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What is a computer virus ?

Following Cohen :
1. Virus can infect programs by modifying them
2. Virus can copy itself and mutate
3. Virus can spread throughout a computer system

at least, for this talk . . .
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Reproductions : A virus is a virus

I Mathematical foundations of viruses
A virus is essentially a self-replicating program

I In 1952, Von Neumann constructs a model of self
reproduction.

I Fixed points in Logics, λ-calculus Turing Machines,
Recursion theorems

From von Neumann
Can an automaton be constructed, i.e.,
assembled and built from appropriately “raw
material”, by an other automaton? [. . . ] Can the
construction of automata by automata progress
from simpler types to increasingly complicated
types?
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Today Menu

I Virus definition based on Kleene’s recursion theorem
I Viruses are fixed-point of equations
I Characterizations of viruses

I based on virus duplication/propagation
I based on recursion theorems

I Implementation of recursion theorems in concrete
language

I Rogers, Rogers, Theory of recursive functions and
effective computability, 1967

I Jones, Computability and Complexity, from a
programming perspective, MIT Press, 1997



Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

A concrete programming language

The domain of computation D : the set of binary trees.

Expressions: E → V | nil | cons(E1, E2) |
hd(E) | tl(E) |
execn(E0, E1, . . . , En) |
specn(E0, E1 . . . , En)

Commands: C → V := E | C1; C2 | while(E){C} |
if(E){C1}else{C2}

A program

p(V1, . . . , Vn){C; return E; }
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Sending emails

Send a message msg to all mail addresses in the list adr
using some mail service (mailer)

send(adr,msg)
while (adr) {
mailer(cons(hd(y),msg));
adr := tl(adr);

}
return true;

}



Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Semantics

J_K : Programs× D∗ → D∗

where a value of D∗ is a system environment.

From the above example

JsendK(spider@man.com,′′ Hello′′, Out)
= cons(cons(spider@man.com,′′ Hello′′), Out)

Where Out is an output stream.
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ILoveYou

ILoveYou scenario
ILoveYou is an e-mail attachment.
Opening the attachment triggers the attack.
First, it scans for informations find
Second, it extracts an address book extract
Then it duplicates sending copies of itself.
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I Always Love You

Suppose that f is a system entry point,
A specification of ILoveYou is:

love(v,f) {
info := find(f); // find informations
send(cons(‘‘badguy@dom.com’’,nil),info);
@bk := extract(f); //extract addresses
send(@bk,v); //send virus to @bk
return true;

}

v should behaves as ILoveYou if:

JvK(f ) = JloveK(v, f )
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Fixed point equation

Find v satisfying ILoveYou equations

JvK(f ) = JloveK(v, f )

and v is a virus specified by love.

I Similar to quines
I Ken Thompson: "Reflections on Trusting Trust"

(CACM-84)
I No $0 variable as in shell
I no fancy pointer mechanisms
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Kleene’s recursion theorem

A general solution to fixed point equations is given by

Theorem (Kleene’s Recursion Theorem (1938))
If p is a program, then there is a program e such that

JeK(x) = JpK(e, x) (1)

A solution of IloveYou equation

JvK(f ) = JloveK(v, f )

Set v = e where p = Love.
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More on semantics

I Syntax of programs like send, v
I Concrete Syntax Programs → D like send, v

JvK(f ) = JloveK(v, f )

Two key ingredients to cook Kleene’s theorem
exec is an interpreter.

JexecK(p, x) = JpK(v)

spec is a program specializer

JJspecmK(p, x1, . . . xm)K(xm+1, . . . , xn) = JpK(x1, . . . xn)
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State of the art

I The PhD of F. Cohen gives a definition of Viruses
(1985)

I L. Adleman (1988) which coins the word “virus”
I Z. Zuo and M. Zhou.(84)
I See Eric’s first book for a gentle introduction.
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Virus distributions

Theorem
There is a virus distribution Dst s.t. for any specification
VS, JDst(VS)K is a virus satisfying

JDstK(VS) = v
JvK(f ) = JVSK(v, f )

Proof.
A consequence of Kleene’s recursion Theorem.
An IloveYou distribution is JDstK(love)

I Dst is a virus compiler
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ILoveYou Mutations
engine is one-to-one polymorphic engine s.t.

JJengineK(p, i)K ≈ JpK

Mutations of ILoveYou

love(dv,i,f ) {
info := find(f);
send(cons(‘‘badguy@dom.com’’,nil),info);
v = exec(dv,i);
vi = engine(v,i+random+1);
@bk := extract(f);
send(@bk,vi);
return true;

}

JexecK(dv, i) = JviK(f ) = love(dv, i , f )
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Explicit recursion

A general solution is provided by

Theorem (Explicit Recursion Theorem)
If p is a program, then there is a program e such that for
any x and y

JJeK(x)K(y) = JpK(e, x , y) (2)

I e generates fixed points
I e may be one-to-one
I See Case (74)
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ILoveYou Mutations

ILoveYou mutations are solutions of the equations

JexecK(dv, i) = love(dv, i , f )

Solutions are obtained by explicit recursion theorem:

Set dv = e and p = love
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Mutation engine

Theorem
There is a mutation engine Mut s.t. for any polymorphic
virus specification VS, JMut(VS)K is a virus satisfying

JJMutK(VS)K(i) = vi

JviK(f ) = JVSK(JMutK(VS), i , f )

I Given a virus specification VS, Mut(VS) outputs a
polymorphic virus.

I This is a compiler of polymorphic viruses
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Conclusions

I Construction of viruses from Kleene recursion
theorem

I Design of a virus compiler from a specification
I Construction of viruses from explicit recursion

theorem
I Design of a polymorphic virus compiler from a

specification

I Consider the propagation function : Double recursion
theorem

I Consider polymorphic propagation theorem : double
explicit recursion theorem
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Research Directions

Mathematical framework for computer virology:
I Classification of viruses using recursion theorems

I Structural complexity of viruses
I Introducing new virus constructions
I Defense methods

I Detection based on virus replication methods
I Static virus protection based on flow policies

I Analyzing space and time of viruses
I Other frameworks: reactive programming,

π-calculus, . . . for mobility
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Questions ?

1. Computer virus experiments and recursion
theorems, CIE’07

2. On abstract computer virology: from a
recursion-theoretic perspective. Journal of computer
virology, 2006

3. Toward an abstract computer virology. In
ICTAC,LNCS
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