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Abstract 

One of the major issues of cryptography is the cryptanalysis of cipher 

algorithms. Cryptanalysis is the study of methods for obtaining the 

meaning of encrypted information, without access to the secret 

information that is normally required. Some mechanisms for breaking 

codes include differential cryptanalysis, advanced statistics and brute-

force. 

Recent works also attempt to use algebraic tools to reduce the 

cryptanalysis of a block cipher algorithm to the resolution of a system of 

quadratic equations describing the ciphering structure. As an example, 

Nicolas Courtois and Josef Pieprzyk have described the AES-128 

algorithm as a system of 8000 quadratic equations with 1600 variables. 

Unfortunately, these approaches are, currently, deadlocks because of the 

lack of efficient algorithms to solve large systems of equations. 

In our study, we will also use algebraic tools but in a new way: by using 

Boolean functions and their properties. A Boolean function is a function 

from 22 FF n →  with ,1>n  characterized by its truth table. The 

arguments of Boolean functions are binary words of length n. Any 
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Boolean function can be represented, uniquely, by its algebraic normal 

form which is an equation which only contains additions modulo 2-the 

XOR function – and multiplications modulo 2 – the AND function. 

Our aim is to describe a block cipher algorithm as a set of Boolean 

functions then calculate their algebraic normal forms by using the Möbius 

transforms. After, we use a specific representation for these equations to 

facilitate their analysis and particularly to try a combinatorial study. 

Through this approach we obtain a new kind of equations system. This 

equations system is more easily implementable and could open new ways 

to cryptanalysis. 

To test our approach we first apply this principle to the mini-AES cipher 

and in a second time to AES-128 algorithm. 

1. Introduction 

The block cipher algorithms are a family of cipher algorithms which use 

symmetric key and work on fixed length blocks of data. As an example Rijndael1 is a 

symmetric block cipher that can process data blocks of 128 bits, using cipher keys 

with lengths of 128, 192, and 256 bits [6]. 

One of the major issues of cryptography is the cryptanalysis of cipher 

algorithms. Cryptanalysis is the study of methods for obtaining the meaning of 

encrypted information, without access to the secret information that is normally 

required [15]. Some mechanisms for breaking codes include differential 

cryptanalysis, advanced statistics and brute-force. 

Recent works, like [9] or [4], attempt to use algebraic tools to reduce the 

cryptanalysis of a block cipher algorithm to the resolution of a system of quadratic 

equations describing the ciphering structure. These approaches are infeasible because 

of the difficulty of solving large systems of equations – for example, 8000 quadratic 

equations with 1600 variables for the AES-128 as described in [4]. 

In our study, we will also use algebraic tools but in a new way by using Boolean 

functions and their properties. Our aim is to describe a block cipher algorithm as a set 

                                                           

1 The Rijndael cipher algorithm has become a standard cryptographic algorithm in 2000 

under the name of Advanced Encryption Standard (AES). 
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of Boolean functions then calculate their algebraic normal forms by using the Möbius 

transforms. To test our approach we apply this principle to the mini-AES cipher. 

Since November 26, 2001, the block cipher algorithm “Rijndael”, in its 128 bits 

version, became the successor of DES under the name of Advanced Encryption 

Standard (AES). Its designers, Joan Daemen and Vincent Rijmen used algebraic tools 

to give to their algorithm an unequaled level of assurance against the standard 

statistical techniques of cryptanalysis. 

Recent works suggest that what is supposed to be the AES strength could be is 

weakness. Indeed, according to these studies, to cryptanalyse the AES could be 

reduced to solving a system of quadratic equations describing the ciphering structure 

of the AES. These results are not implementable in real life and do not represent a 

true danger for the AES. 

In our study, we will look at a reduced version of the AES: the Mini-AES. Our 

goal is to describe it under the form of systems of Boolean functions and to calculate 

their algebraic normal forms by using the Möbius transforms. The system of 

equations obtained is more easily implementable and once extended to the AES could 

open new ways to cryptanalysis of the AES. 

2. Feasibility of the Resolution of Large Systems of Quadratic 

Equations Describing the AES Algorithm 

2.1. AES as a system of equations 

“Breaking a good cipher should require as much work as solving a system of 

simultaneous equations in a large number of unknowns of a complex type.” [14]. 

This famous sentence of Claude Elwood Shannon is in the heart of what we 

describe now. Indeed, describe algebraically the AES allow us to define an 

environment in which it is possible to describe a quadratic equation system in 

multiple variables. 

In [2], Cid et al. define two reduced variants of the AES denoted ( )ecrnSR ,,,  

and ( ).,,, ecrnSR∗  Those two variants have the same parameters that are: n the 

number of round for encryption, r and c define respectively the number of rows and 

columns of the entries array and e the size of a word in bits. SR and ∗
SR  differ by the 
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form of the last round. Those two environments works on blocks of size ecr ..  and 

the state array is an array cr ∗  containing words of e bits. 

Finally, the complete version of the AES 128 is described by 

( ).8,4,4,10∗SR  

2.1.1. The big encryption system 

The existence of a quadratic equations system in multiple variables has been 

shown [9] by defining the big encryption system (BES). BES is a system of block 

encryption using blocks of 128 bytes and a key of 16 bytes. AES and BES both use a 

state array containing bytes, array that is transformed during the different rounds 

steps. 

The spaces of states of the AES and the BES are respectively the vector spaces 

( )1628= GFA  and ( ) .2 1288= GFB  All the clear texts, the cipher texts and the 

possible keys are elements of A for the AES and of B for the BES. Thus, AES is a 

subset of BES and the mapping function defining image of AES in BES is given by 

( ) ,BABA ⊂φ=  (1) 

where ( ) ( ) ( )822: 88φ GFGF �  is the conjugate vector of the map between A and 

B defined by 

( ) ( ).,,,,,,,
76543210 22222222 aaaaaaaaa =φ  

Thus, each element ( )8∈ 2GFa  can be included as an element 

( ) ( )822222222 2,,,,,,,
76543210 8∈ GFaaaaaaaa  

with ( ).φ  

2.1.2. Equation system for the encryption 

The state space of the BES is ( )12828= GFB  and the equation of an encryption 

round in BES is given by 

( ( ) ) ,1
iBB kbMb +−

�  (2) 
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where BM  is the linear diffusion matrix defined in [3] and 
iBk  is the BES key for 

the round i. 

The encryption of the clear text Bp ∈  to the cipher text Bc ∈  with the BES is 

described by 

,00 kpw +∈  (3a) 

( ) ,1−
= ii wx    [ ],9...,,0=i  (3b) 

,1 iiBi kxMw += −    [ ],9...,,0=i  (3c) 

,109 kxMc B += ∗  (3d) 

where Bw ∈  and Bx ∈  are the state vectors respectively before and after the 

inversion operation and ∗
BM  is the modified version of the matrix BM  for the final 

round. 

2.2. Implementation of SR 

2.2.1. The SageMath software 

To study the equations systems previously described we will use the software 

Sage2. Sage is the acronym for Software for Algebra and Geometry Experimentation, 

it is an open source software based on the python language. It aims to provide a 

viable alternative to Magma, Maple, Mathematica and Matlab. 

Sage comes by default with some modules including tools to work with algebraic 

constructs. Thus, we can create a univariate polynomial ring over the ring :Z  

 

From this definition several operations are possible: 

                                                           

2 http://www.sagemath.org/index.html 
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Well, it is possible to work with polynomial rings over ( ) :2GF  

 

2.2.2. Study of a lighter version 

In 2007, Martin Albrecht3 has begun to develop a module for the Sage software 

implementing the SR environment detailed above. 

We start by working with ( )4,1,1,1SR  in other words with an AES encryption 

on 1 round with a state array of 1 column and 1 row and a word of 4 bits. 

Construction of ( )4,1,1,1SR  and display the result: 

 

Display of the variables: 

                                                           

3http://www.informatik.uni-bremen.de/~malb/ and 

http://www.informatik.uni-bremen.de/cgi-bin/cgiwrap/malb/blosxom.pl/ 
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Calculate and display the irreducible polynomial: 

 

Displaying the S-BOX: 

 

Calculate of the polynomial equation system: 

 

2.2.3. Some data for the AES 

As we have seen previously, in the environment SR, the AES-128 is described 

by: ( ).8,4,4,10∗SR  By using the SR module of Sage, we obtain the following data: 

Construction of ( )8,4,4,10∗SR  and display of the result: 

 

Calculate and display of the corresponding polynomial system: 
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It is possible to go further by developing its own python scripts using the Sage 

libraries. For this, the shebang of the script and the imported modules are the 

followings: 

 

Then, the following function realize some encryption tests from the vectors given 

in [6]. 
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The above function aes_128 takes as parameters the number of rounds to 

perform. To execute a full AES encryption, we have to realize 10 rounds. 

The lines 4 to 13 print some informations on the field on which AES is defined. 

The lines 15 to 25 print the rounds key. The lines 26 to 32 realize the encryption of a 

vector of a clear text with a key, both given in [6]. Finally, the lines 33 to 38 realize 

the encryption of the same clear text vector with the same key but under the form of a 

128 bits string. 
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2.3. Deciphering the AES with the help of SR module 

As we have seen in our introduction, deciphering the AES by resolving a large 

system of quadratics equation is a deadlock. Unfortunately there is currently no 

efficient algorithm to resolve a such large system of equations. 

Even using a Groebner basis as proposed by Cid, Murphy and Robshaw the 

computation time is too large. 

As an example, we used the SR module, from sage, to decipher some simplified 

versions of the AES algorithm. To do that we used the following code: 

 

The line 8 defines the time t0 to calculate the duration of the computation. The 

line 9 defines a simplified AES algorithm using the SR module. In our case we define 
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AES in ( )42GF  with one round and a state array of one column and one row. The 

lines 11 to 14 define a plain text and a key. The lines 15 to 17 realize the ciphering of 

the plain text. The lines 19 to 30 calculate the system of equation and compute a 

solution through a Groebner basis. Finally the lines 31 print the duration of the 

calculation. 

By launching our script we obtain the following results: 

 

Thus, for an AES algorithm reduced to one round and a state array of one 

column and one row in ( )42GF  we obtain a system with 20 Polynomials and 20 

variables with two solutions. One of these solutions is the key used to cipher the plain 

text. The total time of computation is 1:0291390419 seconds. 

In the following array we give some results obtained by changing some 

parameters4: 

Round Column Row ( )nGF 2  Polynomials Variables Duration 

1 1 1 4=n  20 20 1.02s 

2 1 1 4=n  36 36 4.14s 

3 1 1 4=n  52 52 21.15s 

4 1 1 4=n  68 68 837.50s 

                                                           

4All calculations were performed on a macbook pro with a processor Intel Core 2 Duo 

cadenced at 2.53 GHZ and 4GB of RAM. 
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1 1 1 8=n  40 40 7.13s 

2 1 1 8=n  72 72 200313.77s 

We can be seen that the calculation time is correlated to the number of 

Polynomials and Variables. This can be highlighted by the graph of Figure 1 page 10. 

This graph demonstrate the large amount of time required to compute a system 

of equations with a great number of Polynomials and Variables. With 72 Polynomials 

ans 72 Variables we need more than 200313 seconds – whether more than 55 hours – 

to solve the system of equations. We can easily imagine than, even on a more 

powerful computer, the calculus time needed to solve a system of equations 

describing the AES-128 algorithm is huge. So we need another approach that we 

propose now. 

3. Boolean Function 

3.1. Definition. A Boolean function is a function ,: 22 FF →nf  with ,1>n  

characterized by its truth table. The arguments of Boolean functions are binary words 

of length n. Thus, if we take 2=n  we can define the Boolean function OR – the 

logical OR – characterized by its truth table. (cf. Figure 2 page 10). 

 

Figure 1. Evolution of computation time based on the number of polynomials. 
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Figure 2. The truth table of the function OR. 

The support of a Boolean function ( )fsupp  is the set of elements of x such that 

( ) ,0≠xf  the weight of a Boolean function ( )fwt  is the cardinal of its support. 

Thus, the support of the OR function is ( ) ( ) ( ) ( ){ }1,1,0,1,1,0OR =supp  and its 

weight is ( ) .3OR =wt  

3.2. Algebraic normal form 

The algebraic normal form (ANF) of a Boolean function f in n variables is the 

only polynomial 

[ ] ( )nnnf xxxxxxQ −− 2
1

2
112 ...,,...,,: F  

such as ( ) ,...,, 21
n

nxx F∈∀  we have 

( ) ( )nfn xxQxxf ...,,...,, 11 =  

( )

∑ ∏
∈ =

=
n

n

i

uu

n

i

u
iu xa

F...,, 11

.  

We call degree of f, denoted ( ),deg f  the degree of the polynomial fQ  which 

corresponds to the highest degree of monomials with nonzero coefficients from the 

ANF of f. Furthermore, the ANF of a Boolean function exists and is single. 

In short, any Boolean function can be represented, uniquely, by its algebraic 

normal form under the form 

( ) nnn xaxaxaaxxf ++++= �221101 ...,,  



MICHEL DUBOIS and ERIC FILIOL 

 

14 

nnnnnn xxxaxxaxxa ��� 21...,,2,11,1212,1 +++++ −−  

Thus, the algebraic normal form of a Boolean function only contains additions 

modulo 2 – the XOR function – and multiplications modulo 2 – the AND function. 

By using the example of the function OR, we have 

( ) 2121 OR, xxxxf =  

( ) ( ) ( )2112 ,0,,0 xxfxfxf ++=  

.2121 xxxx ++=  

3.3. Möbius transform 

It is with the help of the Möbius transform that we will calculate the ANF of a 

Boolean function. 

The Möbius transform of the Boolean function f is defined by [8]: 

( ) 22: FF →nfMT  

( )∑
≤

=

uv

vfu 2mod  

with uv ≤  if and only if .11, =⇒=∀ ii uvi  

From there, we can define the algebraic normal form of a Boolean function f in n 

variables by 

( )

( )

∑
∈= n

n

n

uuu

u
n

u
xxuMT

21

1

...,,

1 .

F

�  

Table 1. The truth table of the function MajAmong3 

1x  2x  3x  MajAmong3 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 
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1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Table 2. Calculation of the Möbius transform for MajAmong3 

1x  2x  3x  MajAmong3 →  calculation of MT(f) MT(f) 

0 0 0 0 →  0 0 0 0 0 

0 0 1 0 →  0 0 0 0 0 

0 1 0 0 →  0 0 0 0 0 

0 1 1 1 →  1 1 1 1 1 

1 0 0 0 →  0 0 0 0 0 

1 0 1 1 →  1 1 1 1 1 

1 1 0 1 →  1 1 1 1 1 

1 1 1 1 →  1 0 1 0 0 

4. Workings of the Equations 

The goal of our study is to propose a model of the mini-AES as a set of 

equations obtained by using the Boolean functions. This modelling is a first step, the 

final goal is to use this method on the AES. 

4.1. Principle of elaboration 

The principle adopted for the system of equations consists, from the truth table 

of a Boolean function, to calculate its ANF by using its Möbius transform. 

4.2. Example with the MajAmong3 function 

To understand more easily the mechanisms implemented, consider an example 

with the function MajAmong3. This function: ,2
3
2 FF →  is characterized by the 

truth table presented in Table 1 pages 14-15. 
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By calculating the Möbius transform of the function we obtain the result of 

Table 2 page 15. 

Once the Möbius transform obtained we take the elements of ,3
2F  where 

( ) .0MajAmong3 ≠MT  In our case we have the triplets ( ),1,1,0  ( ),1,0,1  ( )0,1,1  

from which we can deduce the equation: 

( ) .,,MajAmong3 2132321 xxxxxxx ⊕=  

 

Figure 3. Architecture of the mini-AES rounds. 

With the addition matching to a XOR and the multiplication to a AND. 

5. Application to the Mini-AES 

5.1. The mini-AES 

With the goal of helping students in cryptography and the cryptanalysts better to 

understand the internal mechanisms of the AES that Raphael Chung-Wei Phan 

presented, in 2002, his mini version of the AES [10]. This version uses restrained 

parameters compared to the AES while preserving its internal structure. 

The mini-AES is a block ciphering algorithm based on the same mathematical 

primitives than its big brother the AES. The atomic elements with which the mini-

AES works are elements of the finite field ( )42GF  called nibbles. As with AES, 

mini-AES uses a state array containing four nibbles, making it a 16 bits block 

ciphering algorithm. 

The ciphering process of the mini-AES consists on two rounds involving the 
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functions NibbleSub applying the S-BOX5 to the state array, ShiftRow performing a 

rotation of the cells of the state array and MixColumn multiplying each column of the 

state array by a constant matrix. 

The rounds architecture is presented on Figure 3. 

5.2. Equations for the mini-AES 

By taking the principle of generating equations showed in the paragraph 4, we 

will define the equations for the mini-AES. 

To simplify the process, we reduce the mini-AES to five Boolean functions: 

,16
2

16
2 FF →  one function for each round and three for the derivation key process. 

The functions for the rounds 1X  and 2X  result from the conjunction of 

functions NibbleSub ( ),NS  ShiftRow ( )SR  and MixColumn ( )MC  such as, by 

taking a 16 bits plain text block ( ),...,, 161 bbb =  we have 

( ) ( )bNSSRMCbX ��=1  and ( ) ( ).2 bNSSRbX �=  

The three functions ,0K  1K  and 2K  describe the derivation key process such 

that, from a 16 bits key block ( ),...,, 161 kkk =  we have the keys 
( )

( ) =
∈

kK
ii 2,1,0

 

( )16,1, ...,, ii kk  used in the rounds. 

Ultimately, the mini-AES can be written as two equations 1R  and 2R  each one 

describing a round such that: 

( ) ( ) ( ) ( )kKbXkKbRb 1101 ⊕⊕==′  

( ) ( ) ( )16,21,216,11,116,11,1 ...,,...,,...,, kkxxkk ⊕⊕=  

( )161 ...,, bb ′′=  

( ) ( ) ( )kKbXbRb 222 ⊕′=′=′′  

                                                           

5A Substitution-box (S-BOX) is a basic component of symmetric key algorithms which 

performs substitution. In cryptography, substitution is used to obscure the relationship 

between the key and the cipher text. 
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( ) ( )16,31,316,21,2 ...,,...,, kkxx ⊕=  

( )....,, 161 bb ′′′′=  

With b, b′  and b ′′  respectively the block of 16 bits in input, at the end of the 

first round and at the end of the second round and k the block of 16 bits of the key. 

We can then calculate the truth table of the Boolean functions ,,, 210 KKK  1X  

and 2X  (see Figure 4). Then by using the methodology chosen for the function 

MajAmong3, we obtain a set of 16 equations for each Boolean functions. One 

equation for each bit of the block. 

The resulting equations for the 1X  function are presented in Appendix A. 

5.3. Formatting the equations 

To facilitate the analysis of this set of equations and particularly to try later a 

combinatorial study we will use a specific representation for these equations. 

The adopted principle consists of generating a file for each of the 16 equations 

of the 1R  and 2R  functions. Ultimately we will obtain 32 files. The contents of each 

of these files consists of lines containing sequences of 0 and 1. Each line describes a 

monomial of the equation and the transition from one line to another means the 

application of the XOR operation (see Figure 5). 

In order to facilitate understanding of the mechanism chosen we detail the 

implementation of the file corresponding to the bit 1b′  of the function 1R  in Figure 6. 
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Figure 4. Some extracts of the truth table of the ( )1X  function. 

 

Figure 5. File structure for the function ( ).1 bR  
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Figure 6. File corresponding to the bit .1b′  

6. Application to the AES 

The AES is an algorithm of symmetric block cipher. It encrypts and decrypts 

data blocks from a single key. Contrary to the DES, which is based on a Feistel 

network, the AES uses a network of substitution and permutation (SP-network). This 

includes substitution boxes, the S-Boxes, and permutation boxes, the P-Boxes. Each 

box takes a block of text and the key as input and provides a block of ciphered text as 

output. The information flow in a defined sequence of several P-Box and S-Box 

forms a round. 

This mechanism implements the principles of diffusion and confusion developed 

by Shannon [14]. The objective of diffusion is to dissipate the statistical redundancy 
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of the plain text in the ciphered text. Permutation operations ensure the diffusion. The 

objective of the confusion is to make difficult the relationship between the plain text, 

the key and the ciphered text. The confusion is obtained by substitutions, chosen with 

care. 

Historically, the AES has two predecessors. The first is the cipher block 

algorithm Shark [11] published in 1996 by Vincent Rijmen, Joan Daemen, Bart 

Preneel, Anton Bosselaers and Erik de Win. Shark uses blocks of 64 bits and a key of 

128 bits. Like AES, it uses a SP-network with six rounds. The second algorithm 

called Square was published in 1997 by Joan Daemen and Vincent Rijmen. It uses an 

SP-network with eight rounds and works on blocks of 128 bits and also key of 128 

bits. 

6.1. The AES algorithm 

The inputs and outputs of AES are 128 bits blocks and the key length can be 

128, 192 or 256 bits. The basic unit of the algorithm is the byte. Blocks of data 

provided as input are transformed into arrays of four columns and four rows, each 

box containing a byte, whether 128844 =∗∗  bits per arrays. 

At the beginning of operations of ciphering and deciphering of a block, the 

corresponding array of bytes is copied into the state array. The state array is a two-

dimensional array of bytes containing n rows and m columns. For AES, .4== mn  

The operations of encryption and decryption are performed on this array and then the 

result is copied into an output array. 

The ciphering operations (see fig. 7) are based on four predefined functions: 

AddRoundKey, SubBytes, ShiftRows and MixColumns. Each of these functions is 

executed on the state array. The ciphering cycle includes an initial transformation, 

some intermediate rounds and a final round. 

The initial transformation consists of applying the function AddRoundKey to the 

state array. The intermediate rounds execute, in the order, the functions SubBytes, 

ShiftRows, MixColumns and AddRoundKey on the state array. The final round 

differs from the intermediate rounds, by the removal of the function MixColumns in 

the transformations cycle. 

The number of rounds of AES depends of the key size. Thus, for a key of 128 

bits, the number of rounds is 10, likewise, we have 12 rounds for a key of 192 bits 
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and 14 rounds for a 256 bits key. 

 

Figure 7. Ciphering and deciphering processes of AES 

The deciphering (see fig. 7) is realized by performing the inverse operations of 

the four encryption functions, in the inverse order. 

Thus, each function used in the ciphering operations disposes of its inverse 

function used for the deciphering: InvShiftRows, InvSubBytes and Inv-MixColumns. 

The AddRoundKey function stays unchanged. Like for ciphering, the deciphering 

process includes an initial transformation, some intermediate rounds and a final 

round. 

The initial transformation consists of applying the AddRoundKey function at the 
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state array. The intermediate rounds execute, in order, the InvShift-Rows, 

InvSubBytes, AddRoundKey and InvMixColumns functions on the state array. The 

final round differs of the intermediate rounds by the suppression of the 

InvMixColumns function in the transformations sequence. 

6.2. Equations for the AES 

Our aim is to apply to the AES the mechanisms described above for the miniaes. 

However, with the mini-aes, we have Boolean functions from 16
2

16
2 FF →  and it is 

relatively easy to compute their truth tables. In the AES algorithm, the ciphering 

functions take 128 bits as input and 128 bits as output. So we should have Boolean 

functions from 128
2

128
2 FF →  and it is impossible to compute their truth table. 

Indeed, such truth table contains 1282  inputs. 

We have to find solutions to describe each functions of the AES algorithm to 

obtain the same result as for the mini-aes algorithm. 

At the end, like for mini-aes, we obtain 128 files, each one describing the 

transformations of a bit block. The content of each of these files consists of lines 

containing sequences of 0 and 1. Each line describes a monomial of the equations 

and the transition from one line to another means the application of the XOR 

operation. 

6.2.1. Solution for the SubBytes function 

The SubBytes transformation is a non-linear byte substitution that operates 

independently on each byte of the State array using a substitution table (S-Box). 

This function is applied independently on each byte of the input block. So, we 

can reduce it as a Boolean function 8
2

8
2 FF →  describing the S-Box of the AES. 

Thus we compute the truth table of the S-Box and then apply the Möbius transform 

on the result. By switching these results on the 16 bytes of the input block, we obtain 

128 equations each one describing one bit of the input block. 

As an example the equation for low level bit is given on the figure 8. 

6.2.2. Solution for the ShiftRows function 

In the ShiftRows transformation, the bytes in the last three rows of the State 
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array are cyclically shifted over different numbers of bytes (offsets). The first row, 

,0=r  is not shifted. 

 

Figure 8. Equation for the low level bit of the SubByte function. 

For this function, we do not need to compute Boolean function. Indeed, the only 

operation of the ShiftRows transformation consists of switching byte through the 

State array. In our file this operation can be easily solved by a XOR operation. As an 

example the second byte of the State array becomes the 6th after ShiftRows function. 

Therefore to transform this byte we apply the following XOR to the second byte: 
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6.2.3. Solution for the MixColumns function 

The MixColumns transformation operates on the State array column-by-column, 

treating each column as a four-term polynomial. Each of these columns is multiplied 

by a square matrix. Thus we have for each column: 

.

02010103

03020101

01030201

01010302

3

2

1

3

2

1



























′

′

′

′

•



























=



























′

′

′

′

+

+

+

+

+

+

i

i

i

i

i

i

i

i

b

b

b

b

b

b

b

b

 

So, for the first byte of the column we have this equation: 

.01010302 321 +++ •⊕•⊕•⊕•=′ iiiii bbbbb  

Since on ,8
2GF  01 is the identity for multiplication, This equation becomes: 

.0302 321 +++ ⊕⊕•⊕•=′ iiiii bbbbb  

We have the same simplification for all equations describing the column 

multiplication by this square matrix. At the end we only need to compute the truth 

table for multiplication by 02 and by 03 over .8
2GF  

6.3. Formatting the equations 

To format the equations we use the same representation as for the mini-aes. Thus 

we have 128 files, one by bit of block. Each line describes a monomial and the shift 

from one line to another means a XOR operation. 

A file sample thus obtained is given in Annexe B. 

7. Conclusion 

We described the algorithm of the mini-AES and of the AES as Boolean 
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functions and then we translated it into systems of equations using the Möbius 

transform of these functions. 

Now, the goal of our approach is to be able to perform a combinatorial analysis 

on the files of equations thus obtained. 

The use of a Boolean equation system of low degree is motivated by the fact that 

its solution is likely to be easier than the existing equation model. We are currently 

developing a new, combinatorial approach in Boolean equation system solving which 

seems to be promising. 

A. Equations for the first round 
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B. File of the low level bit block describing the first round of the AES 
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