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Introduction

From the beginning of malware history (circa 1996), malwares
are

either operating system specific (Windows *.*, Unices, Mac,
. . . ),
or application specific (e.g. macro viruses),
or protocol dependent (e.g Conficker vs Slammer)
. . .

At the present time, quite no hardware specific malware.
Even if some operating system are themselves hardware
dependent (e.g. Symbian malware).
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Introduction

Critical issue: is it possible to design malware that go beyond
operating system and application varieties but

go beyond operating system and application varieties. . .
while exploiting hardware specificities?
. . .

If such an approach is possible, this would enable
far more precise attacks, at a finer level (surgical strikes) in a
large network of heterogeneous machines but with generic
malware,
in a context of cyberwarfare, this would represent a significant
advantage.

Good candidate: the onboard processor.
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Idea: Malware-dependent Processor

Identifying the processor is easily possible
either reverse existing binaries,
or analyze public market offers.
. . .

Large spectrum of possibilities to collect this technical
intelligence.
Bad news: deriving knowledge about processor internals is
tricky and require a lot of work.
Instead of analyzing processor logic gates architecture, work at
the higher level.

⇒ Exploit Mathematical perfection versus Processor Reality
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Starting from a formal model of malware
Exploring the Viral Classes
Practical Utility of the Formal Model

A Few Basic Notations (Sorry) [Fil05]

We consider the formal model given by Zuo and Zhou (2003 &
2005).
Sets N and S are the set of natural integers and the set of all
finite sequences of such integers, respectively.
Let s1, s2, . . . , sn be elements from S .

Let < s1, s2, . . . , sn > describe an injective computable
function from Sn to N whose inverse function is computable as
well.
If we consider a partial computable function f : N → N, then
f (s1, s2, . . . , sn) describes f (< s1, s2, . . . , sn >) in an abridged
way.
This notation extends to any n-tuple of integers i1, i2, . . . , in.
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A Few Basic Notations (2) (Sorry Again)

For a given sequence p = (i1, i2, . . . , ik , . . . , in) ∈ S , we denote
p[jk/ik ] the sequence p in which the term ik has been replaced
by jk , let say p[jk/ik ] = (i1, i2, . . . , jk , . . . , in).
If the element ik of sequence p is computed by a computable
function v (equivalently compute p[v(ik)/ik ]), let us adopt the
equivalent abridged notation p[v(ik)] in which the underlined
symbol describes the computed element.
In the general case (compute more than one element at the
same time in p), we note p[v1(ik1), v2(ik2), . . . , vl (ikl )].
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A Few Basic Notations (3) (Don’t Give up)

Finally we describes by ϕP(d , p) a function which is computed
by a program P in the environment (d , p).

d and p are denoting data in the environment (including clock,
mass memories and equivalent structures or devices) and
programs (including those of the operating system itself)
respectively.
That environment corresponds in fact to the operating system
which has been extended to the activity of one or more users.

When considering the Gödel coding e for the program P , we
use the notation ϕe(d , p). Its definition domain is then
denoted by We while his image space is denoted Ee .
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Zuo & Zhou Formal Model

Let us give the general formal definition of computer viruses
(most complete case).

Definition

(Non Resident Virus) A total recursive function v is a non resident virus if for every program i, we have:

1 ϕv(i )(d, p) =

8<:
D(d, p), if T (d, p) (i) (Added Fonctionnality)
ϕi (d, p[v(S(p))]) if I (d, p) (ii) (Infection)

ϕi (d, p), otherwise (iii) (Imitation)

2 T (d, p) and I (d, p) are two recursive predicates such that there is no value < d, p > that
satisfies them both at the same time. Moreover both functions D(d, p) et S(p) are recursive.

3 The set {< d, p >: ¬(T (d, p) ∨ I (d, p))} is infinite.
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Exploring the Model

The two predicates T (d , p) and I (d , p) represent the payload
and the infection trigger conditions respectively.
Whenever T (d , p) is true, the virus executes the payload
D(d , p) while whenever I (d , p) est true, the virus selects a
target program by means of the selection function S(p) and
then infects it. Finally the original program i is executed (host
program).
Virus kernel: the set of functions D(d , p) and S(p) with
predicates T (d , p) and I (d , p).
The virus kernel describes the malware in a univoqual way.
This model can be extended to other form of malware (more
sophisticated viruses, Trojan. . . ).
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Polymorphic Viruses

Definition

The pair (v, v ′) of total recursive functions v and v ′ is called Polymorphic virus with two forms if for
every program i we have

ϕv(i )(d, p) =

8<:
D(d, p), if T (d, p)
ϕi (d, p[v ′(S(p))]), if I (d, p)

ϕi (d, p), otherwise

and

ϕv′(i )(d, p) =

8<:
D(d, p), if T (d, p)
ϕi (d, p[v(S(p))]), if I (d, p)

ϕi (d, p), otherwise

Whenever predicate I (d , p) is true the virus selects a target
program by means of S(p), infects it then transfers control
back to the host program x . S(p) is performing the code
mutation as well.
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Metamorphic Viruses

Definition

Let v and v ′ be two different total recursive functions. The pair (v, v ′) is called metamorphic virus if for
every program i, then the pair (v, v ′) satisfies:

ϕv(i )(d, p) =

8<:
D(d, p), if T (d, p)
ϕi (d, p[v ′(S(p))]), if I (d, p)

ϕi (d, p), otherwise

et

ϕv′(i )(d, p) =

8<:
D′(d, p), if T ′(d, p)
ϕi (d, p[v(S(p))]), if I ′(d, p)

ϕi (d, p), otherwise

where T (d, p) – respectively I (d, p), D(d, p), S(p) – is different from T ′(d, p) – respectively I ′(d, p),
D′(d, p), S′(p).

Metamorphic viruses are similar to polymorhic viruses except
that selection functions S(p) and S ′(p) are different. The
kernel of metamorphic forms are totally different.
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Stealth Viruses

Definition

The pair (v, sys) made of a total recursive function v and a system call sys (a recursive function as well)
is a stealth virus with respect to the system call sys, if there exists a recursive function h such that for
every program i we have:

ϕv(i )(d, p) =

8<:
D(d, p), if T (d, p)
ϕi (d, p[v(S(p)), h(sys)]) si I (d, p)

ϕi (d, p), otherwise

et

ϕh(sys)(i) =


ϕsys(y), if x = v(y)
ϕsys(i), otherwise

Note stealth is a relative concept (with respect to a given set
of system calls).
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What the Model Show Us

We must identify and use a feature that will make a virus (in
the general case, a malware) operating whether a given type of
processor chip is present or not.
In the previous formal definition, whatever may be the class of
virus, the obvious candidates for usable features are predicates
T (d , p) and I (d , p) (payload and infection trigger conditions
respectively).
In the optimal case, we are interested in considering two
different features to control and manage payload triggering
and infection control separately and independently.

A. Desnos & R. Erra & E. Filiol (aka the FED Group) Processor-dependent Malwares



Introduction
Theoretical Background

Exploiting Mathematical Processor Limitations
Implementation and Experimental Results

Conclusion and Future Work

Starting from a formal model of malware
Exploring the Viral Classes
Practical Utility of the Formal Model

What the Model Show Us (2)

Code mutation and stealth can also be managed with respect
to specific processors in the same way.

As an example a malware will enforce Hardware Virtual
Machine-based rootkit techniques whenever present.
Code mutation (e.g metamorphism) will be activated only if a
suitable processor instruction set is available.

This approach, yet formal, gives a powerful insight of how
design processor dependent malware.
This enables to greatly reduce the problem of side effect that
may betray the activity of a malware.
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Mathematical perfection versus Processor Reality

Algorithm 1 : The √ problem
Begin:

A=2.0;
B =

√
A ∗

√
A;

Return[B==2];
End.

Well, we have two possible answers:
1 Mathematically: True is returned
2 Practically: False is returned!
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Algorithm 2 : The √ problem
Begin:
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A ∗
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A;

Return[B==2];
End.
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Mathematical perfection versus Processor Reality

Processors:
They have an increasing (architecture) complexity and size
They have bugs, known and unknown (not published)
They use floating point arithmetic
They use, generally, "secret" algorithms for usual arithmetic
functions: 1/x ,

√
x , 1/

√
x . . .

1 at the hardware level
2 and/or at the software level.
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Mathematical perfection versus Processor Reality

Problem: can we define a set of (simple) tests to know on which
processor we are ?
Example: is it possible to know whether we are on a mobile phone
or on a computer ?

The Intel assembly Langage instruction CPUID can be used both
on Intel and AMD processors,

it is easy to "find" it
but for other processors that don’t understand CPUID ?
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Mathematical perfection versus Processor Reality
The bugs
The standard IEEE p754

Bugs, known and unknown are good candidates to make a set of
tests:

It is easy to design a test to know if we are on a 1994 bugged
Pentium: just use the Pentium Division Bug
But a lot of bugs will only freeze the computer
and it is not so simple to find a list of all known bugs

So, we will not use bugs.
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The standard IEEE p754 [Ove01]

Approved by IEEE ANSI in 1985
Some processors do not follow it (example: CRAY 1, DEC
VAX 780)
A lot of processors follow it, but not all (microcontrollers)
The norm does not impose the algorithms to compute usual
functions 1/x ,

√
x , 1/

√
x or ex

So, we will have some differences . . . with implementation of
algorithms
But, we have to find them!
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Mathematical perfection versus Processor Reality
The bugs
The standard IEEE p754

Floating point numbers in the standard IEEE p754:

For 32 bits, we have:
1 bit for the sign;
23 bits for the mantissa;
8 bits for the exponent (integer).

fl(x) = sign(x) mantissa(x) exponant(x)
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Mathematical perfection versus Processor Reality
The bugs
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The Gentleman Code [Mul89]

Algorithm 3 : The Gentleman Code
Input: — A=1.0 ; B=1.0;
Output: — What does this code (really) compute ?
Begin:

A=1.0;
B=1.0;
While ((A+1.0)-A)-1.0==0 ;

A=2*A;
While ((A+B)-A)-B==0 ;

B=B+1.0;
Return[A,B];

End.
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The Gentleman Code

Well, again, we have two possible answers:
1 Mathematically: the two loops are theoretically infinite loops

so they are looping forever
2 Practically:

log2(A) gives the number of bits used by the mantissa of
floating point numbers;
B is the base used by the floating point arithmetic of the
environment (generally 2).

Both values are processor-dependent constants.
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Some basic (too simple) tests

Processor 1.2-0.8==0.4 0.1+0.1==0.2 0.1+0.1+0.1==0.3 0.1+. . . 0.1==1.0
AMD 32 No Yes No No
AMD 64 No Yes No No
ATOM No Yes No No

INTEL DC No Yes No No
MIPS 12000 No Yes No No
dsPIC33FJ21 No Yes Yes No
IPHONE 3G No Yes No No
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Some less basic tests

With
#define Pi1 3.141592653

#define Pi2 3.141592653589

#define Pi3 3.141592653589793

#define Pi4 3.1415926535897932385

Processor sin(1010π1) sin(1017π1) sin(1037π1) sin(1017π1) == sin(1017π2)

AMD 32 0.375... 0.424... -0.837... No
AMD 64 0.375.. 0.424.. 0.837... No
ATOM 0.375.. 0.423.. -0.832.. No

INTEL DC 0.375... 0.423... -0.832... No
MIPS 12000 0.375... 0.423... -0.832... No

dsPIC33 0.81... 0.62... -0.44... Yes
IPHONE 3G 0.375... 0.423... -0.837... No
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Some less basic tests

Processor sin(1037π1) sin(1037π2) sin(1037π3) sin(1037π4)

AMD 64 af545000 af545000 af545000 af545000
ATOM 47257756 9d94ef4d 99f9067 99f9067

INTEL DC 47257756 9d94ef4d 99f9067 99f9067
MIPS 12000 47257756 9d94ef4d 99f9067 99f9067

dsPIC33 bee5 bee5 bee5 bee5
IPHONE 3G 47257756 9d94ef4d 99f9067 99f9067
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Some floating point curiosities (Rump, [DM97, KM83])

Evaluation of

F (X , Y ) =
(1682XY 4 + 3X 3 + 29XY 2 − 2X 5 + 832)

107751

with X = 192119201 and Y = 35675640. Exact result is 1783
but numerically −7.18056 1020.
Evaluation of

P(X ) = 8118X 4 − 11482X 3 + X 2 + 5741X − 2030

with X = 1/
√

2 and X = 0.707. Exact result is 0 but
numerically −2.74822 10−8 .

A. Desnos & R. Erra & E. Filiol (aka the FED Group) Processor-dependent Malwares



Introduction
Theoretical Background

Exploiting Mathematical Processor Limitations
Implementation and Experimental Results

Conclusion and Future Work

Don’t forget the influence of the compiler

Let us give a last example, we want to compute

s =
N∑

i=1

10N

Exact value is N ∗ 10N . But one can have something like:

N 10 21 22 25 30 100
s − N ∗ 10N 0, 0 0, 0 −8.05 108 −6.71 107 −4.50 1015 4.97 1086
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Conclusion and Future Work

Floating Point Arithmetic (FPA) looks promising to define a
set of tests to identify the processor or, more precisely, a
subset of possible processors.
We propose, asap, the Proc_Scope Tool: a sotfware tool.
Proc_Scope uses carefully chosen numerical expressions that
give information on the processor.

More results to be published very soon in Journal of Computer
Virology.
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