
How to operationally detect misuse or

flawed implementation of weak stream

ciphers (and even block ciphers

sometimes) and break them -

Application to the Office Encryption

Cryptanalysis

Eric Filiol

ESIEA Laval
Operational Cryptology and Virology Lab (C + V)O

filiol@esiea.fr

http://www.esiea-recherche.eu/

Abstract. Despite the evergrowing use of block ciphers, stream ciphers
are still widely used: satellite communications (military, diplomatic...),
civilian telecommunications, software... If their intrinsic security can be
considered as strong enough even for strategic use, the main drawback
lies in the high risk of key misuse wich introduces severe weaknesses,
even for unconditionnally secure ciphers like the Vernam system. Such
misuses are still very frequent, more than we could expect.

In this paper, we explain how to detect such misuses, to identify ci-
phertexts that are relevant to this misuse (among a huge amount of
ciphertexts) and finally how to recover the underlying plaintexts within
minutes. This may also apply to (intendly or not) badly implemented
block ciphers. In any cases, the cryptosystem can remain unknown to
the cryptanalyst.

To illustrate the efficiency of our technique, we then apply it to the
operational cryptanalysis of Office encryption up to the 2003 version
(RC4-based). We focus on Word and Excel applications. The cryptanal-
ysis was performed successfully and we managed to recover more than 90
% of the encrypted texts in a few minutes. The attack combined both a
pure mathematical effort AND a few basic forensic approaches. In more
general cases (e.g. satellite communications), we just need to intercept
ciphertexts.

In the Office case, we explain in our sense that the attack does not rely
on particular weakness but in a setting that can be seriously considered
and described as a possible intended trapdoor. We develop this concept
to explain how in a more general way such a trapdoor can be built.

1

1 Introduction

In any course of academic cryptography, the key size is often pre-
sented as a key condition for the security of a crypto system. For
publishers of so-called secure solutions, the size of the key summa-
rizes everything, hence becomes a sufficient condition and a mar-
keting argument. How many times the single mention of “AES 256
inside” is considered as a key security argument! But if it works on
paper, in practice it is quite different. Weak implementation – or
worse intended implementation trapdoor – often reduces the secu-
rity of an alleged application which at the end amounts very little.
But the misuse of cryptographic system can also have a dramatic
impact on the real security. If encryption means have been deregu-
lated, the education of users has never been organized. They finally
use systems that can turn against them due to their ignorance of ba-
sic rules. In the case of a typical user this situation does not matter
so much than in the worrying case of professional use.

The problem then is twofold and exhibits dual aspects. On the
user’s side, the problem is to detect such an implementation weak-
ness or, worse, the existence of a trapdoor. The problem lies in the
fact that the user cannot perform reverse engineering – for legal
reasons or since it is horribly time consuming especially for heav-
ily obfuscated programs. On the attacker’s side1, most of the time
the encryption algorithm is unknown (e.g. in satellite transmission)
but the aim is first to identify every ciphertext produced by a mis-
used/weak cryptosystem and second to recover the corresponding
plaintext.

In this paper we show how to operationally solve all those issues
in the context of any kind of stream cipher when misused, and of
weakly implemented block ciphers. We present the technique we de-
velopped for that purpose. This technique was developped in 1994
by the author and is published in this white paper only now. Such a
technique seems to have been developped by the NSA for the Venona
project [11] to break the Soviet telegraph traffic. While this project
was partially declassified in 1995, neither the plaintexts nor the de-
crypting algorithms have been ever made public.

1 In the case of forensic analysis (e.g. of a hard disk) the forensic expert can be
considered as an attacker with respect to the (prosecuted) user.

2

We apply this technique, as an illustrating example, to break 128-
bit RC4 encryption of the Microsoft Office suite (up to version 2003).
The Microsoft Office application (up to Office 2003) provides native
encryption algorithms to protect documents ranging from simple,
lame XOR encryption (the lowest ever) to the RC4 algorithm with a
128-bit key. The latter is considered by industry until recently as of-
fering adequate security both in terms of key size and cryptographic
design.

But Office 2003 still represents more than 75 % of domestic li-
cences and yet nearly 80 % of professional licenses. This is explained
by the fact that Microsft Office 2007 version failed to attract many
people because of a disconcerting break of ergonomics and a lack of
easy-to-use features.

In 2005, a Singaporian researcher [12] highlighted a weakness in
Microsoft Office with respect to RC4 128: the keys remain the same
for all modified versions (revisions) of a document thus violating a
basic rule in cryptography. In the case of stream ciphers (and some-
times in block ciphers), reusing the key is dramatic. This error, as a
consequence, precisely reduces the perfect security of a Vernam sys-
tem [9] to a total insecurity. But this researcher never explained how
to exploit in practice such a weakness. Considering existing works,
only a very few publications addressed this issue. They were either
too empirical [4] or addressed the issue in a very limited context
(the plaintext type must be known) [8]. Those works do not address
the critical issue of detecting the reuse of secret keys among a large
number of ciphertexts at all.

But this error is even worse since it enables to break misused/weak
cryptosystems without going through the academic step of prelimi-
nary key recovery or key search. In this paper, we detail the technique
we developed in the context of the cryptanalysis of stream ciphers
(or in some cases of block ciphers) when misused (or poorly imple-
mented) thus enabling to recover the plaintext from an encrypted
message in polynomial time. We then apply this technique to the
operational cryptanalysis of Microsoft Word and Excel (version 11.0
or up to Office 2003).

This technical white-paper is organized as follows. Section 2 first
recalls a few basics in cryptography to make this paper self-contained
and thoroughly formalizes the problem to solve. In Section 3, then,

3

we address the issue of detecting the different groups of ciphertexts
with respect to the cryptosystem misuse/vulnerability. Section 4
presents then how to recover the plaintext from the weak cipher-
texts. Section 5 applies the cryptanalysis in the the case of Microsoft
Word while Section 6 solves the issue in the case of Microsoft Excel.
Finally Section 7 concludes while discussing how efficient trapdoors
could be embedded to weaken cryptographic products.

2 A few Basics in Cryptology

In this section we are recalling a few concepts and definition which
will help to understand the rest of the paper and made it self-
contained. The reader is advised to refer to [9] for an in-depth cov-
erage of cryptographic techniques.

As for data privacy is concerned, we must use encryption. As
soon as data exceeds a few tens of bytes, we must consider symmetric
encryption (asymmetric encryption generally considers very limited
amounts of data like session key or text digest [hash value]). The
reason is that contrary to asymmetric encryption (which relies on
complexity theory):

1. it provides a fast encryption speed which is a critical features for
large amounts of data;

2. it is possible to prove that an arbitrary level of security is achieved
(symmetric cryptogtaphy is based on information theory and the
core concept of entropy).

Two different families of symmetric cryptosystems are known:

– Stream ciphers where bits/bytes of data are enciphered/deciphe-
red on the fly. These ciphers offer the best possible encryption
speed. This is the reason why they are mainly used for satel-
lite communication protection, telephony encryption (e.g. A5/1),
Bluetooth encryption (e.g. E0 cryptosystem)... Moreover, they
are very transmission error resilient (no propagation of errors
during the decipherment).

– Block ciphers where data are first split into blocks (the standard
is nowadays 128-bit blocks) and each of them is enciphered/deci-
phered by means of the same secret key. By construction block

4

ciphers are not naturally transmission error resilient and they are
slower than pure stream ciphers. This is the reason why block
ciphers have been designed in such a way that they can operate
according to different modes: ECB, CBC, CFB, PCBC, OFB [9].

2.1 Stream ciphers

From a very general point of view, stream ciphers are inherently
synchronous ciphers. In other words, every ciphertext bit, at time
instant t is produced by xoring the corresponding plaintext bit at
the same time instant with a random bit according to the formula:

ct = mt ⊕ σt.

The bits σt are produced independently from the plaintext.
Conversely (hence the name “symmetric” for that class of cryp-

tosystems), to decipher the ciphertext bit, we just apply the same
random bit for the relevant time instant t since the xor operation is
involutive:

mt = ct ⊕ σt.

In this context, the security lies on the random sequence (σt)t≥0

(we therefore denote the plaintext [respectively the ciphertext] by
the sequence (mt)t≥0 [(ct)t≥0 respectively]). The sequence (σt)t≥0 is
referred as the running key.

Whenever the running key is produced randomly and indepen-
dently from any other quantity (plaintext or ciphertext) we then
refer to One time pad (Vernam ciphers). This kind of encryption
method is the only one that can be proved as being unconditionally
secure: it relates to the perfect secrecy defined by the third Shan-
non theorem. More precisely, if M, C and K describe the random
variables denoting the plaintext, the ciphertext and the running key
respectively (considered as sequences) then

H(M) = H(M |C)

where H(.) is the entropy function2. In an equivalent way, it means
that the transinformation (or mutual information) is null. In other

2 For any discrete random variable (e.g. an information source) X taking val-
ues X1, X2, . . . , Xn with non null probabilities p1, p2, . . . , pn, then H(X) =
−

∑n

i=1
pi log2 pi

5

words, the knowledge of the ciphertext (than can always be obtained
by any attacker) does not provide any information on the plaintext.
Similarly, we can define the same property with respect to the key:

H(K) = H(K|C).

C. E. Shannon [10] proved how perfect secrecy can be practically
achived: we must have

H(K) ≥ H(M)

It means that the uncertainty about the key (e.g. its entropy) must
be at least as large as that with respect to the plaintext. If the key
has length |K| and if the key bits are randomly and independently
produced, then we have H(K) = |K|. Hence the Shannon condition
becomes |K| ≥ H(M). From a practical point of view, it implies that
the running sequence (σt)t≥0 must be at least as long as the message
to encipher.

The main issue lies in the fact that this constraint is very difficult
to manage. One time pad are produced by hardware methods (e.g.
sampling a thermal resistance) and then must be duplicated. One
time pad are then used for short message or for strategic use only.

This is the reason why most of the time, stream ciphers are only
a good enough approximation of one time pads. In this case, the run-
ning sequence is produced as the expansion of a secret key whose size
is reduced (up to 256 bits). The expansion is performed by a cryp-
tosystem (an algorithm) which can be formalized by a finite state
machine. The secret key is just the initialization of that machine at
time instant t = 0.

But since in this case we have H(K) << H(M), these systems
no longer comply with the perfect secrecy condition. However, since
the number of messages that are practically enciphered by a |K|-
bit cryptosystem is always far lower than the number of possible
secret keys (2|K|), we can consider that during the lifetime of the
cryptosystem we indeed have

H(K) ≥ H(M).

But it is mandatory not to reuse secret keys otherwise the previous
equation no longer holds. This also applies to one time pad cryp-
tosystems.

6

Consequently, the security of stream ciphers is destroyed when-
ever key bits are reused to initialize the cryptosystem. We will for-
malize this later on in Section 2.3.

2.2 Block ciphers

Block ciphers follow a different design philosophy. The principle is to
produce each ciphertext block directly from both the corresponding
plaintext block and the secret key (which is reused from block to
block). The reuse of the key is supposed to have no impact on the
overall security3.

However it is possible to emulate stream ciphers from block ci-
phers by using the latter in the so-called output feedback mode (OFB)
which is described in Figure 1. In this mode, the secret key is the

Fig. 1. Block cipher in OFB mode

block s0 and the pseudo-running sequence is made of block s1, s2, s3 . . .
which are bitwise xored to the plaintext blocks. Consequently a block
cipher in OFB mode is fully equivalent to a stream cipher.

3 This assumption holds only for the open litterature in the field. However theoretical
studies shows that the key reuse might be dangerous [7].

7

2.3 Definition and Formalization of the Problem

Now that basic definitions and concepts have been recalled, we can
formally define the cryptanalytic and security problem we intend to
solve.

When interpreting Shannon theory [10] in a suitable way, the
reuse of secret key nullifies all the security of stream ciphers (or block
ciphers in OFB mode). But no practical and operational exploitation
of this interpretation has been ever published.

Let us suppose that we have two (or more) plaintext messages m1

and m2 (we drop off the time instantiation unless necessary). Since
we reuse the secret key, we then consider a single (pseudo-random or
not) running key σ. Then, we have for the corresponding ciphertexts:

c1 = m1 ⊕ σ and c2 = m2 ⊕ σ.

We now have the following definition.

Definition 1 Two (or more) ciphertexts are said parallel if they
are produced from the same running key produced either by a stream
cipher (Vernam cipher or finite state machine) or by a block cipher
in OFB mode. If ciphertexts c1, c2 . . . ck are parallel, the parallelism
depth is k.

So the problem is twofold:

1. Detection issue.- Among a huge number of ciphertexts, how to
detect the different groups of parallel messages?

2. Cryptanalysis issue.- Once parallel messages have been de-
tected, how to break the encryption and recover the plaintexts?

The first problem is interesting in many ways. First we do not
make any assumption about the underlying target cryptosystem.
This means that it can remain totally unknown provided that it is
indeed a stream cipher or a block cipher in OFB mode. In fact we will
not care about the cryptosystem at all, under this simple assumption.
It means that you can detect and break misused cryptosystem from
this category without performing any reverse-engineering step (time
consuming and illegal) or intelligence step to recover the encryption
algorithm first.

8

More interestingly, suppose that we have a commercial encryp-
tion product based on a block cipher. We can either suspect an
implementation flaw or, worse, a trapdoor to be present. In both
case, the underlying block cipher is in OFB mode. Since we cannot
reverse-engineer the product, we must use another approach to iden-
tify this critical issue. With our technique presented in this paper,
we must have to produce a group of ciphertexts from the same se-
cret key. It is important to recall that most users use the same secret
key to encipher different documents. In this context, the concept of
parallel messages is more than relevant.

From this, it becomes obvious that if we do not care about the
cryptosystem, we must also work without the secret key itself. Con-
sequently our technique must be efficient enough to recover the plain-
texts without any preliminary key recovery step. This is the reason
why we call our cryptanalysis technique key-independent cryptanal-
ysis.

3 Detection of Weak Ciphertexts

3.1 General principle

Without loss of generality, let us consider two plaintexts M1 and
M2 and their respective ciphertexts M1 and M2. Let be σ1 and σ2

two (pseudo random or not) running keys. Then we have (we do not
consider time indexation; of course all operations are done bitwise
or bytewise):

C1 = M1 ⊕ σ1 and C2 = M2 ⊕ σ2.

Now let us combine the two ciphertexts by a bitwise (or bytewise)
xor. We have:

C1 ⊕ C2 = (M1 ⊕ σ1)⊕ (M2 ⊕ σ2).

Plaintexts M1 and M2 exhibit very strong, biased statistical features
corresponding to the language and the encoding4: each character (let-
ter, number, punctuation. . .) has a different frequency of occurence.

4 It is worth recalling and stressing on that during a cryptanalysis effort, considering
the language only is a common but critical mistake. This mistake greatly reduces or

9

This frequency is itself different when considering ciphertext (uni-
form law with a probability 1

256
for an ascii encoding).

We then have two interesting features to consider:

– The quantity M1 ⊕M2 exhibits a very special statistical profile
that can be easily detected and identified.

– The quantity σ1 ⊕ σ2 exhibits a random statistical profile (each
character appears with probability 1

256
for an ascii encoding).

These two features enable us, from the quantity C1 ⊕ C2, to distin-
guish two cases, hence two statistical hypotheses. Our aim is to build
a statistical testing to determine whether ciphertexts C1 and C2 are
parallel or not (in other word, did the user or the application make
the mistake to reuse the key or not?).

– Null hypothesis (H0).- The two ciphertexts are not parallel
(i.e.: σ1 and σ2 are different). The quantity C1 ⊕ C2 exhibits a
totally random statistical profile.

– Alternative hypothesis (H1).- The ciphertexts are indeed par-
allel (σ1 and σ2 are the the same; the key has been reused). The
quantity C1 ⊕ C2 is then exactly equal to M1 ⊕ M2 and hence
exhibits a strongly biased statistical profile which depends on the
underlying plaintext language.

These two hypotheses are sufficient to build our detection testing
(simple hypotheses testing) [5]. For that purpose we have to choose
a suitable estimator that behave differently under the two hypotheses
H0 and H1.

3.2 Detection algorithm

Let us choose the following estimator:

Z =
n∑

i=0

(ci
1 ⊕ ci

2 ⊕ 1).

hinders the cryptanalysis result. The right approach is to consider both the language
and its encoding at the same time. In particular, strongly biased statistical profiles
appear or on the contrary remain hidden according to the encoding used. While an
ascii encoding generally erases those profiles, they appear when CCITTx encoding
is used. So the choice of the encoding can also be part of a trapdoor design; refer to
Section 7.

10

In this formula, n is the common size length of ciphertexts C1 and
C2 (in bits), while ci

1 and ci
2 represent ciphertext bits of C1 and C2

respectively at time instant i. In fact, the estimator Z counts the
number of bits equal to zero in the quantity C1 ⊕ C2.

Then, using simple probability theory results [5], it is easy to
prove that Z has a binomial distribution of parameter n and p where
p = P [ci

1 ⊕ ci
2 = 0]. This binomial distribution can be approximated

(application of the central limit theorem) by a normal distribution of

mean value np and of standard deviation
√

np(1− p). Then asymp-

totically Z has normal distribution N (np,
√

np(1− p)). With this
result, we can build our detection test very easily. Indeed, the prob-
ability p is different with respect to hypotheses H0 and H1.

– Under H0 (ciphertexts are not parallel), Z has normal distribu-

tion N (n
2
,
√

n
2

).
– Under H1 (ciphertexts are parallel) Z has normal distribution

N (np,
√

p(1− p)) with p > 1
2

(from a practical point of view, for
most languages, whatever may be their linguistic group, we even
have p > 0.6).

Then the testing itself is very simple. We fix a decision threshold
(which is theoretically defined by the error probabilities of types I
and II) and then:

– whenever Z < S then ciphertext are not parallel;
– otherwise (Z > S) ciphertexts are parallel.

From a practical point of view, in all our experiments we notice large
peak values for Z whenever ciphertexts are parallel. Consequently,
the use of a threshold is not really necessary. Everytime we have a
peak value which is significantly higher than n

2
, we can decide that

ciphertexts are parallel indeed.
An additional mathematical property can be considered to get

rid of any error. The parallelism binary relation is an equivalence
relation. In other words, if we denote by R the relationship “to be
parallel to”. R is an equivalence relation since we have for any arbi-
trary ciphertexts Ci, Cj and Ck:

– R is reflexive: for all i, j, k we have Ci R Ci.

11

– R is symmetric: for all pair of indices in {i, j, k} we have Ci R Cj ⇒
Cj R Ci.

– R is transitive: if Ci R Cj and Cj R Ck then Ci R Ck.

The transitivity property can be used to add consistency to the de-
tection. If we detect C1 being parallel with C2 and C2 being parallel
with C3 we must also have C1 which is parallel to C3. Any class of
equivalence is in fact a group of parallel ciphertexts.

From an algorithmic point of view, the detection algorithm is
very simple: we compare N ciphertexts pairwise and we extract the
groups of parallel messages.

Once again it is worth mentionning that we do not care about
the underlying cryptosystem which can remain unknown.

4 The Cryptanalysis: Recovering the Plaintexts
without Key Recovery

The cryptanalysis technique aims at recovering the plaintexts with-
out any preliminary step of key recovery. Since we are going to re-
cover the plaintexts directly we need a very good model for the
target language to validate the plaintext recovery. This model takes
the form of a corpus5. Without loss of generality we consider the
French language but our approach applies to any languages (natural
or not6).

4.1 Modelling the language - Corpus contruction

We need to build a qualitative and quantitative model of the target
language used for the plaintexts to be recovered. Any language can
be described by the frequencies of occurence of characters: lower case,

5 There exist a lot of theoretical approaches to model natural languages. The most
relevant approach is based on the Zipf law which states that given a corpus of natural
language words sorted according to their frequency, the frequency of any word is
inversely proportional to its rank in the frequency table. We are not building our
corpus directly according this law but our corpus of n-grams however complies to
the Zipf law.

6 We place ourself in the context of language in the Chomsky sense [3]. Natural lan-
guages are just a particular case in the Chomsky classification of languages (class 1).
Other languages like those defined by processor opcodes (class 2) can be indifferently
considered.

12

upper cases, punctuation signs, numbers. . . . To illustrate this, Ta-
ble 2 gives the frequencies of the 26 letters (French language with no
distinction between lower and upper cases). More generally, it is pos-

Fig. 2. Frequencies of occurence of French letters (from a 100,000-character XXth
century novel)

sible to consider n-grams of characters (i.e. strings of n characters).
n-grams provide more information than simple characters. Table 3
gives the frequencies of occurence for 3-grams in French texts. The

Fig. 3. Frequencies of occurence of 3-grams in French language (from a 100,000-
character XXth century novel)

set of all possible n-grams given with their respective frequency of

13

occurence is called a “corpus”. We define then a discrete random
variable X describing any n-gram value. We denote pi the probabil-
ity that X takes the value xi: P (X = xi) = pi with i ∈ {0, 1 . . . , N}.
N is the size of the corpus. The distribution law of X is entirely
determined by probabilities pi of events {{X = xi}} where the xi

are the different n-grams in the corpus.
To fit our cryptanalysis purposes, the corpus must meet critical

constraints:

– it must be representative enough of the target language;
– it must have a suitable size to allow fast processing.

In order to avoid tedious statistical aspects, we will not expose the
stastitical validation of the corpus as an efficient model. All details
can be found in [2]. Let us however summarize the main constraints
and features to manage:

– Corpus representativity.- To build a suitable corpus, we must
gather a set of representative texts from which n-grams frequen-
cies are extracted. Evaluating the quality of this corpus is a crit-
ical issue. The selected texts must first represent a statistically
significant enough amount of characters. However we must also
take into account the level of the target language. Our exper-
iments and a large number of statistical analyses clearly show
that to have a representative enough sample (i.e the corpus) of
the target language (the target population), the most efficient ap-
proach consists in working with several corpus for the same tar-
get language to model all level of languages (common language,
technical language, diplomatic or political language. . .) very pre-
cisely. Then the operational context generally dictates the choice
of the corpus to use for the cryptanalysis.

– Character space.- Another very important criterion concerns
the number of different characters to take into account. The aim
is both to reduce it as much as possible (to limit the resources
required) and to describe in the best way the target language,
at the same time. The case of French language is a critical due
to the accented characters (as for similar languages like Turkish
or northern European languages). For Asian or Arabic languages,
the approach is the same but with a different encoding. In the case

14

of the French language in ascii encoding, we chose an alphabet
of 96 characters (Table 4).

Fig. 4. Working character space (French language)

– Size of the corpus.- It is obviously related to the corpus rep-
resentativity. But here we also consider the computer resources
(memory and time) to involve while keeping the model as accu-
rate as possible. The best tradeoff is to consider n = 4 (tetra-
grams). To manage such a corpus, we use hash table (96 charac-
ters gives 964 different tetragrams thus requiring 1 Gb of mem-
ory). Considering tetragrams instead of trigrams greatly improves
all our experimental results while it does not when considering
pentagrams (n = 5) [2].

4.2 The cryptanalysis: general algorithm

Let be C1, C2 . . . , Ci . . . , Cp p parallel ciphertexts to decrypt. Let
us consider a corpus of N n-grams (typically n = 4). Let us denote
those n-grams by x0 . . . xN . We split the ciphertexts into a succession
of n-grams (according to the cryptanalysis mode we choose; refer to
Section 4.3).

Then the main steps of our cryptanalysis algorithm are:

1. for each ciphertext n-gram Cj
1 in the first ciphertext C1, we make

an assumption on the corresponding plaintext n-gram denoted
M j

1 . This n-gram M j
1 is exhaustively searched through the set

{x0 . . . , xN} of n-grams in the working corpus;
2. we compute the resulting key n-gram as follows: Kj = Cj

1 ⊕M j
1 ;

3. we apply Kj to each of the corresponding ciphertext n-grams in
the (p− 1) remaining ciphertexts: M j

i = Cj
i ⊕Kj, i ∈ {2, p};

15

4. we exhaustively repeat the previous steps for every n-grams in
the corpus.

This algorithm in fact computes N p-tuples (M j
1 , M

j
2 . . . , M j

p) for
each ciphertext n-gram at index j. Each such p-tuple represents
plaintext n-gram candidates for plaintext messages (M1, M2 . . . , Mp)
at index j. We just have to determine which is the most probable
one (the best candidate). For that purpose, we associate to each of
the N p-tuples of n-grams, the corresponding p-tuple of probabilities
(P [M j

1], P [M j
2] . . . , P [M j

p]).

The most probable plaintext n-grams p-tuple is the one which
maximizes the p-tuples of probabilities. Then the issue is to choose
a suitable function to compute those probabilities in the most sig-
nificant way:

Zj = f(P [M j
1], P [M j

2] . . . , P [M j
p])

The choice of this function strongly depends on the nature of the
texts (presence of a many proper or geographical names, technical
terms. . .). This is precisely where all the ability and the experience
of the cryptanalyst express. The function must always be a strictly
increasing positive function.

We can now give the cryptanalysis algorithm (pseudo-code) in
Table 1.

From a complexity point of view, it is easy to verify that the
cryptanalysis algorithm has complexity in O(pM) where M is the
size (in bytes) of the ciphertexts. Recovering the plaintext has thus
a polynomial complexity.

4.3 Critical parameters and optimizations

Algorithm 1 is a generic framework which can be tuned up with a
lot of optimizations and parameters. It all depends on the target
plaintexts and on the level of efficiency required. The two main as-
pects are the parallelism depth and the target language as well as
its encoding (refer to the footnote in Section 3.1).

We are going to address the most significant parameters and
optimization briefly. All details are available in [2, 6].

16

Algorithm 1 Parallel ciphertexts cryptanalysis
Require: p parallel ciphertexts C1, C2 . . . Cp

Require: A N n-grams corpus {x0, x1 . . . xN} of respective probabilities
{P [x0], P [x1] . . . P [xN]}.

Ensure: p plaintexts M1, M2 . . . Mp.

for all ciphertext n-gram Cj
1 at index j in C1 do

Zj = 0
for all mj

1 ∈ {x0, x1 . . . xN} assume that M j
1 = mj

1 do
Compute Kj = Cj

1 ⊕mj
1

for i ∈ {2, . . . , p} do
Compute mj

i = Cj
i ⊕Kj

Store P [mj
i]

end for
if f(P [mj

1], P [mj
2] . . . , P [mj

p]) > Zj then
Zj = f(P [mj

1], P [mj
2] . . . , P [mj

p])
for i ∈ {2, . . . , p} do

M j
1 = mj

1

end for
end if

end for
end for

– Frequency cumulative function.- We must consider a strictly
increasing positive function. Among the different functions avail-
able [6], the most efficient ones are:
• the additive function given by

p∑
i=0

fa
i .

• the multiplicative function given by

p∏
i=1

(fa
i + 1).

where fi denotes the frequency of occurence of n-gram i in the
corpus. We choose this function according to the level of language
[6]. For example, for plaintexts containing a lot of proper names
or technical terms that are not very frequent, the multiplicative
function is far more efficient. The optimal value for a is a = 0.3.

– n-gram processing mode.- Two different modes can be used:
overlapping or non overlapping mode. The first mode consists in
decomposing ciphertexts in non overlapping consecutive n-grams.

17

In other words, two any consecutive n-grams have a void inter-
section. Consequently, each n-gram is processed independently
from the others (Figure 5). From a programming point of view,

Fig. 5. Non overlapping processing mode for n-grams

this mode is very easy to implement. However it is not the most
efficient one: if we keep a wrong plaintext n-gram candidate, no
error correction is possible.
The second mode, on the contrary consists in processing n-grams
by shifting them of one character position. In other words to
consecutive n-grams share n− 1 characters (Figure 6). The over-

Fig. 6. Overlapping processing mode for n-grams

lapping of n-grams enables to make a consistency check on plain-
text n-grams candidates. The n− 1 common characters must be
present in the two best n-gram candidates (at index j and index
j+1). While this technique is extremely efficient, it is also a little
bit more complex at the implementation level. For this mode, a
large number of optimizations are also available [2, 6].

– Decoding techniques.- These techniques come from the error-cor-
recting theory. They are mainly based on the concept of max-
imum likelyhood measure. Instead of keeping only the suppos-

18

edly best plaintext n-gram candidate for every ciphertext n-gram
(hard decoding), it is far more efficient yet complex to implement,
to keep the b best candidates, for some arbitrary value of b (soft
decoding). This enables to use backtraking method and hence to
correct any previous wrong decision. From an algorithmic point
of view, we use the data structure of decoding lattice. The plain-
text recovery then is technically equivalent of searching for the
optimal path in this lattice (it is directly inspired from the Viterbi
decoding for convolutional codes).

– Impossible character management.- According to the work-
ing space character, it is also possible not only to speed up the
plaintext recovery but also to prevent many wrong decisions and
thus to increase the final success greatly. As an example, if the
target plaintexts are written in common language, only printable
characters are eligible. Most the plaintext n-grams candidate,
however are likely to produce other plaintext n-grams containing
non printable characters.

5 Application to the Microsoft Word
Encryption

Now we have a cryptanalysis algorithm, let us prove its operational
efficiency on a real example. We chose to consider the Microsoft
Office Encryption.

5.1 The Microsoft Word Encryption

The Microsoft Word encryption requires a password from the user.
To activate it, the user has to go through the menu Tools→ Options

→ Security tab→ Advanced options. Then we have to select the
encryption mode (Figure 7). It is worth mentionning that if the user
does not select the Advanced tab (what in fact most users do) then
the lamest encryption method is by default selected (the constant
xor).

Three main categories of encryption are available.

5.1.1 Constant XOR
This data protection deals with encryption with respect to Office 4.x
and is still present for backward compatibility (in both Word and

19

Fig. 7. Available Microsoft Word Encryption mode

Excel). This encryption method is simple and fast but very weak in
terms of security. It consists in xoring the plaintext with a constant
16-character string, which has been derived from the password. This
string is repeated many times to cover all the plaintext.

While the technique we have presented in this paper fully applies,
it is even more efficient to use dedicated software (e.g. Advanced
Office Password Recovery to break the xor encryption. It is the
default encryption!

5.1.2 Microsoft Office 97 / Office 2000 compatible
encryption

Here the encryption is based on a proprietary Office encryption and
is derived from the Microsoft Internet Explorer CryptoAPI method.
It is mainly present for compatibility purposes.

5.1.3 RC4 stream cipher
Several encryption services based on RC4 are proposed. From an
historical perspective, they correspond to the different export regu-
lations to non US countries. The last service, which is denoted “RC4
Microsoft Enhanced Cryptographic Provider” is supposed to provide
the strongest security by means of 128-bit keys. It is precisely the
target of our attack.

20

RC4 is a finite state machine stream cipher: the plaintext is bit-
wise xored to a pseudo-random running key. The initial secret key is
generated by the application from the user’s password and from an
initialization vector (IV) which is randomly produced by Word. The
password and the IV are concatenated then hashed:

K = F (H(IV ||password))

where F is a derivation function outputing 128-bit values. The hash
function H is most of the time SHA-1. We can notice that the key
does not depend on the user’s password only, which is a necessary
(but not sufficient) condition to have strong encryption. In this re-
spect, even if the user always takes the same password, whatever
may be the document to protect, the random IV is supposed to pre-
vent the use of a key twice (or more). In this respect, the IV plays
the same role as a session key or a message key.

5.2 Highlighting the Office Vulnerability

The flaw – first identified in [12] but only in a theoretical way –
lies on the fact that Microsoft Office violates a fundamental rule in
cryptogrphic implementation: the initialization vector remains the
same for every revised version of a given Word document. Since most
of the times, the user keeps using the same password then the secret
key is the same as well. The set of revised versions of a document
constitutes a parallel group of ciphertexts.

5.2.1 Technical analysis

Let us first create a Word document containing the following text:
“Ceci est un essai de construction de messages parallèles afin de
montrer la vulnérabilité du chiffrement de Microsoft Word”. Then
we operates as follows:

– We encrypt the document and save it (file “message1”).
– We then modify the document as follows: “Ceci est un essai

de construction de deux messages parallèles afin de montrer la
vulnérabilité du chiffrement de Microsoft Word.”. We also en-
crypt and save it with the same password (file “message2”) as
most users do.

21

Figures 8 and 9 show the hexadecimal view of encrypted files message1
and message2.

Fig. 8. Hexadecimal view of message1

Fig. 9. Hexadecimal view of message2

We easily notice that the 37 first bytes are the same. This is a
clear proof of the fact that the same RC4 running sequence has been
used and hence the IV remains unchanged. In an equivalent way we
can compare the IVs which are located right after the 10 00 00 00

(Figures 10 and 11).

From a cryptanalytic point of view it is essential that the common
part of the encrypted texts (before the first revision location; in light
blue on Figures 8 and 9) is a short as possible. It is almost always the
case: the first revision generally occurs with the date change which
located at the beginning of the document.

From all this, we can conclude that the Microsoft Office vul-
nerability is not related to the weakness of the underlying

22

Fig. 10. Initialization vector for message1

Fig. 11. Initialization vector for message2

encryption algorithm (RC4) but to its implementation in
Microsoft Office.

5.3 Microsoft Word cryptanalysis

5.3.1 Word document internals analysis

In order to perform the detection and the cryptanalysis we must
precisely locate the encrypted data inside the metadata.

– In Microsoft Word, the beginning of the text is always located at
offset 0xA00.

– The size of the text (encrypted data bytes) can be computed
from the two values x and y located at offsets 0x21D and 0x21C

respectively. The size T (in bytes) is then given by the following
formula:

T = (x− 8)× 28 + y.

Those data are never encrypted (even if the user chooses the addi-
tional features “document properties encryption”!

23

5.3.2 Parallel encrypted documents detection

The critical aspect of our cryptanalysis technique lies on the fact
that we must have a parallel depth strictly greater than one7. When
dealing with Microsoft Word (or Excel), this apparent limitation is
easy to bypass. We just have to use temporary files.

When we create or edit (for revision) a Microsoft Office docu-
ment, temporaty files are created. Those files contains the previous
versions of the documents (before saving the modifications). Those
files are supposed to be erased whenever Word is closed... but in an
insecure way as usual under Windows. Consequently, it is very easy
to recover all those files by using a dedicated software (e.g. Easy
recovery Pro, Photorec or PC inspector file recovery). It is worth
mentioning that similarly this recovery step could be performed by
a Trojan horse or a malicious USB key (i.e containing a spying mal-
ware), thus enabling to outsource the attack.

As an illustration, we have created a RC4-protected Word doc-
ument denoted “confidentiel chiffré”. Then we have modified
this document three times. We can see the corresponding temporary
files (WRL004, WRL2361 and WRL4027) on Figure 12. After a recovery

Fig. 12. Word temporary files

step we have an effective parallel depth of 4 (Figure 13).

7 The case of a depth equal to 2 is not addressed here. While it relies on the same
general technique, it is more tricky to manage due to some sort of plaintext rotation
effect. To prevent this effect, we must perform an additional semantic validation
step (especially by considering that any language, at a formal level, is a Markov
process. More details can be found in [6].

24

Fig. 13. Word temporary files recovered

To validate the detection technique, we have peformed a large
number of experiments for almost all main languages. Every time,
the detection is successful.

As an example, we have built a set of twenty encrypted 1500-
character Word documents. For five of them, we have used the same
password (documents #1 to #5). The detection results are presented
in Figure 14. We clearly observe statitical peaks for files #1 to #5
and the transitivity property is indeed verified.

5.3.3 Cryptanalysis experimental results

Let us now illustrate the cryptanalysis step. As an example, let us
consider three test cases.

– Test1.- We have considered extracts from Jules Verne novels.
Five parallel encrypted texts, each of them of 1,200 bytes.

– Test2.- We have considered the speech of the Chief of Staff of
the Army before the Foreign Affairs Committee of the National
Assembly in 2008 (high level technical, diplomatic language with
a significant number of proper names). Five 1,500-byte parallel
documents have been created from five extracts of this speech.

– Test3.- We have considered a speech of the President of French
Republic. Five parallel texts have been created. Each text was
9700 bytes long.

Then we have applied a moderately optimized cryptanalysis algo-
rithm (multiplicative function with a = 0.3, overlapping mode, print-
able character feature enabled, hard decoding without semantic step).
Table 1 summarizes the results. If we consider soft decoding and se-
mantic analysis, the rate of successful cryptanalysis is close to 100 %
for a parallel depth stricly greater than 2 (and 75 % for two texts

25

Fig. 14. Detection results for parallel ciphertexts

26

Parallel depth Decryption rate

Test1 Test2 Test3

2 40.07 % 40.66 % 39.80 %

3 88.29 % 82.40 % 89.78 %

4 92.71 % 90.81 % 91.87 %

5 93.76 % 91.71 % 93.12 %
Table 1. Cryptanalysis results on the three test sets

only; in this particular case, a final linguist-driven analysis will suc-
ceed in recovering the missing characters, most of the times).

6 Application to the Microsoft Excel
Encryption

The Microsoft Excel case is more tricky to address than the Mi-
crosoft Word case, due to the nature and structure of Excel files.
Nevertheless our technique applies in the same way and with an
equal efficiency. We present in this section the main differences com-
pared to the Microsoft Word case. Technical details are available in
[2].

6.1 Excel internals and highlighting the flaw

Microsoft Excel does not locate spreadsheet data at a fixed location
(offset). The reader can easily check this point by saving an arbitrary
spreadsheet under two different names.

The second tricky features of Excel lies in the fact that data
modifications are managed in a very different way. Indeed, whenever
a user modifies a spreadsheet cell, then the new cell content is located
at the end of the data, not at the cell location.

Those two special features have a significant impact on the de-
tection and cryptanalysis of parallel Excel encrypted messages.

In [12], Hongjun Wu mentions the fact that Excel data are be-
ginning 31 bytes right after the hexadecimal string 0x8c000400 and
are ending right before the hexadecimal string 0xff001200. In fact
he was partially wrong: if indeed data offset is after the 0x8c000400

marker, the end marker depends on the number of spreadsheet cells

27

that have been used. We have successively 0xff000a00, 0xff001200,

0xff001a00, 0xff002200. . . . In fact the third byte of the marker is
incremented by 8 everytime: 0a + 08 = 12, 12 + 08 = 1a All this
enables us to locate precisely the user’s data inside the spreadsheet.

Let us now highlight the Office vulnerability with respect to Ex-
cel. As for Microsoft Word, we have enciphered a spreadsheet (Fig-
ure 15), then modified it and enciphered it under a different name
(Figure 16).

Fig. 15. Hexadecimal version of the enciphered original spreadsheet (in red frame, the
enciphered data; in blue frame, the beginning and end markers)

Fig. 16. Hexadecimal version of the enciphered modified spreadsheet

We indeed notice in Figure 15 and 16 that the 32 first bytes
of data are the same in both versions of the spreadsheet (common
part of the unmodified data). Thus we have a clear proof of the
vulnerability (reuse of the pseudo-running key).

28

6.2 Excel parallel messages detection

The detection is as easy as for the Microsoft Word case. The al-
gorithm remains the same. Figure 17 exhibits the same statistical
peaks that enables to identify clearly every parallel group. Let us

Fig. 17. Detection results for Excel

now address the issue of Excel parallel documents cryptanalysis. Ba-
sically the technique is globally the same. However, there are also
fundamental differences and constraints to take into account for a
successful cryptanalysis.

– Data are located between cell separators. These separators are
made of groups of three bytes: XX 00 00 where XX is the size of
the data inside the next cell (see Figure 18). From a cryptanalysis

Fig. 18. Excel cell separator (in hexadecimal)

29

point of view, cell separators are representing probable/known
plaintext and thus they enable an efficient plaintext recovery.

– Use of a specific corpus. We have to model very precisely the
particular nature of Excel data spreadsheets. These data have
the main general features:
• Almost neither sentences nor semantically structured data (in

particular, there are only a very few verbs).
• Very limited punctuation.
• Data are essentially numbers and figures.

Whenever those particular features and constraints are taken into
account, recovering the Excel plaintext is as efficient as in the Mi-
crosoft Word case.

7 Conclusion: What About Trapdoors?

The issue that arises immediately relates to the nature of the Mi-
crosoft Office flaw and above all on the technical conditions that
make possible its operational exploitation. It is more than surpris-
ing that year after year, version after version (both for the Windows
operating system and Office), such a weakness still exists.

The Office flaw is in this respect very interesting because it sheds
a new light on the way to embed trapdoors very efficiently. As we
already noticed it for PDF security [1], part of the security for aplli-
cations nowadays lies at the operating system level.

In the context of embedding invisible trapdoors inside a cryp-
tosystem, the issue has many aspects. One very efficient way to do
it, is first to introduce a weakness that will be considered most of the
time as an unintentional implementation flaw. But this flaw must be
designed in such a way that its exploitation depends on users’ mis-
uses that generally occur with a very high probability. In the context
of cryptography, the very likely misuse is the reuse of the same secret
password or secret key to encrypt several different documents. But
worse, the implementation weakness can be split in two parts: one
part at the application level the other one at the operating system
level.

The choice of the encoding is also part of the game. Former satel-
lite encodings concentrate information too much contrary to ascii

30

encoding, thus making strong biases appear. On the contrary, while
ascii encoding is relatively well suited for accented languages (like
French), it can also exhibit strong biases for non accented languages.
So the choice of the encoding should be carefully made relatively to
the character space. The future generalization of unicode may have
dramatic impact on the security of encryption systems.

In the case of commercial encryption software embedding a block
cipher (e.g. AES-256), it would consist in considering OFB mode and
flawing the generation of the quantity s0 (refer to Figure 1).

The technique of cryptanalysis presented in this paper clearly
shows once more that when cryptography works on paper, the real
security can be very still very far. The implementation can be (in-
tentionally or not) flawed and we need methods to detect it without
performing a time-consuming, complex reverse-engineering step.

Another interesting point lies in the fact that sometimes recov-
ering the key is not always an essentiel part of the security, as well
as the intrinsic mathematical security of the cryptosystem. And the
knowledge about the latter is not always a necessary cryptanalysis
condition. We have implemented this attack against a misused Ver-
nam cryptosystem – which is theoritically supposed to offer perfect
security – very efficiently. Beside the implementation flaw, we must
remind that users’ wrong use of cryptography sometimes can nullify
the overall security.

References

1. Alexandre Blonce, Eric Filiol and Laurent Frayssignes (2008). PDF Security Anal-
ysis and Malware Threats. Black Hat Europe 2008. http://www.blackhat.com/
presentations/bh-europe-08/Filiol/Presentation/bh-eu-08-filiol.pdf

2. Franck Bonnard et Eric Filiol (2008). Cryptanalyse du chiffrement de la suite
bureautique Microsoft Office. ESIEA Technical Report (in French). Available on
http://www.esiea-recherche.eu/

3. Chomsky N. (1956), Three models for the description of languages, IRE Transac-
tions on Information Theory, 2, pp. 113–124.

4. Ed Dawson and Lauren Nielsen (1996). Automated cryptanalysis of xor plaintext
strings, Cryptologia, vol 20, issue 2, pp. 165–181.

5. Yadolah Dodge (1999). Premiers pas en statistiques. Springer France Publishing.
6. Eric Filiol. Cryptanalysis course. Graduate courses.
7. Eric Filiol. Repetition Codes Cryptanalysis of Block Ciphers. Journal of the Indian

Statistical Association, 42 (9), 2004.
8. Joshua Mason, Kathryn Watkins, Jason Eisner and Adam Stubblefield (2006).

A natural language approach to automated cryptanalysis of two-time pads, CCS

31

’06: Proceedings of the 13th ACM conference on Computer and communications
security.

9. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone (1996). Handbook
of Applied Cryptography. CRC Press, ISBN 0-8493-8523-7.

10. Claude E. Shannon (1948). A Mathematical Theory of Communication. Bell Sys-
tem Journal, Vol. 27 pp. 379-423 (Part I) & pp. 623-656 (Part II).

11. Peter Wright (1987). Spy Catcher - The Candid Autobiography of a Senior Intel-
ligence Officer. Dell Publishing.

12. Hongjun Wu (2005). The misuse of RC4 in Microsoft Word and Excel. Preprint
IACR. http://eprint.iacr.org/2005/007

32

