
International Symposium on Information Theory and Its ApplicationsHonolulu, Hawaii, U.S.A., November 5{8, 2000Reconstruction of Punctured Convolutional EncodersEric FiliolEcoles militaires de Co�etquidanDGER/CRESCC/DSI56381 Guer Cedex, FRANCEe�liol@mailhost.esm-stcyr.terre.defense.gouv.fr INRIA - Projet CodesDomaine de Voluceau B.P. 10578153 Le Chesnay cedex, FRANCEEric.Filiol@inria.frAbstractThis paper presents results on an operational recon-struction technique of punctured convolutional en-coders. With only intercepted coded messages and theassumption that we deal with such kind of encoder, thistechnique recovers all the parameters of the encoder, al-lowing complete decoding. The technique works verywell even for noisy channels. Experimental results arepresented.1. IntroductionPunctured convolutional codes were introduced byCain et al. [2] as a means of greatly simplifying bothViterbi and sequential decoding of high rate convolu-tional codes at the expanse of a relatively small perfor-mance penalty.A punctured convolutional code C is obtained byperiodically deleting output symbols from a (base)(n; k;m)-convolutional code Cb. Output symbols fromCb are deleted according to a periodic puncturing pat-tern (or perforation pattern) which can be describedby its punctured matrix:P = 264 p1;1 : : : p1;M... ...pn;1 : : : pn;M 375A very important problem is that of the reconstruc-tion of such codes. In an attack context, a monitorwants to have access to the transmitted information(the message) without any knowledge on the encoderwhich produces the intercepted stream (the coded se-quence). The only way is to reconstruct the encoder,that is to say to recover all its parameters. A simpledecoding then gives access to the message.This paper presents the implementation resultsof such a reconstruction for punctured convolutionalcodes of any rate, using the technique presented in [4].To be close to a real context, we �xed the followingcritical limitations:

� the available coded sequence can be short (aboutfew kbits).� the beginning or/and the end of the coded se-quence can be missing.� We cannot use in any way the message.In Section 2, useful notation for convolutional codesare given as well as a short description of the basicreconstruction technique of [4] we use for the puncturedcase. Section 3 presents the reconstruction results forpunctured codes in noisy channels.2. Basic Notation2.1. Convolutional codesA convolutional encoder can be seen as an encod-ing system (based on a set of k shift-registers withoutfeedback) such that, at each time instant, k informationdigits enter the encoder (one per register). Each infor-mation digit remains in the encoder for K time unitsand may a�ect each output during that time. The con-stant K is the constraint length or the memory of theencoder.At each time instant, n information digits are out-put, each of them resulting from the xor of k digitsproduced by the action of n polynomials on each reg-ister. The encoder is thus said to be of rate kn . Theaction of the kn polynomials and shifts are easily de-scribed by polynomial multiplications. So polynomialswill be used to represent the di�erent streams.A message will be composed of k interlaced inputstreams, each of them represented by a polynomial ofdegree N + t noted ai(x), i = 1; : : : ; k. The kn poly-nomials are of degree N (hence N = K � 1) and willbe noted fi;j(x). Then the encoder produces n out-put streams (of length t) represented as polynomials of



degree t, cj(x), j = 1; : : : ; n and we have:kXi=1 ai(x)fi;j(x) = uj;1(x) + xNcj(x) + xN+tuj;2(x)(1)The polynomials uj;1(x) (resp. uj;2) (the �lling (resp.the emptying) of the registers) are of degree at mostN � 1. Then the coded sequence is composed of then interlaced output streams. Finally the puncturingpattern P is applied on the output streams.Thus the parameters (to be recovered) of a convolu-tionnal encoder are: k and n de�ning the rate and thenumber of polynomials, K the constraint length, andthe kn polynomials fi;j(x) of degree N = K � 1.Generally, n and k are small integers with k < n.The most frequent case is k = n � 1. On the con-trary, N must be made large enough to achieve lowerror probabilities. The symbols are usually elementsof GF (2) but generalization to GF (q) where q is someprime power (q = pm for some positive integer m) canbe easily done. Without loss of generality, we will onlyconsider the case q = 2 (for details and generalizationsee [4, 5]).2.2. The basic reconstruction techniqueWe now present a short description of the basicreconstruction technique of (nonpunctured) convolu-tional codes for n = 2 and k = 1 (for details see [4]).The encoding scheme can be described by the followingpolynomial equations:a(x)f1(x) = u1;1(x) + xN c1(x) + xN+tu1;2(x)a(x)f2(x) = u2;1(x) + xN c2(x) + xN+tu2;2(x)We don't use in any way a(x) (the message), it mustbe eliminated. So:a(x)f1(x)f2(x) = u1;1(x)f2(x) + xN c1(x)f2(x)+xN+tu1;2(x)f2(x)a(x)f2(x)f1(x) = u2;1(x)f1(x) + xN c2(x)f1(x)+xN+tu2;2(x):f1(x)or equivalently:u1;1(x)f2(x) + xN (c1(x)f2(x) + c2(x)f1(x))+u2;1(x)f1(x) + xN (c1(x)f2(x) + c2(x)f1(x))+xN+t(u1;2(x)f2(x) + u2;2(x)f1(x)) = 0By identi�cation, all the coe�cients of power of x be-tween N and N + t in the polynomial c1(x)f2(x) +c2(x)f1(x) are all equal to zero. In other words, wehave to solve the homogenous linear system: Cf = 0

where 0 is the (t � N)-null vector and f is the (2K)-vector:(f1;0; f1;1; f1;2; : : : ; f1;N ; f2;0; f2;1; f2;2; : : : ; f2;N )The unknowns f1;i and f2;i for i = 0; : : : ; N representthe coe�cients of the polynomials to be recovered. The(t�N; 2K)-matrix C is constructed from the c1(x) andc2(x) which are known (coded sequence) so we can solvethe system and retrieve the two polynomials.For a non-trivial solution (fi(x) 6= 0) the rank of Cmust be at most 2K � 1 that is to say we must have(noiseless channel):t � 3N + 1 = 3(K � 1) + 1 = 3K � 2 = LminFor any other encoder of rate kn , a recurring methodgeneralizes the previous technique. First we limit our-self to the rate k�1k since it is always possible to con-sider this case. We thus will deal with � nk+1� "suben-coders". A simple coincidence checking on the commonpolynomials allows to test the consistency of the �nalsolutions.So let us consider the rate n�1n case. Such an en-coder is de�ned by the n equations (1):kXi=1 ai(x)fi;j(x) = uj;1(x) + xN cj(x) + xN+tuj;2(x)for i = 1; : : : ; n� 1 and j = 1; : : : ; n. Since we cannotuse in any way the di�erent ai(x), we must eliminatethem successively. As described in section 2.2, we (ar-bitrarily) choose �rst to eliminate a1(x).Then we obtain (n�1) new equations involving only(n � 2) message polynomials ai(x) for i 6= 1. That isto say we are now facing the rate n�2n�1 case. By re-peating this, we �nally deal with the rate 12 case whichis easily solved. Simple polynomials operations allowsto recover very easily the constituent polynomials. De-tailed example can be found in [5]. Finally we needLmin = (n+ 1)((2n�1 � 1)N + 1)� 2 bits [4].3. The Reconstruction of Punctured CodesLet us consider a (n; k;K)-(base) convolutionalcode Cb. A given puncturing pattern P is a n � M0�1 matrix with a total of I 1's and nM � I 0's wherepi;j = 0 indicates that the i-th symbol of every branchin the j-th treillis section (of the treillis diagram of Cb)is to be deleted.Then the original code Cb, after being puncturedwith pattern P , has become a (I; kM;m)-(punctured)code 1 C [7, 8]. Appendix A presents an illustrative1In fact, the degree of the punctured code may be less thanK, but for most interesting punctured codes no degree reductionwill take place



simple example. That means that we have I � kMpolynomials to recover. We then generalized the re-construction technique of [5] by recursively eliminatingthe kM input (message) streams as in Section 2.2. Weobtain as a result a product of polynomials that weeasily factored to get the I � kM polynomials.In communications corrupted by noise, the previ-ous technique does no longer directly work. Two ap-proaches have been considered. The �rst one is to workon noiseless parts of the intercepted sequence of re-quired minimal necessary length. So the technique isrepeated on successive subsequences of length Lmin.The problem then is to deal with an interception longenough to be sure that at least one such noiseless sub-sequence is present.In [4] the theory of recurrent events [3] has beenused. Whilst giving acceptable results for non punc-tured encoders, this approach is less interesting forpunctured codes. So we used the following result toget far better approximation:Proposition 1 [5] A sequence of lengthN = Lmin(1� p)Lmincontains with a high probability a noiseless subsequenceof length Lmin, where p is the channel bit error prob-ability.The other approach was to try all the possible errorpatterns of a maximum given weight, according to thechannel noise level. It is more time consumming but inreturn requires a far shorter intercepted sequence.In a real context, noise level quite never exceeds 5 %(bit error probability Pb). Beyond that limit, other kindof codes are generally preferred (such as block codes).In very few cases the noise level may nearly reach 10 %.We �rst worked with a bit error probability of 0:01(EbN0 = 2:71 dB for an uncoded BPSK) to validate theapproach. In a �rst time, we looked for a noiseless partof coded sequence S. Experimental results were betterthan expected by the theory since we consider a verypessimistic noise model (uniformly distributed ratherthan burst-error model).In a second time, we try all the possible error pat-terns of a maximum given weight, according to thenoise level. It allowed to work with a far shorter inter-cepted sequence S�. Once again results were far betterthan expected. It is interesting to note that the re-construction is independent of the perforation pattern.Hence, no assumption need to done on this part of theencoder.We give here parameters (Table 1) we choose forexperiments on punctured codes of rate 23 (punctured

(2; 1;K) base code Cb) and puncturing patternP = � 1 01 1 �All computations have been performed on a 233 MhzLinux D.E.C. Alpha Workstation with gcc. In eachcase the complete code was reconstructed. Experi-ments show that in fact shorter intercepted sequencecould often be used in many practical cases.Extended results for any other encoder of any ratecan be found in [5] as well as for noise level up to 10 %.K S S�5 307 10610 3,084 25015 15,246 37020 67,445 490Table 1: Necessary minimal length sequence for rate 23 .Computation time required few minutes for case Sand were far more important for S�, ranging from fewminutes (K = 5) to 3 months (K = 20). This is es-sentially not a problem since the reconstruction is doneonce and for all and as the expected life of the real en-coder is generally greater than this computation time.More powerful computers and parallelization are boundto drastically reduce the computation time for criticalapplications. These latter generally use encoders withK < 23. Tables of the most used encoders can be foundin [1, 6, 9]. AcknowledgmentsI would like to thank Mr Guidoux and Captain Oddofrom the DGA for their valuable comments on this workand their friendly support.References[1] G. B�egin, D. Haccoun, C. Paquin Further re-sults on high-rate punctured convolutional codesfor Viterbi and sequential decoding, IEEE Transac-tions on Communications, Vol. 38, No. 11, Novem-ber 1990.[2] J.B. Cain, G.C. Clark Jr., J.M. Geist, Punc-tured convolutional codes of rate n�1n and simpli-�ed maximum likelihood decoding, IEEE Transac-tions on Information Theory, vol. IT-25, No.1, pp.97-100, January 1979.
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It becomes then obvious that this puncturing producesa new encoder producing three output streams.By use of polycyclic pseudo-circulant matrices [8],the new parameters are easily de�ned and we have the6 following polynomialsf1;1(x) = 1 + x f1;2(x) = 1 + x f1;3(x) = 1f2;1(x) = 0 f2;2(x) = x f2;3(x) = 1 + xwhere fi;j denotes the j-th parity-check polynomial ap-plied on input message stream i.


