
Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Self-Mutating Malware Detection1

Danilo Bruschi, Lorenzo Martignoni, Mattia Monga

Dip. di Informatica e Comunicazione
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Nancy – May 10 2007

1
c© 2007 M. Monga. Creative Commons Attribuzione-Condividi allo stesso modo 2.5 Italia License.

http://creativecommons.org/licenses/by-sa/2.5/it/

http://mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/2.5/it/

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Malware detection

Currently mainly based on signature matching

Search for peculiar byte sequences

What to do if malware is able to change its own byte
stream?

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Polymorphic worms

In case of a worm which spreads with different byte stream a
possible approach is the one advocated by Hamsa IDS
[Li et al., 2006]

Analyze several worm instances

Use statistics to find a signature with good False neg. vs.
False pos.

Experiments show that this approach can be quite effective for
network worms that have an invariant part (typically, the
exploit). (BTW, Hamsa suffers poisoning attacks)

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Metamorphic viruses

What if malware can mutate itself arbitrarily?

[Chess and White, 2000]

Theoretical studies demonstrated that perfect detection of a
self-mutating malware is an undecidable problem

However, real world mutation has to be performed by simple
transformations. Current self-mutating prototypes use code
obfuscation techniques.

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code obfuscation and self-mutation

Code obfuscation is a semantic-preserving program
transformation that can be used to make a program harder
to understand

Self-mutation is a particular form of code obfuscation,
which is performed automatically by the code on itself

Self-mutation is applied during malicious code replication
to generate completely new different instances

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code insertion

Most of the pieces of malware are not standalone

Their code is inserted in a host program

The (guest) malicious code is activated by executing the
host program

Malware has to be detected intertwined with goodware

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Self-mutation

Common transformations adopted to achieve self-mutation:

Substitution of instructions

Permutation of instructions

Garbage insertion

Substitution of variables

Control flow alteration

Signature matching becomes useless

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code insertion

Common techniques adopted for malicious code insertion:

Cavity insertion

Jump tables manipulation

Data segment expansion

The malicious code is seamless integrated into the host code

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Substitutions

Instruction substitution

A sequence of instructions is substituted by a semantically
equivalent sequence

Variable substitution

Registers or memory address are substituted with available
candidates

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Instruction permutation

Data flow independent instructions can be permuted arbitrarily.

Example

1: a = b * c;
2: d = b + e;
3: c = b & c;

can be executed in any order in which the use of c precedes its
new definition (1 always before 3)

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Control flow alteration

Introduction of useless conditional and unconditional
branches

Direct jumps and function calls can be translated into
indirect ones

Destination addresses computed by inserted instructions

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Garbage insertion

Dead code

Alive code that does useless things
Killed definitions
Neutral operations (a = (b + 0) * 1)

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Cavity insertion

Generally, executables contain several portions that are not
used to store data or code (they can be introduced by
compilers to align code and data structure).

These cavities can be used to insert small pieces of the
malicious code that can be forced to be executed with
minor modifications of the host code.

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Jump table manipulation

High-level control flow transfer constructs (e.g., switch)
are implemented using jump tables.

Entries of such tables can be modified in order to get the
execution to be redirected anywhere.

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Data-segment expansion

Some of the host’s segments can be expanded.

Not all segments are suited for expansions because that
would imply a relocation of most of the code.

The one storing uninitialized data (bss) is the more
appropriate as the expansion allows for the insertion of
malicious code without requiring further modification of
the host code.

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Challenges for the detection

Conventional detection techniques:

Pattern matching fails since fragmentation and mutation
make hard to find signature patterns

Emulation would require a complete tracing of analyzed
programs as the entry point of the guest is not known;
moreover every execution should be traced until the
malicious payload is not executed

Heuristics based on ad-hoc predictable and observable
alterations of executables become useless when insertion is
performed producing almost no alteration on any of the
static properties of the original binary

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Challenges for the detection

Conventional detection techniques:

Pattern matching fails since fragmentation and mutation
make hard to find signature patterns

Emulation would require a complete tracing of analyzed
programs as the entry point of the guest is not known;
moreover every execution should be traced until the
malicious payload is not executed

Heuristics based on ad-hoc predictable and observable
alterations of executables become useless when insertion is
performed producing almost no alteration on any of the
static properties of the original binary

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Our approach

1 Use optimization techniques to obtain a normal form of
the malware [Perriot, 2003]

2 Use program analysis abstract models to perform
comparison [Cristodorescu et al, 2005]

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code normalization

Analysis of the transformations adopted to implement
self-mutation and experimental observations highlighted
some weakness:

Transformations led to the generation of useless
computations
Most transformations are invertible

Different instances of the same malware can be viewed as
under-optimized version of the archetype; the archetype is
consequently the normal form of the malicious code

Code normalization

A program is transformed into a canonical form which is
simpler in term of structure or syntax while preserving the
original semantic and that is more suitable for comparison

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Devised strategy

Code interpretation and normalization

Given a piece of code P which
represents (or contains) an instance
of a self-mutating malware we
automatically revert all the
mutations performed on it

P is consequently reduced into a
form, PN , which is pretty close to
its ideal archetype M and which can
be recognized more easily

Code comparison

Detection is performed by looking
for known abstract patterns into the
transformed program PN

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code normalization
Some details

Executable code is disassembled and translated into an
intermediate form to explicit the semantic of each machine
instruction
Control-flow analysis and data-flow analysis are performed
on the code to collect information that will be used by the
next step

Machine instruction Interpreted instruction
pop %eax r10 = [r11]

r11 = r11 + 4
lea %edi,[%ebp] r06 = r12
dec %ebx tmp = r08

r08 = r08 - 1
NF = r08@[31:31]
ZF = [r08 = 0?1:0]
CF = (~(tmp@[31:31]) ...
...

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code normalization

Identify all the instructions that do not contribute to the
computation (dead and unreachable code elimination)

Rewrite and simplify algebraic expressions in order to
statically evaluate most of their sub-expressions (algebraic
simplification)

Propagate values computed by intermediate instructions
to the appropriate use sites (expressions propagation)

Analyze and try to evaluate control-flow transition
conditions to identify tautologies and to rearrange the
control to reduce the number of flow transitions
(control-flow normalization)

Analyze indirect control flow transitions to discover the
smallest set of valid targets and the paths originating
(indirections resolution)

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

An example

xor %ebx,%ebx
mov $0x1000400c,%eax
mov %eax,0x10004014
add %ebx,%eax
test %ebx,%ebx
jne <T>
push %ebx
mov $0x0,%ebx

T:
jmp *%eax
leave
ret
nop

r11 := r11 ^ r11
r10 := 0x10004014
[0x1000400c] := r10
r10 := r10 + r11
tmp = r11 - r11
ZF = [tmp = 0?1:0]
jump (ZF = 1) T
[r15] := r11
r15 := r15 - 4
r11 := 0

T:
jump r10
r15 := r16
r16 := m[r15]
r15 := r15 + 4
return

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

An example

r11 := 0
r10 := 0x10004014
[0x1000400c] := 0x10004014
r10 := 0x10004014 + 0
tmp = 0 - 0
ZF = [0 = 0?1:0]
jump (ZF = 1) T
[r15] := 0
r15 := r15 - 4
r11 := 0

T:
jump 0x10004014 + 0
r15 := r16
r16 := m[r16]
r15 := r15 + 4
return

r11 := 0
r10 := 0x10004014
[0x1000400c] := 0x10004014

T:
jump 0x10004014
r15 := r16
r16 := m[r16]
r15 := r15 + 4
return

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code comparison

Given the normalized program we need to answer the question:

“Is the program PN hosting the malware M?”

We cannot expect to find a perfect matching of M in PN

even if most of the transformations have been reverted

The code comparator must be able to cope with some
impurities left by normalization (we observed that these
impurities are always local to basic blocks)

The normalized control-flow of the malware is constant

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code comparison
Some details

PN is represented through its
interprocedural-control flow graph
(ICFG) and M through its
control-flow graph

The malicious code detection can be
formulated as a subgraph
isomorphism decision problem:
“given two graphs G1 and G2, is G1

isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

The graphs are augmented with
labels to achieve the necessary
trade-off between precision and
abstraction (to handle possible
impurities)

Instructions and flow transitions are
partitioned into classes; labels
describe the set of classes in which
instructions of a basic block can be
grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code comparison
Some details

PN is represented through its
interprocedural-control flow graph
(ICFG) and M through its
control-flow graph

The malicious code detection can be
formulated as a subgraph
isomorphism decision problem:
“given two graphs G1 and G2, is G1

isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

The graphs are augmented with
labels to achieve the necessary
trade-off between precision and
abstraction (to handle possible
impurities)

Instructions and flow transitions are
partitioned into classes; labels
describe the set of classes in which
instructions of a basic block can be
grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code comparison
Some details

PN is represented through its
interprocedural-control flow graph
(ICFG) and M through its
control-flow graph

The malicious code detection can be
formulated as a subgraph
isomorphism decision problem:
“given two graphs G1 and G2, is G1

isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

The graphs are augmented with
labels to achieve the necessary
trade-off between precision and
abstraction (to handle possible
impurities)

Instructions and flow transitions are
partitioned into classes; labels
describe the set of classes in which
instructions of a basic block can be
grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Code comparison
Some details

PN is represented through its
interprocedural-control flow graph
(ICFG) and M through its
control-flow graph

The malicious code detection can be
formulated as a subgraph
isomorphism decision problem:
“given two graphs G1 and G2, is G1

isomorphic to a subgraph of G2?”
(G1 is M and G2 is PN)

The graphs are augmented with
labels to achieve the necessary
trade-off between precision and
abstraction (to handle possible
impurities)

Instructions and flow transitions are
partitioned into classes; labels
describe the set of classes in which
instructions of a basic block can be
grouped

M

PN

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
. . .

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Prototype implementation

The code normalizer is built on top of Boomerang, an
open-source decompiler:

Translate machine code into the intermediate form
through a recursive disassembler
Performs data-flow analysis on the intermediate form
Performs the normalization steps previously described
(some of the transformation have been extended to suit
our needs)
Able to solve know patterns of indirection

The prototype receives an executable files and emits its
normalized ICFGPN

The ICFGPN of the normalized program and the CFGM of
the searched malware are then fed to the VFlib2 library
which is used to identify possible matches

In case of match the comparison routine returns the set of
ICFGPN nodes that match the ones of the CFGM

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Experimental results

Two independent tests were performed:
1 Evaluation of code normalization effectiveness:

Several instances of the same self-mutating malicious code
(the virus MetaPHOR) were collected and normalized
(57% code reduction)
The normalized control-flow graphs were all isomorphic,
they were not before

2 Evaluation of code comparison precision:
Different executables were collected and their ICFGs were
built
Each procedure CFG was used to simulate malicious code
and searched inside the ICFGs
The results of the subgraph isomorphism detection
procedure were compared with the results obtained
through code fingerprinting
A random set of alleged false-positives and false-negatives
were selected and inspected by hand

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Experimental results
Some numbers

Type #
Executables 572
Functions (# nodes > 5) 25145
Unique functions (# nodes > 5) 15429

Positive results # %
Equivalent code 35 70
Equivalent code
(negligible differences) 9 18
Different code
(small number of nodes) 3 6
Unknown 1 2
Bug 2 4

Negative results # %
Different code 50 100

nodes Average load Worst detection
(∼) time (secs.) time (secs.)
100 0.00 0.00
1000 0.09 0.00
5000 1.40 0.05
10000 5.15 0.14
15000 11.50 0.32
20000 28.38 0.72
25000 40.07 0.95
50000 215.10 5.85

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Summary

We proposed a general strategy, based on static analysis,
that can be used to pragmatically fight malicious codes
that adopt self-mutation to circumvent detectors

We developed a prototype tool and used it to show that a
malware that suffers a cycle of mutations in most cases
can be brought back to a canonical shape that is shared
among all instances

We showed that augmented control-flow graphs are well
suited to describe a peculiar piece of code and that reliable
code identification can be formulated as a subgraph
isomorphism decision problem

Although the subgraph isomorphism is a NP-complete
problem, our particular instance seems to be tractable (the
graphs we are dealing with are very sparse)

Malware
detection

M. Monga

Self-mutation
Strategies of
self-mutation
and code
insertion
Challenges for
the detection

Unveiling
malicious code
Code
normalization
Code comparison

Prototype im-
plementation

Experimental
results

Summary and
future works

Future works

Extend our prototype to perform normalization on real
world executables and increase the effectiveness of
normalization by extending the quality of the analysis
performed

Evaluate algorithms for partial subgraph isomorphism
matching and the benefits they could give in our context

Perform more exhaustive experiments using new malicious
code

Investigate attacks and countermeasures to defeat static
analysis

