
Malwares as Interactive Machines: A New

Framework for Behavior Modelling

Grégoire Jacob1/2, Hervé Debar1, Eric Filiol2

1 France Télécom R&D, Caen, France

{gregoire.jacob|herve.debar}@orange-ftgroup.com

2 French Army Signal Academy,

Virology and Cryptology Lab., Rennes, France

eric.filiol@esat.terre.defense.gouv.fr

Abstract

Several semantic-based malware analyzers have recently been proposed
but each one redefining its own model. All these systems and abstract vi-
rology models likewise, rely on Turing Machine equivalent formalisms.
Recent works in the computer theory field have though shown that they
prove insufficient in capturing wholly interactions and concurrency. By
essence, malwares, as adaptable and resilient agents, are likely to use these
mechanisms intensively. In this paper, we extend the malware models to
the Interaction Machine formalism. This theoretical model is particularly
adapted to apprehend these missing notions. We describe more precisely
different classes of interactions and study their impact on the detection
complexity. In a second part, we introduce an operational framework
based on interactive languages, specifically designed for describing ma-
licious behaviors. To complete our study and assess this framework, we
provide descriptions for several behaviors usually used by current malware
strains.

Keywords: Malware models – Behavior models – Interaction machines –
Language theory – Interactive grammars – Detection complexity.

1 Introduction

This article relies on a very simple observation. By making a survey on the
different techniques of behavioral detection, we have quickly noticed that a
multitude of systems exist each one redefining its own behavior model. The
underlying idea was then to provide a reference language for expressing these
malicious behaviors. In a first place, we thought that Turing Machine languages
were a good starting point, since most of abstract virology models and semantic
detectors likewise, rely on Turing Machine equivalent formalisms. But along
our work, we have gradually become aware that some dynamic notions were
fundamentally missing in order to apprehend certain recent malicious trends.
In a first part, we are thus going to state the known lacks of Turing Machines and
equivalent models whereas in the following one, we will introduce the extended

1

model we have chosen as solution: Interactions Machines. According to this
model, we will provide new definitions and complexity results. The second part
of the paper is less theoretical and aim to provide a model framework still based
on interactions. Application cases will finally be considered in order to assess
the relevance of the model.

2 Shortcomings of the Turing Machine models

2.1 Actual models in abstract virology

It may be surprising, but as a matter of fact very few formal works have actually
been published concerning models in abstract virology. Since the eighties, the
release period of the first original concepts, about ten publications only can be
listed. As we are going to base our speech on these models, we think that it
is important to remind the most significant ones briefly. For those who would
like to delve deeper into these questions, references are given for each model,
otherwise a detailed survey is given in [1].

Based on self replicating cellular automaton introduced by J. von Neumann
[2], F. Cohen was the first to establish a formal definition of a computer virus
using Turing Machines [3]:

Definition 1 According to Cohen, a symbol sequence is a virus with regards to
a Turing Machine if, as a consequence of its execution, a possibly evolved copy
of itself is written further on the band.

Cohen’s thesis supervisor, L. Adleman came up two years later with a more
abstract formalization. He transposed the problem from a Turing Machine point
of view, which is by nature linked to physical computers, to the more abstract
theory of recursive functions [4]. He defined a virus as a function associating an
infected form to each program. This infected form exhibits one of the following
capabilities:
(1) Injuring where a malicious task is run instead of the intended one.
(2) Infecting where a malicious task is run once the intended one has halted.
(3) Imitating where only the intended program is run for stealth reasons.
This formalism has recently been extended by Z. Zuo and M. Zhou to introduce
the mutation process and additional aspects such as stealth with regards to
system calls [5].

Definition 2 According to Adleman, a total recursive function v is a virus with
respect to all Godel numberings of the partial recursive functions {φi} if and only
if for all possible input x either:

(1) (∀p, q ∈ N) φv(p)(x) = φv(q)(x),
(2) (∀p ∈ N) φv(p)(x) = v(φp(x)),
(3) (∀p ∈ N) φv(p)(x) = φp(x).

G. Bonfante, M. Kaczmarek and J.-Y. Marion have provided a last for-
malism based on the foundation of computability which matches up with the
previous models [6]. Based on the Kleene’s recursion theorem, this model no
longer considers the virus as a function but as a program making the notions of
programming environment and program specialization available.

2

Definition 3 According to Bonfante, Kaczmarek and Marion, a virus v is a
program who, for all values of p and x over the computation domain D, satisfies
the equation ϕv(p, x) = ϕβ(v,p)(x) where β denotes the propagation method.

Even if their potential expression capabilities may differ, the three previous
models in fact rely on equivalent formalisms which can be reduced to Turing
Machines. It is commonly acknowledged that Turing-computability is equiva-
lent to alternative notions of computability such as the foundation of recursive
functions. This property of the Turing Machine fundamentalism is asserted
indemonstrably by the Church-Turing thesis.

Thesis 1 Every computable function can be computed by a Turing Machine.

2.2 Known limitations

On the one hand, current abstract models have proved effective in capturing
duplication, propagation and mutation concepts, but most important of all they
have provided fundamental results on detection complexity. On the other hand,
P. Wegner rightly underlines the fact that, if Turing Machines remain sufficient
to model close system wholly determined by their input, they fail to model
open systems [7]. Extending the formalism of replicating virus to more complex
malwares will eventually fail because of important dynamic concepts missing as
we will now state.

Interactions: Dynamic interactions with the external world, seen as ways to
import and export data, are missing in simple Turing Machines. Inter-
actions could be modelled using a shared band but this would lead to
inconsistent accesses without additional management. Moreover interac-
tion history remain unbounded to be strored on a band. Unfortunately,
considering malwares, certain tasks can be entirely determined by stimuli
or observations of their environment. An easy example concerning anti-
antiviral techniques is the detection of an emulated environment which
can prevent any malicious mechanism from being run. Other tasks can
be manually controlled and triggered by inputs from the user or a remote
attacker. Most of the non deterministic behaviors of malwares can be
expressed by interactions with the external world, even tasks randomly
executed which are mainly conditioned by an external random number
generator. As an illustration, it could be interesting to introduce the con-
cept of a malware with minimal code which makes the facilities provided
by the environment work to its own benefit. Without embedding these
functionalities, it could use any mail client present on the system to prop-
agate or use any ciphering system to encrypt. Such a malware maximize
interactions for the sake of adaptability.

Parallelism and distributivity: Turing Machines can model parallelism be-
tween programs as long as interactions are not considered. As we have
just stated, interactions remain a central point in malware conception and
thus can not be ignored. Unfortunately, if these processes are no longer
independent but concurrent, according to R. Milner, sequential models
such as Turing Machines are no longer sufficient [8]. Moreover Z. Manna

3

and A. Pnueli have shown that non-terminating reactive processes, such as
operating systems, cannot be captured by these models [9]. This could be
a major drawback, since malwares are highly adaptable programs mak-
ing complex uses of the system facilities. Concurrency or distributivity
in malware is achieved by its splitting into several modules. Typically, a
main executable could be responsible for the infection while using a rootkit
to execute particular actions requiring kernel privileges. Distributivity is
not necessarily bound to the system. It can be performed over different
connected systems (botnets networks) or even over physical devices of the
local machine as long as they provide computing facilities (processors in
graphic cards). Some malwares relying on distributivity to evade detec-
tion are already operational as mentioned in E. Filiol’s recent paper on
k-ary malwares [10, 11]. Such considerations are far too complex for a sin-
gle Turing Machine to apprehend easily, and he proved that even Turing
k-machines enable a partial generalisation of concurrent viruses since it is
limited to a quadratic enhancement.

2.3 Related works and contribution

To our knowledge, only two related works have already tried to extend the
viral models to take interactions into accounts. The first to achieve this was
F. Leitold who has introduced a new mathematical formalism based on Ran-
dom Access Stored Program Machines with Attached Background Storages [12].
These storage facilities are in fact additional bands with concurrent access in
reading and writing modes, shared by all the processes. He proved that this
model could capture communicating processes and operating systems. Unfortu-
nately, this paper only considers particular interactions constrained by the band
access and simply ignore most non-deterministic behaviors as the executed pro-
gram is fixed. More recently, M. Webster has introduced another model based
on Distributed Abstract State Machines to capture the virus’s environment but
only few details are briefly given since interactions are not the central point of
the paper [13].

This paper intends to introduce a new formal model in order to describe
malicious behaviors more completely with regards to interactions. This model
is based on the established domains of language theory and interaction mech-
anisms. Notice that the descriptions generated by the language can then be
applied either in static semantic detectors or dynamic monitors. To sum up our
contribution:

• We divide interactions into several classes according to the nature of the
considered adversary and the communication channel.

• We introduce a formal definition for recent malicious strains. These defi-
nitions have led to new detection complexity results.

• We provide an operational framework to model behaviors and assess its
coverage in terms of soundness and completeness.

• We identify and describe several real behaviors in order to give hints of
the language expressive power.

4

3 Interaction Machine based models

3.1 Theory of interactive machines

The shortcomings of the Turing model previously evoked are not really new, even
A. Turing himself was conscious of certain gaps. Fortunately, several alternative
extensions of Turing Machines have been put forward and in particular the
Interaction Machines. According to the definition advanced by P. Wegner [14],
an interaction machine can be described as a Turing Machine with dynamic
input and output facilities.

Definition 4 According to Wegner, Interaction Machines (IMs) extend Turing
Machine (TMs) by adding dynamic input/output (read/write) actions. Inter-
action Machines may have single or multiple input streams and synchronous
or asynchronous communications, and can differ along many other dimensions,
but all Interaction Machines are open systems that express dynamic external
behaviors beyond that computable by algorithms.

Basically, an Interaction Machine has the same expressive power than a
Turing Machine with oracles and infinite input [15]. Such a machine is called an
Oracle Turing Machine or O-Machine and may have several oracles represented
as immediate responses stored on additional bands [16]. The main interest
is that an oracle can hypothetically solve any problem even undecidable and
manipulate data of infinite size. With regards to Interaction Machines, the
oracle can model the behavior of any adversaries of the machine taking the time
and interaction history into account. Like pictured in the two formulae below,
the input of the oracle model the data sent during interactions and the output,
the data received. In case of unilateral interactions, either the input or the
output can be null:

I(data transmitted, time, interaction history) = data received
Θ(data transmitted) = data received

3.2 Abstract models for new classes of viruses

Based on this theory we will provide a model for two new classes of viruses. The
first definition is based on the one of an implicit virus introduced by G. Bonfante
et al. [6]. We will extend their definition to the concept of interactive virus using
a formalism equivalent to O-Machine. Basically, the designated virus performs
several actions depending on some conditions not only on its arguments but
on its interactions with adversaries. In particular, these actions can take as
parameters the results of these interactions.

Definition 5 Let C1, ..., Ck be k semi-computable disjoint subsets of a computa-
tion domain D, Θ1, ...,Θn be the n oracles associated to n interactive adversaries
and V1,1, ..., Vn,k be a set of semi-computable functions. An interactive virus v
exists such that, for all p and x, the equation is satisfied:

ϕv(p, x) =

 V1,1(v, p, x,Θ1(v)) if (p, x,Θ1(v)) ∈ C1

...
Vn,k(v, p, x,Θn(v)) if (p, x,Θn(v)) ∈ Ck.

5

Proof.
The proof is almost identical to the one developed for the implicit virus by G.
Bonfante et al. [6]. Simply, using oracles allow us to consider the result of
the interaction as computable and thus the same reasoning can be followed.
∀i, Θi(y) is considered as computable and thus semi computable. Let us define
F such as:

F (y, p, x) =

 V1,1(y, p, x,Θ1(y)) if (p, x,Θ1(y)) ∈ C1

...
Vn,k(y, p, x,Θn(y)) if (p, x,Θn(y)) ∈ Ck.

As a composed of semi computable functions, F is semi-computable. By appli-
cation of the recursion theorem, we obtain a program v satisfying ϕv(p, x) =
F (v, p, x). Let e be a program computing F and β(v, p) = S(e, v, p) where S is
the specialization function.

ϕβ(v,p)(x) = ϕS(e,v,p)(x)
= F (v, p, x) by the iteration theorem
= ϕv(p, x).

�

Example 1 This definition makes it possible to define formally the contradic-
tory virus introduced by Cohen to illustrate the detection undecidability [17].
Let us assume that the procedure D determining if a program is a virus is an
interaction. We thus can describe the contradictory virus as follows:

ϕv(p, x) =
{

ϕp(x) if ΘD(v) ∈ true
ϕβ(v,p)(x) if ΘD(v) ∈ false

Example 2 An other typical example would be a botnet. Each oracle Θn rep-
resents a possible command channel whereas the conditions Ck symbolize the
different types of supported requests (DDos, Spam relay, Remote execution).

Following the same formalism, we will now suggest the definition of a dis-
tributed malware. A distributed malware is made up of two or more pro-
grams executing and interacting. Distributivity can be seen as the interac-
tive composition of several processes as suggested by P. Wegner [14]. For the
sake of simplicity, if we consider the distributivity over two processes we have
Behavior(P |Q) = Behavior(P) + Behavior(Q) + Interaction(P,Q). This no-
tion of distributed malware must be compared to the k-ary malwares introduced
by E. Filiol [10, 11]. According to his definition, k-ary malware are made up
of k files, executable or not, whose union constitute a malware and perform
malicious actions.

Definition 6 Let Θ be an oracle reflecting the interaction of two programs.
The programs v and w are components of a distributed virus if there is a semi
computable function f satisfying the equation:

ϕv,w(p, x, y) = f(ϕv(p, x,Θw(v)), ϕw(p, y,Θv(w))).

Proof.
The proof is identical to the previous one as f is once again the composed of
several semi computable functions. �

6

Remark 1 In his work, E. Filiol defines two classes of k-ary malware. The first
class I gathers together the sequential k-ary codes where the different components
are executed sequentially, the actions of the first being used by the following.
These are not considered as distributed malwares according to our definition as
they do not interact dynamically. From the recursion, point of view, they can
be seen as a simple composition: ϕv,w(p, x) = ϕv(p, x, ϕw(p, x)). On the other
hand, the second class II of parallel k-ary codes is typically included in our
definition.

A definition of distributed malwares has been given for two components. Let
us now extend our formalisation to n components. As stated by E. filiol, com-
ponent interactions can be seen as graphs where vertices model the components
and edges between two of them symbolize interactions. To simplify our defini-
tion, we will partition the graph in biconnected subgraphs in order to pinpoint
the articulation vertices. As a consequence, it should reduce the complexity of
the interaction network as pictured in Figure 1.

Figure 1: Distributed virus made up of nine components. This graph of interac-
tion is given as an example and pictures a quite complex distribution. We can see that
by searching for biconnected subgraphs we can decrease the complexity of interaction
to a condensed graph.

Definition 7 Let G be an interaction graph made up of n biconnected subgraphs
G1, ..., Gn. Locally to a subgraph, a simple active component vi is connected to
active components vi+1, ..., vi+a and inert components dj , ..., dj+b. In the case of
an articulation point, the component can also be connected to other subgraphs.
Let ΘG,ΘV and ΘD be respectively the oracles modelling the interactions be-
tween the different subgraphs, active and inert components. For the sake of
notation simplicity, ΘV (vi) will denote the interaction history of vi with all its
connected active components vi+1, ..., vi+a. Equivalent notations will be used for
the different oracles. The components of the graph G constitute a distributed
malware if there are n + 1 semi computable functions f, g1, ..., gn satisfying the
system:

7

ϕG1(p, x) = g1(ϕv1(p, x,ΘV (v1),ΘD(v1)),
...,
ϕvi

(p, x,ΘV (vi),ΘD(vi),ΘG(vi)))
...
ϕGn(p, x) = gn(ϕvz−j (p, x,ΘV (vz−j),ΘD(vz−j),ΘG(vz−j)),

...,
ϕvz

(p, x,ΘV (vz),ΘD(vz)))
ϕG(p, x) = f(ϕG1(p, x), ..., ϕGn

(p, x))

3.3 Complexity of the detection problem

3.3.1 Classes of interaction

Interactions may be different according to the entities put into relation. By
considering the different classes of interactions, we will be able to associate an
equivalent complexity to the oracles modelling them.

(Class I1) Interactions with inert objects: This class gathers the interac-
tions made with inert objects which have no internal mechanisms. Data
files, registry entries and more generally storage memories and data repos-
itories are typical examples. These interactions are always initiated by the
observed program. In this case, the complexity is proportional to the size
of the requested data.

Proposition 1 The complexity of interactions with inert objects is linear
or Σ0. Notice that this type of interaction could be integrated by writing
the object content on the tape of the Turing Machine without requiring an
oracle.

(Class I2) Interactions with active objects through interfaces: This se-
cond class gathers the interactions made with active objects which exhibit
internal mechanisms constrained by defined interfaces. Kernel objects
such as synchronisation objects are typical example. These interactions
remain initiated by the observed program. Even when waiting for a re-
mote activation signal, it can not be achieved without an explicit request
from the program.

Proposition 2 The complexity of interactions with active objects through
defined interfaces is NP-Complete or Σ1.

Proof.
These active objects have limited internal mechanisms that can be seen
as deterministic finite automaton. The object receives inputs and process
them according to its internal state. According to the input it finishes in an
accepting or error state. In these particular states, an output is sent back.
The complexity is thus equivalent to the accepting problem of a word over
a language. This particular problem is known to be NP-complete [18]. �

Example 3 Contrary to what could be thought, network communications,
thread communications through pipes likely, are practical examples from

8

I2. Even if the resulting value of the interaction is unpredictable, because
these adversaries may not be controlled by the system for example, the
interactions are constrained by a protocol defining the data conditions of
transmission and consumption. Consequently, the manipulated data is
size-bound by a factor s in bytes. It is thus possible to enumerate the
possible results of the interaction. By neglecting the statistical biais due to
the data nature, the set of possible results has at most 256s entries which
is exponential.

(Class I3) Unconstrained interactions with adversaries: This last class
gathers the unconstrained interactions with any active objects including
human interventions. Contrary to the three previous ones, these interac-
tions are not necessarily requested by the observed program. The typical
case would be concurrent processes rewriting memory locations.

Proposition 3 The complexity of free interactions with active objects is
Undecidable.

Proof.
Let P be the observed program, and Q a concurrent process. P uses
the value stored in a memory space M without being aware that Q can
modify it. M is left untouched by Q until the end of its process. When
terminating, Q writes a different value in M. Knowing which value will
be used by P is equivalent to know if Q terminates whatever its inputs
are. The complexity of such interactions is thus equivalent to the halting
problem which is undecidable. An example could be a rootkit modifying
the system API addresses. Once loaded, it will have repercussions on the
behavior of any program using system services. �

3.3.2 Impact of the interactions on detection

The complexity of interactions is not only determined by their nature but also
by their combining. Their complexity are multiplied by a factor depending on
the structure and perimeter of the observed system.

In the case of an interactive virus, we simply consider one to one interactions
with the target of the observation. The factor is then directly proportional to
the number of adversaries. The complexity of the oracle according to the inter-
action class is thus multiplied by a factor n.

In the case of distributed malwares, we consider multiple interactions be-
tween the adversaries. The complexity increases polynomially with the com-
plexity of the interaction graph. The worst case is reached when the malware
is a complete graph which can not be divided into biconnected subgraphs. The
complexity is then multiplied by a factor (n × (n − 1))/2 corresponding to the
maximum possible interactions. In both cases the increase induced by the com-
bining factor is polynomial.

By extending the existing model with interactions, we can show that the
detection complexity limited to the simple Turing machine is increased by the
introduction of interactions. According to Bonfante et al. the set of the viruses

9

for a given propagation function is Π2 [6]. Without taking the interactions into
account (the oracle result is considered as a fixed input), this proposition can be
directly applied to the set of the interactive viruses. We will now demonstrate
that, without considering interactions, the sets of distributed viruses is also Π2.

Proof.
Proof will be given for distribution over two components but can be general-
ized to n. Let q be a program computing the distributed propagation function f
of the definition. The set of distributed viruses over two components is given by:

∀x, y, p∃y1, ..., y8

(p, x,Θ(v, w)) = y1 ∧ (p, y,Θ(v, w)) = y2∧
(p, x, y) = y3 ∧ ϕv(y1) = y4∧
ϕw(y2) = y5 ∧ (y4, y5) = y6∧
ϕq(y6) = y7 ∧ ϕv,w(y3) = y7

�

Proposition 4 By introducing the oracle complexity we obtain the following
results. The set of interactive (resp. distributed) viruses for a given propaga-
tion function is respectively Π2, Π3 and undecidable according to the class of
interaction considered.

4 A formal semantic based on interactive ma-
chines for malware behaviors

The goal of this previous theoretical background was mainly to justify the impor-
tance of interactions and their impact on the detection. Based on the Interaction
Machine formalism, it could now be interesting to establish a language in order
to model malwares and in particular their behaviors. The formal grammars
have the advantage of providing a better understanding of the malware effects,
with great manipulation facilities, while remaining enough formal for a high
level representation. This way, we migrate from abstract virology to a more op-
erational context. With regards to intrusion detection, recent works underline
the importance of generating a semantic traducing the intrinsic properties of the
vulnerabilities rather than the exploits themselves [19]. Our guiding principle is
similar, we think that it is important to describe the final purpose of a behavior
rather than the technical solutions used to achieve it.

Several attempts to provide a semantic description of malwares’ behaviors
have already been made like the metalanguage introduced by Markus Schmall
[20]. Finally, this first description was not enough formal to establish proofs
about the language properties. Other semantics were introduced later based
on simplified programming language [13] but they were not really intended to
traduce the final purpose remaining at the assembly level. That is why we have
decided to establish our own high level dedicated formalism which could then
be declined into more concrete models or instanctiations by refinement.

4.1 Introduced framework

By choice, we have adopted an object oriented vision of the problem. The mal-
ware is thus considered as an object with internal attributes and mechanisms.

10

Additional interfaces are then provided for interaction with external objects.
Before getting any further, let us begin with introducing our grammar describ-
ing the Malicious Behavior Language (MBL).

(1) < Attribute > ::= var|const
(2) < Op1 > ::= ¬|&
(3) < Op2 > ::= ∨| ∧ | ⊕ | < | ≤ | = | ≥ | >

|+ | − | × | ÷ | ≡ | << | >>
(4) < V alue > ::= < Attribute >

| [< Attribute >]
| < Op1 > (< V alue >)
| < Op2 > (< V alue >, < V alue >)

(5) < Operation > ::= var := (< V alue >)
| [< Attribute >] := (< V alue >)
| goto < Attribute >
| stop

(6) < Adversary > ::= obj perm
| obj temp
| obj com
| obj boot
| obj exec
| obj sec
| env var
| this

(7) < Control > ::= open|create|close|delete
(8) < I/O > ::= receive var ←< Adversary >

| receive [< Attribute >]←< Adversary >
| send < V alue >→< Adversary >
| wait < Adversary >
| signal < Adversary >

(9) < Interaction > ::= < Control >< Adversary > | < I/O >
(10) < Command > ::= < Operation > | < Interaction >
(11) < Block > ::= < Command >;< Block >

| < Command >;
(12) < Structure > ::= < Block >

| if(< Command >)then{
< Sequence >

}else{
< Sequence >

}
| if(< Command >)then{

< Sequence >
}
| while(< Command >){

< Sequence >
}
| [< Sequence >‖< Alternatives >]

(13) < Alternatives > ::= < Sequence >‖< Alternatives >
| < Sequence >

11

(14) < Sequence > ::= < Structure >< Sequence >
| < Structure >

(15) < Behavior > ::= < Sequence >

4.2 Internal mechanisms

Internal mechanisms are operations performed by the malware without requiring
external interventions assuming that the processed data is available. Even if the
data is originally supplied by an adversary, the data processing on its own is
considered internal. With regards to the grammar, atomic internal operations
are defined within the rules (1) to (5). These operations are then combined in
blocks and structures according to the rules (10) to (15).

Proposition 5 The MBL language is Turing-complete.

Proof.
Proof is given in appendix by describing a Turing Machine with the MBL. �

Even if the proof of Turing Completeness states that our language is sound and
complete with regards to internal mechanisms, we have shown in the part 2.
that it remained insufficient to model the behavior of malwares. Notice that
Turing Machine equivalent languages are the richest languages known to be
both complete and sound.

4.3 Interaction extension

In fact, Interaction Machines extend the Chomsky hierarchy to the non com-
putable domain as pictured in Table 1 [14]. As a consequence, Interaction gram-
mars require additional dynamic features. In interactive languages, a notion of
polarity is introduced for terminal grammar units [21]. A negative polarity
indicates that the associated unit is in fact the result of an interaction and in-
versely for a positive value which is used as an input. Otherwise, the unit is said
neutral. As a consequence, dynamic listening and transmitting operators are
required to affect them dynamic values. The rules (7) and (8) defines dynamic
interactive commands for listening and transmitting operations. The future pos-
sible values taken by the variables storing the results of these interactions are
incrementally transformed into a sequential past at each computational step.
These operators prove sufficient for modelling interaction of classes I1 and I2.
In effect, they describe cases where the malware is set in a listening or transmit-
ting state willingly. Notice that the wait and signal commands make it possible
to distinguish between synchronous and asynchronous communications. On the
other hand, interactions of class I3 can only be modelled by non-deterministic
choices requring a third additional operator. In our grammar, the respective
operator is introduced in rule (12) with the notation [s ‖ s′]. The choice be-
tween the different alternative sequences can be indirectly committed according
to such unforeseen interactions. By nature, these behaviors are almost impos-
sible to predict (see the undecadibility result in part 3.2) and thus can hardly
be integrated to models in first place.

Proposition 6 Soundness of the MBL with regards to interactions is quite in-
tuitive considering the fact that the concept of object-oriented modelling is di-

12

rectly inspired from the reality. On the other hand, completeness is impossible
to achieve.

Proof.
We know that possible stream histories making up interactions are not recur-
sively enumerable. Similarly to the Godël incompleteness for the integers, any
domain whose set of true assertions is not recursively enumerable, can not be
complete. Nevertheless, the partial completeness can be assessed through ex-
periments. To do so, we will confront our model to a pool of real world cases.
�

Generative Models Machine Models

Computable Regular languages Finite automata
functions Context-free grammars Pushdown automata

Context-sensitive grammars Linear-bounded automata
Unrestricted rewriting rules Turing machines

Non-computable Sequential interaction Sequential interaction
functions grammars machines

Non-serializable Non-serializable interaction
grammars machines

Table 1: Extended Chomsky Hierarchy. Interaction Machines extend the Chom-
sky hierarchy to the domain of non-computable functions by introducing dynamic
operators and non determinism.

4.4 Adversaries classification

In order to extend our model we have chosen to affect object types to the adver-
saries. Using the object-oriented approach, we have put forward an inheritance
scheme based on the final purpose of each object. Only classes with relevant
effects on the malware lifecycle have been specified particularly. Every other
object will be classified in two generic classes as pictured in Figure 2. This
classification suggests a certain approach but remain open for discussion.

Basically, objects have been separated into two classes according to their
persistence. The first one gathers the permanent objects (obj perm) which
remain present after a complete reboot of the system. Files, directories or
registry keys are members of this class. At the opposite, temporary objects
(obj temp) exist only for a determined time as long as the system remains
active. Mutex, events or critical sections are simple examples. Particular objects
inheriting of these two classes are defined more specifically. In our grammar,
the more specific class always prevail on the generic:

• The first subclass of the permanent objects is made up of the communicat-
ing object (obj com). These objects are in fact communication channels
to remote locations or systems. The definition of a communicating object
is very large. Obviously network connexions, drivers are members of this
class but also network drives, shared directories (intranet, P2P) or remov-
able devices. In very particular cases such as pipes between processes they
can also derived from temporary objects.

13

Figure 2: Adversary inheritance scheme. Any system object is either permanent
or temporary making the classification complete. They have been derived into several
specific classes according to the malware perspective. This classification is not fixed
and can be the subject of enhancements.

• The second subclass gathers the boot objects (obj boot). These objects
provide the malware facilities to execute automatically its code. The run
registry keys, the win.ini file for Windows or the master boot record make
execution possible during the boot sequence. But automatic execution
is also possible during runtime by overwriting the gobal system service
descriptor table, the import tables or entry points in executables with the
malware address. Such locations are also considered as members of the
class.

• An other permanent subclass is made up of the environment variables
(env var). These objects store important information on the platform.
Configuration files, registered path but also hardware fixed data structures
available through particular instructions (cpuid) are just a few examples.

• Executable objects (obj exe) constitute a fourth subclass inheriting from
the temporary object. Process and threads in particular are appealing
target for corruption by the malware.

• Security objects (obj sec) is quite particular with regards to the others
subclasses. These objects can be either environment variables or executa-
bles making this subclass hybrid. They play an important role in the
protection of the system. They can be respectively antiviral processes
or registry keys storing the security configuration for certain web or P2P
clients.

• Ultimately, it shall prove useful to define an autoreference (this) as in
object programming. This element has no particular type as it can be
either the drive image of the malware, its associated process in memory.
Such a reference can be obtained under Windows thanks to functions like
GetCurrentProcess() or GetModuleHandle() called with a null value. It
corresponds more simply to the $0 in a shell script.

14

5 Behavior modelling through interactions

5.1 Behaviors identified ”in the wild”

In order to assess our model, we have chosen to confront it to existing malwares.
To do so, we have proceeded to a behavior survey for several representative ma-
licious strains. Thus, we have identified different techniques used to achieve
several classes of typical malicious behaviors. Such information are partly avail-
able on observatory websites [22]. When deeper information were required, we
have referred to detailed analysis of malwares in the wild [23, 24] or signifi-
cant zoo examples [25, 26]. The results of this survey are given synthetically in
appendix.

5.2 Specific behavior definitions

Based on this survey, we will now describe several malicious behaviors as sub-
grammars of the generative one. This means that any language generated by
one of them is included in the language defined by our framework. Each of
the used grammar unit can then be translated into several possible instruction
metastructures by refinement from the abstraction to the implementation.

5.2.1 Replication mechanisms

Self replication is a key mechanism with viruses and worms. Most of the defini-
tions put forward for these agents are based on this principle. In our description
we have split replication according to three modes. The first one is a simple
duplication where no target is required to host the code. The code is first stored
in a local buffer symbolized by the generic variable Vcode. It is then stored in a
newly created permanent object Oclone. During the duplication, mutations can
occur but these mechanisms shall not be described before the next section.

Vcode ∈ var
Oclone ∈ obj perm
(i) < Duplication > ::= < Creation >< Reading >

< Mutation >< Writing >
| < Reading >< Creation >

< Mutation >< Writing >
(ii) < Creation > ::= create Oclone;
(iii) < Reading > ::= receive Vcode ← this;
(iv) < Writing > ::= send Vcode → Oclone;

Contrary to duplication, infection requires an existing entity to host its code.
As a consequence, the first phase of the replication always consists in crawling
in the system to look for a potential target. In order to describe a valid target,
conditions modelled by Cvalid are defined on the nature of the target, one of
them being to be not previously infected. An example could be the absence of
an infected marker in a file such as a ”magic constant”. In our model we have
integrated append and prepend modes of infections, whether destructive or not.
In particular, the variable Vsave is used as a buffer during the optional recopy
of the original data. Once again mutations may intervene.

15

Vtarget, Vcode, Vsave, Vcomparison ∈ var
Cvalid ∈ const
Otarget ∈ obj perm
(i) < Infection > ::= < Searching >< Opening >< Relocating >

< Reading >< Mutation >< Writing >
| < Searching >< Opening >< Reading >

< Relocating >< Mutation >< Writing >
(ii) < Searching > ::= while(Vcomparison := (¬(= (Vtarget, Cvalid)))){

open Otarget;
receive Vtarget ← Otarget;

}
(iii) < Opening > ::= open Otarget;
(iv) < Relocating > ::= receive Vsave ← Otarget;

send Vsave → Otarget;
| ε

(v) < Reading > ::= receive Vcode ← this;
(vi) < Writing > ::= send Vcode → Otarget;

Propagation is a third way of replicating more specific to worm. Contrary
to the two previous cases of local replication, propagation is the capacity to
replicate over remote systems. The code is no longer copied in a permanent
object but rather sent to a communicating object. According to the nature
of the channel used, a formatting phase may be required. For example, mail
propagation requires the construction of a mail structure with valid headers
and the code of the malware attached encoded in a base 64 format. Notice that
encoding the malware code may take several steps. Like any other replication
mechanism, mutations are likely to occur.

Vcode, Vformatted, Vparameter, Vposition ∈ var
Cheader, Chsize ∈ const
Ochannel ∈ obj com
(i) < Propagation > ::= < Opening >< Reading >

< Mutation >< Transmitting >
| < Reading >< Opening >

< Mutation >< Transmitting >
(ii) < Opening > ::= open Ochannel;
(iii) < Reading > ::= receive Vcode ← this;
(iv) < Transmitting > ::= send Vcode → Ochannel;

| < Formatting >
send Vformatted → Ochannel;

(v) < Formatting > ::= Vposition := (&(Vformatted));
[Vposition] := (Cheader);
Vposition := (+(Vposition, Chsize))
< Encoding >
[Vposition] := (Vcode);

(vi) < Encoding > ::= Vcode := (< Op2 > (Vcode, Vparameter));
< Encoding >
| ε

16

5.2.2 Mutation mechanisms

Up until now, mutations mechanisms have been mentioned without definition.
We will now fill this gap. Mutations are mainly separated into two types of
engine: polymorphic and metamorphic. Any one of them, both or none can be
applied at the same time.

(i) < Mutation > ::= < Polymorphism >< Metamorphism >
| < Polymorphism >
| < Metamorphism >
| ε

Let us begin with polymorphism which is historically the first type of en-
gine and thus the simpler. In polymorphism, the plain code is ciphered during
its copy. As a matter of fact most of actual ciphering functions used by mal-
ware writers are simple binary operations like XOR applied with a constant key
value Vkey. Basically, our subgrammar is really similar to the behavior template
described by Christodorescu et al. but with several extensions [27]. In partic-
ular, key variation and chaining like CBC have been added on the purpose of
genericity. If this model only describes simple ciphering algorithms, it can be
extended to more complex one as our grammar is Turing complete. A last point
is the possibility to define a particular progression during the process. Certain
algorithms such as in PRIDE (Pseudo-Random Index DEcryption [28]) have
complex or even random memory accesses instead of sequential ones in order to
delude emulators.

Vcode, Vposition, Vtemp, Vkey, Vposprev, Vprevious, Vcomparison ∈ var
Climit, Cvariation, Cprogress ∈ const
(i) < Polymorphism > ::= Vposition := (&(Vcode));

while(Vcomparison := (< (Vposition, Climit))){
< Ciphering >
< KeyV ariation >
< Next >

}
(ii) < Ciphering > ::= Vtemp := ([Vposition]);

< Chaining >
Vtemp := (< Op2 > (Vtemp, Vkey));
[Vposition] := (Vtemp);

(iii) < Chaining > ::= Vposprev := (−(Vposition, 1));
Vprevious := ([Vposprev]);
Vtemp := (< Op2 > (Vtemp, Vprevious));
| ε

(iv) < KeyV ariation > ::= Vkey := (< Op2 > (Vkey, Cvariation));
| ε

(v) < Next > ::= Vposition := (< Op2 > (Vposition, Cprogress));

The associated decrypting routine structure is almost identical to the mu-
tation process as ciphering and deciphering algorithms are almost the same.
According to the algorithms the key may vary or the arithmetic operations im-
plied. The main difference relies in an additional jump for the malicious code

17

to gain control.

(i) < DecryptRoutine > ::= < Polymorphism > goto Vposition;

Metamorphism is much more complex to describe with formal grammar.
In recent works, E. Filiol has given a definition of the metamorphism as a
rewriting system transforming a grammar into an other [29, 11]. We will thus
base our model on this definition establishing rewriting rules for our grammar.
Metamorphic engines use four main types of techniques: reordering, register
reassignement, garbage insertion and substitution with equivalent instructions.
This last technique is partially addressed by working at the semantic level and
thus shall not be described formally. In particular, in our formalisation, the
use of different system services with varying parameters can be reduced to their
basic interpretation as interactions bringing equivalences into light.

First technique is garbage insertion. Existing works already define the in-
sertion of dead code as a grammar production rule [30]. This model considers
only the insertion of nop equivalent instructions. In our model, we will extend
the notion of garbage code to any sequence that once inserted does not mod-
ify any variable or interaction history of the original code. In order to define
our rewriting rule, let us define a sequence S generated by our framework. Let
s1, ..., sn be any possible partition of S into n subsequences. Such a partition is
always possible as soon as the sequence is not made up of a single command or
a single structure.

s1...sn ⇒R < Garbage > s1 < Garbage > ... < Garbage > sn < Garbage >
with
< Garbage >::=< Sequence′ >
where < Sequence′ > has the same syntax than < Sequence > but for all
variable v and object o of S, we have v 6∈ L(Sequence′) and o 6∈ L(Sequence′).
The sequence is thus defined on a restraint spaces for variables var \ {v ∈
var|∃i, v ∈ si} and objects L(< Object >) \ {o ∈ L(< Object >)|∃i, o ∈ si}.

We will use the same notation in order to define code reordering. The se-
quence is once again partitioned and then recombined according to any possible
permutation of the subsequence si...sj . Jump are then introduced in order to
maintain the correct control flow.

s1...sn ⇒R goto Vaddress1 ; si; goto Vaddressi+1 ; ...; s1; goto Vaddress2 ; ...; sn

As we are working at a semantic level, the problem of register reassignement
is already addressed using generic variables. But we will once again extend the
notion of register reassignement to the more generic principle of variable reas-
signement.

S ⇒R Vnew := (Vold);S[Vold/Vnew]
where S[Vold/Vnew] is equal to S where all occurrences of Vold are replaced by
Vnew.

These rules describe the techniques usually used by malware writer but E.
Filiol has shown that by choosing more thoughtfully these rewriting rules it is

18

possible to generate mutating malwares whose form-based detection is undecid-
able [29, 11]. Based on the word problem stated by Emile Post, PBMOT is an
engine he developed as a proof of concept.

5.2.3 Overinfection and activity tests

The overinfection test proves useful to detect if any instance of the malware
is present on the system. It is done by checking the existence of a permanent
marker Omarker. This test can be achieved through at least three different
methods. Notice that in the case of file infection, the test to know if a target is
healthy, is already integrated in the searching routine and thus does not need
to be redefined here.

Omarker ∈ obj perm
(i) < Overinfection > ::= < Test1 > | < Test2 > | < Test3 >
(ii) < Test1 > ::= if(create Omarker)then{

stop;
}

(iii) < Test2 > ::= if(open Omarker)then{
stop;

}else{
create Omarker;

}
(iv) < Test3 > ::= if(open Omarker)then{

create Omarker;
}else{

stop;
}

If overinfection test addresses the static problem, the activity test deals with
the dynamic aspect making it possible to detect if an instance of the malware
is already running in memory. The execution is betrayed by the presence of a
particular temporary object Oactive. Otherwise the structure is quite similar to
the previous one.

Oactive ∈ obj temp
(i) < Activity > ::= < Test1 > | < Test2 > | < Test3 >
(ii) < Test1 > ::= if(create Oactive)then{

stop;
}

(iii) < Test2 > ::= if(open Oactive)then{
stop;

}else{
create Oactive;

}
(iv) < Test3 > ::= if(open Oactive)then{

create Oactive;
}else{

stop;
}

19

5.2.4 Residency mechanism

Residency is a way for the malware to trigger its execution automatically. It is
achieved by writing its reference Vreference in a boot object Orun. According to
the object used, the nature of the reference will be different. For a run registry
key, it will be its path in the file system whereas for import tables or entry
points, it will be its address in memory.

Vreference ∈ var Orun ∈ obj boot
(i) < Residency > ::= send Vreference → Orun;

5.2.5 Anti-antiviral mechanisms

According to the principle, the best defense is attack, malware sometimes deploy
proactive protections. The malware will try to delete security files or terminate
antivirus processes in order to execute freely.

Oprotect ∈ obj sec
(i) < Proactive > ::= delete Oprotect;

An other form of proactive protection is the modification of the security
policy. Most of programs, even the operating system store this information in
policy objects Opolicy like registry keys or configuration files. The current con-
figuration is thus replaced by the weaker possible.

Vweaker ∈ var
Opolicy ∈ obj sec
(i) < Policy > ::= open Opolicy;

send Vweak → Opolicy;

These two techniques are quite aggressive and they are toughly monitored by
antivirus and HIPS. There are other ways more subtle to avoid detection such
as preventing the capture of any information betraying the malicious activity.
In order to analyse malwares, they are often primarily run in an emulated envi-
ronment. Such a virtual system can be detected because it does not match up
entirely with a real one. Typically, the redpill technique is based on this kind of
comparison by reading the CPU structure thanks to the cpuid instruction [31].
In case of detection, the malware can execute a legitimate sequence or simply
stop.

Vread, Vcomparison ∈ var
Cexpected ∈ const
Oinfostructure ∈ env var
(i) < DetectEmulator > ::= receive Vread ← Oinfostructure;

if(Vcomparison := (= (Vread, Cexpected)))then{
< Sequence >

}else{
< Sequence >

}

20

A second technique is stealth. A virus is said stealthy with regards to its en-
vironment if no reference is made to it in the information structures controlled
by the system. In the terms of our grammar, it could be translated by the
following result: env var ∩ this = �. For example no reference to the malware
should be clearly visible in the file system tables or the process list. In order to
achieve this we will define means for a malware to be stealthy relatively to sys-
tem calls by replacing them with altered functions. There are two basic cases.
Either the malware is specifically targeted by the call through the parameters
and then its reference should be locally replaced by a benign parameter. Or the
function returns data likely to contain this reference knowing that this data can
be an explicit value or an address toward a complex structure requiring analysis.

Vparameter, Vreturn, Vbenign, Vposition, Vsize, Vvalue ∈ var
Cthis ∈ const
(i) < StealthFuntion > ::= < Preprocessing >

< SysCall >
< Postprocessing >

(ii) < Preprocessing > ::= if(Vcomparison := (= (Vparameter, Cthis)))then{
Vparameter := (Vbenign);

}
| ε

(iii) < Postprocessing > ::= if(Vcomparison := (= (Vreturn, Cthis)))then{
Vreturn := (Vbenign);

}
| Vposition := (Vreturn);

while(Vcomparison := (< (Vposition, Vlimit))){
Vvalue := ([Vposition]);
if(Vcomparison := (= (Vvalue, Cthis)))then{

[Vposition] := (Vbenign);
}
Vposition := (< Op2 > (Vposition, Cprogression))

}
| ε

6 Conclusion and perspectives

Through this paper, we have introduced a new framework based on interac-
tions in order to describe malicious behaviors. The first theoretical approach
has given results measuring the heavy impact of interactions on the detection
complexity, thereby justifying their consideration. We have then provided a
semantic that seems relevant with respect to our survey since we have man-
aged to describe most of the identified behaviors. In order to achieve a greater
completeness, the scope of the survey should be increased to a wider range of
malwares. Anyhow, the generative grammar proves to be sufficiently generic to
define additional behavior or refine exisitng descriptions. Additional behaviors
such as data gathering or typical final payload could have been described but
we had to limit ourselves not to drown the important facts among examples.
Eventually this grammar is proposed as a base and can be extended for specific
purposes.

21

Working at a higher level of representation has several advantages. It proves
really useful in expressing the final aim of behaviors rather than the techniques
used to achieve it. Moreover this semantic brings into light functional simi-
larities more evolved than simple instruction equivalence which is the major
drawback of most current detection systems. Eventually, it could be worth
considering integrating our framework to existing semantic analysis systems for
malware detection as in [27, 32, 33].

The inheritance scheme for adversaries is also an intearesting features since
it helps to understand the relation between a malware and its environement.
Studying this classification further would help to refine the scheme and bring
additional information about the data flow. An other way to characterize this
flow would be by exploring deeper the existing interaction semantics and in par-
ticular π-calculus for a more proper theoretical formalism than oracles [8, 21].
As recently stated by J-Y. Marion, using this formalism should bring into light
possible access restrictions to hinder the malware propagation [34].

References

[1] E. Filiol, Computer Viruses: From Theory to Applications. Springer, IRIS
Collection, 2005, ISBN:2-287-23939-1.

[2] J. von Neumann, Theory of Self-Reproducing Automata. University of Illi-
nois Press, 1966, ISBN:0-598-37798-0.

[3] F. Cohen, Computer Viruses. PhD thesis, University of South California,
1986.

[4] L. M. Adleman, “An abstract theory of computer viruses,” in CRYPTO
’88: Proceedings on Advances in cryptology, pp. 354–374, 1990.

[5] Z. Zhihong and M. Zhou, “Some further theoretical results about computer
viruses,” The Computer Journal, vol. 47, no. 6, pp. 627–633, 2004.

[6] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “On abstract computer
virology from a recursion theoretic perspective,” Journal in Computer Vi-
rology, vol. 1, no. 3-4, pp. 45–54, 2006.

[7] P. Wegner, “Why interaction is more powerful than algorithms,” Commu-
nications of the ACM, vol. 40, no. 5, pp. 80–91, 1997.

[8] R. Milner, “Elements of interaction: Turing award lecture,” Communica-
tions of the ACM, vol. 36, no. 1, pp. 78–89, 1993.

[9] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, Inc., 1992, ISBN:0-387-97664-7.

[10] E. Filiol, “Formalisation and implementation aspects of k-ary (malicious)
codes,” Journal in Computer Virology, vol. 3, no. 3, EICAR 2007 Special
Issue, V. Broucek Ed., 2007.

[11] E. Filiol, Techniques Virales avancées. Springer, IRIS Collection, 2007,
ISBN:2-287-33887-8.

22

[12] F. Leitold, “Mathematical model of computer viruses,” in Best Paper Pro-
ceedings of EICAR, pp. 194–217, 2000.

[13] M. Webster, “Algebraic specification of computer viruses and their envi-
ronments,” in Selected Papers from the First Conference on Algebra and
Coalgebra in Computer Science, Young Researchers Workshop (CALCO-
jnr), University of Wales Swansea Computer Science Report Series CSR
18-2005, P. Mosses, J. Power, and M. Seisenberger Eds., pp. 99–113, 2005.

[14] P. Wegner, “Interactive foundations of computing,” Theoretical Computer
Science, vol. 192, no. 2, pp. 315–351, 1998.

[15] P. Wegner, “Interaction as a basis for empirical computer science,” ACM
Computing Surveys, vol. 27, no. 1, pp. 45–48, 1995.

[16] M. J. Atallah, Algorithms and Theory of Computation Handbook. CRC
Press LLC, 2000.

[17] F. B. Cohen, “Computer viruses: Theory and experiments,” Computers &
Security, vol. 6, no. 1, pp. 22–35, 1987.

[18] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata The-
ory, Languages and Computation, Second Edition. Addison Wesley, 1995,
ISBN:0-201-44124-1.

[19] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards auto-
matic generation of vulnerability-based signatures,” in Proceedings of IEEE
Symposium on Security and Privacy, pp. 2–16, 2006.

[20] M. Schmall, Classification and Identification of Malicious Code Based on
Heuristic Techniques Utilizing Meta-languages. PhD thesis, University of
Hamburg, 2002.

[21] G. Perrier, “Interaction grammars,” in Proceedings of the 18th conference
on Computational linguistics - Volume 2, pp. 600–606, 2000.

[22] “Fortinet observatory.” url=www.fortinet.com/FortiGuardCenter/.

[23] K. Rozinov, “Reverse code engineering: An in-depth analysis of the bagle
virus,” in Proceedings of the 2005 IEEE Workshop on Information Assur-
ance, pp. 178–184, 2005.

[24] E. Filiol, “Le ver mydoom,” MISC - Le magazine de la sécurité informa-
tique, vol. 13, 2004.

[25] P. Ferrie, “Magisterium abraxas,” in Proceedings of Virus Bulletin, pp. 6–7,
2001.

[26] P. Ferrie and H. Shannon, “It’s zell(d)ome the one you expect -
w32/zellome,” in Proceedings of Virus Bulletin, pp. 7–11, 2005.

[27] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantic-aware malware detection,” in Proceedings of IEEE Symposium
on Security and Privacy, pp. 32–46, 2005.

23

[28] T. M. Driller, “Advanced polymorphic engine construction,” 29A E-zine,
vol. 5, 2003.

[29] E. Filiol, “Metamorphism, formal grammars and undecidable code muta-
tion,” in Proceedings of the International Conference on Computational
Intelligence (ICCI), 2007.

[30] Qozah, “Polymorphism and grammars,” 29A E-zine, vol. 4, 1999.

[31] J. Rutkowska, “Red pill... or how to detect vmm using (almost) one cpu
instruction,” 2005, url=http://invisiblethings.org/papers/redpill.
html.

[32] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting ma-
licious code by model checking,” Lecture Notes in Computer Science,
vol. 3548, pp. 74–187, 2005.

[33] J. Shin and D. Spears, “The basic building blocks of malware,” tech. rep.,
University of Wyoming, 2006.

[34] J.-Y. Marion, G. Bonfante, and M. Kaczmarek, “Experiments with recur-
sion theory,” in 2nd Workshop on the Theory of Computer Viruses (TCV),
2007.

[35] E. Filiol, G. Jacob, and M. L. Liard, “Evaluation methodology and the-
oretical model for antiviral behavioural detection strategies,” Journal in
Computer Virology, vol. 3, no. 1, WTCV’06 Special Issue, G. Bonfante and
J-Y. Marion Eds., pp. 23–37, 2007.

24

A Proof of Turing completeness

Basically, there are three means to prove that a language is Turing-complete.
One of them is to exhibit a program in this language emulating a Turing Ma-
chine. We will base our demonstration on this principle. Before writing down
this program, we need to define a certain number of elements in our language:

• the alphabet manipulated by the machine, simply 0 and 1 ∈ const,

• the different internal states of the machine defined as constants S0, ..., Sn ∈
const, Sn being the acceptance state. These states will be associated for
simplicity,

• the transitions will be described in three tables Tstate,Tsymbol,Tmove ∈
const representing respectively the next state, the symbol to write and the
associated move. The current state determines the row to read whereas
the current symbol determines the column,

• a variable Vtape is also needed to describe the working tape as well as
variables storing the current state Vstate, the current position Vhead and the
current symbol Vsymbol. The equivalent transitional variables Vnextstate,
Vmove and Vnextsymbol shall prove useful to store the next machine state
during each computational step.

Proof.

#Machine initialization
Vhead := (&(Vtape));
Vstate := (S0);
Vsymbol := (0);
while(Vcomparison := (¬(= (Vstate, Sn))))then{

#Reading symbol under the head
Vsymbol := [Vhead];
#Transition operations
Vposition := (&(Tstate));
Vposition := (+(Vposition, ∗(Vstate, Crowsize)));
Vposition := (+(Vposition, Vsymbol));
Vnextstate := ([Vposition]);
Vposition := (&(Tsymbol));
Vposition := (+(Vposition, ∗(Vstate, Crowsize)));
Vposition := (+(Vposition, Vsymbol));
Vnextsymbol := ([Vposition]);
Vposition := (&(Tmove));
Vposition := (+(Vposition, ∗(Vstate, Crowsize)));
Vposition := (+(Vposition, Vsymbol));
Vmove := ([Vposition]);
Vstate := (Vnextstate);
#Writing symbol on the tape
[Vhead] := (Vnextsymbol);
#Moving head towards right if move is 1 towards left otherwise
if(Vcomparison := (= (Vmove, 1)))then{

25

Vhead := (+(Vhead, 1));
}else{

Vhead := (−(Vhead, 1));
}

}
stop; �

B Behavior survey

The table 2 sums up most of the results of our survey on the existing behaviors.
This work is the continuation of the malicious behavior classification begun with
the worm MyDoom in a previous paper [35]. We can see that few different be-
haviors actually exist whereas the techniques used to achieve them are multiple.

Replication

V/FI

Flip Infect of COM and executable files
Lewor Prepend infection of an executable file
Rile Prepend infection of an executable file with original code relocation
Zelly Infect adding new sections of the PE file

or merging the program in a unique section and infection

V/EmW

Bagle Copy the running virus in the system directory
Chir Copy the running virus in the system directory

Copy in a companion file associated to a web page
Feebs Copy the running virus in the system directory
Loveletter Copy the running virus in the system directory as several executables

Copy the running virus in the system directory as several web pages
Replace every picture file or with a specific extension on the hard drive

Magistr Infection of the last section in the executables of the Windows directory
MyDoom Copy the running virus in the system directory
Sober Copy the running virus in the system directory as several executables

Copy the running virus in the system directory as several mails
Zellome Copy the running virus in the system directory and destroy the original one

V/P2PW

Supova Copy the running virus in the system directory
Winur Copy the running virus in the root directory

Propagation to other systems

V/FI

Lewor Copy on removable devices
Copy on connected network drives

V/EmW

Bagle Massmailing with the virus as attached file
Chir Massmailing with the virus as attached file

Copy on connected network drives
Feebs Massmailing with the virus as attached file

Copy in directories whose name evoked shared folders through P2P
Loveletter Massmailing with the virus as attached file

Using IRC channels
Magistr Massmailing with the virus as attached file
MyDoom Massmailing with the virus as attached file

Copy in the KaZaA default shared directory

Table 2: Identified behaviors during the survey (First part). Abbreviation:
Virus (V), File Infector (FI), Worm (W), E-mail Worm (EmW), Peer-to-Peer Worm
(P2PW), Trojan (T), Rootkit (R)

26

Sober Massmailing with the virus as attached file

V/P2PW

Supova Copy in the Windows media folder and share it by configuring KaZaA
Automatic sending to the MSN Messenger contact list

Winur Copy in a new hidden directory and configure certain P2P clients to share it
Copy on a floppy disk if present

W

Slammer Transmission by UDP packets with a fixed port to a random IP address
CodeRed Transmission by TCP/IP packets on port 80

Polymorphism and metamorphism

V/FI

Zelly Ciphering of the virus body according to a random quadratic function
Mutation of the decryptor by random combination of arithmetic expressions

Magistr Ciphering the injected code by simple XOR with a shifting key value
Metaphor Ciphering using the pseudo-random index decryption

Garbage insertion
Substitution of equivalent instructions
Code permutation

V/EmW

MyDoom Simple permutations of the strings
Ciphering the embedded code by simple XOR with a shifting key value

Zellome Ciphering of the virus body according to a random quadratic function
Mutation of the decryptor by random combination of arithmetic expressions

Overinfection test

V/EmW

Bagle Test the presence of a particular registry key
Magistr Test the presence of constant values in PE file headers
MyDoom Test the presence of a particular registry key

W

CodeRed Test the presence of a particular file under a precise path

Test of activity in memory

V/EmW

Bagle Test the presence of a particular mutex
MyDoom Test the presence of a particular mutex

Residency

V/FI

Flip Alter the Master Boot Record and the boot sector
Lewor Create an autorun file or modify the existing one

Attempt to run as a remote task with NetBIOS
Zelly Redirection of the program entry point towards the new sections

or interception of a particular function call of the import table

V/EmW

Bagle Write the virus whole path and name in a Windows run registry key
Chir Write the virus whole path and name in a Windows run registry key

Add the necessary script to be launched by the infected webpage
Feebs Register by the manager as a service executed when loading the system
Loveletter Write the virus whole path and name in a Windows run registry key
Magistr Write the virus whole path and name in a Windows run registry key

Write the virus path in the file win.ini
Overwrite an entry of the import table with the viral code address

MyDoom Write the virus whole path and name in a Windows run registry key
Sober Write the virus whole path and name in a Windows run registry key
Zellome Write the virus whole path and name in a Windows run registry key

Register the virus as a debug program for the Windows Taskmanager

Table 2: Identified behaviors during the survey (Middle). Abbreviation: Virus (V),
File Infector (FI), Worm (W), E-mail Worm (EmW), Peer-to-Peer Worm (P2PW),
Trojan (T), Rootkit (R)

27

V/P2PW

Supova Write the virus whole path in a Windows run registry key
Winur Write the virus whole path in a Windows run registry key

T

Puper Write the virus path in the registry key storing the Windows Explorer policy

Proactive defence

V/FI

Lewor Terminate processes with names characteristic of protection softs (AV,IDS)

V/EmW

Bagle Terminate processes with names characteristic of protection softs (AV,IDS)
Sober Terminate processes with names characteristic of protection softs (AV,IDS)

V/P2PW

Winur Deactivate the KaZaA analysis and protections through registry keys

T

Puper Separated instances mutually monitoring their respective execution

Stealth and anti-analysis measures

V/EmW

Bagle Redefine its own SMTP message builder
Chir Redefine its own SMTP message builder
Feebs Hide registry keys and files by intercepting system calls

in the processes memory space
Redefine its own SMTP message builder

Magistr Execution of the original legitimate code until the hooked function is called
Antidebugging by injection of structures for error handling

MyDoom Redefining its own DNS cache
Redefining its own SMTP message builder

R

Vanti Hide processes and files by intercepting system calls from the SSDT

T

Puper Hide registry keys by intercepting system calls

Table 2: Identified behaviors during the survey (Last part). Abbreviation: Virus (V),
File Infector (FI), Worm (W), E-mail Worm (EmW), Peer-to-Peer Worm (P2PW),
Trojan (T), Rootkit (R)

28

