Malware Behaviour Analysis

Gérard Wagener!, Radu State?, Alexandre Dulaunoy?®
LORIA-INRIA' INRIA? CSRRT?

March 15, 2007

Abstract

A malware is a malicious software that often uses
anti-reverse engineering techniques to escape from
security officers or anti-virus programs. A lot of
malware analysis techniques suppose that the assem-
bler code of a malware is available, which is often
not the case. We propose in this a paper, an easy
and automated mean to extract malware behaviour
by observing the system function calls. We apply
a sequence alignment method to extract similarities
of malware behaviours. Using these similarities we
are able to classify malware and identify both mal-
ware with known and unknown behaviour. Exper-
imental results show that obfuscated malware vari-
ants often have a similar behaviour. We are able
to build a phylogenetic tree of malwares in an auto-
mated way, where common functionalities identify a
potential shared history.

1 Introduction

A malware is a piece of software that has various
malicious goals. A lot of malware use anti-reverse
engineering techniques in order to make its analysis
difficult. A huge amount of effort is currently done to
detour anti-reverse engineering techniques [12] [14].
In this paper we propose an easy approach to detour
known anti-reverse engineering techniques in order to
determine behaviours of a malware. The idea is not
to use traditional reverse engineering techniques like
disassembling or debugging but execute a malware
in a sand-boxed environment and control various pa-
rameters, like the execution time, file-system content,

network, or the windows registry. The execution is
done in a virtual operating system that easily allows
to modify the execution parameters. During the ex-
ecution of malware we observe the interaction of the
malware with the virtual operating system.

In section 2 is described the malware execution. In
section 3 we define malware behaviour as a sequence
of virtual operating system function calls done by a
malware. We use these sequences to determine sim-
ilarities between malware behaviours. In section 4
we analysed 104 malwares and we noticed that our
approach can be used to determine common and un-
known malware behaviours. Section 6 contains a con-
clusion and describes the future work.

2 Virtual execution of malware

Our goal is to examine malware that run in a Mi-
crosoft Windows (W32) environment and extract its
behaviour. A straightforward strategy is to execute
the malware on a plain isolated W32 machine and
compare the initial state of the machine with the final
one. Using this approach a lot of useful intermediate
information is lost. We also need a mean to quickly
recover from malware infection. Therefore a virtual
operating system is better suited.

The malware execution is described in figure 1. We
use a User Mode Linux [20] with restricted network
and file system capabilities as virtual machine. We
assume that privileged instructions and direct hard-
ware access are correctly handled by the UML. The
UML has a network address and is accessed via SSH
[16]. Inside that UML we use wine [6] as a virtual
operating system to execute the windows malware.

We do not use a classical debugger to execute the
malware because a debugger can be easily detected
by a malware. We observe wine’s execution messages
which are printed during a malware’s execution in an
automated way. The controller uses heuristics to stop
the execution, because a lot of malware do not termi-
nate. In a second stage we automatically analyse the
execution messages deeply and extract the functions
that had been started by the malware. A malware is
executed as follows.

1. A new execution environment is created by sim-
ply copying a directory and establishing an em-
ulated network. An execution environment in-
cludes file-system with common windows system
files, with a given windows registry and with a
emulated network infrastructure. An emulated
network infrastructure is a set of common used
servers in the Internet, like DNS! servers, web
servers or mail servers that can interact with the
malware.

2. A malware is copied inside the execution envi-
ronment via SSH.

3. An execution controller is started which includes
a heuristic to stop the execution. The malware
execution is stopped after 10 seconds.

4. A malware is executed and monitored.
5. Raw execution messages are retrieved via SSH.
6. The environment is cleaned up.

7. The raw messages are processed in order to find
the function calls which are done by a malware.
The memory layout used during the execution is
reconstructed in order to decide which function
calls are related to the malware and which ones
to the virtual operating system.

IDomain Name System - RFC 1035

Figure 1: Virtual execution of malware

Virtual Execution
| Operating —>| Messages
System

I

{ Controller

I |

Virtual Machine |

I |

| Host Operating System |

3 Analysing malware be-

haviour

In order to extract a behaviour from a malware and
to overcome anti-reverse engineering techniques, we
execute a malware in a virtual operating system and
control some execution parameters. In a next step
we propose a mean to observe similarities between
various malware behaviours.

3.1 Malware behaviour

Let A be the set of potential actions that a malware
M can perform. We consider an action a € A as a
virtual operating system function call that is done by
M. Each function call ¢ € A can be mapped to a code
¢ € C such that C C N. A malware can have multiple
behaviours. One can imagine a malware that runs
on Saturdays a different sequence of actions than on
Mondays, so we have two different behaviours for the
same malware. One such behaviour corresponds to a
word ajaqas...a, € A*

Table 1 shows two sequences of actions executed
by a malware M; and a malware M5. The actions
done by M; can be seen as the sequence of actions
By, = LoadLibraryA GetProcAddress GetProcAd-
dress GetProcAddress WSAStartup CopyFileA Cre-
ateProcessA € A*. The sequence of action codes of
M is in this example Sy, =1 2 2 2 10 30 40 € C*.

Table 1: Malware behaviour example
M,
Function Call Code
LoadLibraryA 1
GetProcAddress | 2
GetProcAddress | 2
GetProcAddress | 2
RegQueryValueA | 20
CopyFileA 30
CreateProcessA 40

M,
Function Call Code
LoadLibraryA 1
GetProcAddress | 2
GetProcAddress | 2
GetProcAddress | 2
WSAStartup 10
CopyFileA 30
CreateProcessA | 40

When we observe the first four rows we see that
the two malwares M; and Ms acquire information
about operating system functions. In row five we see
that the malware M; intents to do some networking
and the malware Mj reads a value from the registry.
The sixth action done by the two malwares is to copy
themselves somewhere in the system. Finally the sev-
enth row indicates us that both malwares create a
new process.

3.2 Determination of malware actions

Execution messages include virtual operating system
functions that are started during execution. We have
to decide which functions are called by the operating
system and which functions are called by the mal-
ware.

Let F' be the set of executed functions which in-
cludes the functions done by a malware and those
done by the virtual operating system itself. A C F.
A function normally has attached a return address.
Let D be the set of memory addresses used during
execution D C N. We have a relation (F,R,D) R C
F x D that characterises correctly executed func-
tions. The functions that do not participate in R
indicate anomalies, like program abortion. In the
execution messages we also observe that libraries
are loaded during execution. Let L be the set of
loaded libraries during execution. A library is con-
tained somewhere in memory and induces the relation
(L,Z,D) T C L x D. We assume that every function,
that has a return address that does not belong to a li-
brary, is initiated by a malware and not by the virtual
operating system as it is defined in property 1. This

property ignores the fact that a malware can patch a
library’s code located in memory which is sometimes
done by malwares.

LetmeD)det feF(fm)¢I<feAd (1)

3.3 Malware behaviour similarities

By looking at table 1 we note that both malwares
M; and M, are doing the same actions, except the
fifth action. Mj is doing some networking and Ms is
manipulating the registry. In this section we propose
a mean to determine such similarities.

At first we compare two behaviours with each other
and we determine a similarity function o. For finding
this function we compare pair-wise every action code
and attach scores for matching, respectively for non-
matching. Let Sy, = a1a2as...an € C*, m € N* the
behaviour of a malware and Sy, = b1b2bs...b, € C*,
n € N* the behaviour of a malware Ms. The two
malware behaviours Sy, and Sy, can be mapped on
a matrix R like it is shown in figure 2. The matrix
R is conceptually an edit distance matrix [22]. In
case two action codes are equal we affect in a first
step a score of one. In the other case where the two
actions are different the score is set to zero like it is
shown in equation 2. In a second step we add the best
previous alignment. In case no previous alignment
exists we simply use as score 1 for matches and 0 for
mismatches Ry; = My;, R;1 = M;;. In the other case
we use the equation 3. The resulting table is shown
in figure 3.

if a; = bj

1
M;; = 2
J {0 otherwise)

Rij = M;; + max (1 max Ry j—1, max Ri,17k> (3)

<k<i—1 1<k<j—1

We can now define a similarity function o as the
highest score in the matrix divided by the average of
the sequence length of Sy, and Sy, as it is shown in
equation 4.

. 2 - max R;;

o (S, Su,) = (4)

m-+n

Figure 2: Matrix-headings

by by b3 b; by
ai
a2
as
at
Am

Figure 3: Sy, and Sy, scores

1 2 2 2 20 30 40
1 1 0 0 0 O 0 0
2 0o 2 2 2 1 1 1
2 0o 2 3 3 2 2 2
2 0o 2 3 4 3 3 3
0(0 1 2 3 4 4 4
300 1 2 3 4 5 4
4010 1 2 3 4 4 6

In case where two sequences Sy, and Spz, have no
common characters o = 0 and in case where S; and
So are identical we obtain ¢ = 1. In figure 3, 0 = 0,85
that means that the behaviour of malware M; and
the behaviour of malware M, are 85% similar.

A malware behaviour similarity can be seen in a
different way like it is shown in equation 5. Intuitively
it shows how many function calls are different. In the
example 3 ¢’ = % One of the seven function calls is
different.

o' (Sny, Snzz) = 1 — 0(Sary, Say) (5)

We want to see similarities between malware be-
haviours. Equation 4 can be used for one malware
behaviour pair. In a set of malware behaviours P we
create pairs and we compute the average similarity of
a given malware regarding all the other pairs. A mal-
ware with a low average similarity regarding all the
other malware behaviours can be seen as unknown
behaviour of a malware, never seen before. On the
other hand a malware behaviour with a high average
similarity can be seen as known malware behaviour.

Let N be the number of malware behaviours N =
card(P). Looking at equation 4 we notice that
o (S, Sm;) = 0(Swm;, Sw,). We do not have to com-
pute every possible couple of malware behaviour and

the number of needed couples is thus w An av-
erage similarity ¢; of a malware compared with other
malware behaviours is defined in equation 7.

0 ifi=y
0(i,7) =
(@) {1 otherwise

S o500, 4)
N -1

(6)

0; =

(7)

3.4 Malware behaviour phylogenetic
tree

In section 3.3 we have introduced malware behaviours
which can be used for classification of malware. We
define a similarity matrix Z that contains the simi-
larities between the various malware behaviours like
it is shown in figure 5, which is a matrix where a cell
corresponds to a similarity ¢’ between two malwares.
Using such a similarity matrix we can construct a
phylogenetic tree [7] of malware behaviours in which
we can observe common malware behaviour groups.

A phylogenetic tree shows the common history of
species. It clarifies how species evolved into various
families that have specific properties. Usually it is
a binary tree where leaves are species. In our case
the leaves of the tree are malwares and the parents
represent the similarity ¢’ between these behaviours.
A sub tree describes a malware family.

In the similarity matrix Z we seek the greatest sim-
ilarity, we look to which malware behaviours or which
intermediary nodes that similarity belongs and re-
group the two malware behaviours or intermediate
nodes. We add this group in the similarity matrix
and remove the previous selected nodes or malware
behaviours. Furthermore we link the selected nodes
which each other and put this sub tree in the phy-
logenetic tree. We continue this process until the
similarity matrix contains no elements. The pseudo
code can be found in figure 4.

An example is shown in the figures 6, 7, 8, 9. The
matrix in figure 6 is the initial similarity matrix. The
smallest value in that matrix is 1 which fulfils the
condition src # dst. The nodes B and C are grouped
form the sub-tree in figure 6. In figure 7 the group
BC is put in the matrix. The cells of the row or

column of the group BC correspond to the smallest
value of the row B and C with respect to the current
cell. The cell (1,0) has the value 3 due to the fact

that 3

< 5. The merging process is continued like it

shown in figure 7 and 8. Finally the resulting sub-
trees of figures 6, 7 and 8 are interconnected and a
tree emerges, see figure 9.

Figure 4: Pseudo code

while(size(Z) # 0){

(src,dst, sim) = minZ;; such that src # dst
g = group(src,dst)
r = addrow(g);
¢ = addcolumn(g);
for (j =0; j < size(Z);j + +){
my = get_sim(sre,j)
mo = get_sim(dst,j)
if (m1 > ma)
s’ =msy
else
s’ =m
set_row(r,j,s")
set_column(c,j,s)
}
remove_row(src)
remove_row(dst)
remove_col(src)
remove_col(dst)
add_tree(g)

Figure 5: Similarity matrix Z
Sy, Sm, Sms Sm; Swuy

S,
S,
S,
Su
Sin

0
0

Figure 6: Group B and C

|A B C D

Ajo 3 5 2 (D

B|3 0 1 4

c|5 1 0 8

bz 4 s o &

Figure 7: Group A and D

|A BC D

A 0 3 2 °

BC|{3 0 4

D 2 4 0 ° o

Figure 8: Group AD and BC

| AD BC D

AD |0 3

BC | 3 0

Figure 9: Joining the sub-trees

4 Experimental Validation

In order to examine similarities between behaviours
of malware we first need to extract behaviours of mal-
ware like it is described in section 2. We check if our
virtual operating system is resistant to common anti-
reverse engineering techniques. Then we execute a
set of 104 random chosen, different malwares. Each
malware is identified by its md5 hash [15]. We ob-
serve the execution messages of the virtual operat-
ing system and build sequences of a malware’s called
functions. Using this sequences we generate malware
pairs and computed a similarity for each pair. We
have a look at the pairs and create a top 10 list of
common malwares behaviours. We also established a
list of the top 10 most exotic malware behaviours.

4.1 Anti-reverse engineering tech-

niques resistance

On our malware samples we noticed that static anal-
ysis was not possible on 18% of the malware. We
checked this by observing the exit code of a disas-
sembler objdump [13]. Furthermore according to the
Norman sandbox [12] 15% of the malware use anti-
emulation code. Anti-emulation code can be used
to detect or confuse debuggers and monitoring tools.
Results are represented in table 2. We have created
some binaries that contain anti-reverse engineering
code and we have included a function call that should
be observed. Then we have used analysis tools and
tried to find the defined function call. At first we
detect a debugger using the processor flags and the
code changes its behaviour in case a debugger is run-
ning. Next we generated machine instructions during
execution and executed them. Then we created ob-
fuscated assembler code which cannot be read by ob-
jdump. We have also tested the code integrity check,
this technique detects debuggers. The sleep action
is commonly used to escape from sandboxes due to
the fact that an execution cannot run for an infinity
of time. As exception handling technique we used a
division by zero. We used the CreateFile function to
communicate directly with the monitoring tools and
thus detected them. Furthermore we observed spe-
cial environment parameters and identified that we

Table 2: Anti-reverse engineering techniques used
with various reverse engineering tools

Technique Debugger | Disassembler | Monitor | Virtual OS
anti-debugger X vV v vV
OP code Vv X v v
generation

obfuscated Vv X v v
assembler code

inegrity x Vv N Vv
check

sleep Vv vV vV X
exceptions X X Vv Vv
anti Vv Vv X Vv
monitor

anti Vv v Vv X
virtual OS

are running in a virtual operating system. Finally
we injected linux system calls in a windows binary
in order to escape from the virtual operating system
and we noticed that the damage is restricted inside
the UML.

4.2 Malware execution

After having checked the virtual operating system
for common anti-reverse engineering techniques, we
executed our malwares in the virtual operating sys-
tem. Table 3 shows general information about our
examined malware set. We have used quite recent
malware. The malware was caught by nepenthes [11]
a software which emulates known exploitable services
and catch malwares that try to exploit such a service.
Furthermore the malware is scanned by anti-viruses?
and 22% of the malware is not detected. Finally 34%
of the malware are worms.

4.3 Malware behaviour similarity

For the sake of clarity, table 4 is an incomplete, list
of malware behaviours that have a similarity o of 1
or in other words they are completely similar. In the
first row we see that the malware was transformed
to escape from signatures and a new signature was
the anti-virus reply. Next we can observe that the

http://www.fprot.org

5 http://www.bitdefender.com
http://www.free-av.de
http://www.clamav.net

Table 3: General information about the malware set

Number of malwares 104
Observation period 2005-2007
Malware from 2005 10
Malware from 2006 91
Malware from 2007 3

Average file size 135KB
Smallest file 8KB
Biggest file 665KB
Worms 34%

not detected by anti-virus | 22%

Table 4: Most Similar observed malwares
WORM/Rbot.193536.29 WORM/Rbot.177664.5

Worm/Sdbot.1234944.1 Backdoor-Server/Agent.aew
Worm/Sdbot.1234944.1 unknown
Worm/IRCBot.AZ.393 ‘Worm/Rbot.140288.8
Backdoor-Server/Agent.N.1 | Worm/Win32.Doomber
Trojan.Gobot-4 Trojan.Gobot.R
Trojan/Dldr.Agent.CY.3 W32/Virut.A virus
Trojan.Gobot-4 Trojan.Downloader.Delf-35
Trojan.Mybot-5011 Trojan.IRCBot-121
Trojan.Mybot-5079 Trojan.EggDrop-5

malware Sdbot1234944.1 and the malware Backdoor-
Server/agent.aew start the same sequence of func-
tions during execution.

Table 5 gives an overview about the average sim-
ilarity &. The left part of the table shows the mal-
ware behaviours with a low average similarity so these
behaviours are not similar regarding the other be-
haviours of the analysed malware set. Some of those
malwares did only a few function calls. We can anal-
yse these function calls and learn new malware tech-
niques and can evaluate our virtual operating system.

The right side indicates the malware behaviours
that have been often observed, these behaviours have
a high similarity o. From anti-viruses results we ob-
served that 34% of the malware are worms which ex-
plains the high similarity for the worms. A worm
often exploits a service and needs to acquire informa-
tion about the operating system functions using the
functions LoadLibrary and GetProcAddress.

Table 5: Similarity classification

Lowest average similarity Highest average similarity
Malware name 4 Malware name o
Win32.Virtob.E 0.010 | Worm/IRCBot.AZ.393 0.440
Win32.Virtob.C 0.021 | Worm/Rbot.140288.8 0.440
Backdoor.EggDrop.V 0.039 | Worm/Rbot.94208.37 0.439
unknown malware 0.064 | W32/Ircbot1.gen 0.439
unknown malware 0.070 | W32/Ircbot1l.gen 0.438
RBot.D3186764 0.075 | W32/Spybot.NOZ 0.437
SDBot.AMA 0.105 | Generic.Sdbot.68B7TCEC5 0.437
Backdoor.Oscarbot. A 0.126 | RBot.668E20D5 0.436
unknown virus 0.128 | RBot.DDOFC8A7 0.436
RBot.227328 0.131 | RBot.C64D5E67 0.436

4.4 Malware behaviour phylogenetic
tree

From our malware set we have build a similarity ma-
trix. From that matrix we have established a phylo-
genetic tree. In this paper, the complete tree is not
represented due to space constraints but we are pre-
senting some sub-trees. The complete tree is on-line3.
The tree is very large and a user has to scroll through
the tree.

From the phylogenetic root’s tree’s point of view,
see figure 10, we observe that we have three families.
One family can be called the malware kernel family
and the other one the malware W32 API* family. The
malware of the first family use direct kernel functions
in order to escape from API hooking, a technique for
monitoring function calls, and the members of the
W32 API family use W32 API functions. The third
family clusters the malwares that confused the virtual
operating system. The three families are not very
similar, ¢’ is close to 1, which can be explained that
each family uses a different set of system functions.
Malware labelled unknown were not detected by anti-
viruses.

In figure 11 we have identified a malware family
called pinfi by the Norman sandbox. This family is
a sub-tree of the API family. This malware has had
various behaviours but is classified in a same fam-
ily due to the fact that these malware start similar
functions. The pinfi malware creates various files on
the harddisk, creates different registry keys, monitors
which functions are started by the user and does some

3http://nepenthes.csrrt.org: 10080 /malware_behaviour/cache
4 Application Programming Interface

IRC®, observes the users clipboard and checks some
processor features in order to know whether it runs
in an emulator or on a real machine. We observe dif-
ferent similarities o’ due to the fact that the malware
behaves differently in the virtual operating system.

5 Related work

Anti-virus software frequently use signature match-
ing techniques for detecting malware which can be
easily detoured [17, 2]. The authors of [2] propose
a mean to undo obfuscated malware code in order
to improve the detection rate of anti-virus scanners.
The authors of [1] propose a method of detecting
polymorphic malware based on sub graph isomor-
phism problem. Behavioural malware analysis often
extract API function calls or system function calls
[17, 19, 18,9, 8]. One technique is to detect anomalies

5Internet Relay Char RFC 2810

or deviations from learnt system / API function call
sequences [9, 8, 18, 19]. The authors of [19] represent
a malware behaviour as sequence of events and apply
a clustering approach. The authors of [18] construct
a probabilistic suffix tree that contains the probabil-
ity of a function call in a sequence of function calls.
For accessing the function calls of a malware static
binary analysis can be used [17] or malware can be
emulated [9, 12, 21]. The authors of [8] use a hy-
brid technique. Static binary analysis can be eas-
ily fooled [17]. On the other hand malware can be
emulated [9, 21]. Emulation has also its drawbacks
[5, 3]. There is often no guarantee whether the initial
conditions are fulfilled that the complete binary is
executed. Wilson [22] proposed sequence alignment
methods on daily activities patterns. [17] applied this
technique for generating malware signatures and has
observed good results for detecting obfuscated mal-
ware variants. According to PEiD [14], a tool that is
able to detect the compression technique, 47% of the
malwares in our set that contains 1966 malwares dur-
ing the experiment, use unknown compression tech-
niques. Furthermore for a common packer like UPX
[10] there are 41 different versions without compat-
ibility. Most packers are open-source and the mal-
ware author has the possibility to write his custom
packer. Decompression needed for [17] becomes thus
impossible for our collected malware. Therefore we
used the emulation technique. The price we pay is
the completeness of the function call sequence which
depends on the execution heuristics. Another differ-
ence of this paper regarding [17] is that we use the
sequence alignment method for malware classification
and not for generating signatures. A final difference is
that we deduce the similarity directly from the align-
ment matrix. Further information about theoretic
and practical viruses are explained in [4].

6 Conclusion and future works

In this paper we propose an approach to execute mal-
ware in a virtual operating system based on freely
available tools. We define a malware behaviour as
sequence of virtual operating system function calls.
Such a behaviour is extracted from a malware and

we introduce a mean to compute similarities between
malware behaviours based on sequence alignment.
Using these similarities we build a similarity matrix.
We propose a mean for detecting new malware tech-
niques based on the low average similarity ¢ of mal-
ware behaviours. From the similarity matrix we cre-
ate a phylogenetic tree in which we can identify mal-
ware families based on common behaviours. Finally
we have tested our approach with collected malware.

The analysis results of a malware heavily depend
on the capabilities of the virtual operating system.
There are various research problems open that we
are trying to solve in future.

Execution heuristics. Most malware never termi-
nate so we abort the execution after 10 seconds.
An example is a malware which includes a back-
door and which waits for commands. A solution
is a token execution system. A malware has ini-
tially a credit of n tokens. A token is consumed
per called function. When various phenomena
are observed the execution controller gives more
tokens to the virtual operating system in order
to continue the malware execution.

Evaluation of similarity. We get a low similarity
4 in case a malware does the same actions than
another malware but in a different order. A so-
lution to that problem is to align the sequences
first and then compute the similarities [22]. In
future work we plan to evaluate other similarity
functions and possible distance functions.

Solving scalability problems. Currently, we have
tested our approach on a set of 104 malwares.
We have access to a collection of 12000 different
malwares® and we intend to analyse malware be-
haviours at a larger scale than in a range of 104
different malwares.

API oriented distance functions. We observe
the function calls done by a malware. Currently
every function call is treated equally but we
think that some function are more important
than other ones and intent to attach weights

6caught by CSRRT’s collectors

to API functions with respect to similarity
computation.

Code mapping. For each function we assign a code.
We do not consider the parameters of func-
tions. The reason is that various functions
take addresses as parameters and these addresses
change from execution to execution. We need to
find a more abstract representation of the pa-
rameters which is independent of the machine.
Another problem is multi-threading. The se-
quence of functions called by a multi-threaded
malware depends on the choices done by the pro-
cess scheduler which decrease the quality of our
sequences. Finally the sequence length becomes
a problem in case a malware is executed for a
long period. One can imagine to shorten the se-
quences by detecting loops.

7 Acknowledgements

We would like to thank Mr Eric FILIOL research pro-
fessor at ESAT for the pointers and suggestions con-
cerning the related works in the area.

References

[1] Danilo Bruschi, Lorenzo Martignoni, and Mattia
Monga. Recognizing self-mutating malware by
code normalization and control-flow graph anal-
ysis. IEEE Security € Privacy, 2007. in press.

[2] Mihai Christodorescu, Johannes Kinder, Somesh
Jha, Stefan Katzenbeisser, and Helmut Veith.
Malware normalization. November 2005.

[3] Peter Ferrie. Attacks on virtual machine emula-
tors. Symantec Advanced Threat Research.

[4] Eric Filiol. Les virus informatiques : théorie,
pratique et applications. Springer Verlag, 2004.

[5] Richard Ford. The future of virus detection.
In Information Security Technical Report, pages
19-26. Elsevier, 2004.

[6]

[18]

[19]

[20]

[21]

Alexandre Julliard.
http://www.winehq.com.

wine.

J. Kim and T. Warnow. Tutorial on phylogenetic
tree estimation, 1999.

E. Kirda, C. Kruegel, G. Banks, G. Vigna, and
R. Kemmerer. Behavior-based Spyware Detec-
tion. Vancouver, BC, Canada, August 2006.

A. Mounji M. Swimmer, B. Le Charlier. Dy-
namic detection and classification of computer
viruses using general behavior patterns. Pro-
ceedings of the 5th International Virus Bulletin
Conference, pages 75-88, 1995.

John F. Reiser Markus F.X.J. Oberhumer, Las-
zlo Molnar. Upx. http://upx.sourceforge.net/.

Nepenthes. http://nepenthes.mwcollect.org.

Norman. http://sandbox.norman.no.

Objdump. http://www.gnu.org/software/binutils.

Peid. http://peid.tk/.

R. Rivest. = Mdb message-digest algorithm.
RF(C1521, 1992.

Secure shell. http://www.openssh.com.

A. H. Sung, J. Xu, P. Chavez, and S. Mukka-
mala. Static Analyzer of Vicious FExecutables
(SAVE), pages 326-334. IEEE Computer So-
ciety, Washington, DC, USA, 2004.

G. Mazeroff V. De Cerqueira J. Gregor M. G.
Thomason. Probabilistic trees and automata for

application behavior modeling. Proceedings of
the 43rd ACM Southeast Conference, 2003.

Jigar J.Mody Tony Lee. Behavioral classifica-
tion. Eicar, May 2006.

User mode linux.
linux.sourceforge.net.

http://user-mode-

Matthew Evan Wagner. Behavior oriented de-
tection of malicious code at run-time, 2004.
Florida Institute of Technology.

10

[22] Wilson. Activity pattern analysis by means of

sequence-alignment methods. Enuvironment and
Planning, pages 1017-1038, 1998.

