i | Y - UNIVERSITE DE

pas pirate

New threat grammars

Gueguen Geoffroy, Filiol Eric

Mai 2010

ESIEA Laval (C+V)°
Université de Rennes 1

E

S

1

Introduction

Grammars

= General introduction to grammars
= What are they used for ?
= W-grammars

Metamorphism with W-grammars
= Word generation

= Integration in libthor

K-ary codes
= What are K-ary codes ?
= Representation of K-ary codes by a W-grammar

Conclusion

Introduction

A lot of research has been done on the grammar field.
Powerful tools to describe things.

In particular, they are used to describe programming languages.

Already used to produce polymorphic code.
Almost not used for metamorphic code.

= When this is the case, they are not complex enough, and words
produced can be parsed too efficiently.

We will present a type of grammar which can be written with
reasonable facility, and can be very powerful (can generate Type 0
languages).

Grammars

Grammars

General introduction to grammars

= Whatis a grammar ?

= 2 :an alphabet.

N & X : a finite set of non-terminal symbols.

T (=2) : a finite set of terminals symbols, with NNT=0

S € N : the start symbol.

RS(TUN)*X(TUN)* : a finite set of rewriting rules over Z,
defining how non-terminal and terminal symbols can be
combined to form the language.

A grammar G is the 4-uple (N,T,5,R) and the language
described by G is L(G)={x€X |[S=*x] .

Grammars

General introduction to grammars

= A basic example

= G=({S},{a,b},{S},{S:aSb,S:ab})
= G defines the language L(G) = {da"b" | n >0 }

Parsing tree of aaabbb :

S
R A
N
j b

ab

Grammars

General introduction to grammars

= Chomsky made a well-known classification [1].
= Type 0 o Type 1 o Type 2 > Type 3.

= Type 0 are the most general grammars, type 3 the more
restricted one.

= Parsing (word recognition) is rather easy for Type 2 & 3,
whereas it is PSPACE-complete (PSPACE = NP) for Type 1 and
undecidable in general for Type 0 grammars.

Grammars
What are they used for ?

Grammars

What are they used for ?

= Used for describing/mutate malwares

= Current work : Polymorphism, Metamorphism
= Filiol [Filiol07], Zbitskiy [Zbitskiy09], Almeida
Lopes [ButkowskiO09], ..

= Polymorphism (Zbitskiy) : polymorphic generator based on a
formal grammar.

= Example for mov R1, len
= X: mov R1, len | push len @ pop R1

| sub R1, R1 @ add R1, len.
= Possible to detect (word problem)

= Language is finite, so only a finite number of words
can be generated.

Grammars

What are they used for ?

= Metamorphism :
= Filiol's definition :
Let G1 = (N,T,5,R) and G2 = (N, T'S'R') be 2 grammar
with T' a set of formal grammars, S' the starting grammar

G1 and P' a set of rewriting rules wrt (N'UT')*.
A metamorphic code is thus described by G2 and all of its

mutated forms are words of L(L(G2)).

POC _PBMOT implements this principle. Moreover, it
contains a undecidable rewriting system such that the
word problem is undecidable in general. (It is
undecidable wether 2 words are equivalent up to the

rewriting rules)

10

Grammars

What are they used for ?

= Metamorphism :

= Almeida Lopes :

Use of attribute grammar to 'translate' an instruction
in equivalent instruction(s) after its parsing was
done.

= Example ;
= Parsing of
pushl $0x0c popl %edx
gives non terminal put v_in_r($0x0c, %edx)
= Translation rule :
put v_in_r(vl,rl) : pushl _v(vl) popl r(rl)
| movl v r(vl,rl) ;

11

Grammars
Van Wijngaarden

12

Grammars

W-grammars

= W-grammar ?
= Basically, a W-grammar consists of two finite sets of rules :

= Metaproduction rules (metaproductions)
= Hyper-rules

= From these sets of rules, a third (possibly infinite) set of
production rules is derived.

= |If the metaproductions describe an infinite language,
productions rules will be infinite.

13

Grammars

W-grammars

= Before we go further, some terminology :

= We define a « protonotion » as a possibly empty sequence of
small syntactic marks (e.g. int and bool).

= A « metanotion » is a non-empty sequence of large syntactic
marks that is defined in the metaproductions (e.g LETTERS).

= A « hypernotion » is a possibly empty sequence of metanotions
and/or protonotions (e.g int LETTERS).

= A « consistent substitution » is the substitution of all the same
metanotion throughout a single rule.

14

Grammars

W-grammars

= Formally, we can define a W-grammar as a 7-tuple :
(M,V,N,T,Ry,Ry,S) with :
= M : a finite set of metanotions
V : a finite set of metaterminals MNV=0
N : a finite set of hypernotions, subset of (MUV)’
T : a finite set of terminals
R, : a finite set of metarules
R, : a finite set of hyperrules
SeN : the start symbol

15

Grammars

W-grammars

= A little example to make is easier to understand :

= Language a'b"c" cannot be described by a CFG. The W-
grammar for that language is :

N—il|iN
A—-al|blc
(§)=(aN)(bN)(cN)
(Ai)=>A
(AIN)= A{AN)
= For this grammar we have :
M={N Al
V={a,b,c,i]
N={aN,bN,cN ,Ai,AiN,AN,A|
T={a,b,c|
Ry=N.,A

rule » © *rule

V_<S>rule’<Ai >rule’<AiN>rule 16

Grammars

= A derivation tree for aaabbbccc is :

S
/i\ N—i|iN
aiii biii ciii <S>:>?£VC>I<|£]\|,§<CN>
/ ! / ' / ' (Ai)=A
aii bii c| cii (AIN)= A (AN)

/# /# oo
/ / /

17

Metamorphism with W-grammar
Word generation

18

Metamorphism with W-grammar

Word generation

= W-grammar can be used to rewrite instructions into semantically
equivalent instructions thanks to consistent substitution.

= |In 1984 Dick Grune made a program which produces all sentences
from a W-grammar [Grune84].

= When a grammar has a lot of metanotions, generation takes too
much time to generate even the first word.

= So the program has been modified in order to produce one random
word in the language.

19

Metamorphism with W-grammar

Word generation

= Simple example of generation :

= |nput instruction : mov eax, 5 called by vw_start("mov eax 5");

~/vanWijngaardenGenerator/proj$./iawacs
res= add esp, -4

mov dword [esp], 5

sub dword eax, eax

add dword eax, [esp]

add esp, 4

~/vanWijngaardenGenerator/proj$./iawacs
res = sub eax, eax
sub eax, -5

~/vanWijngaardenGenerator/proj$./iawacs
res = push 5
pop eax

~/vanWijngaardenGenerator/proj$./iawacs
res = add esp, -4
mov dword [esp], ecx
sub dword [esp], ecx
pop eax
lea eax, [eax+5]
~/vanWijngaardenGenerator/proj$ 20

Metamorphism with W-grammar
Integration in libthor

21

Metamorphism with W-grammar

Integration in libthor

Started to implement it in a libthor module :

The grammar is used to generate words.

It has no starting symbol : its start is decided by the word given
to it.

Consistent substitution enables us to « save » some context to
keep the semantic of an instruction.

The grammar is still relatively simple but can do :
= Instruction substitution
= Junk code insertion
= Basic transformation of control flow

Of course, these things are not mutually exclusive.

22

Metamorphism with W-grammar

Integration in libthor

= An example taken from a libthor execution ;

= A shellcode is read and translated in intel instructions by libthor
(it's @ multiplication by 2) :

"\x55\x89\xe5\x83\xec\x 10\xc7\x45\xfc\x00\x00\x00\x00\xeb\x08\x83\x45\x fc\x02\x83\x6d\x08\x01\x8
3\x7d\x08\x00\x 7f\x f2\x8b\x45\xfc\xc9\xc3"

The instructions are « given » to the grammar which produce a
new shellcode from it :

"\x55\x87\x2c\x24\x83\xec\x04\xc7\x04\x24\x00\x00\x00\x00\x5d\x03\x2c\x24\x87\x2c\x24\x 31 \xed\x03\x2c\x 24\x
54\x5d\x83\xc4\x fc\x89\x3c\x24\x 31 \xff\x8d\xbc\x24\x 72\xde\xff\x ff\x8b\x3c\x24\x83\xec\x fc\x83\xc4\xf0\x83\xc4
\xfc\x89\x3c\x24\x87\x3c\x24\x6a\x00\xf\x 34\x 24\x 5f\x83\xc4\x04\x03\x 3c\x24\x87\x3c\x24\x 31 \x f\x 03\x 3c\x 24\
x87\x3c\x24\xbf\x00\x00\x00\x00\x03\x3c\x24\x87\x3c\x24\xbf\x00\x00\x00\x00\x03\x3c\x24\xbf\x00\x00\x00\x 00
\x81\xc7\x96\x08\x00\x00\x29\xff\x03\x3c\x24\x83\xc4\x04\xc7\x45\xfc\x00\x00\x00\x00\xeb\x08\x83\x6d\x fc\xfe\

x83\x45\x08\xff\x83\x7d\x08\x00\x 7f\xf2\x83\xec\x04\x89\x 1 c\x24\xbb\x00\x00\x00\x00\x8d \x 1 c\x24\x 5b\x29\x cO\
x03\x45\xfc\xc9\xc3"

When the shellcode is executed, we obtain the right result :

int main(int argc, char *argv[])

{ ~/libthor/metamorphism$./test
int ret = test_exec(shellcode, 3); RES =6

printf("RES = %d\n", ret); ~/libthor/metamorphism$
return O;

}
23

K-ary codes
What are they ?

24

K-ary codes

What are K-ary codes ?

= What is a K-ary code ?

Main idea [FiliolO7]: A k-ary virus is a set of k files (some of
which may not be executable) whose union consitutes a virus.

= These codes have been categorized in 2 classes, each of them
having 3 subclasses :

= Class 1 : sequential execution
= Class A : Every part contains a reference to the

others.
= Class B : No part is refering to another one.

= Class C : Dependency between code is partial and
directed only.
= Class 2 : parallel execution

= Same subclasses
25

K-ary codes
Representation by a W-grammar

26

K-ary codes

Representation by a W-grammar

Definition from a « grammar point of view » :

= Let x, x, be 2 files and v a virus described by a grammar G,, we
define a relation R, :

xR, x, e{xox,el(G,)

Such virus can be described by a W-grammar :

= A W-grammar is capable of handling the semantics of a
language/program.

Each part of the virus may be described by a grammar. If we
put them together in a rule, the consistent substitution allow us
to keep a track of some informations between each parts.

27

K-ary codes

Representation by a W-grammar

= A dummy example (Class 1 - B):

= We want a virus to delete files named 'example’ :
= ALPHA :: a; b; c; ; Z.

LETTERS :: ALPHA; ALPHA LETTER.

TEMP :: LETTERS ~.

FILE :: example.

S : Program which rename FILE into TEMP, Program which
place TEMP file in trash, Program which empty trash.

Program which rename FILE into TEMP : grammarl
Program which place TEMP file in trash : grammar?2
Program which empty trash : grammar3

28

Conclusion

Grammar are powerful tools to manipulate languages and so
programs.

W-grammars, by the use of two CFG, allow us to describe quite
easily type 0 languages.

The word decision problem for this type of languages is known to
be undecidable.

Thanks to its integration into it, libthor provides us a working
framework to test code metamorphism.

This is work in progress.. a lot more can be done and will,
eventually.

Any questions ?

29

References

Chomsky, N. (1956) : Three models for the description of
languages, /IRE Transactions on Information Theory, 2, 113-124.

Filiol, E. (2007) : Metamorphism, formal grammars and
undecidable code mutation, Proceedings of World Academy of
Science, Engineering and Technology (PWASET), Vol.20

Filiol, E. (2007) : Formalisation and implementation aspects of K-
ary (malicious) codes, Journal in Computer Virology, Vol. 3, No. 2,
p.75-86, June

Zbitskiy P.V. (2009) : Code mutation techniques by means of
formal grammars and automatons, Journal in Computer Virology,
Vol.5, No.3, p.199-207, August

Almeida Lopes, A : The development of an offensive code
framework, http://bukowski-framework.blogspot.com

Grune D. (1984), How to Produce All Sentences From a Two-level

Grammar, Information Processing Letters, 19, p 181-185.
30

