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Abstract—Abstract virology has seen the apparition of successive
viral models, all based on Turing-equivalent formalisms. Consid-
ering recent malware (rootkits, k-ary codes), these threats are
only partially covered because functional formalisms do not sup-
port interactive computations. New models have thus appeared to
support these evolutions, but loosing the unified approach in the
way. This article provides a basis for a unified malware model,
founded on the Join-Calculus. In terms of expressiveness, the
process-based model supports the fundamental definitions based
on self-replication and adds support for interactions, concurrency
and non-termination to cover evolved malware. In terms of
detection and prevention, detection undecidability and prevention
by isolation still hold. Additional results are also established:
identification of calculus fragments where detection becomes de-
cidable, formal definition of the non-infection property, potential
solutions to restrict malware propagation.

Index Terms—Malware, Process Algebra, Detection, Prevention

I. INTRODUCTION AND RELATED WORKS

Considering malware, interactions with the execution en-
vironment, concurrency and non-termination are important
functionalities [1]. In effect, resilient and adaptive by nature,
malware intensively use these to survive and infect systems.
Referring to abstract virology, existing models focus on the
self-replication capacity which is defined in functional terms
[2], [3], [4]. Unfortunately, they rely on Turing-equivalent
formalisms [5] which hardly support interactive computations.
With the apparition of interaction-based viral techniques, new
models have been introduced to cope with this limitation,
but loosing any unified approach in the way. K-ary malware
introduce concurrency with a distribution of the malicious code
over several executing parts. [6] provides a model based on
Boolean functions to capture their evolving interdependence.
Rootkits introduce stealth techniques requiring a reactive and
non-terminating execution. Different models have been pro-
vided based either on steganography [7] or graph theory [8].

By evolving towards interaction-dedicated formalisms such
as process algebras, a unified model for malware can be
defined to support these innovative techniques [1]. To maintain
the expressiveness of former models, the chosen algebra has
to support both functional and interactive aspects. The Join-
Calculus was found adequate for building the model [9], [10].
The model offers a greater expressiveness while being closer
to the current vision of computer systems. Still, it provides
reasoning and proof facilities because it relies on an estab-
lished theoretical formalism. Process algebras also increase the

visibility over computation locations and information flows.
Consequently, the identification of potential detection methods
and control points become proportionally eased. The article
contribution can be summed-up to the following points:
• A process-based viral model superseding functional ones

by support of interactive computations.
• A parametrization of the model to cover evolved malware.
• A verification of the formalism impact on fundamental

results for detection and prevention.
The article is articulated as follows. Section II presents

the Join-Calculus. Section III presents self-replication inside
functional models. Section IV introduces the process-based
model, allowing distributed self-replication. Section V extends
it with a parametrization for Rootkits. Within the model,
Sections VI and VII addresses the decidability of malware
detection as well as solutions to prevent their propagation.

II. INTRODUCING THE JOIN-CALCULUS

This overview guarantees minimal self-containment but the
reader is invited to refer to the relative literature [9], [10]. At
the basis of the Join-Calculus, an infinite set of names x, y, z...
is defined. Names are compound into vectors −→x equivalent
to x0, ..., xn. Names constitute the basic blocks for message
emissions of the form x<v> where x is called the channel and
v the transmitted message. Given in Figure 1, the syntax of
the Join-Calculus defines three elements to handle message
passing: processes (P ) being the communicating entities,
definitions (D) describing the system evolution resulting of the
interprocess communications, and the join-patterns (J) defin-
ing the channels and messages involved in communications [9,
pp.57-60]. For ease of modeling, the support of expressions
(E) has been introduced to provide the synchronous channels
necessary to concurrent functional languages [9, pp.91-92].
Expressions can eventually be encoded into the minimal core
of the Join-Calculus.

Based on the syntax, names are divided between different
sets: 1) the channels defined through a join definition (dv), 2)
the names received by a join-pattern (rv), 3) the free names
(fv) and conversely bound names (bv) of a process. Their
inductive construction can be found in [9, p.47]. In addition
to the syntax, operational semantics are required to complete
the computational model. These semantics are defined by
Reflexive Chemical Abstract Machines (RCHAM), specified
by the rules of Figure 2 [9, pp.56-62]. In particular, reductions
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P ::= v<E1; ...;En> asynchronous message
| def D in P local definition
| P | P parallel composition
| 0 null process
| E;P sequence
| let x1, ..., xm = E in P expression computation
| return E1, ..., En to x synchronous return

E ::= v(E1; ...;En) synchronous call
| def D in E local definition

D ::= J . P reaction rule
| D ∧D conjunction
| > null definition

J ::= x<y1, ..., yn> message pattern
| x(y1; ...; yn) call pattern
| J | J join of patterns

Figure 1. Enriched syntax for the Join-Calculus.

STR-JOIN ` P1 | P2 
 ` P1;P2

STR-NULL ` 0 
 `
STR-AND D1 ∧D2 ` 
 D1, D2 `
STR-NODEF T ` 
 `
STR-DEF ` def D in P 
 Dσdv ` Pσdv
(σdv substitutes fresh names to channels from dv[D])
RED J . P ` Jσrv −→ J . P ` Pσrv
(σrv substitutes messages to parameters from rv[J ])

Figure 2. Join-Calculus operational semantics.

C[ . ]S ::= [ . ]S | P | C[ . ]S | def D in C[ . ]S

Figure 3. Syntax rules for building evaluation contexts.

make the system evolve after resolution of message emissions:
def x(−→z ) . P in x(−→y ) −→ P{−→y /−→z }.

For observation, the join-calculus processes may be imbri-
cated inside evaluation contexts. These contexts, whose syntax
is given in Figure 3, define a set of captured names S. When
a process is placed inside this context, its bound names are
preserved if captured; otherwise, they are alpha-converted.

III. AUTONOMOUS SELF-REPLICATION IN VIROLOGY

Self-replication is at the heart of computer virology since it
is the common denominator between viruses and worms. Re-
ferring to early works from [11], two fundamental concepts are
mandatory for self-replication: a replication mechanism and
the existence of a self-description also called self-reference.

As corroborated by [2], [3], [4], self-replication is linked to
the concept of recursion, present in the different computation
paradigms. In the provided definitions, both the self-reference
and the replication mechanism can be identified. Definition 1
is the most flexible definition, compatible with former ones.
By application of Kleene’s recursion theorem [5], viruses are
built as solutions of fixed point equations. In this definition, the
replication mechanism is defined by the propagation function
β. As for the self-reference, it is denoted by the variable
v which is considered both as an executed program and a
parameter according to the side of the equation. The program
p constitutes the replication target and β implicitly contains a
research routine for selecting valid targets for next replications.

Definition 1: Programs being indexed by a Gödel number-
ing, ϕp(x) denotes the computation of the program p over
x. According to [4], a virus v is a program which, for all
values of p and x over the computation domain, satisfies
ϕv(p, x) = ϕβ(v,p)(x) where β is the propagation function.

IV. DISTRIBUTED SELF-REPLICATION

As stated by [12], self-replicating systems do not necessarily
contain their own self-reference access or their own replication
mechanism. They may rely on external services for these
fundamental elements. Therefore, the advantages offered by
process algebras become undeniable: exchanges between pro-
cesses and their environment, distribution of the computations.

As seen in Section III, the self-reference notion is re-
quired to functionally express self-replication; so it is for
process modeling. To reference themselves, programs are
built as process abstractions (definition with a single pattern):
Dp = def p(−→arg) . P where P is defined in function of
the arguments −→arg. The program execution then corresponds
to an instantiating process: Ep = def Dp in p(

−→
val). This

hypothesis will be kept all along the article. Based on it,
Definition 2 describes self-replication as the emission of this
definition, or an equivalent, on an external channel.

Definition 2: (SELF-REPLICATION) A program is self-
replicating over an external channel c if it can be expressed as a
Join-Calculus definition capable to access or reconstruct itself
before propagating on c (i.e. to extrude itself beyond its scope).
The statement is translated as follows: def s(c,−→x ) . P
where P −→∗ Q[def s′(−→x ) . P ′ in R[c(s′)]] and P ′ ≈ P . s
denotes the self-reference, s′ the equivalent program whereas
R specifies the replication mechanism over c.

This first definition of self-replication is generic and covers
several types of replicating codes, even mutating codes or
codes reconstructed from environment pieces. To ease the
remaining of the article, we will mainly focus on syntactic
duplication which is a particular case of the definition where
replication identically reproduces the code: P −→∗ R[c(s)].

A. Modeling the environment

Before speaking of distribution, the execution environment
in which processes evolve must be thoroughly defined. Execu-
tion environments share a global structure that can be specified
by a generic evaluation context. Generally speaking, operating
systems, just like any other execution environment, provide
services (system calls) and resources (memory, files, registry).
A system context denoted Csys[.]S∪R is thus built on service
and resource bricks, formalized by channel definitions:

Services: The set of services S has a behavior similar to an
execution server waiting for queries. Services computations
are represented by a function fsv . When a service is called,
fsv is computed over the arguments and sent back.
• def Ssv(−→arg) . return fsv(−→arg) in ....

Resources: The set of resources R provides storing facilities.
Resources can be modeled by parametric processes storing
information inside internal channels. Resources can be either
static providing reading and writing accesses (data files) or
executable possibly triggered on command (programs).
• For executables, let us consider f , f0, fn being functions:
def Rexec(f0) . def (write(fn)|content<f>) . (content<fn>)

∧ (read()|content<f>) . (return f to read|content<f>)

∧ (exec(−→a )|content<f>) . (return f(−→a ) to exec|content<f>)

in content<f0>|return read, write, exec to Rexec in ...
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B. Construction of the viral sets
Replication being formalized by extrusion of the process

definition on an external channel, a process alone can not
be infectious without access to the necessary services and
resources. To observe these exchanges, the labeled transition
system open-RCHAM will be used to make explicit the inter-
actions with an abstract environment [10, pp.45-47]. Abstract
environments are specified by a set of definitions and their
defined name: here the services and resources.

Using this transition system, viruses can be defined accord-
ing to the principle of viable replication. Viable replication
guarantees that replicated intsances are still capable of self-
replication. The programs satisfying viable self-replication
constitute the viral sets [13]. Definition 3 redefines viral sets
relatively to a system context conditioning the consumption
of replicated definitions and the activation of intermediate
infected forms. The sets are built by iteration starting with
an original infection where the virus infects a first resource,
followed by successive infections from resource to resource.

Definition 3: (VIRAL SET) Let us consider a system defin-
ing services S and resources R. Its set of defined names N
is divided between services Sv, resource accesses in reading
mode Rd, writing mode Wr, and execution mode Xc such
as N = Sv ∪ Rd ∪Wr ∪ Xc. The current state of resources
is represented by ΠR. The viral set Ev can be recursively
constructed as follows:
Ev(Csys[.]N ) = {V |∃−→w ⊂Wr, −→x ⊂ Xc and n > 1 such as

S∧R `N V |ΠR
µ1;{v}w0<v>;µ2−−−−−−−−−−−→ S∧R`N∪{v}V ′|R0|ΠR

and for all 1 ≤ i < n,

S∧R `N Ri|ΠR
xi<
−→a>;µ1;{v}wi+1<v>;µ2−−−−−−−−−−−−−−−−→S∧R `N∪{v} V ′|Ri+1|ΠR}

The vector −→w constitutes writing accesses to infected re-
sources and −→x activations of intermediate infected resources.

C. Distributed virus replication
1) Environment refinement: Specific services and resources

must be defined because they may be externalized by the virus
[12]: access to the self-reference, replication mechanisms and
the necessarily external replication targets. The generically
defined system must thus be refined to support these services
and resources, concretely illustrated in Table I:
Self-reference access: Operating systems handle a list of
executing processes for scheduling, with a pointer on the
active process. A service is provided to access this list and
the pointed process denoting the self-reference. To maintain
the list, program executions are launched through a dedicated
primitive exec. Scheduling being a service, sysupd the updat-
ing primitive is private to avoid illegitimate modification, only
reading access is made public through sysref .
• Dexe

def
= exec(p,−−→args) . sysupd(p).return p(

−−→args) to exec
• Dref

def
= sysupd(rn)|active<r> . active<rn>

∧ sysref ()|active<r> . active<r>|return r to sysref
Replication mechanism: The mechanism is represented by a
function r copying data from an input channel towards and
output channel. The function has been left parametric; how-
ever, it is strongly constrained to forward its input towards the
output channel after an indefinite number of transformations.
• Drep

def
= sysrep(in, out) . return r(in, out) to sysrep

Table I
CHANNELS AND EQUIVALENT OS SERVICES AND RESOURCE ACCESSES.

Channels Linux APIs Windows APIs
exec fork( ), exec( ) CreateProcess( )
sysref getpid( ), readlink( ) GetModuleFileName( )...
sysrep sendfile( ) CopyFile( )
−→sr,−→sw,−→se fread( ), fwrite( )... ReadFile( ), WriteFile( )...

Replication targets: A pool of executable resources consti-
tutes the targets. Their definition Dtrg is identical to the one
in Section IV-A, allowing preexistence or dynamic creation.

A system context with n resources can now be defined to
be used along the different definitions and proofs:
Csys[ . ]S∪R

def
= def Dexe ∧Dref ∧Drep ∧Dtrg in

let sr1, sw1, se1, ..., srn, swn, sen =

Rtrg(f1), ..., Rtrg(fn) in (active<null> | [ . ])
with S={exec, sysref , sysrep} and R={Rtrg,−→sr,−→sw,−→se}.

2) Classes of self-replicating viruses: Using this refined
system context, the four classes of self-replicating viruses
from [12] can be defined. Through these classes, the funda-
mental components for self-replication can be locally defined
or exported: the access to the self-reference, the replication
mechanism denoted by r, this function being constrained to
reemit its input after a certain number of transformations. This
function as well as the target research routine denoted by t are
willingly left parameterizable in Definition 4.

Definition 4: Let V be a viral process. Let R and S be
definitions responsible for the self-reference access and the
replication mechanism. Additional definitions T and P are
responsible for the target research and the payload:
• R

def
= locrep(in, out) . return r(in, out) to locrep

• S
def
= locref () . return v to locref

• T
def
= loctrg() . return t() to loctrg

• P is any process modeling a post-infection payload

Viruses can be classified in four categories:
• (Class I) V is totally autonomous:
VI

def
= def v(−→x ) . (def S ∧R ∧ T in

locrep(locref (), loctrg()).P ) in exec(v,−→a )

• (Class II) V uses an external replication mechanism:
VII

def
= def v(−→x ) . (def S ∧ T in

sysrep(locref (), loctrg()).P ) in exec(v,−→a )

• (Class III) V uses external access to the self-reference:
VIII

def
= def v(−→x ) . (def R ∧ T in

locrep(sysref (), loctrg()).P ) in exec(v,−→a )

• (Class IV) V uses only external services:
VIV

def
= def v(−→x ) . (def T in

sysrep(sysref (), loctrg()).P ) in exec(v,−→a )

Through the parametrization, several types of replication
mechanisms can be represented by refinement:
(1) overwriting infections: def r(v, sw) . sw(v),
(2) append infections (respectively prepend): def r(v, sw, sr).
(let p=sr() in def p1(−→arg) . v().p(−→arg) in sw(p1)),
Compared to Definition 2, viruses no longer take the target as
parameter but uses a research routine that is also parametrized:
(1) hard-coded targets: def t() . return n to t,
(2) dynamically created targets:
def t() . let sr, sw, se = Rtrg(empty) in return sw to t,
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(3) discovered targets: targets found by crawling through
the file system searching for vulnerable resources.

Independently of these parametrizations, these four classes of
viruses achieve viable replication as stated by Proposition 1.

Proposition 1: If the system context provides the right
services and valid targets, the virus classes I , II , III , IV
achieve viable replication i.e. they appertain to its viral set.

Proof: Without modifying the proof core, let us consider
a refined system and a simple case of parameterization:
def r(x,w) . w(x) and def t() . return swi to t at the i

th iteration

Let us consider the virus class III knowing that an identical
approach can provide proofs for the remaining classes:
DVIII

def
= v() . def R ∧ T in locrep(sysref (), loctarg());P

DRk
def
= swk(fn)|contentk<f> . contentk<fn>

∧ srk()|contentk<f> . (contentk<f>|return f to srk
∧ sek(−→a )|contentk<f>. contentk<f>|return exec(f,−→a ) to sek

Proof of initial infection: ` Csys[VIII ]S∪R

 (str-def+str-and)

Dexe, Dref , Drep, Dtrg ` let sr1, sw1, se1, ..., srn, swn, sen =
Rtarg(f1), ..., Rtrg(fn) in (active<null> | VIII)
−→ (react+str-def+str-and+str-def)

Dexe, Dref , Drep, Dtrg , DR1 , ..., DRn , DVIII ` content1<f1> |
Πni=2contenti<fi> | active<null> | exec(v,

−→a )
−→ (react+react)

Dexe, Dref , Drep, Dtrg , DR1 , ..., DRn , DVIII ` content1<f1> |
Πni=2contenti<fi> | active<v> | v(−→a )
−→ (react+str-def+str-and)

Dexe, Dref , Drep, Dtrg , DR1 , ..., DRn , DVIII , R, T ` content1<f1>|
Πni=2contenti<fi> | active<v> | locrep(sysref (), loctrg()).P
−→ (react+react)

Dexe, Dref , Drep, Dtrg , DR1 , ..., DRn , DVIII , R, T ` content1<f1>|
Πni=2contenti<fi> | active<v> | locrep(v, sw1).P
−→ (react+react)

Dexe, Dref , Drep, Dtrg , DR1 , ..., DRn , DVIII , R, T ` content1<v>|
Πni=2contenti<fi> | active<v> | P

Proof of successive infections: Once initial replication is
achieved, following replications are activated by execution
requests sei(−→a ). From there, reduction is identical to the
previous one except for loctrg which returns swi+1.

V. COMPLEX BEHAVIORS: ROOTKITS AND STEALTH

This section illustrates the expressiveness of the Join-
Calculus by describing stealth techniques, hard to describe
in functional models. Even if stealth is not malicious on
its own, deployed in Rookits, it becomes a powerful tool
for attackers. Few formal works exist on Rootkit modeling
[7], [8], [14]; it thus constitutes an interesting concrete case
for refinement of the payload process which has not been
detailed yet. Let us consider the common case of Rootkits
offering hooking functionalities. The definition in [14] of
viruses resident relatively to a system call is the closest to
our approach. But, the used recursive functions are not really
adapted to model the required reactiveness and persistency.
The Join-Calculus should offer far more flexibility.
System call hooking: Hooking mechanisms allow the inter-
ception of system calls. They rely on channel usurpation by
alteration of the structures storing the access information to
system calls. A new resource of the system must thus be

Table II
PARALLEL WITH KERNEL ROOTKITS.

SuckIt (Linux kernel Rootkit, [15], 2001)
Process Implementation
Rkit core, embedded kernel module containing the fake calls Rfsc.
Dtsc Linux system call table.
Dalloc memory device /dev/kmem.
Channel Implementation
alloc kmalloc.
hook write function called with the address returned by kmalloc.
publish sysenter switching between user and kernel space.
−→
fsc memory addresses of the fake system calls: fork, open, kill...
Agony (Windows kernel Rootkit by Intox7, [16], 2006)

Process Implementation
Rkit agony.sys, embedded kernel module with the fake calls Rfsc.
Dtsc SSDT (SystemServiceDescriptor Table).
Dalloc memory allocation services.
Channel Implementation
alloc MmCreateMdl now replaced by IoAllocateMdl.
hook writing operation to the space newly allocated.
publish sysenter instruction switching between user and kernel space.
−→
fsc addresses of the fake system calls: ZwQueryDirectoryFile...

defined: the system call table. This entity publishes the list of
available system calls on-demand. This list is modeled by a
vector of channel −→sc which can only be modified by the kernel
through a privileged writing access. This privileged access
is provided by the priv channel which from the malware
perspective is private: only the publish channel is made public:
Dtsc

def
= Tsc(

−→
t0 ) . def (priv(

−→
tn) | table<−→t >) . table<

−→
tn>

∧ (publish() | table<−→t >) . return
−→
t to publish | table<−→t >

The services of memory allocation can be diverted to gain
access to this privileged channel. In fact, they can be used to
modify the page protection of a memory space. In practice,
they take as input a base address b and a size s and return an
access to the allocated space. The hook is only leaked if the
base address is equal to the address of the system call table
scbase. Otherwise, a simple access is returned:
Dalloc

def
= alloc(b, s) .

if [b=scbase] then return hook else return access

The interest of hooking for the rootkit is to define a set of
false system calls Rfsc1, ..., Rfscm, in order to hide files or
processes, for example by filtering the original system calls.
These malicious calls are registered in a new table being a
vector of m entries

−→
fsc = fsc1...fscm:

Dfsc
def
= fsc1(−→arg) . Rfsc1 ∧ ... ∧ fscm(−→arg) . Rfscm

Rkit
def
= def Dfsc in let hk=alloc(scbase, scsize) in hk(

−→
fsc)

The system evolves along the following reduction where the
privileged hook is leaked from the allocation mechanism:
def Dtsc ∧Dalloc in let pub = Tsc(

−→sc) in Rkit −→ ∗
def Dtsc ∧Dalloc ∧Dfsc in table<

−→
fsc>

For validation, Table II draws a parallel between processes,
definitions and their implementation in representative malware.

VI. REPLICATION DETECTION / SYSTEM RESILIENCE

Since [17], it is well established that virus detection is an
undecidable problem. However, thanks to this formalism, some
fragments of the Join-Calculus can be identified for which the
detection problem remains decidable up to a complexity factor.
Let us consider an algorithm taking as input a system context
and a process. The algorithm returns true if the process is able
to self-replicate inside the context. Such an algorithm can be
used either for detecting replication capabilities or assessing
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the context resilience to a viral class. An exhaustive proce-
dure is described in Algorithm 1 whose purpose respectively
changes whether the context or the process varies.

Algorithm 1 is not designed for operational deployment; it
uses a brute-force approach for state exploration in order to
study the decidability of detection. Without surprise, detection
remains undecidable according to Proposition 2. However,
according to this same proposition, it becomes decidable by
restricting name generation. This restriction is not without
impact on the system. Forbidding name generation induces
a fixed number of resources without possibility to dynami-
cally create new ones. But most importantly, without name
generation, synchronous communication is no longer possible
because fresh names can not be generated for return values.

Proposition 2: Detection of self-replication in the Join-
Calculus is undecidable. Detection becomes decidable if the
system context and the process are defined in the fragment of
the Join-Calculus without name generation.

Proof: In algorithm 1, the set Esucc of states reached
after reduction is finite because internal transitions τ are
finite state branching [18]. The decidability thus depends
on the bounded state exploration. To prove this decidability,
detection is reduced to coverability in petri nets.

Let us consider the fragment of the join-calculus without
name generation i.e. no nested definitions. This fragment can
be encoded in the asynchronous π-calculus without external
choice. Let us consider a similar encoding to [19] except that
replication operators are replaced by recursive equations:

[[Q|R]]j = [[Q]]j | [[R]]j
[[x<v>]]j = x̄v

[[def x<u> | y<v> .Q in R]]j =

{
A = x(u).y(v).([[Q]]j | A)
A | [[R]]j

The process inside its system context can thus be encoded
in the asynchronous π-calculus, resulting in a system of
parametric equations. Name generation being excluded, scope
restriction ν is absent from the encoding. The proof is then
similar to [20]. The system is encoded into equations from the
Calculus of Communicating Systems. CCS is parameterless,
however, without name generation, channels σ and transmitted
values a can be combined into parameterless channels <σ, a>.
The encoding reintroduces external choices to handle their
combination. Just like in [20], the obtained system contains
a set of parallel processes guarded by channels:

Ai = Σ <σ, a> . <σ′, a′> .(Π <σ, a> | Π Aj)

In this equation system, replication is detected by the potential
activation of a guarded processes Ai by a channel <σ, p> with
σ∈R and p is the abstraction of P . This is a typical control
reachability problem in CCS. As proven in [20], control
reachability can be reduced to a coverability problem in petri
nets and decidable algorithms exist to compute it [21].

VII. POLICIES TO PREVENT MALWARE PROPAGATION

The facts that detection is only decidable under cumbersome
constraints and that it is reactive instead of proactive, encour-
age the research of alternative solutions. Proactive approaches
must be considered to prevent malware propagation.

Algorithm 1 Replication detection.
Require: P which is abstracted by p
Require: Csys[.]S∪R exporting services S and resources R

1: Edone ← �, Enext ← �, C ← Csys[P ]S∪R
2: repeat
3: Esucc ← {C′|C

τ−→ C′}
4: if ∃C′ reached by resource writing w<p> then
5: return system is vulnerable to the replication of P
6: end if
7: Esucc ← Esucc\ {Cd∈Esucc|∃Ct∈Edone.Cd ≡ Ct}
8: Enext ← Enext ∪ Esucc, Edone ← Edone ∪ {C}
9: Choose a new C ∈ Enext

10: until Enext=� or infinite reaction without new transitions
11: return system is not vulnerable to the replication of P

A. Non-infection property and isolation

A different approach to fight back malware is to reason
in terms of information flow as initiated in [17]. Addressing
confidentiality, the formalization of the non-interference prop-
erty specifies that the behavior of low-level processes must
not be influenced by upper-level processes to avoid illicit
data flows between different security levels [22]. Similarly,
self-replication in malware can be compared to an illicit
information flow of the viral code towards the system. Let
us state the hypothesis that, contrary to malware, legitimate
programs do not interfere with other processes implicitly
through the system. This issue refers to integrity and requires
a new property: non-infection introduced in Definition 5.

Definition 5: (NON-INFECTION). For a process P placed
inside a stable system context (i.e. reactions to intrusions only),
the property of non-infection is satisfied if the system evolves
along the reaction Csys[P ] −→∗ C ′sys[P ′], and for any non-
infecting process T the equivalence Csys[T ] ≈ C ′sys[T ] holds.

Non-infection guarantees the integrity of the system context.
The consequent question is to find the mandatory constraints
for a system context to satisfy non-infection. Proposition 3
states that there exist systems preventing replication through
resource isolation. This generalizes the network partitioning
principle advocated in [17] to fight virus propagation.

Proposition 3: In a system context made up of services and
resources, the non-infection property can only be guaranteed
by a strong isolation of resources, forbidding all transitions
Csys[.]

x(−→y )−−−→C ′sys[.] where x is a writing channel to a resource.

Proof: Let us consider a system context defining services
DS and resources DR. The isolation requirement is proven by
showing that writing accesses, either direct or indirect, must
be forbidden. The stable context only reacts to intrusions:

I. Intrusion towards resources: J = x1(−→y1)|...|xn(−→yn) . R′
def DS ∧DR\{J} ∧ J in R0|x1(−→z1).R1|...|xm(−→zm).Rm|[ . ]

xm+1(−−−−→zm+1)|...|xn(−→zn)
−−−−−−−−−−−−−−−−−−−−−−−→

def DS ∧DR in R0|R1|...|Rm|R′[−→y /−→z ]|[ . ].
The xi only store the resource content meaning that all
Ri = 0. After simplification, three cases remain for transition:
1) Reading case: R′ ≡ x1(−→y1)|...|xm(−→ym) |return −→y1, ...,−→ym to xm+1.
Once the return consumed, the system recovers its initial
state; the non-infection property is satisfied.
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2) Writing case: R′ ≡ x1(−−−→ym+1)|...|xm(−→yn)|return to xm+1.
Once the return consumed, the original values yi with
1≤ i≤m are substituted by values yj with m+1≤j≤n. The
system may not recover its original state before the intrusion:
the non-infection property may not be satisfied.
3) Execution case: Equivalent to the service case II).

II. Intrusion towards services: J = x1(−→y1)|...|xn(−→yn) . S
def DS \ {J} ∧ J ∧DR in R | [ . ]

x1(−→z1)|...|xn(−→zn)−−−−−−−−−−−−−−−−−−→
def DS ∧DR in S[−→y /−→z ] | R′ | [ . ]

S is of the form return f(−→z1 , ...,−→zn) to x1 which reduces
to the null process when the return is consumed. The system
modification thus depends on the behavior of the function f :
1) Case of f reading resource or no access: Identical to I.1).
2) Case of f writing or creating resources: Identical to I.2).
3) Case of f executing resources: The solution depends on the
content of the resource. The same test is applied recursively
to this content until II.1) or II.2).

B. Policies to restrict infection scope

Non-infection is impossible to guarantee in practice. Com-
plete isolation can not obviously be deployed in systems with-
out loosing most of their use [17]. To maintain utility, solutions
restricting the resource accesses case-by-case, can still contain
malware by confining the scope of the propagation.

An access authority deploys such restriction by blocking
unauthorized accesses to the resources and services of a
system. A solution based on access tokens can be considered,
either for spatial restriction (only programs and resources
sharing the same token can access each others) or for time
restriction (each token is valid a fixed number of executions).
[23] specifies access authorities as two components: a Policy
Decision Point which can be seen as the token distribution
mechanism and a Policy Enforcement Point which checks
the token validity and thus must not be bypassed. If security
tokens are not forgeable and no distribution mechanism is
responsible for their extrusion, the process must not be able
to access any service and resource. In fact, access control
mechanisms are already deployed in two well known security
models for Java [24] and .Net [25]. In both, the managed code
is run in a isolated runtime environment with a controlled
access to resources. The problem in actual system is that
these controls are restricted to managed language and not to
native code. Extending access controls to native code could
fight malware propagation with a proven security.

VIII. CONCLUSION AND PERSPECTIVES

This paper introduces the basis for a unified malware
model based on the Join-Calculus. Moving from the functional
models used in virology to process-based models do not
result in a loss of expressiveness. The fundamental results are
maintained: characterization of self-replication, undecidability
of detection and isolation for prevention. In addition, the model
offers increased expressiveness by support of interactions,
concurrency and non-termination, which ease the modeling of
evolved malware. Beyond computational aspects, new results

and perspectives have been provided with respect to detection
and prevention. A fragment of the Join-Calculus has been
identified where detection becomes decidable. With regards to
prevention, a property of non-infection has been defined with
potential solutions to restrict malware propagation. If non-
infection is too strong in concrete cases, future works can be
led to reduce the strength of the property. Typing mechanisms
based on security levels constitute an interesting lead to restrict
accesses to critical resources and services [22].
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