PERSEUS: A Coding Theory-based Firefox Plug-in
to Counter Botnet Activity

Eddy Deligne and Eric Filiol
ESIEA
Laboratoire de virologie et de cryptologie opérationnelles
38 rue des dr Calmette et Guérin
53000 Laval, France
{deligne,filiol}@esiea-ouest.fr

September 8, 2010

Abstract

Most of the activity of botnets is based on the ability to listen and
analyze HTTP streams to retrieve and collect sensitive data (email ad-
dress, login/password, credit card numbers...). This paper present an
operational solution to counter botnets’activity through a simple Fire-
fox plug-in. The core idea is to encode the HTTP traffic with variable
punctured convolutional codes in such a way that any botnet client
must face a time-consuming encoder reconstruction in order to de-
code. By adding noise in a suitable way, that reconstruction becomes
untractable in practice and thus definitively hinders the botnet activity.
On the users’ side, encoder and noise parameters are first exchanged
through an initial, short HTTPS session. The principles behind that
approach have been mathematically validated in 1997 and 2007. The
Firefox plug-in we present here has been developed under the triple
GPL/LGPL/MPL licences. We present here its implementation and
show that this encoding/decoding layer is fully transparent to the user
and therefore does not degrade the overall performance contrary to
any solution that would consider traffic encryption.

Keywords: Botnet - HTTP traffic - Firefox - Coding theory - Code
reconstruction - Traffic eavesdropping.

1 Introduction

Most of the botnet’s activity and payloads rely on listening and analyzing
HTTP streams over the Internet. The aim is to collect sensitive data: email
addresses for spamming, login/password for botnet clients further spread-
ing, credit card numbers for carding... This is possible only because the
HTTP protocol does not protect the content of transmitted packets. The
use of encryption, besides the fact that it would lead to severe constraints
(encryption overhead, key management...) poses problems in terms of legal
regulations, especially in the context of transnational streams with respect
to the different national regulations. Then the critical issue is: how can
we protect against botnets’client wiretapping while allowing the action of
States in the field of communication surveillance and while keeping the data
transfer rate intact?

The project we are presenting in this paper aims at providing an oper-
ational solution to this issue. This solution is materialized in the form of a
C++ Firefox plug-in named PERSEUS!, developed under the triple GPL/L-
GPL/MPL licences and meeting the specifications of Mozilla development,
thus allowing the code to be merged to the Firefox engine code directly.

Our approach rely on mathematical and coding theory principles which
have been validated in 1997 [?], in 2001 [?] and in 2007 [?]. It mainly relies
on research dealing with convolutional encoders reconstruction. In other
words, how to reconstruct an unknown encoder to access to the data which
have been encoded before the transmission?

The core idea is to encode the data exhanged (payload packets) with
punctured convolutional codes. Those codes are commonly used in telecom-
munications (GSM, satellite...) due to their very high encoding speed. After
this encoding layer and right before transmission, an artificial noise is ap-
plied to the data flow (as would any channel do). The noise is generated
according to noise parameter p = Ple; = 1] where e; is the noise bit at time
instant t.

Now let us suppose that Alice wants to communicate with Bob over a
HTTP traffic. As a first step, the different parameters of the variable encoder
are randomly generated: polynomial size constraint, encoding rate, matrix
punching, noise parameter p, encoder polynomials... Then a short HTTPS
initial session allows to communicate those parameters to Bob (this amounts
to about 256 bytes). Bob then will be able first to get rid of the artificial

!Perseus is the mythic heroes of Greek mythology who killed Gorgon Medusa. The
botnets are thenselves often compared to Medusa and its long tentacles.

noise and then to set up the suitable Virberi algorithm for data decoding.

On the botnet agent side, the analysis of the HTTP stream must pass
through a systematic preliminary phase of decoding. However since the en-
coder is changed whenever a new transmission occurs, the botnet agent must
first reconstruct that unknown encoder as well as its different parameters.
Since an artificial noise has been added to the encoded data, that reconstruc-
tion is known to be infeasible without heavy resources [?] which moreover
would betray the presence of a botnet agent on any infected host. The
time required for that reconstruction becomes quickly prohibitive even for
reduced encoders. In addition, only an equivalent, non-punctured encoder
can be recovered [?]. It is worth mentioning that if that reconstruction is
beyond pratical capability of any botnet agent, it still remain tractable for
any intelligence agency with a suitable computing power. Finally our exper-
imental results show that our implementation is transparent to users and
does not degrade the transmission performance.

This paper is organized as follows. Section 2 recalls basic facts about con-
volutional codes and their reconstruction. Section ?? presents the PERSEUS
add-on structure while Section 7?7 deals with it detailed implementation.
Section 77 presents the different experimental results we have obtained while
Section 7?7 concludes by considering future evolution of this add-on.

2 Theoretical Background on Convolutional Codes

In this section, we are going to recall what a (punctured or not) convolutional
code is as well as the main results with respect to their reconstruction. The
aim is just to provide to the reader the required background to understand
the interest of those codes and why they are particularly suitable for our
approach.

2.1 Convolutional Codes

A convolutionnal encoder can be seen as an encoding system (based on a
set of k shift-registers without feedback) such that, at each time instant, k
information digits (typically the bits of packet payload) enter the encoder
(one per register). Each information digit remains in the encoder for K time
units and may affect each output during that time. The constant K is the
constraint length or the memory of the encoder.

At each time instant, n information digits are output, each of them
resulting from the XOR of k digits produced by the action of n polynomials on
each register. The encoder is thus said to be of rate % The action of the kn

polynomials and the shift are easily described by polynomial multiplications.
So the polynomial representation will be used to represent the different
streams.

A message will be composed of k interlaced input streams, each of them
represented as a polynomial of degree N +t denoted a;(x), i =1,...,k. The
kn polynomials are of degree N (hence N = K —1) and will be noted f; j(x).
Then the encoder produces n output streams (of length t) represented as

polynomials of degree t, ¢j(x), j = 1,...,n and we then have:
k
Z ai() fij(x) = ujn(z) + 2V ej(@) + Vo () (1)
i=1

The polynomials uj(x) (resp. wujz2) (the filling (resp. the emptying) of the
registers) are of degree at most N —1. Then the coded sequence is composed
of the n interlaced output streams.

Thus the parameters of a convolutionnal encoder are:

e k and n defining the rate and the number of polynomials,

e K the constraint length (in fact it is related to internal memory of the
encoder),

e the kn polynomials f; j(x) of degree N = K — 1.

The convolutionnal encoder then describes a (n, k, N)-code. Generally, n
and k are small integers with k& < n. The most frequent case is k = n —
1. On the contrary, N must be made large enough to achieve low error
probabilities. The symbols are usually elements of GF(2) but generalization
to GF(q) where ¢ is some prime power (¢ = p™ for some positive integer
m) can be easily done. We will only consider the case ¢ = 2 but all the
implementation and results can be generalized to any other prime ¢g. This
could be interesting in increasing the encoding speed.
Figure 77 describes a convolutional encoder of rate %

-’
-,
-,
-,

e —(+)

/ 1 2 1 2

/ VO, VO, V1, V1.
@

/ 2 2

VA, Va,...

Figure 1: Convolutional encoder of rate %

In the context of PERSEUS, we will add an artificial noise of parameter
p to the (encoded) output sequence v = vél), v((f), v%l), ’U£2), ...

The decoding step is performed through the classical Viterbi algorithm
whose complexity is exponential in k./N. Hence, generally their use is limited
to codes of short lengths and to reduced encoding rate % However in our
case since we completely master the noise (we exactly know where the noise
bits are applied while any botnet agent does not), we can work with far

higher value.

2.2 Punctured Convolutional Codes

Punctured convolutional codes were introduced by Cain et al. [?] as a means
of greatly simplifying both Viterbi and sequential decoding of high rate
convolutional codes at the expanse of a relatively small performance penalty.
A punctured convolutional code C is obtained by periodically deleting
output symbols from a (base) (n, k, N)-convolutional code C,. Output sym-
bols from C, are deleted according to a periodic puncturing pattern (or
perforation pattern) which can be described by its punctured matrix:

Pni .- DPnM

A very important problem is that of the reconstruction of such codes.
In an attack context, a monitor wants to have access to the transmitted
information (the message) without any knowledge on the encoder which
produces the intercepted stream (the coded sequence). The only way is to
reconstruct the encoder, that is to say to recover all its parameters. A simple
decoding then gives access to the message.

Let us consider a (n, k, N)-(base) convolutional code Cp. A given punc-
turing pattern P is a n x M 0 — 1 matrix with a total of I 1’s and nM — I
0’s where p; ; = 0 indicates that the i-th symbol of every branch in the j-th
treillis section (of the treillis diagram of Cp) is to be deleted.

Then the original code Cp, after being punctured with pattern P, has
become a (I, kM, m)-(punctured) code 2 C [?].

Let us consider an illustrative, simple example.

Example 1 Let us take the (2,1,3) code with polynomials
(1+2%1+z+27)
The two output streams can be denoted as follows:
(xo T1 Ty T3 T4 Ts >
Yo Y1 Y2 Y3 Y4 Ys ...

By using the following puncturing pattern:

(1Y)

we then obtain the two following output streams:

<l‘0 T2 T4)
Yo Y1 Y2 Ys Ys Ys ...

that we can rearrange as follows:

o T2 T4
Yo Y2 Ya
Yy Y3 Ys

It becomes then obvious that this puncturing produces a new encoder produc-
ing three output streams.

By use of polycyclic pseudo-circulant matrices [?], the new parameters
are easily defined and we have the 6 following polynomials

firl@) =142z fial@x)=1+2 fiz(x)=1
for(@) =0 fos(z) =2 fos(@)=1+=

where f; j denotes the j-th parity-check polynomial applied on input message
stream 1.

As for PERSEUS is concerned, the puncturing pattern P will the last param-
eter to exchange during the initial HTTPS session.

2In fact, the degree of the punctured code may be less than N, but for most interesting
punctured codes no degree reduction will take place

2.3 Reconstruction of Convolutional Codes

Since any punctured convolutional code is equivalent to a non punctured
convolutional encoder, we will thus focus on the reconstruction of the latter
codes. As far as code reconstruction is concerned, it is worth mentioning
that the use of punctured codes make it more complex since we have equiva-
lent non punctured codes whose parameters have higher values, for suitable
values of I,k and M.

It is always possible to reconstruct convolutional codes in offline mode.
This is basically not a problem since for most real cases, convolutional en-
coders do not change very often since they are hardwired (as an example,
two convolutional encoders of constraint length of 9 are embedded in the
UMTS standard [?]). Consequently we can spend a lot of time to recon-
struct them since the work is done just once. However, there are only a
very few known cases (most of them are for tactical, military communica-
tions like in the Czech army) where the encoders are randomly generated
right before the transmission. The aim is clearly strongly hinders the code
reconstruction which therefore cannot be online. In this latter case, except
for very small values of parameters and noise probability, the reconstruction
is too much time consuming.

The reconstruction of convolutional codes is a very mathematical stuff
and consequently we will not present it here (see [?, ?] for an exhaustive
study). For our purposes, it is just necessary to recall the most significant
results with respect to convolutional codes reconstruction.

While it is always possible to make the probability of false alarm (i.e. to
reconstruct a wrong encoder) tend towards zero, the probability of success
depends on many factors but the noise parameter has the most significant
impact. Beyond 10 % the reconstruction will fail unless having a large
amount of encoded sequence or/and accepting to spend a lot of time/ma-
chine ressources. In most practical cases, the Viterbi decoding itself is likely
to fail for a few percent of noise (less than 0.05) long before the reconstruc-
tion process does. Expressing the reconstruction probability of success is not
easy from a mathematical point of view and we advise the reader to refer to
[?, ?]. Experiments have confirmed that the reconstruction is bound to fail
as soon as p > 10% unless spending a lot of time and computing power.

As for the computational complexity of the reconstruction, the general
result [?, 7] states that for a (n, k, N)-convolutional code, the lower bound
is equal to O(a x n® x N*) where « is a constant which grows exponentially
with the noise probability.

To illustrate that general result, Table ?7? gives a few experimental results

[?, 7] for a few encoders in the case of a noise level of 1072 and 2.1072
(Gaussian noise).

Encoder | Reconstruction time | Reconstruction time
(p=10"%) (p=10"%)

(4, 3,8) 7 min 12 sec Non detected

(4,3,9) 6 min 16 sec Non detected

Table 1: Example of reconstruction time (on Pentium IV 2.0 Ghz) for two
noise level

As a consequence, considering a rather high level of noise prevents the
reconstruction to succeed unless we devote a huge computing time (several
hours) which is far beyond the computing capability of any botnet client.
We then will choose a noise level ranging from 0.25 to 0.35.

3 Presentation of the PERSEUS Firefox Add-on

The Firefox add-on PERSEUS aims at hindering botnets’ativities. It is writ-
ten in C++, the native Mozilla Firefox language allowing for a possible
incorporation into the code of Firefox. Therefore, the extension follows the
principles of Mozilla coding style [?] and is fast, secure and multiplatform
[?]. PERSEUS run on Firefox 3.0.3 and higher.

One main addon’s goal is to make it completely transparent for the
user when it is activated. The users will be continuing their web browsing
without being aware of the underlying encoding process by PERSEUS. HTTP
packets are then transmitted in an encoded, secure form. Mozilla Firefox
has many useful functions for developing a plug-in, which are described
in IDL interfaces. These interfaces are used with the tool nsCOMPtr that
allows write code which is “shorter, cleaner, clearer and safer than that you
can write with raw [XP]JCOM interface pointers”. For more details on the
interfaces and 1DL nsCOMPtr see [?] and [?].

PERSEUS 3, behaves like a layer below the HTTP protcol as SSL/TLS
does. The plug-in will deal of many tasks (see Figure 77) :

1. intercept the HTTP requests. All HTTP requests are intercepted by
PERSEUS, the interception implementation is explained in section ?7;

3Perseus means, from now and for the rest of the paper, our plug-in and no longer the
mythological hero

Firefox

Interface Perseus Plug-in Core

—_— Request Interception
LF Roqlicst @ q P

HTTP Answer

@Data Decoding

E (;)Encoded Data Transmission

: s Sl - Web
' ' «

' 1

. Answer o ' |

1

1

1

1

! (3)HTTP Data Encoding HTTP Request %

Figure 2: PERSEUS: general description.
“Interface” represents the GUI ; “PERSEUS plug-in” describes PERSEUS’s characteristics ; “Core”
is the rest of Firefox.

2. sends the encoder parameters. The encoder’s parameters are generated
by PERSEUS and next it sends them via HTTPS to the server (see
section ?77);

3. encodes the data and sends them to the server. As soon as the server
acknowledges receipt of encoder’s parameters, PERSEUS encodes user’s
data contained in the HTTP request and sends them to the server (see
section 77);

4. intercepts the responses and decoding data, all HTTP request from the
server to client, are analized by PERSEUS to verify that data are not
encoded. If encoded data are detected, so then PERSEUS decodes them
(see section 77);

5. “sends” data to the user. The final stage consists in transmit the
decoded data to Firefox so that it displays them.
3.1 Noise algorithm

According to the results presented in Section 7?7, the application of noise
to the encoded sequence, before transmission, prevents any practical recon-
struction by any botnet client. Since this part is critical for the security

1
2
3

(confidentility) of the HTTP packet payloads (against wiretapping), we are
going to detail the mathematical and implementation aspects of the add-
on devoted to the noise generation. First let us recall that if we denote
¢ = (cg,c1,c2...) the convolutionally encoded sequence, then introducing
noise consists in bitwise xoring the noise sequence e = (eg,e1,e2...). In
other words we transmit the sequence

c@e=(co®eg,c1 De,coden...)

where 0.25 < p = Ple; = 1]leq0.35.

Two secret parameters are used to define and computer the noise se-
quence. They are exchanged from the client to the server during the initial
HTTPS session along with the other encoder parameters. Consequently, while
the emitter and the recipient are always able to compute the precise indices
of the noisy encoded bits and then to remove them before decoding (for
the recipient who shares the two secret parameters with the emitter), any
botnet agent cannot.

Upon reception of the noisy encoded sequence, the server removes the
noise (compute the noise sequence and applies it to the received noisy en-
coded sequence relying on the fact that the XOR is an involutive operation)
and then decodes the data without errors. The two secret parameters are
Xp and j.

e X0 is a random 63-bit integer,
e j is a random integer which vary between 0 and 10.

The integer Xy enables to initialize the primitive polynomial P.
P pldy 13 012 11y 104 00 08 L Ty 6 05 A 3 0

j allows to select one number in our table index. This 64-bit integer contains
between 25 % to 35 % of 1.

With those four parameters (X, P, j and index) we add the noise to the
stream.

In Listing ?7, the noise is added to the stream, the polynomial P is
given in its hexadecimal form. The function random (Listing ?7) produces
a random 63-bit integer. With this number, the function noise (Listing ?7?)
creates a bit Ft which represents the noise at time instant .

|

void addNoise(char *stream,int stream_length,
long long int X0, unsigned int j)
{

10

© 0 N O Ut

10

12
13
14
15
16
17

© 00 N OO Rs W N

==
=]

long long int reg = XO;
/*P is a polynomial in hexadecimalx/
long long int P = 0x800000000000FFF9;
/* Et is a boolean which represent the noisex/
int Et;
for(int i=0; i<stream_length; i++) {
/*reg is a 63 bits random integer*/
reg = random(P,reg);
/*noise generates 1 bit which has 30% chance to be a onex/
Et = noise(reg,j);
/* the noise is applied to the stream */
stream[i] "= Et;

Listing 1: Noise function

By means of the polynomial P and reg (which depends on X0), a ran-
dom integer is computed using a structure of linear feedback shift register
of degree 63 whose output will be then vectorially filtered by the under-
balanced Boolean function described by the integer indez[j] (Figure 77).
Those functions are given in Appendix 77.

long long int random(long long int P, long long int reg)

{
int rebouclage;
for(int i=0; i<64; i++) {
/*sumbit compute the sum of bits in GF(2) */
rebouclage = sumbit(reg & P);
reg >>= 1;
reg |= rebouclage<<63;
}
return reg;
}

Listing 2: Random function

11

N O U W N =

G R W N =

sumbit

re2&pe2

Figure 3: One rotation of random function

The sumbit function optimally computes the w sum of bits in GF(2).

int sumbit(long long int w)

{
w "= w>>32; w "= w>>16;
w "= w>>8; w "= w>>4;
W T= w>>2; w T= w>>1;
return (w & 0x1);

}

Listing 3: Sumbit function

The noise function select one bit in the integer indez/j].

int noise(long long int reg, int j)
{
/* 0 <=1 <= 63 */
int I = (reg>>33) & 0x3F;
return ((index[jI>>I) & 0x1);
}

Listing 4: Noise function

12

10
11
12

4 Implementation of the PERSEUS Firefox Add-on

In this section, the different significant parts of the code source are detailed.
Those parts allow to interact with Mozilla Firefox. Encoding and decoding
are not explained since those algorithms follow the principles explained in
Section 2 and do not use the Mozilla IDL interfaces. Moreover, we do not
present the server part which is in fact a very classical Apache module we
have specifically written for our module. The interested readers will find its
code into the PERSEUS source code.

4.1 Intercept the web request

When the user accesses a site, Firefox creates a HTTP channel grouping all
informations relating to the request (server address, port, protocol, etc.). To
intercept the request, Firefox has a observer mechanism [?]. The observers
are characterized by a “subject”, the subject describes the action that must
be observed. In Firefox 3.5, many subjects exist; here for our purposes, we
focus on those related to the HTTP protocol.

1. http-on-modify-request: called as soon as a HTTP request is made;

2. http-on-examine-response: called after a response has been received
from the webserver;

3. http-on-examine-cached-response: called instead of http-on-examine-response

when a response will be read completely from the cache.

Observers are notified whenever those actions are occuring and the HTTP
channel is transmitted as an argument. PERSEUS implements two observers,
one to modify the HTTP requests and a second to modify the HTTP responses
from webserver (listing 77).

/** More information about ObserverService :
* http://mxr.mozilla.org/mozilla-central/source/xpcom/ds/nsI0ObserverService.
idl
*/
nsresult rv ;
nsCOMPtr<nsIObserverService> obsSvc = do_GetService("@mozilla.org/observer—service;1
", &rv);
NS_ENSURE_SUCCESS(rv, rv); //Returns return-value if NS_FAILED(nsresult) evaluates
to true, and shows a warning on stderr in that case.
/* Registers a given listener for a notifications regarding the specified topic.*/
rv = obsSvc->AddObserver(this, NS_HTTP_ON_EXAMINE_RESPONSE_TOPIC, PR_FALSE);
/** this : The interface pointer which will receive notifications
* NS_HTTP_ON_EXAMINE_RESPONSE_TOPIC:The notification topic.
* PR_FALSE : see the documentation
*/

13

14
15
16

© 00 N O U s W N

e e e e e
© 0 N0 U kA W N = O

NS_ENSURE_SUCCESS(rv, rv);

rv = obsSvc->AddObserver (this, NS_HTTP_ON_MODIFY_REQUEST_TOPIC, PR_FALSE);
NS_ENSURE_SUCCESS(rv, rv);

Listing 5: Registering observers

The function observer will be notified by Firefox whenever one of both
actions will take place.

/** More information about Observer :
* http://mxr.mozilla.org/mozilla-central/source/xpcom/ds/nsI0Observer.idl
*/
NS_IMETHODIMP
nsPerseusObserver: :Observe (nsISupports *aSubject,
const char *aTopic,
const PRUnichar *aData)

/* If a request is received */
if (!strcmp(aTopic, NS_HTTP_ON_EXAMINE_RESPONSE_TOPIC)) {

/* If a request is sent */
if (!strcmp(aTopic, NS_HTTP_ON_MODIFY_REQUEST_TOPIC)) {

Listing 6: Processing notifications
For each request intercepted, the function will check:
e that the protocol is HTTP. HTTPS, ftp, file, etc. are not supported;
e that the request contains some data, with the method POST or GET.

Once cleared, the encoding parameters are generated and sent to the server.

4.2 Sending encoder’s parameters to the server
4.2.1 Punctured convolutional code (PCC) parameters

Punctured convolutional code parameters are created randomly, we create
new parameters for each new connection. This parameters are saved in a
hash table with the server address used as a key. Firefox uses the NSPR*
APT for its IDL interfaces. This API has a class management hash table [?].

4The Netscape Portable Runtime.

14

© 0 NG W N e

=R e e
W N = O

1 [?LHashEntry *PL_HashTableAdd (PLHashTable *ht, const void *key,void *value)

1

© 00 N O U W N

/*PLHashTable *PL_NewHashTable (
PRUint32 numBuckets,
PLHashFunction keyHash,
PLHashComparator keyCompare,
PLHashComparator valueCompare,
const PLHashAllocOps *allocOps,
void *allocPriv

)5x/

mTable = PL_NewHashTable(O, PL_HashString,
PL_CompareStrings,PL_CompareStrings,
&HashAllocOps,0) ;

Listing 7: Hash table creation

Our hash table uses integrates NSPR functions to hash the key (PL_HashString)

and to compare it to the value (PL_CompareStrings). The HashAllocOps
points to a structure which manages memory creation and destruction. The
values saved in the table are PCC classes and their allocation and destruc-
tion we must done by the PCC class.

We can save and access the PCC code through the address server with
the functions: PL_HashTableAdd and PL_HashTableLookup.

|

void *PL_HashTableLookup(PLHashTable *ht, const void *key)

4.2.2 Send parameters

For the data transmission, a request is created using the nsIIOService
[?]interface, which builds a HTTP channel with a URL, the protocol is de-
termined by the scheme of this URL.

nsCOMPtr<nsIIOService> io = do_GetService("@mozilla.org/network/io-service;1");
nsCOMPtr<nsIChannel> channel;

NS_NAMED_LITERAL_CSTRING(url, "https://www.foo.com/");

nsCOMPtr<nsIURI> uri;

/*NewURI() : constructs a new URI by determining the scheme of the URI specx/
rv=io->NewURI(url,nsnull,nsnull,getter_AddRefs(uri));

/*NewChannelFromURI() : Creates a channel for a given URI*/
rv=io->NewChannelFromURI (uri,getter_AddRefs(channel));

Listing 8: Creation of a request

Once the application has been created, the following parameters are set
up:

15

© 00 N O O W N

[I R T i e ~ S = S = S S
= O © 0 N O U bk W N HE O

e the mime type : ”perseus-init”;
e the sending methode : ”Post”.

The data are then injected in the request using the nsI*Stream stream in-
terfaces [?]. Then the request is sent in synchrone mode® to the server.
The data are sent securely with the protocol SSL/TLS using the URL
scheme: HTTPS.

nsCOMPtr<nsIStringInputStream> stringStream = do_GetService(
NS_STRINGINPUTSTREAM_CONTRACTID, &rv);

/*SetData() : assign data to the input stream*/

stream->SetData("toto",PL_strlen("toto"));

nsCOMPtr<nsISeekableStream> seekableStream = do_QueryInterface(stringStream, &rv);
/*Seek() : moves the stream offset*/
rv=seekableStream->Seek(0,0) ;

nsCOMPtr<nsIInputStream> inputStream= do_QueryInterface(stringStream, &rv);
nsCOMPtr<nsIUploadChannel> uploadChannel = do_QueryInterface(channel, &rv);
NS_NAMED_LITERAL_CSTRING(mimeType, "perseus-init");

/*SetUploadStream() : sets a stream to be uploaded by this channelx*/
uploadChannel->SetUploadStream(inputStream,mimeType,-1);

nsCOMPtr<nsIHttpChannel> httpchannel = do_QueryInterface(channel, &rv);
NS_NAMED_LITERAL_CSTRING(methode, "POST") ;
rv=httpchannel->SetRequestMethod (methode) ;

nsCOMPtr<nsIInputStream> receiveStream;
/*0pen() : synchronously open the channel*/
channel->Open(getter_AddRefs(receiveStream)) ;

Listing 9: Send data

Once the server response is received, it must contain the status code
number 200, which means that the request was successfully processed by
the server. As well as the header “Perseus:ack” which allows to specify
that the code has been understood and recorded by the webserver. If the
checking phase is successful then the data are encoded, otherwise the data
are sent unencoded.

4.3 Encoding information and sending it to webserver

Before encoding the data, we must extract the payload of the HTTP frames.

5The synchrone mode is prefered to the asynchrone one, despite its blocking character;
the webserver response enables to determine whether the server supports PERSEUS or not.

16

4.3.1 Extracting data

The data can be sent out by two method : POST or GET.

e The GET method allows to insert data into a URL, eg

—
= O © 0 N O U AsE W N =

== e
B W N

W N O U e W N

10

"http://www.foo.com/bar.php?login=toto?pass=tata”, contains infor-
mation about login and password for the server foo.com. If this method
is detected, we must extract the data (listing ??7) that are in the path
variable of the URL (in our example the path variable contains :
”bar.php?login=toto?pass=tata”).

Only the part which follows the first question mark is extracted and
encoded, the question mark allows to distinguish the data from the
rest of the URL [?].

nsCOMPtr<nsIHttpChannel> channel = do_QueryInterface(aSubject, &rv);
nsCAutoString method;
rv=channel->GetRequestMethod (method) ;

if (method.Equals("GET")) {
rv=uri->GetPath(data);
NS_ENSURE_SUCCESS(rv, rv);
if(data.IsEmpty()) {
return NS_O0OK;

}

if (data.FindChar(’?’) !'= -1) {
data.Cut (0,data.FindChar(’?’)+1);

}

else return NS_OK;

Listing 10: Data extraction for get method

In the POST method, data are included in the HTTP body, so we
must use another mechanism to extract data. From the HTTP chan-
nel, we get the service that sends data: the uploadChannel[?] interface.
Through this interface, we get the stream which contains the data. We
also must discriminate two different data types: one has a known mime
type while the second one has raw data type (listing ?7?).

nsCOMPtr<nsIUploadChannel> uploadchannel = do_QueryInterface(aChannel,&rv);
nsCOMPtr<nsIInputStream> inputstream;
rv=uploadchannel->GetUploadStream(getter_AddRefs(inputstream));
nsCOMPtr<nsIMIMEInputStream> mimeStream = do_QueryInterface(inputstream,&rv);
if (NS_SUCCEEDED(rv)) {

\\Read data with mime type
}
nsCOMPtr<nsIStringInputStream> stringStream = do_QueryInterface(inputstream,&

rv);

if (NS_SUCCEEDED(rv)) {

\\Read raw data

17

11 L} J

Listing 11: Data extraction for post method

If data have a mime type then the stream will contain the mime type
at beginning of the flow (preceded by “Content-type” and the data
length (preceded by “Content-length”); whereas the mime type and
the data length are included in the HTTP header for the raw data.

Example 2 (Data with a mime type)
Content-type:application/x-www-form-urlencoded
Content-length:25

login=toto&password=tata

Example 3 (Raw data)
login=toto&password=tata

Depending on the case, data are extracted then encoded, the mime
type remains unchanged and the data length is computed with new
encoded data. The HTTP frame is then reconstructed using the two
methods previously stated.

We add the header “Perseus : pcc” to the HTTP request in order to
discriminate an encoded content from a nonencoded one. The encoding
technique is specified as the header value, allowing future features to use
more encoding algorithms.

Firefox send the request to the webserver, at the end of the manipulation
on the HTTP frame (i.e. leaving the function Observe (listing ?7)).

4.4 Interception and decoding responses

Through the observer “http-on-examine-response” (listing ?7?), the plu-
gin analyzes each response from the webserver by the function Observe (list-
ing ??) when it is switched on.

Responses with the headers “Perseus : pcc” (representing a response
encoded with a punctured convolutional code) are processed, others are
discarded and sent directly to Firefox for display.

When the observer is notified, only headers are available, the rest of the
HTTP frame is not downloaded yet. To get data, firefox 3.0.3 introduce a

18

W N =

© o 9 O wu

© 00 N OO A W N

==
=]

new interface nslTraceableChannel [?] which enables to modify the listener®.

We must write a class which implements a nslStreamlistener [?] to acquire
data, then decodes them and restore them to Firefox.

PerseusDownloadData *down = new PerseusDownloadData ;
/*PerseusDownloadData must implement nsIStreamListener */

nsCOMPtr<nsITraceableChannel> trace = do_QueryInterface(httpchannel, &rv);
/** SetNewListener() replaces the channel’s current listener with a new one,
* returning the listener previously assigned to the channel

* The previously listener is saved in mListener.

*/

rv= trace->SetNewListener (down,getter_AddRefs(down->mListener));

\

Listing 12: Modification of the “listener”

The class implementing the interface nslStreamlListener must embed
three functions:

1. onStartRequest: arequest begin. Variables are initialized (buffer, octet
read);

2. onDataAvailable: data are reachable and saved into the buffer;

3. onStopRequest: the end of the request. Data are processed (i.e. de-
coded).

NS_IMETHODIMP
PerseusDownloadData: :OnStartRequest (nsIRequest* aRequest,
nsISupports* aContext)
{
nsresult rv;
mRead=0; //number of bytes read
mData=0; //buffer
/*We pass the request to the previous listener.x/
mListener->0OnStartRequest (aRequest,aContext) ;
return NS_O0K;

Listing 13: OnStartRequest : variables initialization

In Listing ??, we find buffer’s initialization (mbuffer) in which we save
incoming data, and as well as the variable’s reset (mRead) which allows to
count characters’ number. At line 8, the request is proceeded to the old
listener, saved when we update “listener”.

1 | S_IMETHODIMP
2 || PerseusDownloadData: :OnDataAvailable (nsIRequest* aRequest,

SA “listener” is a function that listen data arrival.

19

© 00 N OO W

11
12
13
14
15
16

18
19
20
21
22
23
24

N OOl R W N =

nsISupports* aContext,
nsIInputStream *alStream,
PRUint32 aSourceOffset,
PRUint32 alLength)

/**If the stream is more longer than the http protocol support then the

* function OnDataAvailable will be run many times.

*/

nsCOMPtr<nsIBinaryInputStream> binaryInStream =
do_CreatelInstance("@mozilla.org/binaryinputstream;1", &rv);

rv=binaryInStream->SetInputStream(alStream) ;

mData= (char *) PR_Realloc((void *) mData,sizeof(char) * (alLength+mRead));
if (!mData) {..}

char * data = (char *) PR_Malloc(sizeof (char)*alength);
rv=binaryInStream->ReadBytes(alength,&data) ;

/*We read alength octet from the aIStream*/

memcpy (mData+mRead,data,alength) ;

mRead+=alength;

free(data);

return NS_OK;

Listing 14: onDataAvailable : capture data

The listing ?? show the data recording. The function OnDataAvailable
can be executed many times if the request is cut in many pieces. So we must
reallocate the buffer (mbuffer) to the length of data read plus the length of
data which are going to read.

NS_IMETHODIMP

PerseusDownloadData: :OnStopRequest (nsIRequest* aRequest,
nsISupports* aContext,
nsresult aStatus)

/*Here we decode data -> datadecoded is createx*/
nsCOMPtr<nsIStorageStream> storageStream = do_CreateInstance(
NS_STORAGESTREAM_CONTRACTID, &rv);
rv=storageStream->Init(8192,mRead,nsnull) ;
nsCOMPtr<nsIBinaryOutputStream> binaryOutStream =
do_CreatelInstance("@mozilla.org/binaryoutputstream;1", &rv);
nsCOMPtr<nsIOutputStream> out;
rv=storageStream->GetOutputStream(0,getter_AddRefs(out));

rv=binaryOutStream->SetOutputStream(out) ;
rv= binaryOutStream->WriteBytes(datadecoded.get(), datadecoded.Length());

nsCOMPtr<nsIInputStream> inputStream ;
rv=storageStream->NewInputStream(0,getter_AddRefs(inputStream));

/*We pass the decoded data to the previous listener.x*/
mListener->0OnDataAvailable (aRequest,aContext,inputStream,0,datadecoded.Length());

/*We pass the request to the previous listener.x/

20

