerability is done via a simple code written (and using perfectly documented
code examples).

#£3 We go beyond the gap (defined in Resume 3) established from literature review.

If it is possible to exploit the bug to execute unexpected code despite the apparent logic of the source code,
a backdoor is writable. The goal is to get an official source code which should pass a code review from anyone
(expert or not). Of course, reverse engineering compiled code from application would be enough to find the
mistake we included in the logic flow of the process. Even if we still need to know where and what to look for...
But we are acting in a position where we have access to the source of the targeted application. An application
that we can compile by ourselves. Open-source software are perfect target for that, but not only. In the case of
a company, any frustrated, dishonest, corrupted employee is enough to perform malicious action on the source
code — especially with the guarantee that action taken remains stealthy. One can think about a consultant
hired as freelance by a company which outsources its development. This happens in areas of highly specialized
expertise, such as, surprisingly, kernel or firmware programming, where assembly language may be needed since
such expertise is not a mass sport...

As described in [102], two plots are available to build the backdoor. First, we own the project we want to
backdoor. On the positive side, it makes it easy to introduce a backdoor since we are the main leader developer.
On the negative side, if the backdoor is found, we lose and here comes consequences on our reputation, regardless
of possible lawsuits. To reduce the possible cost, the second plot is about to propose a patch for an existing soft-
ware. It allows us to patch several open-source projects since we can act as an occasional contributor. The case
of the consultant is equivalent. This is stealthier in the sense that we are no more on the first line. In addition,
we get the benefit to possibly argue it was a plausible mistake instead of a malicious intent by design. In all
cases, attack is performed through a modification of an existing software to detour it from its original procedure.

To stay within the context of past research, we propose to introduce a backdoor at compilation time in a
program equivalent to sudo, as Thompson [115] and Bauer [137] did. This example could be applied to other
program such as runas [155] on Windows operating system. Since these programs are not written in assembly
code, we are going to assume that we are in the case of trying to backdoor a firmware program authenticating
its users, the same way sudo would have done it. The program makes the difference between simple users and
administrators. Both populations authenticate themselves with a password specific to each user. Of course,
the program code is written in assembly language. As in any authentication program, there is always a final
condition that guarantees (or denies) access to a protected resource. It is this condition that we are going to
target.

Page 63 on 619 — Thesis manuscript — Chapter 2

The main part, about the modification we submit, is about to not raise a security issue. First, no analysis
(coming from human or software with formal verification) of code would be able to detect a security breach in
the code since the official security logic is respected. This is an essential condition for the backdoor to remain
stealthy and to be present over a long period of time. Then, the bug we exploit must avoid to raise questions
about the legitimacy of the inserted code. One should not rely on an obfuscation or a dubious comment as in
[137]. After all, we are trying to fool the logic of conditions in a sneaky way (a condition supposed to be false
is going to be interpreted finally, as true) so that code, which is supposed to reject something, now, accepts it.

Even in the case where the code would be detected, it still remains possible to deny any responsibility in
the vulnerability introduced. Indeed, the logic of checks in the original code is supposed to be true and we can
always claim that we were not supposed to know that the debugger used had a bug resulting in such security
flaw in the generated code. At worst, one can blame us not to have tested our software enough on side effects.
Of course, with an example as simple as the one provided in code 2.5, it can be complicated to argue we did
not test it. But more complex cases can be implemented.

5.2 Description of bug consequences in order to insert a backdoor

IZ" We explain in this subsection how change the logic of a condition with the bugged NOT operator.

Formally speaking, the bug in the compiler does not take into account the NOT operator in context of
condition checks. In our case, condition is limited to equal or difference. The legitimate use of NOT operator
with equal (or difference) test written can be modeled with the help of Boolean values (meaning that a € Fy
with o = {0,1}). This makes sense since conditions manipulate Boolean expression to jump on a specific code,
according to the validity of the condition written. With the compiler’s bug, we have an equivalence between all
the following codes: Va,b € Fy, we have a == b <= la == b < a == b <= la == b which, obviously,
does not respect mathematical logic. A more complex example can be illustrated with: !(la ==b). In a non
bogus environment, we have the equivalent conditions:

lla==b) <= !(a#b)
<— a==b

In the bogus environment of ml compiler, truth equations are changing. It is due to the NOT operator
which is not interpreted correctly. The first NOT is interpreted on the whole condition while it changes the
jump instruction. Starting with an equality, it is now considered as an inequality. Because of the bug, the
second NOT (in the brackets) is not interpreted at all, which leads to the following conditions:

(la==b) <= !(a==0b)
< a#b
With this change in logic in conditions of the program, we can replace the cases where a condition is normally
not executed into one which is now executed. Note the opposite operation is also correct: it is possible to change

a condition which is executed to one which is no more executed. This is the main point to build the plot of our
backdoor.

5.3 Creation of the backdoor

Resume 8:

B5” We explain step-by-step how to design a backdoor in a source code, preserving the original behavior
while introducing a new one.

#£5 We reuse the same plot (i.e. sudo software to provide admin rights) used in literature.

Chapter 2 — Thesis manuscript — Page 64 on 619

Using logic bug to change behavior of a targeted application is quite simple. We illustrate things with the
use of access check to a resource reserved to administrator. The goal is to introduce a flaw in a function sup-
posed to check access rights of the calling process before continuing potential privileged resources. The simplest
condition could look like the one provided in code 2.5.

; If the caller is not an administrator, it means it is a simple user.
if !caller_context.isAdmin

mov eax, 0C0000022h ; ERROR_ACCESS_DENIED
goto __end
.endif
nop ; Continue execution only for administrators.

Code 2.5: ”"Simple backdoor using the compiler’s bug.”

With the previous code, if a regular user calls the function, it gains access to the privileged function. This
is due to the fact that the NOT operator is not correctly interpreted by the compiler. Finally, ml compiles a
condition close to ".if caller_context.isAdmin == 1” which triggers the condition, so that the function is stopped.
But the code 2.5 is wrong for an operational backdoor. Indeed, if an administrator calls the function, be-
cause of the bug, the legitimate access is now refused. In this case, even the simplest unit testing would be
enough to see that something is wrong. If we insert a backdoor, this one must keep the original behavior of the
modified code. Inserting a new backdoor functionality does not mean to remove a feature that is already present.

The solution comes with a small raise of complexity about the original code to backdoor. Continuing on the
context provided by Thompson [115], this one can check, first, if the user belongs to a group, then if the couple
user-name and password is correct. At that time, if the user belongs to the group of administrator, access can
be guaranteed. A correct implementation would lead to check all these operations ones after the others. But,
for optimizing things up, we propose to check if the provided user-name is administrator or just a regular user
(implicitly supposing there is no other group except administrator or regular user). Finally, the check of the
provided password can be performed. The targeted code can written as the one given in code 2.6.

; Check if the provided user belongs to users
4| ; group and save result in esi.

push offset CurrentUserName

4| call IsUserRegularUser

mov esi, eax

; Check if the provided user belongs to

4| ; administrator group and save result in edi.
push offset CurrentUserName

1q| call IsUserAdministrator

mov edi, eax

14
; Check password provided with the user name.
14| push offset PasswordProvided

push offset CurrentUserName

1d| call CheckIfPasswordIsValid

14| ; Check if the user is administrator and
; the password is correct.

2] .1if edi == 1 && esi == 0 && eax ==

Jmp __allow_admin

24| .endif

Code 2.6: ”Test procedure to give access only to administrator with the right login and password.”

The double check of the user affiliation can be justified by an overzealous attitude or the fact that non admin-
istrator user could perform some unprivileged tasks in the code following the condition. The code in Figure 2.6
is the original code to backdoor. Of course, the code could be optimized by directly call the different functions
in the condition directly. But for illustration purposes, we propose to keep them away from the condition, since
it does not change the logic of that one. Furthermore, the main working space is in the condition for us. If we

Page 65 on 619 — Thesis manuscript — Chapter 2

study the condition with a truth table, we can map all possible outputs of the condition regarding its inputs.
Such truth table from condition written in code 2.6 is given by table 2.4.

Administrator | User | Password correct || Result
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 ?
1 1 1 ?

Table 2.4: Trust table of the final condition in code 2.6.

Note the last two possibilities referenced in table 2.4 should never happen since they correspond to impossible
cases. Indeed, by definition, a user cannot be both in administrator group and in the one of regular users (ie:
non administrator). And even if it would have been possible, there is no real definitive answer here about
knowing if we need to provide or not the access. Since they are impossible by definition, these undefined states
could be an interesting spot to exploit with our compiler’s bug... Technically, our goal is to get a regular user
(ie: non administrator), with the correct password of its user account, being executed as an administrator, in
addition to regular administrator users whose execution is still guaranteed. First, we are going to modify the
condition in a manner that it does not change the logic of the condition but it introduce our NOT operator.
One can write the code 2.7.

Lif (edi == 1 && l!esi == 1 && eax ==
: Jmp __allow_admin
.endif

Code 2.7: ”Change the condition (but not the logic) to introduce NOT.”

The code 2.7 introduces the NOT operator but it does not change the logic of the condition from a formal
point of view. Note that there are many ways, with the compiler’s bug, to introduce this operator (for instance,
lesi == edi since EDI is supposed to be equal to one in case where we would deal with an administrator user).
Our modification of the condition is targeted on the ESI register. This is due to the fact that ESI is supposed to
contain the Boolean value representing the belonging to the group of regular users. This modification introduces
the bugged operator in order to misinterpret the real membership of the provided user in the executed condition.

The logic of the condition is to only accept what is defined as true to let privileged functionalities being
executed. With just the last modification, no user (administrator or not) would be allowed. Indeed, the condi-
tion is now only valid if the user is identified as being membership of both administrator and non administrator
group. This is due to the use of AND operators in the condition. To remove this obstacle, we can rewrite the
condition with a new order and by the use of negative logic. It means that everything which is identified not to
be an authenticated user will be rejected, allowing the execution to continue otherwise. Of course, undefined
states where a user would belong to both groups are not supposed to happen in theory. This is why we can
pretend it is not necessary to implement additional conditions that are redundant and not required. A possible
backdoored condition is given in the code 2.8.

|| .if (eax == 1 && (lesi == 1 || edi == 1))
Jmp __allow_admin
.endif

Code 2.8: "Final trapped condition.”

Condition written in code 2.8 is conform with the logic of the original condition given in code 2.6. It first
checks whether the password is correct or not. On the first hand, if the password is incorrect, the code does

Chapter 2 — Thesis manuscript — Page 66 on 619

not execute the content of the condition without evaluating the rest of the condition. The justification of this
first check lies in the need to avoid unnecessary checks if the password is invalid. Direct call of functions in
the condition could be a way to optimize login performances by only evaluating user groups when password is
correct. On the other hand, if the password is correct, the condition checks if the provided user is either an
administrator or a not regular user. This double check is to officially avoid undefined membership status of
users, allowing only truly authenticated administrators to get access in case of a user would belong to both
group would have happened...

The trust table of the condition written in code 2.8, when only considering the trust table and ignoring the
bug in MASM compiler is given in Table 2.5.

Password correct | User | Administrator Result
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1-Imp
1 0 1 1
1 1 0 0
1 1 1 1- Imp

Table 2.5: Trust table of the trapped condition from source code point of view.

Reading the trust table given in Table 2.5 simply shows that the written condition is consistent with what
can be expected from it. Only administrators with the correct password are authorized by the condition. The
two possible cases where an authorization would be possible is when a user belong to both or none of the groups,
which is by definition, impossible.

Of course, thank to the compiler’s bug, the compiled condition is slightly different from the trust Table 2.5.
Actually, the sub-condition (lesi == 1) is interpreted as (esi == 1). Under this condition, it allows an adminis-
trator or a regular user, provided the password linked to its account, to get access to privileged functionalities.
Table 2.6 resumes the truth table really compiled by ml.

Password correct | User | Administrator Result
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1-TImp

Table 2.6: Trust table of the compiled trapped condition with ml compiler.

The antepenultimate and the penultimate lines define the expected result. Either an administrator or a
regular user — correctly authenticated — check the condition. This is the design of the backdoor we wanted to
introduce. It allows one more hidden users to get access to privileged functionalities while keeping the original
behavior from the condition. About the case of the last line, this one is not relevant, since it is theoretically
not possible that a single user can be a member of two groups at the same time. And, even if it could happen,
officially, the condition would give access if the user that belongs to administrator group. To some degree,
condition made a choice to privilege admin users, whatever they belong to another group at the same time... A
perfectly sustainable choice from security point of view.

Page 67 on 619 — Thesis manuscript — Chapter 2

At the difference of [137], our code does not appear as needlessly complicated. It is perfectly justifiable
without betray its unavowable design. One malicious developer could insert such a code as a patch in a code.
Justification would be about optimization purposes, as we did. Another difference lies in the flexibility of our
backdoor. It can be introduced in any condition, changing the logic flow of this one without removing the
original behavior of the condition. To perform the modification, one can follow these steps:

1. Define the original truth table of the condition ;
2. Write the expected truth table for the new condition ;

3. Build a legitimate condition which follows the last truth table by the use of NOT operator in an equal
test condition to exploit the bug.

6 Correction about the bug in MASM

Key Point 2.10:

IZ" The bug has been reported to Microsoft, which has registered and corrected it under the number
CVE-2018-8232.
#5 This is such an original bug that Microsoft did not really anticipate that it could exist.

#5 There have been heated debates about what this type of vulnerability really was and how to
fix it.

45 The bug has been present in the Microsoft compiler for decades (at least 30 years).

5 Tt has been corrected with the concern of not breaking the existing software compiled with
MASM.

#£5 MASM’s error code A2154 has been given to a construction which would use the vulnerability.

#5 Microsoft chooses to break compatibility with its documentation for a build that it nevertheless
considers unlikely.

IS” However, the correction remains partial (only in the Visual Studio compiler).

6.1 Reporting of the bug

Once the flaw has been discovered, and because of its criticality, it has been transferred to Microsoft at the end
of February 2018. It was a long story before the bug got fixed. This is kind of the social part of the thesis... It
was complex to explain the issue and the impact of such a bug in Microsoft’s compiler. Why? Simply because
there is no critical vulnerability in the compiler itself. After all, there is no elevation of privileges, nor is there
any bypassing of any security within the system. This is obviously the main problem posed by a vulnerability
in a compiler. As explained in section 2.3.2, it is not directly in the compiler where the security flaw is, but the
objects potentially produced by the latter.

To suggest a metaphor, we can consider a manufacturing line that has a latent defect which insidiously
impacts from time to time produced objects from that line. In itself, this does not prevent objects from being
produced on the production line, especially when we are ignoring existence of this latent defect. Nevertheless,
the defect in the production chain has insidious repercussions on products that come out of that one. The
defect induced in the produced objects is not present for most or it is minimal and marginal for few because it
requires some very specific conditions to be present. But there is a non-zero probability that it may be present
and consequences can be serious for users of that object. At worst, when such situation occurs in industrial
world, if a serious defect is discovered, we can always recall the objects produced and check or fix them. But
in our case, the production line is neither central nor easily accessible. In fact, people can import and copy
by themselves their own production line, conform to the original one, latent defect included. Therefore, it is
neither possible to know who used that chain, nor which product has been produced with, nor even whether

Chapter 2 — Thesis manuscript — Page 68 on 619

these products may be affected by the induced defect. And of course, the older the original production line
is, the greater the quantity of objects produced is. By consequence of statistics laws, greater is the number of
potentially impacted objects.

Metaphor from the precedent paragraph is transparent if we substitute "production line” by "compiler”, "pro-
duced object” by "compiled software” and ”latent defect” by "silent bug in the compiler”. This is literally the
problem of compilers’ bugs which results in incorrectly generated software. Of course, this raises the question
of responsibility and how to respond to that case. The central point is the compiler and preventing future
compiled programs from being impacted by the defect is a minimum that stands to reason. In addition to this
first point, it comes the question of already produced products and potentially impacted by the compiler’s bug.
This means we could sought to warn compiler’s users, tell them to check their source codes, possibly recompile
them, update the executable files compiled on the system, etc. The stain is huge and this is exactly the problem
Microsoft had to deal with when they were informed about the bug.

At the beginning, Microsoft answered this was not a bug for them and thought about closing the case. After
further explanations, they admitted the problem was serious in the case of user of the compiler would have been
exposed to the bug. Confronted with their own documentation that references numerous examples of illustration
and use of the operator in question (Figures in Table 2.2), it was getting hard to deny the problem. The 13-th
March, CVE-2018-0984'% number has been temporarily assigned to the problem. One month latter, Microsoft
contacted us to ask more details about the flaw in the compiler since they had an "internal heated debate” about
this bug. After providing them as many details as we had, we asked them about a potential correction of the
bug and the strategy they had about managing already compiled code. Their response was quite surprising.
Indeed, they admit they were still debating internally to know whether this should be a functional bug (which
would be fix in a vnext — next version) versus a security issue (where they would assign a CVE and push a
security update).

On that note, after a month of silence, Microsoft contacted us again to announce us that their debate is over:
it is not a vulnerability, assigned CVE number is removed and a fix might be written one day in a future version
of the compiler. MASM compilers exists since 1981 and it is not the software that is known to be regularly
updated... This response strongly resembles a "no” response and the desire to get rid of the problem rather than
fixing it. But we decided to bow to Microsoft’s decision. After all, if it is not a so-called vulnerability, then
we can publish everything the next day and let the scientific and cyber community deal directly with it. It is
a classic research process and the CVE number withdrawn, the question of guaranteeing the precedence of our
searches arises directly...

Surprisingly, Microsoft was not comfortable at all with the idea that we would publish anything about the
subject. As a result, what is not a vulnerability and does not deserve to be quickly corrected does not need to be
particularly public for them either. Apart from this strange ability to cultivate the art of palinody, they confess
that "this issue is atypical” and the decision of publication makes the "product team to revisit the decision”.
Notwithstanding we had already informed them of our willingness to publish once the problem would have been
fixed, we agreed about the phone call they proposed to directly discuss together. Of course, this issue is atypical
and the goal for us was just about fixing this security hole and raising any alarm bell on the subject of backdoor
potentially introduced at compilation time.

The phone call has been a great moment to discuss the issue. From Microsoft point of view, the problem
is indescribable. Nobody has touched this compiler for 15 years and the problem is not just about to fix the
bugged operator. Their primary concern is that the modification does not specifically break any existing code
compilation. Indeed, compilers are sensitive tools and the slightest modification could have potentially more
serious consequences than the bug itself. Apart from the clients potentially impacted by code that would no
longer compile or that would have to be modified, the code generated by MASM should not change too much to
keep some backward compatibility. And it is of course difficult to estimate how many people could be impacted
by this change, for the reasons explained above. Note that we are dealing here with a compiler containing a
bug that we have been able to successfully observe since the very first versions. The bug is about 30 years old,
which allows a large number of potential silently exploitation. It remains that since Microsoft has no idea how

13https ://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-0984

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-0984

Page 69 on 619 — Thesis manuscript — Chapter 2

many software would have been potentially impacted or who to contact or to notify about an update. Thus,
they decided to just update the compiler without any more publicity. A strategy that could be summarized as
Yevery man for himself, and God for us all”.

Finally, Microsoft accepted to fix the bug and recognize a certain severity to the problem. The 16™*" May,
just following the phone call, CVE-2018-8232'% number was assigned to the bug. The 7-*" July 2018, Microsoft
published the correction of the compiler in Visual Studio update. Other sources of supply for the compiler will
not be fixed!® since the product is not anymore really supported as a project by itself [156].

The story could be finished at that point. Even if one could also wonder about Microsoft’s attitude. Of
course, we must not fall into conspiracy theory. Always consider only the facts that can be proven and verified.
Definitely, a lot of time has been spent discussing the nature of this bug. According to the Microsoft team,
it was not even considered that a bug could be reported on this product. Surely, such a bug, exploited that
way, is far from being common. But it leaves one wondering about the fact that it took about more than 6
months to fix a bug that, all in all, is not very complex. Attempting to bury the affair at the beginning is
not in line with Microsoft’s classic attitude. Indeed, they are always prompt and transparent in fixing bugs.
It is simply a question about their public image. Whatever it is, we can appreciate some of the specialized
press review about this update of Microsoft, especially the one from Zero Day Initiative journal [157]. The
latter seems to have a very strong opinion on the question of the operationality of a compiler flaw by quali-
fying it as "sounding like a plot device in a Mission Impossible movie”. Either he was obviously very (too?)
well informed on the subject, or he was obviously not informed at all since at that time, officially Microsoft
and our services were only informed about technical details and operationality from this bug... Nevertheless, it
is questionable to know if everything possible has not been done to reduce the public impact of this vulnerability.

It must be seen that the case is original, that clumsiness may have been in done on both sides and, on this
case, the problem is a quite original (if not potentially sensitive) and frankly uncommon. There may not be
any specific procedure to deal with that and this could explain the twists and turns of this story. It must also
be seen that such subjects sometimes go beyond the purely scientific and technical aspects to to go on more
political ones. This is also an aspect that is part of scientific research and it should also be noted.

6.2 Potential corrections of the bug

Correction of the bug has been proposed to Microsoft. This was with the initial report we transferred to them
by mail. For the sake of clarifying what is possible, we have reproduced here the corrective actions that we
proposed at that time.

Since the bug is clearly identified, detection of specific patterns in conditions is enough to detect potential
issues. From that point, many possibilities are doable. First, the compiler could display warning or error mes-
sages to prevent compilation of such code. If it does not fix the problem, it allows developers to be informed
about it. In case of the correction would lead to consider the patter as an error, it would avoid developer to use
what is considered now as partially unsupported operator. Indeed, the operator is still present but only allowed
in clear and simple situations (on a single register only, for instance). Whatever the choice between warning
or error is, in both cases it would be an invitation for developers to review their code if they are using such
construction.

The second possibility is to solve the problem by improving the code generated with NOT operator. For
short, it is about allowing the compiler to correctly manage the NOT operator. But this solution would increase
the volume of generated code. As presented in section 4.6, the main problem comes from the lack of a temporary
variable. Choosing this solution would require to use the stack or another memory spot (register, heap, thread
local storage, ...) to store the variable. Starting from the code presented in Table 2.7 with its decompiled view,
we are looking construction of output opcodes able to manage the operator correctly.

Mhttps://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8232
Bhttps://www.masm32.com/

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8232
https://www.masm32.com/

Chapter 2 — Thesis manuscript — Page 70 on 619

Source code Compiled code
1f leax ==
. - . 0040103z ObcO or SaH, 8aH
mov edx, 1 ; Condition is true. | pp4pi0ie 7505 ine maininaintOzd (TGRS
.endif 00401040 b201000000 nowv edx, 1
nop 004010 4cHEN nop

_

Table 2.7: Initial code to correct.

From a technical point of view, we can design the correction the same way the C compiler did it in figure 2.14.
By saving original value on the stack, we can apply after the NOT operator on the register representing the value.
That way, the compiled code could be generically corrected to something close to the code displayed in figure 2.9.

.if eax == ; Test first to negate eax.
p push 1 ; Use stack as temporary value.

.else
4 push 0 ; If eax is 1 it becomes 0.

.endif
d| .if DWORD PTR [esp] == 0 ,; The original test by itself.

add esp, 4 ; Clean the stack from the temporary value used for negation.

E XOor eax, eax

.endif
1{| add esp, 4 ; Clean the stack, whatever the result of the test is.

Code 2.9: "Proposition of solution to correct the bug.”

The main idea is to save the negated value into the stack in order to use it directly in the original condition.
Using stack is quite convenience since this is the regular procedure to create local values for functions. But it
could be critical for some architecture where the stack size is limited. Note that temporary value used must be
removed from the stack whatever the result of the condition is. This is why we add ”add esp, 4” to clean the
stack at the end of our procedure. It is in order to keep consistency with previous values already present in the
stack. Add operation is justified since the stack is architecturally expand down.

The decompiled version of the code in Table 2.7 follows requirement of the condition originally defined by the
developer. The complexity cost is relatively small since operations on stack are something common. Of course,
this proposal could be optimized for different purposes, but the idea of using assembly code is to preserve the
original instruction written by developers.

6.3 Effective solution deployed by Microsoft

The solution adopted by Microsoft is to consider the construction of a complex expression with the NOT op-
erator in a condition as an error. This one is referenced under the MASM’s error code A2154 which is specific
to a syntax error in control-flow directive. The assembly code using such construction is no more generated. It
means that it is no more possible to exploit the bug in the compiler to silently insert a backdoor in a compiled
application. The error message is directly displayed by MASM when trying to compiling a code using such
construction in conditions, as shown in figure 2.16.

More than correcting the bug in the compiler by Microsoft, a large audit of applications developed with that
compiler should be required. Indeed, a compiler is a software responsible to generate other software. It means
that other source codes have been compiled with it and these ones should be audited in order to find bogus
constructions in conditions, on the first hand. If a software would use a condition using the specific pattern able
to trigger the bug, this one must be updated.

Taking into account that assembly language is used by some firmware builder, drivers developers or just for
tenuous part of critical code, it can be complicated to update these software since some code can potentially not

Page 71 on 619 — Thesis manuscript — Chapter 2

(all e =
loc_4o209D:
nop
nop
or eax, eax ; Test eax to negate it (8 -> 1 | 1 > 8).
jnz short jmp_eax_neg_non_zero ; Set a temporary value to zero.
¥ L]
= =
push 1 ; Set a temporary value to one.
jmp short original condition_test ; jmp_eax_neg_non_zero: ; Set a temporary value to zero.
; Use temporary negated value in original condition.| |push a
(2]
FIEIE]
original_condition_test: ;
cmp [esp+i+var_4], @ ; Use temporary negated value in original condition.
jnz short loc_uB28BY4 ; If the feax is different from zero...
v
] e =]
add esp, 4 ; Remove temporary value after use.
xor eax, eax
_ Yy
=
loc_4020BY: H
add esp, &4 5 Remove temporary value in all cases.
nop ; End of the condition.
jmp short loc_u4828C1

Figure 2.15: Decompiled correction for the proposed solution.

M1crosc (R) Macro Assemble 14.15

LOpYyr] [0 All

Assembling: pres.asm

build

in control-flow
error in control-flow
error in trol-flow

error

> T

error

= e

[¥ ¥ ¥ g |

I=
B B P

T

error

Figure 2.16: MASM updated version is now using error A2154 to prevent such bug to be exploited.

be updatable (lack of internet connection, code written in ROM for embedded devices, small portion of code
used in a math library which is part of a bigger project...). Including the fact that MASM is an old compiler, it
represents a large number of software which have been made with it by a lot of people. Facing the impossibility
to give an exact estimation, it must also be taken into account that the skills needed to write assembly code are
rare. It is also possible to see that projects requiring assembler are often critical projects that need to execute
code with high privileges (less critical or more common tasks can be written in high level languages).

Even if a CVE number has been assigned and a security update pushed, it could be hard to fix everything,
especially if the source code of one software has been developed at former time by a company which has collapsed
since that time. In such a case, a reverse engineering process should be made on compiled code to check that
logic flow for each condition is designed to perform the task for those it has been designed.

Without getting into a conspiracy, it might be interesting to think — just for the pleasure of imagination
— that a small number of highly qualified consultants or freelances may have been aware of this bug in the

Chapter 2 — Thesis manuscript — Page 72 on 619

past. Working on critical projects all over the world for companies that hired them, they could very well have
used this mechanism to trap the software they were delivering. The motivation may reside in various national
interests, espionage or control of technology when it would not be for blatantly criminal motives. Whatever
would be the motivation, if the source code was unclaimed, the crime did not need to be covered up. Otherwise,
the trick allowed to create an illusion in the source code by pretending that the program worked securely even if
it did not. At worst, even if the trick was discovered, the malicious developer could still plead good faith. After
all, the code he had written was logical, consistent with what was expected and a priori flawless. How could
he be expected to know about a bug that was unknown at the time? The perfect crime in itself, the ultimate
backdoor...

7 Conclusion

7.1 Impacts and achievements

As explained in the state of the art, evolution of compiler’s backdoor can be spitted in different periods. Ev-
erything started in 1974 with the rapport from Karger and Schell [102] who worked in the US Air Force. The
idea in the rapport is publicized by Ken Thompson [115] in 1984 but this one does no publish or explain how
to do it in practice. Fuzzing and evaluation of compilers are present since 1970, where Hadford [158] used a
dynamic grammar to generate test data for a PL/I compiler. A complete survey can be found in [131] about
history of the first fuzzing compiler methods. But we can consider as modern fuzzing the method used by
Csmith [126] tool using approach presented in 1998 by McKeeman [129]. The difference is the use of several
compilers to compile one single code in order to compare execution output at runtime. This approach allowed
to find bugs in a larger proportion and potentially exploitable ones for compilation trapping purposes. Finally,
in 2015, Bauer [137] presented an approach reusing and old bug in LLVM to write a source code able to include
a backdoor at runtime. But his paper relies on shaky assumptions to justify the backdoor’s operationality (far-
fetched source code, already fixed vulnerability, backdoor that breaks compatibility with trapped features). It
will finally require our work to present an unknown bug (0-day) exploitable in a real compiler (MASM) and used
to present an effective and operational trapping mechanism. This evolution is summarized in the Figure 2.17
as a timeline.

Bauer's
exploitation

MASM real
exploitation

Krager & Schell
LSAF

Modern fuzzing
on compilers

1974 1984 ~ 2000's 2015 2018

Figure 2.17: Timeline about compiler’s backdoor evolution in history.

Assembler programming may not be the most popular one (even if we still find it in different projects'),
but as already explained many times, it is present in some critical projects, such as firmware. And it should
be recognized that transparency is not one the cardinal virtues in this programming community. This makes
assembly language a potential ideal candidate as the vector of backdoor in different projects of software devel-
opment.

More generally, using a bug in a compiler to introduce a backdoor in a software is a nice and smooth manner
to get access to a targeted system in the stealthiest way. This fits perfectly with the specifications of a backdoor
as defined in section 2.2. Our technique of backdoor follows the four main criteria defined. First, this backdoor
is perfectly stealth since it is not possible to find it from checking the logic flaw from the source code. This type
of backdoor is able to bypass source code auditing. Then, this backdoor is perfectly deniable since we cannot
blame people to not know about an unknown flaw in Microsoft’s compiler. Moreover the logic in the code

Bnttps://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

Page 73 on 619 — Thesis manuscript — Chapter 2

written is perfectly respected. In addition, as we illustrated it, the written source code is perfectly consistent
with the logic expected in an officially correct condition. The persistence of the backdoor is easy to prove since
it made many decades the bug was present in MASM compiler. This backdoor is operational: changing logic
of a program fits with previous requirements written by Thompson [115] or by Thomas and Francillon [35]. In
addition, assembly is usually used for critical code. And that backdoor is secret, at least until we publish our
researches.

From all of these points, our research thus continues the evolution of what has been done previously by
responding to a problem left open and identified in our state of the art in section 2. Of course, we have not
exploited the potential of this backdoor in the wild either. In a way, it has remained in the laboratory, which is
ethically better. In the same philosophy than Bauer [137], our work remains different since it does not require
to use obfuscation to hide the trap, which makes ours perfectly justifiable. There is nothing new in the concepts
used since Ken Thompson [115] in 1984. But our work made it possible for real by exploiting an existing and
operational flaw in the compiler and then compiling a trapped code. Here, we exploited a zero-day vulnerability
in the compiler to do the job.

7.2 Postmortem documentation

From a specific compiled version dedicated to a specific target to a wildly used open-source software, possibilities
are endless. Undetectable for humans, perfectly justifiable for malicious developers, thin and efficient, this type
of backdoor is designed for long term and high efficiency. We can wonder about how to fix the software impacted
by this compiler and how to prevent ourselves from this type of problem.

One may wonder if it is possible to detect problems in source codes used with MASM compiler. Writing
detection automatic test procedure is more complex than it seems. Indeed, this procedure must be calibrated to
record and take care of suspicious signal or undefined states in a condition. Of course, example provided in our
case is for illustration purpose but it could be possible to build many different ones for different purposes. The
NOT operator may be used for malicious purposes or legitimate ones... Indeed, even when detecting suspicious
constructions, it would be necessary to distinguish between those that exploit the bug for malicious purposes
and those that suffer from the bug without knowing it — and thus have an unexpected behavior.

Detect it with a suit of dedicated tests is not easy. But, with no prior knowledge that a backdoor has been
inserted, detection by a specific test procedure can be almost impossible to perform. While the source code
describes what needs to be done by the processor, it does not always reflect exactly what the developer had in
mind at the time. Note that, even if tests would find something tendentious, a real source code audit would be
required to fix the problem. Finally, it will remain that it will be difficult to say if a dangerous line in a source
code was a bug or a malicious backdoor inserted on purpose...

What is explained above presupposes that one still has access to the project’s source code. What can we
do when the source code is not available? Reverse engineering is the only solution to understand what has
been compiled, but it is not a mass sport and it requires specific skills far from being earned by each developer.
Note that such operation supposes that developers suspect potential bugs could be present in the software.
Where such bugs come from compiler misbehavior and not from their own source code. A state of mind which
is far from being common if we are not aware it could be possible. Finally, to help the researches about po-
tentially impacted software, one should be able to know that the software has been written in assembly or
that, in our case, MASM compiler has been used to craft it. In fact, if one does not have the source code or
knowledge of the compiler used to compile the software, a complete reverse-engineering audit must be carried
out on each of the program’s condition-instructions in order to check that the logic of the program is always
respected. Impossible in practice since it amounts to looking for all potential bugs in all software. It is perhaps
for this reason that Microsoft did not seek to specifically alert about the problem — it might be lost in advance...

From an operation point of view, such a backdoor is almost perfect. Especially with the bug provided here,
attacker has the ability to insert new possibilities in any critical condition targeted without modifying original
behavior of the condition. Bonus, attacker can stop diffusion of the attack by correcting the exploited bug in the

Chapter 2 — Thesis manuscript — Page 74 on 619

compiler. It would remove the trap for new compiled version without changing targeted software’s source code.
Another bonus lies in the difficulty to update critical pieces of code. Most of the time, it concerns firmware
and other close to hardware or kernel components. Last attacks such as Spectre [159] and Meltdown [160)]
demonstrate how hard it could be to update firmware in critical pieces of software. Not using such extreme
examples, thinking about pieces of software in firmware, written in assembly, sometime years ago, by companies
which could not exist any more or were original authors are now out of business not to say dead, could make
impact of such backdoor very critical.

7.3 Future of this work

Of course, the goal of this work was to report this vulnerabilities so that it could be patched as soon as possible.
Also, it aims to explain how to find such a bug, to make it visible to any developer and to alert about how
important the damage could be if it has been exploited by malicious developers. More important, it underlines
the necessity to not believe blindly that open-source projects are secure since the source code can be checked.
Even if they are correctly audited by experts, compilers must be taken into account. Compiler is a milestone in
the building procedure of an application and it must be not underestimated as a potential source of vulnerability.
Using open-source compilers such as LLVM and others would be a better solution in the future but it would
not be sufficient.

Finally, the main lesson learned is to do the job all by yourself and not by any third parties. The real problem
is the disloyal developer. Whether he or she has access to secret high technology to carry out his nefarious action
or not. Mastering the technology is the key point of security. In software development as much as anywhere else.

And when we cannot do it on our own, we should never forget that trust does not exclude control. Control
the behavior of the program via automatic or manual tests is a true minimal requirement. It is necessary and
belonging to the most basic public health. Critical part of programs should be stressed to check everything is
correct, not only in perfectly and trivially defined situations but also in less defined ones. Ideally developed by
people of great confidence or where the tests could be carried out by independent parties.

Perhaps one of the greatest source of pride that this work has given us, it is the feedback we received from
it. Aside from the sense of vanity associated with any recognition of our work by others, the fact that we
have presented our work at Zero Night [161] and at COcOn [162] conferences may have been inspired by others.
Menkhus Mark from Hewlett Packard Enterprise PSRT informed us at the beginning of 2019 that CVE-2019-
6291'7 referenced a similar vulnerability on NASM compiler (but consequences resulted in the crash of the
compiler). It is finally encouraging to see that the research is focused on checking for bugs similar to the one
we helped to discover.

17https ://nvd.nist.gov/vuln/detail/CVE-2019-6291

https://nvd.nist.gov/vuln/detail/CVE-2019-6291

Page 75 on 619 — Thesis manuscript — Chapter 2

7.4 Research contributions

Contribution 1: Protection at development level: backdoor in compilers

I State-of-the-art about the different backdoors.

#3 We have made a survey of the different definitions of backdoor to propose a generic one.

#£5 We have made a technical and exhaustive state of the art of the different backdoor methods,
especially for compilers.

£3 The state-of-the-art showed that if there had already been works on the subject, none was
able to release a credible version of the attack.

#3 The initial hypotheses are often strong (modified compiler, exploitation of an existing and
already corrected bug, writing strange source code to justify even stranger constructions).

#5 The fact that there was no credible attack contributed to consider this type of attack as

negligible (although the consequences are unanimously recognized as potentially dramatic).

5" We found a bug in the MASM compiler.

5 Tt turns out that we found a way to improve it into an exploitable vulnerability.
#3 This one has been recorded as CVE-2018-8232 with a responsible disclosure by us.
#5 The vulnerability is easy to trigger, discreet, stealth and already present for decades.

IS” We proposed a backdoor insertion method with a well-known compiler, using an unknown vulner-
ability, to insert backdoors in a stealthy way.

#3 Our method is very difficult to detect when reading the source code (unless one knows what
the backdoor looks like).

#£5 We have created a backdoor in a source code by fulfilling the requirements set by previous
work [115].

IS" Qur research has resulted in many other achievements.
#£5 Microsoft has fixed the bug in the compiler so that it is no longer possible to create such
backdoor.
#£5 This may have helped to raise awareness of the risk carried by this type of vulnerability.

#5 Al software compiled with MASM can carry this type of vulnerability and it is very compli-
cated to correct it today.

£5 Tt may have given ideas to other researchers who have found similar results with different
compilers since our publication (CVE-2019-6291).

Chapter 2 — Thesis manuscript — Page 76 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3

Protection of analyzed executable files:
malware

1 Introduction

In the defense of systems against offensive threats, there is of course the analysis of malware. That way, the
analysis of malware is part of the actions specific to the defense of computer systems. This analysis can be
carried out manually by a human operator (an analyst in an antivirus company, for instance) or automatically
via a set of dedicated software. In both cases, it appears that the objective is to document the actions of a
given program in order to be able to classify it as malicious or benign code [163]. Such a classification is hard
task [164, 165].

Designing countermeasure or technologies that can withstand a high level of sophistication would be possible
merely by understanding the precise inner workings of such malware. Malware analysis is the way to achieve this
understanding [166]. Initially, with the help of disassemblers, decompilers, etc. analysts inspected the malware’s
binary and code to observe its functionality. This approach, which is also referred to as static analysis, became
far more arduous and complex with the rise, the evolution of code obfuscation tactics [167, , ,] and
other evasion techniques targeting static analysis e.g. opaque constants [171], packers [172], etc. As a resolution,
a promising approach that was adopted was dynamic analysis in which the basis of analysis and detection is
what the analyzed file does (behavior) rather than what the file is (binary and signature) [173]. Put differently,
in dynamic analysis, an instance of the suspected program is run and its behavior is inspected in run-time.
This approach would prevent the obstacles posed by the static analysis evasion tactics. To thwart these efforts,
however, malware authors turned to a new category of evasion tactics that targeted dynamic analysis.

For obvious reasons, malware developers do not want to see their code to be identified as malicious. Not
only this prevents it from being executed, but it also reduces its spread and the benefits it brings to its creator
(money, stolen data, undesired and harmful effects on the infected systems, and so on). This is to avoid detec-
tion and thus extend the benefits that malware authors seek to hide the real purpose of their software. While
the latter ought to privilege design approaches that avoid detection patterns, it may be more cost-effective to
directly attack the tools used to detect malware.

It goes without saying that the protection of an information system also lies in its ability to identify a po-
tential threat as malicious. Being able to neutralize the sensors of defense systems represents a blank check for
malicious programs. Thus, knowledge of the various techniques for bypassing and neutralizing analysis sensors
is an approach to better understand the malicious threat. In addition to the fact that seeking to neutralize or
evade detection constitutes in some cases a malware signature, it also allows us to design analysis tools to be
effective and resilient against such threats.

Another point is relevant from a research point of view. This is the ability to imagine new techniques capable
of hijacking the security of analysis tools. Why such an approach? Apart from the fact that achieving a state

7

Chapter 3 — Thesis manuscript — Page 78 on 619

of the art makes it possible to do so (or at least, it makes easier), it makes possible to progress on two axes.
On the one hand, it is possible to anticipate a future trend that does not yet exist and which could be used
by malware authors. It is by anticipating threats and adopting the approach of malware writers that we can
force the reduction of their capacities. The result is beneficial on two levels: the first deprives them of potential
means of action while the second corrects and improves the analysis tools so that they no longer fall into the
identified traps.

On the other hand, our research may discover a mechanism that is new to us but not necessarily new to
the attackers. More directly, a mechanism used by malicious programs can be discovered independently of any
malware analysis. This feature offers an even wider range of possibilities. On the one hand, because programs
using this new type of mechanism can potentially be classified as malicious without any prior suspicion that
they would have been known as malicious. There is of course the possibility of false-positives with the detection
of mechanisms used fortuitously and without harmful purposes. But considering the specificity of the analysis
tools, this is a relatively low probability. And even if, such detection procedure sought to lead to an in-depth
analysis. On the other hand, security software that would have been abused by this mechanism can be corrected.
Thus, they are no longer victims and they regain the ability to detect, once again, the potentially malicious
behavior of the objects they analyze.

This is this offensive approach that we are illustrating in this chapter. We are first illustrating a state-of-
the-art about malware dynamic analysis evasion techniques in section 2. After a few preliminaries to set the
approach (section 2.1), it is divided into two parts. One about manual dynamic analysis evasion (section 2.2)
and the second about automated dynamic analysis evasion (section 2.3). Put differently, section 2.2 will deal
with the different techniques to detect or escape a debugger when section 2.3 will present the different tactics
to do the same in a virtualized environment. Once the state-of-the-art has been established in these two ar-
eas, a new contribution should be made in each of them. On the one hand, we will present in section 3 a new
operational detection method for Microsoft’s Windbg debugger by exploiting an interpretation bug in its decom-
pilation engine. On the other hand, we will present in section 4 our latest work on a method able to detect in a
generic way several types of analysis environment (Dynamic Binary Instrumentation (DBI), debugger and VM).

We hasten to note that all of this work was done in collaboration with other researchers on different pub-
lications. Significant portions of the material written in this chapter are taken from our published articles
(with some simplifications, adaptations and improvements whenever necessary). Research about this subject —
when it is not confidential — is neither a solitary exercise nor an exercise limited by country’s borders. In this
sense, the state of the art is taken from an article we published in the magazine ACM Computing Surveys [174]
with Afianian Amir, Niksefat Salman and Sadeghiyan Babak from APA Research Center, Amirkabir University
of Technology in Iran. The two other sections bearing our contribution to the researches were realized with
Plumerault Francgois [175, |, master degrees student in our research laboratory in France. On a personal
level, it is an unspeakable pride to have had the opportunity to evolve in an international context and with
people of great quality, both in scientific and human.

Page 79 on 619 — Thesis manuscript — Chapter 3

2 State of the art

Resume 9:

BZ” Definition and classification for a taxonomy about evasion techniques from analysis environments.
#£5 We have written a state-of-the-art about manual evasion techniques in the context of debug-
gers.

#5 We have written a state-of-the-art about dynamic evasion techniques in the context of sand-
boxes (virtual machine).

£5 Bach time, we make a distinction between detection dependent and independent evasion tech-
niques.

#£5 We propose a brief survey on countering malware evasion.

2.1 Preliminaries

Resume 10:

B5" In this subsection, we expose many definitions of vocabulary words used in current chapter.

In this section, we define several keywords that we extensively use throughout the paper. Some terms specif-
ically need explanation since the passage of time has overloaded or altered their pervasive meaning. Moreover,
it is not uncommon to find in literature various terms that cover the same reality. The passage of time, not to
say the different trends, are sometimes responsible for this achievement.

Sandbox

Traditionally, sandboxr was developed to contain unintended effects of an unknown software [177]. Hence, the
term sandbox meant an isolated or highly controlled environment used to test unverified programs. Due to
similarities in nature, virtualized machines and emulated environments are often seen to be called sandbox.
But, in this chpater, we use the term sandbox to refer to the contained and isolated environments that analyze
a given program automatically, without the involvement of a human. The dividing line for us, in this paper,
given the trend of the industry, is the autonomous nature of the system. For instance, for a modified virtualized
machine such as Ether [178], we consider the term debugger rather than sandbox.

Generally speaking, the sandbox should be seen as a generic set of technical tools to analyze a running pro-
cess. These technical tools are usually composed of emulators and virtual machines, but not only. One might
thing about real machines — connected on a distinct network partition (e.g. ”air-gap”) — which are resetting af-
ter each analysis. Whatever is the sandbox’s shape, the main idea being automation and the non-intervention of
a human in the loop. Some debuggers can be automated (via a scripting system) to allow an automatic analysis
(for example with the Mathieu Tarral’s tools [179]). Nevertheless, debuggers are still tools where human ac-
tion is privileged, that is why they partially fit into the sandbox framework. Figure 3.1 illustrates these remarks.

Evasion and Transparency

In literature, evasion constitutes a series of techniques employed by malware in order to remain stealth, avoid
detection, or hinder efforts for analysis. For instance, a major evasion tactic as we will discuss is fingerprinting
[180]. With fingerprinting, the malware tries to detect its environment and to verify if it is residing in a pro-
duction system or an analysis system.

In the same level, one major strategy to counter the evasions is to hide the clues that might expose the
analysis system. A system is more transparent if it exposes fewer clues to malware [181].

Chapter 3 — Thesis manuscript — Page 80 on 619

Virtual Machine
(virtualBox, VMWare, Hyper-V,
Xen, ..}

Emulated environments
(Unicorn, Bochs, QEMU)

(HyperDBG, Pulse DBG, Windbg,
GDB, Ether, ..}

Figure 3.1: Representation of the sandbox concept with different technical tools.

Manual vs Automated

Manual and automated analysis are two major terms which form the basis of our classifications. The manual
analysis is when the analysis procedure is performed by an human expert with he help of dedicated tools (for
instance with a debugger). The automated analysis, on the other hand, is the procedure that is performed
automatically by a machine or software, also known as sandbox.

Detection vs Analysis

Previously, there was no need for defining these two terms. Detection would simply refer to the process of
discerning if a given file is malicious or not while analysis would refer to the process of understanding how the
given malware work. Today, however, this dividing line is blurry. The reason is that the role of automated
analysis tools such as sandboxes is now extended. In addition to reporting on malware behavior, sandboxes are
now playing their role as the core of automated detection mechanisms [181]. In this chapter, we follow similar
concepts when using the word of analysis. For manual analysis it would mean understanding the malware
behavior [182] and for the automated one, additionally, it can mean detection.

Static vs Dynamic

There are two major types of analysis: static and dynamic. Static analysis is the process of analyzing the code
or binary without executing it. Dynamic analysis is the process of studying the behavior of the malware (API,
system calls, file touched, network activity, etc.) at the run-time. Both types of analysis can be performed
either manually or automatically.

In this chapter, our focus is on dynamic analysis and how malware tries to prevent or evade such analysis.
Why such a choice? Quite simply because static analysis only allows to process a small number of samples (but
with a certain efficiency). It is difficult to give an accurate (if not credible) estimate of the number of malware
(new or variants of old ones) that is created every day. It is difficult because of the lack of real capacity to collect
such information. Nevertheless, some antivirus editors agree to publish some statistics on the subject, based on
their own detection rate of submitted samples per day [183,]. Statistics show an increase in submissions,
on the one hand due to the production of malware authors, but also due to the always increasing capacities of
samples collection (and the multiplication of devices protected by antivirus tools) from antivirus vendors.

As a result, antivirus publishers obviously do not have the human resources to handle every program sub-
mitted to their services. That is why they shift the analysis to automated tools. And this is usually the first
line for analysis and detection from antivirus vendors. If a malicious program can quickly and easily escape

Page 81 on 619 — Thesis manuscript — Chapter 3

this first detection, the benefit is immediate because it avoids further analysis (which could actually expose
it). Of course, it would be possible to automate the static analyse procedures. But obfuscation techniques
are sophisticated enough to compromise many of these analyses. To bypass obfuscation, we could increase the
sophistication of analysis tools and this would represent a certain calculation cost per program to be analyzed...
Moreover, considering the large number of malware to be analyzed per day, it is not possible to spend "too
much” computing time on each program received. Therefore, the simplest (and equally effective) solution is to
run the program in a controlled analysis environment. This is where dynamic analysis comes from. Of course,
dynamic analysis cannot see everything and there are different levels of analysis. From the most generic and
automated tools (sandbox) to tools used by humans (debuggers).

This is the main reason why we choose to focus on dynamic analysis. Since it is usually the first analysis
produced by antivirus vendors, this is therefore the analysis that should be bypassed as quickly as possible for
malware, at all costs.

Category, Tactic, and Technique

Throughout this paper, we use the terms category, tactic, and technique that are the basis of our classification.
Category of evasion is our high-level classification. Each category has the goal of evasion with a specific attitude
for achieving it. This attitude is highly correlated with the efficacy of the evasion and is pursued by the tactics
under each category. Tactics, in other words, are the specific maneuvers or approach for evasion with the
specified attitude of its parent category. Finally, techniques are the various practical ways of implementing
those tactics.

2.2 Manual Dynamic Analysis Evasion

2.2.1 Evaluation to manual dynamic analysis evasion techniques

Key Point 3.1:

B5" We call ”Manual Dynamic Analysis” the set of analysis tools that require manual control.

#5 More directly, it corresponds to debuggers.

As cited in the introduction, due to the employment of code obfuscation, packers, etc. static analysis
of malware has become a daunting task. To prevent issues and limitations of this approach, analysts opt for
dynamic analysis in which malware’s behavior is inspected at the run-time and often with the help of debuggers.
We view this approach which is aided by debuggers, under the term "manual dynamic analysis”. This way of
examination has two major benefits:

e It relieves us from the impediments inflicted by packers, polymorphism, etc.

e It explores the activities that manifest themselves only in run-time [185] such as the interaction of the
program with the OS [173].

The corresponding evasion tactics to this approach involves the set of employed techniques within malware
code with the goal of inhibiting, distracting or evading the analysis process. These measures include approaches
such as detecting the presence of analysis tools on the system (e.g. Wireshark, TCPDump, etc.) or detecting
virtual-machines as a sign of analysis environment. But, the majority of manual analysis evasion techniques are
targeted toward debuggers which are the primary tools of manual dynamic analysis.

Chen et al. ran a study on 6,222 malware samples to assess changes in malware behavior in the presence of
virtualization or an environment with debuggers attached. They discovered in presence of a debugger (not in
a virtualized environment) around 40% of malware samples exhibited less malicious behavior [186]. The same
study revealed that when malware are executed in a virtualized environment, merely 2% of the samples exhibit
malicious behavior. This shows that even though there are similar tactics to evade both the automated and
manual dynamic analysis (fingerprinting), the techniques are different. And sheer detection of virtualization
or emulated environment does not suffice to evade manual analysis since more and more production systems

Chapter 3 — Thesis manuscript — Page 82 on 619

are running on virtualized machines. Our coverage in this sections includes the traditional (and still relevant)
anti-debugging techniques to the more advanced, recent Al-powered techniques.

Technically, anti-debugging references one or more techniques able to prevent manual dynamic analysis (de-
bugging) or reverse-engineering. It must be noted that the presence of such techniques in a program does not
necessarily mean we are facing a malicious behavior. Indeed, historically, anti-debugging techniques — and
more generally any obfuscation ones — were legitimate practices conducted by developers to protect intellectual
property their own software. Malware authors just use these techniques for other purposes...

For the sake of brevity, we will focus our survey on the most cited manual dynamic analysis evasion (anti-
debugging) tactics and corresponding techniques [173, , , , , , , , , ,] that
are more relevant to the context of malware. For the sake of consistency, we propose to evaluate the different
methods presented according to five detailed criteria!:

e Complexity: The difficulty of incorporating and implementing the technique within malware code.
e Resistance: Resistance pertains to the difficulty level of counteracting the evasion technique.

e Pervasiveness: Even if it is hard to evaluate the popularity of each tactic, we try to provide a fair view
of this metric based on other works [187, | in addition to our own observations and experience in the
field.

e Efficacy-Level: Due to the diversity of debuggers’ nature, we appoint 1 to refer to user-level debuggers, 2
to refer to kernel-level debuggers, 3 to refer to virtualization-based/emulation-based debuggers, and 4 to
refer to bare-metal debuggers.

e Countermeasure: We briefly note how the anti-debugging technique could be circumvented.

2.2.2 A Briefing on Debuggers

Since we are dealing with anti-debugging techniques, it makes sense to have a brief introduction on debuggers.
Sikorski states, "A debugger is a piece of software or hardware used to test or examine the execution of an-
other program” [182]. Technically speaking, the debugger has not the ability to execute itself instruction per
instruction a given program. This is the aim of an emulator (such as Bochs [195] or Unicorn [196]). Instead of,
among the core functionality of debuggers [197], there are several features such as stepping through the code
one instruction at a time, pausing or halting it on desired points, examining the variables, etc.

To provide each of the mentioned functionality, debuggers rely on different tactics and each tactic is often
aided with specific hardware or software provisions that inevitably result in subtle changes on the system. For
instance, to provide the pausing capability, one of the debuggers’ tactics is to set breakpoints in the debugged
process. Using breakpoints is further assisted with either special hardware [198] (e.g. DR Registers of CPU
and specific opcodes such as breakpoint instruction [199]) or software with specific API to access/alter them
[200,]). Single stepping, as another instance, is made possible by triggering exceptions in the code which is
aided by the trap flag [202]. The trap flag is inserted in the context of one of more debugged thread.

Based on the needed functionality, debuggers are implemented following different approaches [203]. Generally
speaking, we can make the distinction between debuggers which run in the context of the debugged target (user-
mode or kernel-mode context) or in a Virtualization context. Among the most popular debuggers, we can cite:

e User-mode and Kernel-mode debuggers: OllyICE, OllyDbg [204], LLVM [205], Radar2 [206], GDB [207],
Visual studio debugger [208], WinDbg [209] ;
e Virtualization-based debuggers: Ether [210], BOCHS, [211], HyperDBG [212], Winbagility [213], VirtICE

[214] and more recently, the bare-metal debuggers such as MALT [193].

IThe description given is intended to be brief. More details are given in the published article [174].

Page 83 on 619 — Thesis manuscript — Chapter 3

Each of the designs, yield different levels of transparency. Kernel-level debuggers are more transparent than
User-level debugger and provide more detailed information as they operate in ring 0 (same level of privilege as
the operating system). Virtualization/emulation-based debuggers have an even higher level of privilege than
kernel debuggers since the operating system in this setting is running atop the simulated (virtualized/emulated)
hardware [210),] and consequently are more transparent to malware. Finally, the bare-metal design such as
MALT, which often rely on System Management Mode (SMM) offers the highest level of transparency against
which many of the traditional anti-debugging techniques lose efficacy.

2.2.3 Proposed Anti-Debugging Classification

Key Point 3.2:

B2 There are two anti-debugging strategies for malware to perform automated analysis evasion:
detection-dependent and detection-independent.

#5 Detection-dependent: malware tries to detect a specific environment by exploiting a specificity
of this one.

#£5 Detection-independent: malware tries to detect any environment analysis without targeting
any specificity.

J

We propose two major categories, as malware’s initial anti-debugging strategies which are similar to the
categories of automated analysis evasion: detection-dependent and detection-independent. In the context of
detection-dependent, a malware probes for detecting its environment in order to escape analysis. Put differently,
a successful evasion is subjected to detecting or finding signs of an analysis environment. This is possible since
debuggers were originally designed to debug legitimate software [185], who therefore had no reason to seek to
detect them. This is why there has been no stealthy countermeasure provisioned by them. In addition, we
often have to instrument the system with necessary tools which obviously results in a wide spectrum of traces
in different levels of the system [186,]. Looking for the presence of a debugger by analyzing the system for
such traces is one major strategy that malware utilizes to detect an analysis environment.

Unlike the previous category which tired to detect or infer debugger’s presence or analysis environment, tac-
tics of this category do not rely on the detection of the analysis system. They do not try to detect whether the
system on which they are has a debugger attached to it or not. The malware operates the same way regardless
of their target system. We will have a survey on the tactics of this category in the following.

For the sake of brevity, in the context of a detection-dependent strategy for evasion, malware incorporates
techniques to explicitly detect its execution environment. A different strategy is detection-independent in which
the malware behaves the same, regardless of its execution environment, but consequences are to escape from
the analysis environment. In other words, to evade analysis, malware does not have to detect the execution
environment.

We elaborate a classification of each anti-debugging tactic based on fact that the tactic used is detection
dependent or independent. It is certainly an arbitrary classification, but it allows us to define the goals behind
the techniques used. If we divide our analysis between manual and automatic dynamic analysis tools, it is
necessary to subdivide within these tools two approaches (dependent or independent detection) as given below
in the different tactics.

2.2.4 Detection-Dependent Evasion

2.2.4.1 Tactic 1. Fingerprinting

Fingerprinting is the malware’s endeavor to spot, find, or detect signs that attest the presence of an analysis
environment or debuggers. Fingerprinting is the most common evasion tactic regarding both manual and au-
tomated analysis. However, the techniques are different. In contrast with the automated analysis evasion, the
majority of fingerprinting techniques aimed at evading manual analysis involves fingerprinting the environment

Chapter 3 — Thesis manuscript — Page 84 on 619

to detect the presence of debuggers [186]. Major fingerprinting techniques used by malware include the following:

e Analyzing Process Environment Block (PEB). (PEB) is a data structure that exists per process in the
system and contains data about that process [215,]. Different sections of PEB contain information
that can be probed by malware to detect whether a debugger is present. The most obvious one is a
field inside PEB named BeingDebugged which can be read directly or as Microsoft recommends — and
malware like Kronos [217] or Satan RaaS [218] implement — through the specific APIs that read this
field, i.e. IsDebuggerPresent [219] or CheckRemoteDebuggerPresent [220] to check if the debugger resides
in a separate and parallel process. Implementation of this technique is of trivial complexity which can be
countered through alteration of BeingDebugged bit [221] or API hook [188]. Collectively, anti-debugging
tactics relying on PEB, constitute the majority of anti-debugging techniques observed in malware [137].

e Search for Breakpoints. To halt the execution, debuggers set breakpoints. This can be accomplished
through hardware or software techniques. In hardware breakpoints, the breakpoint address, for instance,
can be saved in CPU DR registers. In software breakpoints, the debugger writes the special opcode 0xCC
(INT 3 instruction) into the process which is specifically designated for setting breakpoints. Consequently,
the malware, if spots signs of these breakpoints, presumes the presence of a debugger. This can be ac-
complished through a self-scan or integrity check, looking for 0xCC' value or using GetThreadContext [222]
to check CPU register [190]. The latter technique has been employed by malware such as CIH [223] or
MyDoom [224]. This technique is the second most observed anti-debugging technique in malware’s arsenal
[187] and it is simple to implement (less than 10 lines of assembly code often suffices). Countering this
category of tactics, however, is not trivial. In the case of software breakpoints, for instance, the debugger
has to keep and feed a copy of the original byte that was replaced by 0zCC opcode [221]. Another solution
is to update the output of GetThreadContext function whenever this one is called. In the output structure
returned, it is possible to edit the value of the register directly via the debugger, that way avoiding any
detection.

e Probing For System Artifacts. From installation to configuration and execution, debuggers leave traces
behind in different levels of the OS, e.g. in the file system, registry, process name, etc. Hence, malware
can simply look for these traces. FindWindow [225] function or any technique enumerating all processes
running in the current session [226] are a couple of APIs that shendhss [227] exploited to detect debuggers.
The malware, for instance, can give the name of debuggers as the parameter to FindWindow to verify if
this process is present in the system or not [191, 228].

Most often, simple anti-debugging techniques are defeated with trivial complexity. The countermeasure
to this category of tactic is randomizing the names or altering the results of the aforementioned query
through simple API hooks. Even though attributed to one of the anti-debugging techniques in literature,
we have rarely observed it in the wild.

A similar technique to note here is called parent check. Ordinarily, applications are executed either through
double clicking of an icon, or execution from command line, the parent process ID of which is retrievable
accordingly. It would be a pronounced sign of debugger if the examined parent process name belongs
to a debugger or is not equivalent to the process name of explorer.exe [190] (or command line process).
One straightforward technique is using CreateToolhelp32Snapshot [229] and checking if the parent process
name matches the name of a known debugger [188]. A malware such as [227] uses such a technique [187].
Countering this technique would be skipping the relevant APIs [194]. Our observations demonstrate few
utilization of this technique [187]. Another technique for fingerprinting for system artifacts is to use the
NtQuerySystemInformation [230] function. Stored in ntdll.dll, NtQuerySystemInformation is a function that
accepts a parameter which is the class of information to query [190]. Defeating this technique without
using hook ntdll (which could lead to stability issues) requires to manage it at kernel level. For instance,
vti-rescan [231], Wdf01000.sys [232], and Inkasso trojaner [233] are some examples that leverage this
technique.

Page 85 on 619 — Thesis manuscript — Chapter 3

e Timing-Based Detection. Timing-based detection is among the most efficacious fingerprinting techniques
for inferring debugger’s presence. Adroit employment of this technique reliably exposes the presence of a
debugger and circumventing them is an arduous task.

The logic behind this timing-based detection follows malware authors’ presumption that a particular
function or instruction set, requires merely a minuscule amount of time. Thus, if a predefined threshold
is surpassed, malware would infer the presence of a debugger or analysis environment. Timing-based

detection can be carried out either locally with the aid of local APIs (GetTickCount [234], QueryPerfor-
manceCounter [235], etc. [236]) or CPU rdtsc (read time stamp counter) instruction. Note that it can
be performed by inquiring an external resource through the network [237] to evaluate the timing. Local

timing is simple to employ and difficult to circumvent. Countering timing-based detection conducted
with the aid of external resource (using NTP or tunneled NTP), however, is still an open problem [193].
W32/HIV [238], W32/MyDoom [224], W82/Ratos [239] are infamous malware that are known to have
exploited the timing discrepancies.

2.2.4.2 Tactic 2. Traps

Not to be mistaken with the trap flags, we define this category of tactics as "traps”. Following this tac-
tic, the malware provisions codes that when traversed or stepped through by a debugger, production of specific
information or lack thereof would help the malware to infer the presence of a debugger. These inferences mostly
rely on exploiting the logic of the system (e.g. SEH Exception handling [240]). Many techniques fit this category
and we elaborate a couple of them here.

One technique used by malware to fool a debugger in order to disclose cues of its presence is using specific
instructions and exploiting the logic of how these instructions are handled. The handling is performed through
a Structured Exception Handling (SEH?). For instance, Max++ malware [242] embeds ”int 2Dh” instruction
within its code. According to exception handling documentation [240, |, when this instruction is executed,
in a normal situation i.e. absence of debugger, an exception is raised and malware can handle it via a try-catch
structure (which defines a structured exception handler). However, if a debugger is attached, this exception will
be transferred to the debugger first rather than the malware; the absence of expected exception is the logic that
the malware entertains to deduce the presence of a debugger. Malware may employ other techniques to lay their
traps such as embedding specific instruction prefixes [191], or other instructions such as interrupt 0x41 [190].
These techniques are of low complexity and can be implemented with less than 20 lines of code (in assembly).
One way of countering these traps requires debuggers to skip these instructions ([243] in the case of Windbg).
According to our survey, utilizing traps is a fairly common approach [187].

2.2.4.3 Tactic 3. Debugger Specific

Debugger specific evasion exploits vulnerabilities that are exclusive to a specific debugger. These vulner-
abilities are difficult to discover, but simple to put into action. A famous instance pertains to OllyDBG [192].
Regular versions of this debugger have a format string bug which can be exploited to cause it to crash by pass-
ing an improper parameter to OutPutDebugString function [244]. Another pervasive-at-the-time technique was
related to SoftICE debugger which was susceptible to multiple DoS attacks because of two vulnerable functions
[245]. Malware like [246] that exploited these vulnerabilities would cause the bluescreen of death. SoftICE is no
longer supported and the dll file that caused the vulnerability in OllyDBG is now fixed. But the idea still re-
mains, if a vulnerability within a specific debugger is discovered, exploiting it would be a potent anti-debugging
technique.

2.2.4.4 Tactic 4. Targeted

The last tactic of the detection-dependent category is targeted evasion. Through this tactic, the malware
ciphers its malicious payload with a specific cipher key. This cipher key, however, is chosen to be an attribute
or variable that could be found only on its target system. This key could be the serial number of a component

20ne can refer to [240, 241] for more information about exception handling.

Chapter 3 — Thesis manuscript — Page 86 on 619

in the target system, specific environment setting, etc. The targeted tactic is considered as one of the most
advanced analysis evasion tactics and it is effective against all kinds of debuggers from user mode to bare-metal.
Countering the targeted tactic inherently is an arduous task and we will discuss why as we proceed. Following
are two techniques for using the targeted tactic.

o Environment Keying. With this technique, the malware author encrypts the payload with a key that is
possible to derive merely from the target environment. This could be a specific string in the registry or the
serial number of a specific device. Gauss [247] and Ebowla (a framework) [248] are instances that use this
technique to prevent their payloads from being analyzed. An obvious way to countering this technique is
brute-forcing the payload to come up with the cipher key. And depending on the cryptographic algorithm
and key complexity used, it might not be feasible. Another glimpse of hope for combating this technique
is brought by path exploration techniques such as [249, , ,]. But these techniques have their
own limits and may not be effective all the time. In fact, they lose their efficacy when facing the next
generation of Al-powered targeted technique.

o AI-Powered Keying. Attacks on Deep Neural Networks (DNN) are on the rise, so are cases of abusing
them [253]. A recent instance relevant to this section involves IBM researchers who came up with a proof
of concept about how malware authors can benefit from AT to craft extremely evasive malware [254]. They
developed DeepLocker [2541] which ciphers its payload with a cipher key. The crucial difference, though, is
that DeepLocker uses Al for the "trigger condition”. Using the neural network, DeepLocker produces the
key needed to decipher the payload. This technique leverages the black-box nature of DNN to transform
a simple if this, then that condition into a convolutional network. And due to the enormous complexity
of neural networks, it becomes virtually impossible to exhaustively enumerate all possible pathways and
conditions [255].

2.2.5 Detection-Independent Evasion

2.2.5.1 Tactic 1. Control Flow Manipulation

Through this tactic, malware exploits the implicit flow control mechanism conducted by Window operat-
ing system. To implement these techniques, malware authors often rely on callbacks, enumeration functions,
thread local storage (TLS), etc. [190,]. There are several noteworthy techniques here and each deserves a
brief introduction.

e Thread-hiding: A simple and effective technique is thread-hiding which if used, prevents debugging events
from reaching debugger. Microsoft has provisioned special APIs to this end [256, 257]. This technique uses
NtSetInformationThread function to set the field Hide ThreadFromDebugger of ETHREAD kernel structure
[192]. This is a powerful technique, simple to implement and which can be countered by hooking the
involving functions. LockScreen [257] is an instance known to have utilized this technique.

e Suspending Threads: A more aggressive way malware might step into is striving to halt the process of
the debugger to continue its own execution with little trouble. This technique can be effective against
only user-mode debuggers and it can be carried out by leveraging SuspendThread [258] (internally calling
NtSuspendThread from ntdll) [187]. Suspending threads is one of the anti-debugging techniques that Kro-
nos banking malware used in its arsenal [217].

o Multi-threading: Another technique to bypass debuggers and to continue the execution is multi-threading.
One way to implement this tactic is utilizing CreateThread function [259]. A malware that is packed often
spawns a separate thread within their process to perform the decryption routines [192]. However, there
are instances where malware executes a part of its malicious code through a different thread outside the
debugger. McRat [260] and Verteznet [261] have incorporated such a technique. Countering this technique
is tricky. One way is to set breakpoints at every entry point [262,] of executed function by a thread.

Page 87 on 619 — Thesis manuscript — Chapter 3

o Self-debugging: Self-debugging is an interesting technique which prevents the debugger from successfully
attaching to the malware [263]. By default, each process can be attached to merely one debugger. Mal-
ware such as ZeroAccess [264] exploits this by running a copy of itself and this one attaches to it as a
debugger. Hence preventing another debugger to own it. There are several ways to implement this tactic,
for instance by leveraging DbgUiDebugActiveProcess or NtDebugActiveProcess undocumented functions.

Collectively, control-flow manipulation techniques are not much common among the samples we have ob-
served.

2.2.5.2 Tactic 2. Lockout evasion

In Lockout tactic, malware continues its execution by impeding the debugger operation without having to
look for its presence. One way is to opt for Blocklnput function [265] as in the case of Satan RaaS [218], through
which malware prevents mouse and keyboard inputs until its conditions are satisfied. Other techniques involve
exploiting a feature in Windows NT-based platforms that allow the existence of multiple desktops. Malware
such as LockScreen [257] with the help of CreateDesktop [266] followed by SwitchDesktop [267] can select a
different active desktop and continue its working unbeknownst to the debugger [245]. This tactic is mostly
effective against traditional debuggers.

2.2.5.3 Tactic 3. Fileless malware

Fileless malware, non-malware, and occasionally called Advanced Volatile Threats (AVT), are among the
latest trend in the evolution of malware [268, 269]. In contrast to all prior existence of malware, fileless malware

requires no file to operate and they purely reside in memory and take advantage of existing system tools e.g.
PowerShell [270].

The purpose of such attacks is to make the forensics much harder. Generally speaking, analyzing malware is
about to analyze its executable file. And in fileless malware, there is no executable to begin with. In some cases
such as SamSam [271], the only way to just retrieve a sample for analysis would be to catch the attack taking
place live. These attacks inherently are not easy to conduct; but, with the help of exploit-kits, those ones are
more readily available. A 2018 report by McAfee shows a 432 % increase of fileless malware in 2017 [272] and
projected to constitute 35 % of attacks in 2018 [273].

Fileless tactic complicates the analysis by a debugger because there is no executable file to launch. Never-
theless, the analysis with a debugger remains possible, under certain conditions. On the one hand, it must be
understood that to see malicious code to be run, a thread must execute it, usually within a process. If it is
possible to get hold of this process contaminated by the attack running the fileless malware, it may be possible
to attach a debugger to it. On the other hand, if it is possible to replay the attack allowing to execute the
fileless code, it becomes potentially possible to debug the attack itself and, in fine, the malicious code.

2.2.6 Resume about manual dynamic analysis evasion techniques

With the aid of debuggers, the analyst can overcome many hurdles and limitations of static analysis. However,
new trends and real-world scenarios in which the vendors face thousands of new malware samples daily demands
a more agile approach — beyond the capabilities of manual dynamic analysis. In the next section, we discuss
the emergence of automated dynamic analysis approach and sandboxes as a response to these challenges and
will further elaborate on malware’s tactics to thwart them. Table 3.1 summarizes our survey of manual dynamic
evasion techniques.

Chapter 3

— Thesis manuscript —

Page 88 on 619

Criteria Complexity | Resistance Countermeasure Pervasiveness Malware Efficac
Cat Tactic Technique mplextiy istan Tactic rvastveness Sample Y
Reading IsDebuggerPresent Low Low Set the Bemizijugged flag to
PEB CheckRemoteDebuggerPresent et . Set heapgroawable flag for Very high []
: flags field and forceflags to 0
. . NtGlobalFlags Low Medium Attach dcbuggcx" after process
= Fingerprinting creation
@ -
E . Selfibbfm to spot INT'3 . Set breakpoint in the first byte
g Detecting instruction Low Medium ? . 1,2
& . X X of thread High []
2 Breakpoints Self-integrity-check
é Reset the context_debug_registers flag
g Read DR Registers . in the contextflags before/after .
_‘:3 (GetThreadContext etc.) Low Medium Original NtGetContextThread 12
8 function call
System FindWindow i o Randomizing variables, .
Artifacts FindProcessFindFirstFile Low-High Low-High achieve more transparency Medium (21 1,23
Mining ProcessDebugObjectHandle o e bt e
NTQuery ProcessDebugFlags Medium High I(\itfl(l{;f" /I)l:n:::i;?; 1&;1 Medium] 1,2
Object ProcessBasicInformation : g/skipping these
GetCurrentProcessld
Parent CreateToolhelp32Snapshot . . .
Check Process32First Medium Medium APT hook Low [227] 1,2
Process32Next
Local Resource: RDTSC
time Kernel patch to prevent access to
GetTime rdtsc outside privilege mode,
Tllnlng—Bz)S(‘d GetTickCount Low High Maintain high-fidelity time Medium 111234
Detection QueryPerformanceCounter source,
GetLocalTime Skip time-checking APIs
GetSystemTime
Query external time source .]
(c.s. NTP) Medium N/A None, open problem
Tnstruction Prefix (Rep) High Medium Set breakpoint on exception handler,
Traps Interrupt 0x03, 0x2D Low High Allow single-step/breakpoint exceptions to be High [242] 1,2,3
Interrupt 0x41 Low High automatically passed to the exception handler
Debugger OllyDBG: InputDebugString Low High Patch entry of OutputDebugString .
Specific Set breakpoint inside Low (246] 1,23
SoftICE Interrupt 1 Low High CreateFilefileA /W
Exhaustive Enumeration.
i o io] Jerv Hig d v
Targeted APT Environment Keying High Very High path exploration techniques Low [247,]
AT Locksmithing Very High | Very High N/A Rare [254]
Self DebugActiveProcess
E Debl:‘“ vine DbgUiDebugActiveProcess Medium Low Set debug port to 0 [264] 1,2,3
g Control Flow i NtDebugActiveProcess Low
& Manipulation Suspend SuspendThread
2 ; v 2
-i: Thread NtSuspendThread Low Low N/A (217) L
= Thread NtSetInformationThread 0
.E Hiding ZwSetInformationThread Low Low Skip the APIs (7 1,2
<] -
§ Mult?— X CreateThread Medium Low Set breakpoint at every entry [] 1,2
éo threading
. BlockInput . . . o o
Lockout Evasion SwitchDesktop Low Low Skip APIs Low [] 1,2,3,4
Web-based exploits . o o a4
System-level exploits High Very High N/A Low] 1,2,3,4

Table 3.1: Classification and comparison of malware anti-debugging techniques.

Page 89 on 619 — Thesis manuscript — Chapter 3

2.3 Automated Dynamic Analysis Evasion

Key Point 3.3:

IS" We call ”Automated Dynamic Analysis Evasion” all evasion techniques able to escape from auto-
matic analysis tool.

#£5 We oppose automatic dynamic analysis environment to manual dynamic analysis environment
used by human in from of a computer.

£ Automatic analysis environment does not require any human interaction since they are fully
automatized.

#5 Automated dynamic analysis environments regroup different types of sandboxes: virtualized
or emulated sandbozx.

J

Although effective, the manual dynamic analysis suffers a critical limitation, that is: time. 2018 statistics
provided by McAfee reports on receiving more than 600K new samples each day [275]. Analyzing this massive
number of malware samples calls for a far more agile approach. This demand led to a new paradigm of
analysis which we referred to as automated dynamic analysis. Sandbox is the representative technology for this
paradigm. In this subsection, we will have a brief introduction to sandboxes and further propose a classification
and comparison of malware evasion tactics.

2.3.1 An overview of malware sandboxes

The concept behind a malware automated dynamic analysis system is to capture the suspicious program in
a controlled and contained testing environment called sandboz, where its behavior in runtime can be closely
studied and analyzed. Initially, sandboxes were employed as a part of the manual malware analysis. But today,
they are playing their roles as the core of the automated detection process [181]. Sandboxes are built in different
ways. To better grasp the evasion tactics, and depict how they stand against different sandbox technologies,
first, we must have a sense of how they are made.

2.3.1.1 Virtualization-based sandboxes

A virtual machine (VM) according to Goldberg [276], is "an efficient, isolated duplicate of the real ma-
chine”. The hypervisor or virtual machine manager (VMM) is in charge of managing and mediating programs’
access requests to the underlying hardware. In other words, every virtual machine atop the VMM, in order to
access the hardware, must first pass through the hypervisor. There are a couple of ways to implement sandboxes
based on virtualization. One way is to craft the analysis tools directly into the hypervisor as in the case of
Ether [210]. The other approach would be to embed the analysis tools (e.g. installing hooks) within the virtual
machine that runs the malware sample. Instances of this design are: Norman sandbox [277], CWsandboz [278]
and more recently Cuckoo sandbox [279]. Both of the methods inherently leak subtle cues which malware could
pick on to detect the presence of a sandbox. In the latter case, for instance, the VMM has to provide the
required information to the analysis VM which means whenever a sensitive system call is being made by the
malware, the VMM has to pass the control to the analysis tools inside the VM. Challenges of performing these
procedures without leakage are profound which we will elaborate accordingly.

2.3.1.2 Emulation-based sandboxes

An emulator is a software that simulates a functionality or a piece of hardware [280]. An emulation-based
sandbox can be achieved through different designs. One would be to simulate the necessary OS functions and
APIs. Another approach is the simulation of CPU and memory and is the case for many anti-virus products
[280]. Simulation of I/O in addition to memory and CPU is what in literature is referred to as the full system
simulation. QEMU [281] is a widely famous full system simulation based on which other famous sandboxes such
as Anubis [282] are built. Among the eminent features of emulation-based sandboxes are the great flexibility
and detailed visibility of malware inner workings (introspection) that they offer. Especially, with the full system
emulation, the behavior of the program under inspection (PUI) could be studied with minute details.

Chapter 3 — Thesis manuscript — Page 90 on 619

2.3.1.3 Bare-metal sandboxes

Recently evolved and perplexing evasion tactics, employed by sophisticated malware, demands a new paradigm
of analysis. The emerging idea is to execute the malware in several different analysis environments simultane-
ously with the assumption that any deviation in behavior is a potential indication of malicious intents [283].
The feasibility of this idea requires a reference system in which the malware is analyzed without the utilization
of any detectable component and the ideal choice would be a bare-metal environment equal to a real production
system in terms of transparency. There have been several products in this vein e.g. Bareboz, bare cloud, etc.
[283, 284, 285).

2.3.2 Proposed Classification of Automated Dynamic Analysis Evasion Techniques

IS We are reusing the classification of detection-dependent or independent as explained in Key-
Point 3.2.

Along with the merits that each design offers, subtle flaws or specific working principles that a malware
exploits to forge their evasion tactic. Indeed, if the malware achieves one specific goal, it has the ability to
triumphantly evade the sandbox. This goal is to behave nicely or refrain from executing its malicious payload
as long as it resides within the sandbox. This strategy capitalizes on two facts. The first is that due to a massive
number of malware samples and limitation of resources, sandboxes assign a specific limited time to the analysis
of a sample. The second lies in an inherent limitation of dynamic analysis. In dynamic analysis since the
"runtime behavior” and "execution” is being inspected, only the execution path is visible to the inspector (sand-
box). Thus, if a malware provides no malicious behavior while under examination, the sandbox flags it as benign.

Similarly to manual dynamic analysis evasion, we propose to classify automated dynamic analysis evasion
tactics under two categories, that is to say detection-dependent evasion and detection-independent evasion. We
will elaborate on these tactics along with several techniques under each tactic. In addition, we briefly note the
ways through which sandboxes try to defeat these tactics.

2.3.3 Detection-Dependent Evasion

In the same way as with the debuggers, the main goal of the malware is to detect its environment to check
whether the host is a sandbox or not. A successful evasion in this category is subjected to correctly detecting
the environment. If the environment is detected to be a sandbox — or by contraposition, it is not the intended
environment — the malware will not reveal its malicious payload, hence, evades the detection. Following are
the tactics a malware might use to achieve this.

2.3.3.1 Tactic 1. Fingerprinting

Fingerprinting is a tactic pursued by malware to detect the presence of sandboxes by looking for environmen-
tal artifacts or signs that could reveal the indications of a virtual/emulated machine. These signs can range
from device drivers, files on disk and registry keys which only belong to emulated/virtualized environments.
Indications of VM or emulation are scattered at different levels [286, 287, 288, 289]. It is noteworthy to mention
that initially, many sandboxes such as Norman [277] were developed upon VMs. Thus, in literature, we may
still observe the terms sandbox and VMs being used interchangeably to imply a contained analysis environment.
The very same fact is also the reason for the rise of techniques referred to as anti-VM, suggesting that detection
of a virtual machine would potentially mean an analysis environment.

Different studies have been conducted to uncover the levels at which sandboxes leave their marks [186, 290].
These levels are:

e Hardware: Devices and drivers are artifacts that malware might look for to identify its environment. In
the case of devices, VMs often emulate devices that can be readily detected as in the case of Reptile mal-
ware [291]. This ranges from obvious footprints such as the VM Ware Ethernet device with its identifiable

Page 91 on 619 — Thesis manuscript — Chapter 3

manufacturer prefix, to more subtle marks. Moreover, specific drivers are employed by VMs to interact
properly with the host OS. These drivers are other indications of an analysis environment for malware. For
instance in the path: ”C:\Windows\System32\Drivers” there are such signs that could expose VM Ware,
VirtualBoz, etc. (e.g. Vmmouse.sys, vm3dgl.dll, VM ToolsHook.dll, etc.) [292].

Execution Environment: A malware inside sandbox experiences subtle differences in the environment
within which they are executed. Some kernel space memory values, for instance, are different between a
sandbox and native system that can be detected by malware as in the cases of Agobot and Storm Trojans
[293,]. Artifacts of this level manifest themselves either in memory or execution. As in the case
of memory artifacts, for instance, to allow inspection and control between host and guest OS, VM Ware
creates a channel between them ("ComCHannel”). Virtual PC hooks work in the same way [295]. Antic-
uckoo [296], for instance, detects and crashes the cuckoo sandbox through detecting and manipulating the
system hooks.

Application: When an analysis application is used in an environment, its presence is usually disclosed due
to the artifacts of installation and execution which can be picked up by inquisitive malware such as Rbot
[297], Phatbot [298], [299], or [300]. Even if not executed, evidence of the analysis tools might be residing
on the disk, registry keys, etc. which could be readily found by malware especially if they contain well-
known file name or locations e.g. "HKLM\SYSTEM\ CurrentControlSet\Control\ VirtualDeviceDrivers”.
In a similar instance, if the names are not altered or the corresponding processes concealed, they can be
enumerated by malware with little trouble. For instance, VMtools.exe, Vmwareuser.exe or vboxrservice.exe
if queried by malware, are vivid indicators of a virtual machine and analysis environment.

Behavior: Perhaps, the most troublesome of all, for anti-malware vendors to conceal, are the leakages
caused by imperfect virtualization/emulation, or characteristics that are innate to such environments. Of
particular interest are discrepancies of behavior between an emulated CPU and a physical one [280]. Per-
formance of an application running under emulation is inferior to a real system. This performance penalty
stems from translations or interceptions that have to be carried out in an emulation/virtualization. Such
discrepancies can be disclosed through a diverse set of timing attacks [301, ,]. Computing absolute
performance for fingerprinting is an arduous task due to the diversity of hardware configuration.

An alternative for malware is to calculate the relative performance of code execution [286]. Pursuing
this method, malware compares the performance ratio of two or more operations on the same system.
If the measurement varies significantly among production and emulation systems, there’s a high chance
of sandbox presence. Another interesting way of exploiting the limitations of emulation is observing and
comparing the effects of caching on emulated and real environments. In this technique, a function is
executed a number of times. As expected, the first run must be the slowest (due to cache performance
effects). The same test is performed again, this time, in the absence of caching. Timing analysis depicts
the effectiveness of the employed caching. Simulation of processor cache is a complex task and emulators
may not support it, the result of which is about to expose the emulation nature of the running environment
in the aforementioned test [286].

Another noteworthy set of techniques are the red pill tests [303]. An inevitable behavioral artifact sand-
boxes share, are the imperfect simulation of CPU and residing instruction bugs. If a malware specifically
finds such bugs and if during the execution it notices a mishandled instruction, it will suspect the presence
of the sandbox.

Network In addition to the previous levels that were suggested by Chen et al. [186], malware can also
probe the network in pursuit of sandbox’s marks. These marks are manifested in many forms such as
known fixed IP addresses, [304], limitations pertaining to the sandboxes that prevent or emulate the in-
ternet access [305,] or extremely fast internet connection [307]. One technique, for instance, proposed
in [304] is detecting sandboxes based on their known IP addresses which is acquired in an earlier attack

Chapter 3 — Thesis manuscript — Page 92 on 619

through a decoy malware.

Fingerprinting tactic was the initial objective of malware authors to detect and evade sandboxes. That way,
we observed the techniques have evolved significantly. In countering fingerprinting, most solutions are reactive,
namely, the fingerprinting technique must first be disclosed, then the corresponding counter evasion will be
provisioned. An offensive way of fighting against fingerprinting are projects such as Jing et al.’s Morpheus.
Morphius is a tool that automatically finds fingerprints on QEMU and VirtualbBox-based emulators [36].
Collectively, the fingerprinting tactic is still the dominant approach to detect and evade sandboxes [303].

2.3.3.2 Tactic 2. Reverse Turing Test

The second tactic that aims at detection, is checking for human interaction with the system. This tactic
capitalizes on the fact that sandboxes are automated machines with no human or operator directly interacting
with them. Thus, if malware does not observe any human interaction, it presumes to be in a sandbox. Such
tactic is referred to as Reverse Turing Test since a machine is trying to distinguish between human or AI. This
tactic can be carried out through various techniques [289, , , , 311]. For instance, the UpClicker [311]
or a more advanced one, BaneChant [312] await the mouse left-click to detect human interaction [313].

In a large portion of reverse Turing test techniques, the malware looks for last user’s inputs. To do so,
malware often leverages a combination of GetTickCount [2341] and GetlastInputinfo [314] functions to compute
the idle time of the user. To test whether it is running on a real system, the malware waits indefinitely for any
form of user input. On a real system eventually, a key would be pressed or mouse would be moved by the user.
If that occurs for a specific number of times, malware executes its malicious payload.

To counter this tactic of evasion, simulating human behavior might seem intuitive but it might be coun-
terproductive. One reason is that digitally-generated human behavior can also be detected [315]. The second
reason is that limitation of designing such reversal Turing test seems to be merely a function of imagination.
To demonstrate our point, consider another technique in which the malware waits for the user to scroll to the
second page of a Rich Text Format (RTF) before it executes the malicious payload; or in another approach,
using Windows function GetCursorPos [316], which holds the position of system’s cursor, the malware checks the
cursor movement speed between instructions; if it exceeds a specific threshold, it would imply that the move-
ment is too fast to be human-generated and malware ceases to operate [313]; or another more recent technique
which relies on seeking wear and tear signs of a production system [317]. The seemingly endless possibilities for
designing reversal Turing tests make it a puzzling challenge for sandboxes to counter. This tactic is becoming
more prevalent, but still not as pervasive as fingerprinting [308].

2.3.3.3 Tactic 3. Targeted

The third tactic of the detection-dependent category is targeted detection. This tactic is slightly differ-
ent from the previous ones in that instead of striving for detecting or evading a sandbox directly, the malware
fingerprints the environment to verify if the host is precisely the intended (targeted) machine. In other words,
the malware looks for its target, not sandbox. This tactic can be employed following different routes:

e Environmentally-targeted: Stuznet is known to be the first Cyber weapon that incorporated targeting
tactic as a portion of its evasion tactics [310]. Stuznet explicitly looked for the presence of a specific
industrial control system and would remain dormant otherwise. Depending on the infection approach,
APT attacks follow different routes.

e Individually Targeted: In the case of Stuznet, the strategy was to keep probing victims (a wormy behavior)
until the target was reached. Other classes of APT include the attacks such as darkhotel [318], in which
the infection is conducted through spear phishing (i.e. directly aimed at the target). In other words, the
attackers make sure that their malicious code is directly delivered to their target.

Page 93 on 619 — Thesis manuscript — Chapter 3

e Environment-dependent Encryption: Such targeted malware, have an encrypted payload the decryption
of which, is subjected to a key that is derived from its victim’s environment. The key might be a hardware
serial number, specific environmental settings, etc. You can refer to [319] for a thorough discussion of the
topic.

2.3.4 Detection-Independent Evasion

The major difference in this category of tactics is that they do not rely on detecting the target environment, and
their evasion tactic is independent of target system which relieves them from having to employ sophisticated
detection techniques. Consequently, efforts directed at achieving more transparency has no effects on these
tactics. In the following, we elaborate on the tactics of this category and several techniques to deploy them.

2.3.4.1 Tactic 1. Stalling

This tactic of analysis evasion capitalizes on the fact that sandboxes assign a limited amount of time to
the analysis of each sample. Malware has to simply postpone its malicious activity to the post-analysis stage
[320]. To this end, malware authors came up with the idea of stalling [295] which can be achieved through a
diverse set of techniques that range from a simple call to Sleep function [321] to more sophisticated ones. Here
we examine some of the known major stalling techniques.

e Simple Sleep: Sleeping is the simplest form of stalling and just as simple to defeat. The idea was to
remain inactive for n minutes in order for the sandbox inspection to timeout before observing any ma-
licious activity. After being released to the network, the malware would execute the malicious payload.
The infamous DUQU [247] exhibits such technique as one of its prerequisites for ignition. It requires
that the system remain idle for at least 10 minutes [168]. Another example would be the Khelios botnet
[322]. A new variant of Khelios sample found in 2013 (Called Nap) calls the SleepEx function [323] with
a timeout of 10 minutes. This delay in execution outruns the sandbox analysis timeout which is followed
by achieving the harmless flag. To counter such techniques, sandboxes came up with the simple idea of
accelerating the time (called sleep patching). Although seemingly logical, sleep patching has unpredicted
effects. An interesting side effect of sleep patching was observed in specific malware samples where the
acceleration actually leads to inactivity of malware instances that wait for human interaction within a
predefined period of time [315]. Despite its side effects, sleep patching turned out to be effective in some
cases and malware authors came up with more advanced techniques as a response.

e Advanced Sleep: New malware instances such as Pafish [324] were found to opt for more advanced sleep-
ing tricks. They detect sleep-patching using the rdtsc instruction in combination with Sleep function call
to check the acceleration of execution. More directly, this means timing the Sleep function between the
expected wait and the actual wait.

e Code stalling: While Sleep, delay the execution, in code stalling the malware, opts for executing irrelevant
and time-consuming benign instructions to avoid raising any suspicions from the sandbox [315]. Rombertik
[325] is a spyware aimed at stealing confidential data. To confuse sandboxes, it writes approximately 960
million bytes of random data to memory [326]. The hurdles this technique impose on sandboxes are two-
fold. The first one is the inability of the sandbox to suspect stalling as the sample is running actively. The
second one is that this excessive writing would overwhelm the tracking tools [325]. In another striking
code stalling technique, the malware encrypts the payload using a weak encryption key and brute-forces
it during the execution [283].

2.3.4.2 Tactic 2. Trigger-based

The second tactic that does not rely on detection is a trigger-based tactic or more traditionally logic bombs.
As we have already noted, the basis of evading sandboxes is to simply refrain from exhibiting the malicious
behavior so long as they are in the sandbox. Another tactic for remaining dormant would be to wait for a
trigger. There are many environmental variables that can serve as malware triggers ranging from system date

Chapter 3 — Thesis manuscript — Page 94 on 619

to a specially crafted network instruction. For instance, MyDoom [224] is triggered on specific dates and it per-
forms DDoS attacks, or some key-loggers only log keystrokes for particular websites; and finally, DDoS zombies
which are only activated when given the proper command [327]. In the literature, this behavior is referred to
as trigger-based behavior [219]. In the following, there are a number of triggers embedded within malware as a
protection layer against sandboxes.

e Keystroke-based: The malware gets triggered if it notices a specific keyword, for instance, the name of an
application or the title of a window [328]. What occurs when the trigger happens, depends on the purpose
and context. For instance, malware might initiate logging keystrokes.

e System time: In this case, the system date or time would serve as the trigger [328, ,]. A newer
malware that recently used this technique was the industroyer [274].

e Network Inputs: A portion of malware are triggered when they receive certain inputs from the network as
in the case of Tribal flood network [187]. Note that some malware are able to go on internet by themselves,
checking the content of a given website to know if they are in an analysis environment or not. The case of
Wannacry malware [331] is an interesting example. Even if it was not to evade analysis, this ransomware
checked a hard-coded url in order to cipher files only if it cannot contact this domain. The goal was
probably to avoid infection in the environment in which it has been developed, the same logic could be
practiced to detect a url that would exist (or would not exist — in the case where some environments
would respond to all requests, even those impossible) and act accordingly.

e Covert trigger-based: Previous techniques often presuppose lack of code inspection to remain undetected
(as it is often the case for compiled malware). However, there have been advances regarding the automatic
detection of such program routes e.g. State-of-the-art covert trigger-based techniques are being devised
as a response to automated approaches that aim at detecting such triggers instruction. These techniques
use instruction-level stenography to hide the malicious code from the disassemblers. In addition, they
implement trigger-based bugs to provision stealthy control transfer which makes it difficult for dynamic
analysis to discover proper triggers [310] return values from system calls are other instances of malware
triggers.

Trigger-based tactic initially was not used to evade sandboxes and they are still relatively seen in the wild.
Finding these triggers is often pursued through path exploration approaches e.g. symbolic execution with the
goal of finding and traversing all the conditional branches in an automated manner. These approaches require
significant levels of resources and they are still below a fair level of efficiency.

2.3.4.3 Tactic 3. Fileless Malware

In section 2.2.5.3, we discussed fileless malware. In addition to the rigorous resistance against manual analysis,
fileless malware is profoundly adept at evading security mechanisms. A major difference of this tactic is the most
often the malware is not subjected to the analysis environment in the first place. This is an inherent outcome of
this tactic. The techniques that fileless malware utilizes are similar to drive-by attacks [332]. Generally, fileless
malware exploits a vulnerability of the target system (OS, Browser, Browser plugins, etc.) and it injects its
malicious code directly into the memory. The new trend of fileless malware uses windows PowerShell to carry
out its task. As mentioned earlier, this attack is on the rise, and defending against it is of great complexity.

2.3.5 Resume about automatic dynamic analysis evasion techniques

In table 3.2, we summarized our survey on malware automated dynamic analysis evasion. In this table, we
compared the techniques based on four criteria i.e. complexity of implementation, pervasiveness, efficacy level,
and detection complexity. In addition, in the example column, we provided malware samples that incorporate
the corresponding techniques. Moreover, under Sandbox countermeasure tactics, we hint on how the defensive
side strives to counter the evasion tactics and how complex/effective these countermeasures are.

Page 95 on 619 — Thesis manuscript — Chapter 3

Criteria Complexit Pervasiveness Efficacy Level Sandbox Countermeasure Tactics | Detection Examples

Cat. Tactic plexity vastv Yy Lev Complexity ‘ Effectiveness Complexity xamp

-] Sleep Patching . X B E

= By ' hitectures ; Hig 325, 247, 324, 322
g 'g Stalling Low-Medium Medium All Architectures Tow ‘ Tow Very High (325, 2 1]
e 3 . . Emulation-Based Path Exploration -
e - 4 ? 87, 274, 330, 224, 328, 32
a 5 Trigger-Based Low Medium Baremetal Teh I Moderate Moderate [187, 274, 330, 224, , 329]

= Fileless (AVT) High Low All Architectures N/A Very High [271]

. : . . Using heterogeneous analysis,

= Fingerprinting High High VM-Based, H?;)er\ isor based, Artifact Randomization Moderate | [291, 300, 298, 297, 293, 294, 299, 304]
EEE] Emulation-Based — —
g8 Moderate | Moderate
g g . Digital Simulation,
33 " TDErvisor
2 &| Reverse Turing Test Medium Medium VM-Based, Hypervisor based, path exploration Moderate [312, 311]
=3 Bare-metal -

Low | Low
B .) VM-based, Emulation Path exploration . 210318 977
Targeted Very High Low Hypervisor based based Tigh ‘ Tow Very High [310, 318, 277]

Table 3.2: Classification and comparison of malware sandbox evasion techniques.

2.4 A Brief Survey on Countering Malware Evasion

BZ” In this subsection, we are presenting briefly the different techniques used to counter malware
evasion.

#5 Even if it is hard to design a perfect analysis test able to be totally transparent, it is possible
to improve different points.

Countering evasive malware can follow different tactics. In this section, we briefly survey such defensive

tactics against evasive malware, for the sake of sobriety. Further explanation is given in the original article and
the reader is invited to refer to it for more details.

There are different countermeasure tactics against evasive malware. It depends on the analysis environment,
what is analyzed and how it is analyzed. It also depends on how a malware operates, what it looks at and

how it reacts to its environment. Generally speaking, we can define four modes of action to counter the evasive
techniques of malware.

e Reactive Detection: In this case, defenders tap into their knowledge of specific evasive behaviors to craft
their countermeasure accordingly. Namely, the detection is subjected to knowing the evasion technique

in advance [287]. Reactive approach could circumvent only the known tactics and is vulnerable to novel
evasion techniques. They are relatively easy to implement.

e Multi-System Execution: In this approach, malware is executed on several different analysis platforms [30].
Their execution then is studied to determine if their behavior has been diverged based on the execution

environment. As a drawback, multi-system execution tactic is only effective against detection-dependent
evasion strategy.

e Path-Exploration: Another solution is to trigger as many conditional branches as possible in a program
in order to provide the greatest code coverage. The goal is to trigger any condition in a process such
as, in the case of a malware, the malicious payload will be executed which should expose the malware.
It is possible to do the same with path-exploration tactic to identify the detection-dependant malware,
as in [251]. But this solution is far from being perfect. For instance, malware authors can incorporate
anti-symbolic execution obfuscation [333] into their code and they can impede with the path-exploration

tactic. In some cases, it is possible to force the path-exploration to go on a corrupted one, leading to
crashes.

o Towards Perfect Transparency: Research efforts for finding solutions to counter evasive malware, by a
drastically wide margin, are focused on achieving more transparent systems. Transparent systems are the

the most used response to the proliferation of fingerprinting tactics. We can point several key approaches
to achieve transparency and hiding analysis from malware’s eyes:

Chapter 3 — Thesis manuscript — Page 96 on 619

— Hiding Environmental Artifacts For instance, CWSandbox [278] prevents malware from detecting
the analysis environment by instrumenting the system with rootkit-like functionality to cover the
environmental artifacts (e.g. files, registry entries, etc.).

— Hypervisor-Based Analysis Given the higher privilege in hypervisors, researchers have proposed to
take their instrumentation of the system into the hypervisor itself. For instance, in [210], activity
of malware is monitored by catching context switches and system calls using Xen hypervisor. Even
though the experimental results of such design might seem promising, they are shown to be detectable
as well Regardless, such systems are shown to be detectable as well [237, , ,].

— Bare-Metal Analysis The bare-metal analysis approach is the most idealistic endeavor which targets
perfect transparency. In BareCloud [283] for instance, authors refrain from incorporating in-system
monitoring tools. Rather, they rely on analyzing disc and network activity at the hardware level.
They achieve a high level of transparency. However, at the cost of introspection. If a malware opts
for a stalling tactic, for instance, BareCloud would fail to detect the suspicious activity. Recently,
the new trend of making a bare-metal system seems to be concerning the incorporation of system
management mode (SMM) [337]. In [337] authors introduce Spectre for transparent malware analysis.
Zhang et al., further employed this technique to introduce MALT—a transparent debugger.

In the end, Table 3.3 summarizes our survey on countermeasure tactics against evasive malware. This one
regroups all the cases previously described.

o Countermeasure Effective Against Complexity ‘Weakness Examples
Criterion

Only Known Evasion
techniques
Detectiondependent-dependent

Reactive Low Vulnerable to zero-day techniques. [334, R]

Ineffective against detection-independent [

Multi-System Execution Medium . R s R R]
category tactic.
ATl tactics except Vulnerable to anti-symbolic execution
Path-Exploration cs excep High obfuscation. Not scalable, resource [249, s]
Fileless X .
intensive.
Vulnerable to Targeted, Reverse Turing,
Towards Perfect Transparency Fingerprinting Very High Stalling, Fileless, and trigger-based tactics. [‘]

Unless the sandbox is equipped with other
countermeasure tactics as well.

Tactic

Table 3.3: Classification and comparison of countermeasure tactics against evasive malwares.

2.5 Conclusion about the state-of-the-art

With regard to the different techniques proposed here, it should be noted that the competition between evasion
measures and countermeasures is always ongoing. Fingerprinting by far is the most pervasive tactic and has
proven to be an effective technique if executed with precision. It should be noted that these techniques are gen-
erally identified and specific to a given analysis environment, whether the escape method is automatic or manual.

Generally speaking, as with the uncertainty of the measurement, any direct measurement action of a system
induces, in one way or another, a certain disturbance of this system via the measuring device. It is thus in the
research of this type of disturbance (cause) or in the exploitation of the latter (consequence) that it is possible
to work to escape.

Very directly, from our observations the most effective methods over time have some common characteristics:
be based on the exploitation of a technical characteristic that is global to several tools, exploitation of a conse-
quence whose cause is inherent to the analysis tool (and whose correction could be challenging for the tool) and
be based on legitimate and documented mechanisms. The second point is illustrated by the exploitation of the
communication mechanisms of the analysis environment (manual method) or the installation of a hypervisor in
a hypervised environment to see if there is already one (automatic method), etc... Allowing this type of action
such as a malware does not realize it is under analysis is equivalent to neutralizing or strongly modifying the
analysis tool.

Page 97 on 619 — Thesis manuscript — Chapter 3

Therefore, our research was conducted to find new methods capable of performing an escape while maximizing
these characteristics. Our researches have been focused, like this state-of-the-art, on two main axes. On the
one hand, we first present a new form of evasion against a manual dynamic analysis evasion in the context of a
debugger and, on the other hand, against an automatic dynamic analysis evasion evading DBI, VM and even
debuggers. This last method is intended to be generic and synthetic in order to act on all analysis environments.

3 New manual dynamic analysis evasion technique on debuggers

BZ" This section propose one new evasion technique from manual dynamic analysis environment.
#5 We have rediscovered a bug in Windbg debugger but never corrected despite publication by
a former Microsoft’s employee.
£5 After introducing this bug, we show how to escape from Windbg in a stealthy way.
IZ" This section proposes three different techniques to fool the disassembly engine in debuggers.
#£5 The first uses an undocumented behavior by using an operand-size override prefix on a relative
jump.
45 The second uses REX prefix in a way which is not correctly handled by Windbg.
#5 The third uses unsupported instruction by the debugger or exotic nop instructions which are

not correctly interpreted.

BF” The goal is to make the disassembled code unreadable in the debugger but perfectly executable for
the CPU.

#5 All these methods are based on interpretation differences of the assembly language by Intel
and AMD CPU vendors (they use the same op-codes for similar instructions but they do not
have exactly the same way to implement it).

This section explains why it is relevant to present and fix new techniques or bugs exploited from debuggers
to detect, escape or subvert analysis. Our study is based on Windows operating system, no matter the version
of the operating system used. This choice is explained by the fact that most threats are on this platform. And
the most famous — not to say the most used — debuggers on Windows is the one developed by Microsoft:
Windbg [345]. This one is part of the Windows Driver Kit [209] and a new version, Windbg Preview [340],
is actually developed with nice extensions such as Time Travel Debugger [347]. We are going to show four
ways to disrupt the functioning of Windbg disassembler (version 10.0.17763.1 for Windbg and 1.0.1904.18001
for Windbg Preview). Whenever possible, we will also try to see if our escape techniques could have success
with other debuggers.

Chapter 3 — Thesis manuscript — Page 98 on 619

3.1 INT 3 mishandling exploitation

Key Point 3.4:

IE" There are several ways to implement breakpoint instruction from assembly (”int 3h”) to opcodes.

#£5 The short version usually used in Microsoft world (with MASM) uses 0xCC (one byte).
#£5 The long version used by NASM uses 0xCD 0x03 (two bytes).

#£5 Both represent the same instruction but with a different number of instructions.

A trick used to evade debuggers is to abuse from bugs in the debugger itself. Indeed, debuggers are software
like any others, which means they can be improved. As explained in the debugger specific tactic of detection
(section 2.2.4.3), it is possible to exploit existing bugs in a debugger to detect it.

One of the bugs used in this section to exploit Windbg is already partially known [190]. It is based on "int
3h” instruction. This one corresponds to an interruption — the third one — referencing a debug break. When
this instruction is encountered, the CPU gives back the control to the debugger process. From the CPU, this
instruction can be encoded in two ways, for the same result. Indeed, it could be encoded, from assembly to
opcodes executable by CPU, by using either 0xCC or 0xCD 0x03 writing. The reason behind this two encoding
stands in the approach used to encode the instruction by the compiler. Indeed, the 0xCC encoding always refers
to the third interruption, (debug break). This is the short version of the instruction. However, there is a longest
one: 0xCD 0x03. This encoding can refer to any interruption where the id of the interruption is encoded using
the second byte of the encoding — 0x03 in our case. Most of the time, only the shortest instruction is used by
compilers. Thus, the 0xCC encoding is used a lot more than 0xCD 0x03, except with NASM compiler [348].

More than the waste of a byte to encode the same instruction, the longest version can potentially lead to
a bug if it is not taken into account correctly, as suggested in [349, 350]. The same way, this behavioral error
has already been observed without being explicitly linked to a particular debugger by Peter Ferrie [351]. In this
paper, the author has tested a lot of debuggers and emulators without linking this bug to one or more products.
More generally, this bug has been used as a "debugger killer”. Example is provided in [352] to illustrate how
Windbg can be trapped by using these opcodes to make it crash. The same technique is used by malware’s
packer to avoid analysis under a debugger [353]. But this technique is expected to make crash the application

since this one is debugged.

This is the misinterpretation of the ”int 3h” instruction in its long form which can be exploited. From a
general point of view, any misinterpretation resulting in a wrong execution by a debugger is a vulnerable flaw
which could result to hidden code execution or badly interpreted one. Such a behaviour could lead to debugger
detection or the execution of obfuscated code that is difficult to analyze. This is what we are going to show in
the two next subsections. The first is about technical details about the flaw in Windbg and the second about
the exploitation of that flaw.

Page 99 on 619 — Thesis manuscript — Chapter 3

3.1.1 Technical details

Key Point 3.5:

I5” Windbg debugger from Microsoft does not handle correctly long version of ”int 3h” instruction.

#5 The representation is misinterpreted by the decompiler (which does not seem to know this
shape of the instruction).

#£5 Tn addition, the debugger’s step-by-step operation dealing with the long version executes only
one byte (when two would be required).

#5 This misinterpretation wrongly affects the following step-by-step execution of the debugger.

BZ” Microsoft was aware of this trick years ago but did not fix it...

As explained previously, Windbg does not correctly handle the ”int 3h” instruction when this one has been
encoded by the compiler in its long form. Before execution, Windbg correctly handles the debug break as
Figure 3.2 illustrates it below.

88561826 cde3 int 3
easelals 9a nop
easelais 9a nop

Figure 3.2: Interpretation of the debug break instruction before execution.

When the previous code is executed, the next instruction about to be executed by Windbg is the one pro-
vided in Figure 3.3.

88561827 839898203690 add edx, dword ptr [eax-6FEF6F7@h]
2a56122d 9@ nop
easalale 9@ nop

Figure 3.3: Interpretation of the debug break instruction after execution.

Actually, when we are processing step by step, Windbg is incrementing by one the execution pointer (eip
in 32 bits — rip in 64 bits) of the debugged thread, as if it would have been the short form version. This is
incorrect since it is expected that the debugger increments the current instruction pointer by two as the long
form of the debug break instruction would have expected it. The result of this misbehavior is a jump in the
middle of the opcodes of the next valid instruction (the one following the debug break) to execute opcode 03
which is an addition (add) instruction. Of course, such behavior is obviously not about to increase the stability
of the program. Most of the time, this behavior will eventually rise an access violation exception, resulting in
the crash of the debugged program.

Interestingly, Ferrie worked at Microsoft, in 2008, at a time he published his paper [351]. Unfortunately, this
one seemed not to notice that this bug has concerned Windbg. Maybe it is because this technique is not used
efficiently by malware. Indeed, by default, the bug is usually about to crash an application — not the most
discreet thing to do for a malware. If it would happen, a study the reason for the crash may be performed,
resulting in the probable discovering the trick used by the malware. The idea is then to propose a method that
allows detecting a debugger without crashing by exploiting this old bug, known for more than ten years.

3.1.2 Technical exploitation

Resume 14:

B5" In this subsection, we show how to exploit this bug in Windows to design analysis escape.

Chapter 3 — Thesis manuscript — Page 100 on 619

Key Point 3.6:

IZ" Assembly instructions used in x86 or x64 architectures are not formatted with a fixed number of
bytes.

#£5 This means that assembly instructions can be represented as opcodes with a variable number
of bytes.

#£5 Since the debugger does not skip the right number of bytes on a long version of breakpoint,
we can execute "an instruction within an instruction”.

£ The trick of the evasion is to make sure that this instruction shifted remains consistent and
achieves a different result than the original instruction (without crashing).

IS” To automatically resolves a breakpoint without a debugger, we use a Structure Exception Handling
(SEH) in x86 — a Vectored Exception Handler (VEH) in x64.

The main issue with the use of ”int 3h” Windbg’s bug is the resulting crash of the application under the
control of the debugger. The problem stands in the fact that 0x03 opcode usually results in an invalid execution
flow or in an invalid access memory. The operation expected in such a case is an addition performed with
registers or a direct access read in memory, which is usually not stable when it is not correctly driven. But it is
possible to combine this misinterpreted opcode with other opcodes so that the result is still executable and valid.

Firstly, before trying to implement debugger detection, the code we are writing must be able to survive
when there is no debugger attached. Executing ”int 3h” instruction results in an application crash when there
is nothing registered to handle it. To avoid that, we must ensure that our code which will be executed in an
exception handled context. This one is triggered in case of absence of the debugger. Otherwise, this is the
debugger itself which is notified first, by default.

In C language, this operation is implemented through a __try/_except block statement [354]. This one can
be directly implemented in x86 assembly architecture since exception handling is stored at offset zero in the
Thread Information Block (TIB) [355, 356] of the current thread. The field responsible for exception handler
in the TIB is named Structure Exception Handling (SEH) [240] and it is directly accessible through "fs:[0]” in
assembly language [357]. Update this field is enough in order to insert an exception handler function, called
when an exception occurs. Technically speaking, it is just about storing a pointer referencing a handler function
[358] in this structure. This is usually performed via the following instructions, where “handler” corresponds to
a handler function. Such function is the "except” statement bloc in C language.

assume fs:nothing

4| push offset handler
push fs:[0]

1|mov fs:[0], esp

Avoid segment registers to be considered as an error.
Store address of the handler pointer function.

Store the previous SEH on top of the stack.

Update the SEH stack.

Code 3.1: Implementation of the beginning of exception procedure.

The procedure in x64 would be a bit different [241] since the exception handler is no more stored in the TIB
directly, as it was in the x86 architectue, but it is mapped from the MZ-PE executable file. This can be done
by the use of Vectored Exception Handler (VEH) [359] with the same logic. A dedicated list of functions is
registered in order to be used if an exception occurs. This one is able to handle correctly the ”int 3h” instruction
when there is no debugger attached, the same way it does under 32-bit architecture.

SN N N

Once the handler exception is registered, we have to deal with the case of the debugger’s misinterpretation.
The main problem is that the opcodes used must produce a valid result both in the normal case (no debugger
attached) and in the case where they are misinterpreted (with the debugger attached). The easiest way to
achieve this result is to try to reach one of two unconditional jumps in both cases. That is to say, the first
in the case when the process is running under a debugger and the second when there is no debugger. All the
code between the ”int 3h” instruction and the two jumps is designed to avoid or cancel bad consequences of a

Page 101 on 619

— Thesis manuscript —

Chapter 3

misinterpretation while keeping normal execution flow.

On way to encode unconditional jump operation is through 0xEB opcode, followed by a single byte indicated
the relative offset to jump. This offset value is interpreted as a signed number which results in a jump of -128
to +127 bytes in memory. This is far enough for our code which is just about to jump to a dedicated location

returning zero or one, depending on the presence or absence of a debugger.

The most efficient way to build the code is to stick the unconditional jump after the debug break instruction.
In this way, when there is no debugging, the code is handled by the exception handler function which gives back

the hand to the jump instruction. Figure 3.4 illustrates this procedure.

When Windbg is present, the misinterpretation of the debug break occurs, resulting in a shift inside the

int 3h

jmp S+xx

OwCD

003

OxEB

Ox??

Figure 3.4: Tllustration of the correct disassembling of "int 3h”.

instructions flows. These ones are now interpreted as shown in Figure 3.5.

int 3h

add ebp, ebx

OxCD

03

OxEB

Ox??

Figure 3.5: Illustration of the incorrect disassembling of ”int 3h” by Windbg.

To cancel the "add ebp, ebx” instruction (resulting from the misinterpretation), it is enough to compute
instruction ”sub ebp, ebx”. This last one is encoded with 0x2B 0xEB opcodes. Then, it comes the final uncondi-
tional jump to return zero or one, depending if this function must be able to detect the presence or the absence
of a debugger. This construction allows the function to cancel consequences of misinterpretation (corruption of
ebp register) while keeping the final jump to a location where we can handle if a debugger is present. The final

result looks like in Figure 3.6.

int 3h

add ebp, ebx

sub ebp,

el

jmp S4xx

OmCD

O3

O=EB

028

O=EB

O=EB

Ox??

Figure 3.6: Correction to cancel side effect of the misinterpretation from Windbg.

The case of unconditional jump offsets remains to be resolved. In the case where a debugger is present, the
last jump can point to any relevant location for our function. Whatever is the offset, it will not change anything

Chapter 3 — Thesis manuscript — Page 102 on 619

is can of correct or misinterpretation. In the case where there is no debugger and it is our exception handler
function which resolves correctly the debug break, offset of the jump is fixed at +0x2B (offset of 43 bytes) as
represented in the figure 3.7.

int 3h jmp 5+28 jmp5-15 e

O=CD 003 O=EB =28 O=EB O=EB Ox?? Ox??

Figure 3.7: View of the assembly code executed where there is no Windbg.

The fixed offset of the unconditional jump in the case where there is no debugger forces us to write relevant
code at that point. Instead of using nop instructions as a junk code, we propose to optimize the code so that this
one is as optimized as possible. Actually, we are going to write the exception handler function right after the
debug break part. It means the jump at a fixed offset will be inside the opcodes of the exception handler function.

Without loss of generality, we decided to build the present code to detect if the program is under the influence
of Windbg debugger. More directly, it means the code returns one if a debugger is attached and zero otherwise.
Since the exception handler function returns zero (under the defined value EXCEPTION_EXECUTE_HANDLER)
to continue execution [358], it makes sense to reuse the last opcodes of the exception handler procedure to return
zero when there is no debugger attached.

3.1.3 Illustration with operational code

I¥" Tn this subsection, we provide an operational code (in x86) and a graphical view (Figure 3.8) of
the procedure to perform the evasion safely and efficiently.

In the case where we are executed under Windbg control, the unconditional jump is linked to a dedicated
part supposing to return one. Then, it reroutes the execution flow to the original epilogue of the code. Note
that there is no need to realign the stack after the exception handler is set up. Indeed, the function’s epilogue
reset the stack alignment thanks to "mov esp, ebp” instruction. Finally, taking into account everything, the code
of debugger detection is the one presented in Figure 3.2.

main proc

push ebp
mov ebp, esp
assume fs:nothing

; Register the SEH.
push offset__handler
push fs:[0]

1(mov fs:[0], esp

14 ; In case of misinterpretation.
[add ebp, ebx] [sub ebp, ebx] [jmp $+0E]

1 db 0CDh, 003d, OEBh, 02Bh, OEBh, OEBh, O0OEh
; [int 3h] [jmp S+2B]
1€ ; In case of correct interpretation.

1 ; Restore original SEH.
pop fs:[0]

Page 103 on 619 — Thesis manuscript — Chapter 3

2(add esp, 4
24 mov esp, ebp
pop ebp
24 ret
24 ; Return one if there is a debugger.
or eax, 1
24 jmp $-7 ; Go upper to the epilogue of the main function.
3(| __handler:
push ebp

34 mov ebp, esp

mov eax, [ebp+08h] Retrieve the first parameter.

34 mov edx, dword ptr [eax,+0B8h] ,; Get access to the value of instruction pointer.
add edx, 2 ; Add two to jump correctly over "int 3h".

3¢ mov dword ptr [eax+0B8h], edx ,; Store the new value of rip.
xor eax, eax ; Return zero.

3 mov esp, ebp
pop ebp

44 ret

44| main endp

Code 3.2: Final version of the Windbg’s detection shellcode.

It results that the execution flows depends on the presence or the absence of Windbg debugger. Since as-
sembly programming can be complex to understand, we propose to illustrate the execution flow of the program
with Figure 3.8. This one represents the different jumps the code uses to achieve the Windbg detection goal.

The first case is where there is no debugger. In such a case, the ”int 3h” instruction is handled by the
__handler function registered just before and displayed in blue boxes. The role of the handler [360, 361] is to
retrieve, form its first parameter (stored at [ebp+08h]) a pointer to an EXCEPTION_RECORD structure
[362] where it will be able to change the instruction pointer where the exception handler must give back the
control to the main code. In the case where there is no debugger, the execution still continue to restore the
original version of the SEH and to finish the function, with the return value (stored in eax) equals to zero.

The main right arrow symbolizes when there is Windbg debugger attached to the process. In such a case,
misinterpretation forces to go a little further on a bloc of code responsible to return one (or eax, 1) and it reuses
the epilogue® of the main’s function by a jump with a negative offset (jmp $-7, the small left array) to get access
to mov esp, ebp instruction. Such a way, the function returns one when there is a debugger.

Finally, if there is a debugger able to handle correctly the long form of ”int 3h” instruction, this one will
execute the next instruction which is an unconditional jump with a positive offset (jmp $+2b). Compiled with
MASM compiler, this last jump in our codes goes on the epilogue of the handler function, the same than the
main function. Such a way, it does not change the logic of instructions present in the main functions and it
returns zero. There is no detection (since another debugger is not vulnerable to this issue) but there is no crash,
guaranteeing the operational use by a malware of the code provided.

3This optimization is perfectly optional even if it shows how it is possible to optimize the size of the code. Smaller the code is,
easier it is to insert in a given process.

Chapter 3 — Thesis manuscript — Page 104 on 619

push ebp
mov ebp, esp

push affset __handler
push fs:[0]
mov f=:[0], esp

int 3h

int 3h add ebp, ebx
jmp $+2b sub ebp, ebx
jmp $+0E

pop fs:[@]
add esp,4
mov esp, ebp
pop ebp

ret

h

or eax, 1
imp $-7

__handler:
push ebp
mov ebp, esp

mov eax, [ebp+ash]

mov edx, dword ptr [eax+@B3h]
add edx, 2

mov dword ptr [eax+888h], edx

KOr eax, eax
mov esp, ebp
pop ebp

ret

Figure 3.8: Graphical view of the Windbg’s detection procedure.

3.2 Wrong jump interpretation

Key Point 3.7:

" We show in this subsection how identify the type (Intel or AMD) of processor used by a malware
without using cpuid instruction.

#£5 We use a difference in interpretation, for Intel and AMD processor families, of the same jmp
instruction.

To work properly, debuggers need a disassembler. Generally, the compilation procedure aims to move from
a code, written for instance in C, to a single compiled code. The compiled version of the code then depends on
the style chosen by the compiler used. The disassembling procedure, that is to say starting from the compiled
code to retrieve a human-readable code, is more complex. Indeed, it is necessary to take into account various
backwards compatibility issues of the assembler language or the architecture of the CPU manufacturers. There
are also the different optimization procedures, compilers style procedures and various freedoms taken or im-
posed by CPU manufacturers from the compiled source code. In short, it is notoriously complex to write a truly
perfect disassembler.

But there is more, since assembly language is a complex mix of different norms. Historically, Intel was leader
in the 32-bits architecture. In the old days, when a new architecture was released by Intel, AMD had no choice
but to follow it in order to keep its market share. However, when a 64-bit architecture rose on the market, Intel
and AMD both proposed their own norms. The fist was the IA-64 architecture, with Itanium CPU, developed
by Intel, a totally new architecture which broke with the x86 one. The second was the AMD64 architecture
developed by AMD, which mainly consist of adding 64-bit operations in existing x86 architecture. At the end,
the success of the IA-64 architecture was mitigated, which resulted, for the first time, that Intel followed the
architecture developed by AMD (AMDG64), under the name Intel 64. A more neutral name for the AMD64 and

Page 105 on 619 — Thesis manuscript — Chapter 3

Intel 64 architecture has been finally used in the industry to identify this architecture: x64. This architecture is
very well documented by both Intel and AMD. However, there are still few differences between AMD and Intel
to know in order to disassemble code correctly. Therein lies the rub.

3.2.1 Technical description

Key Point 3.8:

I~ Some of the 64-bit instructions have a behavior described as unpredictable in the Intel documen-
tation.

5 Tt means such instructions does not have a precise behavior in official assembly documentation.

#£5 CPU manufacturers (Intel or AMD in our case) are free to implement it as they want.

IS" Operand-size override prefix (encoded with 0x66 byte) with a relative jump is one of these instruc-
tions.

#5 And there is a difference of interpretation between the two manufacturers we can exploit.

Some of the 64-bit instructions have a behavior described as unpredictable in the Intel documentation [363].
However, it does not mean that these behaviors are really unpredictable. In fact, it just means that the x64
instructions set reference does not provide a precise behavior for these instructions.

One of this undocumented behavior is the use of an operand-size override prefix (encoded with 0x66 value
at compilation time) on a relative jump. This use of the operand-size override prefix is not a common practice
because there is no real operational use for it. Usually, to obtain the destination of the relative jump, we use
the following formula:

instruction_pointer = address_of_jump + size_of jump + sign_extended_displacement

To illustrate with a real example, let us suppose we have a jump at address 0x100000. This jump is an
unconditional jump supposed to jump 5 bytes after. Technically, it is encoded on 3 bytes (0x66 for the prefix,
0xEB for the jump and one byte to encode the offset, in our case, +5 bytes). The final result jumps at address
0x100008, since it is the sum of the size of the instruction (3 bytes), plus the offset inducted (5 bytes).

0x0100008 = 0x100000 + 3 + 0x05

The logic which is described above is always true on Intel processor. Nevertheless, on AMD processor the
use of operand-size override prefix creates a totally new logic. Indeed, when a relative jump has an operand-size
override prefix on AMD processor, the formula is different. It includes now a final operation to only keep the
last 2 bytes. The following equation illustrates the procedure to compute the new address where to jump. Note
that OxFFFF represents a cast to only keeps the last two bytes of the resulting operation, as an AMD processor
does.

instruction_pointer = (address_of jump + size_of jump + sign_extended_displacement) & OxFFFF

Now, in the same conditions using a jump (base address 0x100000 and an inducted offset of 5 bytes) as the
one we use before, it will result in a jump at address 0x0008 on AMD processor. Details of the computation
are provided as follows.

0x0000008 = (0x100000 + 3 + 0x05) & OXFFFF
= (0x100008) & OxXFFFF
= 0x0008

Of course, the difference in interpretation, for the two processor families, of the same instruction can open
interesting possibilities. In addition to identifying the CPU family used in a precise way (other than with cpuid
instruction which can be handled in the case of an hypervisor), it can be used to try to fool a debugger.

Chapter 3 — Thesis manuscript — Page 106 on 619

3.2.2 Technical exploitation

Windbg is able to partially handle this kind of behavior. For instance, we will use a relative jump with an
operand-size override prefix and an 8-bits displacement (sign extended to 64-bits value) with the same charac-
teristic as the precedent example. Such a jump will be encoded "0x66 0xEB 0x05” and Windbg will give the
following interpretation (Figure 3.9).

88e07FF634111730 66 EB @5 jmp 2080000000001738

Figure 3.9: Correct interpretation under AMD CPU but misinterpretation on Intel CPU due to the prefix used.

We can see that the result is exact if we assume we are on an AMD processor. Moreover, whenever we exe-
cute it on an AMD processor, we are going to jump at address 0x000000000001738. The issue stands in the fact
that Windbg interprets this jump the same way it is interpreted on Intel processor. However, on Intel processor,
it is the first logic presented which is used for jump calculation. Indeed, when we execute the "0x66 0xEB 0x05”
jump on an Intel processor, we will jump at address 00007FF634111738 instead of address 0x000000000001738.
Thus, the correct interpretation that is expected from Windows, when running on Intel processor, is given in
Figure 3.10.

e8ee7/FF634111738 66 EB B5 jmp 2vea/FFe34111738

Figure 3.10: What will be executed on an Intel CPU with the provided opcodes.

This behavior also concerns any conditional jumps (Jcc instructions) also and it can be easily checked by
executing them. It is not a big deal since it does not change the expected execution of the process. But it
could lead to misunderstand the assembly code analyzed by the debugger. Even if this error will not impact
the functioning of the debugged processes, it could confuse the human person using Windbg to negatively affect
the analysis of the process.

This trick is not new by itself. This is one of the few about CPU differences we can find online, even on
Wikipedia [364]. Note that if the goal is simply to identify precisely the type of CPU on which malware is likely
to run, it is possible to refer to performance difference studies [365, 366, 367, 368] on a whole bunch of technical
characteristics.

3.3 Partial instruction prefix handling

Resume 16:

IZ" n this subsection, we show how to fool the disassembler of Windbg debugger by abusing of prefizes
for instructions.

3.3.1 Technical detail

All AMD64 and Intel64 instructions have a structured form which is described in the documentation of the
manufacturer: the Intel documentation [3]. An instruction is described as represented in Figure 3.11 below.
First, before the opcode itself, we find prefizes. These ones are used as an extended information provided to an
instruction. Usually, the main purpose of a prefix is to custom or repeat a specific instruction. In the area of
prefixes, we can split them in two different types.

The firsts are legacy prefixes used in x86 architecture to compute specific actions on instructions. One
instance is lock prefix which is used on certain read-modify-write instructions in order to prevent simultane-
ous access to the memory. A second one is the repeat prefix that causes string handling instructions to be
repeated. This last one is usually driven by the content of the rcx (ecx when using 32-bits architecture) register
to evaluate the number of times an instruction must be repeated. The same way, we can talk about branch

Page 107 on 619 — Thesis manuscript — Chapter 3

taken/not taken prefixes which give clues to the CPU to lessen the impact of branch misprediction. Another
one is the operand-size override prefix, which is normally used to switch between an instruction from 32-bits
to 16-bits operand. Finally, there is the address-size override prefix, which can be used in 64-bit mode to use
32-bit addressing memory.

The second type of prefixes is REX prefix. This last one has a particular encoding. In fact, unlike the
legacy prefix, this one is encoded using values from 0x40 to 0x4F range. Its lower nibble allows encoding several
properties that have two main purposes. The first is to allow 64-bits operand size on some instructions which
usually use 32-bits operand size. This is a smart way to extend existing opcodes from x86 to be usable easily for
x64 architecture. The second use is to access newly added registers in 64-bit mode (r8 to r15, xmm8 to xmm15,
ymm8 to ymm15, cr8 to crl5 and dr8 to drl5). In fact, the REX prefix could modify the initial behavior of the
ModR/M byte and SIB byte [369] to make them access new registers. But the REX prefix, despite being part
of the x64 instruction semantic and defined in the documentation, is still perfectly optional.

Then, it comes the remaining of the instruction encoding with the opcode itself which provides the real
meaning of the operation. Finally, the last bytes are about memory or register involved in the operation and
how they are involved.

lﬁreg;::cris pﬁgf}é{x Opcode MadR/M SIB Displacement Immediate
Grp1,Grp (optional) ~ 1-.2-.0r 1 byte 1 byte Address Immediate data
2,0rp 3, 3-byte (if required) (if required) displacementof of 1,2,0r4
Grp4 opcode 1,2,or4bytes bytes or none
(optional)

Figure 3.11: Illustration of the assembly semantic by Intel [3].

Even though the position of the REX prefix is defined, in Figure 3.11 extracted from Intel documentation
[363], between the legacy prefix and the opcode, it is not always encoded in such a way. Indeed, the REX prefix
property (64-bit instruction and access to new registers) will only be taken into account when it is right before
the opcode. However, there could have several REX prefixes mixed with legacy prefixes, as long as the total
instruction size does not exceed the instruction maximum size of 15 bytes [370]. One example of undocumented
use of the REX prefix can be seen in Figure 3.12.

Lock
(OxFO)

add word[rax], di
(001 0x38)

operand-size override REX
(OxGE6) (Ox48)

Figure 3.12: Illustration of undocumented use of REX prefix in assembly semantic.

In this example, we can see that there is a legacy prefix (lock) between the REX prefix and the opcode
(direct addition of a value stored in memory where its address is referenced via rax register). This lock prefix
is used for two main purposes. Firstly, it ensures that access to the memory is locked during the operation.
Secondly, the impact of the REX prefix is now disable and we can consider the 0x48 byte as irrelevant (sort of
transparent "nop” prefix, in a way). However, the operand-size override prefix is still valid and it impacts the
size of the operand. Thanks to the operand-size override prefix, the operation is using WORD (16-bit) instead
of DWORD (32-bit) operand size.

3.3.2 Technical exploitation

Nevertheless, Windbg does not handle this kind of use of the REX prefix correctly. Thus, for the preceding
example encoded ”0x66 0x48 0xF0 0x01 0x38”, Windbg is going to interpret it baldy, as given in Figure 3.13.

Chapter 3 — Thesis manuscript — Page 108 on 619

2ea7FF714821743 66 L
2eRa7FF714821744 48 L
B0087FF714821745 F@ @1 38 lock add dword ptr [rax],edi

Figure 3.13: Misinterpretation of code by Windbg due to REX prefix.

The correct interpretation (that will be executed at run-time by the CPU) would be about to accept the
REX prefix inside the instruction but to ignore its property and therefore the operand-size override prefix. Thus,
the correct interpretation of the instruction would be as given in the assembly code in Figure 3.14.

BB087FF714821743 66 48 F@ @1 38 lock add word ptr [rax], di

Figure 3.14: The code provided in figure 3.13 should be interpreted like this one.

This, behavior — which also concerns GDB [207] debugger — allows shellcode to be potentially unreadable
by Windbg when they are analyzed. In fact, it would be very easy to abuse the use of useless prefix in order to
disturb the use of Windbg and GDB or any vulnerable debugger. Indeed, we can easily force Windbg to wrongly
guess more than half of the opcodes bytes used in a single instruction. Thus, it would be very troublesome
to analyze assembly code for human readers while preserving the correct behavior of the code executed by the
CPU.

3.4 Unsupported instruction

Despite the fact that most of the AMDG64 instructions are well documented, some instructions are not. These
instructions are not documented for two reasons. The first reason is that they could be used internally by Intel
or AMD for their own purposes. The second reason stands in the fact that they could create new instructions in
the future. In order to keep these instructions work on former processors, they assign them at nop (no operation).

In consequence, it could be complex to handle every single instruction. In that respect, there is not a lot of
tools able to handle all possible instructions. Indeed, radar2, GDB, x64gdb as well as Windbg [206, 207, 371, 209]
do not manage all instructions. For instance, there is a NOP encoded OF 19 /r* that Windbg does not handle
correctly. This one, encoded with any register selected, should be observed in a debugger as a regular nop, as
given in Figure 3.15.

eaee7FreC21Al 43 8F 19 37 NOP

Figure 3.15: Unsupported instruction should be interpreted as a nop.

In fact, Windbg is totally lost when it meets this instruction and it describes it as something entirely differ-
ent, as we can see in Figure 3.16.

eaaayFFeC21A1IT43 BF r 22
92Ra7FFEC21A1744 19 37 sbb dword ptr [rdi],esi

Figure 3.16: Unsupported instruction is not correctly interpreted by Windbg which tries to provide an irrelevant
meaning to it.

Moreover, Winbdg, like IDA, radar2, GDB and x64dbg, only partially checks the cpuid instruction of the
processor before disassembling and debugging. It means, they do not take into account the exact features sup-

4http://ref.x86asm.net/coder32.html#{}x0F19

http://ref.x86asm.net/coder32.html#{}x0F19

Page 109 on 619 — Thesis manuscript — Chapter 3

ported by the CPU of the machine they are executed from. Thus, when Windbg faces Intel MPX instructions
[372], it always describes them as if they were supported on the current CPU, even if the CPU does not support
them. It means that the debugger tries to interpret them even if such instructions behave as NOP or invalid
instruction when they are not supported. This is a disadvantage since the debugger is describing a reality that
is quite different from the one perceived by the program currently debugged on the machine. The debugger is
interpreting its own reality, not the one of the current CPU about the execute instruction from the process the
debugger is attached to. The Figure 3.17 shows an instance of such Intel MPX instruction not supported on
our CPU (AMD Ryzen 7 1800X).

text:0000000148011812 F3 @F 1A @@ bndcl bnd@, gword ptr [rax]

Figure 3.17: Instance of unsupported CPU instruction interpreted as nop.

This reality is also true for the IDA software [373], which decompiles everything it can. It should be noted,
however, that IDA is not just only a debugger and that its role is first and foremost to disassemble. Thus,
having the ability to interpret instructions that the CPU of the host machine cannot execute is not a bad thing
in itself, even if IDA might highlight in a better way the fact that some instructions are not supported on the
host machine.

In a more general way, a good remediation would be to take into account the information from the current
CPU to determine on which architecture the debugged program is running. This is true for debuggers who are
required to execute code on the machine on which the targeted program is running (the case of the network
debug procedure [374] aims to identify the remote hardware in the same way). The case of static analysis tools
such as IDA is more complex. Indeed, they may have to evaluate binaries that are not supported by the CPU
architecture of the current machine.

3.5 Conclusion about exploiting of Windbg flaws

This section aims to present bugs, mainly in Windbg debugger and to explain how to exploit existing generic
vulnerabilities in debuggers to evade Windbg. More than the result about vulnerability exploitation, the method
presented and used here is sufficient to allow some kind of bugs or misinterpretations in a debugger to be ex-
ploited by a malware. The goal for malware is to avoid detection when it knows it is currently executed in
an analyzed environment. The method provides such an opportunity for malware. Otherwise, it is possible to
complicate the analysis task by human using debugger tools by the use of misunderstand specificities between
different architectures of different processors. Debuggers, since they allow to find bugs in software or to analyze
malware, should be reliable, efficient and accurate. Otherwise, the trust between the analyst and the tool could
be broken, complicating much more the work of analysis.

Our study has been mainly focused on Windbg since it is one of the most famous debuggers and one of the
most largely used by malware analysts. All the tests reported here have been driven on third party debuggers
with the results provided in the table below. The main conclusion is that there is no debugger definitely perfect
and that all of them could improve their software in order to provide a much more accurate result. Note that,
we have contacted Microsoft the 13/06/2019 and the 23/07/2019 to inform them about troubles in Windbg.
After acknowledging receipt of emails and forwarding them to the appropriate person, we had no further news.
Of course, bugs are always present and they are still exploitable. The disclosure time elapsed from a long time,
this is why we publish them.

In addition to Microsoft with Windbg, all the possible bugs exploitation reported in this paper have been
submitted organizations responsible to develop debuggers. The main recommendation is to fix disassembling
issues and to use cpuid instruction check so that the debugger knows exactly on which architecture it is running.
Such a way, it could be able to calibrate efficiently the methods it uses to perform the disassembly operations.
In addition, a better implementation of debug break management for Windbg is strongly recommended so that
it is not exploitable by malware.

Chapter 3 — Thesis manuscript — Page 110 on 619

Windbg IDA Radare2 GDB x64dbg

Manage Rex No Yes Yes No Yes
Manage int 3 No Yes Yes Yes Yes
Manage AMD specific instruction Yes Yes No No Yes
Manage CPUID No No No No No
Manage undocumented instruction Partially Yes Yes Partially Yes

Finally, this study could be continued by the test of new instructions provided by last generations of CPU
on the market in addition to other old ones, kept for backward compatibility purposes. Checking the differences
between what the debugger expects and the reality of process execution is always a good way to find tricks to
detect or evade debuggers.

Page 111 on 619 — Thesis manuscript — Chapter 3

4 New universal dynamic analysis evasion technique

BZ” This section presents an original and universal method to detection automated dynamic analysis
environment (both manual and dynamic).

4.1 Introduction

Regardless of the analysis method used to try to understand a given piece of software (which could be malware
or not), there is no generic method to know whether or not if a code is under analysis. There are disparate
techniques (as presented in section 2) that often need to be combined to achieve appreciable results (section 2.4).
But for each of them, there is more or less an effective way of countering it. The idea of this paper is therefore
to present a new technique that allows both to detect all analysis environments, but also to offer a certain
robustness against counter methods.

4.2 Preliminaries

Key Point 3.9:

BS" Technically speaking, there is no unique method able to generically evade from all analysis envi-
ronment.
#5 Most of the methods are specific to a given environment.
#£5 Malware need to chain different methods to detect different analysis environments.
#5 Providing a universal method able to evade from many analysis environment would be a hit.
IS" Tn addition to debuggers (manual dynamic analysis environment) and virtual machine (automatic

dynamic analysis environment), we add a new type of tool called Dynamic Binary Instrumentation
(DBI).

#5 Such a tool can be seen as an automatic debugger, programmed to debugger automatically a
given sample.

#5 Tt is generally used for vulnerability investigation but also as automatic dynamic analysis
environment with malware.

Escaping automated dynamic analysis is a notion that concerns several kind of tools. As explained previ-
ously, there are several kind of tools, including debuggers and sandboxes. In the context of sandboxes, as given
in section 2.3.1, there are hypervisor also known under the name of Virtual Machine (VM) used to execute a
given executable file in a controlled and closed environment. More directly, VM tries to look very much like a
real environment to allow normal execution, there are subtle differences. But we can include another type of
analysis tool called Dynamic Binary Instrumentation (DBI) framework.

Detecting a debugger for an analyzed process is a complex operation detailed in section 2.2. From simple
(and highly used) techniques involving Windows’ API to detect a debugger [375, 376, 377], Also, there are
advanced methods to perform detection of debuggers without using a given API from the system [378, 379].
In addition, there are more complex methods exploiting flaws or unexpected behaviors inducted by such tools
[175] as given in section 3. But these techniques are inherently limited since debuggers are powerful control
tools which are often deployed on systems in which analyst has full control. More precisely, this means that
once the detection trick is known, it is thus possible to control it and ultimately to turn it off. We can think
about variables from API updated on-the-fly via hooked API methods [380, 381]. It is therefore very hard to
counter a debugger on a technical detail.

Regarding Virtual Machine, there are a lot of tricks to detect it, as given in section 2.3. In addition, public
projects like Pafish [324] or Al-Khaser [382] provide operational example of codes. They both propose a great

Chapter 3 — Thesis manuscript — Page 112 on 619

number of tricks to detect they are running in a virtualized environment. From the use of obvious tricks to
detect hypervisors which are badly disguised [383], the methods used are inherited from early research when
Joanna Rutkowska published her work at Black Hat conference in 2006 about a project called Blue Pill [384].
During her talk, Joanna Rutkowska claimed that her method would be ”100% undetectable”. But researches
showed it could be detected by different means [385], including one from Joanna Rutkowska herself called Red
Pill [386]. Further researches have been conducted to develop different means of detection [387, 388, 389] (based
on time elapsed by VMEXxit, for several of them), including original ones [390]. But the methods of detection
can be prevented by using specific techniques from hypervisors [391] or by optimizing VM or with stealth hy-
pervisor [392; 343].

The case of the DBI is a bit different. This one is a sort of automatic debugger, driven by a program, able
to analyze efficiently and automatically a target executable file. In a way, it can be seen as the intermediate
tool between the debugger and the VM (although in practice it shares more with a debugger than a VM). Note
that in addition to execute the targeted code in a controlled environment, a DBI has the possibility to perform
additional operations clandestinely alongside regular program execution. It means that between the execution of
two code segments (code segments split with an arbitrary size: per instruction, per basic-block, per function...),
it has the possibility to execute a specific code. In this additional code, it is possible to perform any analysis
task, including malware analysis for DBI tool. It is also on this last type of analysis tool that we are going to
test our research.

Since DBIs were not mentioned in our state of the art given in section 2, it may be appropriate to explain
a bit about the background of DBI tools in an initial statement. The latter will be reinforced later with the
specific part about the case of DBI.

The evasion techniques presented are usually used to detect a specific type of analysis environment. Their
detection methods are far from being generic. In fact, in an operational context, it is required to use different
tricks for different purposes. Pafish [324] or Al-Khaser [382] projects are a good illustration of different tech-
niques grouped in a single project [391]. This strategy of detection guesses that one system can handle some
detection tricks and not all of them. But this hypothesis is far from being accurate in practice. Technically
speaking, it is a kind of race between detection and countermeasure. This is one of the main drawbacks of
existing techniques of analysis environment detection. They are unreliable over the time. Thus, having an
effective and generic method — capable of being effective over time — would be an important contribution.

The new detection method presented in this section is not subject to the previously stated problem. This
one aims to be generic and hard to prevent despite the knowledge of mechanisms used to perform the detection.
It is based on uncovered behavior of cache of CPU from Intel and AMD vendors.

4.3 Method of detection

IZ” This section presents our detection method.

£5 Our method is based on an undocumented extend from a method to cross-modify code between
two threads [4].

#£3 We explain how to exploit this cross-modifying code to perform a detection, based on what
we suppose to be the cache actualization time-lapse.

Page 113 on 619 — Thesis manuscript — Chapter 3

4.3.1 Where the idea came from

Key Point 3.10:

B2” In the Intel documentation, it is written how to correctly implement certain procedures so that
everything works as expected.

£5 The good question is to know what would happen if these procedures are incorrectly imple-
mented...

#£5 We are exploiting here the side effects and undefined behaviors in the Intel’s documentation.

B5” One relevant mechanism to exploit concerns cross-modifying code between two threads.

Formally speaking, our new method is based on two threads performing cross-modifying code between each
other. The idea came after reading Intel’s documentation [4] which describes how to perform such operations
(figure 3.18). Extract from the documentation below explains how it is possible to update code from one thread
to another.

To write cross-modifying code and ensure that it is compliant with current and future versions of the IA-32 archi-
tecture, the following processor synchronization algorithm must be implemented:

(* Action of Modifying Processor *)

Memory_Flag « O; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;

Memory_Flag « 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag = 1)
Wait for code to update;

ELIHW;

Execute serializing instruction; (* For example, CPUID instruction *)

Begin executing modified code;
(The use of this option is not required for programs intended to run on the Intel486 processor, but is recommended
to ensure compatibility with the Pentium 4, Intel Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance than non-cross-modi-
fying (normal) code, depending upon the frequency of modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the Intel 64 architecture.

Figure 3.18: Extract from Intel documentation [4] explaining how to perform cross-modifying code between two
threads.

In Intel’s documentation, one execution unit is called "processor”, but we propose to keep the word "thread”
in the rest of the section since it is the most commonly used word in operating system world for different archi-
tectures. However, we should keep in mind that the two "threads” must be executed on different logical cored
from the CPU. For the sake of simplicity, we call modifying thread the one responsible to modify, on-the-fly,
the code (composed of opcodes) which is about to be executed by the executing thread. Note that the method
could be used in the context of more than two threads with different graphs of representation with modifying
threads and executing threads (with hybrid approaches where modified thread can be a modifying thread too).
Such constructions are direct consequences of the approach we have with two threads.

For short, the method presented by Intel consists in locking the executing thread to subsequently modify its
opcodes by the modifying thread. The lock mechanism is described through a while loop spinning on a memory
flag value. Technically speaking, this loop can be seen as a spinlock [393]. Once modifications are done, the
modifying thread unlocks the executing thread thanks to the spinlock mechanism. After that, the executing

5Note that the word ”task” although used in Intel’s documentation might have suited the situation perfectly. But this one is a
bit less used in operating system world and it would not have suited the implementation of code example provided in the following
to interface with API from Windows and Linux.

Chapter 3 — Thesis manuscript — Page 114 on 619

thread executes the modified code. More than trying to reproduce this algorithm, we wondered what would
happen if the proposed steps were not followed. Especially if we do not respect the synchronization mechanism

proposed here.

4.3.2 Detection mechanism

In our case, we decided to synchronize the threads before the code modification (see Figure 3.19). More directly,
we are going to remove the spinlock (before modifying opcodes). By swapping these two steps from Intel’s proce-
dure, the code modifications are not taken into account by the executing thread. Indeed, the spinlock removed,
the original following opcodes are executed long before the modifications made by the modifying thread are
visible to the executing thread. It is always the case on a real hardware system.

Intel cross-modifying code procedure

Action of Modifying thread Action of Executing thread
A Write modified code | | While(Sync==0); l
/
|
[A Sync=1 | Begin executing modified
[code;
T

Our cross-modifying code procedure

\ Action of Modifying thread Action of Executing thread

| * Sync=1 | | While(Sync==0); ‘

M Write modified code | Begin executing
unmodified code;

Figure 3.19: Intel’s cross-modifying code procedure.

The explanation of this observation lies in the way that the CPU’s cache works. Indeed, mechanism of syn-
chronization before opcodes modification is presented in the Intel’s documentation [4] for at least two reasons.
First, it ensures that the operations performed by the modifying thread are finished before letting the other
thread running. Secondly, it allows the cache to be synchronized correctly between the two threads which are
working on different CPU’s cores. Thus, the illustration of our method presented in Figure 3.19 is not actualized

because the cache may not have sufficient time to synchronize.

Therefore, it becomes interesting to understand how the executing thread can take into account modified
opcodes from the modifying thread. If we increase artificially the execution time between the synchronization
spinlock and the spot where modified opcodes are supposed to be executed, it is possible to observe the execut-
ing thread executing modified opcodes, instead of original ones. Indeed, the CPU’s cache has a large enough

time-lapse to perform an update (Figure 3.20).

The question is about to know how analysis environments manage such case of opcodes modification, taking
into account that our method cheerfully transgresses official Intel’s documentation procedures. Indeed, there
is no official way to manage this behavior, since nothing has been officially documented by Intel about these
special circumstances. In addition, by design, analysis environments increase generally execution time of any
code. And this the main problem we are facing. Since the execution time is different and longer than without
analysis environment, the cache is updated. It means that modified opcodes are executed even if they should

not be executed in a real environment.

Page 115 on 619

— Thesis manuscript —

Chapter 3

Action of Modifying thread

Action of Executing thread

‘ Sync=1 ‘

While(Sync==0);

Store modified code (as
data) into code segment;

Execute lots of things
which do nothing (nop)

Begin executing modified
code;

Figure 3.20: Modified cross-modifying code procedure.

By consequence, our detection method is based on watching if there is any delay in the execution of modified
opcodes by the executing thread. The watch is performed via the check on the result of the operation modified
(or not) after synchronization spinlock has been released. If the result corresponds to original opcodes of the
modified thread, it means that nothing delayed it or updated the cache. If the result is different from original
opcodes, it means we are dealing with an analyzed environment (see Figure 3.21).

Action of Modifying thread

Action of Executing thread

[Sync=1 I |

While(Sync==0);

[Write modified code I

yes

¥

Something
unexpected delayed
the execution

Begin executing modified
code;

no

Begin executing
unmodified code;

Figure 3.21: Basic detection mechanism

Chapter 3 — Thesis manuscript — Page 116 on 619

4.3.3 General resume

IS” We explain in this subsection how to incorrectly manage cross-modifying code between two threads
to design an analysis evasion mechanism.

#5 The main idea is to not respect Intel’s requirements about synchronizing cross-modifying code.

#3 We expect that the cache system used to execute instruction quickly by the CPU will not be
correctly updated on a real machine (due to a short timing attack).

#5 But in an analysis environment, things are going slower than a real one. And cache update
can occur automatically — thanks to the design of such environment — where it should not
happen on a real environment.

#5 This is how we build our evasion technique.

\. J

Our technique is based on the difference of cache refreshment between execution on regular hardware without
any analysis environment (ie: software in between the CPU and our running code). In a general environment,
the behavior can be seen as given in the time-line provided in Figure 3.22. This illustration aims to describe
step-by-steps the different changes and interactions between the modifying thread and the executing one. In
green, we have represented the current step currently executed by a given thread at a given moment.

Execution in a normal environment

Write new code >

The two threads are
synchronized

L

| while(sync == 0) I—P[mov eax, 0

Write new code

Modifying thread is
writing code to modified
thread but it is not

| while(sync == 0) I—b[mov eax, 0 updated from cache.
Write new code ——

il

Latter, cache’s

ST) . Update cache modification
- happens.
| while(sync==0) l—->| mov eax, 1 — PP

Write new code o .] Modified thread has

not executed

| while(sync == 0) '—>| mov eax, 0 modified code.

Figure 3.22: Regular execution of our method without analysis environment.

i

In the case of Figure 3.22, we can see that once the spinlock has been released by the modifying thread, the
executing one is about to execute the following opcodes long before the modification of opcodes is performed and
long before cache refreshment updates opcodes of the executing thread. Speed and timing are key concepts here.

When we are dealing with an analysis environment, execution is quite different. There is time between the
release of spinlock and the actual execution of following opcodes. This time-lapse allows the modifying thread
to change the following opcodes of the executing thread. More than just changing them, there is enough time so
that the CPU’s cache is updated, allowing modified opcodes to be executed. This is illustrated by the time-line
given in Figure 3.23.

Page 117 on 619 — Thesis manuscript — Chapter 3

Execution in an analyzed environment

Write new code I

The two threads are
synchronized.

I while(sync==0)]—-| Unexpected time l—»l mov eax, 0 H
Write new code }

Modifying thread is
writing code to
modified thread.

| while(sync==0)]—-| Unexpected time I—»I mov eax, 0 H
Write new code }

T ==

- Update cache

| while(sync==0) }—~| Unexpected time |——~| mov eax, 1

Write new code I
| while(sync==0) }—-I Unexpected time |—>| mov eax, 1 H

Figure 3.23: Execution of our method on an analysis environment.

Latter, cache’s
modification
happens.

it g

Modified thread
executes modified
code.

Contrary to a regular environment, opcodes modified are executed by the executing thread. It results that
the behavior produced on the executing thread is different to the one observed on a real environment. This
difference is enough to build a detection method. More than just returning true or false about detection, it
allows a full conditional modification of the following code, depending if we have detected that our executed
code is under analysis or not.

Note that this operation must be performed by at least two different threads running in a real parallel
environment. Pseudo-multitasking is not enough to execute correctly our method. In fact, due to the different
cache’s rules of the pseudo-multitasking mechanism, applying our method on a single CPU would trigger false
positives. Our method needs to run on two different cores to be efficient.

4.3.4 Implementation

Implementation of the code is quite simple and it does not require specific skills. A version written in C and
assembly code for Windows is provided to easily build shellcodes (but it can be easily adapted to be running
on Unix operating system). This one is given in codes 3.3 and 3.4. The code 3.3 is written in C to launch a
dedicated thread (with CreateThread function [259]) holding our detection method after changing the rights of
a memory page (with VirtualProtect function [394]) to "read-write-execute” the modified page where the original
code belongs.

HANDLE hThread;
4| DWORD oldProtect;

// Change the page’s rights to allow both execution and writing
if (VirtualProtect (ModifiedThread, 100, PAGE_EXECUTE_READWRITE, &oldProtect) == 0) {
q return -1;

}

// Create a new thread able to modify the code to execute
14| hThread = CreateThread(NULL, O, (LPTHREAD_START_ROUTINE)ThreadWhichModify, NULL, 0, NULL);

Chapter 3 — Thesis manuscript — Page 118 on 619

if (hThread == NULL) {
19 return -1;

14

14| // Execute the function that is modified and display its result
printf ("%d", ModifiedThread());

//Restore the right of the page
2| VirtualProtect (ModifiedThread, 100, oldProtect, &oldProtect);

24| return 0;

Code 3.3: Launch of the detection procedure in a dedicated thread (Windows).

The assembly code 3.4 holds the ModifiedThread function we use for detection. This one is written such
as it both works on a 32-bit (x86) and a 64-bit (x64) CPU. For the sake of completeness, it can be assembled
using NASM assembler or MASM assembler with few modifications. That one first sets both “Synch” and
“codeToModify+0x01” values to one. The first is used to wait until the modification of the current code is
actualized (wait operation is performed with the couple of cmp and jz instructions). The update procedure of
the opcode at offset +1 from codeToModify is used to change a "mov eax, 0” to a "mov eax, 1” instruction. This
way, the function returns 0 or 1, depending if the update has been clearly taken into account. Note that "Synch”
value is held in .data section while codeToModify value is directly in the body of the function (as a regular
opcode). We expect a difference of synchronization between the .data section and the self-modifying memory
code page to allow the detection of an analysis environment.

GLOBAL _ModifiedThread
4| GLOBAL _ThreadWhichModify

section .text ; makes this executable

o

_ThreadWhichModify:
mov byte[rel Sync], 1 ; Synchronize the thread, but to early
£ ; 1n order to exploit the FIFO
; property of the processor cache.
10 mov byte[rel codeToModify + 1], 1 ; Transform ’'mov eax, 0’ into ’‘mov eax, 1’/.
ret
12
_ModifiedThread:
14 cmp byte[rel Sync], O ; Wait for synchronization.
jz _ModifiedThread ;

14
; If a DBI is here, or a debug breakpoint, the detection is about to success.
14 ; In order to detect VM, we should add several CPUID here (depending on the CPU).

2 codeToModify: ; 0B8h is the opcode for mov eax, imm32,
; where imm32 is 0 in our case.
24 db 0B8h, 00h, 00h, 00h, 00h ; mov eax, 0 —-> about to be modified in mov eax, 1

24 ret
2d| section .data ; Makes this writable and ensure

; 1t is not in the same memory page
BE ; than the code above.

Sync : db 0

Code 3.4: Assembly code holding the detection procedure.

For the sake of reproduction, a complete version of the project can be found in the following github link:
https://github.com/fplu/Detector. This project gives full sources for the tool able to run on Windows
and Unix operating systems. There is no real difference from the algorithmic point of view between the two
operating systems. The only difference lies in the API they are providing to change memory rights. This project
allows everyone to verify the veracity of our assertions since there is nothing complex about recompiling these

https://github.com/fplu/Detector

Page 119 on 619 — Thesis manuscript — Chapter 3

codes and executing them in an analysis environment, as described in this section. There is no need for a
dataset, just to install the analysis environments.

4.4 Detection of analysis environment

I¥" In this subsection, we propose to test our method on three different analysis environment (DBI,
Debugger and virtual machine).

#£5 We present what the Dynamic Binary Instrumentation (DBI) is, how it works and a state-of-
the-art (similarly to the one given in section 2) about DBI evasion methods.
#£5 We show that results of evasion by our method on debuggers and DBI is at 100 %.

#5 We show that results of evasion by our method on virtual machine environment is probabilistic
but close to perfection with correct calibration for a given CPU.

\. .

We tested different DBI frameworks with our method compared with an environment where there was no
analysis tool. Indeed, since our detection method is based on the delay of cache actualization to execute opcodes
modified by another thread, it is possible to detect different analysis environment since all of them potentially
induce time between execution of different opcodes. We are able to detect, several kinds of tools: Dynamic
binary instrumentation (DBI) framework, debuggers and virtual machines (VM).

For our tests, we created a small software program that uses our new detection method. This one is common
for both DBI and debugger environments. The case of VM detection requires to add several CPUID instruction
to force a cache synchronization but the logic remains the same. This evaluation software, when executed in a
clean environment displays 0 on the screen if it does not detect any analysis environment. Otherwise, it displays
1.

4.4.1 Dynamic binary instrumentation framework

BZ" In this subsection, we present what a Dynamic Binary Instrumentation is, how it works and why
it is vulnerable to our evasion method by design.

4.4.1.1 Introduction about DBI technology

One of the categories of tools we detect is the Dynamic Binary Instrumentation (DBI) framework. The
goal of this kind of tool is to be able to make an automatic and detailed analysis of different thread in a target
process. In order to achieve this goal, they can put hook everywhere in the target process, including between
instructions. Such design implies to strongly modify the execution of a program by editing the entire code
running, on-the-fly. For the sake of simplicity, depending on the hook granularity provided by the DBI frame-
work, it is possible to monitor specific instructions, block of instructions or functions. In a way, we can talk
about basic blocks and the granularity of the partitioning of these basic blocks. This is done by a permanent
alternation between code executed by the DBI and code executed by the original process. All this context
switching (notwithstanding the inducted amount of code executed) increases the execution time compared to a
regular execution in a clean environment.

Why focusing on DBI? De facto, DBIs are only automated debuggers. More directly, they have the same
capabilities as debuggers (step-by-step execution, directly on the CPU of the host machine) but they do not
require human interaction, in the sense that they are programmed to react automatically where a human was
required with a traditional debugger. This allows to gain speed and therefore increasing analysis capacities.
Originally, DBIs were — among other things — mostly used to search for vulnerabilities [395, 396, 397]. Of
course, this type of tool is especially useful when it comes to analyzing potential malware [398]. It combines the

Chapter 3 — Thesis manuscript — Page 120 on 619

qualities of a debugger while minimizing human work. Literature references many projects about it [399, l.
Note that DBI can be used in conjunction of hypervisor, to benefit from both world (DBI for analyzing smoothly
what is happening on a given process and the hypervisor (VM) to contains potential damage produced by the
malware). For instance, in [101], the goal is to bridge the automatic and manual analysis processes. That
is to say, to offer an environment where dissection can happen without incurring the anti-analysis hassle and
benefit from capabilities missing in previous approaches, e.g., stealthy instruction patching, cloaking of tools,
and surgical use of program analyses.

If analyses can be performed in the context of a DBI, it makes sense for malware vendors to develop strategies
to evade them [402, , , 405]. In [403], authors have performed an impressive state of the art on the various
evasion strategies in the context of a DBI analysis. Their study is based for a good part on the work of [105]
who had realized a similar state-of-the-art about the different techniques used to escape to DynamoRIO [69],
while proposing tracks of remediations as well as the possible consequences to see implemented these solutions.
The contribution of [103] consists in generalizing the state-of-the-art about DBI evasion and escape problems.
This one has been extended to other DBI (in particular Pin) where attack surfaces, transparency concerns, and
possible mitigations have been evaluated. Finally, a library of detection patterns and stopgap measures has been
presented in this paper for DBI users.

We find DBI tools on different CPU architectures (Intel, AMD or ARM [106], for instance). There are
different methods to design DBI [407] which implies different performances [108] and different methods to
detect them. Kirch et al. [102] give many description of different DBI detection techniques. These techniques
have been grouped and sometimes improved by Zhechev [104,]. An efficient one is about self modifying
code based mainly on work from Mario Polino [410]. Zhechko [404] presents a tool called PwIN to detect with
different methods Intel Pin DBI [68, 411]. But there are some methods which are specific to few DBI tools [412].

4.4.1.2 Technical elements to perform DBI detection

Without pretending to be as exhaustive as given in [403, ,] but based on their work, we propose
to evoke here a synthesis of various existing techniques allowing to detect DBI and how to possibly avoid such a
detection. In practice, there are several possibilities to carry out such an action. The attack surface is composed
of different elements:

e Time overhead: Because a DBI needs to decompile, translate, and instrument the original instructions it
traces introduces an inevitable slowdown in the execution comparing to an execution without the DBI.
The overhead inducted by a DBI is not easy to hide and it can easily measured® not to mention any side
effects in consequence to time changes about time-sensitive code. A solution can be about faking the
results of time queries from different sources (API or instructions) [410]. But at the difference with virtual
machine sandbox where it is possible to master time sources, in the context of the DBI, this operation is
much more tricky. In the end, a malware could always query other processes not running under DBI or
external attacker-controlled time sources, as a web-server.

The best solution is perhaps to have a DBI as efficient as possible, in order to minimize the impact produced
(and to postpone malware analysis once the information has been captured by the tool and not at runtime).

o Leaked code pointers: Since execution is instrumented in the context of the DBI, there is a decoupling
between the real instruction pointer and the virtual one exposed to the analyzed code. Under some as-
sumption, there are two famous ways to get access to the real instruction pointer for an analyzed code.
One is about special x87 instructions that are used to save the FPU state: fstenv and fsave [413]. These
instructions keeps a structure in memory where one field holds the instruction pointer value for the last
performed FPU instruction. The other way is in 32-bit Windows version with int 2Eh instruction. That
one is normally used to enter kernel mode on such systems. But, by clearing eax and edx registers before

SWith the same logic and possibility the same API as presented in section 2.2.4 with timing-based fingerprinting techniques.

Page 121 on 619 — Thesis manuscript — Chapter 3

invoking it, the real instruction pointer address (eip register) is leaked to edx [410].

The solution to both cases is to act when the DBI is about given the hand to a section of code containing
such instructions. By decompiling and patching both instructions, it is possible to handle it correctly. Of
course, it increases the overhead DBI framework.

e Memory contents and permissions: In a lot of architectures of DBI, both DBI engine and targeted code
share the same address space without a perfect isolation. By looking in the the address space for additional
sections or unexpected exported functions from non analysis run-time, it is possible to detect the DBI
[413]. In addition, memory consumption is higher than without the DBI because of the use or extra-code
to drive the DBI analysis. In the end, some memory rights (page execute, read-only, ...) are not perfectly
handled by DBI [414, 102]. This last point is usually to allow programs like Just-In-Time compilers (JIT)
to be executed correctly. It is a kind of compromise between an efficient (and therefore relatively fast)
execution and a certain freedom offered to the instrumented process.

This is why there is no simple solution dealing with such issue. On the first hand, checking all memory
accesses would solve the evasion problem but the cost in performance would be dramatically high. On
the other hand, solutions based on underlying hardware such as non-readable executable memory (XnR)
[115] or thin-hypervisor solutions based on Eztended Page Tables (EPT) technology. But such solutions
are nowadays quite experimental.

e DBI engine internals: Since all thread are sharing the same address space, it may be relevant for each
thread to get access to a unique data spot, accessible using a global index. Such a place is called Thread
Local Storage (TLS) [116,]. The problem is that very frequently, in order to have a tight management
for each thread, DBIs monopolize some entries in the TLS [118]. By trying to check if a slot at an unex-
pected index is already reserved or by trying to allocate all, a malware could detect the presence of the
DBI. With comparable logic, a DBI may legitimately need to know when a thread is about to be created
by a process, just to be able to follow it. To proceed, the DBI often hooks” [419] certain functions of the

0S8 [110].

In practice, there is no real perfect solution here. On the one hand, apart from trying to do without TLS
(by using an ad-hoc system that mimics TLS’ properties), there is no solution. On the other hand, we
can try to hide the hook procedures by controlling the memory accesses (at the cost of an important per-
formance loss) or to control the actions from a driver (via PsSetCreateThreadNotifyRoutine routine [120]).

e Interactions with the OS: DBI acts at the same level as analyzed process, in an identical environment.
In fact, they have the same rights since they are usually part of the same process. This means that a
malware can try to detect them through the operating system. And all shots are allowed. Looking for
the parent process [113,], listing all active processes to reveal Pin or DynamoRIO, checking handles
[421] list available for objects (files, registry keys, and so on) manipulation (more or less handles could be
present, not to mention that some of them can have a name in full-text, formally identifying the process).
More generally, any tricks provided in sections 2.2.5 2.3.4 seem to be good candidates to attempt an escape.

To avoid such issues, for instance, DynamoRIO intercepts memory query operations about to access its
own code to make believe that areas are free [105]. Concerning the interface with the rest of the system,
it is a subtle mix of very targeted hooks on some sensitive APIs or the use of a driver whose goal is to
use rootkit techniques to hide the critical parts of the DBI. This is a reminiscent of a game of cat and mouse.

e FException handling: As explained in section 2.2.4, SEH Exception handling [240] can be very useful for
evasion tactics. The same way, DBI needs to handle such exception handler carefully. Indeed, if a caught

"For short, a hook gives access to a targeted function before (or after) that one is about to be called by a another function.
This can be done with several means, more or less discreetly, more or less efficiently.

Chapter 3 — Thesis manuscript — Page 122 on 619

exception occurs, the DBI must be able to follow the execution of the handler function (the except section
of the try/except). This operation is far from being obvious since exception handling mechanism is passing
through kernel management thanks to software interruptions. The DBI lost the hand for a little time-slice
and the goal is to get it back before the analyzed process. Internally, it supposes to hook undocumented
function such as KiUserExceptionDispatch from ntdll.dll in Windows. Few DBI are able to do it correctly
since it is not a classical function and managing it correctly might induce a higher runtime overhead.

o Translation defects: To work properly, a DBI generally needs to be able to disassemble on-the-fly the
instructions it is going to execute from the analyzed code. For instance, the enter instruction that is not
implemented in Valgrind [402]. This may be justifiable because some instructions are rarely used or they
are too intrinsically challenging for DBI to be perfectly handled. For instance, far-jump® instructions or
any transition from 64-bit mode to 32-bit mode by altering the CS selector (sometime called ”Heaven’s
gate code” [403]) [422] can be impossible or highly limited with some DBI (for instance Pin).

In the same way as in section 3 where we presented the exploitation of flaws in the reliability of the
disassembler, the fact of badly disassembling or badly handling instructions obviously leads to potential
evasions. Beyond this assertion, it may be possible to justify theses issues. On the first hand, imple-
mentation gaps can be explained because of architectural issues (such as with transition from 64-bit to
32-bit mode) and in such a case, it is a known limitation. On the other hand, this issue can be fixed with
extended features. On the other hand

e Self-modifying code: Self-modifying code (SMC) is always a problem for DBI. Why? Because often, for
optimization purposes, instructions cached by DBI means there is code that has already been executed
and which will not be re-evaluated by the disassembly procedure by the DBI. This is a very significant
performance gain. But if a code modifies an already executed section of code, it becomes possible to
escape. Worse, if the code self-modifies a small enough portion?, then it becomes possible to completely
escape the DBI without even having to attack the cache system. In 2010, Martignoni et al. reported: "the
presence of aggressive SMC' prevents the attacker from using efficient code emulations techniques, such as
dynamic binary translation and software-based virtualization” [123].

The case of dealing with SMC is highly complicated for DBI. DynamoRIO handles it correctly, while Pin
provides a strict SMC policy option to deal with such cases from its 3.0 release [411,]. Such an optional
switch is possible at the cost of an increased overhead about performances.

4.4.1.3 Particular case of self~-modifying code for DBI

As explained before about SMC, DBI tools need to face the case of execution of Just-In-Time (JIT) com-
piled code. Used by .NET technologies [124] and others, JIT technology represents a great challenge for DBI
which have to deal with code coherency while keeping strong execution performances. Indeed, a modification
of an executable buffer at running time is translated by the DBI to be correctly handled by itself, but there
is no correct way to simulate the cache refresh of such procedure by the DBI. Either the DBI lets the cache
of executable buffers being refreshed by themselves, but the charge of code inducted by the DBI offers quite
a big time-lapse to update the cache compared to a real environment. Or they reproduce modification when
asked and they have to manually deal with the flush of the cache to allow consistency of execution. It means
that the modifications of opcodes are propagated instantaneously from the eyes of the executing thread which
is targeted by the modifications.

In all cases, modified code does not become effective the same as way in real environment. It is very hard to
mimic the real behavior of cache actualization since it is not documented by CPU vendors. It could be possible
with calibration tests. However, this is far from being obvious in the context of multiple threads. Another
solution would be to not take into account JIT code, as some DBI do and an easy way to escape them. But it

8 A far-jump is a jump to an instruction located in a different segment than the current code segment but at the same privilege
level, sometimes referred to as an inter-segment jump.
9The size of a basic-block if the execution granularity is this one.

Page 123 on 619 — Thesis manuscript — Chapter 3

would result in a large break of support for a lot of applications which use that technology. Finally, it means
that DBI tools are condemned to take modifications of run-time code into account even if it would not be taken
immediately into account by the processors in a regular environment. This is why they are perfectly detectable
with our method.

4.4.1.4 Detection of DBI with our method

We tested different DBI frameworks with our method compared with an environment where there was no

analysis tool. The list has been crafted from previously existing studies [4103]. We use a set of different anal-
ysis tools such as Pin [65], Flow!®, QBDI [74], Frida [72], Valgrind [70], Anaconda [125], Qemu [281], and
DynamoRIO [69]. A last one is referenced in our observation table 3.4 as None. This one correspond to an

environment of execution where there is no analysis tool.

In the case where there is no analysis tool, the detection fails since, as explained in section 4.3.2, cache
actualization has not enough time to happen. It is noted X as observation in Table 3.4. In the case where there
is a DBI framework analysis and the detection occurs, our observations are reported in table 3.4 and are noted
v in table 3.4. The second is where the DBI has crashed due to our detection method, it is noted * in table 3.4.
This can be due to a lack or a bad management of the JIT code by some framework. This is sometime a result of
design choice to not support JIT code. Despite possible execution stop, such environments are still detectable.
Indeed, it is possible to execute code in an exception handled section [240], where crash is correctly handled
by our code. Since JIT is correctly supported by regular CPUs, any failure to execute such a code is a way to
detect we are running in a modified environment.

Pin | Flow | QBDI | Frida | Valgrind | DynamoRio | Qemu | None
Result | v v * v v * v X

Table 3.4: Results of DBI framework detection test.

During our experiments, in the case of detection, the detection is always present on the DBI, as far as
we have carried out our tests. There has been no false positive or detection error observed. As implemented
and given on the internet, our method is calibrated to succeed on all the materials tested. After all, this is
what is expected of it. But why there is no false-positive detection? After all the question is legitimate, it
could happen that the cache does not update as slowly as one might observe. To answer this, it is necessary
to understand that the additional activity induced by the DBI is very important, in particular to correctly
process the self-modifying code or simply to take and to give back the hand between two basic-blocks (with
the one executed by the modifying thread and afterwards, with the one of the modified thread). The cache
has plenty of time to update itself during the execution time of the instructions that are specific to the DBI
(and that are not executed when the DBI is not there, which changes the execution time considerably). This
difference allows a systematic detection. The CPU cache update time is negligible compared to the DBI run-time.

Nevertheless, it would be interesting to test on more hardware and on different CPUs. We limited ourselves to
several models of Intel and AMD brands, those we had, without observing any break in the detection method.
Further studies, on different CPU architectures (ARM, in particular), could also make sense. Nevertheless,
within the scope of our research, we did it with the equipment that was ours and with as many as possible
different machines (notably with the help of students coming from ENSIBS school who were volunteers to take
part in the tests).

4.4.1.5 Difference with existing self modifying code methods

As explained in section 4.4.1.2, Kirsch et al. [102] propose a method to detect DBI framework which might
look close to our. Indeed, in their case, they propose to change the execution rights of a memory page to read-
write-execute. In case of success, they are going to modifying on-the-fly coming instructions to be executed. In

10Until now, Flow is a private DBI tool which has been developed in our laboratory. It is thanks to the development of this tool
that we have been able to understand in detail the functioning of DBI and thus having the possibility to carry out these researches.

Chapter 3 — Thesis manuscript — Page 124 on 619

a general CPU, modification is automatically taken into account. But running in the context of some DBI, this
assumption is no longer true. For instance, the following code change the value of RAX register from 1 to 0.

; Evaluation procedure with a self modifying code.

call $+5 ; 800000000 — Push the current rip register.
4| pop rax ; 58 - Store in rax the value of rip.
mov BYTE PTR [rax+4+4], 0 ; c6400800 — Modify the third opcodes of the following
instruction.
4| mov rax, 1 ; 48c7c001000000 - Modification should change instruction to "mov rax,
0"

Executed with Pin DBI, the result is zero. But it is possible to manage this side effect with Pin by the
use of "-smc_strict 1” command line argument [411] as explained by Zhechev [404]. When this command line is
provided, the instrumentation platform starts monitoring self modifying code. When such situation happens,
Pin raises a code cache invalidation notification followed by recompilation of already present code in the code
cache [104]. Such a way, modified code is taken into account.

One might think that our method could be countered by this approach. That is not the case. We detect Pin
DBI whatever the command line ”-smc_strict 17 (or "-smc_support”) is set or not. This is due to the fact that our
method does not rely on self modifying code but on cross modifying code [1]. Indeed, the approach of Kirsch
et al. [402] is based on modifying the next opcodes to be executed on the current thread, which corresponds
to self modifying code. But the procedure they are using is not exactly in the expected shape of Intel’s docu-
mentation because they are not using jump or a serializing instruction (CPUID for instance). The idea behind
this procedure is to force the CPU to take the modified code into account again to force the cache to be updated.

Not doing so leaves the authors in a situation described by Intel as a blurred state. Even if it is not doc-
umented to work, in reality, when a thread modifies an instruction in an area close to the current opcode
executed, the cache actualizes instantly. It means this close update of opcodes is likely to be instantly taken
into account by the modifying thread. More directly, if a thread modifies the next instruction to be executed,
then this thread is going to execute the modified version of the coming instructions.

And it is precisely on this principle that [402] bases its detection method. Without a DBI, the opcode change
is always executed because the CPU takes it into account (albeit this is not documented). But in the context
of a DBI, changing the following opcodes for a thread does not make much sense. Technically speaking, the
opcodes following those executed in the context of the DBI are those of the DBI itself (to take the control, to
analyze what has been executed, to prepare the next execution and so on). We can understand why the DBI
then reflects the modification not on its own opcodes but on those which will be executed afterwards by the DBI.
And DBIs follow the Intel documentation, because they have no choice but to ensure consistent execution. And
also because Intel’s documentation, in such a case, is the first — not to say the only — source of information. In
code of self-modification-code, DBI tools are waiting for a serializing instruction to update the modified code.
And it is by respecting the Intel documentation that they end up performing a behavior that is different from
reality (there is no need for a serializing instruction to update the cache on a code segment very close to the
one currently executed).

Our approach based on cross modifying code is different because we are acting on opcodes from another
thread running on a different CPU’s core, in a way which is not planned by Intel’s documentation. Moreover,
the approach shown in [102] consists of detecting Pin by not viewing the cache actualization of the code while
our method consists of detecting DBIs framework by making them to actualize the code when they should not.
It means we are changing opcodes on different cores so on a different CPU’s cache. In such a situation, it takes
time for the thread whose code has been modified by the other thread to see the changes. DBIs such as Pin
are naturally trapped since they are forced to handle the case of cross-modifying code while the operations they
conduct behind the back of the program cause a premature update of the cache and thus a detection. Moreover,
Pin is following the documentation from Intel to update opcodes in cache, but our method does not follow the
documentation so that we are exploiting a side effect. A side effect which is not taken into account by Pin and

Page 125 on 619 — Thesis manuscript — Chapter 3

others DBI. In consequence, this difference of strategy allows our method to provide a more efficient method
than those existing about self modifying code with DBI tools.

4.4.2 Debugger

Key Point 3.11:

BZ" Debuggers are systematically detected as long as they execute our step-by-step procedure.
£ Tn automatic mode (different from step-by-step), they have so little impact on the system that
they cannot be detected with our method.

#5 At the opposite, in automatic mode, it is possible to evade them with one of our method (see
section 3.1 — Key-Point 3.4).

5 Tn this case, our method can be used to protect a very specific region of code that should not
be debugged.

J

Another example of analysis tool is debugger. This type is not systematically detected at the difference
of DBI framework. More directly, it is only detectable when the debugger is trying to analysis a section of
code, otherwise, execution is transparent. This is due to the fact that debuggers, when they are running code,
are non invasive into the process. It allows an efficient execution as close as possible to a real environment.
Operationally, we detect the debugger when this one is trying to interact with a section of code which is sup-
posed to be protected by our method. Indeed, a breakpoint or a step-by-step execution is required between
the synchronization mechanism and the modified code to detect it. This can be done when the debugger is
targeting our code and a step-by-step execution is currently happening.

Action of Modifying thread Action of Executing thread
Sync=1 ‘ | While(Sync==0); |
]
Store modified code (as | Short code you want to protect |
data) into code segment;

Breakpoint or step-by-

yes step no
Begin executing modified Begin executing
code; unmodified code;

Figure 3.24: Debugger detection mechanism

Such a way, execution step-by-step increases the time between the release of the spinlock and the potential
execution of modified opcodes by the modifying thread. This is where the difference with reality lies and how
we can perform the detection. Of course, it supposes that only the executing thread is stopped by the debugger
and other threads (including the modifying one) is still running. This is definitively a strong assumption. By
contrast, it may be hard to detect the pattern of our method since we modify on-the-fly instructions, resulting
in a great challenge to handle modifications propagated with a delay in the code. Indeed, there is no assumption
about the shape of the modified code in the executing thread (it can be a value changed or a full update of
instructions). Such design allows to protect one or several specific portions of code which can be analyzed only
to prevent the analysis of the rest of the program thereafter.

Chapter 3 — Thesis manuscript — Page 126 on 619

We tested our method on different debugger software, privileging the newest and the most popular ones
[426]. In the list of tested debuggers, we have GDB [207, 4127], Microsoft Visual Studio Debugger (MVSD) [428],
x64dbg [371], Ollydbg [129] and Radar2 [130]. There is no real difference under Windows or under Unix oper-
ating system since the logic and the hardware used are the same. Results are given in the table 3.5 that follows.
As in section 4.4.1, we included an environment with no analysis tool to check false-positive detection.

GDB | Windbg | x64dbg | Ollydbg | Radar2 | MSVS | None
Result v v v v v v X

Table 3.5: Results of debuggers detection test.

Here again, the detection is always absolute and does not suffer from error. The reason is that the operation
is precise and that the reaction time of a man who drives the debugger is much longer than the cache update.
More directly, the analysis must focus on a particular thread while leaving the modifying thread active. This
configuration remains rather "theoretical” although possible (especially if the modifying thread appears as a
thread responsible for the GUI display). Nevertheless, it shows the generic side of the method which also
applies to debugging tools.

4.4.3 Virtual machine

Key Point 3.12:

I&" Detection of Virtual Machine is relevant if and only if a specific calibration is performed before
running our method.
#5 Calibration procedure concerns the of the number of CPUID instructions to use.

#5 CPUID instructions are used to trigger a vmezit procedure from the guest virtual machine
to the host (hypervisor). Such operation consumes time and allow the CPU cache to update
cross-modified code, unlike a real machine where CPUID instruction is much faster.

#5 Tn practice, with the machines we have, a number of twenty CPUID instructions is enough to
have a reliable method.
IZ" Although effective with, the problem of calibration is twofold.
£ Tt is complex to calibrate the operation without knowing in advance the exact CPU used. We
depend on the CPU model of the hosting machine.

#£5 The method is no longer deterministic (as with DBI or debugger) but becomes probabilistic
(with a possible false positive rate).

Our method allows detecting virtual machines or more generally any code running under the control of
hypervisor technology. This one has been defined by Intel as VT-X [431] under other names for other vendors
[432]. However, the VM detection method requires a little extra to our detection method presented until now.
Indeed, the time elapsed between synchronization spinlock and modified opcodes is almost as short in the virtual
environment as in reality. This way, the detection method fails if there is not enough time. To increase this time
artificially in order to deal with hypervirsor environment, we propose to provoke a VMexzxit operation which is
a time-consuming operation.

Technically speaking, hypervirsor technology allows execution of a code in a wirtualized context. This code
(called guest in Intel’s documentation) is under the control of the hypervirsor (called host). For different reasons
(hardware access, memory management, some specific instructions, etc), some events coming from the guest
code force the CPU to give the control back to the host. VMezit is the name of this operation. More directly,
the guest stops running to give the control to the host, which is the hypervisor code itself. Once the hypervisor
code has finished, the control can be returned back to the guest. This context switching and execution time of
the hypervisor is not negligible and consumes times.

Page 127 on 619 — Thesis manuscript — Chapter 3

Action of Modifying thread Action of Executing thread
| Sync=1 | | While(Sync==0); ‘
I
Store modified code (as l CPUID * 10 (eax=7?) ‘
data) into code segment;

yes no
Begin executing modified Begin executing
code; unmodified code;

Figure 3.25: Virtual machine detection mechanism

To add VMexit, we propose to use an instruction which always results from a VMexit under a virtualized
environment [133], such as CPUID [134]. If we add several CPUID instructions (about a dozen) between the
synchronization mechanism and the modified code (see Figure 3.25), the time wasted in the hypervisor VMexit’s
handler should be enough to let the cache refresh.

Normally, on a normal environment, about twenty CPUID instructions cannot give the sufficient time to the
CPU’s cache to actualize, a hundred of them neither. The exact number of CPUID instructions required is not
really accurate until now and it is a source of future work to calibrate it efficiently. However, within the VM
environment, when we test with only with ten CPUID instructions, on most of the machine we have, it is more
than enough to cause the cache actualization. Such result allows to detect the VM. And this detection is reliable
and efficient since Intel VT-X technology for hypervisor makes instructions like CPUID unconditionally exit the
guest to go back to the host. Note that it is perfectly legitimate for software in user mode to use the CPUID
instruction to detect which hardware assets are present and for calibration purposes.

We tested our method on different products of virtualization. Among them, we selected VmWare [135],
Virtual Box [436] and Hyper-V [437, 438]. Results of observations are given in Table 3.6 correspond to the
methodology provided in section 4.4.1 but adapted in the context of VM. More directly, we evaluate here the
detection method on a number of machines at our disposal after having calibrated the number of CPUID in-
struction. Thus, we try to measure if it is possible to realize a detection or not (and not a detection rate, which
would require more machines to test).

VmWare | Virtual Box | Hyper-V | None
Result v v v X

Table 3.6: Results of hypervisor detection test.

Chapter 3 — Thesis manuscript — Page 128 on 619

4.5 Improvement of the test campaign and reproducibility of results

Key Point 3.13:

2" Due to a lack of machines to perform tests with virtual machine environments, we proposed to
students in the university to test our method on their own machines to help us to evaluate its
efficiency.

#3 The diversity of machines used by students allows a more accurate evaluation of our method.
#5 The diversity in the approaches taken by students to evaluate our method has been relevant

to rise relevant remarks.

I¥" Our detection method does not depend from the operating system from where it is executed (Linux
or Windows, the result is the same).

IZ" Qur detection method has some limitations in the context of virtual machines.

#5 The prerequisite calibration prevents malware to use the method in an operational context
(since it does not know on which machine it will be executed).

#£5 Calibration on a given CPU does not necessarily work on another CPU, even if it comes from
the same manufacturer.

#£3 The overload of different CPU cores can potentially pollute the results in some cases.

#£5 The strong use of CPUID instruction can be an easy detection pattern for an antivirus software.

J

We have to be direct and recognize that our detection method, if it is exact and deterministic within the
framework of DBI and debuggers, remains probabilistic within the framework of virtual machines, in particular
if the number of CPUID instructions is not skilfully adjusted. In our experiments on our own machines (with
Intel and ADM CPUs), a number of 12 CPUID instructions is sufficient to achieve a detection without almost
any false positives.

Nevertheless, if we can calibrate the experiment so that it works on our machines, we had to check it on
a larger scale. With the help of the university where we were giving lessons in the context of our PhD, we
proposed to the students to take the scientific article [176] as it was initially published (with the concept of the
method used) to test it by themselves. The objective was twofold. On the one hand, to take advantage of the
diversity of the machines that the students have to evaluate our method, especially concerning the detection of
VMs. On the other hand, it aimed at checking the reproducibility of the results presented as well as having a
critical feedback on the paper, as written. It was also an opportunity to exchange with students between the
authors of a research paper and those who read it.

In order to be transparent about our approach, no instructions were given to the students except to read
and check the validity of the paper. They were given carte blanche to evaluate the paper. The goal was to
challenge our detection method and for us to see it stressed in conditions that we might not have imagined or
dared to produce. It is an extraordinary way to keep the research alive and to allow, if necessary, new researches
completed by the observations realized here.

From the feedback of our testers, several conclusions could be drawn. We compile here the main results
directly extracted from the studies written by the students and provided to us. Here we have only made a
synthesis of the student’s work and gathered various remarks.

e DBI and debuggers have a successful detection rate of 100 % with the provided source code, as expected,
until the experimental protocol given in the research paper is respected.

e Evaluations have been conducted on several different CPUs and disparities in effectiveness have emerged,
especially to calibrate the number of CPUID instructions required. It became clear to the students that
they needed to empirically find the ideal number of CPUID instruction that fits for their own machines.

Page 129 on 619 — Thesis manuscript — Chapter 3

True positive rate

0.8

0.6

0.4

0.2

0.0

More directly, this means finding the ideal number of CPUID to detect a VM while avoiding this same
number of CPUID rises a detection when the program is executed on the host machine directly.

For the sake of illustration, we take an experiment performed on 3 different CPUs: Intel i7-7500U, Intel
i7-8550U and Ryzen 7 2700. The experiment was done by successively recompiling the project but increas-
ing each time the number of CPUID instructions by 1, 5, 10, 15 ... until 50. From there, each compiled
program is run 100 times and the results reported as a ROC curve in Figure 3.26.

Légende
— Intel i7-8550U
Ryzen 7 2700
—— Intel i7-7500U
—— Intel i7-8550U

0.0 0.2 0.4 0.6 0.8 Lo
False positive rate

Figure 3.26: Comparison of the ROC curves for the different CPUs.

From these curves, several observations can be made. First of all, in this experiment, for a sufficient
number of instructions (and in accordance with the idea of a dozen, twenty instructions necessary), the
detection seems to work quite correctly (without being perfect). Secondly, there is some disparity between
the two Intel CPUs, especially with the Intel 8550U. However, these two CPUs are not very distant in
terms of the technologies they use. With closer inspection, it appears that the CPU cache specifications
are different, despite their similar version numbers. This observation leads us to consider the problem of
automatic calibration as being more global than simply being based on the characteristics of certain CPU
families.

The last observation is that CPU Ryzen 7 2700 has a very low number of false positives (only one case
in all), regardless of the number of CPUID instructions. In practice, by increasing this number beyond 50
(starting from 80 instructions in particular), the false positive rate increases. A similar case has been ob-
served with Intel Core i5-7300HQ CPU. In this test, students used Windows 10 Professional 64 bits, build
1809 17763.1577 with VirtualBox 6.1.16 r140961 as host. In virtual machine, Windows 10 Professional 64
bits build 1909 18363.1256 has been used.

Another study was performed with three types of CPU (Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz,
Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and Intel Core i7 vPro), testing each time the host machine
and two different virtual machines (one with Windows, other with Ubuntu). Extended tests shows that
with a dozen of CPUID instructions, we observe a high detection rate with virtual machine environment
while keeping a low detection level on the host machine. Nevertheless, it is noted that if a number of CPUID
instructions can correspond to a VM /Host pair, this number is not guaranteed for another VM /Host pair.

Chapter 3 — Thesis manuscript — Page 130 on 619

e If the CPU architectures found on client machines can be measured, is it the same on server machines,
sometimes equipped with different CPUs? After all, many VMs are hosted in the cloud, often on server
architectures, quite different from popular client-desktop computers. An experiment has been performed
with a bi-xeon 2x(4 cores /8 threads) 32 Gb memory and for each VM, 4 cores and 8 Gb of memory. The
experimental protocol took here consist in increasing the number of CPUID instructions (fixed at compile
time) from 0 to 30. Each test is performed 100,000 times and the percentages of success (or failure) are
then reported in Figure 3.27 as a graph. The tests were performed on the host machine (barre metal
machine) and in a VM, both using the server hardware.

120
— 10 =
£
o B0
e
c &0
[]
T an
& 1
4
w
L
1234567 8910111215314151617181920212223242526272829303132
e Barre W otal e— CPUID number

Figure 3.27: Detection rate of the method with server hardware configuration.

Two observations emerge from this graph. First, the false positive rate (erroneous detection of the VM
when the method is applied to the host machine) is very low. On the other hand, the detection is done
well for a certain number of CPUID instructions, like with a more classical machine.

e The containerization [139] approach has been elided from our study. For the sake of simplicity, this tech-
nology aims to isolate a process from the various resources of the system environment (CPU cores, RAM
memory, I/Os on a hard disk, namespaces, and so on), for ergonomic or security reasons. Many solutions
are present nowadays, most of them using the same standards based on Open Container Initiative** (OCI).

There are two main technologies for this purpose. On the one hand, virtualized containment, such as
Docker [110, 441, 442, 443], which is based on the use of hypervisors. On this point, our detection works
because these environments are virtual machines (though very light, which requires a fine calibration).
On the other hand, at the opposite to virtualization, containerized procedure gives direct access to the
system’s resources, making the containment technology lighter (but faster) than the virtualized one. We
propose to evaluate the two technology.

— A dedicated group of student was focused on wvirtualized containment, especially with Docker soft-
ware [444]. This software is available for three operating systems: Linux, MacOS, and Windows.
The experiment has been performed with a Intel Core i7 (eighth generation) by ranging the number
of instructions from 0 to 20. Each experiment has been executed 100 times. The students assumed
that each OS has its own way of implementing Docker. For instance, under Windows, a container
must emulate a UNIX system and it must use its architectural notions to generate a partition [4145].
This means that even if virtualization is quite special, it should still be possible. On a Linux system,

HUpttps://opencontainers.org/

https://opencontainers.org/

Page 131 on 619 — Thesis manuscript — Chapter 3

100%

o0
S0%

0%

B0

70%

60%
50%

ava

4l
20%

%

0%

20%

10%

Figure

L] ___/

e e 0%
3 4 5 6 7 B 9 10 11 12 13 14 15 16 (17| 1

m
-
o
(=)
=
[
a
w

5/6 7 B

o

10 11 12 13 14 15 16 17(18 1

o

4 20

e W indow's host Docker under Windows s Host Mac0s Docker under macO5

3.28: Detection of Docker under Windows. Figure 3.29: Detection of Docker under MacOS.

the docker does not need to simulate an environment because the notions of namespace and cgroups
are specific to the host system. Thus, because there is no virtualization, the detection should not be
done. Finally MacOS being a proprietary system, based on UNIX systems, containers must virtualize
a LinuzKit VM environment within Mac through the xzhyve hypervisor [146, 147, 148]. This way, it
should also be detected.

In Figure 3.28, we have the result under Windows. This one is partially detected when the number of
CPUID instructions is equal to 17. But even in this case, the detection rate is about 78 % with 4 % of
false-positive detection rate. This is not as good as with conventional virtual machines. Such results
can be explained by the particular architecture used by Docker on Windows. Concerning MacOS,
the results are excellent as showed in Figure 3.29. From 5 instructions, the detection is already very
effective and between 10 and 17 instructions, it is almost perfect.

The second technology is about containerized procedure, where no virtualization technology is in-
volved. This is the case of the use of Docker under Linux. And after experimentation, the case
of detection under Linux is consistent with expectations. Indeed, not being really controlled by a
hypervisor, there is no VmFEzit due to the use of CPUID instruction and therefore no timing problem
at the CPU cache level. Thus, there is no clear trend observed in Figure 3.30 to conclude a potential
detection.

[
o2

N VA | \/—‘ "\/
.9, / \/
1 2 5 4 5 6 7 B 9 10 11 12 15 14 15 16 17 18 19 20

e H S LMK Docker unider Linux

Figure 3.30: Detection of Docker under Linux.

e Concerning containerized procedure, two hypotheses were proposed by another group of students. On

the o

ne hand, containerization makes the resources of a CPU directly accessible. Therefore, the detector

should not identify that it is running in a containerized environment. On the other hand, containerization

Chapter 3 — Thesis manuscript — Page 132 on 619

can limit CPU resources and this limitation is detectable in particular cases.

If the first hypothesis has been verified as correct after some experiments, as shown previously with
Docker, the second hypothesis is a bit more complex to evaluate. Indeed, the load induced to isolate the
process requires a little more work than without, but is negligible compared to virtualization and cache
management. The second hypothesis is evaluated by setting a CPU quota. The detection rate is measured
as 55 %. This rate is not enough to make the difference. In addition, it is not the containerization that
is detected but moreover the overloading of our system which force the cache du update sooner as expected.

e One assumption assumes that the diversity of operating systems has an impact on the proposed method.
More directly, the problem is to know if there can be any difference in results depending on whether our
method would be executed under Linux, MacOS or Windows. After all, each of these OS is different and
if they all follow the requirements of the CPU manufacturers (especially Intel), they have implementation
differences. One hypothesis is whether a difference is discernible, measurable, and actionable to challenge
the proposed detection method.

A first study performs 1000 tests at different levels of CPUID instructions. The results (extracted from
the report) are shown in Figure 3.31.

05 / CPUID 0 10 20 30 40 50
Windows 10 0,1% 0,0% 0,1% 0,4% 0,1% 0,0%
({True O5)

Linux (True | 0,0% 0,1% 0,0% 0,2% 0,1% 0,0%
0s)

VM Windows | 0,1% 0,5% 98,1% 99,9% 99,9% 99,9%
{on Windows)

VM Linux {on | 3,4% 9,77% 9,95% 100% 100% 100%
Windows)

LXC {on Linux) 2,3% 2% 2,2% 4% 2,2% 3,3%
VM Windows | 0,5% 52,1% 100,0% 100,0% 100,0% 100,0%
{on Linux)

VM Linux {on | 04% 56,9% 100,0% 100,0% 100,0% 100,0%
Linux)

Figure 3.31: Detection rates according to the host/Guest operating system used.

The results in Figure 3.31 confirm that between 20 and 30 CPUID instructions on this machine, a high
detection rate is achieved while keeping the false positive rate minimal. This confirms that there is no
significant difference in the performance of the method between Windows and Linux. We note that stu-
dents have tested Linux Containers (LXC) [149], which is a light container as presented before. In this
case t0o, since this type of containment does not use any hypervirsor, it is not detected by our method,
no matter we are dealing with Linux or Windows.

To confirm this conclusion, another group undertook a similar study. They undertook this study with
both Windows 10 (2004 - 19041.685 for host & 1809 - 17763.1637 in VM) with a CPU Intel(R) Core(TM)
i7-9700K CPU at 3.60GHz and Linux (Arch - kernel 5.10.4 for host & Ubuntu - ubuntu 5.4.0-59-generic)
with a Intel(R) Core(TM) i5-8300H CPU at 2.30GHz. Results with Windows operating system are given
in Figures 3.32 and 3.33.

We observe that in the case of Windows, with the CPU used here, a number between 7 to 9 CPUID
instructions is correct to guarantee a detection without too many false positives. In the same way with
Linux, the students also undertook to check what it gave in addition with a virtual machine running
Windows. Results are given in Figures 3.34, 3.35 and 3.36.

Page 133 on 619

— Thesis manuscript — Chapter 3

nrate

Detectio

— - - ! e -

.....
.......

Figure 3.34: Linux Host. Figure 3.35: Linux on Linux. Figure 3.36: Windows on Linux.

Remembering that here the tests were with another CPU'2, we notice that for a number of instructions
close to 8, it becomes quite possible to detect the VM that is executed from Linux. But the results are
less stable than under Windows because the host Linux machine can provides more false positives at this
level of CPUID instructions.

The analysis of the cache given in the article has been seen by some students as speculative. Indeed,
acting in an undocumented area on the Intel CPU, one cannot state with precision what is going on. Our
hypothesis about the cache management timing, corroborated by several observations and whose logic has
been presented by us to explain the phenomenon, remains a possible explanation but not definitive. This
is the difficulty when interacting with CPUs whose documentation remains partial and whose architecture
is not open and very difficult to analyze (the hardware means are important to analyze a modern CPU,
not to mention the complexity inherent to this type of system). This also makes it possible to question
the reliability of research based on these systems when it is not the most elementary confidence that it is
necessary to grant to these systems whose side effects are finally unknown nor definitively explicable.

The question of the impact of the external environment (and in particular the sharing of execution on
the CPU cores) was raised by different groups. Is the detection method impacted if the system on which
it is tested is overloaded with work? More directly, if many processes are executed on the machine with
a high CPU and memory load, this forces an important solicitation of the cache and then may "pol-
lute” the detection, especially in virtual machine. For the sake of simplicity, one might say that a stressed
environment (where an important work is running on CPUs’ cores) might have a lower detection efficiency.

In practice, it is possible to observe a difference when the method is running on systems with few CPU
core available and a high activity on different cores. This could have been a plausible explanation for some
of the observed results for some students. But one group of students decided to look into this particular
issue. They started with two different machines, one called A machine” (Intel(R) Core (TM) i5-8250U
CPU, 4 physical cores with 8 logical ones, Windows 10 Family Edition 18362.1139) and another called "B

12For the sake of methodology, it would have been better to compare on the same CPU, just to check that the number of
instructions required is close enough between Windows and Linux as host.

But this was not possible due to time constraints.

Nevertheless, based on our own observations and those from students (Figure 3.31), while the number of instructions may differ
slightly, the approach observed here tends to be confirmed.

Chapter 3 — Thesis manuscript — Page 134 on 619

machine” (Intel(R) Core(TM) i5-4300U CPU at 1.90GHz, 1 physical cores with 4 logical ones, OpenSUSE
Tumbleweed (Linux)). They tested each time an increasing number of CPUID instruction, both in host
and guest with stressed and unstressed environment. Each time, tests are performed 10,000 times.

First, they conducted a test to measure the performance of the detection on a host machine, without
hypervisor, to verify that the detection is consistent with what is expected, ie near zero. The results are
reported in Table 3.7 with the correct detection rate given in percentage (here, the number of times our
method does not see a virtualized environment).

Machine A - Host environment
00 CPUID 05 CPUID 10 CPUID 20 CPUID 50 CPUID
Correct | Wrong | Correct | Wrong | Correct | Wrong | Correct | Wrong | Correct | Wrong
99.87 0.13 99.90 0.10 99.88 0.12 99.87 0.13 92.47 0.763
Machine B - Host environment
00 CPUID 05 CPUID 10 CPUID 20 CPUID 50 CPUID
99.87 | 013 [99.90 | 0.10 [99.88 | 0.2 [99.87 | 0.3 | 9247 | 0.763

Table 3.7: Test with two host environments, unstressed.

The first observation is that if the method seems quite good with a low number of CPUID instructions,
it remains nevertheless probabilistic (the method is not always exact) with nevertheless very important
success rates. If the CPUID instruction is not free to use, its impact is marginal compared to the activity of
the cache. In this sense, the observation is consistent with the expected behavior of our method. For some
unknown reason, the students are restrict their evaluation to machine B only. For the sake of transparency,
they prove the activity on the logical cores of the machine with the htop command from Linux (Figure 3.37).

108, 400 4
3.44 1.58
23:56:02

25 python3
python3
htop

Figure 3.37: 3 logical cores on 4 are overloaded at 100 % of activity.

Their experimental protocol is about to progressively overload each logic cores to observe the impact on
the detection rate. For the sake of readability, the data has been compiled in Table 3.8.

We can split the conclusions from Table 3.8 into two parts. On the one hand, observations concerning less
than 50 instructions. These one show more than 90% of false positives as soon as there is only one free
core left on the machine. On the other hand, beyond 50 instructions, 80 % of false positives appear as
soon as half of the machine’s cores are overloaded and the maximum number of false positives also appears
when there is only one non-overloaded core left. From these two conclusions, we can confirm that the
detection method needs at least 2 logical cores (not overloaded) to run. This is a clearly written condition
in our article. In this sense, the students’ evaluation confirms our detection protocol in a non-virtualized
environment to avoid false positives.

Concerning the virtual environment, two machines were used here. From the A machine (Intel(R) Core
(TM) i5-8250U CPU — W10), Virtual Box software has been used (6.0.4 r128413 (Qt5.6.2)) and Windows

Page 135 on 619 — Thesis manuscript — Chapter 3

Correct | Wrong | Correct | Wrong | Correct | Wrong | Correct | Wrong
00 CPUID
1 cores on 4 2 cores on 4 3 cores on 4 4 cores on 4
99.63 | 037 [99.06 | 0.94 052 | 9948 | 15.92 | 84.08
05 CPUID
1 cores on 4 2 cores on 4 3 cores on 4 4 cores on 4
99.71 [029 [99.04 | 0.96 0.60 [99.40 | 16.27 | 83.73
10 CPUID
1 cores on 4 2 cores on 4 3 cores on 4 4 cores on 4
99.67 \ 0.33 99.01 \ 0.99 0.69 \ 99.31 15.31 \ 84.69
20 CPUID
1 cores on 4 2 cores on 4 3 cores on 4 4 cores on 4
99.71 | 029 | 99.08 | 0.92 0.64 | 9936 | 17.18 | 82.82
50 CPUID
1 cores on 4 2 cores on 4 3 cores on 4 4 cores on 4
99.49 \ 0.51 16.32 \ 83.68 0.46 \ 99.54 15.44 \ 84.66

Table 3.8: Test with two host environments, in stressed conditions.

Server 2016 used as a guest operating system. The same applied with B machine (Intel(R) Core(TM)
i5-4300U CPU at 1.90GHz — Linux) using the same visualization software and the same guest operating
system. For the sake of brevity, only the results from machine B are reported (but nothing indicates that
they were different on machine A). For practical reasons, at least one logical core must be left at the host
machine, which means that the tests were performed on only three logical cores.

First, students tested the detection under unstressed conditions with these two virtualized environments,
as they did host environments. Results are provided in Table 3.9.

Machine A - Host environment
00 CPUID 05 CPUID 10 CPUID 20 CPUID 50 CPUID
Correct | Wrong | Correct | Wrong | Correct | Wrong | Correct | Wrong | Correct | Wrong
100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
Machine B - Host environment
00 CPUID 05 CPUID 10 CPUID 20 CPUID 50 CPUID
0.28 \ 99.72 35.18 \ 64.82 97.46 \ 02.54 99.39 \ 0.61 99.70 \ 0.30

Table 3.9: Test with two guest environments, unstressed.

Then the experiment was reproduced in a virtual machine. For operational reasons, the virtual machine
has difficulty supporting the saturation of its three cores with the detection method (there may even be
crashes), so it was not possible to push the results as far as in the previous tests. This is why "N/A”
appears in some columns from Table 3.10 which compiles the results.

We can observe in Table 3.10 that despite the overloading of the cores, there are not significantly more
false positives. Therefore, it can be said that the use of other CPU-intensive programs within a virtual
machine will not impact the reliability of the method. In a way, this is an additional difference with the
non-virtualized environment. Nevertheless, it is difficult to support this statement without having been
able to carry out a complete test, especially with the overload of the three cores. To solve this problem,
the students proposed to perform an additional test by overloading all the VM’s cores but by allocating
twice more logical cores and by performing 100 tests instead of the previous 10,000 ones (to reduce the
risk of crash). Results are given in Table 3.11.

Chapter 3 — Thesis manuscript — Page 136 on 619

Correct | Wrong | Correct | Wrong | Correct | Wrong
00 CPUID
1 cores on 3 2 cores on 3 3 cores on 3
0.39 \ 99.61 10.60 \ 89.40 N/A \ N/A
05 CPUID
1 cores on 3 2 cores on 3 3 cores on 3
35.84 [64.16 | 3544 | 6456 | N/A | N/A
10 CPUID
1 cores on 3 2 cores on 3 3 cores on 3
97.22 | 0278 | 90.08 | 09.92 [N/A | N/A
20 CPUID
1 cores on 3 2 cores on 3 3 cores on 3
99.30 | 070 | 9850 | 01.50 | N/A | N/A
50 CPUID
1 cores on 3 2 cores on 3 3 cores on 3
99.67 [0.33 | 99.57 [0.43 N/A | N/A

Table 3.10: Test with two guest environments, in stressed conditions.

Overloading of all the logical cores in the VM
00 CPUID 05 CPUID 10 CPUID 20 CPUID 50 CPUID
Correct | Wrong | Correct | Wrong | Correct | Wrong | Correct | Wrong | Correct | Wrong
30 70 30 70 97 3 100 0 100 0

Table 3.11: Test in the guest environments, fully stressed with only 100 tests per instance of CPUID instruction.

We note that the results are roughly similar to what observed previously and the method starts to be
relatively reliable between 10 and 20 CPUID instructions, as expected in our researches. The overload of
the virtual logical cores does not have any impact on the reliability of this detection method within a VM.

But if the impact cannot be measured in a virtual machine, it has been measured at some level on the host
machine where all the logical cores are overloaded. Indeed, if all CPU cores are fully overloaded by other
tasks, this detection method is completely flawed, since host would be wrongly detected as virtualized
environment. But as explained, the detection method needs at least two logical cores to work. These two
cores must not be busy with other processes during the execution of the detection program.

This observation allows us to imagine a corrected solution with a consideration of the current CPU load
as a weighting element. In addition, to avoid the "memory” effects from the cache between two successive
tests of the method, it is advisable to wait a little for the cache to become empty (otherwise the mod-
ification of the thread is automatically inserted since it is already present in cache memory). This is a
consideration that was originally taken into account but which is now reinforced, in particular by testing
the general activity of the CPU cores on the machine beforehand to take this into account.

e Most of students claimed that it would be easy for an antivirus to detect our method. They claimed that
it would be easy to detect the method because the addition of 10 adjacent CPUID instructions represents
a very unique pattern that would be easily detected. Since the number of such instructions is driven by
the environment to detect, antivirus software could simply detect the abusive use of CPUID instructions
via signature-based detection.

This judicious remark can be addressed via two arguments. On the one hand, it is true that many
CPUID instructions following each other in memory is not so common. But the code given to illustrate
our detection method is only present for the sake of illustration. It is out of question to give a too fully
operational code that would make life easier for malware authors. All things being equal, it is not forbidden

Page 137 on 619 — Thesis manuscript — Chapter 3

to imagine a code that would execute our detection method in a dynamic way. In the same way that a
packer seeks to hide the original code that it protects, it could be possible to reconstruct the instructions
in memory of our method. That way, they would be executed, afterwards, by a dedicated thread. This
would also justify the use of memory with read, write and execute rights to host our method’s opcodes...
On the other hand (and assuming the previous argument is applied), it is no longer possible to easily
detect such a construction of several CPUID instructions with static means. To do this, malware that
would dynamically embed instructions would have to be dynamically analyzed. This would ideally be
done via a DBI or a virtual machine... And that is perfectly appropriate, because it is precisely this type
of tool that our method is designed to detect. In such a case, the method will be detected, but not the
malicious code protected by the method. But there are better solutions than looking for a solution in this
direction.

4.6 Limitations and further improvements

B5” This subsection proposes to resolve some of the limitations outlined in section 4.5.

B2 To no longer depend on the need for calibration, the detection method has evolved by using robust
statistics.

4.6.1 Limitations of the method

There are few limitations with our method. First, if the goal is to protect from reverse engineering, static
analysis is still possible. This is due to the fact that our method is designed for dynamic analysis with tools
such as debuggers, DBI or VM. Note that it is possible to limit this point by deciphering following opcodes
when detection returns that there is no analysis environment and to keep ciphered opcodes in case of detection.

The second limitation of this method is that it only works on architecture where we have at least two CPU’s
cores. Multicore CPUs are required since if our method is running on a system where only one core is available,
false positive rise. Ideally, execution of two threads on different logical cores guarantees optimal results in terms
of performances and reliability. This is due to the fact that both threads who are running on the same logical
cores are sharing the same cache, a situation we prefer to avoid. Thus, the cache will no longer need to actualize
explicitly. In the case of a single physical core with a single logical core, there are still some rules to correctly
consider code modification [4]. However, they are different from multiple cores CPU cache’s rules that we are
exploiting here.

One last limitation lies in the number of VMexit instructions mandatory to allow the cache actualization
in case of VM detection. From empirical observations performed, it depends on the type, family or technology
or CPU used. Nevertheless, we can consider that about ten instructions (and at most about fifty) are likely
to produce, generally, correct results. Nevertheless, this depends on the hardware (CPU) used. More directly,
the proposed method requires some calibration. One idea would be to propose a calibration method as an
improvement, but it would remain theoretical. Indeed, this presupposes to know the CPU used in advance,
which removes the generic property expected in our research. For a better result, the detection method itself
should be improved so that it no longer depends on material differences. Indeed, the phenomenon used for
detection is measured on all the tested CPUs, but at different degrees.

In addition, the stealth of the proposed method must be improved. It was noted that it was possible to

detect the method used, in particular by an excessive call to the CPUID instruction. Researching other tactics
would be a good way to make this detection method even more effective.

4.6.2 Further improvements

4.6.2.1 General considerations

The content discussed here is intended to report on current developments and research about our method.

Chapter 3 — Thesis manuscript — Page 138 on 619

As the topic is sensitive (since it can directly serve malware authors), it needs to be published with caution.
Moreover, the results may depend on the CPU hardware used, which implies that many tests will have to be
done to validate the results. We will therefore propose here some possibilities currently being studied to answer
limitations.

The main limitation concerns the detection of virtual machines (the case of DBI or debuggers is determinis-
tic). There are three issues with virtual machines: the method requires several logical cores, it needs calibration
and it lacks stealth. The first problem cannot be solved because it is a necessary prerequisite for the method.
Also, single-core environments nowadays are quite unusual. The other two issues can be answered in some way.

Concerning the instructions able to cause VmkFEzit, it would be relevant to find a set of instructions able
to provide a VmEzit event. From the whole list of instructions that can cause an VmEzit event [150], it is
possible to find several alternative candidates. Nevertheless, not all instructions are equal to be used in the
context of the detection method. On the one hand, some instructions require to be in kernel-mode (ring 0) to
be executed (which would force to restrict implementation of the method only for drivers). On the other hand,
some instructions optionally trigger an VmFuzit event. More directly, during the configuration of the virtual
machine control structures [451], it is possible to define which instructions will trigger an VmEzit event by the
host and which instructions will not trigger one. This selection depends on the needs of the virtual machine,
what is expected to process or the expected effects. In fact, it is possible to filter which instruction can cause
an VmkEzit event. But there is only CPUID that does it from user-mode unconditionally.

What does this mean? It means that it is hard to perform the detection without this instruction because it
combines all the right properties (user-mode and non-maskable VmFEzit instruction). There are rdrand/rdseed,
rdtsc/rdtscp and xsaves/xrstors which are able to realize this event from the user-mode, but they are optional.
Note however that in the context of malware analysis, the rdtsc/rdtscp instruction is a key instruction. Indeed,
in the context of tools such as Pafish [324] using rdtsc instruction in order to time instruction execution (sec-
tion 2.2.4), mastering it is a key point in the strategy to neutralize this VM escape tactic. The same way, using
the Kirsch’s tactic [109] based on xsaves/xrstors instructions, malware can detect DBI tools such as Pin. This
may explain why, in some sandbox, these instructions are configured to be handled by the host when executed
thanks to a VmEzit event.

Other tactics could be considered, based on other instructions. The idea here is no longer to exploit the
VmEzit mechanism specific to virtual machines, but to come back to the fundamentals of our detection method,
namely the synchronization of the cache in the context of a cross-modification of code. Working on memory
access (which is handled by the virtual machine to guarantee the separation of host and guest memory) or on
other mechanisms are currently research tracks. The details are not given to preserve a certain confidentiality
of the work.

The last problem is the reliability of the method. More directly, if the reliability can be seen as acceptable
but it is not high enough for a fully operational use in comfort. The problem is not so much the reliability as the
necessary calibration on a given CPU to become reliable. And this is finally the main issue to solve: removing
the required calibration.

4.6.2.2 Possibilities to remove calibration

In order to better understand the cache update phenomenon, we propose to modify our detection method.
The idea is no longer to observe the result of an execution after a cross modification of code, but to measure
when this modification takes place. In practice, this is equivalent to implement a loop that increments a value
in the modified thread. At the end of this loop, the modified thread initializes a register to 0. This loop is
conditioned to stop when the register previously set to zero is equal 1. Of course, this operation is only possible
when the modifying thread updates the initialization code for the register in the modified thread (to change
the initialization from 0 to 1, for instance). From this point, by retrieving the counter value, we can have an
estimate (in number of loops), to know when the modification takes place.

Using a machine equipped with a processor Intel(R) Core(TM) i9-9900K CPU at 3.60GHz, 8 Core(s), 16

Page 139 on 619 — Thesis manuscript — Chapter 3

Hosts Guests

- et mm

Temaen 0 e
Resa g ARRQ

m

RERg

1090
221
u3

Figure 3.38: Tests from host machine. Figure 3.39: Tests from guest machine.

Logical Processor(s), we performed tests both in host and guest (Virtual Box - Version 6.1.16 r140961 (Qt5.6.2))
environment. In both environment, Windows 10 operating system has been used. For the sake of brevity and
readability, we have kept only three tests from each environment. The results are given in Figures 3.38 and 3.39.
On the x-axis is given the number of tests performed (a thousand times) and on the y-axis the value obtained
(in number of times the loop has been executed).

In an ideal world, assuming that the CPU is perfectly deterministic and our method perfect, whatever is the
environment analyzed, the number of loops should be constant (because the cache refresh, assuming we are in
this ideal world, would then be deterministic). In practice, we should see parallel lines (since we are measuring
a constant), more or less close (since it is the same CPU used). Of course, we are not in an ideal world. And
that is why we can see variations on the curves. In a way, these variations can be considered as random noise
added to a constant. A statistical bias in short. From there, the statistical analysis can begin.

From these results, we observe the greater variation of a guest environment (Figure 3.39) compared to a
host one (Figure 3.38). More directly, we observe greater variations on the guest machines than on the host
machines. More important variations are based on range and frequency. From that observation, several tactics
could be implemented to perform a detection.

First, one could think of modeling a generic behavior for the host and for the guest and then determine,
using a statistical test such as chi-square, whether a measured distribution corresponds to the one sought (and
statistical deviation possibly due to chance with a confidence score) or whether the observed deviation is not
the one looked for. Unfortunately, this approach does not work in practice. The variations are too great to
establish a reference model. Moreover, in practice, we would probably have to determine a model per CPU,
which would mean going back to our initial calibration issue. The use of artificial intelligence techniques does
not solve the problem: initial data are not reliable and accurate enough to allow any credible learning.

Another (and maybe naive) idea, looking at the given graphs, is to observe a stronger linear trend in the host
compared to the guest. By using a linear regression technique, it may be possible to model the observed trend
line of the distribution. Of course, if we had to rely only on the linear equation obtained from the regression,
this would also mean creating an equation per CPU. To avoid this, one can try to guess how close a linear
model is close to the observed data. The most obvious answer is to measure the linear correlation between two
sets of data thanks to the Pearson correlation coefficient [452, 453, 454]. This one is easy to compute from a
least squares regression analysis and written for each curve in Figures 3.38 and 3.39. It seems natural to take a
decision criterion by choosing an arbitrary limit on the correlation coefficient at 0.10. Above, it seems to be a
host machine, below a guest one.

Unfortunately, this technique does not work. Indeed, when testing on other machines, we realize that some
host machines, under some configurations, have a correlation coefficient close to zero. In practice, this means
that the correlation is not established in terms of linear modeling (Figure 3.40). The explanation of this par-
ticularity is however simple. We are not really measuring a linear trend here. The x-axis gives the number of

Chapter 3 — Thesis manuscript — Page 140 on 619

the test and not an incremental factor that would have an impact on the value resulting from the test (i.e. the
number of loops). Ideally, the number of loops should be a constant, that is to say a line parallel to the x-axis.
And therefore a straight line with a slope equal to zero. And this slop is linked by a linear relation with the
correlation coefficient. This explains why when we are modeling a straight line, the correlation coefficient is
equal to zero. This is why this detection tactic, based on this coefficient, is not reliable. Simply because there
is no linear relation between the test number and the number of loops.

AMD FX 6300

R==0,0002 y=3,6726x + 1E+06

Figure 3.40: Example of test on a host machine which has a correlation coefficient close to zero (and thus seen
as a guest).

The real problem of statistical modeling of the observed phenomenon is the pollution of the data by extreme
values. And these extreme values can happen both in the host (punctual overload of CPU cores for example)
and in the guest. Of course, it would be easy to think that the most extreme variation (in terms of absolute
value) is a decision criterion in itself. It is true that execution in a virtual machine most often produces the
highest values (in terms of the number of loops executed) but this criterion is neither objective (what would be
the threshold to set for detection?) nor true (it happens that some hosts on a given CPU have higher values
than guests on another CPU). Once again, we would end up making a database of extreme values per CPU and
therefore, finally, a calibration.

To address data pollution issue, the solution is the use of robust statistics [455, 456]. For the sake of sim-
plicity, this type of statistics can be described as less sensitive to extreme values or outliers. The advantages
of both robustness and superior efficiency when dealing with contaminated data is balanced by a more limited
efficiency on clean data from distributions. For instance, the mathematical mean is more sensitive to extreme
values than the mathematical median. Indeed, mathematical mean can be significantly impacted with a single
observation. Another instance could be the Theil-Sen estimator [157, 458] to keep the idea of linear regression
by robustly fitting a line to sample points in the plane. And this is directly the type of property expected for
our detection.

Our goal is not so much to determine a general trend in the measurements as an irregularity between mea-
surements. Indeed, since the repeated experiment is always the same, notwithstanding a statistical bias due to
the context of the execution environment (other processes activity, devices activity, background tasks...), the
results must be relatively constant on a real environment. Unlike a virtual environment where virtualization,
VmEzit and other constraints of this type of environment contribute to the irregularity of the measures. This
is what is observed on Figure 3.38 and 3.39.

For the sake of formalism, we propose to represent the results of our repeated experiment as a random
variable. Thus, X is the random variable whose outcome is the number of loops measured in the experiment
described previously. An instance of the experiment noted x; corresponds to a measure of number of loops
executed before the opcode update occurs and 4 is the current index of the experiment processed. Since the
experiment is performed n times, we have 1 <1i < n.

Page 141 on 619 — Thesis manuscript — Chapter 3

In order to measure the average of the absolute deviations from a central point, we usually use the average
absolute deviation (AAD) [459]. In its shape, it is comparable to first central moment in statistics. Formally
speaking, the average absolute deviation is defined such as:

1 n
Dyga = — x; —m(x
2 2l = (a)
where m (z) is any measure of central tendency. In practice, we can use the mean T as a central moment

to compute the mean absolute deviation as the average (absolute) distance of the deviations from the mean. In
other words, it is the average distance to the mean. But in practice, since the mean is not a robust moment, it
is not possible to make a detection with polluted data. But it is possible to use the median absolute deviation
which is the average of the deviations from the median. In this case, the central tendency is the median z. This
results in:

1 n

Dped = — T — T

- ;I |
In practice, the results are interesting but it is not possible to directly obtain a detection criterion. Why?
Simply because the deviations depend on the CPUs on which the tests are performed. The values obtained are
arbitrarily large compared to the CPUs used. This observation comes from the fact that D,,.q is an absolute
measures of dispersion. More directly, it indicates how much the values of a distribution deviate from a reference
value, such as the median. Since absolute measures of dispersion use the original units of data (number of loops
in our case), they are useful for understanding the dispersion of measurements in the context of an experiment.

In practice, absolute measures of dispersion are used to compare the deviation from their central value of two
distributions whose central values are identical and whose unit of measurement is the same. But in our case,
by doing the experiment on two different CPUs, we obtain two distributions X and Y that describe the same
phenomenon but for two different populations (CPUs) and such that the order of magnitude of the distributions
is significantly different. They are not able to compare the dispersion of two distributions that have different
units of measurement or orders of magnitude. And that is what we are dealing with. Indeed, CPUs of different
brands, different generations and different capacities are based on the same physical phenomena and execution
conventions, but offer measurements with different orders of magnitude.

To solve this issue, we can use relative measures of dispersion. Such relative measures of dispersion are
perfect to make comparisons between separate data sets or different experiments that might use different units
or different orders of magnitude.

A relative measure of dispersion is a measure of the relative deviation of the values of a distribution from
a given central value. It is therefore a ratio built from an absolute measure of dispersion by taking the ratio
between an absolute dispersion parameter and a central value [4160]. In all cases, the dispersion parameter is a
dimensionless number (the ratio of two numbers with the same unit of measurement) that expresses how much
the values differ from the central value in relative value. For instance, the coefficient of variation (also known
as relative standard deviation) is the ratio of the standard deviation to the mean. In our case!®, we propose
to perform the ratio of the median absolute deviation to the median of the distribution. More directly, our

measure is written:

1 n
D= = ;Wz z|
It is not very complicated to show that the measure created here is a ratio whose value is always non-negative,
since it is composed of factors and terms always non-negative. But it is relevant to explain in which context the
measure can be minimal. Taking into account that all z; € X are non-negative values (because it corresponds
the number of executed loop), with Z,i, the minimum from X distribution, we have:

I3Relative measures of dispersion have some limitations in their use. They cannot be used in all cases (because we can only
compare comparable objects or phenomena). In our case, we have a comparative approach between two variables with the same
unit of measurement (number of loops executed) driven by the same phenomenon considered to be random in nature. This allows
us to have a comparison that makes sense.

Chapter 3 — Thesis manuscript — Page 142 on 619

T

IN

Lmin

n n
Z\xi—fﬂmin| < Z|$z—f|
iﬁl i=111

1 1 ~
= |z = Tanin] < =) _Jai — 7
n =1 " =0

IR - R
n “ X X nr “
i=1 =1

The left part of the equation is minimal when all terms in the sum are equal (since the absolute value is
always non-negative). More directly, it means that Vi € [1,n] all ; = Zmin = Tmax = Z, that is to say when
there is no deviation from the central value observed (the median in our case). In such case, all terms of the
sum are zero and then it comes that our measure is always non-negative and its minimum is zero.

But there is no conclusion about the maximum value that our relative measure of dispersion can take. In
practice, the observations obtained from our own machines give the results provided in Tables 3.12 and 3.13.
All results are given in percentage, for the sake of readability.

Host
CPU AMD RYZEN 7 1800X | Intel Core i5-8300H | Intel Core 19-9900K | AMD FX 6300 | Intel Core i5-8265U CPU
Measure 13.69 11.32 4.07 3.57 13.21

Table 3.12: Result from test with our measures of dispersion based on the median for host machines.

Guest
CPU AMD RYZEN 7 1800X | Intel Core i5-8300H | Intel Core i9-9900K | AMD FX 6300 | Intel Core i5-8265U
Measure 45.79 130.39 27.86 31.11 48.56

Table 3.13: Result from test with our measures of dispersion based on the median for guest machines.

From what we observe, it is possible to set a detection threshold around 20 percent (more than 20 % of
deviation from the median means that we are likely to deal with a virtual machine). This leaves enough room
to avoid false positives. But here again, it would be necessary to be able to test on more machines, with
more virtual machine software to be able to write more definitive conclusions. The research presented here
is provided as it is. In addition, this one is always subject to evaluation. Nevertheless, the approach taken
shows the procedure used to solve the problem we are facing, with correct results as far as we have been able
to perform tests.

Page 143 on 619 — Thesis manuscript — Chapter 3

5 Future work and broader approach

BZ” This section proposes original approaches to use evasion techniques for malware neutralization.
#5 Tt provides a broader view on how to use the protection technologies developed here.

IS This section explains new trend in malware protection based on packer driven by artificial-
intelligence, as a new step after evasion techniques.

B5" This section highlights former research work we did years ago to present what — at that time —
was new software protection techniques (to prevent reverse engineering).

5 Tt shows that our former work was in line with what was being done at that time.

#£5 Tt shows that our current work presented in this document is still relevant to current research.

As an overture, we propose three axes to discuss the future of the work presented here. If on the one hand
there are the obvious improvements from our own work, it is interesting to see other contexts of exploitation of
these researches to finally discuss more original approaches in malware protection.

5.0.1 Improving our own researches

First, it should be noted that the methods proposed here can always be improved. Both by a more thorough
test campaign on more different machines and by a search for techniques to optimize results (in performance,
efficiency and reliability). It should also be noted that there is always more than one way to do things. To
increase the stealth of the detection methods, it could be possible to try to produce effects similar to those
presented here, but using different APIs, different assembly instructions, different tactics... Research in this
area seems to be quite substantial.

5.0.2 Using evasion techniques to design a secure end-user system

But perhaps the most interesting part of this work would be to use it directly for more defensive purposes. An
article published by Zhang & al. [461] proposes to use malware’s evasion technology to caught out at its own
game. It is an extended version of the idea proposed by Chen & al. [186]. Authors from [461] observe that
malware authors introduce more and more efficient techniques to probe analysis environments before exposing
malicious behaviors. Usually, when malware sample detects an analysis environment, they stop all their mali-
cious activity. According to authors, such a strategy is a double-edged sword. Because, if we can turn a working
environment into an analysis environment, then most of the malware that detects these environments would
become non-functional. For short, the idea is to execute malware (or unknown software) on end-user systems
and prevent nefarious activity by means of the malware’s very own evasive logic.

In [461], they propose an environment called SCARECROW to deactivate evasive malware before they are
executing malicious code (either they are stopping their activities or they acts are benign software). Techni-
cally speaking, their solution is about to transform real end-user systems into sandbox-like platforms. It is a
giant camouflage of the user’s system so that it has all the characteristics of a malware analysis sandbox. To
proceed, they are reproducing and copying elements from real analysis environment, such as specific files and
directories, processes, libraries, GUI Windows running, registry keys and values, function hooks set for each
executed process (with similar techniques such as thos proposed in [419]), exception processing, fake limited
hardware resources'?, and network resources (with fake DNS and always responsive network to simulate fake
network connections).

The results obtained are promising. In particular, malware often tend to use a small set of well-known
evasion techniques and they do not look beyond that point when they detect an analysis environment. That

Due to limitations and maybe for economical purposes, public sandbox usually provide small hard disk size and low memory
or CPU cores resources.

Chapter 3 — Thesis manuscript — Page 144 on 619

way, applying the Pareto principle, authors prefer to only focus on satisfying a small subset of conditions to de-
activate most of malware samples. This strategy offers a neutralization rate around 90 % according to authors.
From the benign software used to detect false-positive or unexpected effects, even if authors admit to not have
exhaustively explored all possible program paths, they noted little or no impact for benign programs. At the
opposite, most troubles came from malware executed in such context. Indeed, some malware use self-spawning
strategy when detecting the presence of a debugger (most of the time just with IsDebuggerPresent [219] func-
tion). More directly, they are creating another instance of the process, hoping that one will not be followed
by the debugger. Since a debugger is always detected, such a procedure executed by some malware samples
becomes endless. Despite this undesirable effect (and the possibility of fork-bombs), it would be possible to
consider control mechanisms to neutralize this type of behavior.

If the proposed solution can appear as very interesting, it is not without some drawbacks. Notwithstanding
some ugly reactions from malware detecting an analysis environment, authors claim that their solution is able
to be detected as other analysis environment. Using Pafish [324], they are triggering almost all the same evasion
techniques tested, becoming indistinguishable for evasive malware. This statement can be balanced by the fact
that the detection of Pafish also relies on the timing mechanism based on rdtsc instruction. As explained in
section 2.3.4, this tactic is used by some malware samples and even if it is a probabilistic, it remains efficient
to detect a virtualized analysis environment, what SCARECROW is not. Thus, since SCARECROW is not
virtualized, our proposed method in section 4 would not detect it. Thus, a malware based on our method would
not be sensitive to the ruse set up by SCARECROW.

In addition, it becomes possible to develop various strategies to detect this particular analysis environment.
Based on the fact that if a real user is actually present on the machine for everyday use, there will be possible to
probe user’s activity (movement from mouse, screen refresh, keyboard activity, and so on). This is typically the
kind of events that do not occur on a analysis environment. Of course, some antivirus vendors try to emulate
this type of behavior, but advanced malware can see the real from the fake here (especially by the lack of user
reaction to specific events). In an even more advanced way, carrying out a forensic study of the machine’s
activity (in particular by analyzing SuperFetch’s databases [162,] — which has been documented by us'®)
would make it possible to measure real activity on the machine, which would be in total contradiction with the
analysis environments that are generally reset after each analysis (and thus SuperFetch’s database is empty or
totally outdated). In the same way, the date of the data in the Windows DNS cache or the last modified files
could be decisive clues to show that we are not on a "restored” machine state but on a real environment —
while we are also able to detect, via other techniques, that we are in an analysis environment. Faced with such
a contradiction, it is possible to identify the SCARECROW environment.

In the end, the approach used by Zhang & al. [161] has the merit of using the evasion logic of malware
against their own interests. That is a bit rich. But it is difficult to deploy their idea in a real operational context,
for three reasons. The first is that it will always remain possible to detect such an environment, as we briefly
explained before, notably by the contradiction coming from different measures. Secondly, this security is only
valid for malware using evasion methods. Some malware does not use evasion methods and therefore would
be free. To this argument, it would be possible to answer that the proposed solution is only one element in a
chain of defense (in addition to antivirus software, etc). This brings us to the third reason. Which user would
use such an environment? It is necessary to see that the user’s machine would be polluted by many analysis
software, some of them displayed directly on the screen (like debuggers). Not to mention the fact that some
software are unstable (voluntarily or not) when they are executed under the control of a debugger, the security
would be at the price of the user’s comfort, not to say about usual habits of using a computer.

5.0.3 Improvement of malware protection

On closer look, the evasion logic of a lot of malware can be analyzed as a two-step action. First, the collection
of information via various evasion methods and then, at the end, a conditional test to decide whether to execute
the malicious payload or not. Except for detection-independent evasions (section 2.2.5), such a procedure is
usual.

15The project is freely available at https://github.com/MathildeVenault/SysMainView.

https://github.com/MathildeVenault/SysMainView

Page 145 on 619 — Thesis manuscript — Chapter 3

While collecting various features to detect the presence of an analysis environment may seem suspicious,
it is not necessarily deterrent. Many software programs use the same elements to avoid reverse engineering
(commercial software, video games, etc.) without being malicious. However, the strategy remains the same:
allow the execution of the code if and only if there is no detection of the analysis environment. In the end, it
is in the management of the final condition where the difference is made. From the point of view of a human
analyst, analyzing this final condition often allows to understand the real protection set up by the malware
in its evasion strategies, but it also allows to trigger the protected code (the analysis is then possible to know
whether it is malicious or not).

Finally, the real secret of an evasion strategy, nowadays, lies more in the final triggering condition than in the
techniques implemented to achieve the detection. Why? Simply because the protected code cannot be executed
without satisfying the condition. Of course, naively, it might be possible to think that modifying the condition
so that it is true every time is enough to solve the case. However, this is not the case because in some cases,
in advanced malware, the final condition verifies the validity of a cipher key that can decipher the protected
code (Figure 3.41). In a way, it is quite similar to packer strategies... More advanced techniques about efficient
crystallographic strategies against reverse-engineering could be retrieved in [164, ,]

xecution of the
process

Take a secret from
environment or user

l

Try to decipher the
protected code

= protected codé
executable?

Yes
¥

Execute the
deciphered protected
code

Figure 3.41: Illustration of simple procedure about how to protect code in an executable file.

Of course, with this type of approach, the security of the protection is linked to the security of the cipher
key. No way to store it somewhere in clear text in memory since it would only postpone the problem. The
solution is to create the cipher key with elements coming from the environment where the malware is executed.
In a conference we made years ago [167,], we presented techniques to manage the cipher key efficiently in
this context. Our objective was to reduce the possibilities for an analyst to get access to our protected code
while keeping execution. The solution is to develop highly targeted malware. To proceed, the idea is no longer
to detect an analysis environment but the environment of the target we are trying to reach. The execution of
the malware then becomes probable. More directly, the execution is driven by the environment on which the
malware is running. More directly, this means capturing the cipher key directly from the environment where
the malware is executed (better if a precise targeting allows to execute only on a limited number of machines).
The cipher key is never stored in the malware, but there is a key-maker, able to craft the cipher-key on demand
if the malware is running on the expected system.

In practice, this means evaluating the runtime environment for a cipher key. For trivial reasons, we should

Chapter 3 — Thesis manuscript — Page 146 on 619

avoid using keys that are too obvious (registry values, IP in the DNS cache, hard disk files, time and date,
process list ...). On the contrary, it is required to build up the encryption keys so that they are as long as
possible, coming from different sources and difficult to guess (no default or predefined values). For example,
in a targeted attack, one might try to attack the director of a company or the director’s secretary. These two
people both have a computer but the execution environment is different (not the same software, habits, activity
schedules, web browsing history...) as is the use of the machine (it is likely that the secretary types faster to
the keyboard than the director). For instance, listening the keyboard activity to record the keystrokes or the
frequency with which those keystrokes are pressed. Depending on the language of the target, the keys pressed
will not be the same. In the same way, the frequency of typing may indicate the target’s profession (secretary
or director). And this is only an example of channel to collect information able to build a cipher key.

It is possible to design many channel from environment. For instance, one might think about keyboard man-
agement, mouse position management, network history and website historic (listing, frequency of connections,
and so on), voice recording, face recognition through web-cam... Generally speaking, it is an application from
the notion of environmental key generation towards clueless agents [169]. And of course, many channels can
be combined together to design an environmental key. Each channel can be seen as source of noise, constantly
listening in order to collect input. The goal is to correctly manage this source of noise, since this one is quite
probabilistic. To proceed, we need to transform this probabilistic input noise so that this one can produce quite
relevant output. As signal processing, we quantify the input noise so that output is calibrated according to a
precision predefined. That way, it is possible to manage probabilistic models with correctly defined input.

Each noise source used gives a certain amount of information. This information can be checked (to know if
it matches the desired target — but this should be avoided in order to not give too many clues to an analyst)
or directly exploited to build a cipher key (by any transformation function, in practice a cryptographic hash
function). Note that it is possible to chain different sources of noise, each protecting a given section of code, as
illustrated on Figure 3.42. Once a channel has provided access to a protected code, that code can also provides
a new source of noise to manage the protection of another code, and so on. This technology deployed stage by
stage — with an encapsulation as Matryoshka dolls — allows to hide efficiently which are the eavesdropping
channels and it allows a more and more precise targeting of the target, as all the stages are executing. More
channels are used, more difficult it is to guess the real cipher key used, and harder it is to analyze the malware.

4 First stage 4 Second stage

ll ,J Ciphered opcodes ; .' Ciphered opcodes ,-I'

Y

Manage source of Decipher opcode with | Manage another Decipher opcode with
noise the provided key | source of noise the provided key o

Figure 3.42: Illustration of a chain of different source of noise, each opening the access to the next when the
environmental key is correct.

However, this security remains probabilistic. The user must perform certain actions or have a machine con-
figured more or less as expected. And even if it is possible to have a certain tolerance (to allow the generation
of a valid key when enough criteria are present — without them all being necessarily there), it remains that
the protection can be analyzed. This is usually for extremely targeted malware because greater the diversity of
targets, the easier the key can be generated and the more likely an analyst will find it. In any case, once the
target has been impacted by the malware and if this one is aware of it, it will be possible to try to discover
what finally triggered the malware since the final environment is known.

Page 147 on 619 — Thesis manuscript — Chapter 3

In the end, we always come back to the protection of the triggering mechanism. In a conference given at
Black Hat USA in 2018, Dhilung & al. [5] provides another approach to protect the malware. From their point
of view, malware concealment can be seen as locksmithing, where the history started with obfuscation and
mutating payloads in the 80s to mature with packers in the 90s, seeing the 2000s using evasive malware trying
to avoid being analyzed and the 2010s targeted attack disclosed only at a target. The Figure 3.43 is extracted
from their conference [5] to illustrate the historical evolution of malware protection, from authors’ point-of-view.

. Checks for target

| =0

QK

1990 2000 2010

Obfuscation Encryption Evasive malware Targeted attack
Mutate payload Hide payload Avoid being analyzed Disclose only at a target

Polymorphism Packers VM check Target attributes check
Metamorphism Processes check

Figure 3.43: Timeline of the evolution of malware protections, taken from [5].

In addition to confirming that our work published in 2013 [467, | was finally relevant, the authors propose
a new approach with the hope that this may provide a new milestone a day. The idea is to entrust the manage-
ment of the key manufacturing to an artificial intelligence — a Deep Neural Network (DNN) in author’s case.
Thus, by collecting various target attributes (Audio, visual, geolocation, software environment, user activity,
sensors or physical environment), it becomes possible for a trained DNN to recognize its target and to generate
a cipher key according to the recognition. Note that it is possible to use another DNN with a key generation
model to generate the cipher key in order to get reliable results.

This technique increases the difficulty of reverse engineering malware potentially equipped with such tech-
nology. Since artificial intelligence and DNN in particular has become popular those last years, researchers have
tried to look for reverse engineering techniques on neural networks [470,]. And of course, there are some
possibilities to mitigate techniques of reverse engineering with DNN [472].

Forcing to reverse engineering an artificial intelligence is a pretty efficient way to make malware analysis
complex. It is in a way an improvement of what we did with our probabilistic models for key-generation. The
difference is that in our case the code that dealt with the management of the environment to generate the key
were specific and sometimes tedious to write (because we have to program while anticipating a probabilistic
input). The advantage of using an artificial intelligence is that the models are generic and easily accessible
online. But if there is a plus in the ease of implementation (and finally also in complexity of analysis because
these generic models are combinatorially complex), there is a lost in the control of the trigger conditions. In our
case, although probabilistic, we can drive exactly the characteristics that allow us to target closely the victim.
In the case of artificial intelligence, the logic is more fuzzy and the control is built empirically. But here we go
from a handmade and complex to implement production to a mass production facilitated by generic tools and
finally quite reliable. It is perhaps the trend and the possible democratization of the threat that we should fear
more than the search for an optimal solution.

Chapter 3 — Thesis manuscript — Page 148 on 619

6 Conclusion

6.1 Reminder of the achievements

Throughout the achievements reported in Chapter 3, we can summarize the achievements along two main lines.
On the one hand, there is the realization of a state of the art (section 2) to define which technologies are cur-
rently present so that a malware can escape from an analysis environment. By analysis environment, we mean
that there are two main types of environment. The first type is about manual dynamic analysis and concerns,
to put it simply, all debugger software that are driven by human. In contrast, the second type corresponds
to analysis tools named as automatic dynamic analysis. Such tools do not require a human being to be used.
Technically speaking, it corresponds to malware sandbox composed by virtual machines and DBI tools mainly.

After exposing the goals and tools used in the context of malware analysis, we turned our attention to the
various known methods that malware could use to escape from the analysis tools. There are two well-defined
strategies, whether the analysis tool is manual or automatic. On the one hand, a target strategy that seeks
to identify or exploit a property induced by the analysis tool. This often involves exploiting the fact that an
analysis tool is never "free” compared to a normal environment. More directly, such a tool always leaves a
trace or induces a difference in the behavior of the analyzed program, simply by its ability to collect and report
information. On the other hand, the other strategy is often to act generically, without worrying about the
presence of a particular tool. The idea is often to exploit a specific API from the operating system or a CPU
feature in order to evade from the control of the analysis environment.

From the state-of-the-art, it was possible to define two original and operational solutions to complete the
panel of existing evasion techniques. Since the state-of-the-art is divided between manual and automatic dy-
namic analysis evasion, one solution has been proposed to address each type of evasion. The idea is to humbly
try to complete and contribute to a better knowledge in the field by proposing improvements or new approaches.
Of course, the development of these techniques aims to better understand the different techniques of evasion.
To do this, we can either guess a future technique (and therefore study it better) or try to improve a past one
(to see how far it is possible to go).

We have in section 3 the exploitation of negligence in the Windbg debugger (more or less already known
but we rediscovered it by ourselves) to allow different methods of evasion. Then, in section 4, the objective was
to create a generic escape method for all automated dynamic analysis environments by exploiting some phys-
ical phenomena specific to the CPU architecture from the most popular vendors. This is unique both by the
possibilities offered (generic detection, no other approach offers such a result) and by the complexity to correct
this problem. Indeed, the approach we propose exploits a phenomenon neglected by CPU designers, namely in
our case the use of undocumented techniques. Correcting such issues would lead to update CPU’s micro-code
or to review the cache management architecture of the CPU. All other things being equal, the consequences
are somewhat the same as for Spectre attacks [159]. Correcting this type of problem often means having to
make a trade-off in terms of performance (the cache is a central performance mechanism of modern CPUs).
The difference is that our detection method does not have the same impact as the Spectre attack. But it is
possible to note that approaches exploiting conceptual or physical limits from CPUs could be — in the future
— a promising source of research in computer security.

It is possible to see here an educational approach to fight against evasion techniques. By putting ourselves
in the role of finding a new evasion method, we have to face all the constraints inherent to the conception of
this type of technique. That way, it allows us to better understand the compromises that malware must do to
have operational methods. And therefore, potentially, to better understand the problems and biases they have
to face. In consequence, we can better understand the weaknesses inherent in the design of this type of method.
And of course, to be able to exploit these weaknesses to better counter or detect malware.

More than the technical aspect which has been detailed already in this chapter, it is perhaps on this aspect of
understanding the offensive mechanics that it is advisable to put forward. The contribution of section 4 on how to
improve a generic evasion method seems for us to be particularly relevant. On the one hand, because it proposes
to evaluate the reproducibility of an experiment by third parties who only have access to our research paper
and no specific instructions for reviewing. Leaving the academic path and confronting ourselves to operational

Page 149 on 619 — Thesis manuscript — Chapter 3

context. On the other hand, by the ability to synthesize the different feedbacks, sometimes original in their
approach of evaluation of our method, to propose an even more robust system. This way of doing things is to
response to the needs of the people who were able to test our method, but also in order to better understand the
constraints specific to this type of evasion (diversity of environments, hardware specificity, technical complexity,
false-positives, etc.).

6.2 Research contributions

Contribution 2: Protection of analyzed executable files

IS" State-of-the-art about different techniques used by malware for evasion.

#£5 We present a comprehensive survey of malware dynamic analysis evasion techniques for both
modes of manual and automated (debuggers, virtual machines, DBI).

#£5 For both manual and automated modes, we present a detailed classification of malware evasion
tactics and techniques.

#£3 To the best of our knowledge, this would be the first comprehensive survey of dynamic analysis
evasion tactics that offers a thorough classification.

#£5 We provide a brief survey on countermeasures against evasive malware that the industry and
academia is pursuing.
IZ” We propose a new method of evasion for manual dynamic analysis evasion technique.
#5 We propose one evasion method based on an existing bug in Windbg which does not interpret
correctly one specific implementation of interruption breakpoint.
#£5 We propose three different ways to fool disassembly engines from debuggers based on badly
interpreted assembly instructions. Result produces unreadable code displayed to user.
IZ” We propose a universal method of dynamic analysis evasion for malware.
#5 This method is based on an original way to perform cross-modifying code between two threads
and not covered by Intel documentation.
£ Our method allows to process both manual and automatic dynamic analysis evasion technique.

#£3 Tf the method works every-time with debuggers and DBI, it remains probabilistic with virtual
machines if there is no prior calibration based on the host CPU.

#£5 Based on the feedback from a test campaign, we have improved our detection method to avoid
requiring a calibration step.

Chapter 3 — Thesis manuscript — Page 150 on 619

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 4

State of the art about Windows keyboard
management

1 General introduction

1.1 About keylogger threat and the organization of the following chapters

The idea of improving the security of a computer system, the fight against malicious threats is a key point.
Among these threats, keyloggers have a very special role. Many definitions have been given to a keylogger in
litterature. Among them, Trend Micro antrivirus defines keyloggers [173] as "keyloggers are programs that log
keyboard activity”. This is a general definition, comforted by [174] which references a keylogger as:

" A keylogger is a software designed to capture all of a user’s keyboard strokes, and then make use of
them to impersonate a user in financial transactions.”

Sophos offers a more inclusive definition [175] where:

”Keyloggers are activity-monitoring software programs that give hackers access to your personal data.
The passwords and credit card numbers you type, the webpages you visit - all by logging your keyboard
strokes”.

It can be observed that from all its definitions, the role of keyloggers, if it is focused on the keyboard, can be
extended to other areas, and more generally for any data manipulated by the keyboard. But the two definitions
do not necessarily detail the form a keylogger can take. Therefore, the antivirus company Kaspersky proposes
a dual definition [176]. From Kaspersky’s point of view:

The concept of a keylogger breaks down into two definitions:

1. Keystroke logging: Record-keeping for every key pressed on your keyboard.

2. Keylogger tools: Devices or programs used to log your keystrokes.

In [176], there is a difference between the puprpose of a keylogger (i.e. a tool for collecting information,
mainly focused on all the data coming from the keyboard) and the technical means implemented to proceed.
That way, there is an important distinctions in terms of the methods used to collect information. Indeed, there
are several types of keyloggers, adapted to different architectures and responding to different needs. A keylogger
can be hardware or software. On the first hand, hardware keylogger are designed to handle the keyboard device

151

Chapter 4 — Thesis manuscript — Page 152 on 619

physically while, on the other hand, software keylogger is designed to be run on the operating system receiving
information from the device. Detailed explanations about keylogger shapes are provided in sections 2 and 3.

Form our point of view, a keylogger is more a concept, a tool, a feature, a way for doing something, than a
definitively fixed definition. But generally speaking, we can say that a keylogger is a malicious feature (hardware
or software) that aims to retrieve what a user sends as data into a machine.

Data retrieved in the system can include document contents, passwords, user-names, and other potentially
sensitive piece of information. More generally, it concerns all critical information manipulated by the user. The
goals of keyloggers authors are diverse. It includes everything from stealing bank credentials for money theft
to espionage (industrial or state espionage). With credentials from systems, the attacker has a great advan-
tage to success any attack, stealthy and efficiently. The consequences can be dramatic for the victims of these
tools while they can be very lucrative for their perpetrators. And this explains why this type of tool is so popular.

According to Check Point Software Technologies Ltd’s cyber security report [6], in the top ten malware
sample families that have been found worldwide in 2020 (provided in Figure 4.1), seven [477, 478, 479, 480, 481,
482, 483, 484] are using a keylogger technology (the other three malware Jsecoin, Cryptoloot, and Coinhive are
crypto-miner designed to perform online mining on the infected machine).

TOP MALWARE FAMILIES

BGLOBAL
0
25% + T
15% + 15% 14%
10% . _ 12% 1% % 100_
7%
5% 4 I
0%
e o O & o
S & \!\Q‘ vb \p ,\ef’ W)
& Q 6‘(\ ¥ W & & &
(5\ C ng, &N <<0*

Figure 4.1: Top malware families - extracted from [0].

Nowadays, keyloggers are generally embedded as a feature in more general purpose malware (such as info-
stealer or botnets malware). This is also one of the reasons that makes this type of malware complex to detect
[485, 486]. And it may even be necessary to question the need to detect it. Indeed, it may be potentially more
interesting to neutralize this type of behavior and the effects it produces, whatever the software, rather than
trying to characterize it.

It is with this approach that our study was conducted. By understanding how keyloggers work and the
underlying technology they rely on can enable us to deploy effective defense systems. The purpose of this and
the next two chapters is to better understand how the keyboard works in Windows in order to propose solution
designed to counter keylogger malware. The articulation of the chapters, the links between the parts and the
key points explained in each section is given in Figure 4.2.

Page 153 on 619 — Thesis manuscript — Chapter 4

Keyboard documentation — Chapter Il

- BV FC Modal Fikeyboard [mechanical design).

Hardware keyboard - Intagratad circuit and intel 804 keyboard centroler

- Used by madern/currant davices.
-USB protocdl: how doesit wark?

~Oldesttechology f olddevices
ooy / P5/2 keyboard technology USB daicemanagemant (inialization and rautngl

- Keybosrd detaction.

S8 keyboard technology

~Handled by 18042pr 5= driver.
il P - Architecture of USB devicesdriver stack under Windows 10.

- USB and HID intaractions (used with blustocth davicss).

- HID intarface, repert and physicisl descriptors

- HID report descriptor. self describing communication pratocal
- HID report descriptor for Keyboard.

USB-HID keyboard
technology

Windows internals — Chapter Il

- HID class driver.
- Intarface with HID drivr (raad IRP management)

- Allow sacure resd for trusted processes (SeTchPrivlege)
- Convert HID scan-codeto 18022 (PS/2) scan code:

- Transert from HID 1o keyboard driver via
KeyboaroCiassservicaCallback routine

Windows HID handling

- Windews synchroneus/ssnchrencus mes saga systam

- Raw Inpust Thresd (AT} ane per session.

- R isstarted by csrssexe and it runsin kernel-medefrom
winzzk.

- R iniializes avicas (Sensors) and wais for events.

- AT readzfrom kedclass thanis to read RP.

- AT ransfers date from keyboard device in carss memary.
- RIT transtatesscan-codes nto virtual key codes

- RIT manages special keyboard shortaut events.

Keyboard dlass driver

,_
I
i}
5
=8

Legend:

Dacumentation work

- Keyboard foaus
- Input keybo3rd inputs management possibiities for an appication? Allpassble
implamentations:

- Window message sysw=m queue.

- Diect raw input access.

- Asynchronus access.

- Hook procadures

- Diracti.
~Virtusl key codes and keybaard layout.
- From scan code to virtusl key code (intermal).
- Boragcast 3 keystroke massag and simulstad input.

[] rewseengneminguonc
Mixof documentation and reverse
engineering work Window messages

broadcast
Own rasearch work

Mix of documentation and our awn
research work

Keylogger state of the art — Chapter Il

- Biract access to the physical machine.

- Active keylogzers

- PS/2 connectors.

- Usa eonnecters.
Hardware

Keyloggers technology

- USB extzrsion cable
- Inside the keyboard (Embedded integrated drcutt. Software

- Firmuisrs keyloggers (BI0S/UEF].
- Karnel-mode ke loggers.

hnology

- Pasiva keyloggers:
- Wirslezs interception.
- Acoustic interceptian.
- Electromagneic interference interception.

- Fossible protections?

Firmware
Keyloggers technology

Kemekmode
Keyloggers technology

User-mode
Keylogeers technology

-ssor -
- Based o UEF or bootiit malvars. et o ~ Asynchronous sccase
-Execucad beforethe operating sysiem S er 2 v - Hook procadbrs.
-Can be present on hard drive or motherbosa " ik ootine (/2 orby - Rawinput davics registration.
- Ktfiter diver. - DirectXAPL

-Sacurity by Dynamic Root of Trust. - Keylogzer with keyboard focus.

d spacial sgnature (x64) -

\ / Dl infaction and hoske in targated procsss

Anti-keylogger state of the art — Chapter Il

Anti-Keyloggers tachnology

Passive solutions

Active solutions

Industrial solutions

Doy chniques: - Anslysis made on offcal documsreation sualsbl
- Detacton based on 4Pl usedi by an appiicaton. “Targeced decoy ~Commercil or marketing documentation.
- Detaction based on keylogger side effects. - Global decoy.
-5 diferent sclutions anshisd
- Dificu s n ming the diffaranca bateen 3 Dynamic keybosrd nyout ~Basad on Dl injections.
legitimats and feyboard. Use = parallel communication channel
2 malicious cne that uss: the ams keyboard - Random multiple Byouts. -[Useless) ciphering use in this channel.

-4 1ull issr-mode application.
~Hypervisor based seurty. -OneSoftware Developpment K solution.
- DrivarGuard and Kguard

~Virtuslization based security on Windows 10 ~ Faws are fres and nons ara cpan-source.

Gostboard Solution — Chapter IV

~Fras, open-ource snd corracty documentad
Presented at B shate procas sy tast captured from the keybeard.
_ ~Be atleto secure bath adminisrator and non-adminisatar aplications
DefCon 25 - Las Vegas, USA ~Be able wherever posible, to ensure security o therernel levl
the gefence sobti

-Be
~Unprotacted
protected spplications sre procesing i

- Do ratinwoduce a saurce of insabiliy for protecied spplications

- WDIA driver insarts 2= an Upperfiter from kbdclass driver.

(i
~Original projact designad from

Cal2Cags (WOM . Aﬁ:;pm;»dz’dt::: :;E:nd.

-Project rewritten with WOF technology. - Exchange.of cipher

~Focusad on P2 keyboard. - Transparent for developers(few functionsto Gl

Genesis of the project General architecture

cprar =
Keysoke
~Prasantad ¢ D Con 25— asVegas, USA
= “hutzchthe
- Read P disp cher routine
 KeyboaraCiassServiaCalback rautine
Protection of protected .
Keystroke protection ik Seff-protection
application
- Ciphar cperation onscan code ecsived |- peintchiew
- Input scan code set= Ouput scan code application: -$tmrt procection at boot-driver level (a5 5000 a5 possible).
= - Non paged memory. - Future protection against direct modification (VTL - Hypervisor)
~Ciprersiorinm: pssudo-random ~Frotsasd process e ~Chainf trus with ELAM driver.
s pmmzam. Ctrustaa latorm Mok

- Cipher key generted from driver and
‘shared when application reedsit.
~Cipher operation when keyboard focis.

- Crash dump managemere.
- Mutiprocess mansgament

- Crash of aprotected 3

- Going dezpar in the driver davics stack
~Virtual HID Framewark

Going further

Iimitations.

Figure 4.2: Plan of the next chapters dealing with keylogger threat management.

Chapter 4 — Thesis manuscript — Page 154 on 619

1.2 Introduction about keyboard technology

To understand how a keylogger malware works or any solution responsible to neutralize one, it is necessary to
understand first how keyboard is managed under Windows operating system. From a general point of view,
the way the keyboard is managed under Windows has not really evolved since Windows NT. The original spirit
remains the same since retro-compatibility fundamental forces Microsoft to keep existing technology close to the
shape it has before. Various third-party drivers or application software depends on API functions or structures
provided by Windows. It means that API functions which have been used before must continue to provide the
same service in the future.

However, while backwards compatibility requires maintaining old structures, it is important to note that
technology keeps on evolving. From the first keyboards connected to PS/2 ports to Bluetooth keyboards, both
the hardware and software have been subject to updates. One of the objectives of this section is to present the
way the keyboard works and the associated technological developments. From both historical and technological
point of views, we will see here how to drive and manage the keyboard at different levels and with different
hardware devices. Finally, it will be interesting to note that the further we move away from the hardware and
its specificities, the easier is the interface for the programmer. This makes sense, because, even-though the
hardware has evolved, the sotfware interface to interact with it has not changed to keep compatibility with
older versions.

The technology used for both USB and PS/2 keyboard is not complex from an electronic point of view.
In the end, both are serialized communication devices where interface has been standardized. When they are
plugged for the first time in the computer (at boot-time or at running time), electronic management is taken
into account by the motherboard. In both cases, connectors are composed with many pinouts including at least
a ground, a clock, a data and an input Vce (+5V). Power specifications is only relevant if we are willing to
design the silicon for a PS/2 or USB device/transceiver. To go further, we would like to mention the following
reference documents for PS/2 [487, , , , ,] and for USB [7,].

Automatic detection and setup configuration of both devices are different. For PS/2 keyboard, this one does
not works as it works with USB. In the first case, device discovering is guaranteed by electronic connections
with the motherboard followed by PS/2 commands [192,]. With USB devices, a most complete procedure
is fully described in section 4 (Key-Point 4.6). Note that, in the case of PS/2 connectors, improvements have
been made to allow a friendly-user interface (especially by removing the difference between keyboard and mouse
connectors) but it inadvertently created more issues [194].

We propose in this chapter to drive the explanation by following the path taken by information when a key
is pressed. From the electric signal generated from the keyboard device to the graphical application reacting
to that signal in the computer. We propose first to explain the starting point, when the keyboard device itself
transfers information to the computer (section 2). Then, the kernel handles it depending on the technology
the keyboard used (PS/2 in section 3 or USB/HID in section 4). Finally, the Windows kernel is in charge
of handling signals received from keystroke in order to broadcast them to applications running in the system
(section 5 — Key-Point 25).

Page 155 on 619 — Thesis manuscript — Chapter 4

2 Keystroke from hardware keyboard

Key Point 4.1: Keyboard hardware devices

BZ" This section explains the electronic architecture of the keyboards used on our computers.

#£5 The current design configuration of our keyboards comes from Model F keyboard designed by
IBM.

#£5 The internal electronics of the device are quite simple. The goal is to identify the keys pressed
and transmit their code to the host machine through dedicated micro-controllers (historically
with the Intel 8048 CPU).

45 The transmission of information depends on the connectivity used: PS/2 or USB.

Technically speaking, the first keyboards were directly embedded in computers and managed specifically by
operating system (like the DataPoint 3300 in 1969). The first general public keyboards were connected with
serial wire (such as the Model F keyboard [195] from IBM which has used, among others, a 5-pin/180 DIN
connector). Since they are no more really used, it does not appear relevant to talk about, even if the philosophy
to manage them is similar to others.

Among the different hardware keyboards manufactured all over the world, the design of the IBM PC Model
F keyboard [495, 496] is one of those that have had a long-term influence on the design of keyboards. This
is why we chose to focus on its architecture since the principles of this one has been reused a lot in modern
keyboards. In this part, we propose to detail the different layers of the keyboard from the point of view of the
hardware equipment (and not of the computer to which it is connected). Technically, a keyboard is a set of keys
which, whenever they are pressed, deliver an electrical signal that is transmitted to the computer to which the
keyboard is connected. Formally, it is a device as given in Figure 4.3 [497].

E ' |+ i Nom |
6 z B Lock |
| % A
M] ./ N |
. ! P b -
Caps. 0
Lock e

ﬂ
a

3
ﬂ
f &
I 4 J

Figure 4.3: IBM PC Model F Type 1 keyboard device.

If we remove the keys from the keyboard and the external framework of the device, we have the result given
in Figure 4.4.

Chapter 4 — Thesis manuscript — Page 156 on 619

=3

Figure 4.4: Keyboard IBM-PC model F type 1 mechanism from top without key.

If we remove the plastic part, we discover the bottom barrel plate (Figure 4.5) composed of hammers that
come to strike the metal plate (Figure 4.6) underneath. This plate is the metallic physical contact between the
keys and the Printed Circuit Board (PCB) representing the electronic matrix of keys.

Figure 4.6: Bottom cover removed to get access to the
Figure 4.5: Bottom barrel plate with hammers. metal bar that makes contact between the hammers
and the PCB underneath.

The electronic matrix of keys is given in Figure 4.7. When a key is pressed, the hammer behind the key
strikes the metal bar which makes a physical contact on the matrix. This matrix is a capacity circuit able to give
a different input depending on the key pressed, allowing to differentiate them. This behavior is similar to a piano.

Figure 4.7: Capacitive PCB representing the electronic matrix of keys.

Page 157 on 619 — Thesis manuscript — Chapter 4

If we focus on the top of Figure 4.6, we can see two electronic circuits which are supposed to manage the
keystrokes. The first top right PCB is a ship responsible to manage keystrokes. Technically, a keyboard is
made up of switches constituting a key matrix [198] continually read by the internal keyboard’s micro-controller
[499] (Figure 4.6). Each of these switches is associated with a hardware key which each produces a dedicated
value. This one is directly managed by the internal micro-controller of the device, usually an original Intel 8048
[500, 501] from the MCS-48 micro-controller series [502] (Figure 4.9).

8 PB8048H 0611
f a1z8

5780497
@© INTEL '77

Figure 4.8: Keyboard matrix integrated circuit man-
ager. Figure 4.9: Intel 8048 keyboard controller.

Of course, the exact micro-controller used in a keyboard is very dependent from one manufacturer to another.
But if the chip is different, the required task to perform is always the same: keyboard encoder. Since a key is
pressed (or released), a mechanical movement forces a switch to be connected on the key grid composed by the
electronic circuit of the device. Because the rows and columns within the key grid are connected to 8 bit 1/O
ports on the keyboard encoder, a keystroke generates a signal on the dedicated port connected by the physical
key. Logical diagram extracted from [496] is given in Figure 4.10 to represent this action.

With this architecture, the goal of the keyboard encoder is to scan in real time the ports enabled to see
whether a key is down or not. Once the key is identified, the second PCB (top left in Figure 4.6) is supposed to
translate it to an understandable code for the host computer where the keyboard is connected. This process is
performed with the help of an Intel 8048 micro-controller (Figure 4.9). This one reads in a read only memory
(ROM) which value is associated to the signal received. The electronic diagram of this process is given in
Figure 4.11 [196]. Note that key matrix handler (Figure 4.10) is more or less embedded in a box "keyboard
capacitive matriz” on that scheme.

Finally, the micro-controller of the keyboard device generates a signal, through the wire of the keyboard,
to carry the value from the device to the computer. It is therefore up to the receiving machine to process this
information so that it can be understood by its software.

The signal of a keystroke is transferred from the keyboard device to the host machine. At that point, it
is the responsibility of the host operating system to handle it. The kernel of the operating system, since it
handles hardware management, is the first involved. Then comes applications (user-mode applications) which
are usually final consumers from keyboard input. From the kernel glasses, the main responsibility is to handle
the signal, wherever it comes from, to commute it on the keyboard device stack in such a way it will be correctly
dispatched to the rest of the system. Of course, keyboard signal can come from different places using different
types of technology to interface with the host they are connected. From PS/2 connection [503] to wireless
device, including USB/HID connections, it must be correctly handled and recognized. Because of keyboard
manufacturers use different types of interface, it remains that the software still need to interact the same
way with the device. For retro-compatibility purposes first but also because the operating systems are not
motivated to handle different drivers software for each keyboard interface type. Explaining how different types
of connectivity work and how they are implemented through Windows operating system is the aim of the next
sections.

Chapter 4 — Thesis manuscript — Page 158 on 619

+svoc
AT TRE IRS IR0 IRI ZRIZ 3IR1I ZRI4
5805
MICROPROCESSDR
24 SENSE 5
POO 431
y+8vBC 4 por |22 SENSE 3 s
IR vee 2 SENSE 0
+ PD2 J3-3
~c =] e ~cB RS poa |2 SENSE | .
n SENSE 2
- GND 1 [¥
ﬂé>_ vss F:‘: IT] SENSE 4 ji:
NuM pog |18 SENSE 6 e
L poz [SENSE 7 e
+5vDC +5v . oA 18
Q -
] [l el DRIVE 18 L
™ TIMER :: T DAIVED i; Keraoano
M L L LI pea |2 DRIVE 1 Jaa MATRIX
! :D] o poa 12 DRIVE 2 P
I_ u pes 4 DRIVE 3 fats
. pes |15 DRIVE 8 s
1.0 ¢—KBD CLOCK .- -] per 18 DRIVE 4 o
[} 25 DRIVE §
P80 Ja-g
pa |22 SAIVE ¢ Ja-1
E]] £l plesq 7] DRIVE 7 -
P s s
J4-13
+KBO DATA [} 5 L] esd DRIVE 11
Jrog TR DRI PAZ PBs Ja-14
] n~ ™ pas |3 DRIVE 12 15
=cs 5 12 DRIVE 13
EXTAL _____ X
1 —l |—_T:— T J4-16

ICI

101/102-KEY KEYBOARD

Figure 4.10: Logical diagram representing the circuit given in Figure 4.8.

Page 159 on 619

— Thesis manuscript —

Chapter 4

cor oy ¢ —3V0C
o | 56t
ol
e
6 | 2 5v a
T 8y I I SA CLOSED GND e
B — SELETD b 002,
2% rol 12 SELECT 1 69]\ ¢
o oo P20 [ELECT 2 B com |6
vee 1 BESET 3T} Res
F
2 el
63
r fc
a7 i
1 8048
MICROPROCESSOR aifjisy M AMPLIFIER
] P19 [z _moot SENSEB A
X2 P2 [23_M00Z SENSEC AT
P13 [30_Mo3 SENSED_AS
s i
32_MD0
207p1 1 P15 133 Moos KEYBOARD N
IR 5RIC $18 [34 oo CAPACITIVE SENSEH_E1 |
| =
25 |15 14 MO0 LRSS SIRIIINT)
GND 7 37_M010
€01 [ACS) EA b2 g moir
l 21 yss
+5VIC
T +5V0C
5
s [
10k %0
10 K
i 4] 76 TETIEE] NSCED +SERIAL DATA
13 [) €01 {A07)
il] -POR 4 e L)
12 0 RESET 5 [LL
0
IL“ il T [6_oaTam
Ko R
" ’ e —
ME g [E-AEROUT 1[5 10 REQUEST/CLOCK LM
] 8 1KQ
b R
1_-REQIN
5
T m 2
83-Key Keyboard

Figure 4.11: Logical diagram representing the circuit given in Figure 4.9.

Chapter 4 — Thesis manuscript — Page 160 on 619

3 PS/2 technology

Key Point 4.2: PS/2 technology

I¥" PS/2 standard is a communication protocol used to communicate with PS/2 connected devices.
Today, this one is mostly obsolete.

3.1 Presentation of PS/2 technology

Key Point 4.3: PS/2 technology presentation

" PS/2 standard is an old technology (released in 1987) coming from IBM AT keyboard port.

#£5 PS/2 keyboard management is generally handled by micro-controllers present on the side of
the motherboard on the computer.

#£5 Historically, Intel 8042 chip has handled keyboards. Whatever is the chipset used today, it is
still commonly referred as ”8042”.

One of the technology to manage keyboard which is still in use (even if it decreases nowadays) is PS/2 [504].
Technically speaking, the PS/2 port is a 6-pin mini-DIN connector (Figure 4.12 [196]) which can be used by
keyboard or mouse to interact with any type of PC compatible computers (in the sense of original IBM PC
[505], XT, and AT, able to use the same software). This one is an extension of the "AT” standard crafted to
be a serial interface with a bi-directional interface. Except the plug-connector, the PS/2 standard is electrically
identical to the "AT” one. The name of PS/2 comes from the IBM Personal System/2 computer [506] (PS/2,
for short) which is the third generation of personal computer, released on 1987. One of the main innovation it
carried was the new interface for keyboard and mouse. The latter became de facto a standard because it was
later adopted on a large number of computers. The success of the Model M keyboard from IBM is part of the
story. Indeed, this one looks like most modern keyboards.

DIN Connector
DIN Connector Signal Name Signal Type
Pins
1 +KBD CLK Input/Qutput
2 +KBD DATA Input/Output
3 Reserved
L Ground Power
g +5.0 Vdc Pawer
Not used
Shield Frame Ground

Figure 4.12: Representation of DIN connector.

Page 161 on 619 — Thesis manuscript — Chapter 4

The internal functioning [507] of the PS/2 protocol is quite obsolete nowadays. Even if this connector is
still used in some (old) industrial systems, it is no more present in consumer computers. This is why we will
not see all the details about this technology because it concerns only a few systems, in the end (nonetheless,
more information about PS/2 keyboard technology can be retrieved in [192]). Nevertheless, this one can still
be relevant to build a hardware PS/2 device. Indeed, PS/2 keyboard management is generally carried out by
micro-controllers present on the side of the motherboard on the computer. More directly, when we are interfac-
ing with the keyboard, we are not communicating directly with the keyboard device through the bus. Instead,
a keyboard controller provides an interface between the keyboard and the peripheral bus.

The keyboard controller interfaces with the keyboard encoder chip through the keyboard communication
protocol and it provides a way to interface it. This micro-controller is present on motherboards from the early
days of keyboard history since it is responsible, among other things, to handle commands coming to and from
computers, translation from one scan code set to another scan code set and any third-party modern functionality
such as specific functionality keys and commands [508]. In the early days, the controller was constituted by a
single chip (Intel 8042) used to control access to the A20 address line [509] responsible to correct a compatibility
issue with the Intel 80286 CPU. Even in modern computers, this chip is still one of many components present on
a motherboard. Whatever is the model of the chip used today [487], there is still a part of motherboard chipset
responsible to handle the keyboard and it is still commonly referred under the ”8042” name. Note that, if it
is the Intel 8042 which is used on computer side, it is the Intel 8048 which is used on keyboard side (Figure 4.13).

Kevboard
25950

T

cru K— apaz 1

Ky
el atri

<z

20448 _I\

Figure 4.13: Presentation of the architecture between the keyboard and the host’s motherboard.

3.2 Kernel interface with a device and scan code sets

Key Point 4.4: PS/2 scan code sets

I¥" PS/2 standards uses three different scan code sets (for historical reasons).

5 A scan code is an alphabet that associates a specific value (one or several bytes) to each key
on the keyboard.

£ The scan code set is selected when the device is initialized.

#5 For the same key, the scan code value sent is different depending on the key is pressed, released
or held down.

From the computer points of view, there are two ways to receive bytes from the device: polling or interrup-
tion request. The first is about to wait on an IO port until a signal is receive. This solutions has at least two
issues. The first is that, like all polling solutions, it wastes a lot of CPU time for nothing. The second lies in the

Chapter 4 — Thesis manuscript — Page 162 on 619

case where the device embeds mouse and keyboard together, connected on the same controller (as it is possible
with PS/2). In such a case, there is no reliable to determine from which device data received has been sent,
unless one of them has been disable [191].

The second way to transfer data relies on interruption requests (aka IRQ). For the sake of brevity, this
method maps a dedicated interruption port from the CPU (liked via the motherboard) to the device. This way,
the CPU is interrupted each time a specific event occurs on that port. More directly, the current CPU task is
suspended to handle the notification which is provided by the device each time it is required. This implies a
notion of priority of task to allow one to preempt a second one. Nowadays, the interruption system is the most
widely used.

The signal transmitted through the wire is composed of the value of the key. This value is defined by the
type of keyboard used and it depends on the layout (with geographic specificity) of this one. For instance,
German, English, Russian, Chinese or French keyboards have different layouts. More directly, the location
where characters are mapped on the keyboard are different. The different values produced by a keyboard are
grouped together in a scan code set which determines when a key is pressed, repeated or released. Even if
any manufacturer is free to build its own one, there are three different sets [510] of scan codes. The oldest
is originally named ”scan code set 1”7 [511] defined by IBM PC XT [512]. The default one used by a lot of
keyboards is "scan code set 2”7 [513] (from IBM PC AT [505]), and there is a newer (and more complex) one
named ”scan code set 3”7 (from IBM PC 3270 [514]).

The way the computer understands all different scan codes depends on the architecture of the keyboard and
on the driver installed on the computer. It happens on specific devices that the keyboard itself uses scan code set
2 and the keyboard controller translates this one into scan code set 1 for compatibility purposes. Depending on
the device, it can be possible to ask it to determine which scan code set this one uses (and eventually changing
it, when it could be possible). A synthetic list of scan codes content from the different scan code sets is given
in table 4.1.

TBM Koy No. Set 1 Make/Break Set 2 Make/Break Set 3 Make/Break Base Case Upper Case
T 29/A9 0E/F0 OE 0E/F0 OE < ~
2 02/82 16/F0 16 16/F0 16 T T
3 03/83 TE/F0 1B TE/F0 1B 2 Q
1 04/84 26/F0 26 26/F0 26 3 #
5 05/85 25/F0 25 25/F0 25 1 S
6 06,/86 2E/F0 2E 2E/F0 2E 5 %
7 07 /87 36/F0 36 36/F0 36 6 -
8 08/88 3D/F0 3D 3D/F0 3D 7 &
9 09/89 3E/F0 3E 3E/F0 3E 3 *
10 0A/8A 16/F0 46 16/F0 46 9 (
11 0B/88 45/F0 45 45/F0 45 0)
12 0C/8C 1E/F0 4B 1E/F0 4E N —
13 0D /8D 55/F0 55 55/F0 55 = ¥
15 OE/8E 66,/F0 66 66/F0 66 Backspace

16 OF /8F 0D/F0 0D 0D/F0 0D Tab

17 10/90 15/F0 15 15/F0 15 q Q
18 11/91 1D/F0 1D 1D/F0 1D W W
19 12/92 24/F0 24 24/F0 24 © E
20 13/93 2D/F0 2D 2D/F0 2D T R
21 14/94 2C/F0 2C 2C/F0 2C © T
22 15/95 35/F0 35 35/F0 35 Y Y
23 16/96 3C/F0 3C 3C/F0 3C u U
24 17/97 43/F0 43 43/F0 43 i T
25 18/98 44/F0 44 14/F0 44 o [©)
26 19/99 ID/F0 4D ID/F0 4D b P
27 TA/9A 54/F0 54 54/F0 54 T {
28 1B/98 5B/F0 5B 5B/F0 5B] }
30 3A/BA 58/F0 58 58/F0 58 Caps Lock

31 1E/9E 1C/F0 1C 1C/F0 1C a A
32 1F /OF 1B/F0 1B 1B/F0 1B s S
33 20/A0 23/F0 23 23/F0 23 d D
34 21/A1 2B/F0 2B 2B/F0 2B [F
35 22 /A2 34/F0 34 34/F0 34 2 G
36 23/A3 33/F0 33 33/F0 33 h H
37 24 /A4 3B/F0 3B 3B/F0 3B j J
38 25/A5 42/F0 42 42/F0 42 Kk K
39 26/A6 4B/F0 4B 4B/F0 4B T L
40 27/A7 4C/F0 4C 4C/F0 4C ; ;
a1 28/A8 52/F0 52 52/F0 52 v ”
43 1C/9C 5A/F0 GA 5A/F0 GA Enter Bnter
a4 2A/AA 12/F0 12 12/F0 12 Left Shift

16 2C/AC TA/FO 1A TA/FO 1A z Z
a7 2D/AD 22/F0 22 22/F0 22 x X
48 2BE/AE 21/F0 21 21/F0 21 < C
49 2F /AF 2A/F0 2A 2A/F0 2A v v
50 30/B0 32/F0 32 32/F0 32 b B
51 31/B1 31/F0 31 31/F0 31 n N

Page 163 on 619 — Thesis manuscript — Chapter 4

52 32/B2 3A/F0 3A 3A/F0 3A m M
53 33/B3 11/F0 41 41/F0 41) <
54 34/B4 19/F0 49 19/F0 49 >
55 35/B5 IA/F0 4A IA/F0 4A 7 7
57 36/86 59/F0 59 59/F0 59 Right Shift
58 1D/9D 14/F0 14 11/F0 11 Left Ctrl

60 38/B8 11/F0 11 19/F0 19 Teoft Alt

61 39/B9 29/F0 29 29/F0 29 Spacebar

62 EO0 38/E0 B8 EO0 11/E0 FO 11 39/F0 39 Right Alt

64 EO 1D/E0 9D EO 14/E0 FO 14 58/F0 58 Right Ctrl

75 B0 52/E0 D2 (base) B0 70/E0 FO 70 (base) 67/F0 67 Tnsert

76 EO0 4B/EO0 CB (base) EO0 71/E0 FO 71 (base) 64/F0 64 Delete

79 F0 4B/E0 CB (base) B0 6B/E0 FO 6B (base) 61/F0 61 Toft Arrow
80 EO0 47/E0 C7 (base) EO0 6C/EO0 FO 6C (base) 6E/F0 6E Home

81 B0 4F /B0 CF (base) B0 69/E0 FO 69 (base) 65/F0 65 Bnd

83 O 48/E0 C8 (base) B0 75/E0 FO 75 (base) 63/F0 63 Up Arrow

84 E0 50/E0 DO (base) B0 72/E0 F0 72 (baso) 60/F0 60 Down Arrow
85 B0 49/E0 C9 (base) B0 7D/E0 FO 7D (base) GF /F0 6F Page Up

86 EO 51/E0 D1 (base) EO0 7A/E0 FO 7A (base) 6D/F0 6D Page Down
89 0 4D/E0 CD (base) B0 74/E0 FO 74 (base) 6A/F0 GA Right Arrow
90 15/C5 77/F0 77 76/F0 76 Num Lock

91 47/C7 6C/F0 6C 6C/F0 6C Keypad 7

92 4B/CB 6B/F0 6B 6B/F0 6B Keypad 4

93 4F /CF 69/F0 69 69/F0 69 Keypad 1

95 0 35/E0 Bb (base) B0 4A/E0 FO 4A (base) 77/F0 77 Keypad /

96 18/C8 75/F0 75 75/F0 75 Koypad 8

o7 1C/CC 73/F0 73 73/F0 73 Keypad 5

98 50/D0 72/F0 72 72/F0 72 Keypad 2

99 52/D2 70/F0 70 70/F0 70 Keypad 0

100 37/B7 7C/F0 7C 7B/F0 7E Keypad *

101 49/C9 7D/F0 7D 7D/F0 7D Keypad 9

102 4D /CD T4/F0 74 T4/F0 74 Keypad 6

103 51/D1 TA/FO 7A TA/F0 7A Keypad 3

104 53/D3 71/F0 71 71/F0 71 Keypad .

105 IA/CA 7B/F0 7B 84/F0 84 Keypad -

106 1E/CE 79/F0 79 7C/F0 70 Keypad
108 EO0 1C/E0 9C EO0 5A/E0 FO 5A 79/F0 79 Keypad Enter
110 01/81 76/F0 76 08/F0 08 Esc

112 3B/BB 05/F0 05 07/F0 07 F1

113 3C/BC 06/F0 06 OF /F0 OF F2

114 3D/BD 04/F0 04 17/F0 17 F3

115 3E/BE 0C/F0 0C 1F/F0 1F T4

116 3F /BF 03/F0 03 27/F0 27 F5

117 10/C0 0B/F0 0B 2F /F0 2F 6

118 41/C1 83/F0 83 37/F0 37 F7

119 12/C2 0A/F0 0A 3F/F0 3F F8

120 43/C3 01/F0 01 47/F0 47 F9

121 44/C4 09/F0 09 4F /F0O 4F F10

122 57/D7 78/F0 78 56/F0 56 F11

123 58/D8 07/F0 07 5E/F0 5E F12

124 EO 2A EO 37/E0 B7 E0O AA EO0 12 EO 7C/E0 F0 7C EO FO 12 57/F0 57 Print Screen
125 46/C6 TE/F0 TE 5F/F0 5F Scroll Lock
126 E1 1D 45/E1 9D C5 E1l 14 77 E1/F0 14 FO 77 62/F0 62 Pause Break
29 or 42%* 2B/AB 5D/F0 5D 5C/F0 5C or 53/F0 53 \ -

Table 4.1: List of different scan codes from all different scan code sets — IBM PS/2 Model 50 and 60 Technical
Reference.

A scan code set is composed of scan codes values. Scan codes themselves are sequences of one or more bytes.
Technically speaking, a scan code is a data packet that represents the state of a key. When the state of a key
is changing (pressed, released or held down), a scan code is sent to the computer through keyboard controller.
For the sake of precision, we talk about two types of scan codes: make codes for pressed keys and break codes
for released keys. There is a unique make code and break code for each key referenced on keyboard. But these
scan codes are not always composed by a single byte value. In some cases, it could evolves more than one bytes
for specific sequences (on scan code set 1, operation "print screen pressed” is composed of 0xE0, 0x2A, 0xEQ,
0x37 bytes). Technically, there are two types of extended scan codes where the prefix byte is 0xE000 or 0xE100
[515].

Of course, this situation is far from being ideal for operating systems which would prefer to handle only one
integer value instead of a sequence of unknown number of bytes (with parsing operations or using large lookup
tables to know which sequence corresponds to what). From operating system point of view, each keystroke must
be represented as a single value called "key code”. The main problem lies in the fact there is no real standard
for key codes. Each operating system has its own one, including Windows [516] and Linux!. Such architecture
means, when the keyboard’s driver knows it has received a complete scan code, it has to convert the sequence
of bytes representing the scan code into a key code, understandable by the operating system.

Ihttps://github.com/torvalds/linux/blob/master/include/uapi/linux/input-event-codes.h

https://github.com/torvalds/linux/blob/master/include/uapi/linux/input-event-codes.h

Chapter 4 — Thesis manuscript — Page 164 on 619

3.3 Handling PS/2 by Windows

Key Point 4.5: Windows and PS/2 protocol

" Windows interfaces PS/2 protocol thanks to i8042prt.sys driver.
#£5 Communication with PS /2 keyboard and host machine CPU is performed with interruptions
at 0x60 and 0x64 ports.

#£5 Windows kernel uses an Interrupt Service Routine (ISR) called 18042KeyboardInterruptService
to handle keyboard.

43 Part of the keystroke handling procedure is performed in a Deferred Procedure Call (DPC)
via 18042KeyboardlsrDpc routine.

IS" Notification of keyboard driver (kbdclass.sys) is performed by i8042prt.sys driver via
18042KeyboardlsrDpc routine.

#£5 To proceed, 18042KeyboardlsrDpc routine calls KeyboardClassServiceCallback routine directly.
#£5 KeyboardClassServiceCallback routine is exported by kbdclass.sys.

IZ" There is a system of device names to represent each driver in the keyboard device call stack.

\ J

From the Windows operating system point of view, it is the driver i8042prt.sys responsibility to handle com-
munications between the kernel and the keyboard controller [517]. The name of this driver owes nothing to
chance. It consists of the name of the microcontroller commonly used and an abbreviation of the word "port”.
The notion of port is central because it allows the computer’s CPU to communicate with the keyboard. More
precisely, if the CPU needs to interact with the keyboard, it has two dedicated ports to receive or to send
information to the keyboard encoder linked to the keyboard controller. The PS/2 interaction is driven via IO
ports 0x60 and 0x64 [500, , , ,]. Like any other ports, read and write operations allow access to
different internal registers and data.

The data port (IO Port 0x60) is used for reading or writing data that was received or sent from a connected
PS/2 device via the keyboard controller [189]. Technically, read operation concerns the retrieval of keys pressed
and stored in an internal buffer of the device. It consist of retrieving data content (representing keystrokes) as
status associated to the keyboard controller (output or input buffers full or empty, system flag, command state,
time-out, parity error). The second one, the command port (IO Port 0x64), is used to send commands to the
keyboard controller (not to device itself, i.e. keyboard encoder). This one can be used to disable or enable the
keyboard (commands 0xAD and 0xAE) and more generally to drive and configure state of the keyboard controller
(not the device). Other interfaces directly connected to the device (set LED, select the scan code to use, Set
autorepeat delay, etc.) are driven by the 0x60 port. An illustration to summarize this is provided in Figure 4.14.

The i8042prt.sys driver is in charge of managing notifications from keyboard device. For efficiency reasons,
notifications are made by interruptions. The keyboard controller is configured to rise an interruption request
whenever a key has been pressed or released. This interruption is handled by an Interrupt Service Routine (ISR)
[518] that has been registered by the driver in charge of the physical device. The system calls the ISR each time
it receives that interrupt. For historical reasons, Windows supports two types of interrupts. Before Windows
Vista, devices that used ports and buses prior to PCI 2.2 [519,] could only support generated line-based
interrupts. It means that a device generates an interrupt by sending an electrical signal on a dedicated pin
known as an interrupt line. Starting with PCI 2.2, devices can generate message-signaled interrupts by writing
a data value to a particular address. In our case, we are dealing with hardware interruptions. They are nothing
more than regular interrupts except that instead of being called explicitly from an assembly program (with int
instruction), they are invoked automatically by hardware.

Interruptions in Windows are managed through the Interrupt Dispatch Table (IDT). This one is a collection
of function pointers responsible to hold notification coming from the hardware to the system. All the interrup-
tion routines have been initialized by the operating system (even if it is possible to register some manually [521]

Page 165 on 619

— Thesis manuscript —

Chapter 4

| Part G4H | |

Pt 60H

8042 Chip I I

| |mput Reaister

Statuz Regizter

.

.
.

.

.

’
Command Byte .
x

v
v
-

x
‘
)
x

L
b
b

"\ Test Port
b

.
b
b

.|

| ’| Output Reaister |,r

[t Port

|| COutput Port |

Keyboard
¥ :
8048 - >| Buffer |
LED | A ‘| Ky M atrix |

Figure 4.14: Interaction between keyboard and host with interruption ports.

thanks to loConnectlnterruptEx routine [522]). This is where the ISR are directly stored. In the case of handling
keyboard, i8042prt.sys driver exports the 18042KeyboardInterruptService function [523] to read data stored in the
keyboard controller in order to know which key has been pressed (or released).

For some unknown reason?, Windows 10 registers the PS/2 keyboard interrupt on the ISR to vector number
0xAO0. It is possible to see it thanks to Windbg debugger [209] by mapping the IDT. In Code 4.1, the view of the
IDT provides us access to address of 18042KeyboardInterruptService routine referenced in the opaque KINTER-
RUPT structure [525]. In practice, with the debugger, it is possible to compute address of the KINTERRUPT
structure from the IDT base address [523]. In such case, we get access to the 0xA0 interruption entry by adding
this value multiplied by 0x10 (to get the size of a pointer in 64-bit architecture) to the base address of the IDT.
This gives us a KIDTENTRY64 undocumented structure which references an address in KilsrThunkShadow
routine jumping to KxIsrLinkageShadow routine after having pushed the 0xAQ vector number. This last routine
will finally call 18042KeyboardInterruptService routine.

kd> !idt

;| Dumping IDT: f{fff9d8137db4000

5| 00: fffff8042ac11100 nt!KiDivideErrorFaultShadow
01: fffff8042ac11180 nt!KiDebugTrapOrFaultShadow Stack = 0xFFFFID8137DB89D0
02: fffff8042ac11240 nt!KiNmilnterruptShadow Stack = 0xFFFF9D8137DB87D0

2To the best of our knowledge, there is no official explanation about such a choice. Official ports 0x60 and 0x64 are mostly
used by BIOS and it is convenient for operating system to keep them. But it is possible to manage it differently with modern
system (which are not using BIOS anymore). Note that an explanation could be given from [524]. In this case, 0xAO would be a
separate interrupt controllers used to send an end of interrupt command at the end. In that case, Windows would wait for the
whole operation to finish before processing it.

Chapter 4 — Thesis manuscript — Page 166 on 619

10

03: fffff8042ac112c0 nt!KiBreakpointTrapShadow

04: fffff8042ac11340 nt!KiOverflowTrapShadow

05: fffff8042ac113c0 nt!KiBoundFaultShadow

60: fffff8042ac125c0 USBPORT! USBPORT _InterruptService (KINTERRUPT f{fff9d81377fc780)
70: fffff8042ac12640 VBoxGuest+0x22d0 (KINTERRUPT ffff9d81377fcb40)

(..

)
51 90: fffff8042ac12740 i8042prt!I8042MouselnterruptService (KINTERRUPT ffff9d81377fca00)

a0: [ffff8042acl127c0 i8042prt!I8042KeyboardInterruptService (KINTERRUPT f{fff9d81377fc8c0)

fe: fffff8042ac12ab0 nt!HalpPerfInterrupt (KINTERRUPT ffffdd826aaa7240)

Code 4.1: "Partial view of the IDT from Windows 10 (running on virtual box virtual machine)”

Note that KilsrThunkShadow and KxlIsrLinkageShadow does not appear in the call stack when a key is pressed.
Indeed, with the debugger, when we break in 18042KeyboardInterruptService, the call stack is the one given in
Code 4.2. Because KilnterruptDispatch and KiCalllnterruptServiceRoutine routines are in charge of handling in-
terruptions. This last routine uses information from KINTERRUPT structure to know which ISR to call for
handling a specific interruption.

Breakpoint 0 hit

i8042prt !:

fffff804 ‘2f096790 488bc4 mov rax ,rsp

1: kd> kn

Child—SP RetAddr Call Site

00 ffffod81 ‘37dfff38 fffff804 ‘2a527ef5 i8042prt ' I18042KeyboardInterruptService
01 ffff9d81 ‘37dfff40 fffff804 ‘2abf72af nt! KiCalllnterruptServiceRoutine+0xab5
02 ffff9d81 ‘37dfffo90 fffff804 ‘2abf7577 nt! KilnterruptSubDispatch+0x11f

03 ffffee04 ‘fe829520 fffff804 ‘2a5f187f nt! KilnterruptDispatch+0x37

04 ffffee04 ‘fe8296b8 fffff804 ‘2a5b8c04 nt! HalProcessorIdle+0xf

05 ffffee04 ‘fe8296c0 fffff804 ‘2a471396 nt! PpmldleDefaultExecute+0x14

06 ffffee04 ‘fe8296f0 fffff804 ‘2a470154 nt! PpmlIdleExecuteTransition+0x10c6

07 ffffee04 ‘fe829af0 fffff804 ‘2a5f95a4 nt! Poldle+0x374

08 ffffee04 ‘fe829c¢60 00000000°00000000 nt ! KildleLoop+0x54

Code 4.2: ”Callstack from 18042KeyboardInterruptService routine when notified.”

An ISR must run at priority Device Interruption Request Level (DIRQL) for the shortest possible interval
of time. Because ISR are designed to run at such priority level where strong restrictions happen about what
can be performed, they are not supposed to do a lot except managing the current interruption. More directly,
ISR dedicates all the heavy job to a Deferred Procedure Call (DPC) [526] routine which should hold it as soon
as IRQL falls below DISPATCH_LEVEL on a processor.

Once 18042KeyboardInterruptService has completed its task, it queues a DPC with KelnsertQueueDpc routine
[527] such as 18042KeyboardlsrDpc routine is called inside the i8042prt.sys driver. Its goal is to transfer the no-
tification to the next driver. By design, instructions can only be executed in the context of a thread. It means
that the interruption must be handled by a thread to be executed. This is done by one of the idle thread that
the kernel (hosted by the virtual process "system”) makes available for this type of interruption. This thread
is waiting for a DPC in KiExecuteAllDpcs routine. A typical call stack of routines called when a key is pressed
with a PS/2 keyboard is given in Code 4.3.

kbdclass! KeyboardClassServiceCallback
i8042prt ! 18042KeyboardIsrDpc+0x2{9
nt! KiExecuteAllDpcs+0x30a

nt! KiRetireDpcList+0x1lef

nt! KildleLoop+0xT7e

Code 4.3: "Windows’ routines call stack when a key is pressed on a PS/2 keyboard”

The operating system represents physical devices by device objects used to interact directly with them. One
or more device objects are associated with each device and all these objects can be driven by software called

Page 167 on 619 — Thesis manuscript — Chapter 4

drivers. The set of all drivers for a given device is called the driver stack and objects to hierarchically interact
with is called device stack. The keyboard is a device like any other one. It means it is represented in the system
by a physical device object (PDO) created by the root bus driver (responsible to administrate the root bus by
enumerating devices on it or responding to Plug and Play notifications). Technically, the PDO is created and
owned by the bus controller driver that detects and enumerates the device for the PnP manager. This PDO
contains the information (for example, bus address) that the bus controller needs to access the device over
the bus [528]. The name of this device is ”\Device\0OOO00ONN” where the last "N” stand for a device number
allocated by the system. Above the PDO, the main driver for the device create a function driver object (FDO).
This one represents the internal state of the device. In our case, it is the responsibility of i8042prt.sys to create
it, attached to the PDO, since it is loaded by the PnP manager for this type of device. The FDO of the keyboard
has no specific name under Windows except its driver reference ”\Driver\i8042prt”. A function driver provides
the operational interface for its device, mainly to handle read and write operations to the device and to manage
device power policy. From this point, the functional driver still has a link with the device itself in the sense that
it is dependent on the type of connection the device uses (PS/2 here).

But Windows is designed to provide an abstraction layer which is a device-independent keyboard sup-
port for any application. In other words, it is designed to interact with the hardware regardless the phys-
ical hardware. Such a way, kbdclass.sys centralizes interactions with any type of keyboard. This one is a
called a "class driver” since it supports system requirements independently of the hardware requirements of
a specific class of device. This generic view of keyboard for the system is represented by the device name
"\Device\KeyboardLegacyClassN” where "N” stands for the keyboard device number (0 for the first keyboard).
In our case, information is directly supplied by i8042prt.sys to kbdclass.sys. To be accurate, if no driver is
registered between i8042prt.sys and kbdclass.sys, notification is transferred from [18042KeyboardlsrDpc to Key-
boardClassServiceCallback callback routine [529], exported from the kbdclass.sys driver to be notified. Otherwise,
other lower filter drivers are notified to handle the I/O Request Packets (IRP) [530] used to transfer information
from one driver to another on the device stack.

' I

Upper-level class filter
DO (crezed by Khclass)

Upper-level keyboard
filter DO (created by
upper-level device filter
driver]

Keyboard function DO
(created by 18042 ptr)

Keyboard PDO (created
by root bus driver)

N S
Figure 4.15: PS/2 keyboard device stack.

Optionally, if we need to interact among one of these drivers, we can create an filter driver (FD). The goal
of a filter driver is to add value to modify the behavior of a given device. We can distinguish three main types of
filters: Bus Filter, Lower-Level and Upper-Level [531,]. For the sake of simplicity, we can keep in mind that
bus-filter are used by Microsoft or OEM to implement proprietary enhancements to standard bus hardware. In
the case of lower-level filter, they are dedicated to modify the behavior of device hardware when upper-level
filter are typically provided to add value features for a device.

Chapter 4 — Thesis manuscript — Page 168 on 619

4 USB and HID technology

Key Point 4.6: USB & HID technology

IZ” Nowadays, keyboard devices use USB protocol to communicate with the host computer.
#5 The USB protocol allows each device to self-describe itself so that the system can identify
them.
#£5 The Bluetooth technology used by wireless keyboards is similar in its shape to USB.

I¥” Since keyboard is a human interface device (HID), this one can use an extension of USB protocol
called HID.

#5 HID is a self-describing protocol that allows devices to be generically handled by software
applications.
#£3 Every device describes how it will communicate with the host device.

#5 Extensible and robust, an application can talk to any HID device, without necessarily knowing
its nature, just by analyzing its Report Descriptor.

#£5 Communication is performed via reports defined at initialization by report descriptor.

Since PS/2 keyboard technology remains for retro-compatibility for some types of computers (internal lap-
tops keyboard and Virtual Machine emulation or specific industrial systems), modern hardware are more likely
to use keyboard connected via USB cable or wireless technology such as Bluetooth [533]. They are always key-
boards managed internally by Windows as regular keyboards, but the way information from device is managed
in the system has evolved. It means there are different possibilities to handle keystrokes from a given device
from the operating system’s point of view.

In order to understand how it works, we propose to explain how USB protocol works [7] for keyboard and
especially for modern ones with the use of Human Resource Interface (HID) [534]. It matters to understand
the protocol used to understand how the keyboard subsystem works under Windows. Indeed, how could it be
possible to protect a system if we do not know how does this one work? Part of information presented here
will be used latter to explain how Windows works and how it is possible to interface our solution with it. In
addition, it helps to understand how malware could intercept keyboard data and how it would be possible to
design a protection system based on this technology. More directly, this is this technology which is used in
product such as a rubber-ducky® (Figure 4.16) to simulate a keyboard. Formally speaking, such device is just
a USB stick driven by a micro-controller repeating order through USB protocol. And it is recognized by the
operating system thanks to the HID protocol it abuses...

Figure 4.16: Rubber ducky dongle used to emulate a keyboard with pre-recorded sequences of keystrokes. The
technologies behind this type of device are direct applications of USB and HID protocols.

This section is more complete than the one about PS/2 keyboards since the technology used here is more

3https://shop.hak5.org/products/usb-rubber-ducky-deluxe

https://shop.hak5.org/products/usb-rubber-ducky-deluxe

Page 169 on 619 — Thesis manuscript — Chapter 4

modern and more widely spread. In order to have a detailed knowledge of the subject, we propose to introduce
first how USB protocol works and then how HID handles keyboard management.

4.1 USB protocol
4.1.1 USB introduction

Key Point 4.7:

IZ” USB protocol is defined through different standards. Today, the version 4.0 is the last version.

USB is often associated with USB sticks or USB hard drives used to store data. But in reality USB —
which stands for Universal Serial Bus — is a cable bus that supports data exchange between a host computer
and a wide range of simultaneously accessible peripherals. There are several generations (which correspond to
different norms) of USB that have evolved through the ages. From USB 1.0 [535] started by Compaq, Intel,
Microsoft and NEC companies to set up the USB Organization, USB 2.0 [7], USB 3.0 [536], USB 3.1 [537], USB
3.2 [538] and more recently (even if it is not present on the market at the time this text is written) USB 4.0
[539] emerged. While there are always some backwards compatibility between the different versions of the USB
standard despite addition of new features and technologies, the main difference known to people is the different
speeds allowed with devices using a given standard.

USB 1.0 USB 1.1 USB 2.0 USB 2.0 USB 3.0 USB 3.1 USB 3.2 USB 4.0
1996 1998 2001 Revised 2011 2014 2017 2019

1.5 Mbit/s (Low Speed) 1.5 Mbit/s (Low Speed) 5 Gbit/s 10 Gbit/s 20 Gbit/s 40 Gbit/s

P 12 Mbit/s (Full Speed)) (SuperSpeed+
12 Mbit/s (Full Speed) 480 Mbit/s (High Speed) (SuperSpeed) | (SuperSpeed+) | (SuperSpeed-+) Thunderbolt 3)

Connectors

Data rate || 1.5 Mbit/s

Table 4.2: Speeds of USB devices among different norms.

More than different norms, USB is also known to get different formats of connectors. Indeed, there are
the standard format (type-A) principally used by desktop or portable equipment, the mini intended for mobile
or embedded equipment (type-B), and the most recent one which is the thinner micro size (type-C) [540] for
low-profile mobile equipment such as mobile phones and tablets. Note that with the introduction of USB 4.0
[539], all formats will be deprecated except the type-C which is about to fusion with the Thunderbolt 3 format
from Apple devices. To illustrate this historical evolution, we propose to resume the main formats for USB in
Figure 4.17.

UsSB1.1-2.0 USB 3.0
Standard () (s
A B A R
—— — HHHH C
Mini N [] [:::]
Mini-A Mini-B
B
iere o —
Micro-A Micro-B Micro-B

Figure 4.17: Different types of formats used by USB devices.

Chapter 4 — Thesis manuscript — Page 170 on 619

4.1.2 USB standard

Key Point 4.8:

5" With USB, communication is performed between several components.

#£5 The host represents the machine where the USB device is connected.
#3 The USB devices is called function in USB documentation.
#£5 Exchanges of information between host and devices are called transaction.
#£5 Most bus transactions involve the transmission of up to three packets.
1" With USB, communication is performed between different components.
#5 USB protocol is described with “host-glasses” — input and output directions are referenced
from the host point of view.

#5 Host initiates all transactions and different devices communicate together on one single data
bus.

#5 The USB is a polled bus. It means that the host controller, on a scheduled basis, sends a USB
packet.

Since we are particularly interested in keyboard type peripherals, we have decided to focus on the USB
2.0 standard. This choice is due to the fact that most keyboard devices support this standard or they are at
least compatible with it. Moreover, considering the speeds and technologies offered, this standard is more than
enough to explain how USB keyboards are designed.

Technically, USB is described by three definition areas: USB interconnect, USB devices and USB host [7].
The USB host is unique to the machine and its USB interface is called Host Controller. The host masters
exchanges on the bus since it drives and receives from the USB device. For the sake of clarity, USB is a host
centric bus. USB device — also called function in USB documentation [7] — corresponds to any device which
provides capabilities to the system. To comply with USB standards, devices must have a comprehension of
the USB protocol, an ability to respond to standard USB operations, such as configuration and reset with an
ability to interact with standard descriptive information. It can be any USB peripherals such as keyboard,
mouse, USB stick and others. The USB interconnect is a layer by which USB devices are connected to and
communicate with the host. It can be a hub or more generally the USB connector responsible for the inter-
connection between the host and the device. Communication can be represented schematically as in Figure 4.18.

USB Host USE Interconnect U5B Device
[exemple: computer) (exemple: hub) (exam ple: keyboard)

Figure 4.18: USB three definitional areas.

All operations and more directly all data transfers in USB model are initiated by the host. Since the host is
central, the USB protocol is described with "host-glasses” which means that input and output directions are ref-
erenced from the host point of view. All devices share USB bandwidth so that they can be attached, configured,
used, and detached while the host and other peripherals are in operation. The USB physical interconnect is a
tiered star topology which means that it is possible to connect to a host several hubs linked together themselves
connecting devices. A hub is at the center of each star where each wire equipped with a USB connector is
a point-to-point connection between the host and a hub or a device, or a hub connected to another hub or
another device. The flexibility of topology allowed by USB explains undeniably part of the successes of its use.
A popular representation from [7] of such bus topology is given in Figure 4.19.

Page 171 on 619 — Thesis manuscript — Chapter 4

Host (Tier 1)

Tier 2

Tier 3

=S
/ > &

al] 5
/ ub 3 \
J 7
/ Compound Device
\ \
d AN

Tier 4

Tier 6

Tier 7

Figure 4.19: USB bus topology.

According to [7], due to timing constraints allowed for hub and cable propagation times, the maximum
number of tiers allowed is seven (including the root tier). It means we cannot have more than six hubs linked
together. Technically speaking, it could allow a large number of devices connected to all different hubs, which
is far enough for everyday use. A good question is to know how all these devices communicate together on one
single data bus. The answer comes from the way transactions exchanged on this bus are forged at the host’s
initiative.

As defined by the USB documentation [7], the host initiates all transactions since USB is a host centric bus.
Exchanges must be organized such as each device knows which transaction is addressed to whom and how to
respond to control requests. In such a way, it means there is a general shape describing how transactions must
be forged to exchange information between host and device. This is done by defining different fields in USB
documentation [7] such that information exchanged is properly formatted. On the first hand, data is moved
over the bus in little-endian order, which corresponds to least-significant bit (LSB) first. On a second hand, a
transaction can be composed by one or more packets holding information to exchange. A packet can be seen as
the smallest element of data transmission and a single transaction composed of different packets. USB packets
consist of different fields predefined and understandable by all USB devices. Note that if a packet is not big
enough to carry all information, this one can be split in many packets.

Chapter 4 — Thesis manuscript — Page 172 on 619

4.1.3 USB packets

Key Point 4.9:

IZ" All transactions in USB are performed through packets.
#£5 A Packet IDentifier (PID) is a value in the packet defining the type of action to be executed
with a packet.
#£5 Token packets indicate the type of USB transaction to follow.
#£5 Data packets contain the payload following a Token packet.

IS" There are three main types of token packets with IN, OUT and SETUP:

#£5 TN packets are used when host requires to read information from device.
#3 OUT packets are used when host wishes to write to the device.
#£5 SETUP packets are used to begin control transfers.

5" To know which device to address on a unique bus, USB devices use address field (ADDR) and
endpoint field (ENDP).

#£5 Up to 127 USB devices can be supported per bus with the address field. A given USB device
may have many pipes.

#5 There is 16 possible endpoints (called "pipes” sometimes) per address. Each endpoint has a
specific purpose (IN, OUT, ...).

#£5 1ike TP technology, we can see USB field’s address as the IP address and the endpoint as the
port associated.

All packets begin with a synchronization (SYNC) field which corresponds to bits (from 8 to 32 bits, depend-
ing the version of the USB device) in order to generate a maximum edge transition density. Technically, a zero
bit is inserted after 6 successive 1-bit (this is known as bit stuffing) since data is NRZI encoded. It is used by the
input circuitry to align incoming data with the local clock. This filed is used as a synchronization mechanism
and it is not supposed to be shown in packet diagrams since it is purely hardware mechanism. For the sake
of sobriety, we can say that SYNC field defined the Start-of-Packet (SOP) which preludes every transaction in
USB (the same way, there is an End-of-Packet (EOP) delimiter). The last two bits of the SYNC field indicates
where the following PID field starts. But SYNC and EOP do not matter for us since they are managed at
hardware level by the USB connector and presented here for the sake of completeness.

The Packet IDentifier (PID) corresponds to a value defining the action to be executed with this packet.
This field is encoded in a 8-bit value but only the first 4-bit are used to encode the code order called in the USB
documentation packet type field (PID Type). As shown in Figure 4.20, the 4 last bits are a one’s complement
of the first 4-bit used to check decoding procedure in order to avoid to manage corrupted packets (which are
supposed to be ignored if it happens). According to [7], the PID indicates the type of packet and, by inference,
the format of the packet and the type of error detection applied to the packet.

{LSh) (MSh)

PiD g | PID, |PID PID PID PID, | PID PID

Figure 4.20: PID Format as defined in USB [7]

There are four types of PID Type used in different contexts called by PID Names. Each combination of PID
Type and PID name has a single code composed of 4-bit. Table 4.3 lists all these codes and the description
linked to them.

Page 173 on 619 — Thesis manuscript — Chapter 4

PID Type | PID Name | PID Description
Token ouT 0001B Address + endpoint number in host-to-function transaction
IN 1001B Address + endpoint number in function-to-host transaction
SOF 0101B Start-of-Frame marker and frame number
SETUP 1101B | Address 4+ endpoint number in host-to-function transaction for SETUP to a control pipe
Data DATAO 0011B Data packet PID even
DATA1 1011B Data packet PID odd

DATA2 0111B Data packet PID high-speed, high bandwidth isochronous transaction in a microframe
MDATA | 1111B Data packet PID high-speed for split and high bandwidth isochronous transactions

Handshake ACK 0010B Receiver accepts error-free data packet
NAK 1010B Receiving device cannot accept data or transmitting device cannot send data
STALL 1110B Endpoint is halted or a control pipe request is not supported
NYET 0110B No response yet from receiver
Special PRE 1100B (Token) Host-issued preamble. Enables downstream bus traffic to low-speed devices.
ERR 1100B (Handshake) Split Transaction Error Handshake (reuses PRE value)
SPLIT 1000B (Token) High-speed Split Transaction Token
PING 0100B (Token) High-speed flow control probe for a bulk/control endpoint
Reserved | 0000B Reserved PID

Table 4.3: PID Types extracted from USB documentation.

Each USB type has a specific role. Token packets indicate the type of transaction to follow while data
packets contain the payload. Handshake packets are used for acknowledging data or reporting errors and start
of frame packets to indicate the start of a new frame, but they are beyond the scope of this chapter. Starting
by token packets, there are for us three main types of token packets with IN, OUT and SETUP. IN packets are
used when the host wishes to read information from device. OUT is the opposite, it means that the host wishes
to write to the device. SETUP is used to begin control transfers.

The data field may range from 0 to 1,024 bytes and must be an integral number of bytes. Technically, there
are two types of data packets (DATAO and DATA1), each capable of transmitting up to the maximum data
payload size. This one depends on USB version (8 bytes for low-speed devices, 1023 for full-speed devices and
1024 for high-speed devices). With the rise of the high speed mode norm, it is possible to use two another data
PIDs (DATA2 and MDATA) which are used for specific types of transaction modes.

To know which device to address on a unique bus, USB uses address field. Device’s address (ADDR) field
specifies if a given device, via its address, is either the source or destination of a data packet, depending on the
value of the token PID (IN, OUT or SETUP for the most relevant ones). The address field is encoded on 7-bit
which represent 127 possibilities of devices to be supported. This maximum number of devices is large enough
to support the needs of any host. Note that address zero is not a valid address to be assigned to a device.
Indeed, it corresponds to the default address, as any device which is not yet assigned to an address must be
able to respond to packets sent to address zero.

Technically, devices are addressed using two fields: the address field and the endpoint field. A device needs
to fully decode both address and endpoint fields to respond correctly. The endpoint (ENDP) field is made up of
4-bit values, allowing 16 possible endpoints. It allows more flexible addressing of devices since it provides for one
address different endpoints with whom to communicate. To use an analogy with IP technology, we can see USB
field’s address as the IP address of a network and the endpoint as the port linked to this address. When reading
USB documentation, endpoints may be called ”pipes” sometime. Actually, USB communication is based on pipes
where a pipe is a connection between the host software and a USB device endpoint. For the sake of simplicity,
the two terms are sometimes used interchangeably even if formally speaking, pipes correspond to logical chan-
nels while endpoints correspond to real buffer in the device’s memory where information is stored before transfer.

Except for endpoint zero, endpoint numbers are device-specific and therefore undefined. They can be used
for IN, OUT or SETUP token operations (among others) and all devices must support a control pipe at endpoint
number zero (the Default Control Pipe). The maximum number of endpoints depends on the USB version used
by the device (low-speed devices support a maximum of three pipes per function while full-speed and high-speed

Chapter 4 — Thesis manuscript — Page 174 on 619

devices may support up to a maximum of 16 IN and OUT endpoints).

There are other fields in USB definition such as Cyclic redundancy checks (CRCs) used to protect all non-
PID fields in token and data packets or frame number field used to manage micro-frames. But may be with
the exception of End of packet (EOP) field which defines the end of a packet, those ones are irrelevant in the
context of understand how USB keyboard technology works.

The Figure 4.21 represents the general shape of a token packet followed by a data packet. For instance,
to transfer data from the host to the device, the host uses a token packet indicating OUT operation. In this
packet, the address of the targeted device and the endpoint where to store the content of the buffer in the device
is referenced. Then, the host broadcasts data packets holding the content of data to transfer from the host to
the device. Such a way, it is possible to use a single endpoint as a bi-directional pipe.

Token Packets shape

PID
SYNC . ADDR ENDP CRC EQP

SETU
S

Data Packets shape

PID
SYNC Eo DATA CRC EOP

DaTA2
WIDATA

Figure 4.21: Shape of USB packets.

Technically, a successful transaction is a sequence of three packets which performs a simple but secure data
transfer(IN/OUT, DATA, EOP). From what has been exposed, it is possible to represent the USB architecture
with different peripherals via the Figure 4.22.

Bus
Host

- - """ === "= "= "= "= "= =" - '|
| USB Device ,
- . |
[Addr][Endpoint][lirection] | I
! |
| .
; Addr=2 by Function |
| :
! |
| .
! |
| .o =
—-— - — - — - — - — - = - = - = - — - — - — - — - — - — 1
lUSE Device .
' |
| .
i |
, EP11In !
1 Addr=13 My Function !
. —| EF1 Out |—m |
| .
- | Ern je— |
| .
! |

| —

Figure 4.22: Scheme of USB host and devices interactions.

Page 175 on 619 — Thesis manuscript — Chapter 4

4.1.4 USB pipes and communication

Key Point 4.10:

B5" In USB, pipes are used to move data the host and the endpoint on a device.

5 A pipe has a transfer type, bandwidth usage and associated endpoint’s characteristics (maxi-
mum data payload sizes, for instance).

IZ" Keyboards are likely to use interrupt data transfers type.

#£5 Despite its name, device does not interrupt and notify the host directly.

#5 USB is host polled and driven by an I/O Request Packets (IRPs) which is pending for the
interrupt endpoint.

#£5 Once an IRP is pending, the host polls the endpoint to know if there is something to transfer.

£5 The polling is performed at a period from 1 ms to 255 ms in case of full-speed endpoint
(common for keyboard devices).

£5 An interrupt pipe is always uni-directional (only IN or OUT but not both).

\. .

The USB supports functional data and control exchange between the USB host and a USB device as a set
of either uni-directional or bi-directional pipes. A given USB device may have many pipes such as one endpoint
for input and another endpoint for output. However, it is still necessary to define how to transfer data. There
are four different ways to transfer data on a USB bus.

e Control Transfers: used to configure a device at attach time and can be used for other device-specific
purposes, including the control of other pipes on the device. This one uses endpoint 0 OUT and endpoint
0 IN whatever the USB device is.

e Bulk Data Transfers: generated or consumed in relatively large and bursty quantities and have wide
dynamic latitude in transmission constraints. It is generally used with large amounts of data with error-
free delivery, but with no guarantee of bandwidth.

e Interrupt Data Transfers: used for timely but reliable delivery of data, for example, characters or co-
ordinates with human-perceptible echo or feedback response characteristics. Despite its name, interrupt
transfers have nothing to do with interrupts since USB is a polling system. The name of interrupt is not
accurate but it represents a situation where an interrupt would have been used in earlier connection types.
Interrupt data typically consists of event notification, such as characters from a keyboard. It is always an
uni-directional type.

e Isochronous Data Transfers: occupy a prenegotiated amount of USB bandwidth with a prenegotiated
delivery latency (also called streaming real time transfers). If Isochronous Transfers have a guaranteed
bandwidth they are prone to deal with erroneous data (missing or corrupted). This is perfect for stream
data, such as video or audio stream, where it matters to maintain the data flow but not a big deal if there
are few lacks or corruptions.

The data payloads offered by each of these transfer methods is below or equal to the maximum packet
size. But it can vary from USB versions and transfer methods (interrupt data transfer, which is mostly used
by keyboards, has a data payload coming from 8 bytes to 1024 bytes)... In addition, there are two mutually
exclusive pipe communication modes: stream and message. Stream mode means data which is moving has no
USB-defined structure. At the opposite, message mode means data which is moving has some USB-defined
structure. For instance, the default the Default Control Pipe is always a message pipe.

A software client normally requests data transfers via I/O Request Packets (IRPs) [541] to a pipe and then
either waits or is notified when they are completed. IRP refers in USB documentation to any identifiable request
by a software client to move data between itself and an endpoint of a device in any direction. IRP offers the

Chapter 4 — Thesis manuscript — Page 176 on 619

possibility to notify the software client when a bus transaction has been completed, with success or not. The
only time bus activity is present for a pipe is when IRPs are pending for that pipe, otherwise the pipe is idle and
the host controller will take no action for that pipe. Furthermore, an IRP may require multiple data payloads
to move the client data over the bus. In the case we should deal with multiple data payload IRP, the data
payloads of each request is expected to be of the maximum packet size until the last data payload that contains
the remainder of the overall IRP is sent. IRP allows the operating system to poll the USB bus by arming a
request each time it makes sense to interact with the USB device.

Since keyboards are most likely to use interrupt data transfers, it must be clearly understood that this is
the host controller which engages the current IRP. This is not the device which directly notifies the host as a
regular interrupt mechanism would have done it. The endpoint is only polled when the host has an IRP for an
interrupt transfer pending. This is once the IRP is pending that the host polls the devicein order to know if
there is something to transfer. The polling is performed at a scheduled period. An endpoint for an interrupt pipe
specifies its desired bus access period (at configuration time). And the host uses this information during configu-
ration to determine a period that can be sustained. A full-speed endpoint can specify a desired period from 1 ms
to 255 ms (255 ms is the maximum limit from the host point of view), which is far enough for keyboard purposes.

According to USB documentation [7], without an IRP pending, if the bus time for performing an interrupt
transfer arrives, the endpoint will not transfer data at that time. Indeed, if there is no IRP, the pipe is idle and
the host controller should take no action with regard to the pipe. This is why the host must continuously engage
an IRP to be notified by an interrupt. In addition, we must understand that the host has no way to determine
whether an endpoint has something to transfer except without accessing this endpoint and requesting an inter-
rupt transfer. If the device has nothing to transfer when requested, it responds with NAK (Not-Acknowledge)
and it does not provide interrupt data to avoid the host to erroneously consider the notified IRP as complete.

Since we have defined how communication is managed with USB, let us see what is happening when a device
is plugged to the host. From USB standard, USB devices may be attached and removed at any time. It means
when a device is attached to a USB bus (via a hub or any USB interconnect means), this one reports the
attachment, removal or any change in the state of the port to the host. This report is performed at electrical
level. The host enables the hub port where the device is attached upon detection of an attachment. Then,
the host initiates a RESET command to start the device in a known state on address zero. Since the device
has no address assigned yet, this one responds to the default address which is zero. Note that until the re-
set has been correctly performed by the device, the host will prevent any transaction to the USB port so that
it only resets one device at a time. It prevents two devices to answer simultaneously to a request at address zero.

In USB documentation [7], address assignment could be directly performed once the reset operation has
been performed. But this is not the way Windows operates. Indeed, to interact efficiently with the device, the
operating system needs to know the maximum packet size used by the device. This operation is driven by a
GetDescriptor command sent by the host to the device. Which leads us to discuss how an operating system is
interacting with a device.

Page 177 on 619 — Thesis manuscript — Chapter 4

4.1.5 USB and host configuration

Key Point 4.11:

I5" To configure a USB device, the host retrieves information from the device called descriptors.

#£5 There are several types of descriptors linked to each other by a hierarchical system of depen-
dencies.

#£5 Each piece of information in a descriptor is called an attribute.

IZ" The root of all descriptors is called device descriptor (only one per device).

#£5 Tt provides USB version number, the type of device (class, subclass), vendor id and product
id.

IZ" There are many configuration descriptors for one device descriptor.

#5 Usually only one configuration, but could be more in the case of power management (self or
bus powered).

I¥" Each configuration descriptor has many interface descriptors (one per function in the device).

45 For instance, a USB phone would include a vocal stream and a digital keyboard.
#£5 Bach function is referenced by an interface class or subclass value.

#5 Each function can use more than one endpoints.
5" Endpoint descriptors define how to communicate with a function.

5 Tt provides bandwidth requirements, the direction (IN/OUT), transfer type and maximum
packet size.

#£5 Optional, if no endpoint is provided, the host uses the default endpoint zero.

This is the host’s responsibility to configure a USB device. This is done by the host which typically re-
quests configuration information from the device. USB devices report their configuration information (called
attributes) using descriptors. A descriptor is a data structure with a defined format, usually starting by a
byte-wide field that contains the total number of bytes in the descriptor and followed by a byte-wide field that
identifies the descriptor type. The design provided by the descriptors resembles individual data records in a
relational database organized in a hierarchy of descriptors. This one is represented in Figure 4.23 where each
of these descriptors and their use will be described in the following.

The root of all descriptors is the device descriptor. There is only one device descriptor per device and it de-
scribes general information that applies globally to the USB device. It specifies some basics but highly relevant
information about the device such as the supported USB version, maximum packet size, vendor and product
IDs and the number of possible configurations the device can have. The structure of the descriptor device is
given in table 4.4 and referenced as a C structure in Windows operating system [5412].

Note that the device descriptor references indexes in string descriptor. Even if it is optional, it is possible,
when it is appropriate, to define a descriptors that contains references to string descriptors that provide dis-
playable information describing a descriptor in human-readable form. If the index referencing a string is equal
to zero, it means that no string has been provided for this attribute.

Among relevant information in the device descriptor, we have bcdUSB field which provides the USB version
used by the device. Version number is encoded on two bytes as Binary-Coded Decimal format (i.e., 2.10 is
0x0210 and 3.0 is 0x0300). Then, we have bDeviceClass, bDeviceSubClass and bDeviceProtocol used to identify
the type of the device. But these fields are not used a lot since a lot of device manufacturers prefer to identify
the device at the interface level. Codes used in device descriptor and interface descriptor are the same. Indeed,

Chapter 4

— Thesis manuscript —

Page 178 on 619

DreviceDescriptar

bMumConfigurations

!

Canfiguration
Drescriptar

!

Canfiguration
Drescriptar

|I:-Num|nterfaces |I:-Num|nterfaces

¥ ' Y v

Interface Interface Interface Interface
Crascriptor Descriptor Descriptor Descriptor
bMumEndpoints bMumEndpoints bHumEndpaints bMumEndpoints
Endpoint Endpoint Endpoint Endpoint Endpoint Endpoint Endpoint Endpoint
Crescriptar Crescriptar Crescriptar Crescriptar Crescriptar [reszriptar Crescriptar [reszriptar

Figure 4.23: USB descriptors hierarchy.

it allows to support multiple classes of devices in a single device, called composite devices. bMaxPacketSize
reports the maximum packet size for endpoint zero (supported by devices). Fields such as idVendor, idProduct
and bcdDevice allow to identify a vendor of a product and the serial number of the device if one is provided.
Finally, field bNumConfigurations provides the number of configuration descriptors supported by the device.

If the device descriptor is unique, there may be more than one configuration descriptor. Indeed, the number
of configurations supported by a device is given by bNumConfigurations field from the device descriptor. The
full content of the configuration descriptor structure [543] is given in table 4.5.

Even if most devices usually have only a single configuration, a device may support different configurations
for different reasons. The first reason deals with the power management of the device. There are two possibilities
of power management for a device: self or bus powered. For instance, a device may have two energy sources.
One directly via the host where the USB device is connected (bus-powered) or via an external power supply
linked to a power socket (self-powered). The device driver may choose to enable the bus powered configuration
when the device is not connected to the power socket or if the use does not need to use it. It can be done with
the use of set configuration request with the value of the configuration given by bConfigurationValue field. In
the case where the device would be disconnected from its external power source, it tries to continue to operate
as best as it can. If it cannot, the device is supposed to fail operations it is no longer able to support. Soft-
ware using the device may determine the cause of the failure by checking the status of the device’s power source.

The configuration descriptor goes beyond power differences. It describes the number of interfaces pro-
vided by the configuration. According to USB documentation [7], an interface is a related set of endpoints
that present a single feature or function of the device to the host. The protocol used to communicate with
this related set of endpoints and the purpose of each endpoint within the interface may be specified as part
of a device class or vendor-specific definition. Typically, there is a one-to-one correlation between a function
provided by a device and an interface. Topically, an interface can have a number of endpoints where each
represent a functional unit belonging to a particular class. For instance, we can have a VOIP phone where
communications use to endpoints for transferring audio in each direction. In addition, such a phone can have
a digital keyboard requiring another interface with a single IN interrupt endpoint. All these interfaces using
different endpoints are represented under a single configuration. More than one interface can be active at a time.

The structure [544] used to represent a USB descriptor interface is given in table 4.6. An interface descriptor
is returned as part of a configuration descriptor and it cannot be required directly via a get descriptor request.
Note that the interface descriptor is optional and a device without any would return a Request Error. But such

Page 179 on 619 — Thesis manuscript — Chapter 4

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant DEVICE Descriptor Type
USB Specification Release Number in Binary-Coded Decimal (i.e., 2.10 is 210H).
2 bedUSB 2 BCD This field identifies the release of the USB Specification with which
the device and its descriptors are compliant.
Class code (assigned by the USB-IF).

- 00h means each interface defines its own class information

and the various interfaces operate independently.
4 bDeviceClass 1 Class - From (]1%1 to FEH means .the device supports different class

specifications on different interfaces where they may

not operate independently.

- FFh means vendor-defined class.

- Any other value must be a class code.

. Subclass code assigned by the USB-IF.
> bDeviceSubClass ! SubClass These codes are qt%aliﬁedyby the value of the bDeviceClass field.
Protocol code assigned by the USB-IF.
6 bDeviceProtocol 1 Protocol These codes are qualified by the value of the bDeviceClass
and the bDeviceSubClass fields.

7 bMaxPacketSize0 1 Number Maximum packet size for endpoint zero (only 8, 16, 32, or 64 are valid)
8 idVendor 2 1D Vendor ID (assigned by the USB-IF)
10 idProduct 2 1D Product ID (assigned by the manufacturer)
12 bedDevice 2 BCD Device release number in binary-coded decimal
14 iManufacturer 1 Index Index of string descriptor describing manufacturer
15 iProduct 1 Index Index of string descriptor describing product
16 iSerialNumber 1 Index Index of string descriptor describing the device’s serial number
17 bNumConfigurations 1 Number Number of possible configurations

Table 4.4: Standard Device Descriptor.

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant CONFIGURATION Descriptor Type

Total length of data returned for this configuration. It includes the combined length of all descriptors

2 wTotalLength 2 Number (configuration, interface, endpoint, and class- or vendor-specific) returned for this configuration.
4 bNumlInterfaces 1 Number Number of interfaces supported by this configuration

5 bConfigurationValue 1 Number Value to use as an argument to the SetConfiguration request to select this configuration

6 iConfiguration 1 Index Index of string descriptor describing this configuration

Configuration characteristics:
- D7: Reserved (set to one)
7 bmAttributes 1 Bitmap - D6: Self-powered
- D5: Remote Wakeup
- D4...0: Reserved (reset to zero)
Maximum power consumption of the USB device from the bus in this specific configuration
when the device is fully operational. Expressed in 2 mA units (i.e., 50 = 100mA).

8 bMaxPower 1 mA

Table 4.5: USB Configuration Descriptor.

a situation is far from being common.

In order to get adaptive device drivers, USB provides information about the type of functionality supported
by a device through its interface descriptors. Via blnterfaceClass, blnterfaceSubClass and blnterfaceProtocol fields,
it is possible to identify the function(s) provided by a USB device and the protocols used to communicate with.
The values [545] used as class code have been assigned to a group of related devices that has been characterized
as a part of a USB Class Specification [516]. A class of devices may be further subdivided into subclasses. In
addition, a protocol code may define how the host software communicates with the device.

If the selected configuration is not supposed to be changed during the use of an USB device (otherwise,
it would require a reset of the device [7]), one interface may include alternate settings. It means that for a
given interface, we have the possibility to vary characteristics of endpoints after the device has been configured.
It allows a portion of the device configuration to be updated while other interfaces remain in operation. If
a configuration has alternate settings for one or more of its interfaces, for each setting, a separate interface
descriptor keeping the value of binterfaceNumber field but using a different bAlternateSetting is providing. Let
us illustrate the case where a device configuration supports a single interface with two alternate settings. In such

Chapter 4 — Thesis manuscript — Page 180 on 619

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant INTERFACE Descriptor Type
2 bInterfaceNumber 1 Number Number of this interface.
3 bAlternateSetting 1 Number | Value used to select this alternate setting for the interface identified in the prior field
4 bNumEndpoints 1 Number Number of endpoints used by this interface.
5 bInterfaceClass 1 Class Class code (assigned by the USB-IF).
Subclass code (assigned by the USB-IF).
6 binterfaceSubClass 1 SubClass These codes are qualified b)(f thebvalue.‘i)f the bInterf)aceCIass field.
Protocol code (assigned by the USB).
7 bInterfaceProtocol 1 Protocol These codes are qualified by the value of the bInterfaceClass
and the bInterfaceSubClass fields.
8 iInterface 1 Index Index of string descriptor describing this interface.

Table 4.6: USB Interface Descriptor.

a case, the configuration descriptor would be followed by an interface descriptor with both blnterfaceNumber
and bAlternateSetting equal to zero. Then the endpoint descriptors for that setting. After endpoint descriptors,
it comes the second interface descriptor with blnterfaceNumber equals to zero but bAlternateSetting sets to one.
After this alternate interface descriptor comes the endpoint descriptors for that setting. The resume of this
configuration is given in Figure 4.24 inspired from [547].

Configuration Interface 0 Interface 0

Descriptor Alternate Satting 0 "R Atemate Satting 1 me

Endpoints Endpaints

Figure 4.24: Tllustration of a configuration descriptor with a single interface but two alternate settings.

To select an alternate setting of an interface, the SetInterface request can be used with the alternate setting
selected. The Getlnterface request returns the selected alternate setting. By default, the alternate setting is the
one referenced with the number zero.

There is interface descriptor which does not provide endpoint descriptor. In this case, the bNumEndpoints
field is set to zero. It does not mean that the interface does not communicate but this interface uses the default
endpoint zero. Such lack of endpoint descriptor happens since an interface descriptor never includes endpoint
zero as the endpoint number to be used.

Each endpoint used for an interface has its own descriptor. This descriptor contains the information required
by the host to determine many information such as the bandwidth requirements, the direction (IN/OUT), trans-
fer type and maximum packet size. The structure used is given in table 4.7.

An endpoint is not shared among different interfaces within a single configuration. It means that an endpoint
is exclusive to its interface. But a single interface can have several alternate settings which may use the same
endpoints. Note that endpoints may be shared among interfaces that are part of different configurations.

To sum up, extracted from the Microsoft documentation [548], we have in Figure 4.25 a representation of a
single interface device. This one illustrates how the host can interact with the device. First with the Default
Control Pipe at endpoint zero and then, after reading the configuration of the device, with the other endpoints
described. Note that knowing each endpoint definition is enough for the operating system to deal with the
device. For instance, with a keyboard, looking for the endpoint where direction is IN and transfer type is
interruption is enough for guessing that we are dealing with the endpoint responsible to provide to the host the
keys stroke.

For interested readers, there are multiple-interfaces device representation in [548]. It illustrates how all
the different descriptor structures are organized in memory when there are multiple interfaces with alternate
settings. For short, it is still the configuration descriptor followed by different alternate setting interfaces each

Page 181 on 619 — Thesis manuscript — Chapter 4

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptor Type 1 Constant ENDPOINT Descriptor Type

The address of the endpoint on the USB device described by this descriptor.
- Bit 3...0: The endpoint number
- Bit 6...4: Reserved, reset to zero
- Bit 7: Direction, ignored for control endpoints
- 0 = OUT endpoint
- 1 = IN endpoint
Bit 1..0 Transfer Type

2 bEndpointAddress 1 Endpoint

- 00 = Control
- 01 = Isochronous
- 10 = Bulk

- 11 = Interrupt
If it is isochronous, bits are defined as follows (0 otherwise):

Bit 3..2 Synchronisation Type
- 00 = No Synchronisation
3 bmAttributes 1 Bitmap - 01 = Asynchronous
- 10 = Adaptive
- 11 = Synchronous

Bit 5..4 Usage Type
- 00 = Data endpoint
- 01 = Feedback endpoint
- 10 = Implicit feedback Data endpoint
- 11 = Reserved

Bit 7..6 Reserved and set to 0

4 wMaxPacketSize 2 Number | Maximum packet size this endpoint is capable of sending or receiving when this configuration is selected.
6 bInterval 1 Number Interval' for polhn.g endpomt'for dgta transfers. Express'ed in frames or microframes depending on
the device operating speed (i.e., either 1ms or 125us units).

Table 4.7: USB Endpoint Descriptor.

Device-
level
BCCEs

Configuration 0 ™ Default End point
hasone nterface |
Configuration O

Interface O Interface-
Alternate Setting 0 level
Number of endpoints: 3 acces

Interface 0 has /
onealternate

setting and three Endpoirt-
endpoints level
acces

Figure 4.25: Illustration of a configuration descriptor with a single interface and three endpoints.

describing their endpoints if they are not using endpoint zero.

Since we have defined all information from the USB device, it is possible to send standard requests to that
device. By default, all requests from the host are managed on the device’s Default Control Pipe (endpoint 0).
The request and the request’s parameters are sent to the device in the Setup packet. Every Setup packet has
eight bytes following the structure provided in table 4.8.

Chapter 4 — Thesis manuscript — Page 182 on 619

Offset Field Size Value Description

Characteristics of request:

D7: Data transfer direction
- 0 = Host-to-device
- 1 = Device-to-host

D6...5: Type
- 0 = Standard
-1 = Class
0 bmRequestType 1 Bitmap - 2 = Vendor
- 3 = Reserved
D4...0: Recipient
- 0 = Device
- 1 = Interface
- 2 = Endpoint
- 3 = Other
- 4...31 = Reserved
1 bRequest 1 Value Specific request
wValue 2 Value Word-sized field that varies according to request
4 windex 9 Index or Offset Word—si?ed field that varies ac.cording to
request; typically used to pass an index or offset
6 wlLength 9 Count Number of bytes to transfer if there is a

Data stage

Table 4.8: Format of Setup Data.

This bmRequestType field identifies the characteristics of the specific request. This value provides the direc-
tion of the SETUP request, the type and the recipient targeted by that request (host or device). The recipient
can be the device itself, an interface, an endpoint or anything else which is defined by the device’s manufacturer.
But as explained, only the device is unique and there are many configurations, interfaces and endpoints. To
select one of these element, a request must use the windex field with the id of the target. The wlength field
specifies the length of the data transferred after the SETUP request has been received. On an input request,
a device must never return more data than what is indicated in the request. Upon output request, wlLength
always indicates the size of data sent by the host. If the wlLength field is zero, no data is transferred.

The bRequest defines the order associated with the SETUP request. Indeed, there are different types or
command able to change the meaning of the bmRequestType field. Table 4.9 describes the standard device
requests defined for all USB devices.

This is the order defined in table 4.9 that defines specific requests. For sake of simplicity, we use in the doc-
ument requests such as GetDescriptor, SetDescriptor and so on as a writing facility for a SETUP command with
the request type (bmRequestType field) GET_DESCRIPTOR or SET_DESCRIPTOR... Note that GetDescriptor
request is a bit special since it uses the wValue field to specify the descriptor type and the descriptor index.
Both are encoded with 4-bit values stored respectively in high and low part of the byte. The list of descriptor
type codes is given in table 4.10.

Finally, right after the RESET code received by the device when this one is electronically recognized by the
host, there is usually a GetDescriptor(Device) request. This one is used to retrieve maximum packet length in
use by the control endpoint stored in the device descriptor. According to [549], when the host is Windows, this
first request is performed with the required length wlLength set to 64. The host is then taking care of one packet
in input from the device and ignoring others. This is due to the fact that max packet length value is stored at
the 8th byte of the device descriptor and it is enough to know that information to deal with all future control
transfers. Then it follows a second RESET request. This one is probably present to guarantee that the device
does not get confused since the previous transmission did not finished to transfer all the content of the device
descriptor.

Page 183 on 619 — Thesis manuscript — Chapter 4
bmRequestType bRequest (code) wValue wlndex wLength Data

00000000 Zero Interface

00000001B CLEAR_FEATURE (1) Feature Selector Endpoint Zero None

00000010B P

100000008 GET_CONFIGURATION (8) Zero Zero One Configuration Value
Descriptor Type and Zero or Language

10000000B GET_DESCRIPTOR (6) Descriptor D Descriptor Length Descriptor
Index

100000018 GET_INTERFACE (10) Zero Interface One Alternate Interface

10000000B Zero Interface Device, Interface, or

10000001B GET_STATUS (0) Zero Endpoint Two Endpoint

10000010B Status

000000008 SET_ADDRESS (5) Device Address Zero Zero None

00000000B SET_CONFIGURATION (9) | Configuration Value Zero Zero None
Descriptor Type and Zero or Language

00000000B SET_DESCRIPTOR (7) Descriptor D © Descriptor Length Descriptor
Index

000000008 Zero Interface

00000001B SET_FEATURE (3) Feature Selector Endpoint Zero None

00000010B

00000001B SET_INTERFACE (11) Alternate Setting Interface Zero None

100000108 SYNCH_FRAME (11) Zero Endpoint Two Frame Number

Table 4.9: Standard Device Requests codes.

Descriptor Types Value
DEVICE 1
CONFIGURATION
STRING
INTERFACE
ENDPOINT
DEVICE_QUALIFIER
OTHER_SPEED_CONFIGURATION
INTERFACE_POWER

Q| || U = W N

Table 4.10: Descriptor Types codes.

4.1.6 USB initialization in the system

Key Point 4.12:

B5" The assignment of an address is done with an SetAddress request from the host that assigns an
available address to the device.

#5 From this moment, the device must respond on this address.

BZ" The host asks about the available interfaces and chooses one according to its preferences.

Since the packet size of endpoint zero is known, regular transactions with the device can start. The host
sends a SetAddress request to the device on endpoint zero with one address value available on the host. This
is a very simple SETUP request where wValue field holds the address to be used by the device. This address
will be used by the device for all the time it is connected with the host or until it receives a RESET request —
the address is still valid even if the device is suspended to continue to work after wake-up. When recieving a
SetAddress request, the device must be able to complete processing of the request within 50 ms and change its
address to a new one in less than 2 ms.

Then, the host is going to send GetConfirguration requests and in some cases a SetConfirguration request to
select one which is not the default. Such a choice is made by the host software. Eventually, Getlnterface requests

Chapter 4 — Thesis manuscript — Page 184 on 619

followed by Setlnterface requests could be performed to configure the device as expected by the host’s driver
software. A nice work with a step-by-step illustration of a USB initialization exchanges under Windows are
given at [550, 551].

Once a device has been correctly configured, it is allowed to respond to other transfer types than Control
Transfers. Thanks to information in the different descriptors, the host knows what particular transfers on which
particular endpoints the device is prepared to support. The host can transfer data from or to the device via
IRPs. There may now also be new classes or device’s manufacturer requests which may now be supported on
the control endpoint in addition to the standard requests. It is all these additional transfers which perform the
functionality that the device was designed for.

4.1.7 USB protocol and Windows

Since we are focusing on Windows operating system, it is possible to directly interact with USB thanks to
Windows’ APT at different levels. There is a fully documented API [552] for writing drivers and interacting
as close as possible to the device with a USB kernel driver. It is possible to interact with device [553], con-
figuration [554], interface [555] or string [556] descriptors [557, 558]. It is possible to initiate control transfers
[551] or USB requests [559] (URBs) directly from kernel to USB devices. From the application API [560], it is
possible to interact directly with USB with a large possibilities of action. The most famous way of doing it is
via WinUSB API [561]. Architecture of WinUsb is reported in Figure 4.26 extracted from [562]. This one is
very interesting since it explains how Windows is interacting with USB devices.

ushscan.exe

usboem.dlf SVCHOST usbfw. exe
’ winusb.dif |
USER
we T T 0
winusb.sys winush.sys
{instance 2) (instance 3)

PDO PDO
USE Interface 1 USE Interface 0
I

| usbeegp.sys | | hidusb.sys |
PDO

winush.sys
{instance 1)

usbhub.sys

OeMm.sys
PDO

usbhub, sys

[USE Bus |

Figure 4.26: WinUsb architecture on Windows Operating System.

The USB bus is driven by usbhub.sys (usbhub3.sys for USB 3.0 version) driver which is responsible to hold
all different USB devices at the lowest level. In case of input, it transfers the IRP from the USB bus to higher
instances or third-party drivers used for different purposes. One relevant driver is usbhid.sys which is responsible
to handle the USB Human Interface Devices norm. Then the content of the IRP is given to winusb.sys driver
which is responsible for the interface with user-mode applications. The interface with the application API is

Page 185 on 619 — Thesis manuscript — Chapter 4

performed via winusb.dll linked to applications or services to interact with USB. Output interaction follows the
same path, from application (or driver) to USB bus. Examples of codes and description about how to access
USB devices is given in [563].

For the sake of completeness, it is possible to quickly explain how to interface at any level of the USB
driver call stack (given in Figure 4.26). Technically, Microsoft provides in-box USB device class drivers for
several USB Device classes (defined by the USB-IF* with class, subclass, and protocol codes, as explained in
device and interface descriptors) [564]. According to Windows documentation [565], if a device that belongs
to a supported device class is connected to a system, Windows automatically loads the class driver and the
device functions with no additional driver required. It is only in the case where some of the device’s capabilities
are not implemented by the class driver that device manufacturer should provide supplementary drivers that
work in conjunction with the class driver. To perform such an action, Windows categorizes devices by device
setup classes, which indicate the functionality of the device. Each of this device setup class has a unique GUID
number which can be used in the .inf file linked with the driver supplied by the device manufacturer. This .inf
file is a sort of old script file that contains all the information that device installation components need to install
a driver [566, 567]. The complete list of GUID numbers and associated USB Device classes is given in [564] and
more generally in [568]. With this information, it is possible to record a driver on a particular USB driver stack
[569] (for instance, on every USB audio device or every USB mass storage devices).

In Figure 4.26, there is a driver called Usbcegp.sys which has a singular role [570]. This driver is provided by
Microsoft to deal with composite devices. Composite devices correspond to USB devices which expose multiple
USB interfaces. From Windows 98 version, Microsoft provides Usbhub.sys driver as a generic parent facility in
the USB bus driver that exposes each interface of the composite device as a separate device. From Windows
Windows XP and Windows Me, this facility is managed by an independent driver called USB generic parent
driver (Usbcegp.sys). Thanks to this driver, device vendors can rely on it to support different USB interfaces
automatically. Note that this is this driver which is in charge to manage different USB configurations. Prior
to Windows Vista, Microsoft-supplied drivers only select configuration 1 [571]. In Windows Vista and the later
versions of Windows, it is possible to select the configuration of a device thanks to a registry key or with specific
code [572]. Within a configuration, interfaces (or interface collections) are managed independently to provide
different functionalities.

Multiple interfaces from a composite device can behave independently. Microsoft documentation [570] takes
example of a composite USB keyboard with regular buttons which might have one interface for the keyboard
and another interface for the power buttons on this keyboard. In such a case, the USB generic parent driver
enumerates each of these interfaces as a separate device, providing to each interface a single physical device
object (PDO) [569, ,]. Then, since there are two functionalities, the operating system must handle each
of them. This is why it loads the Microsoft-supplied keyboard driver to manage the keyboard interface and the
Microsoft-supplied power keys driver to manage the power keys interface. In the case where the composite device
has an interface that is not supported by native Windows drivers, it is the device manufacturer indispensability
to provide a driver for these unsupported interfaces. This is done thanks to the INF file of this driver. Note
that it is written in the documentation [570] that the provided INF file should have an INF DDInstall section
that matches the device ID of interface (and not the one of the device). This is to prevent the generic parent
driver from not being loaded [575].

4.1.8 USB device representation in Windows

Technically, the generic parent driver creates a PDO for each interface and it generates a set of hardware IDs
for each PDO [576]. The device ID representing the device, for an interface PDO, has the following form:

USB\VID_v(4)&PID_p(4)&MI_z(2)

where each field corresponds to:

4USB-IF: USB Implementers Forum.

Chapter 4 — Thesis manuscript — Page 186 on 619

e v(4) is the four-digit vendor code that the USB standard committee assigns to the vendor.
e p(4) is the four-digit product code that the vendor assigns to the device.

e 7(2) is the interface number that is extracted from the blnterfaceNumber field of the interface descriptor.

It is also possible to use a different name format generated by the generic parent driver. These compatible
IDs are crafted using the information from the interface descriptor [542].

USB\CLASS_d(2)&SUBCLASS_s(2)&PROT_p(2)
USB\CLASS_d(2)&SUBCLASS_s(2)
USB\CLASS_d(2)

where d(2) is the class code (blnterfaceClass), s(2) is the subclass code (bInterfaceSubClass) and p(2) is the
protocol code (blnterfaceProtocol). If we are looking for the keyboard we use on our own computer, Figure 4.27
gives the device ID provided to the keyboard by Windows 10 [577].

HID Keyboard Device Properties

General Drver Detalls Events Power Management
HID Keyboard Device
Property
Parent w

Value
USB\VID_04D9&PID_02968MI_02\782b6d 7cfa&080002

ol

Figure 4.27: Screenshot from the device manager about keyboard’s information.

Note that sometimes it is possible to find Col value in the device ID. This one is not always present but it
can appear with interface collections. Indeed, according to Windows’ documentation [570], some devices group
interfaces into interface collections that work together to perform a particular function. In such a case, the
generic parent driver treats each collection, rather than each individual interfaces, as a device. More informa-
tion is given about in Microsoft documentation [578] but this subject is out of our topic since it does not directly
impact keyboard devices management.

In the case we are dealing with a composite device, since the system has loaded the different client drivers for
the interfaces, it is the generic parent driver’s responsibility to multiplex the data flow from the client drivers. It
combines input for the device into a single data stream for the composite device. Note this is its responsibility
to handle the power policy, synchronization and PnP requests for the entire composite device and all of its
interfaces also. The stated objective of Microsoft is to simplify the task for vendors of composite hardware
when Windows does not support some interfaces. That way, Microsoft only requests from vendors to support
Windows’ unsupported interfaces.

Page 187 on 619 — Thesis manuscript — Chapter 4

4.1.9 Windows kernel handling USB

Key Point 4.13:

B5" The complete architecture of USB management from Windows kernel is given in Figure 4.28.

The technology presented here has evolved from Windows 8 [579]. Indeed, with the rise of USB 3.0, Mi-
crosoft decided to separate USB driver stacks for USB 2.0 and USB 3.0 [579]. For short, Windows keeps the
existing USB 2.0 stack but only loads the USB 3.0 driver stack when a device is attached to an eXtensible Host
Controller Interface (xHCI) controller. However, the general philosophy of the stack remains the same. Our
representation of the current architecture is given in Figure 4.28 which makes the distinction between the two
stacks. In both case, it relies on host controller drivers which are closely connected to the hardware. These
drivers (USBOHClI.sys - USB 1.0, USBUHCI.sys - USB 1.1, USBEHCI.sys USB 2.0 and USBXhic.sys - USB 3.0
and above) manage the different physical host controller and their protocols. Among the tasks they manage,
they are responsible to map the transfer requests blocks from upper layer drivers and submitting the requests
to the hardware above them. The hardware is managed directly by the PCI bus device stack which is inherent
in the PnP environment [573]. Once the transfer is complete, these drivers handle transfer completion events
from the hardware and propagates the events up the driver stack.

Above the host controller driver, it belong the port driver whose handles USB host with an extra level
of abstraction since it is focused on USB protocol itself. Composed by USBPort.sys and Ucx01000.sys, they
manage those aspects of the host controller driver’s duties that are independent to a specific protocol. Note that
Ucx01000.sys is extensible and it is designed to support other types of host controller drivers that are expected
to be developed in the future. The USB host controller extension serves as a common abstracted interface to
the hub driver. It provides a generic mechanism for queuing requests to the host controller driver and overrides
certain selected functions. All input or output requests initiated by upper drivers reach the port driver before
the host controller drivers. Finally, it comes hub drivers (USBHUD.sys and USBHUB3.sys) to manage USB
hubs and their ports. This one is managed as a Functional Device Object (FDO) [580]. The goals of these drivers
are to enumerate devices and other hubs attached to their downstream ports and create physical device objects
(PDOs) for the enumerated devices and hubs. It is also responsible for dealing with configuration descriptor
requests to know which endpoint operations are supposed to be performed with.

The case of USB client driver is quite specific to user-mode driver framework (UMDF) and kernel-mode
driver framework (KMDF). Both technology are embedded in Windows Driver Frameworks (WDF) [581] con-
text for driver development. For short, these open source frameworks [582] help to write drivers in a modern
way, increasing the security while removing complex details prone to error in order to write high-quality device
drivers. Thus, it is possible to write specific drivers for USB with this kind of technology, depending on the
specifications required [583]. Details about user-mode [584, 585] and kernel-mode implementation [586, 587]
are beyond the scope of this part. But for the sake of clarity, we can say that such a technology belongs on
WinUSB.sys and WinUsb.dll [561] components.

Finally, to be complete on the Windows USB architecture, we have to mention USBD.sys driver. This one
is not clearly represented in Figure 4.28 since it has a more important role than the one presented. This driver
is not supposed to do anything by itself (since its driver entry point only returns zero) but to provide a set of
routines to support global USB device management by other USB drivers. This one is linked to almost all USB
drivers except host controller drivers. It consists of a set of exported routines able to manage USB configuration
descriptor from a device and to manage internal list and structures about that device. Last but not least, in
USB 3.0 drivers stack, the two top drivers are linked to SleepStudyHelper.sys driver. This one is used as part
of the Modern standby SleepStudy [588] technology started with Windows 8.1. It is responsible to provide
an overview information about power consumption by the system (active time, idle time, power consumed,
processes or devices which consume resources).

Chapter 4 — Thesis manuscript — Page 188 on 619

- Third party component

User mode (ring 3)

PCl BUS Device stack

Figure 4.28: Current architecture of USB drivers stack in Windows.

Page 189 on 619 — Thesis manuscript — Chapter 4

4.2 HID protocol

Key Point 4.14:

IS USB devices are broken into various device classes sharing common behaviors and protocols to
serve similar functions.

BS” HID is a special class defined through USB interface descriptor which allows a device to interface
with humans easily.

4.2.1 HID presentation

Key Point 4.15:

BZ" The HID interface corresponds to Human Interface Device.

45 HID is defined in USB interface descriptors to define usage(s) (functions) of a device.

£5 Device self-describing and manufacturer-defined interface to allow generic software applica-
tions.

45 Only one driver software is required on the host to handle HID data whatever the HID device
is.

#5 How interactions must be performed is clearly defined through the use of HID format.

IS" HID is defined at interface level in USB protocol (Key-Point 4.11).

45 There can be more than one HID interface per device’s configuration (several interfaces for
several features, for example).

#£5 There is usually a default boot interface which can be used at start-up time.

IS" HID interface is composed by many attributes (providing the class of the HID device).

45 Tt informs if the device supports boot interface (simplified for UEFI/BIOS setup).
£5 The boot interface is mostly used by mouse and keyboard devices.
5 Tn boot interface mode, the keyboard is using a specific table of predefined key-codes (layout
from North American keyboard).
IS HID communication:
£5 An interrupt pipe corresponds to an interrupt IN endpoint used for receiving data from the
device.

£ OUT endpoint is optional to export data from the host to the device (otherwise, control
endpoint is used).

#£5 Communication is performed via data fixed-length structures called reports.
&5 Reports are regular USB transactions (which shows the encapsulation of HID in USB).
&5 HID report descriptors explains to the host how information is structured in reports.

#3 The format of the HID report descriptor is defined in HID documentation [5].

B2 The use of HID report descriptors allows a generic communication with the host without device
specific defined structures.

J

USB devices types are defined thanks to various device classes given in device or interface descriptor in
bDeviceClass field. When we are looking for device class code [545], from USB organization, we can see that
each device class defines the common behaviors and protocols for all devices that serve similar functions. For

Chapter 4 — Thesis manuscript — Page 190 on 619

instance, there are audio, printer, communication, mass storage device classes but no keyboard or mouse classes.
This is because all devices interfacing with humans are grouped in a single HID class which stands for Human
Interface Device [8]. Devices with physical control panels can use a HID interface to send control-panel inputs to
the host. Typical examples of HID class devices include keyboards and pointing devices but also any front-panel
controls such as telephones, data gloves, rudder pedals and so on. Surprisingly, it includes devices which do not
directly interact with users but provide data in a similar format to HID class devices, such as bar-code readers,
thermometers, or voltmeters. More generally and contrary to what its name suggests, a HID device may not have
a user interface. The device just needs to be able to function within the limits of the HID class specification [589].

According to HID documentation [8], HID class definition follows different underlying goals. The first is to
be as compact as possible in order to minimizing data consumption impact on the USB bus. The second is
about to be self-describing to allow generic software applications. HID format allows devices to define how to
communicate within a specific canvas. Instead of following a generic format for each device (which could be
painful for devices manufacturers), it is the responsibility of each device to define how the host must interact
with the last. Of course, the definition of how interactions must be performed is clearly defined through the use
of HID format. Such a way, it allows HID devices to be extensible, robust and to allow software application to
skip unknown information. Finally, it is designed to support nesting and collections.

A USB/HID class device uses a corresponding HID class driver to retrieve and route all data. It means
there is only a single driver software on the host to handle HID data whatever the HID device is. The only
requirement is that the device follows the HID standard and declares itself to be HID compatible. This is
performed at the interface descriptor level.

Indeed, as explained in the USB presentation (Key-Point 4.11), devices manufacturers do not use the device
descriptor a lot to define usage of a device. Instead, they prefer to do it at the interface level. This habit has
been taken up for adoption in the HID standard and it is recommended in HID standard [8]. HID devices have
class/sub-class values of both zeroes in their device descriptors, and instead have the class/sub-class values valid
in their interface descriptors [590]. Note that a USB device may be a single class type or it may be composed
of multiple classes. For instance, an USB audio loudspeaker might use features of the Audio and HID classes
if there are buttons on the device to manage the volume. This is possible because the class is specified in the
interface descriptor where multiple interfaces can be defined (and not in the device descriptor which is unique).

Remembering the interface descriptor structure (table 4.6 [544]), the blnterfaceClass member of an interface
descriptor is always 3 for HID class devices. At early development of the HID specification [8], subclass infor-
mation (blnterfaceSubClass filed) was intended to be used to identify the specific protocols of different types of
HID class devices, but it quickly became apparent that this approach was too restrictive. On the first hand
because it was not possible to define for all possible (and yet to be conceived) devices a specific code. On the
other hand because many known devices seemed to straddle multiple classifications (keyboard with embedded
pointer or mouse with multiple buttons). Instead, this blnterfaceSubClass member is used to declare whether
a device supports a boot interface or not. Zero means no boot support, one means a boot support, all other
values are reserved for future use. Indeed, the HID protocol requires a lot of data to be parsed from the device
to be correctly used. Such parser can be complex to write and it requires a significant amount of code which
might not fit in the ROM of UEFI/BIOS setup. The types of boot devices able to deal with BIOS only con-
cern the mouse and keyboard devices. This is why a simplified version of HID exchanged data is used by the
UEFI/BIOS in many hosts. Full documentation is provided in [8], ”Annex B.” and an illustration is given in [590].

The blnterfaceProtocol member of an interface descriptor has a meaning if and only if the blnterfaceSubClass
member declares that the device supports a boot interface. In such a case, it is used to identify the type of
device the host is dealing with (1 = keyboard, 2 = mouse, all other values are reserved). Note that in such boot
mode, the keyboard is using a specific table of key codes. This one is defined in official documentation from
USB-IF [591]. Due to the variation of keyboards from language to language, it is not feasible to specify exact
key mappings for every language. The list provided in the documentation is not specific for a key function in
a language. When there are differences of keys between languages, it is proposed to use the closest equivalent
key position but not to replace the keyboard firmware. As an example, Y key on a North American keyboard
corresponds to Z key on German keyboard. Instead of replacing Y code by Z code in the list, it is recommended

Page 191 on 619 — Thesis manuscript — Chapter 4

to use Y code for both keyboards. According to [591], this practice is still being used in the industry, in order
to minimize the number of changes to the electronics to accommodate other languages. This may explain why
some strokes on non North-American keyboards are not correctly handled by some UEFI/BIOS firmware...

Technically, a HID class device communicates with the HID class driver using either the control (default)
pipe or an interrupt pipe. The control pipe is used to receive and respond to requests for USB control and class
data. It is also used to transmit data when polled by the HID class driver — via an IRP — or to receive direct
data from the host. The interrupt pipe corresponds to an interrupt IN endpoint. This one is used for receiving
asynchronous (unrequested) data from the device. For example, there is no way for the host computer to know
when a user will press a key on the keyboard. Even if the interrupt pipe is interrupted only by name, the host
driver mimics this behavior by using IRP to poll the device periodically to obtain new data from the device.
An interrupt OUT endpoint is optional. If a device declares an interrupt OUT endpoint, this one is used as
the main channel to export data from the host to the device. Otherwise, this is the control endpoint which is used.

Control pipe
(default)
HID 3 il HID
Class Device Intereupt ploe Class Driver

Figure 4.29: From [3], direction of the exchanges on HID pipes.

The rate of data exchange via HID is limited. It corresponds to the rate given for interrupt transfer which
could evolve according to different USB versions. But, generally, the endpoints in the default interface should
request no more than 64 KB/s [589]. It is not a real limitation for keyboards and users. Under the realistic
assumption that a single keystroke is encoded on a single byte, it is impossible for normal human beings to
transfer this amount of characters per second from the keyboard to the host. In fact, the keyboard would
have stopped managing the keystrokes a while before reaching this limit in reference of the phenomenon called
phantom condition [590]. Regardless of the economic aspect, this also explains why keyboards are generally
devices using 2.0 or at most 3.0 USB version.

A HID can have at most one interrupt IN endpoint and one interrupt OUT endpoint [589]. If for any reason
a device needs more interrupt endpoints, this one can be defined as a composite device with multiple HID inter-
faces. In such a case, an application on the host obtains separate handles for each HID interface in the device.
It corresponds to the general USB composite device behavior implemented in Windows. Note that if a HID
interface always uses an interrupt endpoint, it does not prevent a device to use another endpoint with another
transfer type. Reusing our example with the USB audio loudspeaker, it is possible to use isochronous trans-
fers for audio interface and a HID interface to control different buttons such as volume, balance, treble and bass.

Communication between the host and HID device is performed via data fixed-length structures called re-
ports. It corresponds to a regular transaction in USB but with a predefined shape. The report descriptor
provides information about the data HID device, especially a description of the data provided by each control in
a device. The host sends and receives data by sending and requesting reports in control or interrupt endpoints.
The report format is flexible, able to handle any type of data and specific to each type of device. Of course,
to make the information transmitted in the reports (which are device-specific) understandable to the host, it
is necessary to clearly define how the data is transferred. This is the role of the HID Descriptors. There are
two types of descriptors: report and physical descriptors. Both are data structures following HID standard and
they indicate the size of data structures exchanged. The first explains how data is formatted between the host
and the device while the second provides information about the specific part (or parts) of the human body that
are activating a control (or controls). According to HID documentation [8], physical descriptors are entirely
optional. They add complexity and offer very little in return for most devices. This is why we are going to focus
only on the report descriptor. Figure 4.30 represents the hierarchy of the different structure descriptors used in
USB with HID. These structures are used only in configuration steps of the use of the USB device. Note that
HID is ultimately an overlay and an extension of what is defined in USB.

Chapter 4

— Thesis manuscript —

Page 192 on 619

Device
descriptor
l A USB device may have one or more configurations,
Each is dafined by tha Configuration descriptor. A HID
Cm‘l‘figumﬁm class devica typically has only cne configuration; thus it
descriptor woald hawe only one Conliguration descriptos,
l The Class field of this descriptor defines the
device a5 a HID class device.,
Imterface /
descriptor

.

HID descriptor
Type Present Size

Report ¥ n
Physical ¥ n

. '

Report descriptor Physical descriptor set

Figure 4.30: From [8], all USB descriptor structures and HID descriptors.

Page 193 on 619 — Thesis manuscript — Chapter 4

4.2.2 HID interface with report descriptors

Key Point 4.16:

BE” Report descriptors are composed of different items, describing how the data is transferred.

£ Among different items, ”Usage” defines the purpose of an item.

#£5 Usage tag defines what should be done with data provided by the device.
BZ" A collection is a meaningful grouping of Input, Output, and Feature items.

#£5 To group many small different items to perform a single function in a bigger item.

#£5 A mouse device: a collection of four information (x, y, button 1, button 2).

I Even if in the documentation, a text representation is used for HID descriptor report, this one is
compiled in raw data.

IF” Fun fact, the management of keyboard device’s LED lamps is done by the host and not by the
device itself.

The same way that regular USB descriptors use tables of information composed of blocks of data, report
descriptors are composed of pieces of information. Each single piece of information about a device in a report
descriptor is called an item. All items have a one-byte prefix that contains the item tag, item type, and item size
followed in memory by optional item data. Figure 4.31 extracted from [3] illustrates how an item is designed
(note that it is little-endian, as expected in USB norm).

Bits 2322212019181716 15141312111098 7654 32 10

Parts [data] I [data] I bTag EbType EDS.'ZEI
i i

Bytes 2 1 0
Figure 4.31: Generic Item Format.

According to [3], the size of the data portion of an item is determined by its fundamental type and there
are two basic types of items: short and long items. Short items can have a size between 0 to 4 bytes (since
the item size is encoded on two bits, it means that item size of 11, corresponds to 4 data bytes (not 3)). Long
items, even if they are mentioned and defined in HID 1.1 documentation, they are not really used [589]. The
item tag specifies the item’s function and the item type specifies the scope of the item. There are three item
types: Main (00), Global (01) and Local (10). Leaving aside Local and Global tags which are specific to the
way report descriptors are written, report descriptors may contain several main items. In the case of main item,
there are five main item tags currently defined:

e Input item tag: refers to the data from one or more similar controls on a device. For example, one or
more push buttons or switches.

e QOutput item tag: refers to the data to one or more similar controls on a device. For example, it can
represent data to one or more LEDs on a keyboard.

e Feature item tag: describes device input and output not intended for consumption by the end user. For
example, a control Panel toggle.

e Collection item tag: a meaningful grouping of Input, Output, and Feature items. For example, a mouse
could be described as a collection of two to four data (x, y, button 1, button 2). It is a way to group many
small different items that together perform a single function in a bigger item.

e End Collection item tag: a terminating item used to specify the end of a collection of items.

Chapter 4 — Thesis manuscript — Page 194 on 619

A report descriptor is the complete set of all items for a device. A report descriptor alone is complete enough
by itself to allow an efficient communication between the device and the host application. It means when an
application reads it, it knows how to handle incoming data as well as the usage of data provided. Each main
item tag (Input, Output, or Feature) identifies the size of data returned by a particular control, and identifies
whether data is absolute or relative, and other pertinent information (data, constant, array, variable, linear or
nonlinear, preferred state, null state, nonvolatile, bit field, buffered bytes).

Global items describe rather than define data from a control. It is global to the following items defined in
the report descriptor until a new global item is used. From [591], there are many relevant global items which
help to understand the meaning of different items. The most important is Usage which defines the purpose or
the meaning of an item. This usage tag defines what should be done with data provided by the device. This
feature allows a vendor to ensure that the user sees consistent function assignments to control across applications.

More generally, usages are also used to define the meaning of groups of related data items. This is accom-
plished by the hierarchical assignment of usage information to collections. Indeed, usages identify the purpose
of a collection and the items it contains. For each Input, Output, Feature, and/or Collection data item within
a Collection item can be assigned a purpose with its own usage item. Usages assigned to a collection apply to
the items within the collection. In theory, usages could be assigned to any type of HID control (variable, array,
etc.) but in practice, usages only make sense when they are attached to particular controls and used in certain
ways.

The HID Usage Tables [591] references Usages that have been organized into pages of related controls. Each
usage has a unique number called usage ID and it is referenced with a usage name and a detailed description.
Such organization should insure that host software would be able to recognize or utilize data item it is looking
for (even if there could be sometimes confusions in some software). Usages can also be used to identify functional
devices as a whole. This is a good method to facilitate device’s identification by an application when the device
provides functions of interest. This is why devices manufacturers that write the firmware of their devices use
collections. Usages attached to application collections that are wrapped around all the items that describe a
particular functional device — or a particular function in a complex device is — is easier to manage. Indeed,
host application would query the HID driver for collection usages that concerns it. Example given in [591] is
relevant: a gaming device driver might look for Joystick and Game Pad usages, while a system mouse driver
might look for Mouse, Digitizer Tablet and Touch Screen usages. Note that usages can be defined by vendors
and when an application deals with unknown usages, that one should ignore them.

Usage page values are given in the HID documentation [591]. It consists of a 32-bit unsigned value where the
high order 16 bits defines the Usage Page and the low order 16 bits defines a Usage ID. For instance, keyboard
devices belong to Generic Desktop Page (Usage Page 0x01) with a Usage ID equals to 0x7. This is where one
can find keyboard, mouse, joystick, VR controls etc. There are sometime called application collections in HID
documentation since it corresponds to a group of main items.

As extra information, even if it is optional, a report descriptor could add more global items. For instance, an
application which deals with data items as a measurement of time, mass, distance, force, velocity, acceleration,
angular acceleration, energy, voltage, and so forth, must look at the units (and unit exponent) to properly inter-
pret the value defined by a usage. With the unit, it declares the Logical Minimum, Logical Maximum, Physical
Minimum, and Physical Maximum items. All of them help to define the resolution of the item measured by the
device. Dealing with coordinate system, HID class devices are encouraged, when possible, to use a right-handed
coordinate system (Figure 4.32). Padding is also relevant to be aligned on a 8-bit memory length. This is why,
in some devices, bits are added in items with no real meaning except to ensure memory alignment. For the sake
of completeness, local item tags define characteristics of controls and do not carry over to the next main item.
They can be seen as a local version of global items.

If the HID class device uses the usual standard USB descriptors, it also uses its own class-specific descriptors.
These descriptors differ from standard USB descriptors. With HID, there are three class-specific descriptors:
HID, Report and Physical. The hierarchy between all these different descriptors depends on HID descriptor
which references both report and physical ones. This hierarchy is given in Figure 4.33.

Page 195 on 619 — Thesis manuscript — Chapter 4

X+

Z+
Y+

Figure 4.32: Illustration of the right-handed coordinate system recommended in HID (with mouse, for instance).

HID
descriptor
Report Physical
descrptor descriptor

Figure 4.33: Hierarchy between different HID descriptors.

The HID descriptor identifies the length and type of the two other types of HID descriptors for a device. Its
structure is given in table 4.11 [592].

Offset Field Size (Bytes) | Description
0 bLength 1 Numeric expression that is the total size of the HID descriptor.
1 bDescriptorType 1 Constant name specifying type of HID descriptor.
2 bedHID 2 Numeric expression identifying the HID Class Specification release.
4 bCountryCode 1 Numeric expression identifying country code of the localized hardware.
5 bNumDescriptors 1 Numeric expression specifyingr thg number of class descriptors
(always at least one report descriptor).
Constant name identifying type of class descriptor.
- 0x21 HID
6 bDescriptorType 1 - 0x22 Report
- 0x23 Physical descriptor
- 0x24 .. 0x2F Reserved
7 wDescriptorLength 2 Numeric expression that is the total size of the Report descriptor.
9 [bDescriptorType] ... 1 Constant name specifying type of optional descriptor.
10 [wDescriptorLength]... 2 Numeric expression that is the total size of the optional descriptor.

Table 4.11: HID Descriptor.

Among the different fields in HID descriptor, some can be explained. First, bLength only corresponds to the

Chapter 4 — Thesis manuscript — Page 196 on 619

length of the HID descriptor structure itself, not including the content of the report or the physical descriptor.
This value is not fixed and depends on how many descriptors are referenced at the end of the structure. bDe-
scriptor Type at offset +0x01 corresponds to the type of current descriptor, that is to say 0x21 since it is a HID
descriptor. The same values® are used in the context of bDescriptorType at offset +0x06. In the last case, in
practice, only Report (0x22) or Physical (0x23) are relevant values to describe the coming descriptors. The field
bcdHID specifies the HID version used with that descriptor, the same way it is used in USB device descriptor
with the bcdUSB field. In our case, since we are dealing with the last version of HID, that is to say 1.11, it is
usually 0x0111 which is used. bCountryCode member is used to identify which country the hardware is localized
for. Even if it can be relevant for keyboard manufacturers, most hardware devices are not localized and thus this
value is zero. Devices located in France are referenced with the ID code 0x08. It finally comes bNumDescriptors
member which references the number of descriptors which are provided with this interface. There is at least
one descriptor for the obvious reason that without, it would not be possible to communicate through HID with
the device. Then comes bDescriptorType and wDescriptorLength for each of the descriptor referenced in this
HID descriptor. Values represented in brackets represent optional descriptors if they are present. Note that,
in the case of n multiple optional descriptors, descriptors and associated lengths may be specified up to offset
(3% n)+6 and (3 *n) + 7 respectively.

Report descriptor has not a truly defined structure. It is not simply a table of values unlike the other
descriptors. The Report descriptor is made up of items that provide information about the device. The number
of items varies from device to device which gives it a variable length. But we retrieve main items which define
what is the content of the structure about input, output or features. Together these fields identify the kind of
information items provide (type, tag, size). The Report descriptor provides a description of the data provided
by each control in a device. Note that a report descriptor can define more than one report. In such a case, an
item report ID is added in each report in the report descriptor to identify them. That way, the first byte of the
report provided by the device will usually starts with the report ID (to identify which type of report the host
is dealing with). A general view of all HID class descriptor is given in Figure 4.34 (from [8]).

More than a long description of all possibilities about HID report descriptor, we propose to illustrate with
the one from our own keyboard. This is a simple interface used by a device which proposes one of its interface
in boot mode (which means a simplified version of HID protocol’s possibilities). This one is given in table 4.12.
The report is a compiled text. In practice, it is only in compiled form (raw data) that HID parser software
and devices use. Humans prefer the text version which is much more user-friendly and there are tools provided
by USB-IF to help device manufacturer to write them [593]. Far from being obvious to understand, even in
text mode, official documentations [8, | and specialized blogs can help [594]. Even official HID parser from
Windows can present misunderstanding which leads to vulnerabilities [595].

For the sake of simplicity, we have only commented on the main lines and in particular those responsible for
holding data. Nevertheless, an attempt will be made to explain the functioning of the lines that precede them.
The first thing is to understand that the main tag items (input, output, feature, collection) are influenced by
the lines that precede them. The first lines define a collection, such as different items will be mixed (input and
output in our case). The first input (1) represents a single byte. Indeed, this one is defined with a Report Count
equals to 8 objects by a Report Size equals to 1 bit. This is 8 bits and therefore one byte. The meaning of
this byte if given by the line above. First, each value in the defined bits can take a minimum value (Logical
Minimum) of 0 and a maximum value of 1 (Logical Minimum). It means that each bit has a special meaning.
And this meaning is given by the lines uppermost with Usage tag. It defines the value represented by each bits,
from Keyboard Left Control (0xE0) to Keyboard Right GUI (0xET). It corresponds to modifier keys (such as
control, shift, alt and so on) and unlike PS/2 keyboards, modifier keys are not managed as any other key codes.
Instead, they are managed as a bitfield in a single byte since there are only 8 keys concerned. This specific mod-
ified code is merged by the host keyboard driver to represent a combination of several keys pressed or directly
the scan code of the keystroke with the modified behavior included to be understandable by the operating system.

The second input (2) item is a constant of one byte full of zero. Details are provided in the line of the input
tag and the size of the two above lines. No real meaning since it is a reserved byte (for OEM use but it should be

5Contrary to what has been written in [8], definitions of these values are given in section 7.1 and not 7.1.2 which describes
Set_Descriptor request.

Page 197 on 619 — Thesis manuscript — Chapter 4
Application
Caollection
|
L4 ¥
Collection Repori
‘ :
F I
Main ltem
Report Repor
Report Size
I' ‘l’ Report Count
Main ltem kain tem |
Report Size Report Size L
Usage Usage
Report Count Report Count
Logical Minimum Logical Minimum
Logical Maximum Logical Maximum

l :

Usaga

Usage Usage Usage

Figure 4.34: Detailed view of hierarchy between different components in HID descriptor classes.

always set to zero) defined by the USB HID specification (annex B.1.) [8]. The third main item tag corresponds
to an output (3) specific to the LEDs on the keyboard. Contrary to popular belief, the management of the LEDs
is up to the host’s responsibility and not the device’s responsibility to manipulate LED lamps. The reason is
that many keyboard could be connected to the host and an activation of a specific LED should be reported on
other devices by the host. Technically, up to 5 LEDs can be activated (from Num Lock (0x01) to Scroll Lock
(0x03) in our case%). According to [3], the LEDs are absolute output items. This means that the state of each
LED must be included in output reports (0 = off, 1 = on). Relative items would permit reports that affect only
selected controls (0 = no change, 1 = change). The next output (4) is a padding of 3-bit to align memory with
the 5-bit data previously used to be packed in one byte. The last is an input (5) composed of 6 bytes (count 6
with each at 8-bit). These bytes define the current keystrokes. There are up to 6 simultaneous keystrokes which
can be handled and reported to the host. If there are more (in case of a human would succeed to strike more
than 6 at once), as a general rule (but without guarantee), we would deal with the phantom condition where
the keyboard is supposed to return all these six bytes with an invalid scan code (0x01) value. In such a case,

6The two LEDs "Compose” and "Kana” are not present on this device but the report descriptor still includes them since it
follows the BIOS/UEFI norm defined in [8] because this interface is defined as a boot device.

Chapter 4 — Thesis manuscript — Page 198 on 619

Item Tag (Value) Raw Data | Description
Usage Page (Generic Desktop) 05 01
Usage (Keyboard) 09 06
Collection (Application) A1 01
Usage Page (Keyboard/Keypad) 05 07
Usage Minimum (Keyboard Left Control) 19 EO
Usage Maximum (Keyboard Right GUI) 29 E7
Logical Minimum (0) 15 00
Logical Minimum (1) 25 01
Report Size (1) 75 01
Report Count (8) 95 08
Input (Data,Var,Abs, NWrp,Lin,Pref, NNul,Bit) 81 02 (1) One byte to define modifier keys (1 bit per key)
Report Count (1) 95 01
Report Size (8) 75 08
Input (Cnst,Var,Abs, NWrp,Lin,Pref, NNul,Bit) 81 03 (2) One byte padding (constant zero)
Report Count (3) 95 03
Report Size (1) 75 01
Usage Page (LEDs) 05 08
Usage Minimum (Num Lock) 19 01
Usage Maximum (Scroll Lock) 29 03
Output (Data,Var,Abs,NWrp,Lin,Pref, NNul,NVol,Bit) | 91 02 (3) 3-bit for binding LEDs on keyboard
Report Count (1) 95 01
Report Size (5) 75 05
Output (Cnst,Var,Abs, NWrp,Lin,Pref, NNul,NVol,Bit) | 91 03 (4) 5-bit for padding LEDs (constant zero)
Report Count (6) 95 06
Report Size (8) 75 08
Logical Minimum (0) 15 00
Logical Maximum (164) 26 A4 00
Usage Page (Keyboard/Keypad) 05 07
Usage Minimum (Undefined) 19 00
Usage Maximum (Keyboard ExSel) 29 A4
Input (Data,Ary,Abs) 81 00 (5) 6 bytes to buffer the current (most common) keystrokes
End Collection

Table 4.12: Interface 0 HID Report Descriptor Keyboard.

the host should ignore input from the keyboard.

To summarize, the HID parser of the host is going to manage the inputs and outputs on this HID interface
by automatically generating, on-the-fly, two structures that can be represented in C as given in table 4.13. This
mechanism allows hosts to deal with HID devices to adapt themselves automatically to the data format used to
exchanged information.

typedef struct _HID_REPORT_INTERFACE O_INPUT { | typedef struct _HID_REPORTINTERFACE 0_.OUTPUT
unsigned char ModifierKeys;

unsigned char Reserved; unsigned char LEDNUMLOCK : 1;
unsigned char Keystrokes [6]; unsigned char LED CAPSLOCK : 1;
} HID_REPORT_INTERFACE_0_INPUT; unsigned char LED_SCROLL LOCK : 1;

unsigned char LED.COMPOSE : 1;

Code 4.4: HID report interface 0 unsigned char LEDKANA : 1;
: 35

unsigned char Reserved
} HID_REPORT_INTERFACE 0_.OUTPUT;

Code 4.5: Hid report interface 1

Table 4.13: Structure used as Input and Output from HID report given in table 4.12.

Page 199 on 619 — Thesis manuscript — Chapter 4

4.2.3 HID standard requests

Key Point 4.17:

BE" HID requests written as function names are technically standard USB SETUP commands on the
Default Control Pipe (endpoint 0).

Once the host knows that the device has an HID interface (thanks to the GetConfiguration request which
provides a list of the system interfaces), the host must retrieve HID descriptor. Indeed, the HID descriptor is
not given directly in an usual GetConfiguration request. The host learns the HID descriptor by using a GetDe-
scriptor request containing the HID interface. This is a standard USB SETUP command on the Default Control
Pipe (endpoint 0). The bmRequestType is set to GET_-INTERFACE (0b1000001) since it concerns an interface.
The bRequest is equal to GET_DESCRIPTOR (0x06) since it concerns a descriptor. The wValue used in the
request is equal to 0x21 for HID, 0x22 for report descriptor and 0x23 for physical descriptor[8,]. The windex
corresponds to the interface number from where the HID descriptor is required. Once the HID descriptor has
been retrieved, GetDescriptor(report) request is used to retrieve all HID report descriptor. From that point, the
host has the ability to select one report descriptor to use with the SetDescriptor command, reusing same mem-
bers than GetDescriptor. Note that, during initialization, the HID report descriptor 0 is preferred by Windows,
especially if this one is indicated as boot device.

There are other class-specific requests that allow the host to inquire about the capabilities and state of a
device. In addition, the host has the ability to set the state of the output and feature items. These class-specific
requests are still SETUP commands on the default endpoint with a bmRequestType value where the fifth bit
is always set to one (Class request). Technically, only 0b10100001 and 0b00100001 are valid values since com-
munication is always performed at the interface level (bit 0) and exchange can be from device to host and vice
versa (bit 7). Since the fifth bit is always set, bRequest field can be redefined to represent different requests.
List of HID specific requests and bRequest field values with description is given in table 4.14.

bRequest | Request name wValue Boot only | Mandatory | Description
High byte: the report type
.\ - 0x1: Input -
0x01 GET_REPORT ’ No Yes The host requests an Input or Feature report.
- 03h: Feature
Low byte: Report ID (default 0)
0x02 GET_IDLE The Report ID where the request applies to (zero = all) No No The host reads the current Idle rate (expressed in units of 4 ms)
0x03 GET_PROTOCOL | 0x00 Yes No The host reads which protocol is currently active (boot or report).
High byte: the report type
0x09 SET_REPORT i 321]; }I:T’)‘t“"n No No The host sends an Output or Feature report (requires an OUT endpoint).

Low byte: Report ID (default 0)
The high byte sets the duration:

- 0x00: only reporting when a change is detected.

- Above 0x00: fixed duration is used (with a 4 millisecond resolution)
Low byte: Report ID (default 0)

~0: boot protocol.

- 1: report protocol.

0x0A SET_IDLE No No Limit the reporting frequency of an interrupt in endpoint.

0x0B SET_-PROTOCOL Yes No Switches between the boot protocol and the report protocol.

Table 4.14: HID class-specific requests.

Apart GetReport which is mandatory (and useful for the host to ask data from the device), all other requests
are for output/feature communication with the device (such as selecting displayed colors on the keyboard), boot
protocol or for optimization such as idle requests. Regarding the last request in keyboard management, this one
is not really used by Windows nowadays since Windows HID driver attempts to set the idle rate to zero [589].
In such a case, Windows is only notified when a key is stroke. There is no real necessity to save bandwidth for
a keyboard device where the data stream exchanged is very low (few keystroke reports per second for a normal
human).

Chapter 4 — Thesis manuscript — Page 200 on 619

4.2.4 HID and Windows kernel

4.2.4.1 HID kernel architecture

Key Point 4.18:

BZ" All requests from devices that interface with HID are redirected to the HIDClass.sys driver.

BS" Tt is not necessary to be USB to use HID. The Bluetooth can also use it (hence USB/Bluetooth
keyboard management compatibility).

Once Windows has retrieved an interface descriptor which references an HID interface, the system has to
retrieve information from the device. Hence, a special API has been introduced in Windows 2000 and we are
going to describe it. The central point of the HID driver stack in Windows is built on the class driver named
HIDClass.sys. This one is a pivot point between requests sent by other drivers above HIDClass.sys to the device
and below by transport mini-drivers which carry information from the device at destination to upper drivers.
Both user-mode and kernel-mode components can interact with this driver, of course, with limited rights in the
case of user-mode. Figure 4.35 [596] gives a simplified view of the HID architecture.

Uszer

Kernel

IRP interface Class

IRP and Caflback Transport

Interfoce

Figure 4.35: Simplified view of HID architecture on Windows.

On Figure 4.35, HID transport refers to any means of transport used to convey HID data. Technically, a HID
mini-driver gives an abstraction from the device-specific operation of the input devices that it supports. In the
most classic case, the HIDUSB.sys driver is the preferred means of transport for any USB device. But there are
non-USB devices that also use a HID interface. Among the different technologies supported by Windows [597],
Bluetooth and Bluetooth LE is the most notable with mini-drivers transport HIDBTH.sys and HIDBTHLE.dII.
Indeed, Bluetooth technology uses HID interface to interact with host as any other USB device [598]. It explains
why it is easy to configure and interact with a Bluetooth wireless keyboard since radio information broadcasting
from the device is received by the host, transformed from radio to numeric signal via hardware and routed
through HIDBTH.sys driver to HIDClass.sys driver.

Technically, the HID class driver is an export driver” that is linked to HID mini-drivers. The operation to
bind a mini-driver to HID class driver is a registration by calling HidRegisterMinidriver [600] API routine [601].
The combined operation of the HID class driver and a HID mini-driver acts as a Windows Driver Model (WDM
[602]) function driver for an input device and a bus driver for the child devices (different HID interfaces) that
the input device supports. This reattachment design allows USB HID devices and non-USB input devices to be

7An export driver is a kernel-mode DLL that can be loaded by any driver to get access to its exported routines [599].

Page 201 on 619 — Thesis manuscript — Chapter 4

attached to ports or buses other than a USB bus. It allows communication with HIDClass.sys driver as if all
these devices were regular USB HID devices. This is transparent for upper-drivers or user-mode applications
when they communicate with these devices regardless the real communication protocol used.

4.2.4.2 Registration of a HID class driver

Key Point 4.19:

IS” Tt is possible to register a HID driver by calling HidRegisterMinidriver routine from HIDClass.sys
driver.

#£5 Tn practice, it hijacks the driver’s IRP handler routines with generic routines from HID-
Class.sys driver.

#5 This behavior is undocumented by Microsoft.

How does this registration work in practice? Technically, this is HIDClass.sys driver which exports the
routine HidRegisterMinidriver which is imported by the HID transport mini-driver. This routine takes a single
HID_MINIDRIVER_REGISTRATION [603] structure in parameter. This one configures the HID version®
that this mini-driver supports, everything to interact with the mini-driver (the main driver object and the reg-
istry path of the driver) and a field called DevicesArePolled. The last specifies that the devices on the bus must
be polled or not in order to obtain data from the device. If not, device must notify the host with a report via
some sort of interrupt. In practice [604], most devices will spontaneously generate a report whenever the end
user does something at a predefined time interval except if an Idle request is sent.

Using reverse engineering on HidRegisterMinidriver allows us to understand the trick of the registration.
Technically, drivers in a stack are notified via a mechanism of IRP [541, 605]. Hence, they register a set of
callback routines for specific operations [606] and they handle them as expected [607]. The registration is done
(Figure 4.36) by replacing (after saving) the original IRP callback routines of the mini-driver by a generic one
able to reroute and manage HID notifications. Some lines of code in Figure 4.36 have been removed for the sake
of clarity.

The replacement of IRP callback routines is undocumented by Microsoft but it remains that this behavior
exists from a long time [604]. This is a direct way of doing such a registration, but perfectly efficient. Note
that original pointers on mini-driver’s routines are kept in a specific structure. Indeed, some of these routines
will still be notified part of the HID management process. In addition, a custom transport mini-driver should
be written only if a system-supplied HID mini-driver does not support a device’s port or bus. This is far from
being common. More information about specific requirements for HID mini-drivers is given in [608].

4.2.4.3 HID class driver and how to interface with this one

Key Point 4.20:

IS" In practice, the freedom of HID devices with report descriptors is not as wide as we might think.

£ Windows must be able to adapt itself to this freedom.
#£5 Parsing operation is performed through an API exported by HIDPARSE.sys driver.

5" Windows API allows to write HID Client driver (third party drivers) in a simplified way.

#£5 HID Client driver should be reserved for specific circumstances (already a lot of supported
HID Clients).

. v

Above the transport mini-driver, which makes an abstraction from the device-specific operations of the input

8This value is still equal to 0x01 despite HID is now 1.1 version.

Chapter 4 — Thesis manuscript — Page 202 on 619

MTSTATUS _ stdcall HidRegisterHinidriver{PHID_MINIDRIVER_REGISTRATION HMinidriverRegistration)
4

int v1; /7 erseEd

int v2; f/ er9@s

PHID_MINIDRIVER_REGISTRATION MiniDruReg; // rbxz@i
__inték Revision; // rdx@3

int {__cdecl **MajorFunction)({_DEVICE_OBJECT =, _IRP =}; // rcx@20
DRIUEH EXTENSION =u16; 7/ rdz@20
int v17; // ed=@20
int v18; // ecx@20
21| char v19; F7 rB8E2Z0
22| int v28; /7 er98208
23| _HIDEXTEMSION =DriverObjectExtension; // [rsp+60h] [rbp+20h]@11
- e T e o e o O o e B EE EE e O e D EE S e EE B B e e e s .
75| RtlCopyUnicodeString{AddrRegistryPathDevExtent, MiniDruReg->RegistryPath);// Keep the driver's registry path.
76| HidpGetFastResumeDisableState{DriverObjectExtension);// Check and retrive “FastResumeDisable™ value in driver's registry.
77| DriverObject = HiniDruReg->DriverObject;// Keep the structure representing the driver in memory.
78| HMajorFunction = DriverObjectExtension->MajorFunction;// Retrieve the list of original major functions to save.
79 *{_OWORD *)MajorFunction = *(OUORD =)&DriverObject->MajorFunction[IRP_MJ_CREATE];// Save original callbacks.
88 *({{_OWORD =)MajorFunction + *{_DWORD =)&DriverObject->MajorFunction[IRP_WJ_CLOSE];
81 *({_OWORD =)}HMajorFunction + *(_0WORD *)&Driverobject->MajorFunction[IRP_MJ_WRITE];
82 *({_OWORD =*=)}HMajorFunction + 3)
+
- +

1
2
3
y
5
]
7
16| PDRIVER_OBJECT DriverObject; /7 r1h@E2d
17
18
19
20

*(_OWORD *}&DriverObject->MajorFunction[IRP_MJ_SET_INFORHWATION];
83 *{{_OWORD =)MajorFunction *{_DWORD =)&Driver0bject->MajorFunction[IRP_MJ_SET_EA];
84 *={(_DWORD *)MajorFunction _ |
85 #({_OWORD =)}HMajorFunction + | a
86 Ma]urFunctlun += IRP_HMJ SHUTDDMN
a7 *({_0WORD *)Ma]orFunctlnn - 1) = =(_DWORD =)&Driverobject->MajorFunction[IRP_MJ_DEVICE_CONTROL];
88 *(_OWORD *)MajorFunction = ={ OWORD *)&DriverObject->MajorFunction[IRP_HMJ SHUTDUWN]
89 *{{_OWORD =)MajorFunction + 1) *{_DWORD =)&DriverObject->MajorFunction[IRP_MJ_CLEAHUP];
90| ={(_DWORD *)MajorFunction + 2} *(_0WORD *)}&Driverobject->MajorFunction[IRP_MJ_QUERY_SECURITY];
L' *({_OWORD =)}HMajorFunction + 3) *(_DUWORD *)&DriverObject->MajorFunction[IRP_MJ_POWER];
92 *{{_0OWORD =)MajorFunction + 4) *{_DWORD =}&DriverObject->MajorFunction[IRP_MJ_DEVICE_CHANGE];
93 *({_DWORD =)}MajorFunction + 5) = *={_ OWORD =)&DriverObject->MajorFunction[IRP_MJ_SET_QUOTA];
94| DriverkExtension = DriverObject->DriverExtension;// Keep original DriverExtension.
95| DriverObjectExtension->DevicesfrePolled = HiniDruReg->DevicesArePolled;// Following lines replace IRP callback routines to HIDHajorHandler.
96| Driverobject->MajorFunction[IRP_MJ_SYSTEM_CONTROL] = {int {_ cdecl =){_DEVICE_OBJECT =, _IRP =))HidpMajorHandler;
97| DriverObject->MajorFunction[IRP_MJ_WRITE] = (int (_ cdecl #)(DEUICE_OBJECT =, IRP =))HidpMajorHandler;
98| DriverDbject->MajorFunction[IRP_MJ_READ] = (int (_ cdecl =)(_DEUICE_DBJECT =, _IRP =))HidpHMajorHandler;
99| Driverobject->MajorFunction[IRP_MJ_POUER] = (int (_ cdecl x){_DEUICE_OBJECT =, _IRP *))HidpMajorHandler;
THMIPNP] = (int { cdecl *)(DEUICE OBJECT %, IRP *))HidpHajorHandler;

*(_0OWORD *)&Driverobject->MajorFunction[IRP_MJ OUEﬁV_UDLUME_INFORMHTIDN]:
*{_OWORD *=)&DriverObject->MajorFunction[IRP_MJ_DIRECTORY_CONTROL];

188| DriverObject->MajorFunction[IRP_HJ
181| DriverdDbject->MajorFunction[IRP_MJ_INTERMAL_DEUICE_CONTROL] = (int (_ cdecl =)(_DEUICE_OBJECT =, _IRP =))HidpHajorHandler;
102 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = {int (_ cdecl =){_DEVICE_OBJECT =, _IRP =))HidpMajorHandler;

183| DriverObject-»>MajorFunction[IRP_MJ_CREATE] = (int (_ cdecl =*){ DEUICE_OBJECT %, IRP *))H1dpMa]nrHanﬂler,

164 DriverObject->MajorFunction[IRP_MJ_CLOSE] = (int (__cdecl =)(_DEUICE_DBJECT =, _IRP =))HidpHMajorHandler;

105 DriverobjectExtension->AddDevice = DriverExtension->AddDevice;

106 priverkxtension->AddDevice = {int (cdecl =){ DRIVER_OBJECT =, DEUICE_OBJECT =))HidpAddDevice;

187| DriverObjectExtension->DriverUnload = DriverObject->DriverUnload;

108 Driverobject->DriverUnload = {void (_ cdecl =){_DRIVER_OBJECT =))HidpDriverUnload;

189 DriverObjectExtension->Reservedl = 8;

110 status = EnqueueDriverExt(({__inté4)DriverObjectExtension);// Register this extension in the HID mini-driver list.

Figure 4.36: Content of HidRegisterMinidriver shows us how registration is performed by hooking original IRP
callback routines of caller mini-driver.

devices that it supports, there is the system-supplied HID class driver HIDClass.sys. This one is a WDM func-
tion driver and bus driver used to manage all HID device communications. The last relies on the HIDPARSE.sys
driver, which provides supports routines to help to manage HID descriptors. As any device can write in its
firmware the HID report descriptor it wants, Windows must be able to adapt itself to this freedom. The proper
functioning of the devices with the system is at stake. This is why Windows parses HID descriptors to translate
them into understandable internal structures for the system. In practice, this freedom is not so great, especially
for keyboard or mouse devices. It is nevertheless recommended to follow the main lines of what is done from one
device to another. Microsoft publishes some HID report descriptors [609, 604] that most devices manufacturers
follow.

It is relevant to understand that HIDClass.sys is not a driver which has an active role by itself. Actually,
its driver entry point does nothing and in its export routines table, only two routines are relevant: HidRegis-
terMinidriver and HidNotifyPresence [610]. The last is sufficiently documented to deter its use by being labelled
as "reserved for the HID driver internal framework” only. But it is possible to explain these routine signals a
device as being present on the system by modifying internal structures from HIDClass.sys. De facto, its role is
more to provide an interface between the transport mini-drivers and the HID client (drivers or applications) by
simplifying interactions for clients. Indeed, rerouting IRP callback routines allows it to receive, handle, parse,
understand and formalize in a set of predefined structure HID descriptor reports so that HID clients always deal
with a documented set of specific structures and functions.

This allows a HID Client to be written in an independent way from transports drivers. This level of ab-
straction allows clients to continue to work (with little to no modification) when a new standard or a third
party transport is introduced. In the Windows documentation [596], the HID Clients are drivers, services or
applications that communicate with HIDClass.sys and often represent a specific type of device (e.g. sensor,
keyboard, mouse, etc.). Client drivers are also known under the name of function drivers [611]. Such drivers

Page 203 on 619 — Thesis manuscript — Chapter 4

are managed by the Plug and Play (PnP) which loads at most one function driver for a device to serve one or
more devices. They identify the device via a hardware ID or a specific HID interface usage tag (usage page and
usage ID) and communicate with the operating system’s API [612]. On the first hand, in the case of user-mode
drivers and applications, they use HIDClass support routines (HidD_Xxx) to obtain information about a HID
collection. On the other hand, kernel-mode drivers use HID parsing support routines (HidP_Xxx) and HID class
driver IOCTLs to handle HID reports [613]. In the last case, for most of HidP prefixed APT is just a degree of
convenient abstraction for developers. Indeed, these routines correspond to a call with a IOCTL request via an
IRP [614, 615]. Note that, in the end, it finishes by using an USB Request Block (URB) [(616] which is sent to
the device.

Writing a specific HID client driver should be reserved for specific circumstances since it already exists a
list of supported HID Clients [617]. And generally, a client driver — even if it is simpler to write — is not
necessarily the right thing to do. Indeed, falling in the rare case where a given device is not in the list of sup-
ported device types by Windows (and the list [618] is rather large and even generic for transports [619]) is quite
unlikely. Being unsupported would require the use of a particular or proprietary means of communication. In
such a case, providing a transport mini-driver routed to HID is enough if the HID report descriptor is correctly
formatted. The necessity to provide a client driver only happens in the case where a vendor would like to
interact with its own type of device (clearly identified as a specific type of device — for instance a "Bluetooth
Toaster”). Possibilities of architectures where there is an interaction with the HID drivers stack is provided in
Figure 4.37 from [620]. Details about how to do and specific requirements or piece of advises are given also [621].

Applications 3 [yir o
linked to hid.dif

User Mode
Legend Kernel Mode
System-supplied Vendor- Vendor-supplied upper-
componeant supplied driver level drivers are optional
stack and device specific.
Vendor-supplied
component

I IRP Interface
dynamic link to HID
support routines | HID class driver (hidclass.sys) }——} hidparse.sys

IRP and callback interface

A vendor-supplied HID
minidriver is required if a RID
system-supplied HID minidriver
minidriver doas not support
the device's port or bus,
Port or bus
driver stack

Port or bus HW

Figure 4.37: Driver stack for a generic HIDClass device with optional and required vendor-supplied components.

Usually, driver clients are not written but function or filter drivers which are written by vendors. Filter
drivers [531] are optional drivers that add value to or modify the behavior of one or more device of a specific
function. There are three types of filter drivers. Bus Filter Drivers which are the rarest ones since they add
value to a bus and are supplied by Microsoft or a system OEM. Lower-Level and Upper-Level Filter Drivers
are more common since the first typically modify the behavior of device hardware when the second provide
added-value features for a device [622]. General architecture of device drivers is given in Figure 4.38 extracted
from [532] and more information is provided about WDM Device Stack in [623].

Such drivers need to understand data coming from HID devices or be able to send data to these devices. This

Chapter 4 — Thesis manuscript — Page 204 on 619

. Upper-devel
“.., class filtes driver

. Upperdevel -,
*.. device filter driver

.., class filter driver

1 ®

: Lowerdevel
b device filter driver -
Device drivers RAETET
A
Bus drivers ¥

- BusFiter -,
S Dirivier e @

o D O

Figure 4.38: Types of WDM Drivers given in the device call stack. The lowest is the number on the picture,
the closer to hardware the driver is.

is the role of the HID class driver which redefines specific HID concepts to fit its internal structure constraints.

4.2.4.4 HID parsing in Windows kernel

Key Point 4.21:

BZ" This subsection describes the Windows API structures for processing data parsed from an HID
descriptor report.
#5 Notions of Top Level Collection, application collection and unnested collection are presented.

#5 Windows likes to use button capability array and value capability array to represent data from
HID reports.

£ Equivalent structures from Windows API are provided.

The first thing that is striking when reading the Microsoft documentation on HID interface API is the re-
definition of the vocabulary between the Microsoft documentation and the USB-IF documentation. Usage Page
and Usage ID still remain the same but Aliased Usages do not. These ones refer to the HID tag item (input,
output, feature) that could be shared between different reports in a collection. Far from being common, we will
not them for the sake of simplicity. One of the most important concept redefined is the notion of Top Level
Collection (shorted "TLC” in windows documentation) [624]. In practice, it does not cover the regular notion
of item collection but more the one of application collections from HID documentation. Top level collection is
a group of functionalities that targets a particular software consumer (or type of consumer) for a functionality.
For instance, TLC may be described as Keyboard, Mouse, Consumer Control, Sensor, Display and so on. Since
a report descriptor can include more than one top-level collection, the system must be able to interact with
each. Thanks to HID report descriptor, HID device describes the purpose of each TLC with a specific usage
tag. This allows the host to identify TLC in which they might be interested. HID Class driver creates a PDO
for each TLC and it ensures the hardware ID associated with the TLC includes an identifier to represent each
device object. Taking into account that a collection device provides a PDO for each interface of the device, each
of this interface has an HID interface that receives as many PDO as it provides TLC by HID report descriptors.

Page 205 on 619 — Thesis manuscript — Chapter 4

Top level collection supposes, by its own name, that there are collections which are not top level. Indeed, as
explained before, devices can embed several applications in a single HID collection. For instance, in a collection,
a keyboard and a pointer can be defined if the keyboard device embeds the pointer. In this case, we have two
applications in a single report HID collection. One could ask about HID report descriptor example provided
in table 4.12. Actually, this report is considered as a TLC since controls should be grouped together if they
are logically related or if they are functionally dependent on one another. For instance, a SHIFT key and
a character key on a keyboard should not belong to separate collections. An unnested collection is always a
top-level collection, regardless of its HID type.

But collections can have nested sub-collections, also called link collections in Microsoft documentation
[625]. A top-level collection can have zero or more link collections. A link collection is represented by a
HIDP_LINK_COLLECTION_NODE structure [626]. This one contains an Usage Page and an Usage ID but
also the hierarchical order between all the different link collections. From parents (above link collection which
is a TLC for the uppermost) to children, including closest sibling, this structure is used to keep relationships
between different link collections. When a TLC contains several link collections, they are all in a link collec-
tion array composed of HIDP_LINK_COLLECTION_NODE structures for each link collection. By tracing
through the nodes in the link connection array, it is possible to determine the organization and usage of all the
link collections in a top-level collection. An example extracted from [(625] illustrates a view of link collections
array in Figure 4.39. We can see the different items (values, buttons) combined in different collections and
sub-collections.

Top Level Collection Link Collection A

A
i ™
Link Collection B Link Collection C

Link Collection O

Value X Value ¥ Valua X Walue Y Button 1 Button 1

Figure 4.39: Ilustration of a link collections array.

Information extracted from HID descriptors via the HID class driver is parsed to TLC and link collections
structures so that a client driver can understand the shape of data coming from a device. Windows makes
the difference between the button and the value. A button is a control or data item that has a discrete value.
For instance, it can be ”zero” or "one” for pressed on release but also a key-code (a unique Usage IDs) with
Keyboard and LED Usage pages. Any report item that is not a button is a value usage. It remains to deal
with values and buttons returned by a device. A button capability array [627] and a value capability array [628)
contain information about the button and the value usages supported by a top-level collection for a specific
type of HID report. Both have information about their capabilities contained in an HIDP_CAPS structure
[629]. This structure gives the expected size from input, output and feature reports in addition to the number
of link collections, including the number of values or buttons for input, output and feature. Each button or
value is assigned with a data index [630] that uniquely identifies each usage described in a top-level collection.
Conceptually, a data index is a zero-based array index that a user-mode application or kernel-mode driver can
use to access individual control data in a report. The parser is in charge of assigning a unique set of data indices
to each report type supported by each top-level collection.

Chapter 4 — Thesis manuscript — Page 206 on 619

4.2.4.5 Access to HID parsed information for third-party components

Key Point 4.22:

B&" This sub-section explains how to use the Windows API (user-mode and kernel-mode) to interface
with HID devices.

#5 User-mode: After having access to a handle on the desired device (CreateFile), we can use the
HidD_Xxx functions.

£ Kernel-mode: Driver can use HidP_Xxx routines or direct IOCTL interface with the device.

How do we technically access these information? First, we need to get access to the HID Class driver (HID-
Class.sys) to operate the device’s HID collections. All the details are given in [631].

For user-mode application, it is required to call device installation functions (SetupDiXxx functions) [632]
to find and identify a HID collection. It is possible to select the class of the targeted device. Technically,
there are a lot of device setup classes or device interface classes referenced by GUID values. For instance, it
is possible to reference all HID instances present in the system with GUID_DEVINTERFACE_HID [633] or
GUID_DEVINTERFACE_KEYBOARD ({884b96¢3-56ef-11d1-bc8c-00a0c91405dd }) [634]. The last refers to
all keyboards interacting with the system. Note that these GUID are reused in the registry to reference devices
with their device name in HKEY_LOCAL_MACHINE\SYSTEM\ CurrentControlSet\Control\ DeviceClasses\.

These GUID are different from those used to register a class driver [568]. Once the list of devices is retrieved
thanks to SetupDiEnumDevicelnterfaces and SetupDiGetDevicelnterfaceDetail [635], it is possible to get access to
the device using CreateFile [630] with the device name retrieved [637].

For a kernel-mode driver, there are two possibilities. If the driver is a function or filter driver and it is already
attached to the device stack, it is automatic. It means it is directly notified for each device. The AddDevice
routine or IRP_MJ_CREATE are two possible places to handle such notifications. If the driver is not attached
to the device stack, the driver can use Plug and Play notifications [638] to know how to register and how to
handle such notifications [639, , 640].

Once the access is guaranteed to the HID class driver, it makes sense to retrieve parsed data [641]. To pro-
cessed, a user-mode application uses HidD_GetPreparsedData routine [642]. A kernel-mode driver needs to use
IOCTLs to proceed. First by using IOCTL_HID_GET_COLLECTION_INFORMATION [643] to retrieve
a HID_COLLECTION_INFORMATION structure [6441] where the first member (DescriptorSize) provides
the length, in bytes, of a collection’s preparsed data. Once the size has been retrieved and a buffer allo-
cated, it is possible to use a IOCTL_HID_GET_COLLECTION_DESCRIPTOR IOCTL [645] to retrieve a
HIDP_PREPARSED_DATA [(46]. This last structure is opaque and undocumented but used by other HidPXxx
API routines as a parameter.

With the preparsed data, kernel-mode driver can call HidP_GetCaps [647] to retrieve a HID_CAPS struc-
ture that summarizes a top-level collection’s capability [648]. Inside this structure, it is defined the number of
buttons and values for each input, output, and feature report types. When we are looking for buttons from
input report type, because we know the size of HID_BUTTON_CAPS [649] and the number of buttons thanks
to HID_CAPS, it is possible to allocate the memory required to store the array of buttons. Then, by using
HidP_GetButtonCaps [(50], we have access to the list of buttons defined. It is possible to get an extended level
of control to return only the buttons which meet a set of specific criteria with HidP_GetSpecificButtonCaps
[651]. It is in HID_.BUTTON_CAPS structure that all information about buttons defined in the HID re-
port descriptor are present (range of values, size, bit-field, etc.). The same principles apply for values with
HIDP_VALUE_CAPS structure [652] and HidP_GetValueCaps [653] or HidP_GetSpecificValueCaps [654] rou-

tines.

Once an application knows how to interact with buttons and values provided by a HID device, it is possible
to handle HID reports. Technically, whether an application comes from the user-mode or the kernel-mode, the
last has the possibility to obtain HID reports from, or send reports to, the device itself. For user-mode appli-

Page 207 on 619 — Thesis manuscript — Chapter 4

cations, the use of HidD_GetlnputReport [655], HidD_SetFeature [656] and HidD_SetOutputReport [657] functions
makes the operation quite easy. For further reading, it is possible to find examples and tutorials about driving
specific HID devices vendors online [658].

For kernel-mode drivers, if the documentation exists, this one is partial and not easy to understand. An in-
put report (from the device) is obtained by using an IOCTL_HID_GET_INPUT_REPORT code [659]. As input,
driver initializes the IRP structure so that an output buffer is allocated to cover the length specified by the tar-
geted report type in HID_CAPS. In addition, an extra byte can be included if the collection includes report IDs.
In this case, the first byte of the report is set to this report ID by the calling driver. When the request has been
successfully executed, the output buffer holds the input buffer provided by the device. When reports ID are used
as inputs, the first byte is unchanged and the input report returned belongs right after that byte. Sending data to
the device is feasible in both case of feature and output requests. The procedure is quite similar than the one used
for input requests. Driver uses IOCTL_HID_SET_FEATURE [660] and IOCTL_HID_SET_OUTPUT_REPORT
[661] codes to perform requests. The difference with the input request lies in the way the request is gener-
ated. As it is no longer a buffer that we receive but one that we send, the output (or feature) report is in
the input buffer of the request. In the same way, if a report ID is used, it is written as the first byte in the
buffer, followed by the report itself whose size has been provided in the HID_CAPS structure. Particularity of
report requests (and for the sake of completeness), mini-drivers use a HID_XFER_PACKET structure [662]
to format a report buffer request. As a facilitator when sending report to the device, HidP_InitializeReportForlD
[663] routine can be used to set all control data to zero or a control’s null value, as defined by the USB HID
standard. Then, driver can manipulate data in the report buffer. In simple case, with HidP_SetUsages [66]
routine to set a button to 1. In most complex case, driver must use information retrieved from link collec-
tions (with HidP_GetLinkCollectionNodes [665] and HIDP_LINK_COLLECTION_NODE structure [666]) or
top collection level to know how data is handled in the targeted report.

4.2.5 Enforcing a Secure Read For a HID Collection

Key Point 4.23:

BZ" Tt is possible to restrict access to HID devices only to processes acting with the same privilege as
the operating system (SeTcbPrivilege).

For the security purpose, it could make sense to restrict access to a device by enforcing a secure read for
a HID collection only to "trusted” clients [667]. For short, trusted clients in Windows are processes that have
SeTcbPrivilege privilege [668]. This privilege allows them to act as part of the operating system. If a secure read
is enabled for a given collection, only processes with this privilege can get access to inputs from that collection.
Of course, kernel-mode drivers have SeTcbPrivilege privilege by default. The goal is to prevent user-mode
applications that are not "trusted” (that is to say not having the required privilege) to get access to the input
from a collection. This solution can be used during critical system operations. For instance, this could prevent
a third-party application to get access to confidential information during an authentication operation with the
device or an exchange of cipher keys. Hence, "trusted” clients use IOCTL_HID_ENABLE_SECURE_READ
and IOCTL_HID_DISABLE_SECURE_READ device I/O requests to enable or disable a secure read for a
collection. Without SeTcbPrivilege privilege, such requests are inoperative. When the secure read is active, no
process interacting with the device is notified anymore about inputs from the collection.

Chapter 4 — Thesis manuscript — Page 208 on 619

4.2.6 Data transfer between HID device keyboard and host’s keyboard handler

Key Point 4.24:

IZ" Selection of keyboard devices managed by the driver is done in AddDevice routine at system ini-
tialization time or when a device is plugged.

I&" There is a scan code set specific to HID devices (which is defined for keyboards at boot time).

I¥" For backward compatibility purposes with the PS/2, Microsoft translates internally the codes
coming from the HID keyboards into scan code set 1 coming from the PS/2.

IZ" This operation is performed in kbdhid.sys driver with HidP_TranslateUsageAndPagesTol8042ScanCodes
routine in two cases:
£5 With KbdHid_ReadComplete routine when a key is read.
#5 With KbdHid_AutoRepeat routine when the key pressed is repeated.

IZ” To get access to the keystroke, HID driver must read from the device.

#5 The reading operation is engaged by the driver which waits until a key is pressed (i.e. the
reading order goes down to the device).

#£3 Access to the key code is only possible once the reading operation has been completed (i.e.
the reading order is sent back to the driver).

¥ A read IRP is always pending due to KbdHid_InitiateStartRead routine which (re)-engages the
reading IRP once a read operation has succeed.

£5 During the re-initialization of the read IRP, KbdHid_ReadComplete routine is registered to be
called once all underlying drivers in the device stack have finished to process the IRP.

#3 When a read operation on the HID device is performed, KbdHid_ReadComplete gets access to
the keystroke scan code.

. 7

How does the HID keyboard transfer data to the host? Technically, USB HID keyboards send information
within HID reports thanks to HID report descriptors. But it remains that code values from keystrokes are sent
through reports. Regardless specific vendor codes, codes used are different from those in PS/2 (section 3.2 and
table 4.1). Indeed, keyboard manufacturers usually use the ones defined in HID documentation [591]. This code
is defined for boot usages and with a North American Keyboard. Microsoft provides an official list of keystroke
codes it supports [669]. This list is composed of the three scan codes sets previously exposed for PS/2 and the
USB set from the HID definition [591]. But Windows deals with both PS/2 keyboards and USB HID keyboards.
Since HID technology emerged after PS/2, Microsoft has chosen to maintain backward compatibility with PS/2
by translating HID data into scan code set 1 [669].

This operation is performed in kbdhid.sys driver, responsible to manage all HID keyboard devices. In prac-
tice, kbdhid.sys driver is linked to hidclass.sys (itself supplied by usbhid.sys) via its import address table. The
driver kbdhid.sys imports from hidparse.sys HidP_TranslateUsageAndPagesTol8042ScanCodes routine [670]. This
routine is quite undocumented with the notable exception of its prototype, which is nevertheless not very help-
ful. But thanks to its name, this routine is interesting since it provides to the HID driver a capacity to translate
any HID code to a code that i8042prt.sys drive would have been able to used. But before diving in this routine,
let us see how this one is recorded in kbdhid.sys. Routine HidP_TranslateUsageAndPagesTol8042ScanCodes is
called from two undocumented routines: KbdHid_AutoRepeat and KbdHid_ReadComplete (Figure 4.40).

The KbdHid_AutoRepeat routine — as its name implies — manages repetition of a keystroke which would be
continually pressed. Its code is provided in Figure 4.41. We can see first the use of KbdHid_SOldleStateUpdate
routine. For the sake of simplicity, this routine can be used to wait for repetition to occur. Then, after acquiring
a lock (to prevent multiple access to a shared resource), it calls HidP_TranslateUsageAndPagesTol8042ScanCodes

Page 209 on 619 — Thesis manuscript — Chapter 4

KbdHid_ReadComplete+439 cs:__imp_HidP_TranslatelsageAndPagesTol80425canCodes
ES Up p KbdHid_ReadComplete+4A6 call cs:_imp_HidP_TranslatelUsageAndPagesTol80425canCodes
Up p KbdHid_AutoRepeat+B2 call cs:_imp_HidP_TranslatelUsageAndPagesTol80425canCodes
Up r KbdHid_ReadComplete+439 call csi_imp_HidP_TranslateUsageAndPagesTol80425canCodes
Up r KbdHid_ReadComplete+4A6 call csi_imp_HidP_TranslateUsageAndPagesTol80425canCodes
Up r KbdHid_AutoRepeat+ B2 call csi_imp_HidP_TranslateUsageAndPagesTol30425canCodes
Do.. o .idata:00000001C0O00A2FD dd rva __imp_HidP_TranslatelsageAndPagesTol80425canCodes; Import Address Table

Figure 4.40: Calls to HidP_TranslateUsageAndPagesTol8042ScanCodes routine in kbdhid.sys driver.

routine with parameters retrieved from the context with whom this routine was recorded for notification. Then
comes the release of the lock and WPP tracing” [671]. What matters is the way the KbdHid_SOldleStateUpdate
routine is recorded.

1jyoid Fastcall KbdHid AutoRepeat{ KDPC =Dpc, PUDID DeferredContext, PUDID SystemArgumentd, PUDID SystemArgument2)
2K
3| PUDID LocalContext; // rbx@1

4| struct _DEVICE_EXTENSION =DeviceContext; // rdi@i
5| struct _USAGE_AND_PAGE =ChangedUsagelist; // rcx@5
(]

7

8

LocalContext = (PUDID)={{_QWORD =)DeferredContext + 14);

DeviceGontext = {(struct _DEVICGE_EXTENSION =)DeferredContext;

9| if { WPP_RECORDER_INITIALIZED *= &WPP_REGORDER_INITIALIZED && LOWORD{WPP_GLOBAL_Control->DeviceType} }

18 WPP_RECORDER_SF_{WPP_GLOBAL_Control->DeviceExtension);

11| KbdHid_Se@IdleStateUpdate(DeviceContext, 1); /f Update device power management context and use KbdHid_S@IdleStateChangeWorkItem.
12| if (KeTryToAcquireSpinLockAtDpcLevel{(PKSPIM LOCK)LocalContext + 17) == 1 }// Get access to the lock.

4
14 ChangedUsagelist = (struct _USAGE_AND_PAGE +*)#*{{_ OWORD =)LocalContext + 16);// Retrieve the UsageAndPage.
15 if (ChangedUsagelList->Usage)

16 HidP_TranslateUsageAndPagesToI8B842ScanCodes(

17 ChangedUsagelist, /7 _In_ PUSAGE_AND_PAGE Changedlsagelist,

18 ={{_DWORD =)LocalContext + 18), /f _In_ ULONE UsagelListLength,

19 HidP_Keyboard Hake, #F _In_ PUSAGE_RAND_PAGE ChangedUsagelist,

28 (PHIDP_KEYBOARD_MODIFIER_STATE)LocalContext + 19,/ _Inout_ PHIDP_KEYBOARD_MODIFIER_STATE HModifierState,
1 (PHIDP_INSERT_SCAMCODES)KbdHid_InsertCodesIntoQueue,// _In_ PHIDP_INSERT_SCANCODES InsertCodesProcedure,
22 DeviceContext); /7 _In_ PUDID InsertCodesContext

23 KeReleaseSpinLockFromDpcLevel {(PKSPIN_LOCK)LocalContext + 17);

2y 3 /7 Release the lock.

25| if (WPP_RECORDER_INITIALIZED *= &WPP_RECORDER_INITIALIZED)

26 4

27 if { LOWORD{WPP_GLOBAL_Control->DeviceType} }

28 WPP_RECORDER_SF_{WPP_GLOBAL_Control->DeviceExtension};

20| %

30[3

Figure 4.41: Pseudo-code of KbdHid_AutoRepeat routine from kbdhid.sys driver.

This routine is recorded in the KbdHid_AddDevice routine. This one is directly linked to the DRIVER_OBJECT
[672] in the driver entry point of the driver, more precisely in the DriverExtension->AddDevice field from the
DriverObject into which a driver’s DriverEntry routine stores the driver’s AddDevice routine [673]. The AddDe-
vice routine creates one or more device objects (FDO or filter DO) representing the physical, logical, or virtual
devices (enumerated by the Plug and Play manager) for which the driver carries out I/O requests. It also
attaches the device object to the device stack, so that the device stack will contain a device object for each
driver associated with the device. The PnP manager calls a driver’s AddDevice routine at system initialization
for each device controlled by the driver and when a new device is plugged in the system [674].

An AddDevice routine’s primary responsibility is to call loCreateDevice [675, (76] to create a device object.
Then it calls loAttachDeviceToDeviceStack [677] to attach the caller’s device object to the highest device object
in the device stack. Afterwards, an initialization of several components in the device object which are vendor
or device specific. And finally, this is what the KbdHid_AddDevice routine does. Its pseudo code given in Fig-
ure 4.42 keeps only relevant parts for us.

First, we can see calls to loCreateDevice and loAttachDeviceToDeviceStack routines, as expected. These ones
are performed in order to create an object linked with a device type (FILE_DEVICE_LKEYBOARD = 0x0b)

9WPP tracing is used to trace operations of a software component such as a kernel driver. For the sake of simplicity, this
tracing is not including in our analysis.

Chapter 4 — Thesis manuscript — Page 210 on 619

| _intél _ fastcall KbdHid_naddDevice(PDRIVER_OBJECT IoObject, PDEVICE_OBJECT TargetDevice)

_DEVIGE_DBJECT xTargetDevice_1; // riu@l
PDEVICE_EXTENSION DeviceExtension; // rdi@1
struct _DRIVER_DBJECT xToDbject_1; 7/ rbx@i
void ##u5; // r15@1

NTSTATUS status; 7/ esi@h

signed _ intéa vw7; // rdzBE6

_DEVICE_OBJECT =AttachedDevice; // rax@8
18| _DWORD =LogEntry; // rax@?

11| WORD NbDevicelLinked; // ax@11

12| _IRP =AllocatedlIrp; // raxz@11

13| WORD MbDevicesLinked; // axz@14

14| WORD MbDevicesLinked_2; // ax@ih

15| PID_WORKITEHM IoWorkItem; // rax@ih

16| _DEVICE_DBJECT =attachedDevice 1; /7 rcx@E23
17| _IRP =AllocatedIrp_1; // rcxz@25

18| PDEUICE_OBJECT KeyboardbDevice; // [rsp+86h] [rbpshuoh]@l

R L Y
-~

28| TargetDevice 1 = TargetDevice;

21| DeviceExtension = Bi64;

22| KeyboardDevice = Bi64;

23| IoObject_1 = IoObject;

24| w5 = &WPP_RECORDER_INITIALIZED;

25| if (WPP_RECORDER_INITIALIZED *= &WPF_RECORDER_INITIALIZED && LOWORD{WFF_GLOBAL Control->DeviceType))
26 WPP_RECORDER_SF_{WPP_GLOBAL_Control->DeviceExtension);

27| status = IoCreatebDevice{loObject_ 1, 8x328u, @ié4, FILE_DEVICE_KEYBOARD, 8, 8, &HeyboardDevice);

28| if (status < 8)

29 {

30 if (WPP_RECORDER_INITIALIZED == &WPP_RECORDER_INITIALIZED)
31 goto LABEL_P8;

32 goto LABEL_6;

33

34| DeviceExtension = (PDEVICE_EXTENSIOH)KeyboardDevice->DeviceExtension;

95 memset{HeyboardDevice->DeviceExtension, @, 9x328uieh);

36| AttachedDevice = IoAttachDeviceToDeviceStack{KeyboardDevice, TargetDevice_1);
37| DeviceExtension-»AttachedDevice = AttachedDevices

38| if (tattachedDevice)

a9

R
56| HMbbevicelinked = _InterlockedExchangeAdd((volatile signed _ int32 *)&::MbDevicesLinked, 1u) + 1;// How many keyboards are currently present.
57| DeviceExtension->0riginalTargetDevice = TargetDevice 13
58| DeviceExtension->NbDevicelinked = HbDevicelinked;
59| HKelnitializeSpinLock(&DeviceExtension->SpinLock);
60 Allocatedlrp = IToAllocatelrp{DeviceExtension->AttachedDevice->StackSize, 8);// Intermediate drivers -> Quota of memory not charged on the current process.
61| DeviceExtension->AllocatedIrp = AllocatedIrp; // Keep track of the allocated Irp for this device.

62| if { AllocatedIrp) // In case of success.

63 {

.11 KelnitializeEvent(&beviceExtension->SynchroEvent, SynchronizationEvent, 8);
65 KelnitializeEvent(&DbeviceExtension->NotificationEvent, 8, 1u);

66 IolnitializeRemoveLockEx(&DeviceExtension->RemoveLock, 'HdbK', du, 8, 6x20u);
67 DeviceExtension->ReservedZero_1 = 0i64;

68 DeviceExtension->Const1 = 1;

69 DeviceExtension->ReservedZero_2 = Bi64;

70 DeviceExtension->ReservedZero_3 = 8;

71 KelnitializeEvent{&DeviceExtension->Event, SynchronizationEwvent, 8);

72 HbbevicesLinked = DeviceExtension-»HbDevicelLinked;

73 DeviceExtension->KeyboardMumberTotalKeysOverride = 181;// 181-keys keyboard by default.

o m o Em EE o o o o BN N BN BN BN BN EE BN BN EE EE BN BN B EE EE EE BN EE EE EE B BN BN EE EE B B e
95 KelnitializeDpc{&DeviceExtension->KbdHid_nAutoRepeat, (PKDEFERRED_ROUTIMNE)KbdHid_AutoRepeat, DeviceExtension);// Manage auto-repeat procedure.
96 KelnitializeTimer(&DeviceExtension->Timer);

97 DeviceExtension->Timer_DueTime .HighPart = OxFFFFFFFF;
98 DeviceExtension->Timer_Period = 0x21;
929 DeviceExtension->Timer_DueTime.LowPart = BxFFD9DAGO;

108 KelnitializeDpe(// Initiate a start_read procedure from the device to the host {get input report).

1/, &DeviceExtension->KbdHid_InitiateStartRead,

162 {PKDEFERRED_ROUTINE)KbdHid_InitiateStartRead,// Routine used to handle read (input) operations.

1083 DeviceExtension);

184 KelnitializeTimer(&DeviceExtension->Timer_1);

E O o EE EE B E B D B EE SR BN AN BN BN BN BN SN IS SN B SN EE BN S BN EE EE B B BN EE B S B B s -

186 DeviceExtension->IsCHATTERY_KEYBOARDAlreadylogged = 8;

187 DeviceExtension->PowerStateType = 1;

168 PoSetPouerState{KeyboardDevice, DevicePowerState, (POWER_STATE)1);// Hanage power events.

109 DeviceExtension->C11lbkMgr .GuidCount = 2;

118| DeviceExtension->C11lbkMgr .GuidList = (PWMIGUIDREGINFO)&KbdHid WmiGuidList;

111 DeviceExtension->C11lbkMgr .QueryUniRegInfo = (PUMI_QUERY_REGIHFOD)}KbdHid_QueryUmiRegInfo;

112 DeviceExtension->C11bkMgr .QueryWniDataBlock = (PWMI_OUERY_DATABLOCK)KbdHid_QueryWmiDataBlock;

113 DeviceExtension->C11bkMgr .SetWmiDataBlock = (PUMI_SET DATABLOCK)KbdHid_SetWmiDataBlock;

Figure 4.42: Pseudo-code of KbdHid_AddDevice routine from kbdhid.sys driver.

[678] representing the underlying hardware keyboard for the driver. Then comes the allocation of an IRP
after having incremented the total number of keyboard devices linked. This operation is performed with Inter-
lockedExchangeAdd routine [679] to ensure that the routine is thread-safe. Indeed, a call to AddDevice routine
can be performed at the same time by different threads, meaning race-conditions could occur.

Subsequently, the allocated IRP will be used in order to engage the polling protocol used to communicate
with an USB device (as explained in section 4.1.4). If this IRP is correctly allocated, the driver initializes
different fields in a driver’s self-defined structure linked to the device. This structure owned by the driver is
called Device Extension [680]. This one makes sense only for kbdhid.sys driver an subsequent drivers using the
device object crafted (and where device extension has been linked). It is in the device extension that a deferred
procedure calls (aka DPC routine) [526, 681] is used to record the KbdHid_AutoRepeat routine. Originally, DPC
are used to postpone the completion of an interrupt until after the ISR returns (since ISR must return as soon
as possible [518]). Therefore, the system provides the support for deferred procedure calls, which can be queued
from ISRs and which are executed later on a lower IRQL than the ISR. Initialization of the DPC is performed
via KelnitializeDpc [682] routine (line 95 on Figure 4.42). More information about completion routines and 1/0
system on Windows is given in [083].

Page 211 on 619 — Thesis manuscript — Chapter 4

As presented in AddDevice routine, one could think that the registration of the DPC uses a CustomDpc [634]
to finish the servicing of an input or output operation. This is usual when the DPC is used to finish the servicing
of an I/O operation. Actually it is a Custom TimerDpc [681] which is used to execute the routine after a timer
object’s time interval expires. Such DPC is used to be executed after a timer object’s time interval expires. It
fits perfectly the requirements to handle a polled input request for a device (repeating the request many times
in a time-slice). Finally, several initialization operations will be performed on the device context in AddDevice
routine. The first one is done within the power management context thanks to DevicePowerState routine which

is recorded with PoSetPowerState [685] in order to help the driver to be notified when a change in the device
power state for a device occurs (line 108 on Figure 4.42). Other actions are performed to record WMI in the
driver [680] and there is another KelnitializeDpc call to record a CustomDpc with the KbdHid_InitiateS