
Efficient Blind Detection of JPEG Steganography
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Abstract— In this paper, we present a novel approach which con-
sists in exploring statistics in the compressed frequency domain.
This approach is motivated by two main characteristics of the
lossless compression step of the JPEG format. First, this step can
be viewed as a bijective mapping and then, it has an avalanche
criterion close to 0.5. This properties enable the design of
detection schemes which the efficiencies are constant and do not
depend on the amount of information that has been embedded.
This characteristics define a new class of promising functions for
steganalysis. We illustrate our technique by considering RLE plus
Huffman as such a function and evaluate it by blindly detecting
the use of Outguess, F5 and JPHide and JPseek. Experimental
results show that our steganalysis scheme is able to efficiently
detect the use of new algorithms which are not used in the
training step, even if the embedding rate is very low (≈ 10

−6).
As expected, the accuracy of our detector is independent of the
payload.

Index Terms— universal steganalysis, JPEG, Kullbak-Leibler dis-
tance, Fisher discriminant.

I. I NTRODUCTION

Steganography is the science ofcovered writing. Its
purpose is to hide information in a cover medium so that it is
“hard” for everyone to detect the existence of the embedded
information. On the opposite side, steganalytic schemes tend
to detect hidden information in a mass of cover media.
Let Alice and Bob communicate using a steganographic
algorithmA, for instance, to hide the world their love affair,
and Eve, the paparazi, who will earn lot of money if she
can prove Alice and Bob are lovers. In a classical model
and according to the Kerchoff’s principles, Eve knows all
the steganographic techniques Alice and Bob are likely to
use. So, she can design dedicated methods to detect the use
of A specifically; this is calledspecific steganalysis. In a
harder model of attack, we make the hypothesis that Alice
and Bob keep their steganographic algorithm secret and Eve
does not know the specifications ofA. Her goal is now to
build a detector, which does not depend onA and which
distinguishes cover and stego media in order to prove that
Alice and Bob indeed share secrets through steganography;
this is calleduniversal steganalysis.

Specific and universal steganalysis do not achieve the same
goal; the specific steganalysis answers the question: “Is the
medium was embedded with the algorithmA ?” and the
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universal steganalysis answers the question : “Is the medium
a stego medium ?”. Even if the universal steganalysis is
more general and so less efficient than the specific one for
detecting the use of a given steganographic algorithm, there
are two main interests for using it. First, universal steganalysis
schemes are independent of the steganographic algorithms;
stego media embedded with anunknown algorithm may
also be detected by such schemes. Secondly, it is the only
possible way to detect the use of steganographic algorithm
for which no specific steganalysis is known. So, the central
property universal steganalysis schemes should verify is
the following one: given a set of known steganographic
algorithms for the training step, we are able to detect the use
a new steganographic algorithm which is not in the previous
set. If it is not the case, the considered scheme is vulgarly
dependent on a steganographic algorithm and is a specific
steganalysis scheme. In the remaining of this paper this
main property will be calleduniversality property. We also
propose to extend the definition of universal steganalysis to a
stronger concept ofunconditional steganalysis. A steganalytic
scheme would be saidunconditional if and only if, given a
set of known steganographic algorithms, the scheme is able
to detect the use ofany new steganographic algorithm which
is not in the previous set. The universal steganalysis will be
studied through the scope of the universality property and the
efficiency of the proposed scheme will be measured by the
detection rates when detecting algorithms which are not in
the training set.

In this paper, we take place in Eve’s shoes, and our goal
is to detect the existence of embedded message into JPEG
images. The training set of our universal steganalytic scheme
is composed of images embbeded with the well known
steganographic algorithms, Outguess [1], F5 [2] and JPHide
[3] but it can also be designed with another algorithms in
the same way. In JPEG steganalysis, people traditionally
try to find detectable properties directly studying statistics
of the DCT coefficients or of the decompressed images.
By contrast, we propose to examine Huffman compressed
data, which are DCT coefficients compressed first by RLE
and then by Huffman compression algorithms. We point out
new statistical features to detect hidden information in JPEG
images. We examine different cases of training sets and
evaluate the universality property of our scheme.
The starting point of our work was presented in [4]. We detail
here some keys to deeply understand why the experimental
results pass beyound the limit set by the compromise between



the capacity and the detection of a steganography scheme.
This paper suggests the existence of a particular group of
mappings which could be explored to conceive steganalysis
techniques which the accuracies do not depend on the
payload. We also discuss the way to correctly code our
algorithms and their computational limits.

In the first section, we quickly present the JPEG standard,
the DCT-based steganography and give a brief description of
the steganography algorithms we blindly detect. In the second
section, we recall state of the art JPEG steganalysis techniques,
put our approach back in its place and connect it to our
previous works. We also present a new approach for JPEG
steganalysis based on statistics in the compressed frequency
domain and point out some function characteristics in orderto
define a new class of good functions for steganalysis. Then,
we present our statistical features and how we chose them.
In sectionIV , we explain the design of our Fisher classifier,
detail the experimental framework and the results we obtained.
We evaluate the efficiency of the scheme using Outguess, F5,
and JPHide algorithms. Some keys are also given in order to
code the proposed steganalysis scheme. Finally, we conclude
in the last section and give some discussions.

II. JPEG STEGANOGRAPHY

A. The JPEG Format

The Joint Photographic Expert Group (JPEG) was created in
1986. This Group worked on digital compression and coding
of continuous-tone still images. These studies have led to the
CCITT1 recommendation T.81 and the ISO2 Standard 10918-
1.

The JPEG format defines four types of compression modes
which are sequential, progressive, hierarchical and lossless.
In our case, the progressive mode is used.

DCT3-Based Coding: The figure 1 explains the main
procedures for all encoding processes based on the DCT. In
order to simplify, the diagram operates on a single-component
image.

Figure 1. DCT-based encoder simplified diagram

1International Telegraph and Telephone Consultative Committee
2International Standard Organisation
3Discrete Cosine Transform

Main Characteristics of Coding Processes:A digital image
can be represented by pixels. The three color coefficients (Red,
Green, Blue or RGB) for each pixel are transformed into a
new coding scheme: one luminance coefficient (Y) and two
chrominance coefficients (U and V or also called Cb and Cr).

After the conversion from RGB to YCbCr, the values, are
gouped in8 × 8 pixels blocks, and transformed by a forward
DCT. Most of the frequency coefficients obtained are very
low and we can remove a lot of them and still reconstruct the
original values. The low frequencies are conserved while the
high frequencies are removed.

After the DCT transformation on each block, the DCT
coefficients are quantized. This step called quantization is the
main lossy process. The coefficients are divided with fixed
values coming from a specified table and then rounded. Most
of the quantized DCT coefficients are equal to zero.

The “zig-zag” order consists to order the coefficients in each
8 × 8 block (most of them are equal to zero).

After the “zig-zag” sequence, the last steps are lossless
compression. First a simple RLE4 is used to compress the high
frequency coefficients. Then a Huffman coding procedure is
applied. Finally, the output is the JPEG raw binary data.

B. Embedding Information in the DCT Coefficients

The JPEG compression process can be divided into two
main parts: the first one computes quantized DCT coefficients
from a bitmap imageB and some parametersP1; it will be
notedCl.

Cl : (B,P1) −→ (DCTi), whereDCTi ∈ Z.

Cl is a lossy compression, that meansCl is not a bijective
mapping. So, if we applyDl, the decompression algorithm
associated toCl we don’t retrieveB.

Dl : ((DCTi),P1) −→ B
′

with B
′

6= B.

The second one computes a string of binary compressed data
from quantized DCT coefficients and some parametersP2; it
will be notedCu.

Cu : ((DCTi),P2) −→ (bj) wherebi ∈ F2.

Cu is an unlossy compression, that implies it is a bijective
mapping.

Since Cl is not a bijective mapping, one cannot naturally
hide information during the first step, otherwise some of
the embedded information will not be retrieved. Information
can only be hidden during the second step. This step, as we
saw previously, is divided into zig-zag re-ordering, RLE and
Huffmann encodings. So, the only practical way to embed any
information is in DCT coefficients, after RLE or Huffmann
encodings. To minimize the distortions of the original image,
DCT are the most adapted.

4Run Length Encoding



The main problem, when embedding information in DCT
coefficients, is to preserve the statistics of the cover medium.
State of the art steganographic systems take care of keeping
DCT statistics unchanged, histogram for example, but even if
DCT statistics are preserved, many steganalysis schemes [5],
[6], [7], [8], [9] are based on deviations of some decompressed
cover image statistics. It seems that both cannot be preserved
at the same time.

C. Detected Steganographic Algorithms

1) The Outguess:The Outguess steganographic algorithm
[1] was proposed by N. Provos in 2001. It was designed to
preserve first-order statistics. Outguess embeds information in
two main steps as follows. First, using a RC4 based PRGN,
the algorithm embeds message bits into randomly choosen
redunctant LSB of the DCT coefficients. Then, in a second
step, some LSB of DCT coefficients are flipped in order that
the DCT histogram of the stego image is as close as possible
to the DCT histogram of the cover image.

2) F5: The F5 steganographic algorithm [2] was proposed
by A. Westfeld in 2001. As Outguess, it is designed to
preserve first order statistics, notably the DCT histogram.
First, F5 permutes all DCT coefficients using a PRNG.
Then, it encodes the message with an error correcting code
and embeds the associated code words with introduced
well choosen errors, into non zero DCT coefficients. By
this way, F5 increases the capacity of the cover image.
Unlike Outguess, F5 does not use the LSB of the DCT
coefficients but decreases the absolute values of non zero
DCT coefficients. The algorithm was designed to prevent its
use fromχ2 steganalysis [10] by mapping the DCT values
to the steganographic values: even negative and odd positive
coefficients embed an one value, then odd negative and even
positive ones embed a zero value.

3) JPHide and JPSeek:JPHide is a steganographic system
developped by A. Latham in 1999 [3] which embeds data
in LSB of the DCT coefficients. It uses a PRNG based on
Blowfish.

III. D ETECTING JPEG STEGO IMAGES

A. JPEG Steganalysis Methods

Different approaches have been used to detect stego images.
The first one consists in studying directly DCT coefficients
like J. Fridich [11], [12] who looked at first order statistics
and at the discontinuity of DCT coefficients at the borders
of blocks for detecting the use of F5 and Outguess. She also
pointed out some other features for the frequency domain
[13], [14] for JPEG syteganalysis.

The second approach is dedicated to the spatial domain. H.
Farid and S. Lyu obtained classifier with a high detection rate
by combining Support Vector Machines (SVM) with higher
order statistics [6], [7] or with wavelet transform statistics [8],
[9] of decompressed JPEG image. J. J. Harmsen et al. [15]
proposed to use a Fisher discriminant instead of a SVM and

I. Avicib et al. [5] introduced metrics based on images quality.

Previous methods have even been used together [16] to
increase the accuracy of detectors. Among these techniques
we can distinguish two categories of steganalysis:specific
steganalysisanduniversal steganalysis.

1) Specific Steganalysis:Specific steganalysis is dedicated
to only a given embedding algorithm. It may be very accurate
for detecting images embedded with the given steganographic
algorithm but it fails to detect those embedded with another
algorithm. Techniques developped in [11], [12], [13], [15],
[17] are specific.

2) Universal Steganalysis:Universal steganalysis enables
to detect stego images whatever the steganographic system
be used. Because it can detect a larger class of stego images,
it is generally less accurate for one given steganographic
algorithm. Methods presented in [5], [6], [14], [16], [7], [8],
[9], [4] are universal.

In this paper, we will study an universal method adapted
for the compressed frequency domain. Our novel approach
consists in focusing on this domain, whereas up to now all
the steganalysis schemes deal with the spatial or the frequency
domain. But, unlike classical universal steganalysis schemes,
the main point we want to show is the ability of our universal
steganalyzer to detect the use of a steganography algorithms
not used during the training step. The first results of this
work has been presented in [4]. In the same spirit and taking
advantages of the easy way to detect statistical deviationsin
the compressed frequency domain, we designed the Multiple
Embedding Method [17] for specific JPEG steganalysis and
obtained better results in specifically detecting Outguess, F5
and JPHide and JPSeek. In the same way, our specific detectors
have detection rates independent of the embedding rate and so
are able to detect JPEG image embedded with only few bytes.

B. A New Point of View

We have to keep in mind three important intuitive assertions:

• embedding information in DCTi, will change
Dl((DCTi),P1) but alsoCu((DCTi),P2).

• one cannot preserve at the same time the statistics of
DCTi, those ofDl((DCTi),P1) andCu((DCTi),P2).

• hiding information tends to introduce a variation of
entropy.

Most of steganalytic techniques consist in observing some
statistical deviations directly on DCT coefficients or in
Dl((DCTi),P1). We propose here to explore statistics in
Cu((DCTi),P2).

Let I a given JPEG image to analyse and(bj)
5 the output of

Cu. We noticed a variation of the entropy of the output stream

5(bj) is only composed of the RLE and Huffman compressed DCT
coefficients and does not include the JPEG file header.
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Figure 2. Density probability functions ofP for JPHide no stego and stego
images with different embedding ratesr.

when the image has been embedded with a steganographic
scheme. The binary entropyH(I) is given by

H(I) = −P (I) log P (I) − (1 − P (I)) log(1 − P (I)), (1)

where P (I) is the probability thatbj is equal to 0. The
binary entropy H(I) is an approximation of the entropy
according to Shannon’s definition. Observing a deviation of
the binary entropy is equivalent to observe a deviation of
P . For non stego images,P follows a Gamma probability
density function, whereas the probability density function
is different for stego images. More surprisingly,P follows
a normal N (0.5, σ) probability function and so, whatever
the embedding rate,r, is, as shown in the figure 2. This
difference of probability laws for stego and non stego images is
explained by the avalanche criterion of the RLE and Huffman
compression step. The avalanche criterion was introduced by
Feistel [18] in 1973 for cryptographic purpose. It measures
the number of bits of the cipher text which have been flipped
when only one bit of the plain text has been flipped. Good
cryptographic algorithm, and more particularly hash functions,
are requiered to have an avalanche criterion close to 0.5. Let
us denoteQ the avalanche criterion of RLE and Huffman
compression step,P (I) the probability thatbj is equal to 0
before the embedding andP

′

(I) the same probability after the
embedding. ThenP

′

(I) is given by

P
′

(I) = P (I)(1 − Q) + (1 − P (I))Q. (2)

If Q is close to 0.5 thenP
′

(I) ≈ 0.5. As shown in figure
3, when only few bits of the LSB of DCT coefficients are
flipped, after RLE and Huffman compression almost half
the bits are flipped. So, when embedding few bytes,P

′

(I)
becomes closer to 0.5. These phenomena is amplified since
the avalanche criterion is close to 0.5 when only few bytes
of DCT coefficients are changed and since steganography
systems embed additional DCT coefficients to keep first order
statistics unchanged. Whatever the amount of information we
want to hide,P

′

(I) ≈ 0.5 and thus makes possible the
existence of steganalyzers which the detection rates are quasi-
independent of the payload.
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Figure 3. Avalanche criterion of RLE+Huffman compression function.

This approach gives us a new direction to look for. The
main characteristics of RLE and Huffman compression
step that make our steganalysis works in such a way are
twice. First, this step can be viewed as a bijective function.
Statistical deviations on the input variables will generate
statistical deviations on the output variables, but looking
for such deviations could be easier in the output domain
and even be more discriminating. This is why using non
linear Support Vector Machines are often more efficient
than linear ones. Such functions can be compared to a
magnifying glass that reveals and amplifies hidden statistical
deviations. Then, the fact that this function has an avalanche
criterion close to 0.5 implies that whatever the number
of changes done on the input, half the bits of the output
will be flipped. This conditions define a class of good
functions to design stegnalysis schemes with efficiencies
independent of the payload. RLE and Huffman is one of them.

We noticed a variation of higher order statistics of
Cu((DCTi),P2) when a message is embedded, despiteCu is a
bijective mapping and the steganographic algorithmA tends to
preserve the statistics of DCT coefficients. We have designed
a steganographic distinguisher based on this deviations.

C. Universal Steganalysis Scheme

As previously, letI be a given JPEG image to analyse,(bj)
the output ofCu andP (I) the probability thatbj is equal to
0. P (I) can be seen as a global measurement. Now, let us
see how JPEG steganography introduces local variations. To
obtain a set of statistics on(bj), we divide the stream(bj)
into blocksBi of sizes bytes, so that

Bi = bi×8s+1 . . . b(i+1)×8s ∈ F
s
2. (3)

We estimate the Hamming weights,w(Bi) =
∑s

j=1 bi×8s+j ,
for the stream blocks. Naturally, variations ofP (I) will
implies variations ofw(Bi) which can be seen as local
mesurements.

Let X ∈ Ω = [0, 8s] be the random variable which values
are thew(Bi). We compute the probability density function



Figure 4. image20099.jpg.

followed by X and its moments of orderi, Mi(I). As
illustrated in figure 5,X does not follow the same probability
density function whetherI is a stego image or not. So,
we experimentaly compute the average probability function
p(x) followed by X when I is a cover media (figure 5)
and introduce the Kullbak-Leibler distance to measure the
dissimilary between the observed probability density function
p̂(x) and p(x). p(x) is computed taken randomly a huge
amount of cover media and evaluating the density probability
function follows byX for each image.p(x) is then defined as
the mean of all these functions. The Kulbak-Leibler distance
D(p̂, p) is defined by

D(p̂, p) =
∑

x∈Ω

p̂(x). log
p̂(x)

p(x)
. (4)

As this distance is not symmetric, we introduceD1(I) =
D(p̂, p) andD2(I) = D(p, p̂). As illustrated in figure 5, the
density probability function ofX for the cover image of the
figure 4 is very close top(x). On the contrary, we observed
a deviation of this function after embedding the image with
Outguess. We have noticed that embedding with Outguess, F5
and JPHide and JPSeek increases the Kulbak-Leibler distance
between the observed density probability function ofX and
p(x).

Now, we will mapI to the statistical vectorV(I) of k + 4
coordinates defined by

I −→ V(I) = (M0(I), . . . ,Mk(I), P (I),D1(I),D2(I)),
(5)

and design an universal steganalysis scheme which the para-
meters are(s, k). Each component of the statistical vector does
not follow the same probability density function whether the
imageI is a stego one or not.

We have pointed out some statistics in the compressed fre-
quency domain which are liable to deviation when information
is embedded with a steganographic algorithm such as Out-
guess, F5 or JPHide. These statistical features are independent
of a specific algorithm, but to prove our scheme is an efficient
universal steganalysis scheme we still have to evaluate its
universality property, as discussed in the introduction.
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IV. EXPERIMENTAL RESULTS

A. Classifier Design

We need a set,C of cover media and a set,S of stego
images. For convenience, these samples have the same
cardinalityn, but the following method can be easily adapted
with learning sets of different cardinalities.

First, for each set, we computeVc = {V(I)|I ∈ C} as
defined in (5), andVs = {V(I)|I ∈ S} which are subsets
of R

k+4. We denotegc, respectivelygs, the barycenter of
Vc, respectivelyVs, andg the barycenter ofgc, gs. Then, we
takeg as the origin of the system of coordinates and compute
the covariance matrices,Vc and Vs. Finally, we compute the
intraclass and interclass variance matricesW and B defined
under our hypothesis by

B =
1

2
(gc − gs)(gc − gs)

′

, (6)

W =
1

2
(Vc + Vs) . (7)

The variance matrix,V is given byV = B + W .

The Fisher discrimination analysis [19] consists in finding
a projection axis which discriminates the bestVc andVs and
thusC andS. This axis,(gc, gs), is defined by the vector

u = W−1(gc − gs), (8)

whereM = W−1 can be considered as a metric. Actually, a
new imageI, representated by the pointp will be said to be
in C, if d2(p, gc) > d2(p, gs), whered is a distance based on
the metricM . According to the Mahalanobis-Fisher rule, we
decide thatI is in C if and only if

p.u = pM(gc − gs) > T, (9)

whereT is the detection threshold. Another metric can also
be considered, settingM = V −1.



B. Coding Considerations

In this subsection, we summarize formally the methodology
we followed to designed our classifier. As classifying
techniques our steganalysis scheme is divided into two
main parts, which are thelearning step and then the
detection step. The first one is time consuming but can be
done off-line, only once. The learning step provides a set
of parameters for the detection algorithm. The detection
algorithm is very quick and can be run on-line. Moreover, the
same parameters can be used for all the images to be analysed.

Learning Algorithm

Input: A
′

a set of steganography algorithms.
C a set of sizen of cover-media.
S a set of sizen stego-media embedded
with algorithms inA

′

.

Parameters: k the greatest order of moments of the
variableX.
s the size of the blocks.

Output: u, a vector ofRk+4.
T , a detection threshold.

1) ComputeVc = {V(I)|I ∈ C}, according to equation 5.
2) ComputeVs = {V(I)|I ∈ S}, according to equation 5.
3) Compute(gc, gs) the barycenters ofVc andVs such as

(gc, gs) =
1

n

(

∑

I∈C

V(I),
∑

I∈S

V(I)

)

.

4) ComputeW−1 and V −1 according to equations 6 and
7.

5) ChooseM ∈ {W−1, V −1} andT ∈ R such as(M,T )
equals

Argmax

(

#{I ∈ C|V(I).M.(gc − gs) ≥ T}+
#{I ∈ S|V(I).M.(gc − gs) < T}

)

.

6) Return u = M.(gc − gs), andT .

At that point, we first have to do some compromises.
On one hand, the detection algorithm will be all the more
accurate as the training sets are bigger. On the other hand, the
coefficients ofW and V are real numbers and then we can
not do some approximations during the computation ofW−1

andV −1. Otherwise, the result of the equation 8 may be far
from the theoretic value ofu and the detection algorithm
may diverge. To code this algorithm, we decided to use the
Gnu Multiple Precision Arithmetic Library and encode all the
coefficients with exact rational numbers. Trivialy, arithmetic
operations with such numbers are no more linear in the size
of the operands. All the more, the size of these numbers
increases with the cardinality of the training sets,n.

Detection Algorithm

Input: I a JPEG image to analyse.

Parameters: (u, T ) provided by the Learning Algorithm.
k the greatest order of moments of the
variableX.
s the size of the blocks.

Output: “Stego-medium”or “cover-medium”

1) ComputeV(I) according to equation 5.
2) if V(I).u > T then return “cover-medium”

else return “stego-medium”.

The time and space complexities are trivialy linear in
the size of the analysed JPEG file. This algorithm can be
efficiently coded as all the statistical features are based on
counting the number of 0-bits in the data stream.

C. Learning Step

For each training of our classifiers, we used between
3,000 and 4,000 randomly choosen images from a database
of about 100,000 JPEG images downloaded from the web,
notably https://www.worldprints.comin 2000. The database
is composed of grayscale and color images of different sizes.
We disposed of a setA = {Outguess, F5, JPHide} of
three known algorithms, for which known specific attacks
exist. Our goal was to produce a subsetA

′

⊂ A for training
our classifier so as to, at least the use of one algorithm in
Ā

′ can be efficiently detected. We chose to configure our
scheme withk = 3, which is a good trade off between
reasonable computing time and a good detection accuracy.
We tested different values fors: 8, 16, 32 and 64. To show
the effectiveness of our approach with very low embedding
rates, we mixed stego images with an embedding rate from
10−6 to 10−2.

We tried all the subsets butA and the empty set. For
illustration, we give in table I the best experimental parameters
obtained for the subsetsA1 = {F5, JPHide} and A2 =
{Outguess, JPHide}, of two algorithms. The training set
for A1 was composed of 2,000 cover media and 2,000 stego
images embedded respectively by F5 and JPHide with the
embedding rates10−6, 10−5, 10−4, 10−3 and 10−2. The
training set forA2, figure 6, was composed of 1,500 cover
media and 1,500 stego images embedded by Outguess and
JPHide with the same embedding rates. For each training set,
we determined the discriminant factoru for the metricsW−1

andV −1 as defined in section IV-A. We also chose the value
for s which gave us the best detection rate for the training set,
in order to preserve the detection of cover media during the
wild detection step.

The main reason we chose the parameterk less than 4 in
practice, is motivated by the fact thatp̂(x) seems to bep(x)
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Figure 6. Statistical vectors forA2 projected ontoR3. On the topVc, on
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TABLE I.
OPTIMAL PARAMETERS FORA1 AND A2 .

A1 A2

Metric W−1 W−1

threshold -0.2576 -0.2272
s 16 16
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shifted to the left as illustrated in figure 5. But, the global
shape ofp̂(x) is close to this ofp(x), that implies that the
random variables they represent will only differ in a significant
way for the lowest orders of statistical moments. That means,
moments of order higher than 4 will not be discriminating.
Moreover, as we explained in section IV-B, computingW−1

and V −1 is very time expensive since their coefficients are
exact rational numbers. As evaluatingW−1 and V −1 costs
O(k3) arithmetic operations, constrainingk to the really

discriminating moments may save some computational time.

D. Wild Detection Step

To show the efficiency of our scheme, we randomly gener-
ated challenge sets composed of 1,000 cover media and 1,000
stego images embedded with an embedding rate from10−6

to 10−2. After having trained two distinguishersD1 andD2,
as explained in section IV-C, with respectivelyA1 and A2,
we made them detect the use of new algorithms, Outguess for
D1 andF5 for D2. The efficiency ofD1 andD2 is presented
in the figure 7. Two main conclusions can be drawn when
observing these results. Firstly,D1 andD2 are able to detect
efficiently the use of an algorithm which has not been used
in the training set, that proves the universality property of
our scheme. Nevertheless, this only proves that our detectors
may detect images embeded with an unknown steganographic
algorithm but with no confidence it will work with all unknown
steganographic algorithm. Finally, the detection rate appears to
be constant and independent of the embedding rate (figures 7
and 8), according to the hypothesis we made in section III-B.
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More precisely, the characteristics ofD1 andD2 are summa-
rized in table II. We observed what follows:

• D1 detects the use of Outguess with detection rate
90,47%, positive error rate 10% and negative error rate
9,12%.

• D2 detect the use of F5 with detection rate 88,97%,
positive error rate 9,56% and negative error rate 12,54%.

TABLE II.
CHARACTERITICS OFD1 AND D2 .

D1 D2

Detected algorithm Outguess F5
False positive rate 10% 9,56%
Recall 90,93% 87,47%
Precision 90% 90,17%
F-Score 81,92% 78,87%
Accuracy 90,47% 88,97%

Obviously, these results depend on the distribution of cover
media and stego images, but they give us a lower bound of the
dectection rate. For both, the worste cases are obtained with
sets only composed of cover media. So, forD1, the detection
rate is higher than90% and forD2 higher than87%, whatever
the distribution of cover media and stego images is. More
results obtained detecting the Outguess using a subset ofA
composed of only one algorithm, F5, can be found in [4].

V. CONCLUSION

We have proposed a new approach for universal JPEG
steganalysis which is based on statistics of the compressed
frequency domain and benefits from the statistical deviation
of the entropy of the binary output stream. Exploring the
compressed frequency domain completes the traditional de-
tection schemes and reveals a new class of good functions for
steganalysis. These functions are requiered to be bijective and
have an avalanche criterion close to 0.5. Under this hypothesis,
designing steganography classifiers which the accuracies do
not depend on the payload may be possible. If the function is
well choosen it could reveal and magnify statistical deviations
which are not visible in its input domain. Looking for such
functions appears to be promising. Not only a theoretical view,
one of them, defined by the RLE and Huffman compression,
has been evaluated. The avalanche criterion of the JPEG loss-
less compression step makes this deviation quasi-independent
of the embedding rate and so, makes possible the design of
steganographic detectors which the efficiencies do not depend
on the payload. We design such a steganalyzer with very high
and constant detection rates, as illustrated in section IV-D. The
experimental results show that our steganalysis scheme is able
to efficiently detect the use of new algorithms which are not
used in the training step, even if the embedding rate is very
low (≈ 10−6).
Since universal detectors are less accurate but more general
than specific ones, they are more oriented to detect the use of
unknown steganographic systems or those for which no spe-
cific attack is known. Universal steganalysis provides another
kind of detection services and should be run in parallel with
specific detectors, for instance in a operational steganalytic

system.
In future researches, we will try to improve the efficiency of
our scheme using Support Vector Machines instead of Fisher
discriminant. We hope to benefit from the non linearity of
certain kernels and so increase our detection rates. This new
universal scheme pointes out new statistics features we will
combine to improve our specific steganalytic techniques. We
are also working on combining detectors running in different
domains.
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