
Experimentation

JYM

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Experiments with implementations of
Recursion Theorems

Jean-Yves Marion

Ecole Nationale Supérieure des Mines de Nancy
Loria-INPL

May, 5th 2007

Joint work with G. Bonfante and M. Kaczmarek

Experimentation

JYM

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Outline

Introduction

While

Virus are fixed points

Distributions and mutations

Conclusions

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

What is a computer virus ?

Following Cohen :
1. Virus can infect programs by modifying them
2. Virus can copy itself and mutate
3. Virus can spread throughout a computer system

at least, for this talk . . .

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

What is a computer virus ?

Following Cohen :
1. Virus can infect programs by modifying them
2. Virus can copy itself and mutate
3. Virus can spread throughout a computer system

at least, for this talk . . .

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

What is a computer virus ?

Following Cohen :
1. Virus can infect programs by modifying them
2. Virus can copy itself and mutate
3. Virus can spread throughout a computer system

at least, for this talk . . .

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Reproductions : A virus is a virus

I Mathematical foundations of viruses
A virus is essentially a self-replicating program

I In 1952, Von Neumann constructs a model of self
reproduction.

I Fixed points in Logics, λ-calculus Turing Machines,
Recursion theorems

From von Neumann
Can an automaton be constructed, i.e.,
assembled and built from appropriately “raw
material”, by an other automaton? [. . .] Can the
construction of automata by automata progress
from simpler types to increasingly complicated
types?

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Reproductions : A virus is a virus

I Mathematical foundations of viruses
A virus is essentially a self-replicating program

I In 1952, Von Neumann constructs a model of self
reproduction.

I Fixed points in Logics, λ-calculus Turing Machines,
Recursion theorems

From von Neumann
Can an automaton be constructed, i.e.,
assembled and built from appropriately “raw
material”, by an other automaton? [. . .] Can the
construction of automata by automata progress
from simpler types to increasingly complicated
types?

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Reproductions : A virus is a virus

I Mathematical foundations of viruses
A virus is essentially a self-replicating program

I In 1952, Von Neumann constructs a model of self
reproduction.

I Fixed points in Logics, λ-calculus Turing Machines,
Recursion theorems

From von Neumann
Can an automaton be constructed, i.e.,
assembled and built from appropriately “raw
material”, by an other automaton? [. . .] Can the
construction of automata by automata progress
from simpler types to increasingly complicated
types?

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Today Menu

I Virus definition based on Kleene’s recursion theorem
I Viruses are fixed-point of equations
I Characterizations of viruses

I based on virus duplication/propagation
I based on recursion theorems

I Implementation of recursion theorems in concrete
language

I Rogers, Rogers, Theory of recursive functions and
effective computability, 1967

I Jones, Computability and Complexity, from a
programming perspective, MIT Press, 1997

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

A concrete programming language

The domain of computation D : the set of binary trees.

Expressions: E → V | nil | cons(E1, E2) |
hd(E) | tl(E) |
execn(E0, E1, . . . , En) |
specn(E0, E1 . . . , En)

Commands: C → V := E | C1; C2 | while(E){C} |
if(E){C1}else{C2}

A program

p(V1, . . . , Vn){C; return E; }

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Sending emails

Send a message msg to all mail addresses in the list adr
using some mail service (mailer)

send(adr,msg)
while (adr) {
mailer(cons(hd(y),msg));
adr := tl(adr);

}
return true;

}

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Semantics

J_K : Programs× D∗ → D∗

where a value of D∗ is a system environment.

From the above example

JsendK(spider@man.com,′′ Hello′′, Out)
= cons(cons(spider@man.com,′′ Hello′′), Out)

Where Out is an output stream.

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Semantics

J_K : Programs× D∗ → D∗

where a value of D∗ is a system environment.

From the above example

JsendK(spider@man.com,′′ Hello′′, Out)
= cons(cons(spider@man.com,′′ Hello′′), Out)

Where Out is an output stream.

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

ILoveYou

ILoveYou scenario
ILoveYou is an e-mail attachment.
Opening the attachment triggers the attack.
First, it scans for informations find
Second, it extracts an address book extract
Then it duplicates sending copies of itself.

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

I Always Love You

Suppose that f is a system entry point,
A specification of ILoveYou is:

love(v,f) {
info := find(f); // find informations
send(cons(‘‘badguy@dom.com’’,nil),info);
@bk := extract(f); //extract addresses
send(@bk,v); //send virus to @bk
return true;

}

v should behaves as ILoveYou if:

JvK(f) = JloveK(v, f)

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

I Always Love You

Suppose that f is a system entry point,
A specification of ILoveYou is:

love(v,f) {
info := find(f); // find informations
send(cons(‘‘badguy@dom.com’’,nil),info);
@bk := extract(f); //extract addresses
send(@bk,v); //send virus to @bk
return true;

}

v should behaves as ILoveYou if:

JvK(f) = JloveK(v, f)

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Fixed point equation

Find v satisfying ILoveYou equations

JvK(f) = JloveK(v, f)

and v is a virus specified by love.

I Similar to quines
I Ken Thompson: "Reflections on Trusting Trust"

(CACM-84)
I No $0 variable as in shell
I no fancy pointer mechanisms

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Kleene’s recursion theorem

A general solution to fixed point equations is given by

Theorem (Kleene’s Recursion Theorem (1938))
If p is a program, then there is a program e such that

JeK(x) = JpK(e, x) (1)

A solution of IloveYou equation

JvK(f) = JloveK(v, f)

Set v = e where p = Love.

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Kleene’s recursion theorem

A general solution to fixed point equations is given by

Theorem (Kleene’s Recursion Theorem (1938))
If p is a program, then there is a program e such that

JeK(x) = JpK(e, x) (1)

A solution of IloveYou equation

JvK(f) = JloveK(v, f)

Set v = e where p = Love.

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

More on semantics

I Syntax of programs like send, v
I Concrete Syntax Programs → D like send, v

JvK(f) = JloveK(v, f)

Two key ingredients to cook Kleene’s theorem
exec is an interpreter.

JexecK(p, x) = JpK(v)

spec is a program specializer

JJspecmK(p, x1, . . . xm)K(xm+1, . . . , xn) = JpK(x1, . . . xn)

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

More on semantics

I Syntax of programs like send, v
I Concrete Syntax Programs → D like send, v

JvK(f) = JloveK(v, f)

Two key ingredients to cook Kleene’s theorem
exec is an interpreter.

JexecK(p, x) = JpK(v)

spec is a program specializer

JJspecmK(p, x1, . . . xm)K(xm+1, . . . , xn) = JpK(x1, . . . xn)

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

State of the art

I The PhD of F. Cohen gives a definition of Viruses
(1985)

I L. Adleman (1988) which coins the word “virus”
I Z. Zuo and M. Zhou.(84)
I See Eric’s first book for a gentle introduction.

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Virus distributions

Theorem
There is a virus distribution Dst s.t. for any specification
VS, JDst(VS)K is a virus satisfying

JDstK(VS) = v
JvK(f) = JVSK(v, f)

Proof.
A consequence of Kleene’s recursion Theorem.
An IloveYou distribution is JDstK(love)

I Dst is a virus compiler

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Virus distributions

Theorem
There is a virus distribution Dst s.t. for any specification
VS, JDst(VS)K is a virus satisfying

JDstK(VS) = v
JvK(f) = JVSK(v, f)

Proof.
A consequence of Kleene’s recursion Theorem.
An IloveYou distribution is JDstK(love)

I Dst is a virus compiler

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Virus distributions

Theorem
There is a virus distribution Dst s.t. for any specification
VS, JDst(VS)K is a virus satisfying

JDstK(VS) = v
JvK(f) = JVSK(v, f)

Proof.
A consequence of Kleene’s recursion Theorem.
An IloveYou distribution is JDstK(love)

I Dst is a virus compiler

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

ILoveYou Mutations
engine is one-to-one polymorphic engine s.t.

JJengineK(p, i)K ≈ JpK

Mutations of ILoveYou

love(dv,i,f) {
info := find(f);
send(cons(‘‘badguy@dom.com’’,nil),info);
v = exec(dv,i);
vi = engine(v,i+random+1);
@bk := extract(f);
send(@bk,vi);
return true;

}

JexecK(dv, i) = JviK(f) = love(dv, i , f)

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

ILoveYou Mutations
engine is one-to-one polymorphic engine s.t.

JJengineK(p, i)K ≈ JpK

Mutations of ILoveYou

love(dv,i,f) {
info := find(f);
send(cons(‘‘badguy@dom.com’’,nil),info);
v = exec(dv,i);
vi = engine(v,i+random+1);
@bk := extract(f);
send(@bk,vi);
return true;

}

JexecK(dv, i) = JviK(f) = love(dv, i , f)

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Explicit recursion

A general solution is provided by

Theorem (Explicit Recursion Theorem)
If p is a program, then there is a program e such that for
any x and y

JJeK(x)K(y) = JpK(e, x , y) (2)

I e generates fixed points
I e may be one-to-one
I See Case (74)

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

ILoveYou Mutations

ILoveYou mutations are solutions of the equations

JexecK(dv, i) = love(dv, i , f)

Solutions are obtained by explicit recursion theorem:

Set dv = e and p = love

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

ILoveYou Mutations

ILoveYou mutations are solutions of the equations

JexecK(dv, i) = love(dv, i , f)

Solutions are obtained by explicit recursion theorem:

Set dv = e and p = love

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Mutation engine

Theorem
There is a mutation engine Mut s.t. for any polymorphic
virus specification VS, JMut(VS)K is a virus satisfying

JJMutK(VS)K(i) = vi

JviK(f) = JVSK(JMutK(VS), i , f)

I Given a virus specification VS, Mut(VS) outputs a
polymorphic virus.

I This is a compiler of polymorphic viruses

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Conclusions

I Construction of viruses from Kleene recursion
theorem

I Design of a virus compiler from a specification
I Construction of viruses from explicit recursion

theorem
I Design of a polymorphic virus compiler from a

specification

I Consider the propagation function : Double recursion
theorem

I Consider polymorphic propagation theorem : double
explicit recursion theorem

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Conclusions

I Construction of viruses from Kleene recursion
theorem

I Design of a virus compiler from a specification
I Construction of viruses from explicit recursion

theorem
I Design of a polymorphic virus compiler from a

specification

I Consider the propagation function : Double recursion
theorem

I Consider polymorphic propagation theorem : double
explicit recursion theorem

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Research Directions

Mathematical framework for computer virology:
I Classification of viruses using recursion theorems

I Structural complexity of viruses
I Introducing new virus constructions
I Defense methods

I Detection based on virus replication methods
I Static virus protection based on flow policies

I Analyzing space and time of viruses
I Other frameworks: reactive programming,

π-calculus, . . . for mobility

Experimentation

Introduction

While

Virus are fixed
points

Distributions and
mutations

Conclusions

Questions ?

1. Computer virus experiments and recursion
theorems, CIE’07

2. On abstract computer virology: from a
recursion-theoretic perspective. Journal of computer
virology, 2006

3. Toward an abstract computer virology. In
ICTAC,LNCS

	Introduction
	While
	Virus are fixed points
	Distributions and mutations
	Conclusions

