Cryptanalysis Tutorial & Challenge

Secret Sharing or Secret Spoiling

Eric Filiol
efiliol@hse.ru, efll@protonmail.com
https://ericfiliol.site

Thales Digital Factory, France & HSE, Moscow, Russia

November 11th, 2022

THALES

DIGITAL
FACTORY

NATIONAL RESEARCH
UNIVERSITY

(Thales, France & HSE, Russia) BSides Lisbon 2022

November 11, 2022 1/12

efiliol@hse.ru, efll@protonmail.com
https://ericfiliol.site

Cryptographic Challenge

@ This challenge is inspired by a real case | have met in a recent past.

@ It may be a very interesting example of what backdoors could/might
be among many other possibilities.

@ The challenge target is a GMP (GNU Multiple Precision Arithmetic
Library) implementation of the Shamir Secret Sharing Scheme.

@ GMP library, developed by Torbjorn Granlund has become a widely used
standard for the implementation of large numbers (integers, rationals,
floats) (see gmplib.org for documentation)

o Similar libraries have been added for IEEE 754 float numbers (mpfr.

org) or for complex numbers, univariate polynomials over reals ... (see
multiprecision.org for similar libraries)

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 11", 2022 2/12

gmplib.org
mpfr.org
mpfr.org
multiprecision.org

Inital Step (for Reverse Engineers)

@ The Linux binaries have been provided yesterday.

e The aim was to play the reverse engineering part for anyone interested
and daring.
o Expected result: corresponding source code (assembly or C code).

@ Is there any answer from today's audience?

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 11", 2022 3/12

How to get the Source Code

@ A C code is provided to you.
e The file is BSidesLisbon2022_challenge.tgz and has a size of 107 689
bytes
e It contains four files gost_grasshopper.h, rsa_lib_gmp.h, sssp.h,
sssp.cC.
e To compile it, use gcc -ansi -03 sssp.c -o sssp -lgmp. GMP li-
brary must be installed before.
@ This implementation is not optimized (for readability purposes) but it
is rather close to industrial implementation encountered so far.

@ The file is available from now on at the following link http://e.pc.
cd/3ilotalK. The password is BSidesLisbon2022x*!.

@ On a scale of 1 to 10, the difficulty of this challenge is 5.

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 11, 2022 4/12

http://e.pc.cd/3ilotalK
http://e.pc.cd/3ilotalK

Timeline of the Challenge

@ From now on, you have to
e Analyse the source code and find the backdoor.
e Find how to exploit the backdoor. A short description of the cryptanalysis
principle with complexity result is to provide.
@ A prize is awarded to the first of you who identifies the nature of the
backdoor (a flipper zero device)

@ A prize is awarded to the one who explains how to exploit this backdoor
with the lowest complexity (a NEO Smart pen N>)

@ Send your answer to efll@protonmail.com. My Telegram ID is
@EfII62 The internet and protonmail clock will be used as time proof.

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 11", 2022 5/12

efll@protonmail.com

Source Code Analysis

@ From now on
e Part I: let us analyze the protocol and explain the code in details. Feel
free to ask any questions (expected time 30')
o Right after, you get 20" to identify the flaw. Questions are still welcome.

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 11", 2022 6/12

Backdoor Identification

@ The key point is to generate a message key K which is RSA-encrypted
and can be decrypted/accessed if at least t = 3 shares are provided
thanks to the Shamir Secret Sharing (SSS) protocol. Then we have

/*% Generation of message key K xx/
sleep (1);

gmp_randseed_ui(Random_State, seed);
mpz_rrandomb (K, Random_State, 256);

1 N I

@ So to access any file encrypted with K you have seemingly either to
break the RSA encryption or the SSS protocol.

@ In fact, the backdoor consists in using the mpz_rrandomb function
instead of the mpz_urandomb.

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 11", 2022 7/12

Random Generation with GMP

void mpz rrandomb (mpz_t rop, gmp_randstate_t state,
mp_bitcnt_t n)

Generate a random integer with long strings of zeros and ones in
the binary representation. Useful for testing functions and algo-
rithms, since this kind of random numbers have proven to be more
likely to trigger corner-case bugs. The random number will be in
the range 2" to 2" — 1, inclusive.

void mpz urandomb (mpz_t rop, gmp randstate_t state,
mp_bitcnt_t n)

Generate a uniformly distributed random integer in the range 0 to
2" — 1, inclusive.

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 117, 2022 8/12

Hint for Cryptanalysis

@ Now you have to guess and find how to exploit the flaw and solve the

challenge.
@ The most convincing method will awarded. If more than one solution
is proposed, the computational complexity will be used as a tiebreaker.

BSides Lisbon 2022 November 11, 2022 9/12

(Thales, France & HSE, Russia)

Backdoor Characterization

@ So the randomness quality of mpz_rrandomb is awful and produce very
structured secret keys. For instance, we have

K = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO0000000 FFFFFFE0000000000000

with 4 runs of length 53,2732, 144.

@ The best cryptanalytic approach consists in attacking secret keys di-
rectly since only very few possible keys are possible. For instance (sta-
tistical simulation over N = 1,000,000 keys)

o Around 12.7 % of the key have 3 runs (of zeroes or ones) exactly.
o Around 63 % of the keys have at most 6 runs.

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 117, 2022 10/12

Backdoor Exploitation

@ The principle is very easy. For each possible number of runs, we ex-
haustively generate and try keys. For a n-run key, we have 28-(—1)+1
different keys to test at most. For instance to generate any 3-run key
(around 12.6 % of the keys), here is the pseudo code.

Algorithm 1 Generation of 3-run Keys

1: for i from 1 to 254 do > First run
2: for j from 1 to 256 - i - 1 do > Second run
3: K < 0-run of length i||1-run of length j||0-run of length (256 — i —)

4: K +« K > invert O-runs and 1l-runs
5: Try K and K’

6 end for

7: end for

@ To sum up, to break 63 % of the keys, the complexity attack is O(24).
To break all keys, the complexity is O(213") (exhaustive search is in

0(2256))_

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 117, 2022 11/12

Conclusion

Thank you for your attention
Questions & Answers

(Thales, France & HSE, Russia) BSides Lisbon 2022 November 117, 2022 12/12

	Introduction

