Malwares as Interactive Machines: A New
Framework for Behavior Modelling
-Extended Abstract-

Grégoire Jacob!/2, Eric Filiol!, Hervé Debar?

! French Army Signal Academy,
Virology and Cryptology Lab., Rennes, France

eric.filiol@esat.terre.defense.gouv.fr

2 France Télécom R&D, Caen, France

{gregoire. jacob|herve.debar}Q@orange-ftgroup.com

March 9, 2007

1 Introduction

By making a survey on the different techniques of behavioral detection, we have
quickly noticed that a multitude of systems exist, each one redefining its own
behavior model. An underlying idea is then to provide a reference model for
expressing these malicious behaviors, detached from the nature of the detection
systems for interoperability sake. In a first place, we thought that Turing Ma-
chine equivalent languages were a good starting point, since most of abstract
virology models and semantic detectors likewise, rely on Turing Machine equiv-
alent formalisms. But along our work, we have gradually become aware that
some dynamic notions such as interactions and concurrency were fundamen-
tally missing in order to apprehend certain new malicious trends. By essence,
malwares, as adaptive and resilient agents, are likely to use these mechanisms
intensively. In this paper, we extend the malware models to the Interaction Ma-
chine formalism. This theoretical model is particularly adapted to apprehend
these missing notions.

In a first part, we are thus going to describe the known lacks of Turing
Machines and equivalent models. In the following one, we will introduce the ex-
tended model we have chosen as solution: Interactions Machines. According to
this model, we will provide new definitions for interactive and distributed mal-
wares. We will also describe more precisely different classes of interactions and
study their impact on the detection complexity. The second part of the paper
is less theoretical and aim to provide a model framework based on interactive
languages, specifically designed for describing malicious behaviors. To com-
plete our study and assess the relevance of this framework, we provide applied
descriptions for several behaviors usually used by current malware strains.

2 Shortcomings of the Turing Machine models

Since the first formal works by Cohen in the eighties [1], very few formal works
on malware models have been published. Its original approach based on Turing
Machines has been superseded in more recent publications by more expressive
representations able to take into account additional concepts such as mutations
and stealth. L. Adleman was the first to introduce a new model based on the
theory of recursive functions [2] which has been extended afterwards by Z. Zuo et
M. Zhou [3]. More recently G. Bonfante, M. Kaczmarek and J.-Y. Marion have
put forward a significant formalism based on the foundation of computability
which matches up with the previous models [4]. Unfortunately, as stated by the
Church-Turing thesis, all these models rely on formalisms eventually equivalent
to the Turing Machines.

On the one hand, these models have proved effective in capturing important
concepts like replication, mutation or stealth. Most important of all, they have
provided fundamental results on the detection complexity. On the other hand,
P. Wegner rightly underlines the fact that Turing Machines remain undoubtedly
insufficient to model open systems such as modern computers [5]. Extending
the formalism of replicating virus to more complex malwares will eventually fail
because of important missing dynamic concepts:

e Interactions: Open systems frequently interact with the external world.
These interactions can be seen as ways to import and export data between
external adversaries and the machine. These remote adversaries remain
out of control of the local machine and thus can not be captured by the
Turing formalism. Typical examples would be a network connection with
a remote machine or simply user intervention.

e Parallelism and concurrency: Simple parallelism between processes
can be addressed by Turing Machines. On the contrary, concurrency
or distributivity, traducing strong dynamic interactions between the pro-
cesses, can not. This result have already been established in previous
publications [6][7]. Distributivity to evade detection is a real threat and
is already deployed in certain malwares as mentioned in E. Filiol’s recent
paper on k-ary malwares [8][9].

Only one related work has already tried to extend the viral models to take
interactions into accounts. To achieve this, F. Leister has introduced a new
mathematical formalism based on Random Access Stored Program Machines
with Attached Background Storages [10]. These storage facilities are in fact
additional bands with concurrent access in reading and writing modes shared
by all the processes. This paper was a first step towards considering inter-
actions, but dynamic concepts still misse like unconstrained interactions and
non-determinism. We aim to introduce a richer model based on Interaction
Machines addressing these limitations. In particular, our contribution provides:

e Interaction classes according to the nature of the adversary and channel,

e A formal definition for interactive and distributed malicious strains,

New detection complexity results,

e An interactive language to operationally model behaviors,

e Criteria to assess the model soundness and completeness,

e Description of several behaviors to give hints of the language possibilities.

3 Interaction Machine based models

Interactions Machines are one of the several alternative extensions of Turing
Machines put forward in order to address their limitations. According to the
definition advanced by P. Wegner [11], an interaction machine can be described
as a Turing Machine with dynamic input and output facilities. Basically, an In-
teraction Machine has the same expressive power than a Turing Machine with
oracles and infinite input [12]. The main interest is that an oracle can hypo-
thetically solve any problem even undecidable and manipulate data of infinite
size. With regards to Interaction Machines, the oracle can model the behavior
of any adversaries of the machine taking the time and interaction history into
account. The input of the oracle model the data sent during interactions and
the output, the data received. In case of unilateral interactions, either the input
or the output can be null.

Based on this theory and the formalism introduced by G. Bonfante et al.
[4], we will provide definitions for two new classes of viruses:

Definition 1. Our definition of an interactive virus is based on the definition of
an implicit virus. The performed actions depend on interactions with adversaries
whose results can be taken as inputs. Let C1, ..., Ck be k semi-computable dis-
joint subsets of a computation domain D, Vi 1, ..., V; ; be i X j semi-computable
functions and ®!, ..., ®" be the n oracles associated to n interactive adversaries.
An interactive virus v exists such that, for all p and x, the equation is satisfied:

Vl,l(’U?pvxa(I)l(v)) lf (pan?q)l(v)) S Cl

ou(p,x) =
Vrl,k(vapyx7¢)n(v)) if (p,ﬂ]‘,(bn(’l})) € Ck'

Definition 2. A distributed malware is made up of two or more programs
executing and interacting to achieve malicious behaviors. Distributed malwares
according to our definition are in fact a subset of the k-ary malwares defined by
E. Filiol [8][9]. Let ® be an oracle reflecting the interactions of two programs.
The programs v and w are components of a distributed virus if there is a semi
computable function f satisfying the equation:

o (D, 2, y) = flou(p,z, ®(v,w)), Pu(p, y, ®(v,w))).

The definition has then been extended to distributed viruses over n components
using a graph representation and a more complex system of equations.

Interactions may be different according to the entities put into relation. By
considering the different classes of interactions, we will be able to associate an
equivalent complexity to the oracles modelling them. We have therefore defined
three main classes:

e (Class 1) Interactions with inert objects (files, registry keys,...) whose
complexity is linear,

o (Class Iz) Interactions with active objects through defined interfaces (net-
work sockets, mutex,...) whose complexity is NP-complete,

e (Class I3) Free interactions with active objects (concurrent processes, ...)
whose complexity is undecidable.

The oracle complexity is then multiplied by a combining factor depending on
the network of mutual interactions between objects. Finally, we have reached
the following result with regards to the detection complexity:

Proposition 1. The set of interactive (resp. distributed) malwares for a given
propagation function is respectively HQZO, HQZl and Undecidable according to the
class or interaction considered.

4 A formal semantic based on interactive ma-
chines for malware behaviors

This theoretical background justifies the importance of interactions and their im-
pact on the detection. Based on Interaction Machine formalism, we have estab-
lished a semantic of malware behaviors adopting an object-oriented approach.
The formal grammars have the advantage of providing a better understanding
of the malware effects with great manipulation facilities while remaining enough
formal for a high level representation. The malware is basically seen as an object
with internal attributes and mechanisms. Additional interfaces are then pro-
vided for interaction with external objects. These objects have been classified
according to their particular purpose from the malware perspective. The whole
grammar is too voluminous to be written down in this abstract but we will give
hints of it through examples in the next part. Nevertheless we can briefly give
a few examples of the object classes we have defined:

e Permanent objects able to survive a complete system reboot (files, registry
keys, etc),

e Temporary objects existing for a determined time over a system session
(events, mutex, etc),

e Boot objects providing the malware facilities to execute automatically its
code (run registry key, service descriptor table, etc),

e Communicating objects providing the malware facilities to propagate to
remote systems (network connections, P2P shared folders, drivers, etc),

e The autoreference to the malware itself.

With regards to internal mechanisms, the language put forward is sound
and complete since it is Turing Complete. Regarding communications, the in-
teraction machines extend the Chomsky hierarchy of languages to the domain
of non-computable functions. As stated by P. Wegner, interaction languages
require additional dynamic listening and transmitting operators as well as op-
erators for non-deterministic choices [11]. Consequently, these three types of
operations have been integrated. Relating to interactions, the grammar is obvi-
ously sound since the object-oriented approach is inspired from reality. On the

other hand, completeness can not be proved formally. We can simply mention
the fact that the grammar is able to describe the three kinds of interactions we
have previously defined, both synchronously and asynchronously.

5 Behavior modelling through interactions

In order to assess our model and measure further its completeness, we have
chosen to confront it to existing malwares. To do so, we have proceeded to
a behavior survey for several representative malicious strains thanks to infor-
mation gathered from malware observatories or analysis published by experts.
Doing so, we have identified different techniques used to achieve several classes
of typical malicious behaviors. We have then described these behaviors as sub-
grammars of the generative one. Only the replications mechanisms will be
introduced here. Even if they are not shown in this short abstract, we have
also established descriptions for the following behaviors: polymorphism, meta-
morphism as rewriting rules, overinfection and activity tests, residency, stealth,
emulation detection and proactive defence.

Example 1. The first replication method is simple duplication where no target
is required to host the code. The code is first stored in a local buffer traduced
by the generic variable V,y4.. It is then stored in a newly created permanent
object O¢jone. During the duplication, mutations can occur even if they are not
described within this abstract.
Veode € var
Oclone S obj,perm
(i) < Duplication > ::= < Creation >< Reading >
< Mutation >< Writing >
| < Reading >< Creation >
< Mutation >< Writing >
(i1) < Creation > create Ogone;
(#i1) < Reading > i= receive Vipge < this;
(iv) < Writing > u=send Veode — Oclone;

Example 2. Contrary to duplication, infection requires an existing entity to
host its code. As a consequence, the first phase of the replication always consists
in crawling in the system to look for a potential target. In order to describe
a valid target, conditions modelled by C,qiq are defined on the nature of the
target, one of them being to be not previously infected. This description takes
into account append and prepend modes of infections, whether destructive or
relocating the original code buffered in the variable Vigye.
‘/ta/r‘gety ‘/codey ‘/savea ‘/comparison € var
Chalid € const
Otarget S obj,perm
(1) < Infection > ::= < Searching >< Opening >< Relocating >
< Reading >< Mutation >< Writing >
| < Searching >< Opening >< Reading >
< Relocating >< Mutation >< Writing >

(ZZ) < Searching > = while(‘/comparison = (_‘(: (‘/targeh Cualid)))){
open Oyarget;
receive Vigrget < Otarget;

}

(#91) < Opening > open Oigrget;

(iv) < Relocating > ::= receive Vigpe < Oiarget;
send ‘/save - Otarget;
| €
(v) < Reading > = receive Vipge — this;
(vi) < Writing > == send Veode — Otarget;

Example 3. Propagation is a third way of replicating more specific to worm.
Contrary to the two previous cases of local replication, propagation is the ca-
pacity to replicate over remote systems. The code is no longer copied in a
permanent object but rather sent to a communicating object. According to the
nature of the channel used, a formatting phase may be required. For example,
mail propagation requires the construction of a mail structure with valid head-
ers and the code of the malware attached encoded in a base 64 format. Notice
that encoding the malware code may take several passes.
‘/code7 Vformatteda Vparametera Vposition € var
Cheader7 Chsize € const
Ochannel € Obj,CO’I’I’l
(i) < Propagation > := < Opening >< Reading >
< Mutation >< Transmitting >
| < Reading >< Opening >
< Mutation >< Transmitting >

(ZZ) < Opemng > L= open Ochannel;
(#i1) < Reading > = receive Vioge «— this;
(i) < Transmitting > ::= send Viode — Ochannel;

| < Formatting >
send Vformatted i Ochannel;
(U) < Formating > L= ‘/position = (&(Vformatted));
[Vposition] = (Cheade'r);
V;)osition = (+(‘/position7 Chsize))
< Encoding >
[Vposition] = (Vcode);
(’UZ) < Encodmg > = Veode ‘= (< OP2 > (V::odea Vparamete'r‘));
< Encoding >
|

6 Conclusion and perspectives

Along this paper we introduce a reference semantic based on interactions in
order to describe malicious behaviors. The theoretical approach adopted during
the first parts justifies their importance and measures their heavy impact on the
detection complexity. The operational approach of the second parts provides
a relevant framework with respect to our behavior survey. In order to achieve
a greater completeness, the scope of the survey should be increased to a wider

range of malwares. Anyhow, the generative grammar proves to be sufficiently
generic to integrate additional behaviors and the object classification can be
easily refined without deep modifications.

Working at a high level of representation, as it is the case with formal lan-
guages, has several advantages. It proves really useful in expressing the final
aim of behaviors rather than the techniques used to achieve it. Moreover this
semantic brings into light functional similarities more evolved than simple in-
struction equivalence which is the major drawback of most current behavior-
based detection systems. Eventually, it could be worth considering integrating
our framework to existing semantic analysis systems for malware detection as

in [13][14] and [15].

References

[1] F. Cohen, Computer Viruses. PhD thesis, University of South California,
1986.

[2] L. M. Adleman, “An abstract theory of computer viruses,” in CRYPTO
’88: Proceedings on Advances in cryptology, pp. 354-374, 1990.

[3] Z.Zhihong and M. Zhou, “Some further theoretical results about computer
viruses,” The Computer Journal, vol. 47, no. 6, pp. 627-633, 2004.

[4] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “On abstract computer
virology from a recursion theoretic perspective,” Journal in Computer Vi-
rology, vol. 1, no. 3-4, pp. 45-54, 2006.

[5] P. Wegner, “Why interaction is more powerful than algorithms,” Commu-
nications of the ACM, vol. 40, no. 5, pp. 80-91, 1997.

[6] R. Milner, “Elements of interaction: Turing award lecture,” Communica-

tions of the ACM, vol. 36, no. 1, pp. 78-89, 1993.

[7] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, Inc., 1992, ISBN:0-387-97664-7.

[8] E. Filiol, Techniques Virales avancées. Springer, IRIS Collection, 2007,
ISBN:2-287-33887-8.

[9] E. Filiol, “Formalisation and implementation aspects of k-ary (malicious)
codes,” Journal in Computer Virology, vol. 3, no. 3, EICAR 2007 Special
Issue, V. Broncek Ed., 2007.

[10] F. Leitold, “Mathematical model of computer viruses,” in Best Paper Pro-
ceedings of FICAR, pp. 194-217, 2000.

[11] P. Wegner, “Interactive foundations of computing,” Theoretical Computer
Science, vol. 192, no. 2, pp. 315-351, 1998.

[12] P. Wegner, “Interaction as a basis for empirical computer science,” ACM
Computing Surveys, vol. 27, no. 1, pp. 4548, 1995.

[13] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantic-aware malware detection,” in Proceedings of IEEE Symposium
on Security and Privacy, pp. 32-46, 2005.

[14] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting ma-
licious code by model checking,” Lecture Notes in Computer Science,
vol. 3548, pp. 74-187, 2005.

[15] J. Shin and D. Spears, “The basic building blocks of malware,” tech. rep.,
University of Wyoming, 2006.

