A Classification of Viruses through Recursion
Theorems

Guillaume Bonfante, Matthieu Kaczmarek and Jean-Yves Marion
Nancy-Université - Loria - INPL - Ecole Nationale Supérieure des Mines de Nancy
B.P. 239, 54506 Vandceuvre-les-Nancy Cédex, France

Abstract

We study computer virology from an abstract point of view. Viruses
and worms are self-replicating programs, whose constructions are essen-
tially based on Kleene’s second recursion theorem. We show that we can
classify viruses as solutions of fixed point equations which are obtained
from different versions of Kleene’s second recursion theorem. This lead
us to consider four classes of viruses which various polymorphic features.
We propose to use virus distribution in order to deal with mutations.

1 Theoretical Computer Virology

Abstract computer virology was initiated in the 80’s by the seminal works of Co-
hen and Adleman [6]. The latter coined the term wvirus. Cohen defined viruses
with respect to Turing Machines [7]. Later [1], Adleman took a more abstract
point of view in order to have a definition independent from any particular com-
putational model. Then, only a few theoretical studies followed those seminal
works. Chess and White refined the mutation model of Cohen in [5]. Zuo and
Zhou formalized polymorphism from Adleman’s work [13] and they analyzed
the time complexity of viruses [14].

Recently, we tried [2, 3] to formalize inside computability the notion of
viruses. This formalization captures previous definitions that we have men-
tioned above. We also characterized two kinds of viruses, blueprint and smith
viruses, and we proved constructively their existence. This work proposes to go
further, introducing a notion of distribution to take into account polymorphism
or metamorphism. We define four kinds of viruses:

1. A blueprint virus reproduces by just duplicating its code.
2. A blueprint distribution can mutate when they duplicates.

3. A smith virus is a blueprint virus which can use its propagation function
directly to reproduce.

4. A smith distribution is a blueprint distribution which can mutate its prop-
agation function.

We show that each category is closely linked to a corresponding form of the
recursion theorem, given a rational taxonomy of viruses. So recursion theorems
play a key role in constructions of viruses.

Lastly, we switch to a simple programming language named WHILE™ to illus-
trate the fact that our constructions lives in the programming world. Actually,
we follow the ideas of the experimentation of the iteration theorem and of the
recursion theorem, which are developed in [8, 9] by Jones et al. and very recently
by Moss in [11].

2 A Virus Definition

The WHILE" language. The domain of computation D is the set of binary
trees generated from an atom nil and a pairing mechanism (,). The syntax
of WHILE™ is given by the following grammar from a set of variables V:

Expressions: E — V| cons(E;,E3) | hd(E) | t1(E) |
exec,(Eg,Eq,...,E,) | spec,(Eg,Eq...,E,) withn > 1

Commands: C — V:=E | Cy;Cy | while(E){C} | if(E){C;}else{Cy}

A WHILET program p is defined as follows p(Vy,...,V,){C;return E;}. A
program p computes a function [p] from D™ to D. We suppose that we are
given a concrete syntax of WHILET, that is an encoding of programs by binary
trees of D. From now on, when the context is clear, we do not make any
distinction between a program and its concrete syntax.

We have a self-interpreter exec,, and a specializer spec,, built-in:

[exec,](p,x1,. .. xn) = [P](21,...2p)
[Ispec,, (P, 1, ... zm)|(@m+1, - -y 2n) = [PI(21, ... 2p)

In the following we also use specy, as a program which computes spec,,.

A Computer Virus representation. We propose the following scenario in
order to represent viruses. When a program p is executed within an environment
x, if it halts, the evaluation of [p](z) is the new environment. The environe-
ment z is thought of as a finite sequence (1, ..., x,) which represents files and
accessible parameters.

As shown in [3], the construction of viruses lies in the resolution of fixed
point equations. From this observation and following, we propose the following
virus representation.

Definition 1 (Computer Virus). Let B be a computable function. A virus
w.r.t B is a program v such that Vp,z : [v](p,z) = [B(v,p)](z). Then, B is
named a propagation function for the virus v.

3 Blueprint Duplication

Blueprint distribution engine. From [3], a blueprint virus for a specifica-
tion g is a program which computes g using its own code and its environment:

(1)

v is a virus w.r.t some propagation function
vp,z : [v](p,z) = g(v,p,)

Note that a blueprint virus does not use any code of its propagation function,
unlike smith viruses that we shall see shortly. The solutions of this system are
provided by Kleene’s recursion theorem.

Theorem 2 (Kleene’s Recursion Theorem [10]). Let f be a semi-computable
function. There is a program e such that [e](z) = f(e,x).

Theorem 3. Let g be a semi-computable function. There is a blueprint virus
for the specification g.

Proof. Let g compute g, we define v = spec,(dg, g, dg) where

dg (Z7u7y7X){
r := exec(z,spec,(u,z,u),y,X);
return r;

}

We observe that [v](p,z) = g(v,p, z). Moreover, v is a virus w.r.t to spec,;. O

Distributions of evolving blueprint viruses. An evolving blueprint virus
is a virus can mutate but the propagation function remains the same. A distri-
bution of evolving blueprint viruses dy, for a specification g satisfies

Vi,pya : (AP, 2) = 9(dv, i, p,) ®

The existence of blueprint distributions corresponds to a stronger form of
the recursion theorem, which was first proved by Case [4].

{Vi : [dy] (%) is a virus w.r.t some propagation function

Theorem 4 (Explicit Recursion [3]). Let f be a semi-computable function.
There is a computable function e such that [e(z)](y) = f(e,x,y) where [e] = e.

Theorem 5. Let f be a semi-computable function. There is a distribution of
evolving blueprint viruses for the specification g.

Proof. Let g compute g, we define dy = spec;(specs, edg, g, edg) where

edg (Z7t7i7y7x) {
e = spec,(specs,t,z,t);
return exec(z,e,i,y,x);

}
For any 4, [dy](¢) is a virus w.r.t spec; and [[dv](#)](p,z) = g(dv, ¢, p,z). O

Construction of blueprint viruses. To illustrate blueprint viruses, we con-
sider a typical example of blueprint duplication which looks like the real life virus
ILoveYou. This program arrives as an e-mail attachment. Opening the attach-
ment triggers the attack. The infection first scans the memory for passwords
and sends them back to the attacker, then the virus self-duplicates sending itself
at every address of the local address book.

To represent this scenario we need to deal with mailing processes. A mail
m = (@, y) is an association of an address @ and data y. Then, we consider that
the environment contains a mailbox mb = (my, ..., m,) which is a sequence of
mails. To send a mail m, we add it to the mailbox, that is mb:= cons(m, mb).
We suppose that an external process deals with mailing.

In the following, x denotes the local file structure, and @bk = (@4,...,@,)
denotes the local address book, a sequence of addresses. We finally introduce a
WHILE' program find which searches its input for passwords and which returns
them as its evaluation. The specification for the scenario of ILoveYou is given
by the following program.

g (v,mb,@bk,x) {
pass := exec(find,x);
mb := cons(‘‘badguy@dom.com”, pass, mb);
y := @bk;
while (y) {
mb := cons(hd(y), v, mb);

y = tl(y);

return cons(mb, @bk, x);

}

From the specification program g, we buid the blueprint virus [d,](g).

One could add polymorphic abilities to this scenario using a new parameter
1 within the specification. Then it would be easy to build a corresponding
blueprint distribution applying Theorem 5 on the new specification.

4 Smith Reproduction

Smith Viruses. A smith virus can use a code of its propagation function to
reproduce. Formally, a smith virus v, B for a specification g satisfies

v is a virus w.r.t [B]
vp,z : [Vl(p,z) = g(B,v,p,)
Smith viruses correspond to the double recursion theorem due to Smullyan [12].

Theorem 6 (Double Recursion Theorem [12]). Let f1 and f2 be two semi-
computable functions. There are two programs e, and ey such that

[ei](z) = fi(er,e2,x) [e2](x) = f2(e1,e2,7)

Theorem 7. Let g be a semi-computable function. There is smith-virus for the
specification g.

Proof. Let g compute g We define the following programs

dg1 (z1,22,t1,t2,y,%) { dgz (z1,22,t1,t2,y,%) { pispec (g,B,v,y,p) {
e1 := spec,(t1,21,22,t1,l2); e1 := spec,(t1,21,22,t1,l2); r := spec,(g,B,v,p);
€2 := spec,(t2,21,22,t1,t2); €2 := spec,(t2,21,22,t1,t2); return r;

return exec(z1,6€1,62,y,X); return exec(z2,1,62,y,X); }

}

v = spec,(dgz, spec, (pispec, g), g, dgi, dgz)
B = spec,(dgi, spec, (pispec, g), g, dg1, dg2)

We observe that [v](p,z) = [[B](v,p)](z) = [g](B,v,p,). O

Smith Distributions. Smith distributions generate viruses which are able
to mutate their code and their propagation mechanism. A smith distribution
d,dgp for a specification g satisfies

{w - [dy] (i) is a virus w.r.t [[dg](i)]
Vi,p,z : [[dv]()](p,2) = g(dB,dv, i, p, x)

Smith distributions correspond to this double recursion theorem.

Theorem 8 (Double Explicit Recursion). Let fi and fo be two semi-computable
functions. There are two computable functions ey and ey such that

le1(@)](y) = fi(er,e2, 2, y) [e2(x)](y) = fa(er, e2,7,y)
where ey and eq respectively compute e; and es.

Theorem 9. Let g be a semi-computable function. There is a smith distribution
for the specification g.

Proof. Let g compute g. We define the following programs:

edgi (z1,22,t1,t2,1,y,x) { edgsz (z1,22,t1,t2,1,y,x) {

e1 := specg(specs,t1,21,22,t1,t2); e1 := spec(specs,t1,z1,22,t1,t2);
e2 1= specg(specs,ta,21,22,t1,t2); ez := specg(specs,ta2,21,22,t1,t2);
return exec(z1,e1,62,1,y,X); return exec(zz2,e1,62,1,y,X);

piSpeC/ (&dbadV:iv}’vp) {
return spec,(g,db,dv,i,p);

}

d, = spec;(specs, edgs, spec, (pispec’, g), g, edg:, edgz)
dp = spec;(specs, edgs, spec, (pispec’, g), g, edg1, edgs)

We observe that for any 4, [dy](7) is a virus w.r.t [[dg](?)] and Vi, p,z :
[[d (@] (P, 2) = g(ds, dv, i, p, 7) O

Construction of smith viruses. To illustrate smith viruses, we present how
to build a parasitic virus. Its specification function g is the following.

g Bv,p,(q, 7)) {
infected _form := exec(B,v,p);

return exec(p,infected_form,z);

}

First, it infects a new host q with the virus v using the propagation procedure
B. Then, it executes the original host p. We obtain a smith virus using the
Theorem 7.

We could modify the specification to add some polymorphic abilities: any
virus of generation ¢ infects a new host q with a virus of next generation using
the propagation procedure of generation i. Then, we would obtain the smith
distribution by the Theorem 9.

References

[1]

[10]
[11]

[12]

[13]

L. Adleman. An abstract theory of computer viruses. In Advances in
Cryptology — CRYPTO’88, volume 403. Lecture Notes in Computer Sci-
ence, 1988.

G. Bonfante, M. Kaczmarek, and J.-Y. Marion. Toward an abstract com-
puter virology. In ICTAC, pages 579-593, 2005.

G. Bonfante, M. Kaczmarek, and J.-Y. Marion. On abstract computer
virology from a recursion-theoretic perspective. Journal in Computer Vi-
rology, 1(3-4), 2006.

J. Case. Periodicity in generations of automata. Theory of Computing
Systems, 8(1):15-32, 1974.

D. Chess and S. White. An undetectable computer virus. Proceedings of
the 2000 Virus Bulletin Conference (VB2000), 2000.

F. Cohen. Computer Viruses. PhD thesis, University of Southern Califor-
nia, January 1986.

F. Cohen. On the implications of computer viruses and methods of defense.
Computers and Security, 7:167-184, 1988.

T. Hansen, T. Nikolajsen, J. Traff, and N. Jones. Experiments with imple-
mentations of two theoretical constructions. In Lecture Notes in Computer
Science, volume 363, pages 119-133. Springer Verlag, 1989.

N. Jones. Computer implementation and applications of kleene’s S-m-n and
recursive theorems. In Y. N. Moschovakis, editor, Lecture Notes in Math-
ematics, Logic From Computer Science, pages 243-263. Springer Verlag,
1991.

S. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

L. Moss. Recursion theorems and self-replication via text register machine
programs. In EATCS bulletin, 2006.

H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York, 1967.

Z. Zuo and M. Zhou. Some further theoretical results about computer
viruses. The Computer Journal, 47(6):627-633, 2004.

Z. Zuo, Q.-x. Zhu, and M.-t. Zhou. On the time complexity of computer
viruses. IEEE Transactions on information theory, 51(8):2962-2966, Au-
gust 2005.

