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Abstract— In this paper, we present a novel approach which con- universal steganalysis answers the questiots :tie medium
sists in exploring statistics in the compressed frequency domain. g stego medium "? Even if the universal steganalysis is
This approach is motivated by two main characteristics of the more general and so less efficient than the specific one for

lossless compression step of the JPEG format. First, this step cand tecting th f - t hic algorithmeth
be viewed as a bijective mapping and then, it has an avalanche etecting the use ol a given steganograpnic algorithmgther

criterion close to 0.5. This properties enable the design of are two main interests for using it. First, universal stegpsis
detection schemes which the efficiencies are constant and do notschemes are independent of the steganographic algorithms;

depend on the amount of information that has been embedded. stego media embedded with amknown algorithm may
This characteristics define a new class of promising functions for also be detected by such schemes. Secondly, it is the only

steganalysis. We illustrate our technique by considering RLE plus . . .
Huffman as such a function and evaluate it by blindly detecting possible way to detect the use of steganographic algorithm

the use of Outguess, F5 and JPHide and JPseek. Experimentalfor which no specific steganalysis is known. So, the central
results show that our steganalysis scheme is able to efficiently property universal steganalysis schemes should verify is
detect the use of new algorithms which are not used in the the following one: given a set of known steganographic
training step, even if the embedding rate is very low £ 10°°).  55rithms for the training step, we are able to detect thee us
As expected, the accuracy of our detector is independent of the . . S . .
payload. a new §tgganograph|c algorithm whlch is not in th<=T previous
set. If it is not the case, the considered scheme is vulgarly
dependent on a steganographic algorithm and is a specific
steganalysis scheme. In the remaining of this paper this
main property will be calleduniversality property We also
|. INTRODUCTION propose to extend the definition of universal steganalysis t
Steganography is the science abvered writing Its Stronger concept ainconditional steganalysi#\ steganalytic
purpose is to hide information in a cover medium so that it Bcheme would be saidnconditionalif and only if, given a
“hard” for everyone to detect the existence of the embeddé&gt of known steganographic algorithms, the scheme is able
information. On the opposite side, steganalytic schemed tl0 detect the use ainy new steganographic algorithm which
to detect hidden information in a mass of cover medi& not in the previous set. The universal steganalysis véll b
Let Alice and Bob communicate using a steganographiudied through the scope of the universality property dned t
algorithm A, for instance, to hide the world their love affair,efficiency of the proposed scheme will be measured by the
and Eve, the paparazi, who will earn lot of money if shéetection rates when detecting algorithms which are not in
can prove Alice and Bob are lovers. In a classical mod#ie training set.
and according to the Kerchoff's principles, Eve knows all
the steganographic techniques Alice and Bob are likely toln this paper, we take place in Eve’s shoes, and our goal
use. So, she can design dedicated methods to detect theitide detect the existence of embedded message into JPEG
of A specifically; this is calledspecific steganalysisin a images. The training set of our universal steganalytic sehe
harder model of attack, we make the hypothesis that Alié®@ composed of images embbeded with the well known
and Bob keep their steganographic algorithm secret and Esteganographic algorithms, Outguess [1], F5 [2] and JPHide
does not know the specifications gf. Her goal is now to [3] but it can also be designed with another algorithms in
build a detector, which does not depend gnand which the same way. In JPEG steganalysis, people traditionally
distinguishes cover and stego media in order to prove tH&t to find detectable properties directly studying statsst
Alice and Bob indeed share secrets through steganograpff/;the DCT coefficients or of the decompressed images.
this is calleduniversal steganalysis By contrast, we propose to examine Huffman compressed
data, which are DCT coefficients compressed first by RLE
Specific and universal steganalysis do not achieve the sa@fgl then by Huffman compression algorithms. We point out
goal; the specific steganalysis answers the questitnte new statistical features to detect hidden information iEGP
medium was embedded with the algorithh ?” and the images. We examine different cases of training sets and
evaluate the universality property of our scheme.

This paper is based on “Universal JPEG Steganalysis in thep@ssed The starting point of our work was presented in [4]. We detail
Frequency Domain,” by J. BarbieE. Filiol, K. Mayoura, which appeared in

the Proceedings of the 5th International Worshop on Digitatermarking here some keys to deeply LfnderStand why the e_Xperimental
IWDW 2006, Jeju, Korea, November 200§) 2006 Springer. results pass beyound the limit set by the compromise between

Index Terms— universal steganalysis, JPEG, Kullbak-Leibler dis-
tance, Fisher discriminant.




the capacity and the detection of a steganography schemeMiain Characteristics of Coding ProcesseA:digital image
This paper suggests the existence of a particular group aafn be represented by pixels. The three color coefficierad(R
mappings which could be explored to conceive steganalysiseen, Blue or RGB) for each pixel are transformed into a
techniques which the accuracies do not depend on thew coding scheme: one luminance coefficient (Y) and two
payload. We also discuss the way to correctly code oahrominance coefficients (U and V or also called Cb and Cr).
algorithms and their computational limits. After the conversion from RGB to YCbCr, the values, are
gouped in8 x 8 pixels blocks, and transformed by a forward
In the first section, we quickly present the JPEG standafdCT. Most of the frequency coefficients obtained are very
the DCT-based steganography and give a brief descriptionlofv and we can remove a lot of them and still reconstruct the
the steganography algorithms we blindly detect. In the seécooriginal values. The low frequencies are conserved white th
section, we recall state of the art JPEG steganalysis tgebsj high frequencies are removed.
put our approach back in its place and connect it to our After the DCT transformation on each block, the DCT
previous works. We also present a new approach for JPEGefficients are quantized. This step called quantizasoihe
steganalysis based on statistics in the compressed freguemain lossy process. The coefficients are divided with fixed
domain and point out some function characteristics in otder values coming from a specified table and then rounded. Most
define a new class of good functions for steganalysis. Theaf,the quantized DCT coefficients are equal to zero.
we present our statistical features and how we chose themThe “zig-zag” order consists to order the coefficients inteac
In sectionlV, we explain the design of our Fisher classifie§ x 8 block (most of them are equal to zero).
detail the experimental framework and the results we obthin  After the “zig-zag” sequence, the last steps are lossless
We evaluate the efficiency of the scheme using Outguess, E8mpression. First a simple REES used to compress the high
and JPHide algorithms. Some keys are also given in orderftequency coefficients. Then a Huffman coding procedure is
code the proposed steganalysis scheme. Finally, we canclagplied. Finally, the output is the JPEG raw binary data.
in the last section and give some discussions.

B. Embedding Information in the DCT Coefficients

Il. JPEG SEGANOGRAPHY The JPEG compression process can be divided into two
main parts: the first one computes quantized DCT coefficients
A. The JPEG Format from a bitmap image3 and some parametef8, ; it will be

The Joint Photographic Expert Group (JPEG) was createdr}ﬂtedcl'

1986. This Group worked on digital compression and coding C : (B,P) — (DCT;), where DCT; € Z.

of continuous-tone still images. These studies have letido t ) . o

CCITT! recommendation T.81 and the 18Gtandard 10918- i IS @ lossy compression, that meafisis not a bijective

1 mapping. So, if we applyD;, the decompression algorithm
The JPEG format defines four types of compression moq%§300|ated t@; we don't retrieves.

which are sequential, progressive, hierarchical and dsssl D, : ((DCT;),P1) — B with B # B.

In our case, the progressive mode is used. ) )
The second one computes a string of binary compressed data

from quantized DCT coefficients and some paramefysit

3. . , . .
DCT*-Based Coding: The figure 1 explains the mamv\{w be notedC,

procedures for all encoding processes based on the DCT.
order to simplify, the diagram operates on a single-compbne Cu : (DCT;), P2) — (bj) whereb; € F,.
image.
J C, is an unlossy compression, that implies it is a bijective
mapping.

5o DCT-based encoder

: Since(; is not a bijective mapping, one cannot naturally
| en 'l:] hide information during the first step, otherwise some of
B B FDCT Quantizer  |—pf eﬂm - )
ﬂ the embedded information will not be retrieved. Informatio
can only be hidden during the second step. This step, as we

Saurce =7 Tadlo Coteeed saw previously, is divided into zig-zag re-ordering, RLEdan
L specifications specifications image data . ]
RO Huffmann encodings. So, the only practical way to embed any

information is in DCT coefficients, after RLE or Huffmann
encodings. To minimize the distortions of the original ireag

Figure 1. DCT-based encoder simplified diagram DCT are the most adapted

Linternational Telegraph and Telephone Consultative Corasitt
2|nternational Standard Organisation
3Discrete Cosine Transform 4Run Length Encoding




The main problem, when embedding information in DCT. Avicib et al. [5] introduced metrics based on images gyali
coefficients, is to preserve the statistics of the cover omadi
State of the art steganographic systems take care of keepin@revious methods have even been used together [16] to
DCT statistics unchanged, histogram for example, but evenincrease the accuracy of detectors. Among these techniques
DCT statistics are preserved, many steganalysis scherfies {#&e can distinguish two categories of steganalysisecific
[6], [7], [8], [9] are based on deviations of some decompedsssteganalysisand universal steganalysis
cover image statistics. It seems that both cannot be pregerv

at the same time. 1) Specific SteganalysisSpecific steganalysis is dedicated
to only a given embedding algorithm. It may be very accurate
C. Detected Steganographic Algorithms for detecting images embedded with the given steganographi

1) The OutguessThe Outguess steganographic algorithrﬁlgorithm but it fails to detect those embedded with another
[1] was proposed by N. Provos in 2001. It was designed @890rithm. Techniques developped in [11], [12], [13], [15]

preserve first-order statistics. Outguess embeds infeoman |1 7] aré specific.
two main steps as follows. First, using a RC4 based PRGN,
the algorithm embeds message bits into randomly chooserd) Universal SteganalysisUniversal steganalysis enables
redunctant LSB of the DCT coefficients. Then, in a secorf@ detect stego images whatever the steganographic system
step, some LSB of DCT coefficients are flipped in order th&®€ used. Because it can detect a larger class of stego images,
the DCT histogram of the stego image is as close as possibldS generally less accurate for one given steganographic
to the DCT histogram of the cover image. algorithm. Methods presented in [5], [6], [14], [16], [7BI
[9], [4] are universal.

2) F5: The F5 steganographic algorithm [2] was proposed
by A. Westfeld in 2001. As Outguess, it is designed to In this paper, we will study an universal method adapted
preserve first order statistics, notably the DCT histograrfr the compressed frequency domain. Our novel approach
First, F5 permutes all DCT coefficients using a PRNGOnsists in focusing on this domain, whereas up to now all
Then, it encodes the message with an error correcting cdfi€ steganalysis schemes deal with the spatial or the fregue
and embeds the associated code words with introducd@main. But, unlike classical universal steganalysis st
well choosen errors, into non zero DCT coefficients. B{fie main point we want to show is the ability of our universal
this way, F5 increases the capacity of the cover imaggeganalyzer to detect the use of a steganography algarithm
Unlike Outguess, F5 does not use the LSB of the DOTot used during the training step. The first results of this
coefficients but decreases the absolute values of non z#@k has been presented in [4]. In the same spirit and taking
DCT coefficients. The algorithm was designed to prevent igslvantages of the easy way to detect statistical deviations
use fromy? steganalysis [10] by mapping the DCT value$he compressed frequency domain, we designed the Multiple
to the steganographic values: even negative and odd pmsifiymbedding Method [17] for specific JPEG steganalysis and

coefficients embed an one value, then odd negative and e@&ftained better results in specifically detecting Outguéss
positive ones embed a zero value. and JPHide and JPSeek. In the same way, our specific detectors

have detection rates independent of the embedding ratecand s
3) JPHide and JPSeekiPHide is a steganographic systerd’e able to detect JPEG image embedded with only few bytes.
developped by A. Latham in 1999 [3] which embeds data
in LSB of the DCT coefficients. It uses a PRNG based on .
Blowfish. B. A New Point of View

We have to keep in mind three important intuitive assertions

lll. DETECTINGJPEG SEGOIMAGES e embedding information in DCT;, will change

A. JPEG Steganalysis Methods Dy((DCT;), Py) but alsoC, ((DCT;), Ps).

Different approaches have been used to detect stego images. One cannot preserve at the same time the statistics of
The first one consists in studying directly DCT coefficients ~DCT;, those of D, ((DCT;), P1) andC,((DCT;), Pz).
like J. Fridich [11], [12] who looked at first order statistic —® hiding information tends to introduce a variation of
and at the discontinuity of DCT coefficients at the borders entropy.
of blocks for detecting the use of F5 and Outguess. She ajg@st of steganalytic techniques consist in observing some
pointed out some other features for the frequency domaifatistical deviations directly on DCT coefficients or in
[13], [14] for JPEG syteganalysis. Dy((DCT;),Py). We propose here to explore statistics in

C.((DCT;), Pa).

The second approach is dedicated to the spatial domain. H.
Farid and S. Lyu obtained classifier with a high detectior rat | et 1 a given JPEG image to analyse alig))S the output of
by combining Support Vector Machines (SVM) with higheg, . we noticed a variation of the entropy of the output stream
order statistics [6], [7] or with wavelet transform staitist[8],

[9] of decompressed_ JPEG_ imgge. J. ‘] Harmsen et al. [155(bj) is only composed of the RLE and Huffman compressed DCT
proposed to use a Fisher discriminant instead of a SVM abgkfficients and does not include the JPEG file header.
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images with different embedding rates

. . This approach gives us a new direction to look for. The
when the Image has been emt_)edc.jed with a Steganograpm%ﬁn characteristics of RLE and Huffman compression
scheme. The binary entrop¥ (1) is given by step that make our steganalysis works in such a way are

H(I)=—-P(I)log P(I) — (1 — P(I))log(1 — P(I)), (1) twice. First, this step can be viewed as a bijective function
Statistical deviations on the input variables will generat

binary entropy H(I) is an approximation of the entro statistical deviations on the output variables, but logkin
Y Py bp pyg?r such deviations could be easier in the output domain

according to Shannon’s definition. Observing a deviation d even be more discriminating. This is why using non
the binary entropy is equivalent to observe a deviation {)ain g y g

P. For non stego images? follows a Gamma probability tmear Support Vector Machines are often more efficient

) . - . . than linear ones. Such functions can be compared to a
density function, whereas the probability density functio e o ) e
N . - magnifying glass that reveals and amplifies hidden stadibti
is different for stego images. More surprisingli, follows

o . deviations. Then, the fact that this function has an avélanc
a normal N'(0.5,0) probability function and so, whatever - " " oo
. : . ; __criterion close to 0.5 implies that whatever the number
the embedding ratey, is, as shown in the figure 2. This

difference of probability laws for stego and non stego insige of changes done on the input, half the bits of the output
. L will be flipped. This conditions define a class of good
explamed.by the avalanche criterion pf the RLE gnd Huffm gnctions to design stegnalysis schemes with efficiencies
compression step. The avalanche criterion was introduged iRdependent of the payload. RLE and Huffman is one of them
Feistel [18] in 1973 for cryptographic purpose. It measures ' '
the number of bits of the cipher text which have been flipped

when only one bit of the plain text has been flipped. Goo We noticed a variation of higher order statistics of
cryptographic algorithm, and more particularly hash fimrs, b“<(DCTi)’ P») when a message is embedded, degptés a

. o ijecti i h hic algori
are requiered to have an avalanche criterion close to 0.6. Lgectlve mapping and the steganographic algoritirtends to

o reserve the statistics of DCT coefficients. We have desligne
us denote() the avalanche criterion of RLE and Huffmanp e . o
compression stepP(I) the probability thats; is equal to 0 a steganographic distinguisher based on this deviations.

before the embedding arfd (1) the same probability after the
embedding. TherP (1) is given by

where P(I) is the probability thatb; is equal to 0. The

C. Universal Steganalysis Scheme

/ As previously, letl be a given JPEG image to analysk,
P (I)=PI)(1-Q)+1-PU)Q. @ the output ofC,, and P(I) the probability thath, is equi?t)o

If Q is close to 0.5 ther?’ (I) ~ 0.5. As shown in figure 0. P(I) can be seen as a global measurement. Now, let us

3, when only few bits of the LSB of DCT coefficients aresee how JPEG steganography introduces local variations. To

flipped, after RLE and Huffman compression almost haffbtain a set of statistics ofb;), we divide the streantb;)

the bits are flipped. So, when embedding few bytEs() into blocks B; of size s bytes, so that

becomes closer to 0.5. These phenomena is amplified since B —b b c T 3)

the avalanche criterion is close to 0.5 when only few bytes @7 TixBstl e U(i1)x8s = T

of DCT coefficients are changed and since steganograpg estimate the Hamming weights(B;) = 25:1 bix8s+js

systems embed additional DCT coefficients to keep first ordier the stream blocks. Naturally, variations d?(I) will

statistics unchanged. Whatever the amount of information waplies variations ofw(B;) which can be seen as local

want to hide, P'(I) ~ 0.5 and thus makes possible themesurements.

existence of steganalyzers which the detection rates asi-qu

independent of the payload. Let X € Q = [0, 8s] be the random variable which values

are thew(B;). We compute the probability density function
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followed by X and its moments of ordef, M;(I). As g

illustrated in figure 5X does not follow the same probability

density function whetherl is a stego image or not. So,

we experimentaly compute the average probability function IV. EXPERIMENTAL RESULTS

p(x) followed by X when I is a cover media (figure 5) - .

aEld) introduce the Kullbak-Leibler distance to measure tr';_\é Classifier Design

dissimilary between the observed probability density fime ~ We need a set¢ of cover media and a sef§ of stego

p(x) and p(x). p(x) is computed taken randomly a hugdmages. For convenience, these samples have the same
amount of cover media and evaluating the density probgbilicardinality, but the following method can be easily adapted
function follows by X for each imagep(z) is then defined as with learning sets of different cardinalities.

the mean of all these functions. The Kulbak-Leibler diseanc

D(p,p) is defined by First, for each set, we computé. = {V(I)|I € C} as
. defined in (5), andVy, = {V(I)|I € S} which are subsets
D(p,p) = Zﬁ(z).loglﬁ. (4) of RF+4, We denoteg,, respectivelyg,, the barycenter of
Joperct p(x) V., respectivelyV,, andg the barycenter ofy., gs. Then, we
o ) ) ) take g as the origin of the system of coordinates and compute
As this distance is not symmetric, we introdu€® (/) = the covariance matrice$]. and V. Finally, we compute the

D(p,p) and Dy(I) = D(p, p)- As illustrated in figure 5, the intraclass and interclass variance matri¢&sand B defined
density probability function ofX' for the cover image of the ynder our hypothesis by

figure 4 is very close t@(x). On the contrary, we observed

a deviation of this function after embedding the image with B = l(gc — g:)(ge — gs)/7 (6)
Outguess. We have noticed that embedding with Outguess, F5 2

and JPHide and JPSeek increases the Kulbak-Leibler déestanc 1

between the observed density probability functionX6fand W = 5 (Ve+ V). @)

p(z).
The variance matrix}’ is given byV = B+ W.

Now, we will mapI to the statistical vectoy(I) of k + 4
coordinates defined by The Fisher discrimination analysis [19] consists in finding
a projection axis which discriminates the bé&stand); and
I— V()= Mo(),...,Mp(I),P(I),D:1(I),D2(I)), thusC andS. This axis,(g., gs), is defined by the vector
(5) )
and design an universal steganalysis scheme which the para- u=W=(gc— gs), (8)
meters arés, k). Each component of the statistical vector does

I . .
not follow the same probability density function whethee thWher?M = W~" can be considered as a.metnc. Actually, a
image! is a stego one or not new imagel, representated by the poiptwill be said to be

in C, if d*(p,g.) > d*(p,gs), whered is a distance based on

We have pgmted_ out some statlstlc§ n the com_presseq f{ﬁé metric M. According to the Mahalanobis-Fisher rule, we
guency domain which are liable to deviation when 'nformat'od{ecide thatl is in C if and only if
u -

is embedded with a steganographic algorithm such as O
guess, F5 or JPHide. These statistical features are indepen pau=pM(g. — gs) > T, 9)

of a specific algorithm, but to prove our scheme is an efficient

universal steganalysis scheme we still have to evaluate wbhereT is the detection threshold. Another metric can also
universality property, as discussed in the introduction. be considered, setting/ = V1.



B. Coding Considerations Detection Algorithm

In this subsection, we summarize formally the methodology ]
we followed to designed our classifier. As classifyininpm- I'a JPEG image to analyse.
techniques our steganalysis scheme is divided into two

main parts, which are thdearning step and thenthe parameters: (u,T) provided by the Learning Algorithm.

detection stepThe first one is time consuming but can be k the greatest order of moments of the
done off-line, only once. The learning step provides a set variable X .
of parameters for the detection algorithm. The detection s the size of the blocks.

algorithm is very quick and can be run on-line. Moreover, the

same parameters can be used for all the images to be analySEPUt:

“Stego-medium”or “cover-medium”

Learning Algorithm 1) ComputeV(I) according to equation 5.

2) if V(I).u > T then return “cover-medium”
else return “stego-medium”.

Input: A" a set of steganography algorithms.

C a set of sizen of cover-media. The time and space complexities are trivialy linear in
S a set of sizen stego-media embedded the size of the analysed JPEG file. This algorithm can be
with algorithms inA . efficiently coded as all the statistical features are based o
Parameters: k the greatest order of moments of the counting the number of 0-bits in the data stream.
variable X .

C. Learning Step
For each training of our classifiers, we used between

s the size of the blocks.

Output: u, a vector ofR**+*. 3,000 and 4,000 randomly choosen images from a database

1)
2)
3)

4)

5)

6)

T, a detection threshold. of about 100,000 JPEG images downloaded from the web,
notably https://www.worldprints.comn 2000. The database
ComputeV, = {V(I)|I € C}, according to equation 5. iS composed of grayscale and color images of different sizes
ComputeV, = {V(I)|I € S}, according to equation 5. We disposed of a sefl = {Outguess, F'5, JPHide} of

Compute(g., g,) the barycenters o, andV, such as three known algorithms, for which known specific attacks
exist. Our goal was to produce a subsgtc A for training

1 our classifier so as to, at least the use of one algorithm in
cyYs) = — I7 I . A’ ] ’ .
(9c95) n <%V( ) IZE;SV( )> A’ can be efficiently detected. We chose to configure our
. ) _ _ scheme withk = 3, which is a good trade off between
ComputeW ™" and V™" according to equations 6 andreasonable computing time and a good detection accuracy.

7. . ) We tested different values for: 8, 16, 32 and 64. To show
ChooseM € {W~1,V~'} andT € R such as(M,T) the effectiveness of our approach with very low embedding
equals rates, we mixed stego images with an embedding rate from

#{1 € CIV(I).M.(g. — g) = T+
#{I € SV(D).M.(g. — g.) < T}

Return v = M.(g. — gs), andT.

1075 to 1072,
Argmazx ( )

We tried all the subsets bud and the empty set. For

At that point, we first have to do some Compromiseél_lustration, we give in table | the best experimental pagtens
On one hand, the detection algorithm will be all the mor@btained for the subsetd, = {F5, JPHide} and Ay =
accurate as the training sets are bigger. On the other haed, tOutguess, JPHide}, of two algorithms. The training set
coefficients of and V' are real numbers and then we cafor 41 was composed of 2,000 cover media and 2,000 stego
not do some approximations during the computatioifof!  images .embedded respectively by F5 and JPHide with the
and V1. Otherwise, the result of the equation 8 may be f&mbedding rates0~°, 107, 107%, 10~% and 107%. The
from the theoretic value of: and the detection algorithm training set forA,, figure 6, was composed of 1,500 cover
may diverge. To code this algorithm, we decided to use tieedia and 1,500 stego images embedded by Outguess and
Gnu Multiple Precision Arithmetic Library and encode aleth JPHide with the same embedding rates. For each training set,
coefficients with exact rational numbers. Trivialy, aritatic We determined the discriminant factorfor the metricsiv—!
operations with such numbers are no more linear in the si#8dV ~' as defined in section IV-A. We also chose the value

of the operands. All the more, the size of these numbdf s which gave us the best detection rate for the training set,
increases with the cardinality of the training sets, in order to preserve the detection of cover media during the

wild detection step.

The main reason we chose the paramétdess than 4 in
practice, is motivated by the fact thafz) seems to be(x)
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TABLE |I.
OPTIMAL PARAMETERS FORA1 AND As.
Ay Ao
Metric w1 W—T
threshold -0.2576 -0.2272

s 16 16
—2.786796 ' — 02 —1.479200FE — 02
—7.513114F — 04 —3.510628F — 04
+4.230118F — 05 +2.590442F — 05
u +7.628112F — 07 +4.470248FE — 07
+8.246617FE — 02 +9.995430F — 02
—1.217546 F + 00 —1.250042F + 00
+6.209087F — 02 +3.160536 £ — 01

discriminating moments may save some computational time.

D. Wild Detection Step

To show the efficiency of our scheme, we randomly gener-
ated challenge sets composed of 1,000 cover media and 1,000
stego images embedded with an embedding rate frorf
to 102, After having trained two distinguishe®; and D-,
as explained in section IV-C, with respectivelyy and A,
we made them detect the use of new algorithms, Outguess for
D; and F'5 for Ds. The efficiency ofD; and D, is presented
in the figure 7. Two main conclusions can be drawn when
observing these results. Firstl§); and D, are able to detect
efficiently the use of an algorithm which has not been used
in the training set, that proves the universality properfy o
our scheme. Nevertheless, this only proves that our detecto
may detect images embeded with an unknown steganographic
algorithm but with no confidence it will work with all unknown
steganographic algorithm. Finally, the detection ratecappto
be constant and independent of the embedding rate (figures 7
and 8), according to the hypothesis we made in section IlI-B.

Detection rates for the Outguess using F5 and JPHide and JPSeek for training set
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Figure 7. Detection curves faD; detecting Outguess.
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shifted to the left as illustrated in figure 5. But, the global
shape ofp(z) is close to this ofp(z), that implies that the
random variables they represent will only differ in a sigrafit
way for the lowest orders of statistical moments. That mgans
moments of order higher than 4 will not be discriminating.
Moreover, as we explained in section I1V-B, computiig !
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and V! is very time expensive since their coefficients areigure 8. ROC curves foD, detecting F5 for different embedding rates,

exact rational numbers. As evaluating—! and V! costs
O(k?) arithmetic operations, constraining to the really



More precisely, the characteristics 8, and D, are summa- system.
In future researches, we will try to improve the efficiency of
« D, detects the use of Outguess with detection rafdir scheme using Support Vector Machines instead of Fisher

90,47%, positive error rate 10% and negative error rag#scriminant. We hope to benefit from the non linearity of
certain kernels and so increase our detection rates. Thvs ne

« D, detect the use of F5 with detection rate 88,97%lniversal scheme pointes out new statistics features we wil

positive error rate 9,56% and negative error rate 12,54%0mbine to improve our specific steganalytic techniques. We
are also working on combining detectors running in différen
domains.

rized in table Il. We observed what follows:

9,12%.

TABLE II.
CHARACTERITICS OFD1 AND Ds.

Dy Do
Detected algorithm|| Outguess F5
False positive rate 10% 9,56%
Recall 90,93% || 87,47%
Precision 90% 90,17%
F-Score 81,92% || 78,87%
Accuracy 90,47% 88,97%

Obviously, these results depend on the distribution of cov

(1]
(2]

(3]
q4]

media and stego images, but they give us a lower bound of the
dectection rate. For both, the worste cases are obtaindd wit

sets only composed of cover media. So, for, the detection
rate is higher tha®90% and for D, higher thar87%, whatever

(5]

the distribution of cover media and stego images is. More
results obtained detecting the Outguess using a subsgt of [6]

composed of only one algorithm, F5, can be found in [4].

V. CONCLUSION

(7]

We have proposed a new approach for universal JPEE
steganalysis which is based on statistics of the compress 8(1
frequency domain and benefits from the statistical deviatio

of the entropy of the binary output stream. Exploring the[g]
compressed frequency domain completes the traditional de-

tection schemes and reveals a new class of good functions
steganalysis. These functions are requiered to be bigeativ
have an avalanche criterion close to 0.5. Under this hyighe
designing steganography classifiers which the accuraaes
not depend on the payload may be possible. If the function
well choosen it could reveal and magnify statistical deviz

for
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