
Behavioral Detection of Malwares: From a

Survey Towards an Established Taxonomy

Grégoire Jacob1/2, Hervé Debar1, Eric Filiol2

1 France Télécom R&D, Caen, France

{gregoire.jacob|herve.debar}@orange-ftgroup.com

2 French Army Signal Academy,

Virology and Cryptology Lab., Rennes, France

eric.filiol@esat.terre.defense.gouv.fr

Abstract

The behavioral detection differs from the appearance detection in that
it relies on an identification of the actions performed by the malware rather
than syntactic markers. Identifying these malicious actions and interpret-
ing their final purpose is a complex reasoning process. In this paper,
we draw up a survey of the different reasoning techniques we have come
across in several behavior-based detection systems. These systems have
been classified according to a new taxonomy introduced inside the paper.
This taxonomy divides the behavior-based detectors into distinct families
according to the data collection conditions, the capture interpretation,
the adopted model and generation process of the behavior signatures as
well as the decision support.

Keywords: Malware – Behavioral detection – Behavior models – Dynamic
monitoring – Static analysis.

1 Introduction to the behavioral principles

Even if the behavioral detection seems a recent trend in antivirus products as
well as in the virology research area, its principles are not really new. In 1986,
F. Cohen already established the basis of behavior-based detection within his
first formal works [1, 2]. He put forward the fact that viruses, just like any other
running program, use the services provided by the system. The prediction of
the viral nature of a program according to its behavior was then equivalent
to defining what is and what is not a legitimate use of the system services.
He finally found that this problem could be reduced to an appearance analysis
of the request inputs sent to the system and was thus undecidable. If this
first definition seems strongly linked to the operating system, it can easily be
extended to the use of any hardware or software resource such as the processor,
the memory or programs. This larger definition is often referred as function-
based detection. Along this article we will use them indifferently as it is just a
question of system perimeter.

1

1.1 Two opposite approaches of the problem

As stated by Cohen, there are two opposite approaches to apprehend the prob-
lem. The first one is to model the behavior of legitimate programs and measure
deviations from this reference. This approach provides the great advantage of
being able to detect completely unknown viral strains. Nevertheless, the task of
modelling a global behavior for programs reveals itself extraordinary complex.
An obvious reason is the multitude of applications of different nature existing
on a system. A web or mail client will exhibit an intensive use of the network
facilities whereas a multimedia player will decode large buffers of data and ren-
der them over physical devices such as the graphic or sound cards. No common
characteristics can be extracted and a different profile would be required for
each kind of application. Moreover the information available is too important
for each program (several mega bytes of code, hundreds of system calls) to be
considered wholly. As a consequence, legitimate models are always statistical,
thus prone to false positive and non resilient to major environment changes.
It explains why, in virology, the opposite approach of modelling and detecting
suspicious behaviors is mainly adopted. When a set proves too complex to be
defined exhaustively, the intuitive and easier approach to address the problem
is to work on its complementary. The main drawback is that we can no longer
detect unknown malwares as soon as they use innovative viral techniques.

It is interesting to parallel antivirus products with intrusion detection sys-
tems where the perception is diametrically opposed. In the intrusion domain,
behavior-based detection is based on legitimate models whereas suspicious mod-
els as in virology are considered as simple signatures for knowledge-based or
misuse detection [3, 4]. Modelling legitimate behaviors goes back to the early
works on intrusion detection published by Anderson [5] and Denning [6]. It still
remains an active research field as it is clearly impossible to generate misuse sig-
natures for the thousands of vulnerabilities discovered every year. Such models
are out of the scope of this paper but the reader is invited for further informa-
tion to refer to the works of Forrest et al. on host-based intrusion detection
[7] and the use of Markovian Models for capturing legitimate uses of systems
described by S. Zanero [8]. To go back to our main focus, viral techniques are
less numerous than vulnerabilities and misuse models seem more adequate to
our problem of malware detection.

1.2 Paper organization

We have willingly adopted the virology point of view and will thus implicitly
consider the modelling of suspicious behaviors all along our speech. In certain
particular cases, relevant intrusion detection papers will also be given as addi-
tional references. Originally, this paper was motivated by a simple observation.
There is no global survey covering this domain whereas we observe an increasing
activity both in commercial products and research. The multitude of behavioral
detection systems is striking, and so is the inconsistency in the vocabulary and
the designations used. We have thus decided to make the scope of our survey as
wide as possible, in a way relevant to the stated definition, in order to establish
a common base for our taxonomy. To achieve this, we have organised this paper
as follows: Section 2 explains the recent interest in behavioral detection by the
predicted failure of appearance detection, Section 3 describes a generic behav-

2

ior based detection system, Section 4 introduces the taxonomy, and Section 5
illustrates our speech with an overview of both existing commercial products
and research prototypes.

2 Why behavioral detection may succeed where
appearance detection will undeniably fail

Historically, appearance detection also called form-based detection have been
the first used to fight against malwares and still remain at the heart of nowa-
days antiviruses. Their functioning principle is the search in files for suspicious
byte patterns stored in a signature base. These betraying patterns must exhibit
a discriminating character combined with non-incriminating properties for le-
gitimate programs [9, pp.147]. As a consequence, these form-based techniques
are bound to detect known malwares contrary to the behavioral detection. On
the other hand, it can identify the threat more precisely and name it whereas
the behavioral approach can not.

2.1 The signature extraction problem

Form-based detection provides undeniable advantages for operational use. It
uses optimized pattern matching algorithms whose complexity is controlled and
results exhibit very low false positive rates. Unfortunately, it proves completely
overwhelmed by the quick evolution of the viral attacks. The bottleneck in the
detection process lies in the signature generation and distribution after the dis-
covery of a new malware.

The signature generation is often a manual process requiring a tight code
analysis that is extremely time consuming. Once generated, it must be dis-
tributed to the potential targets. In the best cases, this distribution is auto-
matic but if this update is manually triggered by the user, it can still take days.
In a context where worms such as Sapphire are able to infect more than 90%
of the vulnerable machines in less than 10 minutes, attacks and protection does
not act on the same time scale.

Moreover this signature can easily be bypassed by creating a new version of
a known viral strain. The required modifications are not important, they simply
need to be performed at the signature level. The numerous versions of the Bagle
e-mail worm referenced by certain observatories illustrate the phenomenon [10].
In a few months, several versions have been released by simply modifying the
mail subject or adding a backdoor. An even more relevant example, which was
a major concern during the last RSA Security Conference in San Fransisco, is
the server-side polymorphic malware Storm Worm [11]. Its writer produces be-
forehand vast quantities of variants which are delivered daily in massive bursts.
Each burst contains several different short-lived variants leaving no time to de-
velop signatures for all of them. On a long-term scale, experts will not be able
to cope with this proliferation. As an obvious cause, formal works led by E.
Filiol underline the ease of signature extraction by a simple black box analysis
because of weak signature schemes [12]. A second side effect is the alarmingly
growing size of the signature bases. As a solution, older signatures are regularly
removed leaving the system once again vulnerable.

Behavior signatures are no longer simple byte patterns but carry a semantic

3

interpretation. As a consequence, they prove to be more generic and thus re-
silient to simple modifications. A single behavior signature should then detect
all malware versions coming from a common strain. Experts could then estab-
lish more easily a hierarchy in their work, focusing uppermost on new innovative
strains. The behavior base size should be less consequent as well and the sig-
nature distribution less frequent. Regular base updates remain nevertheless
necessary contrary to what is claimed in certain marketing speech.

2.2 Resilience to automatic mutations

In the last part, we have consider the manual evolution of malware but what
happens when these mutations become automatic during propagation. The
first significant generation of mutation engines is born with polymorphism [13,
pp.140][14, pp.252]. Polymorphic malwares have their entire code ciphered in
order to conceal any potential signature. A simple variation of the ciphering
key modifies totally the byte sequences of the virus. A deciphering routine is
required to recover the original code and execute it. This routine must possess
its own mutation facilities if it wants to avoid becoming a signature on its own.

It was quickly discovered that simple emulation could make the original code
available, thus thwarting these engines. But searching for signature has become
far more complex with metamorphism. The malware is not simply ciphered but
its whole body suffers a certain number of transformations affecting its form
while keeping its global functioning [13, pp.148][14, pp.269]. The mutation phe-
nomenon always begins with the code disassembly, which is then obfusctated
before to be reassembled: code reordering, garbage insertion, register reassign-
ment and equivalent instruction substitution. Syntactic analysis is no longer
sufficient to fight against these mutations. Eventually, D. Spinellis has shown
that the detection of mutating bounded virus by signature is NP-complete [15].

If these mutations modify the malware syntax, they do not modify its seman-
tic. Typically, the malware will always use the system services and resources in
an identical way. So behavioral approaches should not be affected by these mod-
ifications. As a conclusion, all these reasons we have set forth lead to consider
behavioral detection as a promising alternative solution to malware detection.

3 Generic description of a behavioral detector

3.1 System architecture and functioning

A behavioral detection system identifies the different actions of a program using
the system resources. Based on its knowledge of malwares, it must be able to
decide whether these actions betray a malicious activity or not. Information on
system use is mainly available in the host environment thus explaining that be-
havioral detectors work at this level. How malwares are introduced in the host
is not the main focus of antivirus products. They can either be introduced au-
tomatically through a vulnerability, which is the concern of intrusion detection,
or manually by negligence of the user which can not be avoided. Antiviruses
often act as a last local barrier of protection when previous barriers like firewalls
and intrusion detection systems, have been successfully bypassed.

4

Figure 1: Generic description of a behavior-based detector. This decomposition
of the system brings into light the articulation between the first step of behavior model
generation and the three sequential steps of detection, each one processing the data
to a higher level of interpretation until the final assessment.

Behavioral detectors can basically be split into four main components. The
detection process consists in three sequential tasks addressed by individual com-
ponents as shown in Figure 1. Prior to detection, an initial step is required to
generate the behavior signatures stored in a dedicated database. The signa-
ture generation according to the adopted model may not be an actual software
component but requires a dedicated process since it is a key element in the
detection efficiency. Coming back to detection, a first step is performed with
the data collection where we have considered indifferently dynamic capture and
static extraction as in both modes, the intended actions of a program can be
observed. In the first case only the effectively performed actions are collected
whereas in the second all potential actions are. The collected data can be gath-
ered from different sources: the local host for personal computers or from host
honeypots deployed in strategic points over networks. As behavioral detectors
work at a higher interpretation level than simple appearance detection, collected
data need to be analyzed and interpreted in a second step. This step brings into
light the important characteristics of the sample and format them into an in-
termediate representation to feed the last part of the process. The last step
consist in a matching algorithm comparing the representation to the behavior
signatures. According to the result, the program will be labelled as malicious
or benign.

3.2 Basic properties for assessment

It is fundamental to define the important properties of a behavioral detection
system since they will provide the basis for efficiency assessment. Actual cer-
tifications simply confront malware detectors to known viral strains thereby
assessing solely appearance detection. Assessing antivirus product is still an
open problem and several more complete test procedures have been put forward
[16, 17]. One of them focus more particularly on behavioral detection using
functional metamorphism [18]. This new kind of mutation generates new viral

5

strains using different known techniques to achieve a same final behavior that
should be detected. The results have notably shown that, in order to make up
for the false positive rates, the behavioral detection is often confronted to an
additional detection by signature. If a neat decrease is observed, the behavioral
detection remain severely hindered by this measure which prevents the detec-
tion of unknown strains using known viral techniques. More generally, Any test
procedure to be complete with regards to behavior detection should at least
consider the following properties:

• Performance. Performance is determined by the overload introduced by
the detection system in its environment. This overload depends on various
factors such as the capture conditions or the complexity of the matching
algorithm. It can be measured by comparison of the resources used be-
tween a normal execution and a detection process. This is an important
property since it is a cause for the belated interest in behavioral detection.
For several years, the calculation power of processors, the available mem-
ory space and bandwidth prove to be insufficient in order to deploy such
complex techniques. In the case of dedicated honeypots, the performance
constraints are even heavier than for personal computers since the system
must cope with the incoming traffic.

• Completeness and Accuracy. A system who fails to detect too many
malwares is said incomplete because its false negative rate is too high.
These failure may be explained either by incomplete behavior signatures
or missing data that remain uncollected. On the other hand, accuracy
determines the system tendency to false positives. Two factors mainly
impact on this properties: the soundness of the chosen signatures and the
relevance of the collected data.

• Adaptability. When a system is deemed inaccurate or incomplete, mod-
ifications must often be performed on the behavior signatures. Adapt-
ability traduces the ease of these updates allowed by the chosen behavior
model.

• Resilience. Malware often deploy anti-analysis mechanisms. These tech-
niques introduce bias during the data collection in order to blur any simil-
itude with the behavior models. Obfuscation and respectively stealth are
effective means used to thwart static and dynamic detection.

• Fault-tolerance, Unobtrusiveness and Timeliness. These additional
properties are more specific to dynamic detection because they presuppose
that the malware is active during the detection process. Fault-tolerance
assess the capability of the behavioral detector to stand up to any external
perturbation and in particular intended attacks launched by the malware.
On the opposite, according to the principle of the physicist Schrödinger,
the observation of the malware behavior must not introduce perturbations
in its execution. Unobtrusiveness guarantees that the observed behavior
will not be altered by the analysis. At last, timeliness checks whereas the
detection is reached before the damages done to the environment by the
malware are irreversible.

6

4 Taxonomy of behavioral detector

The concepts we use to classify behavior-based systems derive directly from
their generic description. The main axes described in Figure 2 correspond to
the components forming the detector. As a matter of fact, every combination of
components is not possible. Different models and algorithms are used whether
the input data is collected dynamically or extracted statically. We will now
describe individually the different elements of the taxonomy.

Figure 2: Characteristics of behavioral detection systems. We can observe that
the classification is globally divided into two branches corresponding to the dynamic
and static modes. This picture put forward the importance of the collection method
as it will impact strongly the models and algorithm used thereafter.

4.1 Capture conditions and nature of the data

Behavioral detection is traditionally associated to a dynamic execution. This
seems a short-sighted view to us since these behaviors are originally written
down in the malware code. Thereby, the malware actions can also be discovered
through a static analysis. We have willingly considered both operative modes
and compared them.

4.1.1 Dynamic monitoring

Detection of a malware during its execution must rely on elements observable
from an external agent. On former operating systems, the interception of inter-
ruptions was the first source of information about the resource use made by a
program. It has been progressively replaced by the interception of system calls

7

with the apparition of 32 bits systems. The main interest lies in the fact that
system calls remain a mandatory passing point from the user space to access
kernel services and objects. In their work on intrusion detection based on sys-
tem calls, S. Forrest et al. underline the importance of the collected data and
their representation as they will have an important influence on the analysis and
the matching algorithm [7]. In our particular case, sequential representations
are mainly consider but other representations like frequency spectres could be
consider. The context of the system calls must also be attached. The passed
parameters, the identifier of the calling program as well as its privilege level
are useful information to refine the interpretation. By nature any system call
is legitimate, only the arguments will betray a malicious purpose as stated by
Kruegel et al. [19]. As an illustration, a simple extract from a system call trace
is given in Figure 3.

Process Id: 2884 "Word.exe"

Privilege Lv: user

Time: 16/01/2007 1:53:34:536

#ZwReadFile#

hFile = C:\document.doc:0x24E6B0
lpBuffer = 0x13E67C

nNumberOfBytesToRead = 10

nByteOffset = 0

Figure 3: Extract from a trace of system calls. The whole trace is a made up
of a list of system calls like this one with various attached information. The process
identifier is important because it makes it possible to correlate the system calls from
a target process.

The nature of the collected data is not the only factor to consider for classi-
fication. The monitoring conditions are equally important. According to these
conditions, several properties of the detector may be impacted: performance,
unobtrusiveness, timeliness or the completeness of available data.

Real-time Conditions: The progression of the malware is observed directly
in its environment without restrictions. This type of capture is always
criticized because malevolent actions are effectively executed. Timeliness
is thus primary before the point of no return of the infection is reached.
To intercept system calls in real-time, the main technique used by the
detector is API hooking which is often used by rootkit writer as well [20].
The overload generated by the interception and the call processing may
be perceptible by the user. Yet, it remains less significant than for the
other capture conditions.

Real-time with action recording: This is a particular case of real-time cap-
ture where the actions taken by the observed program are recorded as well
as the intermediate sates of the environment [21, 22]. This trade-off makes
it possible to benefit from the advantages of real-time monitoring while
keeping a possibility to restore the environment in a healthy state as soon
as a threat is detected. This countermeasure remain possible as long as
the restoration mechanism and the records stay uncompromised.

8

Sandboxes: The observed target is first run in a sandbox where its execu-
tion is isolated in a confined space [23, 24]. This technique popularized
by JAVA, makes it possible to constrain the execution in an escape-proof
memory space with low privileges and limited service accesses. The main
advantage is that the external observer has a total access over the memory
space and can control the execution step by step, offering better obser-
vation facilities than real-time conditions. On the other hand, the sand-
box uses more significant resources since it introduces an intermediate
layer between the program and its environment. To reduce the overload,
only suspicious code portions of the program are analysed. Once this
pre-analysis performed, the normal execution of legitimate programs is
resumed without hindrance. Unfortunately, sandboxes do not provide the
same facilities than real systems and can easily be detected. Debugging
detection techniques checking the execution time or using error handling
structures succeed easily. Once the sandbox detected, the malware can
adapt its execution to seem benign whereas it is not. If the privileges and
service accesses are not properly restrained, a malware can even escape
through open interfaces of the sandbox.

Virtual Machines: Virtual machines can emulate a whole environment with
minimal risks to be detected. In effect, the host environment control ev-
ery access point to the hardware from the unaware guest system. In case
of a purely software virtual machines, system calls can be intercepted at
the level of the emulated processor by recognizing the INT 2E and SY-
SENTER instructions. The processing can then be performed entering
or returning from the system call without trace for the virtual environ-
ment that can carry on its execution [25]. In comparison to sandboxes,
virtual machines make it possible to emulate any fictive resources either
hardware (network connections) or software (mail or P2P clients). These
resources are often used malevolently by the malware to its own profit
for propagation or gathering information. Total virtualization enables the
observation of these interaction without risks for the host. On the other
hand, virtual machines require large amount of resources making them
impossible to use in operational contexts or with restricted virtualization
support to the file system. They remain mainly used by experts and re-
searchers on the purpose of analysis and classification. Just as sandboxes
they can be detected by the observed program but no escaping technique
has been reported yet [26, 27].

Whatever dynamic condition is considered, all of them globally exhibit the
same properties. As a comparison basis, we have identified the following ones:

Assets: Dynamic monitoring proves resilient to most mutations techniques like
polymorphism and metamorphism. These mutations are fundamentally
based on syntax and thus do not modify the final execution. The different
versions issued of a same mutating strain will eventually provide the same
event trace.

Limitations: The interception of system calls is not the ultimate solution.
Certain behaviors such as ciphering do not use the system services for
stealth reasons. Some malwares even redefine whole system primitives for

9

the exact same reasons. An other phenomenon to take into account is
the migration of malwares towards the system kernel in order to acquire
privileges equal to antiviruses. Using these privileges, complex stealth
techniques become possible since the malware can interact directly with
the hardware and system objects without necessarily using any of the
monitored system calls [13, pp.188]. This limitation could be solved by
capturing additional data from more privileged sources. On the other
hand, the second limitation can not easily be solved. By nature, dynamic
monitoring only capture the current execution path. This execution path
could be biased since non deterministic behaviors may be randomly exe-
cuted or conditioned by external stimuli and observations like in the case
of sandbox and virtual machine detection.

4.1.2 Static extraction

Static extraction provides richer information than dynamic monitoring which is
bound to collect observable elements only. In effect, every potential action of a
malware is presumably written down in its code. The code sample may simply
be a local file from the system but also a file rebuilt from different payloads
collected by a honeypot. The main challenge is to reach, from the binary code,
a semantic level of interpretation traducing the intended actions. Consequently,
the data extraction is more complex and requires several processing steps to get
an intermediate representation of the program.

Static extraction uses the traditional techniques of reverse engineering, that
is to say, disassembly and building of control and data flow graphs (CFG and
DFG). Certain tools can automatically achieve this process described with more
details in Figure 4. This type of representation is used by a majority since it
brings into light the different execution paths of the program. In certain cases,
the instructions and values stored in the nodes of the graphs can even be inter-
preted according to a more generic semantic. Notice that most of malwares are
often protected using packers like UPX in order to increase the extraction diffi-
culty. Unpacking has become a challenging problem in static analysis, requiring
more and more advanced techniques [28].

Just like dynamic monitoring, the intrinsic properties of static extraction
provides advantages but also drawbacks. By comparing these properties with
those of dynamic capture, it becomes obvious that these two capture methods
are complementary:

Assets: The main advantage of static extraction lies in the fact that all exe-
cution paths are enumeratively available. As the malware is not running
during the capture, it is not able to adapt its execution or deploy proactive
defence during the analysis.

Limitations: Predicting the behavior of a program from its simple description
is equivalent to the ”halting problem”. Unfortunately this problem has
been proved undecidable by A. Turing in 1936. Still, under certain condi-
tions, the necessary information can be gathered. Anyhow, static extrac-
tion remain possible as long as disassembly can be performed. Techniques
of software protection can skew the result by introducing fake instruc-
tions hindering the code alignment. Moreover static extraction remain
very sensitive to the obfuscation techniques used by metamorphic engines.

10

Theoretical works to assess the resistance of static semantic analyzers to
common transformations have already been addressed by Preda et al. [29].

Figure 4: Incremental steps during the static extraction. This scheme describes
the different processing stages applied to the program in order to extract the interme-
diate representation: unpacking when required, disassembly and interpretation.

4.2 Matching algorithms and models

Generally speaking, a detection engine embed a certain amount of knowledge
about malwares to support its decision. In the context of behavioral detection,
this knowledge is made up of a base of behavior signatures modelled according
to the engine nature. During the analysis the collected data must be interpreted
and formatted to make its confrontation to the behavior model easier.

To put things in perspective, the engine nature will determine the behavior
modelling, the intermediate representation as well as the confrontation method.
That is why we have chosen to present the interpretation and confrontation
steps of the detection process at the same time. In this part we will detail the
different classes of systems previously mentioned in Figure 2 according to two
main axes: simulation and formal verification. The generation of the behavior
signature will finally be treated as a third transversal axis.

4.2.1 Simulation-based verification

Simulation-based verification can be seen as a black box test procedure and is
thus strongly linked to a dynamic mode . This kind of verification requires a
simulation environment, typically one of the capture conditions introduced in
4.1.1. Only the current path is analyzed making the system work on a sequence

11

of discrete events that will be compared to the reference model: the behavior
signature. The following systems have been listed.

4.2.1.1 Expert systems

This kind of detection engine relies on a set of case-based rules modelling the
experience and expertise of an analyst confronted to a particular situation. A
rule will be defined like the ones pictured in Figure 5 for each known suspicious
attempt to use system facilities. Every separated action taken by the observed
program will be confronted to the related rules [30]. The target and the privilege
level of the caller are important factors because they often draw the distinction
between a legitimate action and a malicious one. The class of complexity of
the rule-matching algorithm remain acceptable since it is equivalent to pattern
matching algorithms which are in the class P.

Deny Write Run Registry Key
Deny Write Win.ini File
Deny Terminate Antivirus Process

Figure 5: Rules examples. A rule always specifies the nature of the action (read-
ing, writing, opening, terminating, ...), the target along with the associated decision
(permission, refusal). If no rule is defined, the action is allowed by default.

The decision of whether a behavior is malicious or not must then be taken
preemptively. Systems such as the one in Figure 6 enable the interception of any
attempt to use a system service and make it possible to react consequently before
its resolution. These proactive systems are often called ”behavioral blockers”
because of this property [31]. Generally speaking, this kind of engine is prone
to false positives because it proves really fussy to judge the legitimacy of a
separated action without correlation.

Figure 6: Rules enforcement. For each captured system call, the related rules will
be scanned. According to the dedicated rule, the engine will yield the control to the
originally called function or send a refusal/killing notification to the calling process.

4.2.1.2 Heuristic engines

12

Historically, heuristic engines were the first to be deployed to detect mali-
cious functionalities. Contrary to the previous expert systems, the captured
actions are no longer considered separately but sequentially. They functions on
the basis of interruptions and system calls along with their preceding instruc-
tions defining the parameters, usually collected thanks to a sandbox. Basically,
heuristic engines are made up of three parts [32, 33]:

Association mechanism: Its purpose is to label the different atomic behav-
iors of a malware. An atomic behavior corresponds to a functional inter-
pretation of one or several instructions as pictured in Figure 7. Fundamen-
tally, there exist two labelling techniques. Weight-based association uses
quantitative values obtained by experimentation in order to express the
action severity. Flag-based association uses semantic symbols to express a
corresponding functionality [34, 35]. The Figure 8 presents a typical exam-
ple of flag-based association where atomic actions eventually corresponds
to real instructions sequences.

Terminate program Open File

1. MOV AX, ??4Ch 100. MOV AX, 023Dh

INT 21 ;B8??4CCD21 MOV DX, ????h

2. MOV AH, 4Ch INT 21 ;B8023DBA????CD21

INT 21 ;B44CCD21 101. MOV DX, ????h

3. MOV AH, 4Ch MOV AX, 023Dh

MOV AL, ??h INT 21 ;BA????B8023DCD21

INT 21 ;B44CB0??CD21

4. MOV AL, ??h

MOV AH, 4Ch

INT 21 ;B0??B44CCD21

Figure 7: Atomic behaviors. This example is quoted from the documentation of
the Bloodhound engine [36]. It illustrates the association between several instructions
sequences and a final atomic action.

Database of rules: This database defines the detection criterion. In the case
of weight-based systems, there is a unique rule consisting in a threshold
above which the accumulation of malicious behaviors betrays a malware.
Otherwise, rules consist in flag sequences. These sequences are brought
together as a detection tree like in Figure 9.

Detection strategy: The strategy impacts the detection process with regards
to the progression among the rules. In the case of a weight-based asso-
ciation, the strategy is the accumulation function chosen to correlate the
captured values. Otherwise, the strategy determines the tree search al-
gorithm. Several kind of algorithm exist: greedy as in Figure 9, genetic,
taboo or simulated annealing [37]. The choice of the strategy is primor-
dial since it will allow to find approaching but still satisfactory values in
reasonable times for problems of NP-complete complexity [13, pp.67].

13

F = Suspicious file access R = Suspicious code relocation

N = Wrong name extension A = Suspicious memory allocation

= Deciphering routine L = Trapping the loading of software

E = Flexible entry-point D = Direct write access to the hard drive

M = Memory resident code T = Invalid timestamp

G = Garbage instructions Z = Search routine for EXE/COM files

B = Back to entry-point K = Unusual stack structure

O = Overwriting or moving programs in memory

Figure 8: Behavior base. This example has been extracted from the base of the
TBScan engine [34]. Each behavior is associated to a flag carrying a semantic value.

Figure 9: Detection rules and strategy. The tree has been built according to
five rules from the TBScan engine, corresponding to five viral strains [34]. The chosen
strategy is a simple greedy algorithm where the first valid path is always taken whitout
possibilities to go back. This combination fails to detect Backfont but an other strategy
where backward movement are possible would have detected the virus Jerusalem. This
observation once again underlines the importance of the strategy.

4.2.1.3 State machines

Just like heuristic algorithms, state machines are based on sequential models
of system calls. The malicious behaviors are described as Deterministic Finite
Automata (DFA) according to the following principle [38, 39]:

• The states S of an automaton corresponds to the internal states of the
malware along its lifecycle,

14

• The set of input symbols Σ made up of the collected data which are mainly
system calls,

• The transition function T describes the symbol sequences known as sus-
picious,

• The initial state s0 corresponds to the beginning of the analysis,

• The set of accepting states A signal when a suspicious behavior has been
detected.

From an initial state, the collected data are evaluated step-by-step making the
automaton progress. If during its progression, the automaton reaches an accept-
ing state, a malicious behavior has been discovered. Otherwise, if the automa-
ton reaches an error state or does not progress until a final step, only behaviors
supposed legitimate have been captured. The Figure 10 gives an example of au-
tomaton detecting a file infection mechanism. In state machines, the matching
algorithm is defined by the problem of word acceptance problem by an automa-
ton. Using deterministic finite automata, this problem remains NP-complete
[40].

Figure 10: Automaton of the infection mechanism. This automaton describes two
types of file infection. The left branch depicts the ”append” infections where the viral
code is copied at the end of the file and the entry-point is redirected. The right one
depicts the ”prepend” infection, destructive or not. Either the original code is saved
at the intermediate states e′

2 and e′
2 or the automaton jumps directly to the infection

point at state e′
4.

15

Notice that state machines can also be used for the opposite approach mod-
elling legitimate behaviors. But the considered automaton is no longer deter-
ministic but probabilistic. The probabilities of the different transitions are based
on the frequency of certain system call sequences during an healthy execution
[41]. Unfortunately, the model put forward is used to detect macroviruses and
consequently targets a specific type of application: office softwares. It remains
almost impossible to extend generically legitimate models to every application.

4.2.2 Formal verification of properties

Formal verification, in the context of behavioral detection, consists in verifying
that a program abstraction satisfies or not a behavior formal specification, which
is basically a bisimulation problem. Enabled by the white box approach, these
systems work on combinatorial explorations of the different execution paths.
Only few systems have been referenced here since it remains a recent approach.

4.2.2.1 Annoted graph isomorphim

This kind of detection works exclusively with static extraction since it uses
control flow graphs. The analysis relying on a higher level of abstraction than
simple assembly code, the instructions stored in the nodes of the extracted
graphs will be replaced by an associated label. The label attribution may fol-
low two approaches: either the instructions are translated into an intermediate
representation carrying a semantic value [42, 29] or only the classes of the in-
structions are stored (arithmetic, logic, function call, ...) [43, 44]. A behavior
will thus be specified by a template with a similar graph structure using the
same annotation mechanism. The Figure 11 (a) provides an outlook of a behav-
ior template graph with its semantic labels made up of symbolic instructions,
variables and constants.

Detection by checking that a program satisfies a template is equivalent to
find a subgraph of its CFG which is isomorphic with the behavior graph. The
localisation of this subgraph in a stand-alone malware may be easy to deter-
mine but it proves much more complex for a program infector since it requires
to find out the insertion point first. The algorithm will then begin with associ-
ating the nodes from the CFG with those of the template as pictured in Figure
11. An additional contraint steps in since a sensible correspondence must be
possible between the labels from the graph nodes. When adopting a semantic
representation for labels, this association will eventually determine the equiva-
lences between the symbolic elements (variables, constants) and the real values
(registers, memory locations). An additional step is then required to check the
preservation of these values from their affectation until their use.

Theoretically, the subgraph isomorphism on its own is NP-complete but its
complexity can often be reduced in the detection context. In effect, most of CFG
nodes exept in the case of indirect jumps and function returns have a bounded
number of successors, typically one or two. This kind of algorithm remains very
sensitive to mutation techniques and in particular to any modification impact-
ing the resulting graph: code permuation or injection of useless instructions
(dead code hidden behind opaque predicate, additional intermediate variables).
These transformations can partially be addressed by optimization techniques
developped for compilers [45, 46, 43]. The ultimate goal would be to reach a

16

canonical and minimal form to revert most of mutation.

Figure 11: Semantic equivalence. The template (a), quoted from the paper of
Christodorescu et al. [42], represents in a generic way a simple ciphering by XOR
between two addresses. During the verification, each node from the instance (b) is
associated to its potentially equivalent node in the template. Once the correspondence
established, the preservation of the variables is checked. In this concrete case, the
matter is to ascertain that that the value affected to eax at node 1 is equal to the
value of ecx used at node 5. As a result, the instance (b) satisfies the template (a).

4.2.2.2 Algebraic equivalence by reduction

Working from an algebraic approach, the detection is made by deduction
using logical equivalence at each reasoning step [47, 48].

In first place the program is translated into a given algebra. This algebra is
commonly a formal specification of the processor instruction set which attempts
to erase differences between equivalent functionalities. For example a single
semantic expression will stand for several equivalent instructions using different
registers such as ’mov’.

Once translated, the program abstraction is then simplified by reduction
using rewriting rules preserving the equivalence and semi-equivalence properties.
Basically, equivalent expressions have an identical effect on the whole memory
whereas semi-equivalent ones only preserve specific variables and locations. The
final purpose is to reduce the number of syntactic variants like pictured in the
Figure X showing rewriting rules reversing metamorphic transformations.

The reduced form is then checked using an interpreter to evaluate the result
of the execution on different variables or memory locations such as the stack.
The results are then used to be compared to a known malware specification
given in the same precise algebra. Because of the complexity of the problem
which is equivalent to the halting problem and thus undecidable, this technique

17

can only be deployed on limited samples from the malware code.

eq execS NOP in EVL /\/\ FL = EVL /\/\ FL.
eq execS do SL1 while (T) in EVL /\/\ FL = execSL SL1 ;; while(T)
do SL1 ; eof in EVL /\/\ FL.

Figure 12: Reduction rules reversing metamorphic transformations. These two
rewriting rules quoted from M. Webster paper [47] are written using the OBJ formal-
ism. Given a virus in SPL, the first rule is used to remove the NOP that may have
been inserted during possible mutations. The second one may seem more complex but
simply says that a do{ } while() is equivalent to a while() do{ }.

4.2.2.3 Model checkers

In model checking, the model used to describe the behaviors is more peculiar.
A behavior will be defined by a temporal logic formula [49, 50] which intro-
duces dynamic aspects in the first-order logic. An example completely detailed
is given in Figure 12. For more information, it is a recommended to refer to
the corresponding literature [51]. The verification algorithm takes as input a
control flow graph as well as one or several logic formulae. In return, it sends
back all the intermediate states in the different execution paths satisfying these
formulae. This kind of algorithm is strongly recursive since it must explore
enumeratively all the possible execution paths. As a matter of fact, symbolic
temporal model checker prove to be PSpace-complete [52].

In the most recent logic, registers, free variables and constants are referenced
as generic values for genericity sake [53]. This improvement particularly address
mutations by reassignment as shown by the figure. During the verification pro-
cess, the algorithm will link the generic values with real registers and variables
and store this information all along the explored execution path. It is also im-
portant to underline the fact that the temporal predicates used to explore the
different paths prove to be useful thwarting garbage code insertion and code
reordering.

4.2.3 Behavior model generation

Along the two previous sections, parallelly to the different matching algorithms,
we have described several behavior models without mentioning the creation
process of the behavior signatures. This third part is dedicated to the generation
methods for these signatures.

4.2.3.1 Manual definition

Though time consuming, manual definition remain the principal generation
method because of its reliability. Two main sources of knowledge are use to
feed the process of model creation. In most cases, an expert with significant
experience will define generic and opaque behavior models for interoperability
sake between the different customer machines. But in certain systems, the
responsibility will be passed on to the user. He is then free to define its own
policy which will be more adapted to his own system since he can take into
account the different installed softwares. On the other hand he must be well
taught and be aware of the possible repercussions of his choices.

18

C1 : ∃rEF (mov(r, 0)
∧EF (push(r)
∧EF (call(func))))

C2 : ∃rEF (mov(r, 0)
∧AX(push(r)
∧EF (call(func))))

Figure 13: Examples of temporal logic formulae. The operators A and E are path
quantifiers whereas X and F are temporal operators. For example, the combination
EF (p) means that an execution path exists where an undetermined future state sat-
isfies the predicate p. In the present case, the first formula C1 means that there is
possible path where the value 0 is affected to a generic register r which is then pushed
on the stack before a call to the function func. Notice that these operations may not
be consecutive. Replacing the operators EF by AX in the second condition compels
the register affectation to be in every possible path (and no longer in at least one).
Moreover, pushing the register value on the stack must be the immediate following
action. As an illustration, π1 and π2 are two execution paths satisfying respectively
C1 and C2.

4.2.3.2 Automatic learning: Data mining and classifiers

The automatic generation of behavior signatures is a critical improvement
necessary to avoid the shortcomings of the simple byte signatures. Up until
now, the learning process has only been applied to certain models since the ma-
nipulated structures in a behavioral context are more complex and thus harder
to learn. The learning mechanism relies on classification rules built by classifiers
combined with data mining techniques. Whatever classifier is used, the general
procedure remain the same. In a first time, the system is confronted to a learning
pool made up of large sets of malware and legitimate samples already labelled
as malicious or benign. The size of the pool must be sufficiently important
and well chosen to exhibit no bias. Like any learning process, the generation
of behavior signatures remain very sensitive to noise injection in the training
pool. Some effective attacks have already been published against similar worm
signature generators [54]. During the training period, the classifier will crawl
into this data repository to extract common properties between the different
considered classes. The functioning principle is reminded schematically in the
Figure 13. In a behavioral context, the extraction of these common properties
relies on three major paradigms:

Rules induction: This first paradigm specifies belonging conditions for the
different classes. For each sample received by the classifier, it integrates
or removes certain characteristic data in the condition in order to preserve
the class consistency [55, 56, 57]. This kind of rules is often formulated as
Boolean expression as it is pictured in Figure 14 or as decision trees [58].

Bayesian statistics: The second paradigm based on statistics is used in clas-
sifiers like Bayesian networks. For each collected characteristic, the proba-
bility of finding it in a given class of malware is measured [56, 57, 58]. The
Figure 15 describes examples using system calls and strings as collected

19

Figure 14: Learning process. The original knowledge is extracted from a learning
pool and integrated to the rule database. The rules are then evaluated by the classifier.
According to their relevance, the process is iterated until stabilization of the rules set.

Mail worm::=Call.Connect() ∧ Call.Send() ∧ (¬Call.Receive()) ∧
String.HELLO ∧ String.MAILString.RCPT

Figure 15: Mail Worm class example. The following rules determines the chrac-
teristics (system calls and specific strings) common to the different mail worms. The
main difference with a legitimate mail client lies in the fact that the worm does not try
to receive data since it does not wait for any acknowledgement message or response.

data. Ultimately, only the results exhibiting the most important powers
of discrimination will be kept. An important criterion in this choice will
be the minimal overlapping of the characteristics in the different classes.
The ideal case would obviously be when a characteristic is existing with a
probability of 100% in a unique class whereas it is absent of any other.

P(OpenFile|Benign) = 95% P(OpenFile|File infector) = 100%

P(GetModuleHandle|Benign) = 20% P(GetModuleHandle|File infector) = 70%

P("*.exe"|Benign) = 10% P("*.exe"|File infector)=90%

Figure 16: Probabilities of several characteristics. These results are only given as
examples. Nevertheless they bring into light the prevalence of certain characteristics.
Opening a file on its own is insufficient to decide of the action nature as it is widely
use by both benign and infector programs. On the contrary, accessing the handle of
the current module to copy this image in a target is more significant of an infection.

Clustering: The third paradigm relies on predefined cases. During the learning
procedure, average profiles are built for each class of malware. When
deployed, the classifiers will measure distances between the profiles and
the tested programs [59]. The program is classified according to the profile
with which it exhibits a minimal distance. The method used to measure
this distance may vary from a system to an other but it remains a factor
impacting heavily on the classification accuracy. The Figure 16 gives an
example where the distance is calculated on the basis of the number of
modifications necessary to pass from a call sequence to an other.

20

Operation Profile Capture Cost

Insert RegWriteKey 1,5

* WriteFile WriteFile 0

Delete CreateProcess 0,7

* RegWriteKey RegWriteKey 0

Replace RegWriteKey RegReadKey 0,1

Replace Send Receive 2,0

Distance 4,3

Figure 17: Distance between traces. Two call sequences from a profile and a capture
are compared in this table. Each operation required to pass from one to another is
associated to a different cost. The final distance is equal to the addition of these costs.

5 Panorama of existing behavioral detectors

As an illustration, we have classified several existing behavior-based systems of
detection according to the elements of our taxonomy. The result is given in Table
1 completed with additional practical information. They have been separated
into two parts, the first one for the research prototypes and the second for known
commercial products. This table has been built according to the information
made available by the different editors which are sometimes very limited.

The main trend brought into light is that most commercial systems are based
either on heuristic algorithms with sandboxing or real-time expert systems. It
can be explained by the fact that the diverging research prototypes often require
too much resources or do not exhibit error rates enough low. These prototypes
remain mainly used by researchers and analysts until their optimization. This
is particularly true for static analysis which is currently used only for analysis
and signature extraction but not for detection. A second observation that was
also visible through the referenced papers, is the convergence of the antiviruses
using behavioral detection with host-based intrusion prevention systems (HIPS).
It becomes less and less obvious to draw a demarcation line between the two.
This is not really surprising since virology and intrusion detection are connected
security domains.

6 Conclusion

The main idea to retain of this paper is that under the terms of behavioral detec-
tion lies a whole set of heterogeneous techniques relying on a common principle
of functionality identification. In particular, we observe in the taxonomy a clear
distinction between the static and dynamic modes. Yet these modes are com-
plementary as they exhibit opposite strengths and weaknesses.

Several researchers have already thought of means to combine the static and
dynamic modes in order to take advantage of their respective assets. Dynamic
analysis makes it possible to determine a reduced perimeter where a static anal-
ysis would be worth deploying. Based on this principle, a system has already
been put forward in order to detect spywares parasiting web browsers. The
dynamic phase is used to find the processing routines associated to the different
web events. Once localized a static analysis is deployed to detect any malicious

21

N
a
m

e
(O

rig
in

)
D

a
te

R
ef.

C
a
p
tu

re
In

p
u
t

T
a
rg

et
E

n
g
in

e
ty

p
e

U
sa

g
e

E
n
v
iro

n
m

en
t

T
B

S
ca

n
1
9
9
4

[3
4
]

D
y
n
.(S

B
)

In
terru

p
tio

n
s

F
ile

in
fecto

rs
H

eu
ristic

a
lg

o
rith

m
D

et.
M

s
D

O
S

(N
/
C

)
(fl

a
g
s)

V
ID

E
S

1
9
9
5

[3
8
]

D
y
n
.(R

T
)

In
terru

p
tio

n
s

C
O

M
a
n
d

E
X

E
In

fecto
rs

D
eterm

in
istic

fi
n
ite

D
./

C
.
M

s
D

O
S

(U
n
v
.

N
a
m

u
r

&
H

a
m

b
u
rg

)
a
u
to

m
a
ta

N
/
C

2
0
0
3

[5
6
]

S
ta

tic
Im

p
o
rted

fu
n
ctio

n
s,

A
ll

k
in

d
s

o
f
m

a
lw

a
re

D
a
ta

m
in

in
g

a
n
d

D
et.

W
in

(U
n
v
.

C
o
lu

m
b
ia

&
N

.Y
.)

strin
g
s

cla
ssifi

er
G

a
teK

eep
er

2
0
0
4

[2
2
]

D
y
n
.(R

T
*
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

H
eu

ristic
a
lg

o
rith

m
D

et.
W

in
(F

lo
rid

a
In

st.
o
f
T
ech

.)
(w

eig
h
t)

N
/
C

2
0
0
5

[4
2
]

S
ta

tic
C

o
n
tro

l
fl
o
w

g
ra

p
h
s

P
o
ly

m
o
rp

h
ic

m
a
il

S
em

a
n
tica

lly
a
n
n
o
ted

D
et.

W
in

(U
n
v
.

C
a
m

eg
ie

et
a
l.)

w
o
rm

s
g
ra

p
h

iso
m

o
rp

h
ism

N
/
C

2
0
0
5

[5
3
]

S
ta

tic
C

o
n
tro

l
fl
o
w

g
ra

p
h
s

W
o
rm

s
M

o
d
el

ch
eck

in
g

D
et.

W
in

(U
n
v
.

M
u
n
ich

)
N

/
C

2
0
0
6

[4
8
]

S
ta

tic
A

lg
eb

ra
ic

p
ro

g
ra

m
M

eta
m

o
rp

h
ic

v
iru

ses
E

q
u
iv

a
len

ce
b
y

D
et.

IA
3
2

(U
n
v
.

L
iv

erp
o
o
l)

a
b
stra

ctio
n

red
u
ctio

n
T

T
A

n
a
ly

ze
2
0
0
6

[2
5
]

D
y
n
.(V

M
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

S
im

p
le

a
ctiv

ity
lo

g
C

la
ss.

W
in

(T
ech

n
ica

l
U

n
v
.

V
ien

n
a
)

N
/
C

2
0
0
6

[5
9
]

D
y
n
.(V

M
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

D
a
ta

m
in

in
g

a
n
d

C
la

ss.
W

in
(M

icro
so

ft
C

o
rp

.)
cla

ssifi
er

N
/
C

2
0
0
6

[6
0
]

D
y
n
./

S
ta

t.
C

O
M

a
n
d

sy
stem

ca
lls

W
eb

clien
t

sp
y
w

a
res

E
x
p
ert

sy
stem

D
et.

In
tern

et
(U

n
v
.

C
a
lifo

rn
ia

&
V

ien
n
a
)

E
x
p
lo

rer

T
h
rea

tS
en

se
-
N

O
D

3
2

N
/
C

[6
1
]

D
y
n
.(S

B
)

In
stru

ctio
n
s

A
ll

k
in

d
s

o
f
m

a
lw

a
re

H
eu

ristic
a
lg

o
rith

m
D

et.
W

in
/
L
in

u
x
/

(E
set)

a
sso

cia
ted

to
a
ctio

n
s

F
reeB

S
D

A
V

G
A

n
ti-V

iru
s

N
/
C

[6
2
]

D
y
n
.(S

B
)

In
stru

ctio
n
s

A
ll

k
in

d
s

o
f
m

a
lw

a
re

H
eu

ristic
a
lg

o
rith

m
D

et.
W

in
/
L
in

u
x
/

(G
riso

ft)
a
sso

cia
ted

to
a
ctio

n
s

F
reeB

S
D

V
iG

U
A

R
D

N
/
C

[6
3
]

D
y
n
.(R

T
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

E
x
p
ert

sy
stem

D
et.

W
in

(S
o
fted

)
(u

ser’s
d
ecisio

n
)

B
-H

A
V

E
-
B

it
D

efen
d
er

N
/
C

[6
4
]

D
y
n
.(S

B
)

In
stru

ctio
n
s

A
ll

k
in

d
s

o
f
m

a
lw

a
re

H
eu

ristic
a
lg

o
rith

m
D

et.
W

in
/
L
in

u
x
/

(S
o
ftw

in
)

a
sso

cia
ted

to
a
ctio

n
s

F
reeB

S
D

B
lo

o
d
h
o
u
n
d

-
N

o
rto

n
1
9
9
7

[3
6
]

D
y
n
.(S

B
)

In
stru

ctio
n
s

F
ile

in
fecto

rs
H

eu
ristic

a
lg

o
rith

m
D

et.
W

in
(S

y
m

a
n
tec)

a
sso

cia
ted

to
a
ctio

n
s

E
n
tercep

t
2
0
0
4

[6
5
]

D
y
n
.(R

T
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

E
x
p
ert

sy
stem

D
et.

W
in

/
L
in

u
x

(M
c

A
ff
ee)

(p
red

efi
n
ed

p
o
licy

)
S
a
fe’n

’S
ec

A
n
tiv

iru
s

2
0
0
4

[6
6
]

D
y
n
.(R

T
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

E
x
p
ert

sy
stem

D
et.

W
in

/
L
in

u
x
/

(S
a
fen

S
o
ft)

(p
red

efi
n
ed

p
o
licy

)
F
reeB

S
D

T
ru

P
rev

en
t

2
0
0
6

[6
7
]

D
y
n
.(R

T
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

H
eu

ristic
a
lg

o
rith

m
D

et.
W

in
/
L
in

u
x

(P
a
n
d
a

S
o
ftw

a
re)

V
iru

s
K

eep
er

2
0
0
7

[6
8
]

D
y
n
.(R

T
)

S
y
stem

ca
lls

A
ll

k
in

d
s

o
f
m

a
lw

a
re

E
x
p
ert

sy
stem

D
et.

W
in

(A
x
B

a
)

(u
ser’s

d
ecisio

n
)

Table 1: Classification of existing behavioral detectors. Used abbreviations for the
capture conditions: RT = Real-Time / SB = SandBox / VM = Virtual Machine / * =
Actions recording, for the system usage: Det. = Detection / Class. = Classification.

22

activity [60]. Generally speaking, a static analysis could be deployed at each
reached branching to explore the alternative execution paths that will not be
executed.

If we want to combine efficiently both modes it remain necessary to evolve to-
wards a common model of reference. This model could then be slightly adapted
according to the class of system considered while remaining compatible with
others. Unfortunately, such a model is still missing.

References

[1] F. Cohen, Computer Viruses. PhD thesis, University of South California,
1986.

[2] F. B. Cohen, “Computer viruses: Theory and experiments,” Computers &
Security, vol. 6, no. 1, pp. 22–35, 1987.

[3] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-
detection systems,” Computers Networks, Special Issue on Computer Net-
work Security, vol. 31, no. 9, pp. 805–822, 1999.

[4] L. Mé and B. Morin, “Intrusion detection and virology: an analysis of
differences, similarities and complementariness,” Journal in Computer Vi-
rology, vol. 3, no. 1, WTCV’06 Special Issue, G. Bonfante and J-Y. Marion
Eds., pp. 39–49, 2007.

[5] J. Anderson, “Computer security threat monitoring and surveillance,” tech.
rep., James P. Anderson Company, 1980.

[6] D. Denning, “An intrusion-detection model,” IEEE Transactions on Soft-
ware Engineering, vol. SE-13, 1987.

[7] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusion using
system calls: Alternative data models,” in Proceedings of IEEE Symposium
on Security and Privacy, pp. 133–145, 1999.

[8] S. Zanero, “Behavioral intrusion detection,” in Proceedings of the 19th In-
ternational Symposium on Computer and Information Sciences (ISCIS),
pp. 657–666, 2004.

[9] E. Filiol, Computer viruses: from theory to applications. Springer, IRIS
Collection, 2005, ISBN:2-287-23939-1.

[10] “Fortinet observatory.” url=www.fortinet.com/FortiGuardCenter/.

[11] “Malware outbreak trend report: Storm-worm,” Commtouch Software Ltd,
2007, url=www.commtouch.com/downloads/Storm-Worm_MOTR.pdf.

[12] E. Filiol, “Malware pattern scanning schemes secure against black-box anal-
ysis,” Journal in Computer Virology, vol. 2, no. 1, EICAR 2006 Special
Issue, V. Broucek Ed., pp. 35–50, 2006.

[13] E. Filiol, Techniques Virales Avancées. Springer, IRIS Collection, 2007,
ISBN:2-287-33887-8.

23

[14] P. Ször, The Art of Computer Virus Research and Defense. Addison-
Wesley, 2005, ISBN:0-321-30454-3.

[15] D. Spinellis, “Reliable identification of boundedlength viruses is np-
complete,” IEEE Transactions on Information Theory, vol. 49, pp. 280–
284, 2003.

[16] M. Christodorescu and S. Jha, “Testing malware detectors,” in Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pp. 34–44, ACM Press, 2004.

[17] S. Josse, “How to assess the effectiveness of your anti-virus?,” Journal in
Computer Virology, vol. 2, no. 1, EICAR 2006 Special Issue, V. Broucek
Ed., pp. 51–65, 2006.

[18] E. Filiol, G. Jacob, and M. L. Liard, “Evaluation methodology and the-
oretical model for antiviral behavioural detection strategies,” Journal in
Computer Virology, vol. 3, no. 1, WTCV’06 Special Issue, G. Bonfante and
J-Y. Marion Eds., pp. 23–37, 2007.

[19] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the detection of anoma-
lous system call arguments,” in Proceedings of the European Symposium on
Research in Computer Security, pp. 326–343, 2003.

[20] G. Hoglund and J. Butler, Rootkits, Subverting the Windows kernel.
Addison-Wesley Professional, 2006, ISBN:0-321-29431-9.

[21] A. D. Vivanco, “Comprehensive non-intrusive protection with data-
restoration: A proactive approach against malicious mobile code,” Master’s
thesis, Florida Institute of Technology, 2002.

[22] M. E. Wagner, “Behavior oriented detection of malicious code at run-time,”
Master’s thesis, Florida Institute of Technology, 2004.

[23] “Norman′s sandbox malware analyzer.” Norman ASA, url=www.norman.
com/microsites/malwareanalyzer/fr/.

[24] “Cwsandbox.” Sunbelt Software, url=www.cwsandbox.org.

[25] U. Bayer, C. Kruegel, and E. Kirda, “Ttanalyze: A tool for analyzing
malware,” in Proceedings of EICAR, 2006.

[26] J. Rutkowska, “Red pill... or how to detect vmm using (almost) one cpu
instruction,” 2005, url=http://invisiblethings.org/papers/redpill.
html.

[27] P. Ferrie, “Attacks on virtual machine emulators,” in Proceedings of the
AVAR conference, 2006.

[28] S. Josse, “Secure and advanced unpacking using computer emulation,” in
Proceedings of the AVAR conference, 2006.

[29] M. D. Preda, M. Christodorescu, S. Jha, and S.Debray, “A semantic-
based approach to malware detection,” in Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), 2007.

24

[30] M. Debbabi, “Dynamic monitoring of malicious activity in software sys-
tems,” in Proceedings of the Symposium on Requirements Engineering for
Information Security (SREIS), 2001.

[31] C. Nachenberg, “Behavior blocking: The next step in anti-virus protec-
tion,” SecurityFocus, 2002, url=www.securityfocus.com/infocus/1557.

[32] M. Schmall, Classification and Identification of Malicious Code Based on
Heuristic Techniques Utilizing Meta-languages. PhD thesis, University of
Hamburg, 2002.

[33] M. Schmall, “Heuristic techniques in av solutions: An overview,” Security-
Focus, 2002, url=www.securityfocus.com/infocus/1542.

[34] F. Veldman, “Heuristic anti-virus technology,” in Proceedings of the Inter-
national Virus Protection and Information Security Council, 1994.

[35] R. Zwienenberg, “Heuristics scanners: Artificial intelligence?,” in Proceed-
ings of the Virus Bulletin Conference, pp. 203–210, 1994.

[36] “Understanding heuristics: Symantec bloodhound technology,” tech. rep.,
Symantec White Paper Series / Volume XXXIV, 1997.

[37] F. W. Glover and G. A. Kochenberger, Handbook of Metaheuristics.
Springer, 2003, ISBN:1-402-07263-5.

[38] B. L. Charlier, A. Mounji, and M. Swimmer, “Dynamic detection and clas-
sification of computer viruses using general behaviour patterns,” in Pro-
ceedings of the Virus Bulletin Conference, 1995.

[39] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati, “A fast automaton-
based approach for detecting anomalous program behaviors,” in Proceed-
ings of IEEE Symposium on Security and Privacy, pp. 144–155, 2001.

[40] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata The-
ory, Languages and Computation, Second Edition. Addison Wesley, 1995,
ISBN:0-201-44124-1.

[41] G. Mazeroff, V. D. Cerqueira, J. Gregor, and M. G. Thomason, “Probabilis-
tic trees and automata for application behavior modeling,” in Proceedings
of the 43rd ACM Southeast Conference, 2003.

[42] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantic-aware malware detection,” in Proceedings of IEEE Symposium
on Security and Privacy, pp. 32–46, 2005.

[43] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating mal-
ware using control-flow graph matching,” in Proceedings of the Conference
on the Detection of Intrusions and Malwares and Vulnerability Assessment
(DIMVA), pp. 129–143, 2006.

[44] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymor-
phic worm detection using structural information of executables,” in Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID),
2005.

25

[45] F. Periot, “Defeating polymorphism through code optimization,” in Pro-
ceedings of the Virus Bulletin Conference, pp. 142–159, 2003.

[46] D. Bruschi, L. Martignoni, and M. Monga, “Using code normalization for
fighting self-mutating malware,” in Proceedings of the International Sym-
posium on Secure Software Engineering, pp. 37–44, IEEE CS Press, 2006.

[47] M. Webster, “Algebraic specification of computer viruses and their envi-
ronments,” in Selected Papers from the First Conference on Algebra and
Coalgebra in Computer Science Young Researchers Workshop (CALCO-jnr
2005), University of Wales Swansea Computer Science Report Series (CSR
18-2005), pp. 99–113, 2005.

[48] M. Webster and G. Malcolm, “Detection of metamorphic computer viruses
using algebraic specification,” Journal in Computer Virology, vol. 2, no. 3,
pp. 149–161, 2006.

[49] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, and
N. Tawbi, “Static detection of malicious code in executable programs,” in
Proceedings of the Symposium on Requirements Engineering for Informa-
tion Security (SREIS), 2001.

[50] P. Singh and A. Lakhotia, “Static verification of worm and virus behavior
in binary executables using model checking,” in Proceedings of the IEEE
Information Assurance Workshop, pp. 298–300, 2003.

[51] E. Clark, O. Grumberg, and D. Long, Model Checking. MIT Press, 1999,
ISBN:0-262-03270-8.

[52] P. Schnoebelen, “The complexity of temporal logic model checking,” Ad-
vances in Modal Logic, vol. 4, pp. 393–436, 2003.

[53] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting ma-
licious code by model checking,” Lecture Notes in Computer Science,
vol. 3548, pp. 174–187, 2005.

[54] R. Perdisci, D. Dagon, P. W. L. Fogla, and M. Sharif, “Misleading worm
signature generators using deliberate noise injection,” in Proceedings of
IEEE Symposium on Security and Privacy, 2006.

[55] W. Lee, S. Stolfo, and P. Chan, “Learning patterns from unix process
execution traces for intrusion detection,” in Proceedings of the AAAI97
workshop on AI Approaches to Fraud Detection and Risk Management,
pp. 50–56, Addison Wesley, 1997.

[56] M. G. Schultz, E. Eskin, and E. Zadok, “Data mining methods for detec-
tion of new malicious executables,” in Proceedings of IEEE Symposium on
Security and Privacy, pp. 38–49, 2001.

[57] J.-H. Wang, P. S. Deng, Y.-S. Fan, L.-J. Jaw, and Y.-C. Liu, “Virus de-
tection using data mining techniques,” in Proceedings of IEEE on Security
Technology, pp. 71–76, 2003.

26

[58] J. Kolter and M. Maloof, “Learning to detect malicious executables in the
wild,” in Proceedings of the 2004 ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 470–478, ACM Press, 2004.

[59] T. Lee and J. Mody, “Behavioral classification,” in Proceedings of EICAR,
2006.

[60] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-
based spyware detection,” in Proceedings of the 15th USENIX Security
Symposium, 2006.

[61] Frost&Sullivan, “Protection en temps réel contre toutes les menaces,” tech.
rep., White Paper Eset.

[62] “Avg anti-virus.” Grisoft, url=www.grisoft.com/doc/39/lng/fr/tpl/
tpl01.

[63] “Viguard.” Softed, url=www.viguard.com/detail_163_logiciel_
antivirus_viguard-platinium#.

[64] “Bitdefender antivirus technology,” tech. rep., BitDefender White Paper.

[65] “Host and network intrusion prevention, competitors or partners?,” tech.
rep., Mc Affee White Paper, 2004.

[66] “Safe′n′sec antivirus.” Safen Soft, url=www.safensoft.com/technology/.

[67] “Truprevent.” Panda Software, url=www.pandasoftware.com/products/
truprevent_tec.htm?sitepanda=particulares.

[68] “Virus keeper.” AxBa, url=www.viruskeeper.com/fr/faq.htm.

27

