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Abstract— We present in this paper a new approach for specific
JPEG steganalysis and propose studying statistics of the compressed
DCT coefficients. Traditionally, steganographic algorithms try to
preserve statistics of the DCT and of the spatial domain, but they
cannot preserve both and also control the alteration of the compressed
data. We have noticed a deviation of the entropy of the compressed
data after a first embedding. This deviation is greater when the
image is a cover medium than when the image is a stego image.
To observe this deviation, we pointed out new statistic features
and combined them with the Multiple Embedding Method. This
approach is motivated by the Avalanche Criterion of the JPEG
lossless compression step. This criterion makes possible the design
of detectors whose detection rates are independent of the payload.
Finally, we designed a Fisher discriminant based classifier for well
known steganographic algorithms, Outguess, F5 and Hide and Seek.
The experiemental results we obtained show the efficiency of our
classifier for these algorithms. Moreover, it is also designed to work
with low embedding rates (< 10−5) and according to the avalanche
criterion of RLE and Huffman compression step, its efficiency is
independent of the quantity of hidden information.

Keywords— Compressed frequency domain, Fisher discriminant,
specific JPEG steganalysis.

I. INTRODUCTION

STEGANOGRAPHY is an old science which takes its
roots in antique Greece. Litteraly, steganography means

”art of covered writing”. For a long, steganography was
rudimentary and its use was exclusively reserved to the
military and secret services. But the communication society
enables acces to a mass of numeric information. This huge
amount of information alows to hide easily some messages
and to communicate in a discreet way. With the invention
of the internet, lots of steganographic softwares have been
developped for many numeric covers like images, mp3,
filesystems, texts, emails etc... Naturaly, most of them are
dedicated to JPEG standard for it is one of the spreadest
formats to store and exchange images. Modern steganography
takes its origins in 1983 with the paper of G. Simmons,
”Prisoner’ problem and the subliminal channel” [22], and
a new active research branch dealing with steganography
appeared about ten years ago.

The context is the following one. Alice and Bob are
in jail and want to plan their escape. Their only way to
communicate is Wendy, the warden. Wendy stops delivering
messages as soon as she can prove a message contains
information for an escape plan. For confidentiality of
communications, cryptography is entirely well adapted.
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But, in our case, if the message is ciphered, Wendy can
force Alice or Bob to decipher it with their own key and
then prove they are plotting to escape. The steganography
provides Alice and Bob the way to communicate discreetly
and so a new security service in addition to confidentiality:
plausible deniability. Now, Wendy has first to detect if
hidden information is embedded in the message and then
retrieve these information to prove its existence. Alice and
Bob could always hide an innocuous message in addition to
their plans, and so reveal only the former if they are forced to.

To achieve this, Alice and Bob need first to agree on
a compression algorithm C, a randomized steganographic
algorithm S, and a secret key K. We also suppose that
Alice and Bob have the ability to generate their own set
of cover media CA = {Ci

A} and CB = {Ci
B}. Each has

only access to its own set of cover media. Alice wants
to send a message M to Bob trough Wendy. First, she
compresses M to M

′

= C(M) to reduce the message length
and make it seemed like random, in order to minimize the
number of changes in the cover medium. Then, she chooses
one cover medium, Ci

A, and embeds it with M
′

and S to
obtain Ci′

A = S(K,M
′

, Ci
A). To retrieve M , Bob computes

M
′

= S−1(K,Ci′

A) and M = C−1(M
′

).

In this paper, we take place in Wendy’s shoes, and our
goal is to detect the existence of embedded message into
JPEG images. According to Kerchoffs’ principles, S and C
are known and only K is kept secret. Our new approach is
illustrated with the well known steganographic algorithms,
Outguess [20], F5 [24] and JPHide [13]. In the same way, it
can also be adapted to detect the use of another algorithms. In
JPEG steganalysis, people traditionally try to find detectable
properties directly studying statistics of the DCT coefficients
or of the decompressed images. By contrast, we propose
to examine Huffman compressed data, which are DCT
coefficients compressed first by RLE and then by Huffman
compression algorithms. We point out new statistic features
to detect hidden information in JPEG images. For each
steganographic algorithm examined, these features do not
follow the same propability density function whether JPEG
image is embedded or not.

In the first section, we quickly present the JPEG standard
and DCT-based steganography. We also present a new ap-
proach for JPEG steganalysis and define the statistic features
we will use to detect steganographic contents. In the second
section, we recall state of the art JPEG steganalysis techniques,
discuss of specific versus universal steganalysis and put our
approach back in its place. Then, we present the Multiple
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Embedding Method and its application to Outguess, F5, and
JPHide algorithms. In section 3, we explain the design of our
Fisher classifier and detail the experimental framework and the
results we obtained. Finally, we conclude in the last section
and give some discussions.

II. JPEG STEGANOGRAPHY

A. The JPEG Format

The Joint Photographic Expert Group (JPEG) was created in
1986. This Group worked on digital compression and coding
of continuous-tone still images. These studies have led to the
CCITT1 recommendation T.81 and the ISO2 Standard 10918-
1.

The JPEG format defines four types of compression modes
which are sequential, progressive, hierarchical and lossless. In
our case, the progressive mode is used.

DCT3-based Coding: The figure 1 explains the main proce-
dures for all encoding processes based on the DCT. In order to
simplify, the diagram operates on a single-component image.

Fig. 1 DCT-based encoder simplified diagram

Main Characteristics of Coding Processes: A digital image
can be represented by pixels. The three color coefficients (Red,
Green, Blue or RGB) for each pixel are transformed into a
new coding scheme: one luminance coefficient (Y) and two
chrominance coefficients (U and V or also called Cb and Cr).

After the conversion from RGB to YCbCr, the values, are
gouped in 8 × 8 pixels blocks, and transformed by a forward
DCT. Most of the frequency coefficients obtained are very
low and we can remove a lot of them and still reconstruct the
original values. The low frequencies are conserved while the
high frequencies are removed.

After the DCT transformation on each block, the DCT
coefficients are quantized. This step called quantization is the
main lossy process. The coefficients are divided with fixed
values coming from a specified table and then rounded. Most
of the quantized DCT coefficients are equal to zero.

The “zig-zag” order consists to order the coefficients in each
8 × 8 block (most of them are equal to zero).

After the “zig-zag” sequence, the last steps are lossless
compression. First a simple RLE4 is used to compress the high
frequency coefficients. Then a Huffman coding procedure is
applied. Finally, the output is the JPEG raw binary data.

1International Telegraph and Telephone Consultative Committee
2International Standard Organisation
3Discrete Cosine Transform
4Run Length Encoding

B. Embedding Information in the DCT Coefficients

The JPEG compression process can be divided into two
main parts: the first one computes quantized DCT coefficients
from a bitmap image B and some parameters P1; it will be
noted Cl.

Cl : (B,P1) −→ (DCTi), where DCTi ∈ Z.

Cl is a lossy compression, that means Cl is not a bijective
mapping. So, if we apply Dl, the decompression algorithm
associated to Cl we don’t retrieve B.

Dl : ((DCTi),P1) −→ B
′

with B
′

�= B.

The second one computes a string of binary compressed data
from quantized DCT coefficients and some parameters P2; it
will be noted Cu.

Cu : ((DCTi),P2) −→ (bj) where bi ∈ F2.

Cu is an unlossy compression, that implies it is a bijective
mapping.

Since Cl is not a bijective mapping, one cannot intuitively
hide information during the first step, otherwise some of
the embedded information will not be retrieved. Information
can only be hidden during the second step. This step, as
we saw previously, is divided into zig-zag re-ordering, RLE
and Huffmann compressions. So, the only practical way to
embed an information is in DCT coefficients, after RLE or
Huffmann compressions. To minimize the distortions of the
original image, DCT are the most adapted.

The main problem, when embedding information in DCT
coefficients, is to preserve the statistics of the cover medium.
Most of new steganographic systems take care of keeping
DCT statistics unchanged, histogram for example, but even if
DCT statistics are preserved, many steganalysis [1], [4], [17],
[15], [16] are based on deviations of some decompressed cover
image statistics. It seems that both cannot be preserved at the
same time.

III. DETECTING JPEG STEGO IMAGES

A. JPEG Steganalysis Methods

Different approaches have been used to detect stego images.
The first one consists in studying directly DCT coefficients
like J. Fridich [10], [6] who looked at first order statistics
and at the discontinuity of DCT coefficients at the borders
of blocks for detecting the use of F5 and Outguess. She also
pointed out some other features for the frequency domain [8],
[7] for JPEG syteganalysis.

The second approach is dedicated to the spatial domain. H.
Farid and S. Lyu obtained classifier with a high detection rate
by combining Support Vector Machines (SVM) with higher
order statistics [4], [17] or with wavelet transform statistics
[15], [16] of decompressed JPEG image. J. J. Harmsen et al.
[11] proposed to use a Fisher discriminant instead of a SVM
and I. Avicib et al. [1] introduced metrics based on images
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quality.

Previous methods have even been used together [14] to
increase the accuracy of detectors. Among these techniques
we can distinguish two categories of steganalysis: specific
steganalysis and universal steganalysis.

1) Specific Steganalysis: Specific steganalysis is dedicated
to only a given embedding algorithm. It may be very accurate
for detecting images embedded with the given steganographic
algorithm but it fails to detect those embedded with another
algorithm. Techniques developped in [10], [6], [8], [11] are
specific.

2) Universal Steganalysis: Universal steganalysis enables
to detect stego images whatever the steganographic system
be used. Because it can detect a larger class of stego images,
it is generally less accurate for one given steganographic
algorithm. Methods presented in [1], [4], [7], [14], [17], [15],
[16] are universal.

In this paper, we will study a specific method adapted for the
compressed frequency domain. This technique can be adapted
to detect the use of many JPEG steganographic algorithms.

B. A New Point of View

We have to keep in mind three important intuitive assertions:

• embedding information in DCTi, will change
Dl((DCTi),P1) but also
Cu((DCTi),P2).

• one cannot preserve at the same time the statistics of
DCTi, those of
Dl((DCTi),P1) and Cu((DCTi),P2).

• hiding information tends to introduce a variation of
entropy.

Most of steganalytic techniques consist in observing some
statistical deviations directly on DCT coefficients or in
Dl((DCTi),P1). We propose here to explore statistics in
Cu((DCTi),P2).
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Fig. 2 Density probability functions of P  for JPHide
                                           stego and non-stego images

Let I a given JPEG image to analyse and (bj)5 the output of
Cu. We noticed a variation of the entropy of the output stream
when the image has been embedded with a steganographic
scheme. The binary entropy H(I) is given by

H(I) = −P (I) logP (I) − (1 − P (I)) log(1 − P (I)), (1)

where P (I) is the probability that bj is equal to 0. Observing
a deviation of the binary entropy is equivalent to observe a
deviation of P . For non-stego images, P follows a Gamma
probability density function, whereas the probability density
function is different for stego images. More surprisingly,
P follows a normal N (0.5, σ) probability function and so,
whatever the embedding rate, r, is, as shown in the figure 2.
This difference of probability laws for stego and non-stego
images is explained by the avalanche criterion [5] of the
RLE and Huffman compression step. As shown in figure
3, when only few bits of the DCT coefficients LSB are
flipped, after RLE and Huffman compression almost half
the bits are flipped. So, when embedding few bytes, P (I)
becomes closer to 0.5. These phenomena is amplified since
the avalanche criterion is close to 0.5 when only few bytes
of DCT coefficients are changed and since steganography
systems embed additional DCT coefficients to keep first
order statistics unchanged. This criterion makes possible
the existence of steganalysers which the detection rates are
quasi-independent of the payload.
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Fig. 3 Avalanche criterion of RLE+Huffman compression function

Because of the entropy deviation, we compute for a given
image I the average number of bits M(I) which the value
egals 0, where

M(I) =
1
m

m∑
j=1

(1 − bj). (2)

For non-stego images, M can be seen has a random variable
which follows a Gamma density probability function. For stego
images, M follows a N (0.5, σ) density probabilty function as
illustrated in figure 2.

5(bj) is only composed of the RLE and Huffman compressed DCT
coefficients and does not include the JPEG file header.
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C. The Multiple Embedding Method

To describe the Multiple Embedding Method (MEM), we
first need a steganographic algorithm S, a JPEG image I ,
the size of the stego key k, and the length of the message
to embed, l. We will also denote the relative message length
ρ = l

|I|
where |I| is the size of I . ρ is also called the

embedding rate. n stego keys Ki and messages Mi of length
l, i = 1 . . . n are randomly generated.

Now, let us denote the sequence I = (Ii)i=0...n defined by⎧⎨
⎩

I0 = I,

Ii = S(Ki,Mi, Ii−1), ∀i = 1 . . . n.
(3)

To process the variation of M, we compute the sequence Δ =
(Δi)i=0...n defined by⎧⎨

⎩
Δ0 = 0,

Δi = |M(Ii) −M(Ii−1)|, ∀i = 1 . . . n.
(4)

We have noticed that if I hasn’t been embedded by S, then
we have⎧⎨
⎩

Δ1 � Δi, ∀i > 1,

Δi and Δj are of the same order of magnitude, ∀i, j > 1,
(5)

and Δi and Δj are of the same order of magnitude ∀i, j,
otherwise. To catch this fact, we also define the sequence Q =
(Qi)i=0...n, by⎧⎨
⎩

Qi = 0, ∀i = 0 . . . 1,

Qi = Δi

Δi−1
when defined, ∞ otherwise, ∀i = 2 . . . n.

(6)
The equation (5) implies

Q2 � 1 (7)

if I has not already been embedded and Q2 ≈ 1, otherwise.
With these sequences, we are now able to build a naive
steganalytic scheme for S as follows.

1) Multiple Embedding Method: :
Input : a JPEG image I , k the size of the random stego-keys
Ki and l the size of the random message Mi.
Ouput : “S-stego image” or “non-S-stego image”.

1) compute the sequence I with I0 = I ,
2) compute the sequences Δ and Q,
3) if (5) and (7) hold then return “non-S-stego image”,
4) return “S-stego image” otherwise.

We computed the previous sequences for the non-S-stego im-
age image 04137.jpg, figure 4, with the following parameters:
|I| = 413830 bytes, l = 1 byte, ρ = 2.42 10−6. We obtained
for Outguess, F5 and JPHide the results descriped in table III-
C.1. It is easy to see that (5) and (7) hold. Now, by definition,
I1 is a S-stego image and its sequence of MEM statistics
can be read from table III-C.1 by shifting upward the rows
and setting the Δ0 and the Q1 to 0. In that case, as claimed
previously, (5) and (7) do not hold. This instance also shows

Fig. 4. image 04173.jpg.

that a S-stego JPEG image with only few bytes embedded,
can be detected with MEM.

TABLE I

STATISTICS SEQUENCES OF image 04173.jpg FOR OUTGUESS, F5.

Outguess F5
i Mi Δi Qi Mi Δi Qi

0 0.5119 0 0 0.5119 0 0
1 0.5287 1.676E-2 0 0.5137 1.799E-3 0
2 0.5287 1.958E-6 8563 0.5137 1.311E-5 137
3 0.5287 2.181E-5 8.972E-2 0.5137 3.302E-6 3.968
4 0.5287 2.147E-5 1.016 0.5137 8.528E-5 3.870E-2

Remark: the choice of the parameters l and k is not signif-
icant. Actually, the size of the stego-keys does not have any
impact on the amount of DCT coefficients changed. Moreover,
l does not change the accuracy of detecting the variation of
M since this variation has shown to be quasi-independent of
the embedding rate, in section III-B.

To improve this technique we also benefit from the different
probability density functions followed by M(I) when I is a
non-S-stego image and when I is a S-stego image. So, for a
given JPEG image I , we compute MI = M(I), ΔI = Δ1

and QI = Q2 and map I to the statistic vector V(I) defined
by

I −→ V(I) = (MI ,ΔI , QI). (8)

Each component of V(I) does not follow the same probabiblity
density function whether I is a S-stego image or not. We will
now underline these different probability density functions for
the mean M, the delta Δ, and the ratio Q, for Outguess, F5
and JPHide.

IV. EXPERIMENTAL RESULTS

A. Classifier Design

We need a set, C of cover media and a set, S of stego
images. For convenience, these samples have the same
cardinality n, but the following method can be easily adapted
with learning sets of different cardinals.

First, for each set, we compute Vc = {V(I)|I ∈ C} as
defined in (8), and Vs = {V(I)|I ∈ S} which are subsets
of R

3. We denote gc, respectively gs, the barycenter of Vc,
respectively Vs, and g the barycenter of gc, gs. Then, we
take g as the origin of the system of coordinates and compute
the covariance matrices, Vc and Vs. Finally, we compute the
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intraclass and interclass variance matrices W and B defined
under our hypothesis by

B =
1
2
(gc − gs)(gc − gs)

′

, (9)

W =
1
2

(Vc + Vs) . (10)

The variance matrix, V is given by V = B +W .

The Fisher discrimination analysis [21] consists in finding
a projection axis which discriminates the best Vc and Vs and
so C and S. This axis, (gc, gs), is defined by the vector

u = W−1(gc − gs), (11)

where M = W−1 can be regarded as a metric. Actually, a new
image, I representated by the point p will be said to belong
to C, if d2(p, gc) > d2(p, gs), where d is a distance based on
the metric M . According to the Mahalanobis-Fisher rule, we
decide that I belongs C if and only if

p.u = pM(gc − gs) > T, (12)

where T is the detection threshold. Another metric can also
be considered, setting M = V −1.

B. Learning Step

For training our classifier, we use 2000 images from a
database of about 100,000 JPEG images downloaded from the
web, notably https://www.worldprints.com in 2000. No size,
JPEG quality factor and color or grayscale discriminations
are made. The sample is as close as possible as the natural
population of JPEG images we can found on the internet.

First, we use the Multiple Embedding Method to com-
pute Vc and Vs, as described previously, for different
lengths l of random messages to embed. We took l =
10, 50, 100, 200, 400, 600, 800 bytes. As shown in figure 5, we
can represent the statistics vector in a 3D space.

For each steganographic algorithm and l, we determine the
discriminant factor u for the metrics W−1 and V −1 as defined
in section IV-A. Then, we obtain the detection curves as a
fonction of the threshold, as shown in figure 6. Finally, we
determine the optimal parameters, reported in table II, for
Outguess, F5 and JPHide.

TABLE II

OPTIMAL PARAMETERS FOR OUTGUESS AND JPHIDE

Outguess JPHide
Metric W−1 W−1

threshold -1.527165 -0.839874
l 50 bytes 10 bytes

u

0
@

−3.897063E + 01
+2.299124E + 02
+2.046336E − 04

1
A

0
@

−1.143656E + 01
+1.472741E + 02
−7.731891E − 06

1
A
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Fig. 5. Statistic vectors for JPHide and l = 10 bytes. On the top Vc and on
the bottom Vs.
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Fig. 6. Detection curves for Outguess and l = 50 bytes for metrics W−1.

C. Wild Detection Step

For testing the performances of our technique, we tested it
with 2,000 randomly choosen images, including 1,000 stego
images and 1,000 cover media, for an embedding rate ρ

from 10−6 to 10−1. These results are summarized in the
figure 7. Two main conclusions can be drawn when observing
these results. First, the the MEM seems to be very efficient,
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particulary when the embedding rate is low. That means that,
we are able to detect efficiently stego images with only 1
byte embedded. Secondly, the detection rate appears to be be
constant and independent of ρ. More precisely, we observed
what follows.

• The rate detection for Outguess is 93%, the false positive
error rate 10% and the false negative error rate 3.8%.

• The rate detection for F5 is 88.4% , the false positive
error rate 16.6% and the false negative error rate 6.6%.

• The rate detection for JPHide is 97.7%, the false positive
error rate 3.7% and the false negative error rate 0.8%.

Obviously, these results depend on the distribution of cover
media and stego images, but they give us a lower bound of
the dectection rate. All the worste cases are obtained with sets
only composed of cover media. So, for Outguess detection rate
is higher than 90%, for F5 higher than 83.4% and for JPHide
higher than 96.3%, whatever the distribution of cover media
and stego images is.

 0
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 1e-06  1e-05  0.0001  0.001  0.01  0.1  1

Embeding rate

Detection curves for Hide and Seek

Detection
False positives

False negatives

Fig. 7 The detection curves for JPHide

V. CONCLUSION

We have proposed a new approach for JPEG steganalysis
which is based on statistics of the compressed frequency
domain and pointed out new features to detect steganographic
contents. This approach can be justified according to the
assertion that it is hard for steganographic algorithms to
preserve at the same time statistics in the spatial domain, in the
frequency domain and in the compressed frequency domain.
Moreover, we benefit from statistical deviation of the entropy
of the binary output stream. We combined these new statistic
features with the Multiple Embedding Method to design an
efficient Fisher discriminant based classifier. The avalanche
criterion of the JPEG lossless compression step makes this
deviation quasi-independent of the embedding rate and so,
makes possible the design of steganographic detectors which
the efficiencies do not depend on the payload. We design such
a steganalyser with very high and constant detection rates, as
illustrated in section IV-C. The experimental results show that
our steganalysis scheme is able to efficiently detect the use of
Outguess, F5 and JPHide and JPSeek, even if the embedding
rate is very low (≈ 10−6).
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