
Evaluation Methodology and Theoretical Model
for Antiviral Behavioural Detection Strategies?

Eric Filiol1, Grégoire Jacob1, and Mickaël Le Liard1,2

1 Ecole Supérieure et d’Application des Transmissions
Laboratoire de virologie et de cryptologie

BP 18, 35998 Rennes, France
efiliol@esat.terre.defense.gouv.fr

2 EQUANT,
rue de la Touche Lambert

35512 Cesson Sévigné, France, mickaël.leliard@orange-ft.com

Abstract. Behavioural analysis for detection of malware has recently
emerged as a new promising set of antiviral techniques: function-based
detection is now considered along with sequence-based detection. Most
of the antivirus publishers now claim to use behavioral analysis as a mar-
keting argument. But the real impact of these “new” techniques seems
to be mitigated since no real progress in the general antiviral fight has
been noticed nowadays. This paper presents an evaluation methodology
of the real capabilities of antivirus software with respect to the behavioral
analysis. It is shown that contrary to the claims of some publishers, be-
havioural analysis is still very marginally used and implemented. These
techniques are quite always either validated by or dependant on clas-
sical form-based detection methods (detection pattern as an example).
In this context, we propose a generalised, theoretical detection model
which considers at the same time both form-based and function-based
detection and give some essential properties this model should exibhit to
achieve a real behavioural-based detection.

Keywords: Malware – Antivirus – Black-box analysis – Malware de-
tection – Polymorphism – Metamorphism – Detection model.

1 Introduction

Up to this point, the introduced evaluation methods mainly audit the
effectiveness of form-based detection engines [7,10]. However, these en-
gines experience important and evergrowing difficulties to deal with the

? This paper is the extended version of the paper presented at WTCV’06 (Workshop
in Theoretical Computer Virology) in Nancy, France, May 2006.

development of polymorphic/metamorphic techniques. Behavioral block-
ers and more globally every function-based detection method prove par-
ticularly adapted to address anti-antiviral techniques such as polymor-
phism/metamorphism.

The concept of behaviour-based detection has been originally intro-
duced by Fred Cohen [3, p. 73]. Unfortunately, this kind of detection has
been proved to be indecidable as its sequence-based counterpart is. How-
ever, behaviour-based detection appears to be a promising approach, even
if there is a lot of technical problems to differentiate legitimate behaviours
from purely malicious ones. Most of the reknowned antivirus publishers
have decided to include it in their product. Behaviour-based detection
has now become a marketing argument. What is the reality?

The issue to determine whether behaviour-based detection is indeed
implemented is essential. Unless using disassembly techniques which are
illegal in most countries, there is no other evaluation approach than black-
box analysis. The most simple one consists in testing some reference codes
and to check what the detection results really are. The most sophisticated
ones use learning algorithms. But the most difficult problem is to be able
to distinguish between sequence-based techniques and behaviour-based
techniques. In most cases, there is no simple facilities supplied such as a
case to tick in order to disactivate sequence-based detection.

The objective of this paper is twofold. Firstly we present an evaluation
methodology of behaviour-based detection techniques. For this purpose,
we consider behavioural polymorphism/metamorphism. In other words,
instead of making the code sequence change like in classical techniques
of polymorphism/metamorphism – which proves to be efficient to bypass
sequence-based detection techniques [7] – we make the functions of the
malware themselves change while the final malware actions remain the
same. Thus it has been possible for the cases which have been considered
to precisely identify what is really involved in the detection process.

Secondly, we extend the notion of detection scheme, which has been
proposed in [7], by considering the generalised concept of detection strat-
egy, which no longer distinguishes sequence-based detection techniques
from behaviour-based techniques. A mathematical analysis of different
detection strategies is given. The properties of the underlying detection
functions are addressed as well.

This paper is organised as follows. In Section 2, we recall the theoret-
ical notation and concepts which are used throughout the paper. In Sec-
tion 3, we then present the behaviour-based detection evaluation method.
In addition, in Appendix A, we give detailed evaluation results for the

main antiviruses which claim to use behavioural detection. Section 4 pro-
vides a mathematical analysis of detection strategies. In particular, some
properties that good detection functions should present are detailed. At
last, we will conclude and address some open-problems with respect to
our work.

2 Generalised Mathematical model for malware detection

In [7], a theoretical model has been proposed for sequence-based detection
techniques3. The concept of detection scheme has been introduced. We
recall hereafter its definition we will start from in the present paper.

Definition 1 A malware detection scheme with respect to a given mal-
ware M is the pair {SM, fM}. If we consider sequence-based detection
the set SM will contain bytes whereas if behaviour-based detection is con-
sidered instead, this set contains program functions.

Since this definition does not consider both sequence-based detection and
behaviour-based detection at the same time, we propose the next defini-
tion as a generalisation of the notion of detection: we will now consider
the more universal concept of detection strategy.

Definition 2 (Detection strategy) A malware detection strategy DS with
respect to a given malware M is the triplet DS = {SM,BM, fM}, where
SM is a set of bytes, BM is a set of program functions (behaviours) and

fM : F|SM|2 × F|BM|2 → F2 is a Boolean detection function, F2 being the
binary field.

It is interesting to notice that this definition refers to both known and
unknown malware. As far as an unknown code M is involved, the set
BM is precisely the set which triggers an alert with respect to M. If the
essential nature of the set SM is quite easy to understand – it contains
bytes – that of the set BM is probably not. In fact, this set can be con-
sidered as a meta-set of bytes, in the following sense: behaviours can be
described by structures of bytes which more or less correspond to each
procedure achieving a given action or behaviour. Reading a file or cre-
ating a mutex can be described by means of such more or less complex
structures of bytes that can be located either on the hard disk (inactive
malware code) or in memory (malware is active). From a formal point of

3 The present paper is based on notation developped in [7]. The reader is advised to
read it before. Nonetheless, we recall here most of its basic notation and concepts
for self-containment purposes.

view, thus BM ⊂ N∞256 (a family of sequences of bytes of indefinite length).
In the rest of the paper, we will only speak of behaviour. Asserting that
behaviour b ∈ BM is realised means that the code contains a structure of
bytes whose execution results in the behaviour b.

In order to consider Boolean functions thoroughly as detection func-
tions, let us explicit this definition from a mathematical point of view.
For that purpose, we adopt the formalism used in [7]. Let us describe
the action of a given malware detector D on a file F that is suspected
to be infected by M. Let us first define the s + b binary variables Xj

(1 ≤ j ≤ s+ b) as follows:

Xj =

{
1 if F(ij) = bσ(j)
0 otherwise.

The purpose of these Boolean variables is to express the fact that a given
byte at a given location, or a given behaviour (in fact a structure of bytes,
see before) is realised (X = 1) or not present (X = 0) in the malware,
no matter how in practice the antivirus is checking it. Thus, according
to these notation, we indifferently consider sequence-based objects or be-
haviours. This notation enables to clearly describe the modification of SM
bytes or BM behaviours by anyone who tries to bypass a given detector D.
Thus Xj equals 0 means that we have indeed modified SM(j) or BM(j)
(up to the permutation σ). The reader will note that by associating any
byte in SM or any behaviour in BM to Boolean variables, we thus can

consider the boolean sets F|SM|2 and F|BM|2 respectively. We consequently
have s = |SM| and b = |BM|. For sake of simplicity, we will now con-

sider, up to an isomorphism, only the Boolean set F|SM∪BM|2 which has a
cardinal of 2n = 2s+b.

Let us note that σ [7] denotes a bijective permutation over the byte
of SM. The use of this permutation enables to take into account po-
tential modification of M made by any copycat. Indeed, different code
obfuscation or polymorphism/metamorphism techniques can modify the
structure (byte ordering or indexing) of SM or the sequence of behaviours
of BM.

Let us now consider a Boolean function fM : Fn2 → F2. We say that a
given detector decides that F is infected by the malwareM with respect
to the detection function fM and the malware detection components SM∪
BM is and only if fM(X1, X2, . . . , Xn) = 1. In other words:

fM(X1, X2, . . . , Xn) =

{
1 F is infected by M
0 F is not infected by M.

Here the function models the different possible combinations of bytes or
behaviours that result in effectively detecting the malware. We will rep-
resent detection functions by their disjunctive normal form (DNF), that
is to say the logical disjunction of terms, each term being a conjunction
of literals Xi. By construction, literals do not appear under negated form
Xi. Thus, detection functions are modelled by monotone DNF.

Analyzing antivirus software aims at identifying which characteris-
tics are considered by the software: behaviours, detection patterns, mode
of detection... As previously shown in [7], such an approach consists in
solving the characteristic extraction problem which has been shown equiv-
alent to a learning problem. For that purpose, the analyst may selectively
modify any detected malware in order to decide whether the modifica-
tion results in detection or not. With the previous formalism, this prob-
lem comes to computing the non-detection function fM. In other words
fM = 1⊕ fM. This function describes the way malware may be modified
to bypass the detection strategy {SM,BM, fM} in force. These modi-
fications correspond to the n-tuples (x1, x2, . . . , xn) for which the non-
detection equals 1. For a given such n-tuple, any modification that can
be applied is defined as follows:{

if xi = 0 byte or behaviour i in SM ∪ BM must be modified
if xi = 1 byte or behaviour i in SM ∪ BM may be left unmodified.

In the rest of the paper, we will indifferently consider either the detection
function or the non-detection function. We will just give the following
definition that will be later of some interest.

Definition 3 A malware bypassing strategy BS with respect to a given
malware M is the triplet BS = {SM,BM, fM}.

Remark - The malware M is uniquely characterised by both SM and
BM as well as the detection function fM. This function allows to greatly
reduce the false positive rate, when judiciously selected [7].

3 Behaviour-based detection evaluation method

The goal of this study has been to evaluate the effectiveness of behaviour-
based detection in modern antivirus products. Our intention is not to use-
lessly criticise one or more products but to pinpoint the existing weak-
nesses in such detection techniques. We intend to propose an efficient
evaluation methodology that should help anyone who is charge of an-
tivirus evaluation. Despite the fact that our approach and results have

considered a single malware – the W32.MyDoom mass-mailing worm –,
this can be generalised to any other malware.

In this study, we analysed the fact that modern malware detection
techniques are supposed4 to consider both detection pattern databases
and forbidden behaviours databases. Then, we generalised the approach
developped in [7] which consists in solving the problem of detection tech-
niques extraction. In other words, any analyst aims at precisely guessing
how any antivirus is working by performing a black-box analysis. In the
present case, we selectively modify detection behaviours instead of de-
tection patterns and record whether the tested antivirus still detect the
modified code or not. The mathematical analysis of the results then en-
ables to reconstruct the whole detection strategy as defined in Section 2.

Following this principle, we have chosen to assess the resistance of
antiviral products with respect to behavioural detection, by examining
their reactions face to different versions of a virus whose one or more
functions have been modified. In other words, our approach conceptually
consists in realizing behavioural polymorphism/metamorphism instead of
classical (form-based) one. Let us now present how we realised this new
kind of code polymorphism/metamorphism on the W32.MyDoom mass-
mailing worm.

3.1 W32.MyDoom Behavioural Polymorphism/metamor-
phism

The underlying idea is in fact to simulate the polymorphic/metamorphic
generation of the virus code with respect to its functionnalities but in a
selective and controlled way. To achieve this, we have generated separate
different versions of a virus that could be the result of several duplica-
tions from an original strain. For each newly generated version, one of
the main infectious behaviours has been manually modified, replaced or
even suppressed simulating the different functional mutations. Unfortu-
nately, regarding the state-of-the-art, these modifications are still hardly
automatically performed. The concept of functional or behavioural poly-
morphism/metamorphism has still to be studied in-depth.

Throughout this article, we will focus our approach on the well-known
virus W32.MyDoom [4,6,8,9]. The reason for this choice is quite simple.
This mass-mailing worm may be considered as a reference declined in a
whole range of versions and whose techniques keep being reused. It is

4 This assertion has been deduced from the different unequivocal marketing claims of
most of the antivirus publishers whose products we have tested in this study.

clearly possible to reproduce and adapt the process to other viruses as
far as they offer a minimal diversity of behaviours.

Identification of the behaviors Before proceeding with any behaviour
modification, the first step was to identify the main classes of infectious
behaviors implemented in the malware. Considering behaviours is far
more complex that considering detection patterns or other form-based
object like in [7]. It was thus necessary to adopt a different approach and
consider the source code5 of the malware.

The tight functionnal analysis of the W32.MyDoom source code has
made it possible to identify the flow of the different functions and their in-
ternal process. Each infectious behaviour manifests itself as one or several
characteristic actions of the virus. An action can be either a particular
functionality or simply a programming technique used during the virus de-
velopment. Table 1 lists the main behaviours identified in W32.MyDoom
as well as examples of the actions that have given away their presence.

Reference Behavior Actions

DUPLI Code replication Write the running file
in the system directory

RESID Residency Virus is made memory resident
by means of a run register key

PROPA Spread Massmailing with the virus
as an attachment

OVINF Overinfection test Test whether a given
a register key does exist

ACTIV Activity test Test whether a Mutex object
is active in memory

STEAL Stealth Sets its own network
protocol stack

POLYM Polymorphism Encryption of the embedded
backdoor library

INFOR Information gathering Recursive scanning of user’s
and Internet files

FINAL Final Payload Backdoor library installation

SOCIA Social engineering Simulating lost e-mails recovery
Table 1. Identified behaviors in MyDoom

5 This source code may be either public or obtained through a disassembly step.

Behaviours listed in Table 1 thus represents the actual set BM that has
been presented in Section 2. We will note here BM = {b1, b2, . . . , b10}
where bi is one of the behaviour listed in Table 1.

Code modification with alternative behaviors Once the behaviors
which may be or are likely to be involved in the detection have been
identified, the second step consists in modifying them according to the
principle “different action/same result”. In other words, the modification
aims at performing polymophism/metamorphism at the functional (be-
havioural) level and not at the form level (the latter corresponding to the
classical polymophism/metamorphism techniques). According to the no-
tation of Section 2, we consider the ten Boolean variables X1, X2, . . . , X10

with respect to BM = {b1, b2, . . . , b10}. Each time original behaviour bi
is left unmodified we have Xi = 1 whereas Xi = 0 each time the cor-
responding behaviour has been modified. The final aim consist thus to
determine whether behavioural detection is really used and if any, which
behaviours are involved.

This step is essential since the amount of information gathered during
the analysis step proved to be proportional to the relevance of the newly
generated versions. It is important to recall that we have to think in term
of program functionalities to proceed. In other words we have to find
equivalent potential actions (behaviour) that eventually lead to the same
resulting malware action than the original strain. Table 2 summarises the
alternative actions we have worked out for the different behaviours con-
sidered for detection by the antivirus we have tested. Additional modifica-
tions could have clearly been considered but they prove to be unnecessary
regarding the scope of the current study. Indeed every tested antivirus
proved to implement behavioural detection at a very poor or limited level
(see Appendix A). Simple modifications manage to bypass them easily.

As an example, let us detail two of the modifications that are listed in
Table 2. A complete description of the modifications we have performed
are described in [9, pp. 26–29].

Overinfection test . The aim for the malware is to test whether it has
previously infected the current host. In the W32.MyDoom case, this is
checked by looking for a particular key (the infection marker) in the
Windows base registry. A first variant would consist in modifying the in-
fection marker itself but this would correspond to classical polymorphism
(form-based).

Behavior Reference Nature of the modifications

DUPLI DUP SH CUT Recopy in a shortcut file
DUP NAM PATH Recopy under a compressed

system patch directory

RESID RES SERV KEY Virus inscription under a
service register key

RES WIN INI Modification of the win.ini file

OVINF INF DIF KEY Existence test of a different register key
INF SUP HID Existence test of a ”superhidden” file
INF ENV VAR Existence test of an environment variable

ACTIV ACT MUTEX Existence test of a different mutex
ACT EVENT Existence test of an event object

POLYM POL PLAIN LIB Backdoor library integrated
as plaintext

POL FLOW LIB Backdoor library encrypted
a stream cipher

POL PLAIN STR Strings left as plaintext
POL FLOW STR Strings flow encrypted

FINAL FIN TRIG TARG Different target and trigger
for the DDOS attack

FIN NO BDOOR Suppression of the backdoor library
Table 2. Nature of the modifications brought to the behaviors

Among many other possibilities, we choose to test whether a super-
hidden file is present (host infected) or not (host non infected). This type
of file makes it possible to hide any file even when the display of hid-
den files/directories is activated. In order to force superhidden files to be
visible, administrator permissions as well as modification of base registry
keys are required. The reader will note that this feature is undocumented
in the Windows Operating System documentation. To use this file type,
we have just to define the following parameter:

#define FILE_ATTRIBUTE_SUPERHIDDEN 0x00000006

To mark the infection, the virus uses the CreateFile function to create a
superhidden file in a secret location. To check for previous infection, the
virus looks for this file.

Activity test . In this case, the W32.MyDoom code looks for a particular
Mutex. The first obvious modification suggests to change the mutex’name
but once again this does not appear conceptually very different from
classical polymorphic techniques (form-based modifications). Many other
Windows objects enables the interprocess synchronization. Therefore we
considered a second variant in which the activity is tested by means of a
different event object. Yet simple, we used the following one:

TaskmonInitialised Event

In this case – as in many other cases – the code checks the function error
exit code whenever the object is created.

3.2 Test Methodology

In order to apprehend the test procedure, it is important to keep in mind
that most of the actual antiviral products do not provide a clear distinc-
tion between sequence-based detection and behaviour-based detection. It
is almost always impossible to determine which method is really used.
From a practical point of view, very few controls – if any – are left to the
user, in particular to activate separately the different detection methods,
which would have proved helpful for the test. As a general rule, we can as-
sert that any “exact” identification is based on sequence-based detection
while “generic” identification may or might involve behaviour analysis at
some level.

Since it is impossible to run the behavioral analysis without running
the form-based analysis as noticed in our experiments, it becomes essential
to extract the sequence-based detection components (e.g. signature) first.
Thus, once this signature is removed, the virus detection can eventually
rely on function-based methods only such as behavioural engines. As a
consequence the test procedure has been broken down into two phases.
During the first one, we have tested the different versions statically by
manual scanning in order to identify the nature and the location of the
sequence-based components. For the second phase, we have activated the
resident protection which is supposed to run the behavioural analysis6.
Thanks to the knowledge about the signature extracted in the first place,
it becomes now possible to retrieve information on the true nature of the
behavioural detection.

Let us now describe our test bench. The experiments require several
Windows 2000 platforms which are clean from malware and deconnected
from any network. A recovery solution must be considered in order to
reinitiate the platforms in their original state after an infection. To achieve
this, virtually emulated machines such as VMware prove to be particu-
larly adapted. Indeed the execution remains confined to a sandbox and

6 We did not address the case of code emulation. The reason lies in the fact that
existing products only consider sequence-based detection techniques for detection,
especially when classical (form-based) polymorphism/encryption is involved. A fu-
ture evolution of antivirus could be to implement behaviour-based detection during
code emulation steps as well.

by simply reloading the original configuration, it resets the platform. A
second, less convenient solution is to reboot after each test on a clean
ghost of the operating system.

The detailed results are given product by product in Appendix A.

4 Mathematical Analysis of Detection Strategy

4.1 Global Synthesis of the Experiments Results

To reach a higher level of abstraction, we have now to detach from the
products in order to introduce a global trend according to the formaliza-
tion we have established in the first place.

It must be clear that all the realised deductions mainly concern the
detection strategies with respect to a given malware. No particular in-
formation has been gathered about the different implementations of the
behavioural detection really adopted by the editors, if any. It simply seems
that in most cases, the modelization by suspect scenarios has been chosen
by the antivirus developpers. In fact, this detection mode proves specif-
ically adapted to this model given the fact that only the dangerous be-
haviours have been identified and modified. We could not have obtained
more relevant results if antiviral products had chosen a modelization by
legitimate behaviours. This last aspect relates more to IDS concepts [12].

As far as detection strategy is concerned, on the other hand, a very
strong trend comes out with regards to the results that no antiviral
product really contradicts except Viguard. This trend can be formulated
through the two main following hypotheses:

– H1: behavioural detection is non implemented or inefficient,

– H2: behavioural detection is ignored without corroboration or valida-
tion by a sequence-based detection component (e.g a signature).

For Viguard, we can establish an additional hypothesis aside:

– H3: behavioural detection consists in detecting any possibly threat-
ening behaviour.

In the scope of our tests, a simple and significant fact backs up these
two first hypotheses. Whenever a virus has been detected, a precise re-
sponse has been provided including its identity. This can be achieved only
through a signature; a pure behavioural detection would have detected a
generic agent. From a more mathematical point of view, using a Boolean

modelisation as introduced in Section 2, the three hypotheses can be

translated as follows:

H1: Tsig
H2: Tsig ∨ (Tsig ∧ Tbehav) = Tsig (by absorption law)

H3: Tbehav =
∨b
i=0Xi where Xi relates to the ith element

in the behaviour base BM

The notation Tsig relates to the restriction fSMM of the detection func-
tion fM to the set SM. This means that Boolean variables with respect
to the set BM do not appear in the detection (sub-)function disjunctive
normal form. Conversely, as far as theH3 hypothesis is concerned, we con-
sider the restriction fBMM to the set of behaviours BM with the essential
differences that:

– the set BM contains any behaviour that might be “dangerous”,

– the detection function is the or function, of weight 2|BM| − 1.

By setting the problem mathematically, it becomes clear that the first
two hypotheses are in fact equivalent and lead to a same and unique con-
clusion. In both cases, we can say that the utility of the behavioural
engine, if any, is questionable. Without any doubt, it is due to the fact
that it is not properly integrated into the detection strategy. On behalf of
decreasing the rate of false positives, this trade-off solution totally inhibits
the main functionality of the behavioural detection: the detection of un-
known viruses. If we examine the two logical formulae, they remain really
simple ones and represent a negligible part of the Boolean modelisation
potential. Nothing proves that they necessarily are the most optimal.
On the other hand, Viguard’s hypothesis is exactly the opposite. The
maximum weight is given to each behaviour detection, thus increasing
alarmingly the rate of false positives.

It is getting even worse knowing that several antiviral products like
AntiVirusKit, KAV and F-secure partly or totally share the same sequence-
based detection features (e.g. signature databases). Considering the effi-
ciency factor, they are completely equivalent and combining them would
not increase the rate of detection. Only the behavioural engine properly
implemented would have made possible a real distinction.

4.2 Mathematical Properties of Efficient Detection Strategies

In [7], the properties that any good detection scheme should exhibit, have
been proposed as well as a secure detection scheme. All of them extend to

the concept of detection strategy as defined in Section 2. We just have to
consider two reference databases (bytes and behaviours) instead of one.
The only difference lies in the detection function (or the non detection
function on the attacker’s side) since its domain is now twofold. From a
general point of view, we claim that the input of these two functions –
Boolean variables describing bytes and behaviours – must have an equal
effect on their output. It is not the case in existing antivirus software.

Before giving some results for interesting detection functions, let us
first make the theoretical background more precise.

Properties of Boolean detection functions As previously exposed,
the detection function plays an essential role in a detection strategy. It
represents the way form-based and/or behaviour-based characteristics are
analysed and searched for in a file. In [7], a strong result show that the
weight of the detection function (the number of input for which the func-
tion outputs 1) was an important parameter. While a weight of a single
unit (and detection function) proves to be the poorest solution, detection
functions with a larger weight offer a wider range of detection opportuni-
ties (see [7] and wildcard detection as an example). As far as the detection
function is concerned, this remark remains true – but in the attacker’s
opposite view – since we have for a Boolean function f : Fn2 → F2:

wt(f) = 2n − wt(f),

where wt(f) = |{x|f(x) = 1}|. In other words, if the detection function
has a small weight (limited number of detection configurations), the non
detection function will exhibit a larger weight (a high number of bypassing
configurations). This enables to consider the following definition.

Definition 4 Let be a detection strategy DS = {SM,BM, fM} and the
corresponding bypassing strategy BS = {SM,BM, fM} Let n = |SM| +
|BM| = s+ b The strategy DS is said to be stronger than the strategy BS
if and only if

2n−1 ≤ wt(fM) ≤ 2n − 1

This first definition can be considered as a first criterion to select “good”
detection functions.

Another very important criterion deals with the respective influence
of Boolean variables Xi on the detection function’s output. It is nothing
but essential that they all have the same impact on fM (or equivalently
on fM). If it was not the case – due to the fact that a given variable could

have a preponderant role (respectively a marginal role) compared to the
other input variables – the relevant byte/behaviour should be considered
as preponderant (respectively marginal) in the detection strategy. Such
an information would inevitably be exploited by any attacker in order to
bypass the detection strategy considered. This can be generalised to any
t-set of Boolean input variables. We will adopt the following definition.

Definition 5 A detection function is said to be weakly bypassable at
order t if and only if the function’s output does not statistically depend on
any set of input variables of size at most t. A detection function is said
to be strongly bypassable at order t if and only if its outputs statistically
depend identically on any set of at most t input variables.

According to this definition, no particular set of at most t input variables
will be more interesting to consider than another one, in order to bypass
the detection strategy. The difference between “weakly” and “strongly”
lies in the fact that in the first place there is no dependance with respect to
any t-set of input variables whereas in the second case such a dependance
does exist but with respect to any t-set, identically. It is rather intuitive
to assert that realizing the first case is more difficult than the second
one. We will demonstrate it in Section 4.2. Let us mention that if fM is
(weakly or strongly) bypassable at order t, this property still holds for the
corresponding non detection function fM – but the meaning in attacker’s
approach is reversed.

This property enables to logically consider a very particular class of
Boolean functions, which are very important in symmetric cryptography:
correlation immune functions. In order to consider these special functions,
let us first recall the main mathematical tool which is used to characterise
the concept of correlation for Boolean functions. The reader may refer to
[1, Chap. 2] or [11, pp. 207] for more details on this mathematical tool.

Definition 6 Let f be a Boolean function over Fn2 . The Walsh-Hadamard
transform of f is the Fourier transform of the corresponding sign function,
x 7→ (−1)f(x):

∀u ∈ Fn2 , χ̂f (u) =
∑
x∈Fn

2

(−1)f(x)(−1)<u,x>

where < ., . > denotes the usual scalar product.

The Walsh-Hadamard transform enables to exhibit statistical dependen-
cies (biases) between some subsets of input variables and the function’s
output. Let us make things more precise.

Definition 7 A Boolean function in n variables is said to be correlation
immune at order t if its statistical distribution of output does not change
when at most t input variables have a fixed value.

In other words, the function’s ouptut is statistically independent of any
variable vector (Xi1 , Xi2 , . . . , Xit). As an example, the function

f(X1, X2, . . . , Xn) = X1 ⊕X2 ⊕ . . . Xn

is correlation immune at order (n− 1).
A very important result [15], establishes a link between correlation

immunity and Walsh transform coefficients.

Proposition 1 [15] The Boolean function f in n variables is correlation-
immune at order t if and only if we have7

χ̂f (u) = 0 ∀u ∈ Fn2 , 1 ≤ wt(u) ≤ t.

We now can establish the following result.

Proposition 2 A Boolean function fM is weakly bypassable at order t if
and only if it is correlation-immune at order t. A Boolean function fM
is strongly bypassable at the order t if and only if

∀u ∈ Fn2 such that 1 ≤ wt(u) ≤ t χ̂f (u) is a constant.

Proof. The proof is obvious by definition of correlation immunity. Let us
notice that this property still holds for non detection function fM since
we have

χ̂f (u) = −χ̂f (u).

This proposition makes it possible to define a criterion to choose detection
function for real behaviour-based detection. Such a function should be
weakly bypassable (respectively strongly bypassable) at least with respect
to variables related to SM.

Some good detection functions According to Definition 4, the weight
of detection function must be at least equal to 2n−1. But known results in
cryptography show that balanced functions – functions of weight exactly
equal to 2n−1 – are among interesting candidates as soon as correlation
immunity is concerned. One of the basic reasons is that it is rather easy
to find balanced functions having some desirable properties than overbal-
anced ones. This is why we will focus on balanced Boolean functions.

7 wt(u) denotes the Hamming weight of u, that is to say the number of 1 in the binary
expansion of u.

Weakly bypassable detection functions .- Linear functions are obviously
the first functions to consider. Their algebraic normal form is given by:

f(X1, X2, . . . , Xn) = X1 ⊕X2 ⊕ . . . Xn.

The most interesting property as far as detection functions are considered
lies in the following proposition.

Proposition 3 The function X1 ⊕ X2 ⊕ . . . Xn is weakly bypassable at
order n− 1.

Proof. By Walsh transform computation, we show that the only non-zero

Walsh coefficient χ̂f (u) = 2n 6= 0 is that for u = (1, 1, 1, . . . , 1). Hence
the result.

This proposition means that unless considering simultaneously all the
input variables – in other words all the bytes and all the behaviours, in the
context of malware detection – no particular subset is worth considering
in order to bypass detection when linear detection function are used.

Strongly bypassable detection functions Another very interesting detec-
tion functions are majority functions. Indeed, they are strongly bypass-
able.

Definition 8 We call a n variable Boolean function a majority func-
tion (denoted MAJn, the Boolean function which maps Fn2 to F2 such
that:

f(x) = 1⇔
{
wt(x) ≥ n+1

2 if n impair
wt(x) ≥ n

2 + 1 if n pair

Moreover, when n is even, f(x) = 1 for exactly 1
2

(
n
n
2

)
input values x of

weight n
2 .

While there are
((n

n
2
)

1
2(n

n
2
)

)
functions MAJ2p, there is only one MAJ2p+1 for

a fixed value of p. Without loss of generality, we will consider only the
last case (n = 2p + 1). A known result [2] asserts that MAJn functions
(n even or odd) are balanced for any value of n.

The next proposition shows that MAJn are strongly bypassable func-
tions, except asymptotically.

Proposition 4 The Boolean functions MAJn are correlation-immune at
order 0, with respect to every variables xi and

P [MAJn(x) = xi] =
1

2
+

(n−1
n−1
2

)
2n

The reader will find the proof of this proposition in [5]. This result asserts
that if MAJn functions are statistically dependent on every of their input
variables, they are also identically dependent on them. Consequently, no
particular variable (a byte of a behaviour) is playing a more important
role than another one.

However in the context of detection functions, MAJn have an addi-
tional interesting property as stated by the following proposition.

Proposition 5 Let us consider a MAJ2p+1 for a given value p. Its DNF
formula contains

(
2p+1
p+1

)
logical terms. The corresponding function MAJ2p+1

contains
(
2p+1
p+1

)
terms, each of them containing p+ 1 variables in negated

form (xi).

Proof. We will prove the second part of the proposition by induction on p.
Let us consider a MAJ2p+1 function. Let us denote H2p+1 the property we
want to prove. Firstly, it is obvious that H1 holds since MAJ1 has x1 as
DNF. Let us suppose that H2p+1 holds and let us show that consequently
H2p+2 still holds.

Since H2p+1 is true, the corresponding DNF has
(
2p+1
p+1

)
=
(
2p+1
p

)
terms. Let us build the DNF of function MAJ2p+3 from that of MAJ2p+1.
For that purpose, we consider two additional Boolean variables y1 = x2p+2

and y0 = x2p+3. For sake of simplicity, let us note {xp} the logical union
of terms in MAJ2p+1 each of them containing exactly p negated variables.
In the same way, we will note {x≤p} the logical union of terms containing
at most p negated variables.

The DNF formula of MAJ2p+3 is given by

10{xp} ∨ 01{xp} ∨ 11{xp−1} ∨ 00{xp+1}. (1)

where the two first bits describe the y1 and y0 additional variables. Let
us mention that any other logical terms, whose general DNF formula is

01x{≤p−2} ∨ 10x{≤p−2} ∨ 11x{≤p−2} ∨ 00x{≤p−2},

has to not be considered since they each outputs 0 with regards to the
MAJ2p+3 function. SinceH2p+1 holds and by construction of the MAJ2p+3

DNF formula, the union of logical terms in Equation 1 cannot be simpli-
fied further. Let us now determine how many terms are involved.

Obviously, Equation 1 includes a number of logical terms which is
given by(

2p+ 1

p

)
+

(
2p+ 1

p

)
+

(
2p+ 1

p+ 1

)
+

(
2p+ 1

p− 1

)
=

2(2p+ 3)

(p+ 2)

(
2p+ 1

p

)
=

(
2p+ 3

p+ 1

)
.

Hence the result for the number of logical terms in DNF formula. By
construction, it is easy to check that each logical term contains indeed
p+ 1 negated variables.

The first part of the proposition is proved by induction in the same
way.

Remark .- The number of logical terms in the DNF formulae (with regards
to both MAJ2p+1 and MAJ2p+1) corresponds in fact the maximum size
of an antichain in a poset (Sperner’s theorem [14]). By considering the
set F of all p-element subsets of the Boolean set F2p+1

2 (each of them
corresponds to the support of a DNF logical term), we obtain the result
since F is an antichain. Therefore, by basic properties on antichains, we
cannot simplify the corresponding DNF further.

This results asserts that if we choose a MAJ2p+1 as a detection func-
tion, thus any attacker who will to bypass a detection strategy, will have
to modify at least p + 1 variables (in other words bytes or behaviours).
Consequently, by choosing large value of p, the attacker will face a high
complexity [7].

Example 1 Let us consider the MAJ5 function whose DNF formula is:

MAJ5 = x4x3x2 ∨ x4x3x2x1 ∨ x4x3x2x1 ∨ x4x3x2x1 ∨ x4x3x2x1 ∨
x4x3x2x1x0 ∨ x4x3x2x1x0 ∨ x4x3x2x1x0 ∨ x4x3x2x1x0 ∨
x4x3x2x1x0

The DNF formula of the corresponding non detection function is then:

MAJ5 = x0x1x2 ∨ x0x1x2x3 ∨ x0x1x2x3x4 ∨ x0x1x2x3 ∨ x0x1x2x3x4 ∨
x0x1x2x3x4 ∨ x0x1x2x3 ∨ x0x1x2x3x4 ∨ x0x1x2x3x4 ∨
x0x1x2x3x4

The non detection function will equal 1 if and only if at least three detec-
tion features (bytes in the code or behaviours) are simultaneously modified.

We could consider a special class of strongly bypassable functions: bent
functions [13]. These functions f in n variables verify |χ̂f (u)| = 2

n
2 for all

u ∈ Fn2 . Unfortunately, exhibiting bent functions is still an open problem
unless for some trivial or simple class and for small values of n.

5 Conclusion and Future Work

In this paper, we have proposed a generalised model for malware de-
tection which considers at the same time both sequence-based detection
and behaviour-based detection. As far as the latter is concerned, we have
proposed an evaluation methodology for behaviour engines of existing
products. This partial study has shown that behaviour-based detection
seems to be more a claim than a reality – at least for the antivirus we
have tested. This study has to be widely extended to other kinds of mal-
ware to produce a huge number of results that could produce an in-depth
evaluation. By the present time, the methodology’s validity itself has
only been successfully tested. Future work will consider automated tools
to produce behavioural polymorphism/metamorphism directly on input
malware. We thus will be able to extensively evaluate behaviour-based
detection in commercial products.

The secure detection scheme presented in [7] can be extended without
any difficulty from detection schemes to detection strategies. The main
interest lies in the fact that many malware source codes are publicly
available. Consequently, an attacker will try to modify them rather at
the functional level than at the code sequence level.

The work presented in this paper shows that up to now behaviour-
based detection is not really implemented in existing antivirus software.
The lack of a thorough model for such a detection seems to be the reason
why it is not efficiently implemented yet. Our work may be a first step
to precisely define what behavioural detection really is and how antivirus
products should implement it. But there is still a growing need to study
the concept of program behaviour from a theoretical point of view.

At last, this work should promote theoretical research on Boolean
functions. Finding good detection functions, which both lower the number
of false alarms (as pointed out in [7]) and make black-box analysis of
antivirus software far more difficult at the same time, is an essential point
in future developments of far more efficient antivirus products.

Acknowledgement

The authors would like to thank reviewers for their valuable help in im-
proving this paper as well as the TCV Special Issue editors Guillaume
Bonfante and Jean-Yves Marion for their constant support in writing this
paper.

References

1. Beauchamp K. G. (1984), Applications of Walsh and related functions, Microelec-
tronics and Signal Processing Series, Academic Press, ISBN 0-12-084180-0.

2. Chakrabarty K. et Hayes J. P. (1998), Balanced Boolean Functions. IEE Proc.-
Comput. Digit. Tech., Vol. 145, No. 1.

3. Cohen F. (1986), Computer viruses, Ph. D Thesis, University of Southern Califor-
nia, Janvier 1986.

4. http://www.trendmicro.com/vinfo/virusencyclo/defaults.asp?VName=WORM_

MYDOOM.A

5. Filiol E. (1999), Designs, Intersecting Families and Weight of Boolean Functions.
Proceedings of the 7th IMA Conference on Cryptography and Coding, Lecture Notes
in Computer Science 1746, Springer Verlag.

6. Filiol E. (2004), “Le ver MyDoom”, Journal de la sécurité informatique MISC,
(13), May 2004.

7. Filiol E. (2006), “Malware pattern scanning schemes secure against black-box anal-
ysis”, Journal in Computer Virology, (2)-1, pp. xxx–yyy.

8. Filiol E., Jacob G., Le Liard M. (2006), Evaluation methodology of function-based
malware detection. In: Proceedings of the First Workshop in Theoretical Computer
Virology, G. Bonfante & J.- Y. Marion eds, Nancy, May 2006.

9. Jacob G., Le Liard M. (2006), Evaluation des méthodes de détection comporte-
mentale des virus, Rapport de projet Mastère SSI, Laboratoire de virologie et de
cryptologie et Supélec Bretagne.

10. Josse S. (2006), “How to measure the effectiveness of an antivirus”, Journal in
Computer Virology, (2)-1, pp. xxx–yyy.

11. Menezes AJ, van Oorschot PC and Vanstone SA (1997), Handbook of Applied
Cryptography, CRC Press, ISBN 0-8493-8523-7

12. Morin B. (2006), Intrusion Detection vs Virology. In: Proceedings of the First Work-
shop in Theoretical Computer Virology, G. Bonfante & J.- Y. Marion eds, Nancy,
May 2006.

13. Rothaus O. S. (1976), On bent functions, Journal of Combinatorial Theory, (20)
pp 300–305.

14. Sperner E. (1928), Ein Satz über Untermengen einer endlichen Menge, Math. Z.
(27), pp. 544–548.

15. Xiao G.-Z. et Massey J. L. (1988), A spectral characterization of correlation-
immune combining functions, Transactions on Information Theory, Vol. IT-34 Nr
3, pp 569–571.

A Detailed experimental results and interpretations

Seven antivirus softwares have been tested (Table 3). We have considered
those who are supposed or claim to use behavioural detection. Fourth col-
umn gives the number of bytes involved in the detection pattern that has
been extracted according to the techniques presented in [7]. The detec-
tion function is the and logical function. Except for Avast, all detection
patterns share the same following sub-pattern, whose bytes are located
at indices:

1, 080→ 1, 083, 1, 090→ 1, 093, 1, 100→ 1, 103, 1, 111→ 1, 114.

Products Version Viral Definition Detection pattern size
(in bytes)

Avast 4.6.763 0611-2 8
AVG 7.1.375 267.9.2/52 18,497
DrWeb 4.33.2.12231 10062006 637

F-Secure 2005 6.12-90 2006-06-02-02 46
G-Data AVK 16.0.3 KAV-6.818/BD-16.864 41
KAV Pro 6.0 07062006 46
Viguard 11 NA N/A

Table 3. Tested antivirus software (versions & viral definitions)

We will now present the results obtained by confronting the test plat-
forms to the new muted versions of the virus. Enough details have nor-
mally been provided to make sure that these results are reproducible,
at least conceptually. Results on their own are of little interest, thus we
will seize the opportunity to introduce the worked out reflections with
regards to our problematic of the antiviral strategy evaluation methodol-
ogy. We have willingly associated both to illustrate our speech and give
quick references. This exercise of interpretation has been made product
by product. Global synthetic results of the state-of-the-art of actual be-
havioural detection has been presented in Section 4.

A.1 Results product by product

Whatever may be the antivirus software, the summary of its results are
stored in tables identically structured. Before anything else, it is impor-
tant to briefly explain how to read each of the table entries. Each of

them is associated to a particular modification labeled as in the reference
Table 2. To support our argumentation we will punctually remind these
references as elements of proof. Concerning the codification, an empty
field means that no detection occured at all. A red one brings into light
differences from the reference tests where the original executable and its
included backdoor library have been separately tested.

AVG test results As a first comment, by consulting the content of the
signature base, the antiviral product claims that six specific versions of
W32.MyDoom are classified, plus a generic one. Though, with regards to
the reference tests, the original strain is not detected by a static analysis
whereas the backdoor library is detected as a generic version, once it
has been both extracted and decrypted. From this established fact, two
deductions can possibly be raised. Firstly, the signature is localised only
in the library in plaintext form, which proves injudicious because it is
not the library itself but the executable who presents infectious features.
Secondly, the specific signature of this version, considered as out-dated,
must have been suppressed for a virus however dating from 2004. The
absence of signature in the database is confirmed by the negative results
of every static analysis of the other versions.

Now that the generic signature has been localised, it becomes possible
to use this information in order to consequently interpret the results of
the dynamic analysis in an unbiased manner. A first interesting remark
concerning the resident protection is that the antivirus does not block
the installation of MyDoom and leaves the main process running even
if it responsible for the propagation, the duplication, the residency and
other infectious functionalities. It only warns of an infection as soon as
the library containing the signature is extracted. This must be correlated
with the negative result obtained when analysing dynamically the ver-
sion without backdoor library ([FIN NO BDOOR]). This version is not
detected though it implements every other infectious behaviour of the
original strain. These results prove that the behaviors are simply unde-
tected or remain ignored without the validation by means of a comple-
mentary signature. On the opposite, the other versions leaving this aspect
of the final payload unmodified: the backdoor library ([DUP SH CUT,
RES WIN INI]), are detected according to the same criteria than the
original strain. These versions all contain the signature in their respec-
tive libraries proving once again our interpretation.

To go further, it is possible to localise more precisely the signature
without performing a complete extraction like in [7]. It can be noticed that

in the particular cases where the strings have been left as plaintext or en-
crypted by means of a stream cipher ([POL PLAIN STR, POL FLOW STR]),
the library is not detected anymore. We can formulate the hypothesis
that the signature is made of a shuffled string of the library or even of
the shuffle mechanism itself. Once again, these two versions implement
every infectious behaviour of the original strain, including the library ex-
traction, but they remain undetected because they simply do not contain
the signature. This conclusion backs up the fact that only the signature
is taken into account in the context of dynamic analysis.

Behaviors Versions Static analysis Dynamic protection

none original strain G I-Worm/MyDoom
shimgapi.dll library I-Worm/MyDoom N/A

FINAL FIN TRIG TARG G I-Worm/MyDoom
FIN NO BDOOR G G

DUPLI DUP SH CUT G I-Worm/MyDoom
DUP NAM PATH G I-Worm/MyDoom

RESID RES SERV KEY G I-Worm/MyDoom
RES WIN INI G I-Worm/MyDoom

POLYM POL FLOW LIB G I-Worm/MyDoom
POL FLOW STR G G
POL PLAIN LIB G I-Worm/MyDoom
POL PLAIN STR G G

ACTIV ACT EVENT G I-Worm/MyDoom
ACT MUTEX G I-Worm/MyDoom

OVINF INF DIF KEY G I-Worm/MyDoom
INF SUP HID G I-Worm/MyDoom
INF ENV VAR G I-Worm/MyDoom

Table 4. Detection Results With AVG

Avast test results As far as Avast antivirus software is concerned,
we first have a look on the static results and as a second step we will
interpret the dynamic results paying particular attention to the versions
which are not detected in static mode. The original W32/MyDoom strain
is detected as “Win32 : Agent - EZ[UnP]”. The first observation we can
do is that the test where the malicious library has been removed from the
virus ([CHARG NO BDOOR]) is negative. So the Avast! signature base
contains a detection pattern located in the backdoor library of the worm.
We can confirm this fact again, when we consider all the tests where
the included library is left unchanged. These variants are all detected
identically to the original MyDoom strain.

A distinctive feature that can be underlined for Avast is that the
library tested alone and in plaintext form (deciphered) triggers a dif-
ferent detection alert “Win32 : MyDoom - BJ [Wrm]”. So the signature
database of Avast contains at least two different signatures for MyDoom
corresponding to different versions of the worm. The first signature which
states a generic version of the worm is, as we have seen above, located
in the encrypted library. A single test where the strings have been left in
plaintext ([POL PLAIN STR]) seems to contradict this. It should have
been detected generically like the test where the strings have been en-
crypted by means of an alternative method (stream cipher) ([POL FLOW STR]).
An explanation could be that by completely removing the ciphering sys-
tem we have modified the location of certain bytes of the signature making
it inefficient.

The second signature, which proved to be more accurate, is located in
the library in plaintext (once deciphered) and raises the alert “Win32: MyDoom-BJ[Wrm]”.
In the test when the library has been left in deciphered form or encrypted
by means of a stream cipher ([POL FLOW LIB]), the generic signature
is no longer present; consequently Avast is able to detect the malware
once the library containing the specific signature has been deciphered
and extracted, only.

Now let us have a look on the versions which are not detected neither
in static nor dynamic mode ([FIN NO BDOOR, POL PLAIN STR]). In
these variants, as mentioned above, we have changed very few parts of
the malicious code and especially we have not changed any of the main
infectious behaviours from the original strain but they simply do not con-
tain the signature anymore. This result is amazing because these modified
malware work very well without generating any alert. Consequently, we
can deduce that Avast is not able to detect them by observing the differ-
ent behaviors of one of the most famous worms.

Behaviors Versions Static analysis Dynamic protection

none original strain Agent-EZ* Agent-EZ*
shimgapi.dll library MyDoom-BJ** N/A

FINAL FIN TRIG TARG Agent-EZ* Agent-EZ*
FIN NO BDOOR G G

DUPLI DUP SH CUT Agent-EZ* Agent-EZ*
DUP NAM PATH Agent-EZ* Agent-EZ*

RESID RES SERV KEY Agent-EZ* Agent-EZ*
RES WIN INI Agent-EZ* Agent-EZ*

POLYM POL FLOW LIB G MyDoom-BJ**
POL FLOW STR Agent-EZ* Agent-EZ*
POL PLAIN LIB MyDoom-BJ** MyDoom-BJ**
POL PLAIN STR G G

ACTIV ACT EVENT Agent-EZ* Agent-EZ*
ACT MUTEX Agent-EZ* Agent-EZ*

OVINF INF DIF KEY Agent-EZ* Agent-EZ*
INF SUP HID Agent-EZ* Agent-EZ*
INF ENV VAR Agent-EZ* Agent-EZ*

Table 5. Detection Results for Avast; * means identified as “Win32:Agent-EZ[Unp]”
while ** means identified as “Win32:MyDoom-BJ[Wm]”

G-DATA test results Each antivirus we have tested has its own fea-
tures and original aspects. As far as GData’s antivirusKit2006 is con-
cerned they lie in the fact that this software uses two detection engines
which GData has not created. It uses actually the KAV engine from the
Kaspersky Lab company and the BD engine from Bitdefender antivirus
from the Softwin company. The software enables the user to activate
them either separately or together in parallel or sequentially. Our tests
have considered this last setting. Let us make a first remark. Accord-
ing to the engine which has issued an alert, the worm is always de-
tected in a generic way either as “Email-Worm.Win32.MyDoom.Gen” or
as “Win32.Worm.MyTob.2.Gen”. This seems to indicate that behavioural
detection is more seriously implemented in this software. Now when the
strings are encrypted with a different encryption method than in the orig-
inal strain ([POL FLOW STR]), the worm is not detected in any mode.
We can deduce that either the original ROT13 encryption mechanism or
a jammed character string are the main clues that betray the infection.

The tests do not allow to understand why a particular engine is re-
sponsible for the detection of a given version and not the other one.
Nevertheless it seems that the BD engine is more sensitive to the changes
operated to certain keys of the registry base. As an example, instead of
writing in a run key we have registered the virus in the file win.ini to

Behaviors Versions Static analysis Dynamic protection

none original strain MyTob.2.Gen* MyTob.2.Gen*
shimgapi.dll library ProDoom.C*** N/A

FINAL FIN TRIG TARG MyDoom.Gen** MyDoom.Gen**
FIN NO BDOOR MyDoom.Gen** MyDoom.Gen**

DUPLI DUP SH CUT MyDoom.Gen** MyDoom.Gen**
DUP NAM PATH MyDoom.Gen** MyDoom.Gen**

RESID RES SERV KEY MyDoom.Gen** MyDoom.Gen**
RES WIN INI MyDoom.Gen** MyDoom.Gen**

POLYM POL FLOW LIB MyDoom.Gen** MyDoom.Gen**
POL FLOW STR G G
POL PLAIN LIB MyTob.2.Gen* MyTob.2.Gen*
POL PLAIN STR MyDoom.Gen** MyDoom.Gen**

ACTIV ACT EVENT MyTob.2.Gen* MyTob.2.Gen*
ACT MUTEX MyTob.2.Gen* MyTob.2.Gen*

OVINF INF DIF KEY MyTob.2.Gen* MyTob.2.Gen*
INF SUP HID MyDoom.Gen** MyDoom.Gen**
INF ENV VAR MyDoom.Gen** MyDoom.Gen**

Table 6. Detection Results with AntiVirusKit 2006 - * means identified
as “Win32.Worm.MyTob.2.Gen” (BD engine), ** means identified as “Email-
Worm.Win32.MyDoom.Gen” (KAV engine) and *** means identified as “Trojan-
Proxy.Win32.ProDoom.C (KAV engine)

achieve code residency ([RES WIN INI]), the detection does not occur
anymore with respect to the BD engine but with respect to the KAV
one. In the same way, for the overinfection test, if we keep on testing a
registry key, even different ([INF DIF KEY]), the worm is still detected
by the BD engine. Now, if we change the target of the test – a file, an
environmental data ([INF SUP HID, INF ENV VAR]...)– only the KAV
engine still successfully detects it. To obtain more details with respect to
this, we should have reconfigured differently the antivirus and activated
separately each engine.

From a general point of view, the results remains the same both in
static and dynamic modes. Only a variant whose variable strings are en-
crypted by a different method ([POL FLOW STR]) – a stream cipher –
is no longer detected. We can deduce that it is the only version affecting
the integrity of the signature. This version is not detected neither in dy-
namic or static mode and yet it implements exactly the same behaviours
than the original strain. We can thus consider that the behaviours either
are not kept under supervision or they remain unconsidered without the
validation by means of a signature.

F-Secure test results What is quite peculiar with F-secure is that
the static sequence-based analysis method does not detect the original
W32/MyDoom strain whereas others versions are detected as the generic
worm “Email-Worm.Win32.Mydoom.gen”. For example, when the back-
door library is removed ([FIN NO BDOOR]), although we have sup-
pressed a whole part of the virus, it is detected as a generic version of My-
Doom. This could be explained by the fact that a signature is a sequence of
bytes which are supposed to be located at a given place in the executable
code. If one byte is not present, the signature does not match (the detec-
tion function is in fact a simple and function; see [7]). So whenever our
modifications have changed either the value or the location of one of these
bytes, the new version is detected or not. To understand this phenomenon
we can compare the results between F-Secure and AntiVirusKit 2006 from
GData. The similarity is striking and we can deduce that the signature
database of F-Secure does not contain the “Win32.Worm.MyTob.2.Gen”
signature relative to the Bit Defender engine, at all. This would explain
why F-Secure antivirus does not raise any alert by manual scanning for the
tests detected by the BD engine in AntiVirusKit 2006 ([INF DIF KEY,
ACT MUTEX, ACT EVENT, POL PLAIN LIB]) and the original My-
doom worm.

If we now focus on the dynamic detection tests, we obtain three dif-
ferent kinds of results. First, the versions which were detected with the
generic signature “Email-Worm.Win32.Mydoom.gen” are also detected in
the dynamic mode under the same label which proves that the signature
has been involved in the process. Secondly we have the versions which are
not detected in static mode but in the dynamic mode because of the spe-
cific signature which is in the extracted backdoor library ([ACT EVENT,
INF SUP HID]). You can notice that this signature is once again identi-
cal to the one detected with AntiVirusKit 2006 in the extracted library
once deciphered. At last, remains the test where the library has been flow
ciphered ([POL FLOW STR]) which seems not to contain any signature
according to the F-Secure database and thus is not detected just like
with AntivirusKit 2006. With regard to these similitudes, we can draw
exactly the same conclusion as for AntiVirusKit, in F-Secure the signa-
ture remains mandatory independently from any behavioural detection.

Kaspersky Anti-Virus test results The analysis of the Kaspersky
antivirus tests is going to be very short. The reader is invited to compare
the result table with the F-Secure results. This is not a copy/paste mistake

Behaviors Versions Static analysis Dynamic protection

none original strain G Prodoom.c**
shimgapi.dll library Prodoom.c** N/A

FINAL FIN TRIG TARG Mydoom.gen* Mydoom.gen*
FIN NO BDOOR Mydoom.gen* Mydoom.gen*

DUPLI DUP SH CUT Mydoom.gen* Mydoom.gen*
DUP NAM PATH Mydoom.gen* Mydoom.gen*

RESID RES SERV KEY Mydoom.gen* Mydoom.gen*
RES WIN INI Mydoom.gen* Mydoom.gen*

POLYM POL FLOW LIB Mydoom.gen* Mydoom.gen*
POL FLOW STR G G
POL PLAIN LIB G Prodoom.c**
POL PLAIN STR Mydoom.gen* Mydoom.gen*

ACTIV ACT EVENT G Prodoom.c**
ACT MUTEX G Prodoom.c**

OVINF INF DIF KEY G Prodoom.c**
INF SUP HID Mydoom.gen* Prodoom.c**
INF ENV VAR Mydoom.gen* Prodoom.c**

Table 7. Detection Results with F-Secure - * means identified as
“Email-Worm.Win32.Mydoom.gen” and ** means identified as “Trojan-
Proxy.Win32.Prodoom.c”

but the exact result of the test. It has been proved recently in [7] that these
two companies share the same signature databases. The exact similitude
between the two is a proof that the behavioural engines which could have
been different, have no influence at all on the results or that behaviour
management, if any, is the same as well. Otherwise some slight variation
should have been visible. The signature is the only element taken into
account in the detection results.

Behaviors Versions Static analysis Dynamic protection

none original strain G Prodoom.c**
shimgapi.dll library Prodoom.c** N/A

FINAL FIN TRIG TARG Mydoom.gen* Mydoom.gen*
FIN NO BDOOR Mydoom.gen* Mydoom.gen*

DUPLI DUP SH CUT Mydoom.gen* Mydoom.gen*
DUP NAM PATH Mydoom.gen* Mydoom.gen*

RESID RES SERV KEY Mydoom.gen* Mydoom.gen*
RES WIN INI Mydoom.gen* Mydoom.gen*

POLYM POL FLOW LIB Mydoom.gen* Mydoom.gen*
POL FLOW STR G G
POL PLAIN LIB G Prodoom.c**
POL PLAIN STR Mydoom.gen* Mydoom.gen*

ACTIV ACT EVENT G Prodoom.c**
ACT MUTEX G Prodoom.c**

OVINF INF DIF KEY G Prodoom.c**
INF SUP HID Mydoom.gen* Prodoom.c**
INF ENV VAR Mydoom.gen* Prodoom.c**

Table 8. Detection Results with KAV - * means identified as
“Email-Worm.Win32.Mydoom.gen” and ** means identified as “Trojan-
Proxy.Win32.Prodoom.c”

DrWeb test results DrWeb antivirus introduces some other new partic-
ularities. The original Mydoom executable code is detected as “BackDoor-
Trojan” during the static analysis and most of the modified variants show
the same results except three of them. In the first undetected one, the
worm duplicates itself under a different path and more particularly in a
folder compressed thanks to the NTFS mechanism ([DUP NAM PATH]).
The compression must have made it undetected because we have tam-
pered with the integrity of the signature. This signature seems also to
be altered for the tests where the library and then the strings have been
left in plaintext ([POL PLAIN LIB , POL PLAIN STR]), but for each of
them, a new kind of alert is raised corresponding to different signatures.
It is also interesting to notice that, still in the static mode, the signature
“BackDoor-Trojan” does not seem to have any link with the backdoor
library since the same alert is raised anyway for the version where the
backdoor library has been removed ([FIN NO BDOOR]).

Let us move on to the dynamic mode. We have previously seen that the
backdoor library alone is statically detected as “Trojan-Proxy-470”. Most
of the variants including the original strain are dynamically detected be-
cause of the extraction of shimgapi.dll. Let us notice that when the alert
is triggered, the virus is already partially installed and DrWeb just of-

fers to destroy the library shimgapi.dll which has just been extracted. On
the other hand, two versions remain undetected in dynamic mode whereas
they were in static mode ([FIN NO BDOOR, POL FLOW LIB]). DrWeb
is the only antivirus presenting such results. It means that the resident
protection does not use exactly the same detection engine than the man-
ual scanning. If the others versions had been detected dynamically by
behavioural analysis, these two versions should have been detected as
well as they implement nearly the same behaviours. So resident protec-
tion mainly relies on signature as manual scanning did, except the fact
that the detection pattern and/or the detection function differ.

Behaviors Versions Static analysis Dynamic protection

none original strain BackDoor-Trojan Trojan-Proxy-470*
shimgapi.dll library Trojan-Proxy-470* N/A

FINAL FIN TRIG TARG BackDoor-Trojan Trojan-Proxy-470*
FIN NO BDOOR BackDoor-Trojan G

DUPLI DUP SH CUT BackDoor-Trojan Trojan-Proxy-470*
DUP NAM PATH G Trojan-Proxy-470*

RES RES SERV KEY BackDoor-Trojan Trojan-Proxy-470*
RES WIN INI BackDoor-Trojan Trojan-Proxy-470*

POLYM POL FLOW LIB BackDoor-Trojan G
POL FLOW STR BackDoor-Trojan Trojan-Proxy-470*
POL PLAIN LIB MULDROP.Trojan Trojan-Proxy-470*
POL PLAIN STR DLOADER.Trojan BackDoor.Trojan

ACTIV ACT EVENT BackDoor-Trojan Trojan-Proxy-470*
ACT MUTEX BackDoor-Trojan Trojan-Proxy-470*

OVINF INF DIF KEY BackDoor-Trojan Trojan-Proxy-470*
INF SUP HID BackDoor-Trojan Trojan-Proxy-470*
INF ENV VAR BackDoor-Trojan Trojan-Proxy-470*

Table 9. Detection Results with DrWeb - * exact Dr Web antivirus message is “shim-
gapi.dll infected by Trojan-Proxy-470”

Viguard test results Up this point, the antiviral products we have
tested show certain common features and approach but Viguard, in the
antivirus classification, can be discarded. Its first well-known distinction is
that it claims to not use any sequence-based detection technique except
integrity checking. When installing Viguard antivirus, a fingerprint for
the different files of the system is calculated and stored in a secure way.
A drawback of this method – and it is clearly stated by Viguard – is
that you need a safe and clean operating system without any malware

before its installation8. A second major drawback is that it can generate
a huge number of false positives. Indeed, the number of behaviours that
are considered as potentially dangerous is particularly high. Most of the
legitimate, uninfected programs adopt many of these behaviours.

Because of these particularities, we had to change the test procedures
into a new protocol consisting in executing each variant twice without
manual scanning.

During the first execution, we observe that no alert is raised for any
malicious code except one ([FIN TRIG TARG]) for which Viguard warns
us that a program is trying to set up in the start-up of the operating sys-
tem (many other legitimate programs try to do that!). In fact, Viguard
watches over specific zones of the registry base and triggers an alert when-
ever a program wants to register under a new or existing key9. With this
approach, it is bound to generate a high number of false positives knowing
that most of present legitimate programs do the same. It is even surpris-
ing to see that only this particular version is detected, the others trying
to register under the same exact key. After this first alert, by choosing to
keep the virus running, Viguard triggers several additional alerts warning
the user that a “new e-mail program” is attempting to establish a net-
work connection. Once again, this could be done by any e-mail client or
other legitimate softwares.

For the second detection pass, in all the tests, Viguard warns the
user that a program is trying to modify the existing file “shimgapi.dll”.
Viguard is not able to precise that it is a malicious file and would act the
same way with any other file. In addition, it is left to the user to judge
if the action is legitimate or not! We can not really say that Viguard
is implementing a real behavioral detection method. It simply watches
disparate possibly malicious actions without correlating them.

8 Indeed, we manage to install Viguard on a corrupted system and the malware has
been certified without any alert. Consequently, the malware was able to run effi-
ciently after the installation.

9 Many of Viguard’s alerts are rather useless for generic users who are unable to
interpret them conveniently.

Behaviors Versions 1st execution 2nd execution

none original strain G shimgapi.dll*
shimgapi.dll library N/A N/A

FINAL FIN TRIG TARG In residence** shimgapi.dll*
FIN NO BDOOR G G

DUPLI DUP SH CUT G shimgapi.dll*
DUP NAM PATH G shimgapi.dll*

RES RES SERV KEY G shimgapi.dll*
RES WIN INI G shimgapi.dll*

POLYM POL FLOW LIB G shimgapi.dll*
POL FLOW STR G shimgapi.dll*
POL PLAIN LIB G shimgapi.dll*
POL PLAIN STR G shimgapi.dll*

ACTIV ACT EVENT G shimgapi.dll*
ACT MUTEX G shimgapi.dll*

OVINF INF DIF KEY G shimgapi.dll*
INF SUP HID G shimgapi.dll*
INF ENV VAR G shimgapi.dll*

Table 10. Detection Results with Viguard - * exact message is an alert of shimgapi.dll
modification attempt; ** exact message is an alert to prevent the program from trying
to set up on the start-up zone.

