
Characterizing Virus Replication

Jose Andre Morales, Peter J. Clarke, Yi Deng

School of Computing and Information Sciences

Florida International University

Miami, Fl 33199

fjmora009, clarkep, dengg @cis.�u.edu

Abstract

In this paper we present a formal characterization of virus replication. Two detection models for virus

replication are developed, one using operation sequence matching and the other using frequency measures.

The paper shows that virus replication can be identi�ed and used to detect known and unknown viruses.

An overview of testing for both models are given along with preliminary results con�rming that virus

replication can be used to detect known and unknown viruses.

1 Introduction

In 2006, an FBI survey reported computer viruses as the number one cause of �nancial loss for American
companies [9]. At over $32 million dollars, viruses accounted for over 70% of all �nancial losses for the
corporations surveyed. For the same year Kaspersky Labs reported a strong rise in the number of new
viruses and more momentum in the second half of the year with email worms topping the list [1]. Kaspersky
also forecasts that viruses will increasingly appear, helping to spread other forms of malware and use more
sophisticated techniques to avoid detection. Despite this growing problem antivirus companies continue to
use signature databases as their primary tool for virus detection. In 2006 Kaspersky labs averaged 10,000 new
record updates to its signature database per month and 200 new malware samples per day [6]. Antivirus
companies still average 6 hours to release a solution to newly discovered viruses [2, 19]. It is clear that
antivirus companies will continue to not properly and quickly handle the ever growing virus problem using
signature databases as the centerpiece of detection. A possible solution to this is behavior based detection
[14].

Behavior based detection monitors process execution. A process is
agged as a possible virus if the behav-
ior of the process is similar to known viruses. This approach has the advantage of being able to detect new
undiscovered viruses. The main drawback to this approach is it can also
ag benign processes as being a
possible virus which result in false positives. Several detection methods have been proposed where each one
uses a speci�c aspect of viruses to base their detection methodology. These methodologies usually rely on
virus characteristics that are not consistently found in all viruses. The result is the methodologies are limited
to detecting speci�c classes of viruses or detection under speci�c conditions. In this paper we characterize
virus replication, which is the fundamental characteristic present in all viruses, with a �nite state machine.
A malware classi�ed as a virus under the accepted de�nitions implies the virus has the ability to replicate.
We assume the process used by a virus to replicate itself is relatively similar across all viruses. We present
two virus replication detection models. The �rst model uses strings representing an ordered sequence of
execution of operations from the replication process of known viruses. These sequences are searched in other
processes to determine if the process is a possible virus or benign. The second model uses metrics represent-
ing the frequency of use of operations in the replication process of known viruses. Frequency measurements
are recorded for other processes and compared to these metrics to determine if the process is a possible virus
or benign.

1

The contributions of this research are:

1. Characterizing virus replication. Presenting an FSA to characterize virus replication creates a
foundation for future research in this area. The FSA can be used to build new detection models and
develop novel theoretical results.

2. Showing that virus replication can be detected. The ability to detect virus replication allows
for multiple detection models to be proposed. Detecting virus replication becomes a new detection
vector that can be used in current antivirus solutions.

3. Using replication to detect unknown viruses. Detecting virus replication to stop unknown
viruses may prevent major virus epidemics. Just like other behavior based approaches, the ability to
stop unknown viruses relieves some pressure from antivirus companies to release e�ective solutions to
newly discovered viruses as quickly as possible.

The remainder of this paper is organized as follows: Sections 2 and 3 present background and related work.
In Section 4 a formal characterization of virus replication is built using a �nite state machine (FSA) and
based on Cohen's formal de�nition [8] of a virus. Section 5 presents two detection models for virus replication
using the characterization. Section 6 is an overview of testing currently being conducted along with some
preliminary results. Conclusions and future work are presented in Section 7.

2 Background

Formal models of viruses have been presented in [8, 11, 10]. Each of these seminal works describe virus
replication in some form. Cohen provides the foundational results using Turning Machines to illustrate the
replication process of a virus as symbols on a tape transferred from one segment of the tape to another
segment of the same tape. Adleman de�ned infection as the replication aspect of a virus using recursive
functions. Von Neumann created a self reproducing automata showing that replication can be de�ned
formally with computational models. Many detection models, both signature and behavior based have been
created using these seminal papers, an excellent summary of these is found in [5, 14]. Using sequences
of execution of operations to detect malware has been proposed in [16, 18, 12, 17, 4, 21, 15, 3]. In each
research, the detection is based on anomalous detection or misuse detection [12]. The two approaches record
the complete behavior via sequence of operations of a benign or malicious process. Detection is achieved by
identifying di�erences in executing processes and the recorded sequences.

3 Related Work

In [16], anomalous intrusion detection was performed via system call monitoring. A database was trained
to recognize the normal behavior of benign processes in a system. The system calls made by a process were
compared to the database, if the process made system calls not matching the database, the process was
marked as anomalous. The main drawback to this approach is determining how much exhaustive training
must be performed to cover all cases of a benign process. If a sequence is left out, this can lead to false
positives by identifying normal behavior as anomalous. My research takes a similar approach of monitor-
ing sequences of executed operations to detect viruses. The di�erence of my approach is the training is
done on sequences of executions of operations representing the replication of the virus. Since replication is
the fundamental characteristic of a virus, retraining of the database is reduced since the behavior may not
vary. This is an improvement on the approach in [16] where training must be repeated for each new program.

In [7], Ellis presented a method to detect worms in a computer network using behavioral signatures. The
approach taken to detect worms relied on behavioral patterns of worms re
ective of the network communi-
cations typical of worms. These behaviors were developed from the de�nition of a worm. The method was
shown capable of detecting classes of worms without a priori knowledge of any speci�c worm. My research
is similar in using the de�nition of a virus for detection. I use the fundamental characteristic of replication
for detecting a virus. My research uses a singular characteristic of a virus as opposed to Ellis which uses
multiple characteristics of a worm. Using a singular characteristic results a more focused detection which
may be faster than a detection using multiple characteristics.

2

4 Characterizing Replication

The strict de�nition of a virus is a program that infects other programs by modifying them to include a
possibly evolved version of itself [8]. A less strict version de�nes a virus as a program that recursively and
explicitly copies a possibly evolved version of itself [14]. Both of these de�nitions express replication as the
qualifying fundamental characteristic of a virus. Under these de�nitions, a malware program is classi�ed as a
virus if and only if it has the ability to replicate. It can be inferred that replication is the only characteristic
of a virus consistently present in all viruses. Cohen's formal de�nition of a viral set using a Turing Machine
illustrates virus replication as symbols on a tape being read and written to another area further down the
tape [8, pg.164]. The symbols being read and written represent the virus. The de�nition shows read, search
and write operations as essential for virus replication to occur. In addition the strict de�nition of a virus
implies the use of open and close operations. To infect a program a virus may have to �rst gain access
to it which may require an open operation. Once infection is completed the newly infected �le may have
to be closed to become usable by a system. Cohen states that any element of a viral set can produce any
number of other elements of the set depending on the remaining tape [8, pg. 165]. This implies that a virus
may attempt to replicate several times during one execution which results in a high frequency use of certain
operations.

We can now state that virus replication consists of a sequence of execution of some combinations of the
following general operations: open, read, write, search and close. The frequency of execution of this sequence
can be one or more times during one execution of a virus. A virus may also execute several di�erent
sequences of execution one or more times to attempt replication. Each general operation causes the virus
to transition into a new state during the replication process. Each virus executes speci�c operations during
replication that can be classi�ed under one of the general operations stated above. A characterization of virus
replication can be stated as a sequence of executions E known as a replication sequence with a set of speci�c
operations p 2 P and a set of replication states Q = fo; r; w; s; cg. The members of Q are the replication
states a virus transitions into when one of the above general operations are executed. The replication states
are de�ned as follows: o = opened, r = read, w = written, s = searched, c = closed. It is trivial to see
which general operation transitions into each replication state. The members of P , the replication set, are
the speci�c operations executed by the virus that produce a transition into a replication state in Q. A
replication sequence Ei is written as e1; e2; e3; :::; en with n being the total number of executed operations.
The subscript i initialized to 1 uniquely identi�es each replication sequence. Each e 2 E is one execution of
a speci�c operation p resulting in a new replication state q 2 Q. This characterization is formally de�ned
with a �nite state automata (FSA) in Figure 1.

FSA E is a 5-tuple (
P

; Q; s; f; �) where:

�
P

is the alphabet of E. Elements of
P

are speci�c operations p belonging to the replication set P .

� Q is the �nite set of replication states fo; r; w; s; cg

� s 2 Q is the start state of E

� f 2 Q is the �nal state of E

� � : Q x
P

! Q

Figure 1: Virus Replication Sequence FSA

The members of
P

must solely consist of speci�c operations that when executed individually, transition
to a replication state q 2 Q. There is no speci�c start and �nal replication states for E. When a virus
attempts replication it may start in any replication state q 2 Q. A virus may also exit replication from any
state in Q. No speci�c p 2 P needs to be executed �rst to start replication and executed last to exit, it
can commence and �nish with the execution of any operation p belonging to replication set P . Thus all the
replication states of Q are valid for the start and �nal state of E. A virus executes many operations during
one complete execution of itself. Only a subset of these operations belong to the replication set P , namely

3

those that transition the virus to a replication state q. FSA E is meant to capture only the ordered sequence
of executions of operations p 2 P . It does not capture other executed operations not belonging to P even
if those operations were executed in between operations that do belong to the replication set P . FSA E

captures strictly the replication process of a virus and nothing else. A replication sequence Ei comes from a
process that is already known to be a virus or from a process that is detected as exhibiting virus replication
behavior. If FSA E produces a replication sequence belonging to a benign process it is not labeled and
discarded as invalid. Figure 2 is a sample production of FSA E abstractly showing a replication sequence of
speci�c operations p 2 P and the corresponding replication state q 2 Q.

Ei = start
p1
! q1

p2
! q2

p3
! q3

p4
! q4

p5
! q5

Figure 2: Abstract Replication Sequence Ei

The subscripts assigned to the operations p and the states q in Figure 2 were added only to show correspon-
dence with the operations p. They are not part of FSA E and are not required.

5 Replication Detection Models

Two models for detecting virus replication are presented in this section. Both are based on the characteriza-
tion and FSA presented in Section 4. The characterization de�nes virus replication as a replication sequence
consisting of operations belonging to the replication set P and cause a transition to a replication state q 2 Q.
A replication sequence can occur many times in one execution of a virus. A virus can also execute many
di�erent replication sequences. Detecting frequency of use and replication sequences may be used to identify
virus replication and di�erentiate from benign replication. Recall from Section 4 that FSA E captures only
the replication process of a virus. In the detection models presented here FSA E is used to capture the
replication sequence of a process. When the detection starts it is not known if a process is a virus or benign.
If the process is detected as a virus or exhibiting virus replication behavior it is a valid replication sequence
and labeled Ei. If the process is not detected as a virus it is assumed benign, not labeled and not used any
further in the detection.

5.1 Operation Sequence Detection Model

This model searches for an encoded string of the operations p of a virus replication sequence. The alphabetP
is composed of all speci�c operations executed by a virus during the replication process. As an example,

assume
P

= fopen�lex, read�lex, copyto�le, create�lenew, �nddir, get�leattrib, close�le, write�lex, set�le-
pointerg. All the members of

P
result in a transition to a replication state q 2 Q. This is illustrated with

the mapping of operations to states in Table 1.

Table 1: Operation to State Mapping

Replication State Operation Name

opened openfilex

read readfilex

setfilepointer

written copytofile

createfilenew

writefilex

searched finddir

getfileattrib

closed closefile

We encode the string by assigning one unique character for each speci�c operation. The character can be a
single letter or a single digit. The encoding for our example alphabet is in Table 2.

4

Table 2: Operation Encoding

Operation Name Encoded Character

openfilex O

readfilex R

setfilepointer S

copytofile C

createfilenew T

writefilex W

finddir F

getfileattrib G

closefile L

A complete replication sequence for a speci�c virus could be: open�lex, read�lex, set�lepointer, write�lex,
write�lex, read�lex, �nddir, copyto�le. The encoded string would be ORSWWRFC. Based on Table 1, FSA
E would produce the complete replication sequence in Figure 3.

E1 = start
O1! opened

R2! read
S3! read

W4! written
W5! written

R6! read
F7! searched

C8! closed

Figure 3: Complete Replication Sequence E1

This model is implemented in four steps:

1. Build a training set of random virus samples

2. Record the complete replication sequence of each virus

3. Extract replication subsequences

4. Match replication subsequences in a process to detect virus replication behavior

Steps 1-3 is the training session, step 4 is the detection session.

Build a training set of random virus samples. A set of virus binaries of an arbitrary sample size needs
to be built to train the detection model. The set should meet any established criteria such as detecting a
speci�c class or family of virus. If your detecting a speci�c class of virus, for example Peer-to-Peer worms,
then your training set should consist of random samples of only Peer-to-Peer worms.

Record the complete replication sequence of each virus. Each virus is run once and the speci�c
operations used in the replication process are recorded in the order of execution. Analyzing the execution
of a virus can be done at varying degrees of granularity. Each degree can reveal more or less detailed
information about the operations being used. A choice must be made of the desired level of granularity
for analyzing and recording the replication process of a virus. With the granularity chosen a comprehensive
review of the operations used must be done to populate the replication set P . This involves possibly reviewing
speci�cations on the operating system, hardware and applications to derive a complete list of operations.
The speci�c operations p 2 P are those used at the chosen granularity that transition the virus into a
replication state q. The replication set P must be complete with only all those speci�c operations that cause
a transition to a replication state. This will ensure correct recording of the replication process and avoid
recording operations not belonging to the replication set P . FSA E will run with

P
= replication set P and

Q = replication states fo; r; w; s; cg. As the virus executes, E will transition on each executed operation inP
to a replication state in Q. When the virus is done executing, E will have produced a complete replication

sequence Ei for the speci�c virus, an example of which is in Figure 3. The sequence of operations p1:::pn are
extracted from Ei, encoded, converted to a string and recorded.

Extract replication subsequences. This step identi�es replication subsequences that occur in multiple
viruses of the training set. The goal of this step is to create a set of replication subsequences that are found
in more than one training set virus. A replication subsequence found in more than one virus in the training

5

set may indicate a high probability of being found in other viruses outside of the training set. Subsequences
not found in more than one virus of the training set are discarded. For each replication sequence, create all
possible subsequences between an arbitrary minimum and maximum size and attempt to match them in at
least one other training set virus. If a match is made the subsequence is recorded. The resulting set contains
replication sequences E1:::Ei where i is the last subsequence and the total number recorded subsequences.
If a sequence Ej is a subsequence of a sequence Ei, it is labeled Eji, where j is its unique identi�er and i

is the unique identi�er of the parent sequence. Recall that a replication sequence Ei is an ordered sequence
of executions where each e 2 E is an execution of a speci�c operation p. Subsequences containing the last
executed operation pn of a sequence Ei should always have pn as the last operation in the subsequence. As
an example, Figure 4 has two valid and invalid subsequences of the replication sequence E1 shown in Figure
3.

Valid Subsequences

E21 =
R2! read

S3! read
W4! written

E31 =
S3! read

W4! written
W5! written

R6! read

Invalid Subsequences

E41 =
F7! searched

C8! closed
O1! opened

R2! read

E51 =
W5! written

R6! read
F7! searched

C8! closed
O1! opened

R2! read

Figure 4: Valid & Invalid Subsequences of E1

Both subsequences E41 and E51 are invalid for placing operations O1; R2 after operation C8. Since p8 was
the last executed operation, it is not correct to build subsequences with operations appearing after it that
never executed after it.

Match replication subsequences in a process to detect virus replication behavior. The set of
replication sequences created in the training session is used to detect virus replication behavior in other
processes by replication sequence matching. Processes are monitored at the same degree of granularity and
with the same replication set P used during the training session. When a process starts execution an FSA
E is initialized. As the process executes operations p 2 P , E transitions to a new replication state. After
each transition the current replication sequence is extracted as a string and compared for a match with the
replication sequences set. If a match occurs the process is stopped or suspended and
agged as suspicious
for exhibiting virus replication behavior.

5.2 Replication State Frequency Model

This model uses the percentage of replication states occurring in known viruses to detect replication behavior.
The basis of the model is a high frequency of execution of replication sequences during one execution of a
virus. We expect this would lead to a signi�cantly higher percentage of replication states in a viral process
than in benign processes. This model is implemented in three steps:

1. Build a training set of random virus samples

2. Calculate percentage of occurrence for each replication state

3. Match occurrence percentage in a process to detect virus replication behavior

Steps 1-2 is the training session, step 3 is the detection session. Note that the training session uses only
complete replication sequences Ei and not subsequences Eji. Step 1 is the same as in Section 5.1 and will
be omitted here.

Calculate percentage of occurrence for each replication state. The alphabet
P

and the level of
granularity is used the same here as in step 2 of Section 5.1. Each training set virus is executed once and
as the transitions occur each distinct replication state is counted. This process is done for each virus in
the training set. One counter TSC is used to count the total number of replication states occurring in

6

the viruses of the training set. Once all viruses have been executed, the count for each replication state is
divided by TSC, the result is the percentage of occurrence for the speci�c state. FSA E will run with

P

= replication set P and Q = replication states fo; r; w; s; cg. As each training set virus executes, E will
transition on each executed operation p 2 P to a replication state q 2 Q. The counter for q and TSC

are incremented by one. The counter for each replication state is: To; Tr; Tw; Ts; T c where the subscript
represents a replication state. Each counter is initialized to zero. At the end of executing all training set
viruses, the �ve replication state counters are each divided by TSC and the results recorded. These results
are the occurrence percentage of each replication state compared to all replication states for the training set.

Match occurrence percentage in a process to detect virus replication behavior. The occurrence
percentages calculated in the training session are assigned to the following variables: Po; Pr; Pw; Ps; Pc

where each subscript represents a replication state. Processes are monitored with the same replication set P
and at the same degree of granularity used in the training session. When a process starts execution an FSA E

is initialized. As the process executes operations p 2 P , E transitions to a new replication state. After each
transition, the occurrence percentage for the current replication state q is calculated for E and compared
to Pq. If the occurrence percentage of the current replication state q surpasses or equals Pq the process
should be suspended or terminated and
agged as suspicious for exhibiting virus replication behavior. This
comparison can be extended to two or more replication states. In this extended case, the process is
agged
suspicious when two or more occurrence percentages for E equal or surpass their respective Pq. Note that a
speci�c amount of replication states used for detection should be predetermined through testing and analysis
to avoid high amounts of false positive and false negative production.

As an example of using this model, consider the two sets of replication sequences in Figure 5. These sequences
are built using the mapping of Table 1 and the encoding of Table 2. The �rst set contains complete replication
sequences from a training session. The second set contains replication sequences being monitored during the
detection session for viral replication behavior.

Training Session Complete Replication Sequences

E1 =
O1! opened

R2! read
R3! read

W4! written
W5! written

W6! written
F7! searched

E2 =
S1! read

W2! written
W3! written

R4! read
L5! closed

F2! searched

E3 =
F1! searched

L2! closed
O3! opened

R4! read
C5! written

S6! read
C7! written

E4 =
W1! written

R2! read
F3! searched

L4! closed
O5! opened

R6! read
T7! written

W8! written
L9! closed

Detection Session Complete Replication Sequences

E1 =
O1! opened

T2! written
W3! written

L4! closed

E2 =
F1! searched

O2! opened
G3! searched

C4! written
S5! read

W6! written
W7! written

L8! closed

E3 =
O1! opened

R2! read
W3! written

L4! closed

Figure 5: Replication Sequences of Testing and Detection Sessions

The occurrence percentage for Figure 5 are listed in Table 3. The table has two sections: one for the training
session and one for the detection session. For both sections, the number of occurrences of each state is listed
along with its occurence percentage. Note in the training session the percentages are calculated based on all
the complete replication sequences E1::E4. In the detection session the occurence percentage is calculated for
each individual replication sequence E1; E2; E3. Also note the replication sequences in the detection session
are not necessarily complete replication sequences. Since comparisons are made after each transition, these
sequences could represent any point during the replication process. Assume we are using two replication
states: opened and written to detect virus replication behavior in the detection session. From Table 3 we
see the occurence percentage in the training session for opened was 10% and for written 34%. In the detction
session E1 and E2 would be
agged as suspicious but not E3.

7

Table 3: Occurence Percentage Results

Number of Occurence

Occurrences Percentage

Training Session

E1:::E4, TSC = 29
opened = 3 10%
read = 8 27%

written = 10 34%
searched = 4 14%
closed = 4 14%

Detection Session

E1, TSC = 4
opened = 1 25%
read = 0 0%

written = 2 50%
searched = 0 0%
closed = 1 25%

E2, TSC = 8
opened = 1 12%
read = 1 12%

written = 3 38%
searched = 2 25%
closed = 1 12%

E3, TSC = 4
opened = 1 25%
read = 1 25%

written = 1 25%
searched = 0 0%
closed = 1 25%

6 Testing and Preliminary Results

We are currently performing tests and analysis on the two detection models in Section 5. We will present
here a brief overview of the testing process and report some preliminary results. A sample set of 112 virus
binaries was created from malware repositories on the Internet [20, 13]. The set consisted of 4 groups of 28
viruses each. The four groups were of the following four types of viruses: email worms, peer to peer worms,
network worms and Win32 viruses. This sample set was used to create 4 test sets of the following sizes:
28, 56, 84 and 112. These 4 test sets also had equal number of viruses of each group stated above. The
members of each test set were randomly chosen from the 4 groups. The virtual machine software VMware
Workstation with Windows XP-SP2 installed was used to executed the viruses. The replication sequences
were recorded using the Process Monitor utility from SysInternals. Testing the replication state frequency
model has not yet been completed. Some preliminary results from the operation sequence detection model
testing are as follows: for the test set of 28 viruses, the total number of subsequences recorded from the
training session was 154,659 of these 77,677 were unique subsequences appearing in 1 or more of the other
viruses in the set. The smallest subsequence size with a match was 29 and the largest subsequence size with
a match was 231. Several of the subsequences were matched in multiple viruses with some being found in
upto 13 viruses. Further analysis revealed a set of 8 subsequences that toghether identi�ed all 28 viruses.
These preliminary results are very promising in showing viral replication as a plausible approach to detecting
known and unknown viruses.

8

7 Conclusion and Future Work

We have presented a formal characterization of virus replication. The characterization is based on Cohen's
formal model of computer viruses. Two detection models were developed using the characterization. The �rst
model searches for matches of sequence of executed operations to detect a process as viral. The second uses a
frequency percentage of replication state occurence to detect if a process is possibly a virus. The preliminary
results of our testing are very promising showing with a set of 28 viruses over 77,000 unique subsequences
were built that matched in other viruses. Many of these subsequence were foudn in multiple viruses upto 13
for some. A set of 8 subsequences was enough to identify all 28 viruses. This clearly shows that matching
replication subsequences can be plausibly used to detect known and unknown viruses. Our future work
includes completing the testing and formal analysis of both models. Creating new detection models using
data mining and machine learning approaches. Extensive false negative and false positive testing are needed
to show the practicality of the approach. A tool that implements these models as dynamic analysis will be
built for real time detection testing.

8 Acknowledgments

This was supported in part by the National Science Foundation under Grant No. HRD-0317692. The
views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the o�cial policies or endorsements either expressed or implied by the above agencies.

References

[1] Gostev A. Kaspersky security bulletin 2006: Malware evolution. Viruslist.com, February 2007.
http://www.viruslist.com/en/analysis?pubid=204791924.

[2] Livingston B. How long must you wait for an anti-virus �x? Datamation, February 2004.
http://itmanagement.earthweb.com/.

[3] Warrender C., Forrest S., and Pearlmutter B.A. Detecting intrusions using system calls: Alternative
data models. In IEEE Symposium on Security and Privacy, pages 133{145, 1999.

[4] Eskin E. Anomaly detection over noisy data using learned probability distributions. In Proceedings
of the 17th International Conference on Machine Learning, pages 255{262. Morgan Kaufmann, San
Francisco, CA, 2000.

[5] Filiol E. Computer Viruses: from Theory to Applications. IRIS International series, Springer Verlag,
2005. ISBN 2-287-23939-1.

[6] Kaspersky E. Problems for av vendors: some thoughts. Virus Bulletin, April 2006.
http://www.virusbtn.com/virusbulletin/archive/2006/04/vb200604-comment.

[7] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A behavioral approach to worm
detection. In WORM '04: Proceedings of the 2004 ACM workshop on Rapid malcode, pages 43{53, New
York, NY, USA, 2004. ACM Press.

[8] Cohen F. A Short Course on Computer Viruses. Wiley Professional Computing, 1994. ISBN 0-471-
00769-2.

[9] Evers J. Computer crimes cost 67 billion, fbi says. cnet News.com, January 2006.

[10] Von Neumann J. Theory of self-reproducing automata. Technical report, University of Illinois, 1966.

[11] Adleman L.M. An abstract theory of computer viruses. In CRYPTO '88: Advances in Cryptology,
pages 354{374. Springer, 1988.

[12] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel. Anomalous system call detec-
tion. ACM Trans. Inf. Syst. Secur., 9(1):61{93, 2006.

9

[13] O�ensive computing. http://www.o�ensivecomputing.net/.

[14] Szor P. The Art of Computer Virus Research and Defense. Symantec Press and Addison-Wesley, 2005.
ISBN 9-780321-304544.

[15] Sekar R., Bendre M., Dhurjati D., and Bollineni P. A fast automaton-based method for detecting
anomalous program behaviors. In SP '01: Proceedings of the 2001 IEEE Symposium on Security and
Privacy, page 144, Washington, DC, USA, 2001. IEEE Computer Society.

[16] Forrest S., Hofmeyr S.A., Somayaji A., and Longsta� T.A. A sense of self for unix processes. In
Proceedings of 1996 IEEE Symposium on Computer Security and Privacy, 1996.

[17] Hofmeyr S., Forrest S., and Somayaji A. Intrusion detection using sequences of system calls. Journal
of Computer Security, 6:151{180, 1998.

[18] Stolfo S., Apap F., Heller K. Eskin E., Hershkop S., Honig A, and Svore K. A comparative evaluation
of two algorithms for windows registry anomaly detection. Journal of Computer Security, 13(4), 2005.
http://www1.cs.columbia.edu/ids/publications/WindowsRegistry2005.pdf.

[19] Bradley T. The new virus �ghters. Datamation, January 2006.
http://www.pcworld.com/article/id,124163-page,4/article.html.

[20] Vx heavens. http://vx.netlux.org/.

[21] Lee W., Stolfo S., and Chan P. Learning patterns from unix process execution traces for intrusion
detection. In Proceedings of the AAAI97 workshop on AI Approaches to Fraud Detection and Risk
Management, pages 50{56. AAAI Press, 1997.

10

