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Abstract

This paper presents a new theoretical model of block ci-
pher cryptanalysis based on the use of a well-known error-
correcting code: the repetition codes. We first demonstrate
how to describe a block cipher with such a code before ex-
plaining how to design a new ciphertext only cryptanalysis
of these cryptosystems on the assumption that plaintext
belongs to a particular class. We then show how known
plaintext linear eryptanalysis can be generalized by a more
general repetition approach. Two cryptanalysis algorithms
are presented. The first one uses a single repetition code
while the second one uses concatenated codes whose outer
and inner codes are repetition codes. We compare the two
algorithms and prove that the first one is more efficient than
the second one. Open problems and technical parameters
are finally given as well as improvements on Matsui’s DES
cryptanalysis.
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1 Introduction

In October 2000, the NIST has selected the Rijndaél block cipher as the
Advanced Encryption Standard (AES) to replace the DES block cipher
and extent it to a massive world-wide usage. The growing dependence
of the commercial community on block ciphers -for its data security
functions- make it desirable to keep under review the strength of this

kind of encryption systems.

The evaluation of the AES, as well as for the other finalists [1], has
been essentially based on the the former cryptanalysis or their variant
forms: differential cryptanalysis [2], linear cryptanalysis [10], ... and
no significative results were likely to question their strength. Finally
we must admit that security consideration as a key point in the final
choice was not so relevant as we could have imagined since all of the
finalists offer a suitable high security. To quote Adi Shamir [14], “any
new real life cryptanalysis which may appear in the future will equally
challenge the finalists”.

On the other hand, the future seems to favour block encryption, at
least on the trade level. Few stream ciphers are known or proposed
whereas meanwhile many block systems are proposed (17 block cipher
systems for only 5 stream ciphers have been suggested for the New
European Schemes for Signature, Integrity and Encryption (NESSIE)
project [13]). As for the AES, only block ciphers were requested.
Though we can strongly affirm that a very consequent theory for stream
encryption exists, the block encryption theory does not provide more
than a few cryptanalytic techniques and results on the constituent prim-
itives at the round level. A rigorous and global description of formaliza-
tion of a whole system, including a combinatorial approach in particu-
lar, is still to come. In other words, who can affirm that hiding a trap,
for example, is totally impossible without being detected (this has still
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been more or less an open question for the DES); and what about the
existence of particular global mask values on input and output which
could drastically improve linear cryptanalysis techniques. The authors
of AES acknowledge this second fact [4, Chap 7 and paragraph 2 of
page 124]aesbk, which moreover is also relevant for any cryptosystem.

Actually, most of cryptanalysis capacity depends on the ability of
detecting these high correlations if there are some. In real-life crypt-
analysis it is not so much the maximum average correlation potential
that is relevant but the maximum correlation potential corresponding
to the given key under attack [4]. Our experience in cryptanalysis shows
us that very often it is more interesting and efficient to consider this
potential when considering a particular class of plaintext. In case of
block ciphers, this approach is particularly efficient since plaintext rep-
resents an active part in the production of the block cipher. This fact
has recently been pointed out by the statistical analysis of the Algebraic
Normal Form of Boolean functions modeling a block cipher [6].

In this paper we intend to introduce a new theoretical model of block
cipher cryptanalysis related to this approach. On the assumption that
a given subset of plaintext space has been encrypted and that conse-
quently, particular, higher correlation properties exist between only the
resulting subset of ciphertexts and any key of the key space, we design
an attack using repetition codes on ciphertext blocks only. This crypt-
analysis is called Plaintest-dependent Repetition Codes Cryptanalysis
(PDRC attack for short). It differs from a classical chosen-plaintext
attack as we do not have to choose or even know any of the plaintext
blocks. Moreover, a PDRC attack uses only ciphertext blocks. Thus
the difficulty is to find suitable properties that leaks information about
the key from the ciphertext. We then show that it is possible to gener-
alize linear cryptanalysis when considering the plaintext blocks too. In
this case, we consider Repetition Codes Cryptanalysis (RC cryptanaly-
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sis for short) which is itself a generalization of the PDRC attack. It
is shown that DES linear cryptanalysis can be significantly improved
with RC attack.

This paper is organized as follows. Section 2 presents theoretical
preliminaries and notation. Then Section 3 details the formal model of
the new cryptanalysis based on repetition codes. In particular we give a
combinatorial resistance criterion against PDRC attack and formulate
open problems relatively to the PDRC attack. Section 4 illustrates
this approach by considering an theoretical block cipher and explaining
how to practically implement PDRC attack. Section 5 presents the RC
attack as the generalization of both the linear cryptanalysis and the
PDRC attack. Section 6 concludes while presenting open problems
and future studies.

2 Background Theory and Notation

2.1 Repetition Codes

Let us consider a Binary Symmetric Channel (BSC) of parameter p used
to transmit messages over a binary alphabet. Its transition probability
matrix is the square matrix of order 2 whose coefficients are given by
a;; = q whenever i # j and a;; = p = 1 — ¢ otherwise.

In other words, if an emitter sends bit b; then b, = b, ® e, will be
effectively received with probaBility p (channel error probability). To
recover from transmission errors one uses error-correcting codes and in
particular linear codes. A binary linear code [n,k,d] is a vector sub-
space of IFy', of dimension k. Its minimal distance d is the minimum
Hamming weight of all non zero codewords (that is to say the n-bit
vectors). In other words d = zxg}gﬂ {wt(z)} where wit(x) denotes the

number of non zero positions in * = (z,...,2,). Then a well-known
result [9] defines the number of errors on a codeword that can be cor-
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rected by a code of minimal distance d as ‘i;—l—.

A n-repetition code, on a set of two symbols, is a [n,1,n] linear
code and consists of two codewords, each one of them is made up of
n identical symbols. Whenever ¢ > p, maximum likelihood decoding
(MLD) amounts to find out in the received vector which symbol is
repeated most. The vector will be decoded as 0 if its Hamming distance
to null vector is less than its distance to vector (1,1,1,---, 1), otherwise
it is decoded as 1. Thus MLD reduces to majority decoding.
Example 1 : Let us consider the message 01100 and a 3-repetition
code. Then the sequence 000 111 111 000 000 is transmitted. The
sequence 010111101110100 is received and decoded as 01110. There is
one residual error.

These codes are the most easily decodable among codes ensuring a
high protection. Moreover, repetition codes are the most efficient ones
when dealing with high noise probability p [10].

Proposition 1 [12] Let n = 2s + 1. Then the n repetition code is
correcting at most s errors and is a perfect code. Its bit error probability
(residual decoding error) is given by
n
Pop= Y ( e )pf-q“'*‘. (1)
i=s+1 p

The term perfect means that every words in the “ambient” space IF} is
decodable for maximum likelihood as in a perfect block code. Finally
the probability of successful decoding is given by

PBHC(::]'HPEI'“T"

It is worth noticing that if p < 1 the P04 tends towards 0 as s — oo.

2.2 Block Ciphers and Linear Cryptanalysis

A block cipher working on m-bit plaintext blocks P; with a n-bit secret
key K ((m,n)-block cipher for short) is a mapping from FJ* x F}
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to IFy*. Each time a given key K is chosen, the resulting mapping
restriction is a permutation over IF5*. A block cipher is thus a set of
2" permutations over IF*. Note that it represents a very small subset

of all these permutations ((2™)! in total).

Linear cryptanalysis [10] of block ciphers is a known plaintext attack
in which a very large number of plaintext-ciphertext pairs are used to
determine the value of a subset of key bits, thus greatly reducing the

exhaustive search part.

A condition for applying linear cryptanalysis to such a block scheme
is to find “effective”, probabilistic linear expressions between any plain-
text block P, any ciphertext block C; and any key K of the form:

p
< P,u>®<Cw>=< K,uv> (2)

where < ... > denotes the usual scalar product over I3, If this equa-
tion holds with a probability p # 3 then by checking the left-hand side
of Equation (2) for a large number N of plaintext-ciphertext pairs, the
right-hand side of this equation may be guessed by a simple maximum
likelihood decoding. A single information bit about the key is obtained.
This eryptanalysis is effective if the deviation |p — %| is large enough.
In [10], it is shown that the probability of unsuccessful guessing is very

small as soon as N > |p— 3|7

Generally the linear approximation deseribed by Equation (2) is
obtained by “chaining” single-round linear approximations obtained by
considering statistical biases in the constituent primitives. This implies
that other, possibly higher correlations that are depending on the global
structure of the systems are out of analysis capabilities [4, Chap 7 and
paragraph 2 of page 124].
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3 Repetition Codes Cryptanalysis of Block
Ciphers

3.1 Block Ciphers and Repetition Codes

Let us consider a given property Z and let us denote Pe[Z] the proba-
bility of 7 to be satisfied on set £. Then a block cipher can be broken
if we have, for some Z, Ppmn[Z] # 3.

Each key K in the key*space K = IF} selects a corresponding per-
mutation over JF;". Thus K may be recover if Ppm([Zx] # % where
Ik denotes the property Z related to the key K. Then we may dis-
pose of an attack if we can exhibit such a property verified for any
K € K (denoted Zx). For linear cryptanalysis, Zx is a particular linear
probabilistic equation.

Let us now consider the plaintext space P = IF3* and a partition
(Pi)i<ax of P for some k € N. Without loss of generality we suppose
that [P;] = 2™¥ for all i. Now suppose there exists (possibly many) P;
such that Zp, [Tx] = p; # 3. Since the encryption key K € K remains
the same for all the plaintext blocks, we may compare the encryption
process as a Binary Symmetric Channel (BSC) with parameter p; where
the noise is produced by the plaintext blocks from Py (see Figure 1).
The BSC is directly and closely determined by P;. The noisy version Zx

P

——

Ik Ik

Figure 1: Block Cipher and Binary Symmetric Channel

of I is a (possibly complex) function f(C) of ciphertext blocks C. In
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other words encrypting N plaintext blocks P € P; may be equivalently
defined as transmitting Zx by means of a N repetition code through
a BSC of parameter p;. From Figure 1, it means that over C; we have
PlIx =Tx] =1 -p;.

The aim of the designer is to obtain a set of permutations over C
such that no obvious properties Z leaks information about the key. But
the situation is likely to be very different when considering a restriction
to a subset C; C C. If we have

Rl = Y- Rol2]- Ple] = }

we however may have many Fp,[Z] different from 1 (it suffices that
2 € = Y(pi — 3) = 0). This fact seems to be partly explained by the
fact that the actual number of permutations over C effectively repre-
sented by a block cipher is extraordinary negligible compared of the

total number of permutations over the same plaintext space.

3.2 Description of the PDRC Attack

With the setting defined in the previous section, we now can describe
the plaintext-dependent repetition code cryptanalysis, very simply.
Note, once again, that local independance from the plaintext (due to
the restriction to a particular subset ¢; C C) allows us to design a
ciphertext only attack. We first present Algorithm A.1 which uses
only one repetition code.

Input: N odd) ciphertest blocks C; encryted by key K Jrom plaintext
P, € G (1 < j < N) and a probabilistic information Ty such that
Ix & F(C;) for some f and for all j.

Output: Eract value Z(K) for the actual key.

1. Initialize counter ct «— 0,
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2. For each of the N ciphertext blocks C;

(a) Compute f(C:).
(b) If f(C;) =1 then ct + +.

3. end for

4. If ot > 2L then I(K) =1 else T(K) =0.

Complexity of algorithm A.1 is easy to evaluate. It performs only
N evaluations of f. Thus complexity is O(N). Since N is the length
of the repetition code, according to Section 2.1, it depends only on p;
and psuce, the probability of successful guessing for Z(K).

To the knowledge of the author there does not exist a general for-
mula for N directly from parameters p; and psuce. We can only tabulate
results for fixed values of them. It is a well-known fact that for a fixed
Piy Psuce increases with N.

Example 2. Let us consider p; = 0.49999. Then psuce = 0.501784 for
N = 49999 while psuce = 0.5025 for N = 99999.

In order to obtain a as high as possible probability of success, we
designed a second algorithm A.2 which uses concatenated repetition
codes. The concatenation codes have been in introduced by Forney in
1966 [8] and generalized by Zinov'ev in 1976 [15]. The principle is to
use two codes as depicted in Figure 2.

The combination of inner encoder, channel and outer decoder can
be thought of as forming a new channel (called a superchannel). The
aim is to improve the correcting capacity of the inner code by use of a
second code. When transmitting over a very noisy channel, repetition
codes are suitable outer codes in classical concatenated codes.
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GUTER INNER " INNER OUTER
ENCODER ENCOUER CHANNEL DECODER DECODER |~ =

\ _{_l

SUPERCHANNEL

Figure 2. A Concatenated Code

In our cryptanalytic case, the superchannel is a BSC with parameter
P’ = 1 — Psyce produced by the inner decoding residual error. We
then iterate the decoding process on this superchannel with an outer

repetition code. Here is the algorithm A.2 whose complexity is in O(1V;-
Ng)!

Input: N, - N; (Ny, N, odd) ciphertezt blocks C; encryted by key K
from plaintest P; € Ci(1 < j < N) and a probabilistic information Ty
such that Ty S f(C;) for some g and for all j.

Output: Ezact value Z(K) for the actual key.

1. Imitwalize counter ctl «— 0.
2. For1<k <N

(a) Initialize counter ct2 « 0.

(b) For each of the Ny ciphertest blocks C; (k-th set)
i. Compute f(C;).
ii. If f(C;) =1 then ct2 + +.

(c) end for

(d) if et2 > M2l then T(K) = 1 else Z(K) = 0.

3. IfZI(K) =1 then ctl + +.
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4. end for
5. If ctl > M then T(K) = 1 else I(K) = 0.

While generally concatenated codes yield a better probability of
success, it is not the case when the outer and inner codes are both
repetition codes.

Proposition 2. Let N an odd number of ciphertext blocks. Algorithm
A.2 has a higher probability of success than Algorithm A.1.

The proof is given in Appendix A. However the concatenated code
approach allow us to compute a lower bound of A.1 success probability.
The general Formula (1) cannot be computed directly as soon as N is
too large.

3.3 Resistance Criterion against PDRC Attack

PDRC attack is possible if and only if there exists a subset C; C C such
that Pg,[Zx] # 3 for some property Z. This allow us to formulate the
following resistance criterion against PDRC Attack.

Proposition 3 : Let S be a (m,n) block cipher and let us consider
a property 7 about the key bits relatively to the ciphertext bits. S is
immune against the PDRC attack relatively to property Z if and only
if Vj € N the partition (Cy,Ca,...,C;) of C is such that

. 1
Vks_?, PC;,[I]= 5.

The cryptanalyst’s work is to find a exploitable property Z and a
particular subset of “meaningful” plaintext blocks in order to conduct
PDRC attack on S. On cryptographer’s side things may be far more
difficult. This difficulty is summarized with the four open problems
here following.
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3.3.1 Open Problems

L. PDRC immunity problem .- Given a property Z, is it possible to
design a system S which is PDRC-immune relatively to 7 7

2. Weak trap problem - Given ¢, c C, is it possible to design a
system S such that Py, [Z] # 3 for some interesting 7 (the trap) 7

3. Strong trap problem - Given T a property, is it possible to design
a system 5’ such that for all C; C C we have Py, [T] # 37

4. PDRC feasibility - Given S a system and C; a plaintext subset,
is it possible to find some property 7 suitable for PDRC attack
of S.

Problems 2 and 3 mean that it would be possible to hide a trap 7
in the system S.
Conjecture 1. There always exists a property Z for which any block
cipher system S is not PDRC-immune.

If true, this means that block ciphers are insecure systems.

Problem 4 is clearly the most important to solve, from cryptana-
lyst’s point of view.

4 Practical Implementation of PDRC
Attack

Let us consider a theoretical block cipher working on m-bit blocks and
with a n-bit secret key. The main problem is then to find a suitable
property Ty presenting a bias for a subset Ci C C of particular interest.
The basic idea is to work on a linear cryptanalysis basis, yet another
kind of properties may be found in the future. In this case, we need to
have an approximation of the form:

g
<Pu>®<Cw>S< Kuv>
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where u, v and w are masks used for bit selection. If we manage to find
a subset C; for which there exists v/, w' € IF3' x [F3" such that

g

q
< Cu >Z< K, ' > (3)

with ¢’ # 1 then we get a property Zx suitable to be used as a repetition
code.

Now it is important to explain how equations of the form of Equa-
tion (3) may work. On the whole ciphertext space these equations are
normally permutations and they hold with exact probability % (since
they are linear equations) when the considered block cipher is well de-
signed (which is the case for most of them). This is verified for any key
and thus for any permutation.

But at local level, that is to say when considering ciphertext blocks
produced from a plaintext subset, this equation does not generally hold
with exact probability 1. This fact can be explained as follows. Any
(m.n)-block cipher may be described as a Boolean function f; over
JF™ relatively to each of its output bits 7,0 < j < m. Let now
consider a given partition (C;);<;<o« of the whole plaintext space F3*.
We suppose that any C; contains 2"~* elements. On that whole space
we have

Pl< K,v>= f;(K)] = .%

thus for any v € IF} and any j. But since we have
1
P[< K,v >= fi(K)] = Zg—k - P[fje.(K) =< K,v >]

where fj¢, is the restriction of f; on C;, we may very likely have a
few C,, if not all, such that P[fj¢(K) =< K,v >] # 5. This fact
has been implicitly ackowledged by the AES designers [4, Chap 7 and
paragraph 2 of page 124]. A toy permutation is presented as an example
in Appendix B to illustrate this local effect.
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From a design point of view, this implies that chaining block ci-
pher primitives (in Feistel ciphers or SP-networks) will likely result in
uncontrollable, unsuspected structural biases in the whole structure of

the system.

5 Generalization : The Repetition Code
Cryptanalysis

The PDRC attack can be generalized by considering known plaintext.
In this case, a given property Zy is evaluated by using both plaintext
and ciphertext. Let us consider, once again, the special case of the

linear cryptanalysis. Probabilistic equations of the form:
q
<Pu>®<C,w>=< K,v>
may be rewritten as
q
<K v>E<Pu>a<Cw>.

We thus can use, once again, repetition codes in order to recover the
information bit < K,v >. Since we must know the plaintext blocks in
order to compute the right side of the equation, PDRC attack becomes
a repetition code (RC) attack. The algorithm A.2 remains essentially
the same. Note that with RC attack no exhaustive search on par of the
key is required. In the other hand we have to consider linear expression
on all the rounds.

Does this approach improve classical linear cryptanalysis ? In Mat-
sui's cryptanalysis [10, §6], two equations of 16-round DES using the
best 14-round expression have been established. Each of them holds
with probability 0.5 — 1.19 x 272! and 26 bits on the secret are re-
covered (when considering both encryption and decryption equations).
The attack requires 2% plaintext-ciphertext pairs to be available. Then
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the success probability is expected to be 85% [11]. For another example,
the success probability is expected to be 10 % if 2% known plaintext
blocks are available. The 30 remaining key bits are recovered through
an exhaustive search step.

To compare RC attack with linear cryptanalysis we still consider
the two best 16-round expressions (encryption and decryption), since
we cannot perform exhaustive search on part of the secret key, as in
Matsui’s attack. The encryption equation [10] is given by

Py(7,18,24] & Py[12,16] @ Cy[15] @ Cy[7, 18,24, 29,27, 28, 30, 31]

Ki[19,23] & K[22] & Ka[44] © K[22] @ K7[22] & Ky [44] @ Ko[22)
K [22) @ Kip[44] © K13[22] © K15[22] @ K (42, 43, 45, 46).

lI2=

This equation holds with probability p = 0.5 — 1.49 x 2-24. In order to
perform RC attack, let us rewrite this equation as follows

1® Py[7,18,24] & Py[12,16] & Cy[15]
©CL[7,18,24,29,27, 28, 30, 31]
= 1[19,23) @ Ka[22] © Ka[44] & Ks[22] & K, [22] @ Ks[44] & Ko[22]
OK1[22] © K1o[44] & Kis[22) @ K15[22) ® K6[42, 43, 45, 46,
which holds now with probability p = 0.5+ 1.49 x 2-24, Algorithm A.1

provide the following results compared to Matsui’s linear cryptanalysis
as shown is Table 1.

Table 1
Comparison Matsui’s and RC attacks on DES Cryptanalysis

Attack | Number of plaintext | Success probability
-ciphertext pairs
Matsui [8 2% 85 %
Matsui [9] o= 78.5 %
RC attack 2% 81 %
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Two information bits on the secret key are recovered but contrary to
Matsui’s attack, no exhaustive search is performed. It is worth noticing
that RC attack consider a equation probability (p = 0.5 + 1.49 x 2=24)
which is far weaker than that considered by Matsui p = 0.5—1.19x 2~
(but on the other side, partial exhaustive search is required). With
RC attack, if we manage to find more equations (ultimately 25 equa-
tions more), Algorithm A.1 will recover the whole secret key with the
same complexity (that is to say 2*° readings of plaintext and ciphertext
blocks).

Success probability of RC attack is computed by using the formula
Psyee = 1 — P, where P,,, is computed by means of the Formula (1).
Complexity and number of recovered secret key bits are identical. Thus,
it is clear that, all things being compared, RC attack improves linear
cryptanalysis, when considering the same biais.

6 Conclusion

In this paper we have presented a new model of block cipher cryptanaly-
sis by means of a N repetition code where N is precisely the number
of ciphertext blocks we need. This model shows that secret re-use from
block to block is very dangerous, provided that we know a suitable
equation. Theory says that such equations exist. Key management for
block ciphers should be seriously be taken into consideration and con-
‘'servative rules should be adopted. The secret key should be changed
more frequently than suggested up to now.

The search for equations for the form (3) is under way for known
block ciphers using the VAUBAN PACKAGE. For different block ciphers,
such candidate equations equations have been found. However thor-
ough verification need to be conducted to definitively accept them as
valid for a practical cryptanalysis. Details are available on the author’s
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webpage [7].
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Appendix
A : Proof of Proposition 2

Let us write N = N; - N, where N; and N, are odd integers. Since

Algorithm A.1 uses a [N, 1, N] repetition code, its correcting capacity
1 (Ni-Na-1)
aa

is given by Ng‘

Suppose now that in Algorithm A.2, the superchannel’s code is a
[Ny, 1, V] repetition code and the outer code is a [Na, 1, N3] repetition
code.

The superchannel code may correct up to =1 errors while the

2
outer code is correcting at most —“—'25*—’.

Let us consider the worst case as follows. During the outer code
decoding process, exactly &211 errors occured. They correspond each
time to a wrong decision by the superchannel code. In other words,
that means that each time at most N, errors occured each time.

On the contrary, for each of the N, — ﬂi{—‘- correct decisions by the

outer code, at most =1 errors may have occured. Finally, at most

N No—1y /Ny —1
le( 5 )+(N2_ 7 )x( 5 )
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may have occured while final correct decision has been obtained. After
simplifying the previous expression, we obtain for the maximum number
of errors:

3NN, — N: - N -1 — NN, — N1N2+N:+N1 — 1_

It is precisely the total number of errors that may successfully correct

the concatenated code. Hence the results.
B : Toy Permutation with Local Bias
Let f be the permutation over Fy given by

(215, 100, 200, 204, 233, 050, 085, 196,
071, 141, 122, 160, 093, 131, 243, 234,
162, 183, 036, 155, 004, 062, 035, 205,
040, 102, 033, 027, 255, 055, 214, 156,
075, 163, 134, 126, 249, 074, 197, 228,
072, 090, 206, 235, 017, 022, 049, 169,
227, 089, 016, 005, 117, 060, 248, 230,
217, 068, 138, 096, 194, 170, 136, 010,
112, 238, 184, 189, 176, 042, 225, 212,
084, 058, 175, 244, 150, 168, 219, 236,
101, 208, 123, 037, 164, 110, 158, 201,
078, 114, 057, 048, 070, 142, 106, 043,
232, 026, 032, 252, 239, 098, 191, 094,
059, 149, 039, 187, 203, 190, 019, 013,
133, 045, 061, 247, 023, 034, 020, 052,
118, 209, 146, 193, 222, 018, 001, 152,
046, 041, 091, 148, 115, 025, 135, 077,
254, 147, 224, 161, 009, 213, 223, 250,
231, 251, 127, 166, 063, 179, 081, 130,
139, 028, 120, 151, 241, 086, 111, 000,
088, 153, 172, 182, 159, 105, 178, 047,




178 Journal, Indian Statistical Association

051, 167, 065, 066, 092, 073, 198, 211,
245, 195, 031, 220, 140, 076, 221, 186,
154, 185, 056, 083, 038, 165, 109, 067,
124, 226, 132, 063, 229, 029, 012, 181,
121, 024, 207, 199, 177, 113, 030, 080,
003, 097, 188, 079, 216, 173, 008, 145,
087, 128, 180, 237, 240, 137, 125, 104,
015, 242, 119, 246, 103, 143, 095, 144,
002, 044, 069, 157, 192, 174, 014, 054,
218, 082, 064, 210, 011, 006, 129, 021,
116, 171, 099, 202, 007, 107, 253, 108)

and let us note the input ¢ = (27, ©s, Ts, T4, T3, T2, T1, To) and the out-
put f(z) = y = (Y7, s Us, Y4 Y3, Y2, Y1, %0). Now let us consider the
restriction of f when (z7, x5, 75, 24) = (1,1,1,0). The we have for this
particular subset of inputs

Plag ® w3 = yo] = — #

5,1
= 167 2
and

B =

5
P[In\“.n?is:yo@y;l:g%
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