
Borello Jean-Marie

jean-marie.borello@dga.defense.gouv.fr

Centre d’ELectronique de l’ARmement

(CELAR)

Mé Ludovic

lme@rennes.supelec.fr

Supelec, équipe SSIR

mailto:jean-marie.borello@dga.defense.gouv.fr
mailto:jean-marie.borello@dga.defense.gouv.fr
mailto:jean-marie.borello@dga.defense.gouv.fr
mailto:lme@rennes.supelec.fr

Introduction
 Definition : a metamorphic virus is a program able to

model itself in order to replicate.

 Properties :

 Each instance looks different but have the same behavior.

 Low level pattern matching is impossible.

 Main assumption : as a metamorphic virus can model

itself, another program could do so.

Virus
Archetype

Viral
Instance1

Viral
Instance2

Modeling Obfuscation

Plan
 State of art of metamorphic viruses.

 Obfuscation.

 Detection.

 Limits in metamorphic viruses detection.

 Formal impossibility of a perfect detection.

 Difficulty of a reliable static detection.

 Approach of obfuscation.

Obfuscation Techniques
 Definition : Informally speaking obfuscation stands

for the process of making a piece of code as difficult to
understand as possible.

 Obfuscation works at two levels :

 Data flow level.

 Control flow level.

Instructions Substitution
 Exchange two instructions sequences which have the

same semantics.

Simple Instructions Sequence of Instructions

XOR Reg,Reg MOV Reg,0

MOV Reg,Imm
PUSH Imm
POP Reg

OP Reg1,Reg2
MOV Mem,Reg1
OP Mem,Reg2
MOV Reg1,Mem

Instructions Permutation
 Only the instructions order is changed

Simple Instructions Sequence of Instructions

MOV ecx,104h
MOV edi,dword ptr [ebp+08h]
MOV esi,dword ptr [ebp+0Ch]
REPNZ MOVSB

MOV edi,dword ptr [ebp+08h]
MOV ecx,104h
MOV esi,dword ptr [ebp+0Ch]
REPNZ MOVSB

Dead code insertion
 Insertion of useless code.

Dead codes Meanings

ADD Reg,0 Reg ← Reg+0

MOV Reg,Reg Reg ← Reg

OR Reg,0 Reg ← Reg│0

AND Reg, -1 Reg ← Reg&0FFFFFFFFh

Variable substitution
 Change only the variable assignments.

First Instance Second Instance

POP edx

MOV edi,04h

MOV esi,ebp

MOV eax,0Ch

ADD edx,088h

POP eax

MOV ebx,04h

MOV edx,ebp

MOV edi,0Ch

ADD eax,088h

Control Flow Alteration
 Change a program control flow by inserting some

conditional and unconditional branches.

Original Program First alteration Second alteration

Instruction1

Instruction2

Instruction3

Instruction4

Instruction5

Instruction6

Instruction4

Instruction5

Jump

Start:

Instruction1

Instruction2

Start:

Instruction1

Jump

Instruction3

Instruction4

Jump

Jump

Garbage

Instruction3

Jump

Instruction6

Instruction2

Jump

Instruction5

Instruction6

Metamorphic Viruses Detection
 Static detection based on low level pattern matching

 Main assumption :

as a metamorphic virus is able to model itself in order
to replicate, another program should be able to do so.

 Main idea : use high level patterns

Metamorphic Viruses Detection
 High Level Pattern = optimized Control Flow Graph

(CFG)

 Build the CFG

 Optimize the Data Flow Graph (DFG)

 Optimize the CFG

Metamorphic Viruses Detection
 Meta-representation

 Assignment =
 Call to a procedure CALL
 Return of a procedure RET
 Conditional branch JCOND
 Unconditional branch GOTO

 Optimizations:
 Data propagation
 Dead code elimination
 Algebraic simplifications
 Control Flow Graph structuration (Loops,...)

Metamorphic Viruses Detection

Original code Meta-representation After optimization

01. MOV esi, esi

02. MOV dword_A, 0

03. MOV esi, dword_A

04. PUSH esi

05.

06. MOV dword_B,offset ExitProcess

07. MOV ebx, dword_B

08. PUSH dword ptr [ebx+0]

09.

10. POP dword_C

11.

12. CALL dword_C

esi=esi

dword_A=0

esi=dword_A

esp=esp-4

[esp]=esi

dword_B=&ExitProcess

ebx=dword_B

esp=esp-4

[esp]=[ebx]

dword_C=[esp]

esp=esp+4

CALL dword_C

dword_A=0

esi=0

[esp-4]=0

dword_B=&ExitProcess

ebx=&ExitProcess

[esp-8]=ExitProcess

dword_C=ExitProcess

CALL ExitProcess

Metamorphic Viruses Detection
Block1

Block2

Block3

Block4 Block5 Block6 Block7 Block8

Block9

Block10

GetModuleHandle(“Kernel32.dll”)

GetProcAddress(hModule,“VirtualAlloc”)

VirtualAlloc(NULL,>=3407872,MEM_COMMIT,PAGE_READWRITE)

VirusMain

ExitProcess(0)

Limits in reliable static detection
 Notation : 2 programs A and B with inputs DA and DB are

said to be functionally equivalent (A≡B) iff,
 DA = DB

 x∈DA , A(x)=B(x)

 Definition 1: a program DV reliably detects a metamorphic
virus V iff for all program P,
 DV (P) returns “true” if P≡V

 DV (P) returns “false” else

 Proposition 1: no algorithm can claim if for all programs A
and B, A≡B.

 Corollary 1 : detecting a metamorphic virus as
defined in definition 1 is an undecidable problem.

 Proposition 2 : in the assumption that all paths are
potentially executable, for all programs A and B such
that, x∈DA, A(x) determining if B≡A is a NP -hard
problem.

Limits in reliable static detection

Limits in reliable static detection
 Sketch of proof :

 We consider and instance S of the satisfiability problem known
to be NP - complete. Then we build in polynomial time a
program O from a program P such that, S satisfiable iff there
exists a path in O such that O≡P

 {v1,v2,...,vn} is a set of Boolean variables


 We split the set [1,n] into consecutives elements denoted
(ui)i∈[1,k]

 with

kijkij vlvlmknji  or],,1[],3,1[],1[),(

i

k

i

SS
1

   3,2,1,

)max(

)min(
iii

u

uj
i lllS

i

i






 3,2,1,
1

iii

n

i

lllS 




Limits in reliable static detection

P1

P2

Pk-2

Pk-1

Pk

…

O1

O2

Ok-2

Ok-1

Ok

…

O0

Ok+1

Initialization Block :
Defines a candidate value for S

For each bloc Oi , execution of
Pi and test of Si :
if Si is satisfied then goto Oi+1

else goto Ok+1

Dead loop block to be sure
that O is not equivalent to P

Polynomial Time

Reduction

1S1S

2S

2kS

1kS

kS

2S

2kS

kS

 Corollary 2 : detecting a metamorphic virus as assumed in
proposition 2 is a NP - hard problem.

 This result is a generalization of Spinellis one about the
difficulty of polymorphic viruses detection.

 Consequences :

 Only approximate detection techniques are computable.

 Advanced obfuscation techniques based on control flow
modification can make static analysis very difficult.

Limits in reliable static detection

Obfuscation Approach
Block1

Block2

Block3

Block4 Block5 Block6 Block7 Block8

Block9

Block10

GetModuleHandle(“Kernel32.dll”)

GetProcAddress(hModule,“VirtualAlloc”)

VirtualAlloc(NULL,>=3407872,MEM_COMMIT,PAGE_READWRITE)

VirusMain

ExitProcess(0)

Obfuscation Approach
 Randomly split a program P in k lumps.

Obfuscation Approach
P1

MOV ebp, 7ABBEDE5h
MOV dword_40C89E, 0B7777E5Fh
AND ebp, dword_40C89

P2
MOV dword_40C2F4, ‘NrEK’
MOV eax, dword_40C2F4
LEA ebx, ds: ‘llD.’
LEA edx, [ebx]
LEA edi,[edx+0]

P3
MOV dword_40C0B4, edi
MOV dword_40C0B0, ebp
MOV dword_40C0AC, eax
LEA edi, large ds:0
MOV dword_40C0B8, edi
PUSH offset dword_40C0AC
POP dword_40C6C4
MOV ecx, dword_40C6C4

P4
MOV dword_40C1F4, ecx
PUSH dword_40C1F4
POP dword_40C9BF
MOV eax, dword_40C9BF
LEA edi, GetModuleHandleA

P5
PUSH eax
CALL dword ptr[edi]

P1

P2

P3

P4

P5

GetModuleHandle("Kernel32.dll")

Obfuscation Approach
 Randomly split a program P in k lumps.

 Add some garbage lumps.

G1

XOR ebx, ebx
MOV ebp, 24h
MOV eax, 26h

G2

MOV ebp, esp
XOR edi, edi
MOV eax, 1F03FFh

Obfuscation Approach
 Randomly split a program P in k lumps.

 Add some garbage lumps.

 Build the obfuscated program O.

Obfuscation Approach
 First block

Defines the obfuscation parameter K={x1,…, x6}

 Build the obfuscated program O

O0

Pi

Pi+1

Oi

Oi+1 Oj

ix
ix

Obfuscation Approach

 K being unknown, we have 26=64 executable paths.

P1 P3 P4

P2 G1

G2 P5

O0

1x

1x 2x 4x

2x
6x

3x

4x
3x

5x

5x

6x

Obfuscation Approach
 Difficulty of determining K

 Mathematics difficulties :
 Use of Mathematics conjectures like Syracuse one.

 Difficult Boolean expressions like

if (a*(a+1)%2==0) {xi=1;} else {xi=0;}

 Dynamic initialization of K= {x1,...,xm}:
 Use of high level API.

 i∈[1,m], j∈[1,m], xi = H(Pj) where H is a Hash function.

Conclusion
 Reliable detection of metamorphic viruses is a NP -

hard problem.

 Proposed approach could be used to build
metamorphic viruses.

 Should study all the replication cycle.

Thanks for your attention

Questions?

