Experiments with implementations of
Recursion Theorems

Jean-Yves Marion

Ecole Nationale Supérieure des Mines de Nancy
Loria-INPL

May, 5th 2007

Joint work with G. Bonfante and M. Kaczmarek

Experimentation

JYM

O Ut| | n e Experimentation

JYM

Introduction

While

Virus are fixed points

Distributions and mutations

Conclusions

What is a computer virus ?

Following Cohen :
1. Virus can infect programs by modifying them

2. Virus can copy itself and mutate

3. Virus can spread throughout a computer system

at least, for this talk . ..

«O>» «F»r» « >

«E>»

What is a computer virus ? Sxperimentaton

Introduction

Following Cohen :
1. Virus can infect programs by modifying them
2. Virus can copy itself and mutate
3. Virus can spread throughout a computer system

What is a computer virus ? Sipermentatn

Introduction

Following Cohen :
1. Virus can infect programs by modifying them
2. Virus can copy itself and mutate
3. Virus can spread throughout a computer system

at least, for this talk . ..

Reproductions : A virus is a virus Sipermentaton

Introduction

» Mathematical foundations of viruses
A virus is essentially a self-replicating program

Reproductions : A virus is a virus Sipermentaton

Introduction

» Mathematical foundations of viruses
A virus is essentially a self-replicating program

» In 1952, Von Neumann constructs a model of self
reproduction.

» Fixed points in Logics, A-calculus Turing Machines,
Recursion theorems

Reproductions : A virus is a virus Sipermentaton

Introduction

» Mathematical foundations of viruses
A virus is essentially a self-replicating program

» In 1952, Von Neumann constructs a model of self
reproduction.

» Fixed points in Logics, A-calculus Turing Machines,
Recursion theorems

From von Neumann

Can an automaton be constructed, i.e.,
assembled and built from appropriately “raw
material”, by an other automaton? [...] Can the
construction of automata by automata progress
from simpler types to increasingly complicated
types?

TOd ay M enu Experimentation

Introduction

Virus definition based on Kleene’s recursion theorem

v

v

Viruses are fixed-point of equations
Characterizations of viruses

» based on virus duplication/propagation
» based on recursion theorems

v

v

Implementation of recursion theorems in concrete
language

v

Rogers, Rogers, Theory of recursive functions and
effective computability, 1967

» Jones, Computability and Complexity, from a
programming perspective, MIT Press, 1997

A concrete programming language Experimentaton

The domain of computation D : the set of binary trees. While

Expressions: E — V |nil | cons(Eq,Ep) |
hd(E) | t1(E) |
execp(Eo,Eq,...,Ep) |
specp(Eg,Eq...,Ep)
Commands: C — V:=E|Cy;Cy | while(E){C} |
1£(E){Cq}else{Cy}

A program

p(Vi,...,V){C; return E; }

Send|ng emal IS Experimentation

While

Send a message msg to all mail addresses in the list adr
using some mail service (mailer)

send(adr,msg)

while (adr) {
mailer(cons(hd(y),msg));
adr := t1(adr);

}

return true;

}

Semantlcs Experimentation

While

[_] : Programs x D* — D*

where a value of D* is a system environment.

SemantICS Experimentation

While

[_] : Programs x D* — D*
where a value of D* is a system environment.

From the above example

[send](spider@man.com,” Hello", Out)
= cons(cons(spider@man.com,” Hello"), Out)

Where QOut is an output stream.

Experimentation

ILoveYou

Virus are fixed
points
ILoveYou scenario

ILoveYou is an e-mail attachment.

Opening the attachment triggers the attack.

First, it scans for informations find

Second, it extracts an address book extract

Then it duplicates sending copies of itself.

Experimentation

| Always Love You

Suppose that f is a system entry point,
A specification of ILoveYou is: Virus are fixed

points

love(v,f) {
info := £ind(f); //find informations
send(cons(“badguy@dom.com”,ni1),info);
@bk = extract(f); //extract addresses
send(@bk,v); //send virus to @bk

return true;

| Always Love You

Suppose that f is a system entry point,
A specification of ILoveYou is:

love(V,f) {
info := £ind(f); //find informations
send(cons(“badguy@dom.com” ,nil),info);
@bk = extract(f); //extract addresses
send(@bk,v); //send virus to @bk
return true;

}

v should behaves as ILoveYou if:

[vI(f) = [1ove](v,f)

Experimentation

Virus are fixed
points

Fixed point equation

Find v satisfying ILoveYou equations

[VI(f) = [Love](v,f)
and v is a virus specified by 1ove.

» Similar to quines

» Ken Thompson: "Reflections on Trusting Trust"
(CACM-84)

» No $0 variable as in shell
» no fancy pointer mechanisms

Experimentation

Virus are fixed
points

Kleene’s recursion theorem Sxperimentation

A general solution to fixed point equations is given by Virus are fixed

points
Theorem (Kleene’s Recursion Theorem (1938))
If p is a program, then there is a program e such that

[el(x) = [pI(e, x) (1)

Kleene’s recursion theorem Sxperimentation

A general solution to fixed point equations is given by Virus are fixed

points
Theorem (Kleene’s Recursion Theorem (1938))
If p is a program, then there is a program e such that

[el(x) = [p](e, x) (1)
A solution of llove You equation

[VI(f) = [1ove](v,f)

Set v = e where p = Love.

More on semantics R

» Syntax of programs like send, v
» Concrete Syntax Programs — D like send, v Virus are fixed

points

[VI(f) = [1ove](v,f)

More on semantics

» Syntax of programs like send, v
» Concrete Syntax Programs — D like send, v

[VI(f) = [1ove](v,f)

Two key ingredients to cook Kleene’s theorem
exec is an interpreter.

[exec](p, x) = [PI(v)

spec is a program specializer

[[specml(P, X1, - - Xm)|(Xms1s - -+, Xn) = [P](X1, - -

. Xn)

Experimentation

Virus are fixed
points

State Of the art Experimentation

Virus are fixed
points

» The PhD of F. Cohen gives a definition of Viruses
(1985)

» L. Adleman (1988) which coins the word “virus”
» Z. Zuo and M. Zhou.(84)
» See Eric’s first book for a gentle introduction.

Virus distributions Sxperimentaton

Theorem
There is a virus distribution Dst s.t. for any specification
vs, [Dst(VS)] is a virus satisfying e anons and

[Dst](VS) =v
[vVI(f) = [vsl(v, f)

Proof.
A consequence of Kleene’s recursion Theorem. Ol

Virus distributions Sxperimentaton

Theorem
There is a virus distribution Dst s.t. for any specification
vs, [Dst(VS)] is a virus satisfying Dsibutions and
[Dst](VS) =v
[vVI(f) = [vs](v,)
Proof.
A consequence of Kleene’s recursion Theorem. Ol

An lloveYou distribution is [Dst](love)

Virus distributions Sxperimentaton

Theorem
There is a virus distribution Dst s.t. for any specification
vs, [Dst(VS)] is a virus satisfying Dsibutions and
[Dst](VS) =v
[vVI(f) = [vs](v,)
Proof.
A consequence of Kleene’s recursion Theorem. Ol

An lloveYou distribution is [Dst](love)

» Dst is a virus compiler

ILoveYou Mutations

engine is one-to-one polymorphic engine s.t.

[[engine](p,)] ~ [p]
Mutations of ILoveYou

love(dv,i,f) {

info := find(f);
send(cons(“badguy@dom.com”,ni1),info);
vV = exec(dv,i);

Vi = engine(v,i+random+1);

@bk = extract(f);

send(@Dbk,vi);

return true;

Experimentation

Distributions and
mutations

ILoveYou Mutations
engine is one-to-one polymorphic engine s.t.
[lengine](p, /)] ~ [p]
Mutations of ILoveYou

love(dv,i,f) {

info := find(f);
send(cons(“badguy@dom.com”,ni1),info);
vV = exec(dv,i);

Vi = engine(v,i+random+1);

@bk = extract(f);

send(@Dbk,vi);

return true;

[exec](dv, i) = [vi](f) = Love(dv,i,f)

Experimentation

Distributions and
mutations

Explicit recursion Experimentation

A general solution is provided by

Theorem (Explicit Recursion Theorem)

If p is a program, then there is a program e such that for
any x and y

Distributions and
mutations

[Tel()1(y) = rl(e, x, y) (@)

» e generates fixed points
» e may be one-to-one
» See Case (74)

ILoveYou Mutations R

ILoveYou mutations are solutions of the equations BT EE

mutations

[exec](dv, i) = 1ove(dv,i,f)

ILoveYou Mutations R

ILoveYou mutations are solutions of the equations BT EE

mutations
[exec](dv, i) = 1ove(dv,i,f)
Solutions are obtained by explicit recursion theorem:

Setdv=eand p=1love

Mutatlon eng|ne Experimentation

Theorem

There is a mutation engine Mut s.t. for any polymorphic Distributions and
.) mutations

virus specification vs, [Mut(VS)] is a virus satisfying

[[rMut](VS)I(F) = vi
[vil(f) = [vs([mut](VS), 1, f)

» Given a virus specification vs, Mut (VS) outputs a
polymorphic virus.

» This is a compiler of polymorphic viruses

CO”CIUSlonS Experimentation

» Construction of viruses from Kleene recursion
theorem

» Design of a virus compiler from a specification

» Construction of viruses from explicit recursion Conclusions
theorem

» Design of a polymorphic virus compiler from a
specification

COﬂCIUSlonS Experimentation

» Construction of viruses from Kleene recursion
theorem

» Design of a virus compiler from a specification

» Construction of viruses from explicit recursion Conclusions
theorem

» Design of a polymorphic virus compiler from a
specification

» Consider the propagation function : Double recursion
theorem

» Consider polymorphic propagation theorem : double
explicit recursion theorem

Experimentation

Research Directions

Mathematical framework for computer virology:
» Classification of viruses using recursion theorems
» Structural complexity of viruses

Conclusions

» Introducing new virus constructions

» Defense methods

» Detection based on virus replication methods
» Static virus protection based on flow policies

» Analyzing space and time of viruses

» Other frameworks: reactive programming,
m-calculus, . . . for mobility

Questions ?

1.

2.

Experimentation

Computer virus experiments and recursion
theorems, CIE'07 Conclusions

On abstract computer virology: from a
recursion-theoretic perspective. Journal of computer
virology, 2006

Toward an abstract computer virology. In
ICTAC,LNCS

	Introduction
	While
	Virus are fixed points
	Distributions and mutations
	Conclusions

