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Abstract

This paper presents results on an operational recon-
struction technique of punctured convolutional en-
coders. With only intercepted coded messages and the
assumption that we deal with such kind of encoder, this
technique recovers all the parameters of the encoder, al-
lowing complete decoding. The technique works very
well even for noisy channels. Experimental results are
presented.

1. Introduction

Punctured convolutional codes were introduced by
Cain et al. [2] as a means of greatly simplifying both
Viterbi and sequential decoding of high rate convolu-
tional codes at the expanse of a relatively small perfor-
mance penalty.

A punctured convolutional code C is obtained by
periodically deleting output symbols from a (base)
(n, k,m)-convolutional code Cp. Output symbols from
Cp are deleted according to a periodic puncturing pat-
tern (or perforation pattern) which can be described
by its punctured matrix:

P11 .. Di,M
P =

Pna ..o DPnm

A very important problem is that of the reconstruc-
tion of such codes. In an attack context, a monitor
wants to have access to the transmitted information
(the message) without any knowledge on the encoder
which produces the intercepted stream (the coded se-
quence). The only way is to reconstruct the encoder,
that is to say to recover all its parameters. A simple
decoding then gives access to the message.

This paper presents the implementation results
of such a reconstruction for punctured convolutional
codes of any rate, using the technique presented in [4].
To be close to a real context, we fixed the following
critical limitations:
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e the available coded sequence can be short (about
few kbits).

e the beginning or/and the end of the coded se-
quence can be missing.

e We cannot use in any way the message.

In Section 2, useful notation for convolutional codes
are given as well as a short description of the basic
reconstruction technique of [4] we use for the punctured
case. Section 3 presents the reconstruction results for
punctured codes in noisy channels.

2. Basic Notation

2.1. Convolutional codes

A convolutional encoder can be seen as an encod-
ing system (based on a set of k shift-registers without
feedback) such that, at each time instant, k information
digits enter the encoder (one per register). Each infor-
mation digit remains in the encoder for K time units
and may affect each output during that time. The con-
stant K is the constraint length or the memory of the
encoder.

At each time instant, n information digits are out-
put, each of them resulting from the xor of k digits
produced by the action of n polynomials on each reg-
ister. The encoder is thus said to be of rate % The
action of the kn polynomials and shifts are easily de-
scribed by polynomial multiplications. So polynomials
will be used to represent the different streams.

A message will be composed of k interlaced input
streams, each of them represented by a polynomial of
degree N + t noted a;(x), s = 1,... , k. The kn poly-
nomials are of degree N (hence N = K — 1) and will
be noted f; j(z). Then the encoder produces n out-
put streams (of length t) represented as polynomials of



degree t, cj(z), j =1,...,n and we have:

Z ai(z) fij(x) = uji(z) + 2Nej(z) + 2V o (x)
(1)

The polynomials u;1(z) (resp. u;2) (the filling (resp.
the emptying) of the registers) are of degree at most
N — 1. Then the coded sequence is composed of the
n interlaced output streams. Finally the puncturing
pattern P is applied on the output streams.

Thus the parameters (to be recovered) of a convolu-
tionnal encoder are: k and n defining the rate and the
number of polynomials, K the constraint length, and
the kn polynomials f; j(z) of degree N = K — 1.

Generally, n and k are small integers with k& < n.
The most frequent case is &k = n — 1. On the con-
trary, N must be made large enough to achieve low
error probabilities. The symbols are usually elements
of GF(2) but generalization to GF(q) where ¢ is some
prime power (¢ = p™ for some positive integer m) can
be easily done. Without loss of generality, we will only
consider the case ¢ = 2 (for details and generalization
see [4, 5]).

2.2. The basic reconstruction technique

We now present a short description of the basic
reconstruction technique of (nonpunctured) convolu-
tional codes for n = 2 and k = 1 (for details see [4]).
The encoding scheme can be described by the following
polynomial equations:

up(z) + 2Ney (z) + :L'NHUM (z)

a(x)fo(x) = usi(z) +2Nex(x) + 2N Tuy o ()

We don’t use in any way a(z) (the message), it must
be eliminated. So:

a@) fi(@)fo(z) = uii(@)fo(2) +2Ver(2) f2(2)
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a(z) f2(z) f1(x)

+a Nt

or equivalently:

w1 (x) fo(x) + 2™ (e1(2) fa(2) + ca(z) fi (2))
+uy 1 () f1 () + 2N (e1 (2) folz) + ca(z) fi (2))
+2NF (uy o (2) fo (@) + u22(2) fi(z)) =0

By identification, all the coefficients of power of = be-
tween N and N + ¢ in the polynomial ¢;(z)f2(z) +
co(z) fi(x) are all equal to zero. In other words, we
have to solve the homogenous linear system: C' i =0

where 0 is the (¢ — N)-null vector and f is the (2K)-

vector:

(fl,())fl,l)fl,?a"' 7f1,N7f2,07f2,17f2,27"' 7f2,N)

The unknowns f; ; and fy; for ¢ =0,... , N represent
the coefficients of the polynomials to be recovered. The
(t— N,2K)-matrix C is constructed from the ¢; (z) and
¢o(x) which are known (coded sequence) so we can solve
the system and retrieve the two polynomials.

For a non-trivial solution (f;(x) # 0) the rank of C
must be at most 2K — 1 that is to say we must have
(noiseless channel):

t>3N+1=3K-1)+1=3K-2=1

min
For any other encoder of rate %, a recurring method
generalizes the previous technique. First we limit our-
self to the rate %1 since it is always possible to con-
sider this case. We thus will deal with (k+1) ”suben-
coders”. A simple coincidence checking on the common
polynomials allows to test the consistency of the final
solutions.

So let us consider the rate ”T’l case. Such an en-
coder is defined by the n equations (1):

= u;1 () + 2V ¢j(z) + 2N

Mw

ai(z) fij(z uj,2 ()

i=1

fori=1,...,n—1and j=1,...,n. Since we cannot
use in any way the different a;(x), we must eliminate
them successively. As described in section 2.2, we (ar-

bitrarily) choose first to eliminate a; (z).
Then we obtain (n—1) new equations involving only
(n — 2) message polynomials a;(x) for ¢ # 1. That is
n By re-

to say we are now facing the rate n—:% case.

peating this, we finally deal with the rate % case which
is easily solved. Simple polynomials operations allows
to recover very easily the constituent polynomials. De-
tailed example can be found in [5]. Finally we need
Lyin = (n+1)((2" 1 —=1)N + 1) — 2 bits [4].

3. The Reconstruction of Punctured Codes

Let us consider a (n,k, K)-(base) convolutional
code Cp. A given puncturing pattern P is a n x M
0 — 1 matrix with a total of I 1’s and nM — I 0’s where
p;,; = 0 indicates that the i-th symbol of every branch
in the j-th treillis section (of the treillis diagram of Cp)
is to be deleted.

Then the original code Cp, after being punctured
with pattern P, has become a (I, kM, m)-(punctured)
code ! C [7, 8]. Appendix A presents an illustrative

'In fact, the degree of the punctured code may be less than
K, but for most interesting punctured codes no degree reduction
will take place



simple example. That means that we have I x kM
polynomials to recover. We then generalized the re-
construction technique of [5] by recursively eliminating
the kM input (message) streams as in Section 2.2. We
obtain as a result a product of polynomials that we
easily factored to get the I x kM polynomials.

In communications corrupted by noise, the previ-
ous technique does no longer directly work. Two ap-
proaches have been considered. The first one is to work
on noiseless parts of the intercepted sequence of re-
quired minimal necessary length. So the technique is
repeated on successive subsequences of length L.
The problem then is to deal with an interception long
enough to be sure that at least one such noiseless sub-
sequence is present.

In [4] the theory of recurrent events [3] has been
used. Whilst giving acceptable results for non punc-
tured encoders, this approach is less interesting for
punctured codes. So we used the following result to
get far better approximation:

Proposition 1 [5] A sequence of length

Lyin
(1—p)"min

contains with a high probability a noiseless subsequence
of length L where p is the channel bit error prob-
ability.

min’

The other approach was to try all the possible error
patterns of a maximum given weight, according to the
channel noise level. It is more time consumming but in
return requires a far shorter intercepted sequence.

In a real context, noise level quite never exceeds 5 %
(bit error probability Py). Beyond that limit, other kind
of codes are generally preferred (such as block codes).
In very few cases the noise level may nearly reach 10 %.

We first worked with a bit error probability of 0.01
(f,—z = 2.71 dB for an uncoded BPSK) to validate the
approach. In a first time, we looked for a noiseless part
of coded sequence S. Experimental results were better
than expected by the theory since we consider a very
pessimistic noise model (uniformly distributed rather
than burst-error model).

In a second time, we try all the possible error pat-
terns of a maximum given weight, according to the
noise level. It allowed to work with a far shorter inter-
cepted sequence S*. Once again results were far better
than expected. It is interesting to note that the re-
construction is independent of the perforation pattern.
Hence, no assumption need to done on this part of the
encoder.

We give here parameters (Table 1) we choose for

experiments on punctured codes of rate % (punctured

(2,1, K) base code Cp) and puncturing pattern

- (19)

All computations have been performed on a 233 Mhz
Linux D.E.C. Alpha Workstation with gcc. In each
case the complete code was reconstructed. Experi-
ments show that in fact shorter intercepted sequence
could often be used in many practical cases.

Extended results for any other encoder of any rate
can be found in [5] as well as for noise level up to 10 %.

ESE
5 307 106
10 3,084 250
15 15,246 370
20 67,445 490

Table 1: Necessary minimal length sequence for rate %

Computation time required few minutes for case S
and were far more important for S*, ranging from few
minutes (K = 5) to 3 months (K = 20). This is es-
sentially not a problem since the reconstruction is done
once and for all and as the expected life of the real en-
coder is generally greater than this computation time.
More powerful computers and parallelization are bound
to drastically reduce the computation time for critical
applications. These latter generally use encoders with
K < 23. Tables of the most used encoders can be found
in [1, 6, 9].
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Illustrative Example
Let us take the (2,1,3) code with polynomials

(14+2%1+2+27%)

The two output streams can be denoted as follows:

By

(iL’O 1T T2 T3 T4 I3 >
Yo Y1 Y2 Ys Y4 Ys ...

using the following puncturing pattern:

r-(19)

we then obtain the two following output streams:

Zo o T4
Yo Y1 Y2 Ys Ya Ys ...

that we can rearrange as follows:

To T2 T4
Yo Y2 UYa
Yr Ys Ys

It becomes then obvious that this puncturing produces
a new encoder producing three output streams.

By use of polycyclic pseudo-circulant matrices [8],
the new parameters are easily defined and we have the
6 following polynomials

f171(5l7) =1+z f172(£13) =14z f173(5l7) =1

f21(2) =0 for(z) =2 foa(@)=1+2

where f; ; denotes the j-th parity-check polynomial ap-
plied on input message stream 3.



