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Résumé étendu

L
es systèmes d'information sont au c÷ur des environnements critiques tels que l'énergie, la
santé, le transport, les télécommunications ou la défense. Depuis quelques années, ils se sont

démocratisés et sont maintenant répendus massivement auprès des particuliers qui les utilisent à des
�ns personnelles, professionnelles mais aussi �nancières. On estime aujourd'hui à plus d'un milliard
le nombre d'ordinateurs personnels en service au niveau mondial. La sécurité de ces systèmes est
primordiale a�n d'assurer leurs propriétés de con�dentialité, d'intégrité et de disponibilité.

Motivées par l'appât du gain, les activités malicieuses se sont multipliées grâce aux nouvelles
technologies telles que les services web, et sont maintenant devenues un business très lucratif [111].
Le résultat est que les systèmes d'information sont aujourd'hui soumis à un nombre sans cesse
croissant d'attaques. La nature de ces attaques peut être aussi bien physique que logique, selon
qu'elles visent la partie matérielle ou logicielle d'un système. Au sein des attaques logiques, on
distingue deux cas de �gure : les attaques menées manuellement et celles menées à l'aide d'agents
logiciels. Ces derniers sont communément appelés malware, correspondant à la contraction de
malicious software. Avec le progrès des techniques d'attaque, plusieurs familles de malware se
sont succédées depuis les premiers virus et Trojans jusqu'aux violentes épidémies de vers et, plus
récemment, les réseaux de bots, de conception plus furtive, contrôlés à distance par l'attaquant.

A�n de lutter contre les malware, des techniques de protection ont été élaborées, essentiellement
basées sur la détection. En réalité, la détection est un problème qui a été prouvé indécidable dès
1986 par F. Cohen [68]. Les techniques de détection sont donc vouées à n'être que des approches
partielles. La technique la plus populaire reste la détection par signature syntaxique que l'on trouve
au c÷ur de la plupart des produits antivirus actuels. Malheureusement, cette technique devient
dépassée par le nombre croissant de malware, ainsi que par les techniques de mutations apparues
pour la contrer. Avec le temps, une véritable course aux armements s'est établie entre les attaquants
et les développeurs de protection. A�n de pallier les problèmes des signatures syntaxiques, d'autres
techniques de détection sont apparues en complément de protection. La détection comportementale,
déjà introduite par F. Cohen dans ses travaux, présente une alternative basée sur la reconnaissance
non plus de la forme des malware mais de leurs fonctionnalités.

1 Énoncé de la thèse

Avant d'introduire l'énoncé même de la thèse, il est utile de commencer ce résumé par un rappel
de certaines dé�nitions fondamentales du domaine des malware. Ces dé�nitions s'avèreront utiles,
non seulement pour les lecteurs non familiers au domaine, mais aussi pour garantir la cohérence
de la terminologie que nous allons utiliser.
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RESUME ETENDU

Dé�nition d'un malware : Un Malware ou Malicious Software est un agent automatisé, déve-
loppé dans le but de de devenir un vecteur d'attaque a�n de compromettre un ensemble cible de
systèmes d'information. On parle de variantes lorsque deux instances de malware partagent une
portion signi�cative de code. En d'autres termes, si ces deux instances ont été générées à partir de
sources communes. Le malware original dont sont dérivées les variantes est appelé la souche. On
parle de familles de malware lorsque plusieurs instances partagent des fonctionnalités communes.
La division se fait traditionnellement entre les familles de codes auto-reproducteurs : les virus
nécéssitant un hôte ou les vers se propageant de manière autonome, et codes non-reproducteurs :
les Trojans o�rant de manière dissimulée des services ou les bombes logiques, dissimulées au sein
d'applications et déclenchées uniquement sous certaines conditions.

Analyses de malware : Il en existe principalement trois types. La détection est la procédure
d'analyse permettant de déterminer si un programme arbitraire est malicieux ou non. Elle di�ère
de l'analyse traditionnelle en travaillant directement au niveau de l'exécutable dont les sources sont
souvent indisponibles. Cette analyse est automatisée au sein d'une application antivirale, capable,
selon sa précision, de nommer exactement le malware. La prévention est une procédure préventive
a�n d'empêcher le malware de pénétrer le système en premier lieu. En�n, la classi�cation, à ne pas
confondre avec la détection, est une procédure permettant d'identi�er la famille d'appartenance
d'un programme que l'on sait malicieux. Elle permet notamment d'établir des priorités a�n de
choisir les malware les plus novateurs pour des analyses plus poussées.

Globalement, deux domaines de recherche sur les malwares coexistent : la recherche théorique
dont sont issus les résultats fondamentaux sur la détection et la prévention, et la recherche opéra-
tionnelle dont sont issues les techniques de protection déployées. Dans l'état actuel des choses, ces
deux domaines sont fortement divisés bien qu'ils présentent chacun des avantages évidents. La re-
cherche opérationnelle fournit des méthodes de protection applicables mais dont la résistance et la
couverture ne peuvent seulement être prouvées que par la recherche théorique. Cette constatation
annonce la problématique de la thèse.

Problématique : Les résultats théoriques et opérationnels en recherche sur les malware
présentent des forces et des faiblesses complémentaires. La recherche de fondations communes
a été insu�sament explorée pour permettre une combinaison pro�table.

Énoncé de thèse : La notion de comportement est commune à la fois aux domaines de
recherche théoriques et opérationnels. Une formalisation de référence des comportements mali-
cieux contribuerait à la jonction de ces deux domaines.

A partir de cet énoncé, nous avon identi�é deux perspectives possibles de formalisation des
comportements. La première perspective que nous avons exploré correspond à une formalisation
établie à partir d'expérimentations en remontant vers les modèles théoriques par un processus
d'abstraction. A�n de construire cette première formalisation, un modèle comportemental a été
spéci�é à partir de grammaires attribuées. La seconde perspective que nous avons exploré corres-
pond à une formalisation établie à partir de modèles théoriques. A�n de construire cette seconde
formalisation, la notion de calcul interactif a été introduite dans les modèles viraux existants. Un
modèle de malware a notamment été spéci�é sur la base des algèbres de processus, son application
opérationnelle étant fournie par un processus de ra�nement. L'articulation de ces deux axes de
recherche est représentée Figure 1.
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RESUME ETENDU

Fig. 1 - Division entre recherche théorique et expérimentale. Cette
division s'explique par les origines opposées de ces deux domaines. La recherche théo-
rique se fonde sur les modèles abstraits de calculabilité alors que la recherche opéra-
tionnelle se base sur l'implémentation et l'expérimentation. Entre les deux, une zone
de transition reste ouverte pour de nouvelles perspectives de recherche.

2 Techniques de détection comportementale

Avant même de parler de détection comportementale, il est fondamental de dé�nir le concept
de comportement pour un programme. En s'inspirant des travaux sur le comportement en biologie
animale, nous proposons avec la Dé�nition 1 une description synthétique du concept de compor-
tement, adaptée aux programmes informatiques. La dé�nition étend la notion d'accès aux services
couramment utilisée, à toutes les interactions avec les ressources aussi bien logicielles que maté-
rielles du système ; ce qui inclut les accès aux services mais aussi les manipulations mémoire ou
l'utilisation du processeur. Elle introduit également la notion d'observation et de référentiel.

Dé�nition 1 Le comportement d'un programme se traduit par ses interactions (automatiques ou
conditionnées) avec les ressources matérielles, logicielles et humaines de son environnement d'exé-
cution. Ces interactions doivent être observables depuis le référentiel choisi.

En se basant sur cette dé�nition, le problème de la détection comportementale des malware
revient à distinguer, du point de vue du système, les interactions légitimes de celles qui sont ma-
licieuses. Deux approches complémentaires sont envisageables selon F. Cohen [68]. La première
approche consiste à modéliser les comportements jugés suspects et à détecter tout comportement
observable satisfaisant ce modèle. La seconde approche consiste à modéliser les comportements
légitimes et à détecter toute déviation observable de ce modèle de référence. Ces deux approches
correspondents respectivement aux méthodes de détection d'intrusions par scénario et par anoma-
lie [78, 172]. Lorsque l'on parle de détection comportementale en détection d'intrusions, on fait
référence à l'approche par anomalie. A l'inverse, dans le cas des malware, la détection comporte-
mentale fait référence à l'approche par modélisation des comportements suspicieux. Cette approche
reste la plus répendue car elle o�re des taux de faux positifs plus faibles. De fait, les travaux de
cette thèse se focalisent uniquement sur cette approche.
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RESUME ETENDU

Après avoir réalisé une étude sur les détecteurs comportementaux existants, nous avons établi
dans [137] une taxonomie qui, à notre connaissnce, est la première à couvrir ce domaine. Re-
présentée Figure 2, cette taxonomie introduit pour la classi�cation cinq éléments principaux : le
mécanisme de collecte des données, le mécanisme d'interprétation des données collectées, le modèle
comportemental ainsi que son mécanisme de génération, en�n l'algorithme central de matching, res-
ponsable de la véri�cation des données interétées avec le modèle. En référence au livre de A. Dasso
et A. Funes sur l'évaluation de programmes [77], la taxonomie identi�e deux grandes méthodes de
véri�cation des modèles suspicieux : la véri�cation par simulation présentée à la Section 2.1 et la
véri�cation formelle présentée à la Section 2.2.

Fig. 2 - Taxonomie des détecteurs comportementaux de malware. La
classi�cation est globalement divisée entre deux axes correspondant à la véri�cation
par simulation et la véri�cation formelle. L'algorithme de matching responsable de la
véri�cation est directement impacté par la collecte des données : dynamique ou statique.
La génération du modèle comportemental constitue un troisième axe transversal.

2.1 Véri�cation par simulation

La classe de détecteurs basés sur la véri�cation par simulation couvre l'ensemble des procédures
d'analyse en boîtes noires. Directement liée à la surveillance dynamique, les entrées du programme
ainsi que la con�guration de l'environnement d'exécution constituent les seuls paramètres variables
de la procédure. Un environnement dédié à la simulation est alors nécessaire pour collecter en
sortie les séquences d'évènements observables intervenant tout au long de l'exécution. La trace
des appels système, collectée par des mécanismes fonctionnant en temps réel [228] ou sur la base
d'environnements virtuels [43], reste la principale source d'information. Cette trace contient les
évènements les plus indicatifs de l'activité d'un programme, tout en restant de taille maîtrisée,
comparée à la trace complète des instructions. Les évènements collectés sont �nalement ordonnés,
interprétés et formatés avant d'être comparés au modèle comportementale. La véri�cation peut
se faire par plusieurs techniques de comparaison telles que les systèmes experts [79], les moteurs
heuristiques [227] ou encore les automates à états �nis [59].
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RESUME ETENDU

2.2 Véri�cation formelle

La détection comportementale est traditionnellement associée à la surveillance dynamique et
donc à la véri�cation par simulation. Néanmoins, l'activité malicieuse des malware est originelle-
ment contenue dans leur propre code. Les comportements malicieux peuvent donc être détectés par
analyse statique. Cette seconde méthode de véri�cation basée sur des procédures d'analyse de type
boîte blanche est relativement récente dans le contexte de détection des malware. Par analyse sta-
tique, le détecteur peut, par exemple, explorer l'ensemble des chemins d'exécution du programme,
et non plus seulement celui en cours. Le programme et l'ensemble de ses chemins doivent d'abord
être transformés par abstraction avant de véri�er s'il satisfait ou non la spéci�cation formelle de
comportements malicieux. Ce type d'analyse est très coûteux car il requiert au préalable le désas-
semblage, le dépaquetage et la reconstruction des graphes de �ots de contrôle et de données, ce
qui n'est pas toujours possible. De plus les algorithmes de véri�cation, tels que l'isomorphisme de
graphes [64], l'équivalence par réduction [237], ou le model checking [48], ont des complexités qui
sont nettement supérieures à celles des algorithmes en véri�cation basée sur la simulation.

3 Formalisation grammaticale des comportements malicieux

Dans cette première partie, nous proposons un premier modèle comportemental construit à par-
tir de l'analyse d'un ensemble représentatif de malware. Un modèle est toujours une représentation
conceptuelle de la réalité. A�n de s'assurer de sa validité, il est important qu'il satisfasse un certain
nombre d'obligations : des fondements théoriques solides, une couverture su�sante des cas réels et
un mécanisme possible de traduction vers le modèle. La Section 3.1 présente le modèle ainsi que ses
propriétés formelles, avant de l'illustrer avec des exemples de descriptions comportementales. La
Section 3.2 présente un premier cas d'utilisation de ces descriptions pour la détection par parsing
tandis que la Section 3.3 présente un second cas d'utilisation pour la mutation comportementale
par des techniques de compilation non-déterministes.

3.1 Introduction du modèle basé sur les grammaires attribuées

L'Abstract Malicious Behavioral Language (AMBL) a été proposé dans [138, 139] a�n de per-
mettre une représentation générique de la �nalité du comportement, et non plus de son implé-
mentation qui varie bien souvent d'une souche de malware à l'autre. Le langage en lui-même est
construit sur une conception orientée objet mettant en valeur la notion d'environnement ; le mal-
ware possède ses propres capacités internes de calcul ainsi que des interfaces de communication
avec l'extérieur. A�n de générer le langage, une grammaire générative est construite à l'aide de
l'alphabet et des règles syntaxiques présentés aux Figures 3 et 4. En particulier, a�n de décrire les
interfaces de communication, sa syntaxe intègre nativement plusieurs types d'interaction avec les
objets extérieurs : ouvertures, fermetures, créations, destructions, exécutions d'objets, ainsi que
envois et réceptions de données. Complété d'une sémantique opérationnelle, le langage est Turing-
complet grâce au support des opérations internes et structures de contrôle. La sémantique permet
également la résolution des interactions et de la concurrence supportées par la syntaxe.

opérations M = {¬,&,∨,∧,⊕, <,≤,=,≥, >,+,−,×,÷,≡, <<,>>, :=, goto, stop}
interactions I = {open, create, close, delete, execute, send, receive}
objets O = {object}
structures S = {while, if, then, else, ||,←,→, ; , (, ), [, ], {, }}
alphabet Σ =M ∪ I ∪ O ∪ S

Fig. 3 - Alphabet de l'AMBL. L'alphabet Σ est constité de di�erentes classes
de symboles, en particulier les opérations internes, les interactions et les objets.
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RESUME ETENDU

(1) <Behavior> ::= <Sequence>
(2) <Sequence> ::= <Structure><Sequence> | <Structure>
(3) <Structure> ::= <Block>

| if(<Expression>)then{
<Sequence>

}else{
<Sequence>

}
| if(<Term>)then{

<Sequence>
}
| while(<Term>){

<Sequence>
}
| [<Sequence>‖<Concurrent>]

(4) <Concurrent> ::= <Sequence>‖<Concurrent> | <Sequence>
(5) <Block> ::= <Term>;<Block> | <Term>;
(6) <Term> ::= object | [<Term>] | <Operation> | <Interaction>
(7) <Operation> ::= object := (<Term>) | [<Term>] := (<Term>)

| <Op1> (<Term>) | <Op2> (<Term>,<Term>)
| goto <Term> | stop

(8) <Op1> ::= ¬ |&
(9) <Op2> ::= ∨| ∧ | ⊕ | < | ≤ | = | ≥ | > |+ | − | × | ÷ | ≡ | << | >>
(10) <Interaction> ::= <Control> object | <I/O>
(11) <Control> ::= open | create | close | delete | execute
(12) <I/O> ::= receive object← object | receive [<Term>]← object

| send <Term>→ object

Fig. 4 - Règles syntaxiques de l'AMBL. Les règles décrivent la construction
atomique des opérations internes et interactions externes. Ces opérations sont alors
combinées en blocs et en structures plus complexes a�n de constituer le comportement.

Le langage est en réalité construit sur une grammaire attribuée dont l'intérêt réside, par rapport
aux grammaires hors-contexte, dans ses règles sémantiques qui enrichissent les règles syntaxiques.
Ces règles sont utilisées principalement à deux �ns : l'identi�cation et le typage des objets qui
constituent l'environnement. L'identi�cation permet de résoudre les problèmes de références mul-
tiples à l'aide d'un attribut identi�ant unique : ∗.objId ∈ N. Ces identi�ants sont utilisés pour
exprimer les �ots de données entre les di�érents objets et variables impliqués dans le comporte-
ment. Le mécanisme de typage exprime quant à lui l'utilité des objets pour le malware. Il est
construit de la manière suivante. Une première division est réalisée entre objets permanents et
temporaires selon leur survie à un redémarrage de la machine. Des subdivisions sont ensuite éta-
blies pour les sous-ensembles particuliers tels que l'auto-référence nécessaire aux mécanismes de
réplication, les objets communicants nécessaires à la propagation vers d'autres systèmes (ex. so-
ckets réseau, répertoire partagés) ou les objets de démarrage nécessaires à la mise en résidence (ex.
clés de run). Le typage est exprimé au travers d'un second type d'attribut : ∗.objType ∈ {var,
obj_perm, obj_temp, obj_com, obj_boot, this, obj_exe, env_var, obj_sec}.

A partir de la grammaire générative, plusieurs descriptions de comportements malicieux sont
fournies. Chaque description se présente sous la forme d'une sous-grammaire inclue dans le langage
global. Ci-dessous un extrait de description est fourni pour la duplication. La �nalité de ce com-
portement est la reproduction du code par recopie de l'auto-référence vers un objet permanent.
Seule la recopie en un bloc est représentée dans la première règle de production (i) mais les lectures
et écritures entrelacées sont aussi possibles. Les types sont hérités depuis cette règle dans les sui-
vantes a�n de forcer la correspondance des objets manipulés avec l'auto-référence ainsi qu'un objet
permanent : <Duplicate>.srcType= this et <Duplicate>.targType= obj_perm. Les identi�ants
sont quant à eux synthétisés à la première apparition d'un objet, puis hérités. L'identi�ant de va-
riable en particulier permet de suivre le �ot du code recopié : <Duplicate>.varId=<Read>.varId
et <Write>.varId=<Duplicate>.varId. Ce comportement peut ensuite être adapté au niveau du
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typage pour décrire la propagation vers un objet communiquant. Au total, les descriptions géné-
rées couvrent plusieurs techniques de réplication, la mise en résidence, les tests d'activité et de
surinfection, ou encore des services malicieux comme les proxys d'exécution.

(i) <Duplicate> ::= <Create><Open>
<Read><Write>

| <Open><Create>
<Read><Write>

| <Open><Read>
<Create><Write>

{ <Duplicate>.srcId = <Open>.objId
<Duplicate>.targId = <Create>.objId
<Duplicate>.varId = <Read>.varId
<Read>.objId = <Duplicate>.srcId
<Write>.objId = <Duplicate>.targId
<Write>.varId = <Duplicate>.varId
<Duplicate>.srcType = this
<Duplicate>.targType = obj_perm
<Open>.objType = <Duplicate>.srcType
<Create>.objType = <Duplicate>.targType
<Read>.objType = <Duplicate>.srcType
<Write>.objType = <Duplicate>.targType }

(ii) <Create> ::= create object;
{ <Create>.objId = object.objId
object.objType = <Create>.objType }
(iii) <Open> ::= open object;
{ <Open>.objId = object.objId
object.objType = <Open>.objType }
(iv) <Read> ::=

receive object1← object2;
{ <Read>.varId = object1.objId
object2.objId = <Read>.objId
object1.objType = var
object2.objType = <Read>.objType }
(v) <Write> ::=

send object1→ object2;
{ <Write>.varId = object1.objId
object2.objId = <Write>.objId
object1.objType = var
object2.objType = <Write>.objType }

3.2 Utilisation du modèle pour la détection par automates

A partir des descriptions grammaticales de comportements présentées à la Section 3.1, nous
avons pu dé�nir dans [138] un système de détection des comportements malicieux basé sur des au-
tomates de parsing. Ce système repose sur une architecture à plusieurs niveaux pour l'abstraction
et la détection. Les modules d'abstraction e�ectuent la traduction des données collectées vers le
modèle par interprétation des spéci�cités de la plateforme et du langage de programmation aux-
quels les malware sont liés. Les automates de détection sont alors indépendants de ces facteurs et
peuvent être interfacés avec n'importe lequel de ces modules. La con�guration du système se fait
en deux temps comme décrit Figure 5. La con�guration des modules d'abstraction se fait par l'in-
tégration des di�érents langages ainsi que par l'identi�cation des objets critiques de la plateforme.
La con�guration des automates de détection se fonde alors sur une analyse manuelle prélable a�n
d'identi�er les comportements malicieux réellement innovants et générer leurs descriptions gram-
maticales. Nous allons maintenant détailler les di�erents niveaux qui constituent le processus global
de détection, en partant des données collectées.

Fig. 5 - Processus de configuration et de détection. La partie droite
décrit le processus de détection avec ses deux niveaux pour l'abstraction et la détection.
La partie gauche décrit le processus préalable de con�guration des deux niveaux.

En entrée du système, un outil de collecte fournit les informations brutes sur l'activité d'un
programme, ces informations pouvant couvrir les instructions, les appels aux API ou au système,
ainsi que leurs paramètres. Les modules d'abstraction sont alors responsables de la traduction de
ces données dans le langage comportemental. La traduction des instructions constitue un simple
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mapping vers les opérations d'arithmétique et de contrôle. Les appels aux API sont également
traduits par mapping vers deux types d'interaction : les commandes et les entrées/sorties vers
d'autres objets. La traduction des paramètres est plus complexe et ne peut être réalisée par une
technique similaire. Pour cela, des arbres de décision sont utilisés, leur construction dépendant de
la nature des données : décision par partition de l'espace pour les adresses, décision par analyse
structurelle pour les chaines de caractères telles que les chemins système. De la traduction des
paramètres va dépendre la gestion des objets de l'environnement, au travers de leur identi�cation
et de leur typage. Le processus d'abstraction fournit en sortie une séquence de symboles appartenant
à l'alphabet du langage comportemental, annotés de valeurs sémantiques.

La détection consiste alors en un problème de parsing à l'aide d'automates parallèles recon-
naissant les descriptions des comportements malicieux. Comme décrit Figure 6, chaque automate
est responsable de la détection d'un comportement dont il embarque les règles de production. Les
descriptions étant décrites par des grammaires attribuées, leur reconnaissance nécessite des auto-
mates à pile avec évaluation des attributs sémantiques. L'évaluation des attributs est réalisée à
l'aide de règles de transition sur une seconde pile sémantique. Similairement aux scénarios d'intru-
sions [74], ces règles �xent à la fois les prérequis, à savoir des contraintes sur l'état de la pile avant
la transition, et les conséquences, à savoir les nouvelles valeurs sémantiques telles que les nouveaux
identi�ants ou types associés qui sont stockés en sommet de pile après réduction de la transition.

Fig. 6 - Détection par automates parallèes. Les n automates Ak en pa-
rallèle correspondent aux di�erents comportements surveillés. Chaque automate est
capable de gérer de multiples instances incomplètes du comportement, jusqu'à leur
détection. Ces instances correspondent à des dérivations indépendantes représentées
par leur état courant qi,j ainsi que leur pile syntaxique Γpi,j et sémantique Γsi,j . Dès
qu'une dérivation atteint un état �nal, le comportement en cours est détecté.

Néanmoins, la détection di�ère sur plusieurs points du parsing traditionnel. A�n de maintenir
le processus de détection, les symboles incorrects pouvant être entrelacés au sein du comportement
sont �ltrés a�n d'éviter les erreurs de parsing. Cette technique formalisée dans [200] est facilitée par
les prérequis et conséquences qui lient les opérations. De plus, les automates doivent être capables
de parser de multiples instances du comportement tout en resistant aux ambiguïtés susceptibles
d'apparaître avec les symboles en apparence liés au comportement sans pour autant y participer.
Egalement formalisée dans [200], la duplication de dérivations sur les symboles potentiellement
ambigus est utilisée pour gérer les instances multiples, comme l'illustre la Figure 6. Cette solution
permet d'éviter un lourd processus de backtracking, pénalisant pour une analyse en temps réel.

En contrepartie, cette gestion des dérivations transforme la complexité linéaire du problème
en meilleur cas, en une complexité exponentielle en pire cas où tout symbole est ambigu. Cette
complexité peut paraître prohibitive, mais, elle est impossible à atteindre dans la pratique. De
plus, après expérimentation, la complexité moyenne reste en réalité polynomiale.

A chaque fois qu'un des automates atteint un état �nal, un comportement malicieux a été
reconnu. Les comportements malicieux sont donc détectés individuellement, et des opérations
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complémentaires sont nécessaires a�n d'obtenir un réel detecteur de malware. Nous avons donc
introduit un processus additionnel de corrélation a�n d'identi�er la famille d'appartenance du
malware détecté. Des pro�ls pour les grandes familles de virus, vers et Trojans ont été établis à
partir des comportements présents et de certaines de leurs propriétés. Ces pro�ls constituent une
couche supérieure dans le processus global de détection.

Fig. 7 - Architecture multi-niveaux du détecteur. Le prototype est
constitué de trois niveaux superposés formant le processus de détection. Chaque niveau
manipule des données plus génériques et synthétiques, depuis les donnes brutes collec-
tées, en passant par les comportements détectés jusqu'à la classi�cation du malware.

A�n de valider la formalisation, des prototypes ont été développés pour ces di�érents éléments
dont l'architecture globale est présentée Figure 7. Des modules d'abstraction ont été implémentés
pour les traces d'exécutables Windows ainsi que les �chiers VisualBasicScript (VBS) et JavaScript
(JS). Pour la collecte, les outils existants ont été utilisés si disponibles, comme NtTrace par exemple
pour les exécutables. En revanche, nous avons dû développer nos propres outils de collecte, par
analyse statique pour VBS et par analyse dynamique pour JS, car aucun n'était disponible. Le
processus d'abstraction a alors été directement embarqué dans les outils. Nous avons choisi d'uti-
liser l'analyse statique pour au moins un des outils pour prouver que cette méthode de détection
fonctionne pour les deux approches de véri�cation. Les automates et les pro�ls ont été implémentés
par application directe des algorithmes introduits lors de la formalisation.

Après avoir mené une série d'expérimentations sur plus de 500 malware, il en ressort des résul-
tats satisfaisants pour les traces d'exécutable avec 51% de détection pour seulement 5 signatures,
à savoir la duplication, la propagation, la mise en résidence, le test de surinfection et le proxy
d'exécution. Les comportements les plus �ables sont la duplication et la mise en résidence. La
propagation reste plus mitigée car la con�guration réseau nécessaire n'a pas toujours pu être re-
construite (serveurs SMTP, DNS). Environ 10% des échecs sont aussi dus à des ruptures du �ot
des données, les opérations en mémoire n'etant pas observées par NtTrace. La collecte des données
pour VBS étant statique, ces problèmes n'ont pas été rencontrés avec pour conséquence de bien
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meilleurs résultats : 90% de détection. En e�et, l'approche statique permet d'explorer l'ensemble
des chemins d'exécution sans devoir reconstruire la con�guration nécessaire à déclencher les com-
portements. De plus, le long de ces chemins, toutes les opérations impactant le �ot des données
sont observables. Pour JS, les expérimentations sont moins avancées mais plusieurs tentatives de
propagation par cross-site scripting et d'exécution par drive-by download ont pu être détectées
sans modi�cation nécessaire des descriptions comportementales.

3.3 Utilisation du modèle pour la mutation comportementale

Les techniques actuelles de mutation syntaxique de code, telles que le polymorphisme et le
métamorphisme, sont basées sur des techniques d'obfuscation qui modi�ent les instructions mais
ne modi�ent pas le comportement en lui-même. En d'autres termes, les interactions avec le système
d'exploitation restent identiques pour chaque forme mutée. Un malware se dupliquant à l'aide de
l'API CopyFile, par exemple, continuera de le faire sous ses formes mutées ; ce qui est facilement
détectable par surveillance dynamique. Grâce au modèle grammatical de la Section 3.1, nous avons
pu formaliser des techniques de polymorphisme au niveau comportemental qui permettent cette
modi�cation. A chaque exécution du processus de mutation, l'implémentation des comportements
est transformée par modi�cation des instructions mais aussi des appels aux API constituant les
interactions avec le système. La fonctionnalité du comportement est préservée tout au long de
la transformation par sa description grammaticale. Le processus de mutation procède donc de
manière inverse au processus de détection, en utilisant un mécanisme de traduction du modèle vers
l'implémentation pour la génération de code exécutable. En ce sens, son fonctionnement peut être
comparé à celui d'un compilateur non-déterministe. Les capacités de mutation permises dépassent
alors celles existantes en atteignant un niveau sémantique.

Fig. 8 - Schéma d'un moteur polymorphique comportemental. Par rap-
port à un compilateur traditionnel, le moteur de mutation substitue le processus de
véri�cation par celui un processus de dérivation aléatoire. En entrée, un unique symbole
de départ non-terminal est requis et non plus une séquence complète de terminaux.

Nous avons utilisé dans [140] le parallèle avec la compilation a�n de formaliser le moteur poly-
morphique comportemental. Comme décrit par la Figure 8, le moteur est articulé en deux parties
responsables respectivement de la dérivation et de la traduction. La dérivation d'un comportement
est réalisée par un automate probabiliste choisissant aléatoirement les règles de production appli-
quées, et non plus en fonction du symbole sous sa tête de lecture. De même que le processus de
véri�cation d'un compilateur, l'automate génère en sortie un arbre de dérivation satisfaisant la
description du comportement. Un algorithme permet alors de générer aléatoirement une valuation
sémantique de l'arbre. Les symboles et annotations sémantiques contenus dans les n÷uds de l'arbre
sont alors soumis à un ensemble de règles de réécriture qui constitue le processus de traduction.
Par application de ces règles, les symboles sont �nalement transformés en code exécutable.

Du point de vue de l'attaquant, l'e�cacité de cette technique de mutation peut être mesurée
de manière théorique par son entropie [218]. Nous avons prouvé grâce à la formalisation que l'en-
tropie associée à ce type de mutation progresse de manière logarithmique en fonction du nombre
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de dérivations syntaxiques et de valuations sémantiques alternatives. Du point de vue du défen-
seur, nous avons retrouvé un résultat similaire à celui de D. Spinnellis pour la détection de virus
polymorphes de taille �nie par signatures syntaxiques [220]. La détection comportementale d'un
moteur polymorphique comportemental est NP-Complète.

Pour étudier la faisabilité, un prototype de moteur de mutation a été implémenté pour la mu-
tation de vers mail et peer-to-peer. Sa version actuelle supporte plusieurs centaines de variations
comportementales importantes, plusieurs milliers si l'on considère les variations sémantiques mi-
nimes. Au delà de la faisabilité, la réelle motivation de son développement réside dans l'intégration
du moteur à une procédure d'évaluation des produits antivirus. Si l'on se focalise sur la détection
comportementale, elle ne peut seulement être évaluée que face à des codes inconnus [103]. Dans
la pratique, les éditeurs antivirus conservent une version stable de leur moteur et le confrontent
après plusieurs mois aux nouveaux malware apparus. Le moteur en revanche permet la génération
contrôlée de codes inconnus, o�rant ainsi un test de couverture à la portée maîtrisée et non plus
dépendante de l'inspiration des créateurs de malware. Au sein du laboratoire, le moteur a été inté-
gré à une procédure plus globale d'évaluation opérationnelle des produits antivirus. Dans le cadre
d'un contrat [33], cette procédure a été déployée en conditions réelles sur 8 produits du marché.
Dans un premier temps, le moteur a permis d'identi�er, sans procéder à aucune rétro-analyse, la
technique de détection comportementale instanciée dans le produit ; cette information étant rare-
ment communiquée par les éditeurs. Il a ensuite permis d'évaluer sa couverture avec des taux de
détection allant de 20 à 30% en moyenne, jusqu'à 90% mais au prix d'importants faux positifs.

4 Formalisation algébrique des comportements malicieux

Dans cette seconde partie, nous proposons un second modèle théorique construit à partir de
ceux existants en virologie abstraite. Ces modèles sont tous basés sur des paradigmes fonction-
nels [35, 50, 68, 156], dont la principale limitation réside dans l'abscence de support des interac-
tions, de la concurrence et de la non-terminaison, qui sont couramment utilisées par les malwares.
L'intégration des aspects interactifs reste di�cile dans ces paradigmes. Dans [139], nous avons
intégré des oracles aux modèles viraux basés sur les fonctions récursives a�n de modéliser les mé-
canismes d'intéraction. Les travaux que nous avons menés sur cette intégration ont conduit à de
nouveaux résultats de complexité, mais conservent malgré tout une expressivité restreinte. En par-
ticulier, les nouvelles techniques virales basées sur les interactions, telles que les codes k-aires [97]
ou furtifs [82, 96], sont toujours di�cilement décrites. A�n de poursuivre ce premier travail tout
en répondant aux critères interactifs des modélisations comportementales, nous avons construit
dans [141] une nouvelle modélisation des malware, basée sur un paradigme dédié, à savoir les
algèbres de processus, et plus particulièrement le join-calculus. La Section 4.1 présente cette mo-
délisation en soulignant le gain d'expressivité apporté par les processus. La Section 4.2 présente
l'utilisation de la modélisation pour la spéci�cation de protections théoriques contre les malware.

4.1 Modélisation de l'auto-réplication et comportements plus complexes

A l'origine des modèles théoriques en virologie abstraite, on trouve la notion fondamentale
d'auto-réplication déjà présente lors des travaux de J. von Neumann [230]. L'existence de l'auto-
réplication au sein des fonctions récursives est étroitement liée au théorème de récursion de Kleene
[50, 156]. Ce résultat n'étant pas directement transposable, la base de notre nouveau modèle
consiste donc à exprimer l'auto-réplication dans le formalisme du join-calculus créé par C. Fournet
lors de sa thèse [107]. En quelques mots, le join-calculus est construit sur un ensemble in�ni de
noms x, y, z..., composables en vecteurs −→x = x0, ..., xn. Ces noms constituent les blocs de base pour
l'émission de messages de la forme x<v>, où x dénote le canal et v le message. Rappelée à la Fi-
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P ::= v<E1; ...;En> message asynchone
| def D in P dé�nition locale
| P | P composition
| 0 processus nul
| E;P séquence
| let −→x = E in P calcul d'expression

| return
−→
E to x retour synchrone

E ::= v(E1; ...;En) appel synchrone
| def D in E dé�nition locale

D ::= J . P règle de réaction
| D ∧D conjonction
| > dé�nition nulle

J ::= x<y1, ..., yn> message
| x(y1; ...; yn) appel
| J | J join

Fig. 9 - Syntaxe du Join-Calculus.

STR-JOIN ` P1 | P2 
 ` P1;P2

STR-NULL ` 0 
 `
STR-AND D1 ∧D2 ` 
 D1, D2 `
STR-NODEF T ` 
 `
STR-DEF ` def D in P 
 Dσdv ` Pσdv
(σdv substitue de nouveau noms aux canaux dé�nis)
RED J . P ` Jσrv −→ J . P ` Pσrv
(σrv substitue les messages reçus aux paramètres)

Fig. 10 - Sémantique opérationnelle :
Reflexive Chemical Abstract
Machines du Join-Calculus.

gure 9, la syntaxe du calcul dé�nit trois types d'éléments pour le passage de messages : les processus
communiquants (P ), les dé�nitions (D) capturant les messages et décrivant l'évolution résultante
du système, et en�n les join-patterns (J) qui dé�nissent les canaux et messages impliqués dans la
communication [107, pp.57-60]. Pour des facilités de modélisation, le support des expressions (E)
est utilisé pour introduire la synchronicité nécessaire aux aspects fonctionnels. En complément de la
syntaxe, une sémantique opérationelle appelée Re�exive Chemical Abstract Machines (RCHAM)
est décrite Figure 10 a�n de complèter le modèle calculatoire [107, pp.56-62]. En particulier, la
règle de réduction décrit la rèsolution des messages : def x(−→z ) . P in x(−→y ) −→ P{−→y /−→z }.

A�n de dé�nir la notion d'auto-réplication au sein du join-calculus, nous dé�nissons un pro-
gramme comme une abstraction de processus, à savoir une dé�nition avec un join-pattern unique :
Dp = def p(−→arg) .P . Le join-pattern p permet de référencer le programme tandis que le processus
P représente son exécution avec les valeurs substituées de −→arg pour arguments. L'auto-réplication
d'un programme est alors exprimée dans la Dé�nition 2. Cette dé�nition englobe les di�erents types
de réplication, y compris la réplication par reconstruction ou mutation. Néanmoins, nous nous fo-
caliserons ici sur un type de réplication particulier que nous appelons réplication syntaxique car
elle réplique le code à l'identique à partir de sa référence : def s(c,−→x ) . P où P −→∗ R[c(s)].

Dé�nition 2 Un programme est dit auto-répliquant sur un canal c s'il peut être abstrait dans
le join-calculus par une dé�nition capable d'accéder ou de reconstruire sa dé�nition avant de se
propager (i.e. de s'extruder au delà de sa portée). Cette dé�nition se traduit de la manière suivante :
def s(c,−→x ) . P where P −→∗ Q[def s′(−→x ) . P ′ in R[c(s′)]] and P ′ ≈ P . s denotes the self-
reference, s′ the equivalent program whereas R speci�es the replication mechanism over the channel
c. Dans cette dé�nition, s dénote l'auto-référence, s′ le programme équivalent tandis que R spéci�e
le mécanisme de réplication sur c.

Sur la base de cette dé�nition, la notion de réplication viable est dé�nie comme la capacité
itérative d'auto-réplication. En d'autres termes, le programme répliqué doit conserver sa capa-
cité d'auto-réplication. Pour exprimer cette notion, la modélisation de l'environnement est néces-
saire a�n d'exécuter le programme et de stocker ses formes répliquées. En utilisant la syntaxe des
contextes d'évaluation o�erte par le join-calculus, la structure générique d'un contexte système est
dé�nie en termes de services et de ressources. Tous deux sont exprimés sous forme de dé�nitions :
les services correspondent à de simples fonctions exécutées sur demande tandis que les ressources
consistent en des processus paramétrés par leur contenu. En partant de la réplication viable, nous
avons établi avec la Dé�nition 3, la construction de l'ensemble viral relativement à un contexte
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système. Il regroupe l'ensemble des programmes capables d'itérer leur processus d'auto-réplication
un nombre de fois supérieur ou égal à 2.

Dé�nition 3 Soit un contexte système dé�nissant un ensemble de services S et de ressources R.
L'ensemble des noms qu'il dé�nit N est divisé entre les services Sv, les accès aux ressources en
lecture Rd, en écriture et en création Wr, et en exécution Xc tels que N = Sv ∪ Rd ∪Wr ∪ Xc.
L'état courant des ressources est représenté par les processus parallèles ΠR. L'ensemble viral Ev
peut être construit récursivement comme suit :

Ev(Csys[.]N ) = {V |∃−→w ⊂Wr, −→x ⊂ Xc et n > 1 tels que

S∧R `N V |ΠR
µ1;{v}w0<v>;µ2−−−−−−−−−−−→ S∧R`N∪{v}V ′|R0|ΠR

et pour tout 1 ≤ i < n,

S∧R `N Ri|ΠR
xi<
−→a>;µ1;{v}wi+1<v>;µ2−−−−−−−−−−−−−−−−→S∧R `N∪{v} V ′|Ri+1|ΠR}

Le vecteur −→w constitue les accès en écriture aux ressources infectées.
Le vecteur −→x est responsable de l'activation des ressources infectées intermédiaires.

L'intérêt des algèbres de processus réside dans la mise en évidence des échanges entre le malware
et son contexte système, le �ot d'information étant explicitement représenté. Les facilités que ces
algèbres o�rent dans ce domaine permettent notamment la distribution des calculs que nous allons
pouvoir appliquer au processus d'auto-réplication. Dans ses travaux [240], M. Webster introduit
quatre classes de codes auto-répliquants selon l'externalisation de leur accès à l'auto-référence et
de leur mécanisme de réplication. Ces quatre classes ont été redé�nies de manière formelle pour
les virus ainsi que les vers, la distinction entre les deux résidant dans la portée de l'extrusion
lors de la réplication. Un ver s'extrude au delà du contexte système local vers un second contexte
global, constituant une architecture distante type réseau. Nous avons �nalement pu prouver que
ces quatres classes appartenaient bien à l'ensemble viral de tout système fournissant les services
nécessaires de réplication et d'accès ª'auto-référence.

Le modèle de malware est au �nal paramétrable à travers le mécanisme de réplication ainsi que
le processus de charge virale. Par ra�nement, plusieurs méthodes de réplication sont supportées,
telles que les infections par écrasement ou par juxtaposition de code, mais aussi les techniques
d'accompagnement. Le processus de charge virale o�re aussi de nombreuses possibilités de modé-
lisation. Les Rootkits, basés sur la réactivité et la non-terminaison, sont di�cilement représentés
dans les modèles fonctionnels existants. Ils ont donc été choisis comme cas d'application pour
illustrer l'expressivité du nouveau modèle basé sur les processus. Les techniques de furtivité qu'ils
déploient, telles que les techniques basées sur le hooking, sont représentées comme des usurpations
de canaux du système. Pour chacune de ces paramétrisations, un parallèle a été réalisé avec des
malware réels a�n de s'assurer de sa validité.

4.2 Impact du modèle sur les protections théoriques

La conservation des résultats fondamentaux en virologie abstraite constitue une première preuve
de la pertinence du modèle. Considérons en premier lieu l'indécidabilité de la détection telle qu'éta-
blie par F. Cohen [68]. Cette indécidabilité est maintenue dans le join-calculus, tel que l'énonce
la Proposition 1. En outre, nous avons identi�é la propriété du calcul responsable de cette indé-
cidabilité. Il a pu être démontré avec la Proposition 2 que le problème devenait décidable dans le
fragment du join-calculus sans génération de nom. La preuve repose sur une réduction du problème
à celui de la couverture dans les Réseaux de Petri. Malheureusement, cette hypothèse s'avère trop
contraignante dans le contexte de systèmes réels car elle interdit non seulement la création de
nouvelles ressources mais aussi les échanges synchrones nécessaires aux services. Cette observation
nous a amené à considérer d'autres types de protections proactives avec la prévention.
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Proposition 1 La détection de l'auto-réplication dans le Join-Calculus est indécidable.

Proposition 2 La détection de l'auto-réplication dans le Join-Calculus devient décidable dès que
le processus et son contexte système sont dé�nis dans le fragment sans génération de nom.

La prévention des malware est typiquement un problème d'intégrité. Considérant les travaux
actuels en algèbre de processus, la plupart s'interressent aux propriétés de con�dentialité avec
la formalisation de la non-interférence [117]. Nous avons donc proposé une seconde propriété de
non-infection a�n d'adresser l'intégrité du système face aux processus malicieux. Formalisée à la
Dé�nition 4, la non-infection stipule que tout programme ne peut interférer indirectement avec un
autre, par modi�cation du contexte système. De manière générale, la prévention est fortemment
impactée par la notion de portée des noms au sein du join-calculus. En utilisant cette propriété,
nous avons notamment redémontré avec la Proposition 3 que l'isolation des resources reste la seule
solution infaillible pour la prévention des malware. Cette solution est en réalité une formalisation
au niveau processus du principe de cloisonnement réseau proposé par F. Cohen [68]. Une fois
encore, ces mesures s'avèrent trop contraignantes en conditions réelles. Mais en utilisant de manière
judicieuse cette notion de portée, il reste malgré tout possible d'établir des solutions partielles à
la propagation, par restrictions spatiales et temporelles sur la base de jetons d'accès, o�rant ainsi
un compromis entre utilisation et sécurité.

Dé�nition 4 Considérons un processus P placé dans un système supposé stable (i.e. réactions
seulement aux intrusions). La propriété de Non-Infection est satisfaite si le système évolue se-
lon une réaction de la forme Csys[P ] −→∗ C ′sys[P ′], et pour chaque processus non-infectieux T ,
l'équivalence Csys[T ] ≈ C ′sys[T ] reste vraie.

Proposition 3 Dans un contexte système constitué de services et de ressources, la propriété de
Non-Infection ne peut être garantie que par une isolation forte des ressources, l'isolation interdisant

toute transition Csys[ . ]
x(−→y )−−−→ C ′sys[ . ] où x est un canal d'écriture vers une ressource.

Par préservation de ces résultats, le modèle proposé conserve donc une expressivité équiva-
lente aux modèles fonctionnels existants. Malheureusement, la détection parfaite et la prévention
infaillible restent impossibles à réaliser. Nous allons donc maintenant nous interresser à la construc-
tion de solutions approchées à ces problèmes. Si l'on se réfère à l'énoncé de la thèse, l'objectif réel
était de pouvoir porter les techniques de détection comportementale dans ce nouveaux modèle en
faisant le lien entre pratique et théorie. Nous avons donc exploré la formalisation des solutions
operationnelles existantes. En premier lieu, la détection par automates à états �nis est facilement
transposable au join-calulus. Une méthode de construction d'un processus d'observation depuis
l'automate de détection est notamment fournie. Grâce aux travaux précédents sur la non-infection,
il a été démontré que la construction d'un tel observateur est toujours possible quelque soit le mal-
ware à détecter ; en d'autres termes, la furtivité absolue pour un agent infectieux est impossible.
En revanche, cette méthode n'est plus générique comme celle considérée en début de section ; elle
repose sur un mécanisme de signature. Ce qui signi�e en contrepartie qu'elle n'est plus restreinte
à la détection de l'auto-réplication et peut couvrir d'autres comportements.

En utilisant les capacités du join-calculus, d'autres techniques comportementales peuvent éga-
lement être formalisées grâce au typage par niveaux de sécurité. Le mécanise de typage selon qu'il
fonctionne aux niveaux des processus ou des messages échangés peut formaliser deux autres mé-
thodes de détection. Le premier mécanisme fonctionne au niveau des ressources et interdit leur
accès à tout processus de niveau de sécurité insu�sant ; il permet de modéliser les systèmes ex-
perts aussi appelés behavioral blockers. Le second mécanisme fonctionne par �ots d'information en
attribuant un niveau de sécurité à chaque message. Le type est propagé avec le message jusqu'à ce
qu'il atteigne une dé�nition protégée. Ce mécanisme permet donc de modéliser les techniques de
tainting qui sont utilisées pour suivre les données critique en mémoire jusqu'à leur utilisation.
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5 Conclusion

5.1 Contributions

Au cours de ces travaux de thèse, nous nous sommes focalisés sur la détection comportementale
a�n d'établir un lien entre la recherche théorique et la recherche opérationnelle sur les malware.
Pour cela, nous avons exploré deux approches : une première approche de formalisation gram-
maticale des comportements, à un niveau d'abstraction supérieur à celui couramment utilisé, une
deuxième approche de formalisation par adaptation des modèles viraux abstraits aux calculs in-
teractifs plus proche de nos systèmes réels que les modèles de calculabilité purement fonctionnels.
Ces travaux ont aboutis aux contributions suivantes :

• L'état de l'art des techniques de détection comportementale nous a permis d'établir une
première taxonomie des détecteurs, basée sur la véri�cation logicielle séparant la véri�cation
par simulation souvent dynamique, de la véri�cation formelle fonctionnant statiquement.

• En réponse au manque de cohérence rencontré dans l'état de l'art, nous avons proposé un
premier modèle reposant sur les grammaires-attribuées pour la représentation des compor-
tements malicieux. Ses règles syntaxiques décrivent le fonctionnement du comportement en
termes de séquences d'opérations et d'interactions. Ses règles sémantiques permettent l'inter-
prétation des objets de l'environnement d'exécution par identi�cation et typage. Par rapport
à l'existant [64, 211], notre modèle a l'avantage de combiner les opérations d'arithmétique et
de contrôle avec le support des interactions et de la concurrence. Il est donc adaptable à la fois
aux approches dynamiques et statiques. Il o�re également un niveau supérieur d'abstraction
grâce à sa sémantique ; ce qui nous a permis de fournir un ensemble plus important de descrip-
tions de comportements malicieux, basées non plus sur l'implémentation comme [175], mais
sur leur principe générique : duplication, propagation et autres mécanismes de réplication,
mise en résidence, proxy d'exécution, tests de surinfection, mutations, furtivité.

• Une première application du modèle est étudiée au travers de la détection par parsing à
l'aide d'automates à piles. La détection di�ère du parsing traditionnel par sa résistance aux
symboles incorrects et sa gestion des instances multiples. En solution à ces problèmes, des
techniques formalisées en détection d'intrusion par [200] sont utilisées : les règles sémantiques
du modèle constituent un ensemble de prérequis et de conséquences permettant d'identi�er
les symboles n'appartenant pas au comportement et de les �ltrer, alors que la duplication
des dérivations permet la gestion des instances multiples sans backtracking. Le processus
global de détection proposé est multi-couche a�n de décorréler la traduction des données
collectées vers le modèle, de la comparaison des données interprétées avec la description
du comportement. Cette décorrélation garantie l'indépendance de la méthode de détection
de toute plateforme ou langage de programmation. Là où les autres détecteurs restent liés
à un seul langage, nous avons développé des outils de traduction vers le modèle pour les
exécutables Windows ainsi que VisualBasicScript et JavaScript.

• Une seconde application du modèle est étudiée avec les techniques de polymorphisme com-
portemental. Basées sur des techniques de compilation, ces mutations permettent de modi�er
à la fois les instructions et les appels système constituant les comportements. La description
grammaticale de ces comportements constitue le �l conducteur de la mutation, garantissant
la préservation de leur fonctionnalité. Ces techniques de mutation dépassent celles existantes
par leur niveau sémantique, là où les autres restent purement syntaxiques.

• A�n de démontrer l'intérêt positif de cette étude sur les mutations, une procédure d'évalua-
tion des détecteurs comportementaux est introduite. Le seul moyen d'évaluer un détecteur
comportemental est de le confronter à des codes inconnus. Le moteur de mutation permet la
génération contrôlée de ces codes inconnus tout en o�rant une couverture prouvée.
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• Le modèle grammaticale n'étant pas su�samment formel pour pouvoir établir des preuves
formelles de sécurité, un second modèle a été proposé sur la base des algèbres de processus. Ce
second modèle o�re une expressivité au moins comparable aux modèles fonctionnels existants
par support de l'auto-réplication et des résultats fondamentaux tels que l'indécidabilité de
la détection et la prévention par isolation. En réalité, son expressivité est même supérieure ;
sa paramétrisation permet la représentation de techniques virales interactives telles que les
Rootkits, di�cilement descriptibles dans des modèles fonctionnels qui ne supportent pas les
interactions, la concurrence et la non-terminaison.

• Basées sur ce second modèle, de nouvelles perspectives de formalisation des protections de-
viennent possibles grâce à la mise en évidence des �ots d'information aussi bien internes
qu'externes avec l'environnement d'exécution. Des techniques opérationnelles existantes ont
pu être formalisées, telles que la détection par automate, le behavioral blocking ou encore le
tainting, permettant ainsi la démonstration de leur couverture et de leur résistance.

5.2 Perspectives

Bien que la formalisation grammaticale soit encore trop opérationnelle pour établir le lien re-
cherché avec la virologie abstraite, elle a permis d'améliorer de manière signi�cative la couverture
de la détection opérationnelle grâce au processus intermédiaire d'abstraction. La seconde formalisa-
tion, bien que moins aboutie, a permis en revanche d'établir un premier lien entre la formalisation
théorique et plusieurs techniques de détection. Néanmoins, avec du recul plusieurs limitations ont
pu être identi�ées au long de ces di�érents travaux :

1) La génération des descriptions comportementales reste pour l'instant manuelle, requierant
un lourd processus d'analyse de plusieurs malware.

2) Le modèle grammatical présuppose une couverture complète des actions des malware aussi
bien en termes d'actions que de �ots de données. Dans le contexte de la détection, il en résulte
des contraintes lourdes sur les outils de collecte et leur con�guration. Plusieurs expérimen-
tations ont échoué à cause de la couverture incomplète des évènements en mémoire ou de la
simulation incomplète de la con�guration réseau.

3) Le modèle algébrique est toujours incomplet. Cette incomplétude provient de la modélisa-
tion imparfaite de l'auto-réplication qui admet à la fois des faux-positifs et des faux negatifs
importants tels que la réplication par reconstruction qui, même si elle est intégrée dans notre
dé�ntion, manque encore d'exemples de construction. De manière plus générale, le modèle
proposé est encore trop proche du niveau syntaxique par rapport aux travaux habituels du
domaine des algèbres de processus, notamment en termes d'équivalence observationnelle.

Toutes ces limitations n'ont pu être traitées par manque de temps mais elles o�rent des pers-
pectives intéressantes pour des travaux futurs :

1) Des travaux existent sur l'extraction de pro�ls comportementaux par analyse di�érentielle
entre un code infecté et sa forme originale [65]. Une adaptation de ces travaux devrait per-
mettre la génération automatique de descriptions comportementales dans notre modèle.

2) Les expérimentations ayant échoué du fait du mécanisme de collecte peuvent être améliorées
à l'aide d'outils appropriés utilisant des techniques de tainting [134]. Le problème de la con�-
guration réseau est plus complexe. L'interfaçage avec des outils d'apprentissage automatique
de protocole constitue une solution potentielle [166, 177].

3) Le modèle algébrique peut être amélioré en corrigeant la notion d'auto-réplication. La réso-
lution du problème peut nécessiter l'utilisation d'algèbres de niveau supérieur où la transmis-
sion au travers des canaux devient ouverte aux processus en tant que messages. Les algèbres
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distribuées sont une seconde option. Elles introduisent une notion explicite de localisation
des processus qui permettrait de ra�ner la notion de propagation des malware. De manière
générale, le choix de l'algèbre de processus est un problème critique non seulement en termes
d'expressivité mais aussi de protection. Le join-calculus est un calcul ouvert par construction.
Finalement, il n'est pas forcemment le plus adapté à la construction de systèmes sécurisés.
Des algèbres spéci�ques sont déjà utilisées pour la construction de protocoles cryptogra-
phiques, o�rant des capacités de contrôle et de restriction supérieures. Ils constituent donc
une perspective supplémentaire de formalisation.

xix
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Chapter 1
Introduction

The mental world can be grounded in the
physical world by the concepts of
information, computation, and feedback.

The Blank State

S. Pinker - 2002

I
nformation systems have invaded our everyday life. Historically, they have long been deployed
in infrastructures related to critical domains such as energy, health care, transport, telecom-

munications or governmental organizations. With the democratization of personal computers,
information systems have also begun to be massively deployed for private individuals. Already,
in 2008, the number of personal computers in use was estimated over a billion. The security of
these systems has always been, and still is a critical issue, now more than ever. Basically, the
security of a system can be de�ned as a set of means, either technical or organizational, whose
purpose is to guarantee its con�dentiality, its integrity as well as its availability. The problem
is that information systems have evolved towards complex architectures, constituted of multiple
computers and electronic devices, densely interconnected by high speed and potentially wireless
links. Considering the inherent connectivity and heterogeneity of these systems, the question is
what level of security can be guaranteed.

The need for security is in fact a response to the increasing number of attacks led against
information systems. The motivations manifested by the attacker re�ect the attractiveness of the
targets. By accessing or modifying the right information, an attacker can easily cause important
�nancial, professional or private damages; he may even obtain substantial gain [111, 130]. Tech-
nically, these attacks can take several forms: either physical or logical whether the damages are
in�icted to the hardware or the software. Within logical attacks, a distinction can be made be-
tween manual attacks and automated attacks relying on software agents. In the latter case, we are
speaking of "malware", standing for "malicious software". This term is often confounded with the
term of virus introduced in the eighties by the formalizations of F. Cohen and L. Adleman [68, 35].
Viruses actually constitute the �rst branch of self-replicating malware to appear, after Trojans in
the �fties. Starting a few years before those work of formalization, the �rst viruses quickly made
their apparition, among which the most commonly known are probably Elk Cloner (1982), Brain
(1986), or Lehigh (1987). Self-reproduction was then used by attackers as a vehicle to automat-
ically deliver their malicious payload to several targets. However, all self-reproducing programs
are not necessarily malicious and, conversely, all malware are not necessarily self-reproducing. In
response to this emerging threat, dedicated antivirus products were designed and integrated to the
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CHAPT 1. INTRODUCTION

traditional solutions of protection. From then, an arms race has been engaged with the malware
writers who have developed more and more advanced techniques, the antiviral community trying
to tackle down these problems one at a time, using ad-hoc solutions.

Along the technical evolutions, viruses have progressively left place to other types of malware.
Years 2001 to 2004 have seen the emergence of worms, responsible for fast-spreading world-wide
epidemics such as Code Red (2001) or Slammer (2003) [60]. With the quick development of web
services and the digital economy, the phenomenon is still evolving. Malware authors, formerly
searching for fame or revenge against their employer, are now business driven. The sensitive or
authentication data processed by the information systems have become targets worth considering.
An obvious proof is the increasing number of stolen bank credentials and email passwords that are
regularly sold in various venues [111]. In fact, computer malicious activity has become a whole
underground business with di�erent active groups whose cooperation is eased by the Internet. Con-
sequently, large scale fast infections are no longer the main threat; the attacks have become more
subtle and stealthy with stealing and spying as motivation. Emails, fake websites but also malware
compromising the user machines, such as spyware, ransomware [105, 114], and botnets [221], have
become privileged vectors for these attacks. Their multifaceted �nancial implications are �nally
di�cult to evaluate because they may directly, but also indirectly, impact the costs and the rev-
enues of companies and particulars [130]. In 2007, about 500 organizations have reported to the
Computer Security Institute a total loss due to cybercrime estimated to 66.9 millions of dollars,
among which 8.9 millions are inputed to malware only [42]. Surprisingly, the people behind these
cybercrime businesses do not always possess high technical skills. They often call upon developers
to design automated tools for the generation of the malware variants involved in their attacks. It
thus becomes necessary to �nd new techniques of malware detection o�ering a better coverage but
also a better resilience to cope with variant generation.

1.1 Exposing problem and thesis statements

Research on malware is a domain where terminology is the subject of ongoing discussions. Pro-
viding a standard malware naming scheme is an open problem that di�erent organizations try to
address. Even on the basic de�nitions some disagreement may arise. Global information on the
standardization progresses can be found on the websites of the Computer Antivirus Researcher's
Organization (CARO1), the Common Malware Enumeration initiative (CME2) or the European
Institute for Computer Antiviral Research (EICAR3). For a better understanding, it is important
to use a consistent terminology along the dissertation. This is why this introduction begins with
very basic de�nitions which may vary in some points from other work in the �eld.

Malware: Malicious Software or Malware correspond to autonomous software agents, developed
as attack vectors for the purpose of compromising a large range of information systems.

Malware variants: Two malware instances are said variants if they share a signi�cant portion of
common code. In other words, variants are instances developed on the basis of a common source.
The original malware instance from which variants are derived is called the strain.

Malware families: Malware instances are parts of a family if they share some global functioning.
Malware are globally divided into two families, namely self-replicating and simply infecting agents
[94, Chpt.4]. This division is shown in the diagram of Figure 1.1. With regards to self-replicating
agents, the family is sub-divided into viruses infecting programs of the local host and worms
replicating over remote systems through vulnerabilities or user errors. With regards to infecting

1http://www.caro.org/tiki-index.php?page=CaroNamingScheme
2http://cme.mitre.org/cme/
3http://www.eicar.org
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Figure 1.1 - Hierarchy of the malware families. Taken from [94], the
diagram illustrates the division between self-replicating and non-replicating malware.
Four sub-divisions are then applied according to common characteristics.

agents, the family is divided into logical bombs, hidden in applications until they are triggered, and
Trojans providing hidden services. This is not a partition in the strict sense of the term, but rather
a de�nition of common functionalities that malware can combine. For example, bots constitute
particular Trojans whose services are remotely accessible But to constitute groups of compromised
machines, usually called botnets, they may also propagate using worms techniques.

Malware detection: Malware detection is the procedure of analyzing a given program in order
to determine its maliciousness. Detection di�ers from traditional analysis by the fact that neither
the source code nor debugging information are available. Malware can even deploy protection
mechanisms to hinder this analysis. According to its precision, the analysis can eventually provide
the exact name of the malware and even identify di�erent variants. Detection is automated and
embedded within anti-malware products monitoring the programs introduced inside the system.
An appropriate recovery procedure is required whenever a piece of malware is detected.

Malware prevention: Prevention di�ers from detection in that it is preemptive. Measures of
prevention are protections designed with the objective of preventing malware from penetrating
inside the system in the �rst place.

Malware classi�cation: Malware classi�cation di�ers from detection in that it presupposes that
the analyzed program is malicious. By �nding some similarities between malware instances, clas-
si�cation determines to which families they belong to. Classi�cation is often deployed beforehand
to ease and prioritize the work of the analysts responsible for updating the detection techniques.

To these de�nitions correspond di�erent research perspectives on malware. Globally, two main
research approaches actually coexist, namely, research on theoretical models started from the orig-
inal works in computer virology and research on operational techniques for the conception and
the analysis of malicious codes. At the present time, these two approaches are strongly divided
and yet; each of them has strong advantages. On the one hand, the theoretical models can pro-
vide proofs of existence and decidability which are fundamental in the way the problems must
be addressed. From the design of a solution it becomes possible to formally assess its coverage,
to identify unsolved instances of the problem and to verify that its complexity is not prohibitive.
Unfortunately, existing theoretical models rely on functional paradigms, such as Turing machine or
recursive functions, which prove more and more distant from our perception of current information
systems, where interactions and concurrency are key features. On the other hand, the operational
techniques can provide approached solutions to problems such as detection which are undecidable.
The current detection techniques tend to come from this operational approach. Contrary to theo-
retical models, the e�ectiveness or the failure of these techniques can not be guaranteed on the long
term. Inside these two approaches, the models tend to multiply with no attempt of combination
to our knowledge. This observation leads us to the statement of the thesis.
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Figure 1.2 - Gap between theoretical and operational research.
This gap �nds its explanation in the opposite origins of these domains. The theoretical
researches start from the abstract computational foundations whereas the operational
researches always start from experimentation and practical cases of implementation.
Between the two, a zone of transition remains open for new research perspectives.

Problem statement: In malware research, theoretical models and operational techniques of
analysis present complementary strengths and weaknesses. Still, common foundations between
these two domains have been insu�ciently explored, hindering any pro�table combination.

Thesis statement: The notion of malicious behavior is common to both theoretical and
operational research domains. Establishing a reference formalization of malicious behaviors
may contribute to bridging the gap between these two domains.

In order to solve the problem and validate the thesis statement, we have organized the di�erent
explorations according to a bidirectional approach. As pictured in Figure 1.2, the current theo-
retical and operational works constitute the two starting points from which we try to converge.
The �rst direction of the approach starts from practice towards theory using formal grammars and
semantics. The desired goal is to provide a common behavioral model that can be declined for the
di�erent techniques of analysis while remaining su�ciently abstract to increase the coverage and
the genericity of actual detectors. A certain number of objectives are subtended:

• Objective 1.1 : establishing a reference behavioral model based on the �nality of the malicious
behaviors and no longer their technical implementation.

• Objective 1.2 : generating more robust signatures inside the model in order to describe the
most common individual behaviors encountered in malware.

• Objective 1.3 : providing a detection method recognizing the generated signatures while
assessing its coverage and performance both from theoretical and operational perspectives.

• Objective 1.4 : providing a mechanism of translation working both ways, from the behavioral
model towards the implementation and conversely.

• Objective 1.5 : suggesting an evaluation methodology for behavioral signatures to complement
the existing test procedures missing behavioral detection.
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Conversely, the second direction starts from theory and the existing models, focusing on self-
replication. It tends towards practice by introducing a transformed model founded on process
algebras [179]. Intuitively, these algebras are closer to the current behavior of information system,
where interaction play an important role. New objectives are subtended by this second direction:

• Objective 2.1 : introducing interactions within the theoretical models existing in computer
virology, in order to obtain a vision closer to the behavior of current information systems.

• Objective 2.2 : establishing formal proofs for the existence of particular classes of malware as
well as providing proof of decidability and resilience for various detection techniques.

1.2 On the concept of behavior

The concept of behavior being the central point of the thesis statement, the term must be clearly
de�ned to understand precisely what constitutes the behavior of a program. To introduce the
concept, Section 1.2.1 brie�y recalls the de�nition of behaviors in animal biology, which has been
studied for decades. Section 1.2.2 then transposes the concept to computer science with a second
de�nition of program behaviors. According to the adopted de�nition, malware detection will then
be reduced to making the distinction between malicious and legitimate behaviors.

1.2.1 Behavior in animal biology

The study of behaviors is a fundamental issue in the understanding of the thought mechanisms,
being either human, animal, arti�cial or more generally from any cognitive system. A cognitive
system is by de�nition a complex system capable of acquiring, storing, processing and transmitting
information. In that sense, a computer virus can be considered as a cognitive system. In fact, the
behavioral issue is not speci�c to animal biology but transcends disciplines; it can be related to
several scienti�c branches such as sociology, philosophy and even arti�cial life.

The concept of behavior, the closest to the one accepted in computer science, is probably the
one accepted in ethology. Etymologically, ethology comes from the ancient Greek "ethos" meaning
behavior and "logos" meaning study. Appeared in the 17th century, this science addresses, from
a biological perspective, the behavior of animals inside their natural environment. Since the work
from K. Lorenz in the middle of the 20th century [170], a de�nition commonly acknowledged for
behaviors is the set of observable reactions from an animal submitted to external stimulations.
The concept of behavior is thus strongly linked to interactions with the external environment.
Stimulations and reactions at the basis of behaviors are �nally reduced to exchanges of information
between the animal and its environment. According to the characteristics of these exchanges,
researchers have distinguished four categories of behaviors [148].

Stimulus-response behaviors: The most obvious behaviors rely on stimulus-response and are
quali�ed of simple behaviors. The reaction resulting from the external stimulation is purely
deterministic; it only depends on the nature of the stimulation. A same stimulation always
generates an identical reaction, just like re�exes. These behaviors may be formalized by
simple functional associations between inputs and outputs.

Delayed response behaviors: Contrary to the previous ones, delayed response behaviors are
quali�ed of complex behaviors. The reaction does not only depend on the nature of the
present stimulation but also from previous stimulations. The �nal decision about the ap-
propriate reaction requires memorization and correlation with the previous stimulations. A
same stimulation history �nally generates an identical reaction.

Motivation-based behaviors: Still quali�ed of complex, motivation-based behaviors are no
longer purely reactive. The observed reaction can no longer be put into relation with an
external stimulation. The stimulation remains internal and is called the motivation.
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Adaptive behaviors: Adaptive behaviors are even more complex and have the capability to
evolve. The historic of stimulations and reactions are put into relation with the modi�cations
of the environment resulting from these reactions. According to the perception of these
modi�cations, the reaction may be modi�ed when confronted to a similar situation.

During the exchanges between the entity and its environment, simple signals are exchanged
which must be interpreted by the entity. This is particularly true for the complex behaviors that
we have just seen. This interpretation requires some capacities of representation for the state of the
environment, as well as capacities of memorization for these states at a given time. The elements
from the external environment play a functional role of mediators between the entity and the
environment. The purpose of those elements is subjective and heavily depends on the life cycle of
the entity. The life cycle is a set of generic principles under which perspective, the understanding
of behaviors explains the �nal purpose of the entity.

Survival instinct: For living entities, their survival depends on the satisfaction of their primal
needs. With regards to the satisfaction of those needs, a distinction is made by the entity
between useful or harmful elements present in its environment.

Replication: The survival of the species depends on the duplication of their entities. Replication
is present at the cellular level as well as the animal level through reproduction. The entities
must be capable of recognizing the elements from the same species [238].

Cooperation: For cooperation, the entity must distinguish the external elements capable of play-
ing a bene�cial role as mediator. For this, a communication must be established between the
entity and the external elements.

1.2.2 From biology towards computer concepts

In computer virology, the parallel between computers and biology is very strong as con�rmed by
the vocabulary in use in the domain. As a matter of fact, the notion of life cycle introduced in the
previous section may also be applied to malware [94, Chpt.4][238]. We are now going to see how
the biological concept of behavior can �nd its counterpart in computer science.

According to Section 1.2.1, the �rst key point of the concept of behavior is the external en-
vironment. So it is for computer programs in general. A computer program is basically an inert
sequence of data. Its functioning makes sense only if placed inside an execution environment, just
like a sequence written down on a Turing Machine tape. The execution environment provides the
program with accesses to its constituting elements: resources and services. The di�erent categories
of behaviors already presented all require exchanges of information between the entity and its en-
vironment. In computer sciences, information is exchanged between the program and the elements
of its execution environment through interactions. Modeling the environment and the notion of
interaction thus constitutes the foundation of the notion of program behavior. This principle will
be kept all along the dissertation. Coming back to the foundation of virology, F. Cohen de�ned
program behaviors through their use of system services. De�nition 1 is adapted to o�er precisions
on the notion of system services. This notion is replaced by the notion of interaction with hardware,
software and human resources which covers, not only accesses to system calls, but also manipu-
lations of the memory, usage of the processor or human interventions. These interactions may be
automatic or conditioned, whether they are executed regardless of the system state, or depending
on the current state or user inputs. Originally mentioned in the biological de�nition of behavior,
the de�nition also introduces the notion of observation with the choice of an observational frame
of reference. Depending on the chosen frame, the set of observable interactions may vary. Inside
a computer, the observational frame may progressively include the user space, the system kernel,
the hardware level (requires speci�c tools such as bus analyzers).

6



1.3. Two opposite approaches for behavioral detection

De�nition 1 The behavior of a program is conveyed by its interactions (automatic or conditioned)
with the hardware, software and human resources of its execution environment. These interactions
must be observable from the chosen frame of reference.

Another similarity is that malware perceive their environment according to their own goals.
Malware have their own life cycle that obviously share some common points with living entities.
Their �rst goal, in particular for self-replicating codes, is to survive inside the environment they
infect. Malware must guarantee their execution in a hostile environment where they are non-
desired. This concept of program survival may be conveyed by the computational notion of non-
termination. The survival and spreading of the species are equally important goals satis�ed by
malware through replication and propagation capacities. The elements of the environment are thus
perceived through their utility in achieving these goals. Network connections will be perceived
as bene�cial because they constitute potential propagation vectors. On the opposite, antiviral
processes trying to terminate malware executions will be perceived as harmful. Any behavioral
model should eventually adopt the perspective of malware by integrating this notion of utility.

1.3 Two opposite approaches for behavioral detection

Even though behavioral detection seems a recent trend in the antiviral community, its principles
are not really new. In 1986, F. Cohen already established a basis for behavioral detection within his
�rst formal work [68, 69]. In De�nition 1, we have made explicit the characteristics constituting the
behavior of a computer program. According to this de�nition, predicting the malicious nature of a
program by its behavior still remains equivalent to de�ning what is, and what is not a legitimate
interaction with the system resources and services. As stated by F. Cohen, two opposite approaches
can apprehend the problem whether the reference behavioral model is built on legitimate programs
or on malicious programs. In fact, these two approaches have complementary properties in terms of
soundness and completeness and their resulting error rates. For more details, Figure 1.3 explains
the notions of false positives and false negatives, and their relation to the soundness and the
completeness of the models. Sections 1.3.1 and 1.3.2 then respectively address legitimate-based and
suspicious-based models. Section 1.3.3 �nally compares intrusion detection to malware detection
in order to explain why the suspicious approach prevails in the malware domain.

Figure 1.3 - Soundness and completeness of behavioral models. The
�gure represents the comparative coverages of the behavioral models [62]. Legitimate-
based models, if incomplete, tend to generate false positives for legitimate usages left
uncovered, and thus deemed malicious. If unsound, they may generate false negatives
by covering malicious usages. On the opposite, suspicious-based models, if incomplete,
tend to generate false negatives for suspicious behaviors left uncovered. If unsound,
they may generate false positives by covering legitimate behaviors, thus deemed mali-
cious. Globally, completeness remains the harder property to achieve for both models.
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1.3.1 Modeling legitimate behaviors

Considering the approach which models legitimate behaviors, detection is achieved by measuring
deviations of the program behavior from the reference model. Modeling legitimate behaviors goes
back to early work on intrusion detection published by J. Anderson [39] and D. Denning [80]. The
great advantage of this approach lies in its capacity to detect completely unknown malware because
they do not �t the legitimate model. Nevertheless, de�ning what is the behavior of legitimate
programs reveals itself extraordinary complex. An obvious reason is the multitude of applications
existing on a system, whose nature may di�er greatly. A web or mail client exhibits an intensive
use of the network facilities whereas a multimedia player decodes large bu�ers of data and renders
them over physical devices such as the graphic or sound cards. No common characteristics can be
extracted between these two types of application; a di�erent pro�le is eventually required for each
type of application. The de�nition of the behavioral model thus requires a long learning process
which must be iterated for each additional application.

In order to build the model, the available information is often too large to be considered as
a whole: several megabytes of code, thousands of system calls. As a consequence, legitimate
models are often statistical, either using statistical moments or Markovian Models, and thus prone
to incompleteness [104, 171]. Statistical models often fail to integrate border-line or peculiar
behaviors, either because they do not exhibit enough di�erences from malicious behaviors, or
because they are scarcely found in the learning pool. As Figure 1.3 illustrates, these uncovered
behaviors are automatically considered malicious, raising false positives. In addition, the learning
process must be constantly updated because major environment changes like the installation of
new services or version upgrades may make the model inadequate. Such models are out of the
scope of this thesis but, for further information, the reader is invited to refer to the work on host-
based intrusion detection led by S. Forrest et al. [236] and the recent work on the use of Markovian
Models to capture legitimate uses of systems [249].

1.3.2 Modeling suspicious behaviors

When a model proves too complex to be de�ned exhaustively, the problem can intuitively be
addressed by working on its complementary. The complementary approach is to specify descrip-
tions for malicious behaviors, in other words behavioral signatures. Detection is then achieved
by recognizing these signatures among the observed behaviors of the programs. References to the
existing suspicious models are provided in the state of the art of the next chapter. The advantage
of this second approach lies in the fact that well crafted signatures should theoretically detect,
with lessened risk to �ag legitimate programs, the malware instances for which they were spec-
i�ed. However, overly speci�c signatures often constitute an important drawback, providing the
attacker with opportunities to evade detection. Simple modi�cations performed at the signature
level within malware are su�cient to bypass detection.

In order to build the model, the available information is identical to the legitimate approach
except that the information is no longer considered as a whole; only the part really involved in
the malicious behavior is extracted to build the signature. Generic or parametric elements can
be integrated to the signature to increase its resilience, thus allowing the detection of unknown
malware as long as they are reusing known behavioral techniques. Still, the signatures are elabo-
rated from past samples meaning that unknown malware can no longer be detected as soon as they
use innovative malicious techniques. Completeness of the behavioral signatures is thus hard to
achieve, in particular in the case of unforeseen new behaviors. As Figure 1.3 illustrates, malicious
behaviors matching no signatures are automatically considered legitimate, raising false negatives.
On the other hand, the false positive rates tend to be lower than for legitimate models.
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1.3.3 Di�erence of perspective between virology and intrusion

In the antiviral community, maintaining a low rate of false positives is critical and is often prevailing
over the false negative rate. Antivirus products are partly meant for average users who can not
be trusted to make the distinction between a false and a true positive. Consequently, the malware
identi�cation must be precise and the right countermeasure automatically applied without user
intervention. As a result, the second approach of modeling and detecting suspicious behaviors is
mainly adopted. It is interesting to parallel antivirus products with intrusion detection systems,
where the perception is diametrically opposed. In the intrusion domain, the terms of behavioral
detection always refer to legitimate models. The suspicious models used in virology are considered
as simple signatures for knowledge-based detection, also called misuse detection [78, 172]. The
use of legitimate models is clearly motivated by the fact that it is impossible to generate misuse
signatures for the thousands of vulnerabilities discovered every year. Malicious techniques are
somehow less numerous than vulnerabilities and misuse models seem more adequate to the present
problem of malware detection.

1.4 Dissertation outline

This dissertation is organized as follows. Fundamental de�nitions related to malware and malicious
behaviors have been presented in introduction. Chapter 2 presents existing behavioral detectors
and their underlying behavioral models. It highlights the multitude of techniques and the global
lack of consistency in the �eld, in particular between dynamic and static techniques. To see how
these techniques relatively stand, we have proposed a taxonomy of behavioral detectors which is, to
our knowledge, the �rst of its kind. This taxonomy concludes with the lack of a reference behavioral
model, working both dynamically and statically. The construction of this model constitutes the
core of our proposal. From there, the dissertation is split into two parts corresponding to top-
down and bottom-up approaches in the construction, starting either from the operational analysis
of malware or from their theoretical formalization.

The �rst part of the thesis addresses the construction of a grammatical model for malicious
behaviors. To ful�ll Objective 1.1, Chapter 3 introduces the Abstract Malicious Behavioral Lan-
guage (AMBL) as a reference model. The language natively supports computations, multiple-path
structures as well as interactions and concurrency. It is thus adapted to both static and dynamic
analyses and constitutes an improvement compared to existing models which are bound to a single
type of analysis. The AMBL is speci�ed by an attribute-grammar whose semantic describes the
perception of the external objects of the environment, through binding and typing. The semantic
level enables the description of the principle of behaviors rather than their implementation. To
illustrate the language expressiveness and ful�ll Objective 1.2, the chapter is completed with sev-
eral descriptions of typical malicious behaviors in the AMBL. The set of descriptions is richer than
existing ones and covers behaviors from di�erent malware families. Di�erent use cases for these
descriptions are provided in the following chapters.

Chapter 4 �rst addresses the problem of behavioral detection. In response to Objective 1.3, a
detection method is built on parsing techniques and pushdown automata. However, the method
di�ers from traditional parsing by �ltering irrelevant inputs and handling multiple behavior in-
stances. To �lter irrelevant inputs, it transposes the notions of prerequisites and consequences
from intrusion scenarios. To handle multiple instances, it uses derivation duplication from intru-
sion detection by trail analysis. The formal construction of the automata has helped us to assess
the complexity of the method which is often omitted for existing detectors. In complement, exper-
imentations have been led on hundreds of samples to assess its coverage. To feed the automata in
the �rst place, the translation from implementation to the model, required by Objective 1.4, has
also been covered, with support for Windows Executables, Visual Basic Scripts and JavaScripts.

9



CHAPT 1. INTRODUCTION

Chapter 5 then addresses the formalization of mutations at the behavioral level. Behavioral
mutations are formalized by the reverse translation from the model towards implementation by
the use of non-deterministic compilation techniques. These mutations supersede existing mutation
techniques by reaching a semantic level where the others remain purely syntactic. Implemented
in a prototype, the behavioral mutation engine proved itself useful for the evaluation of antiviral
products, and in particular behavioral detectors. To ful�ll Objective 1.5, an evaluation method-
ology is proposed in Chapter 6. The methodology has been successfully applied and results are
given for di�erent products of the market.

Chapter 7 concludes the grammatical part with the contributions and proposes perspectives.

The second part addresses the construction of a process-based algebraic model for malware.
Chapter 8 studies the adaptation of existing functional viral models to interactive computations.
The introduction of interactions inside these models is problematic, and is only solved by the intro-
duction of oracles masking the mechanisms behind. However, this preliminary study has allowed
us to de�ne new classes of viruses and study their impact on detection. The conclusions of this
study motivate the migration to process algebras. To ful�ll Objective 2.1, Chapter 9 introduces a
new viral model based on the join-calculus. Starting from previous models, it rede�nes the notion
of self-reproduction in a distributed way, with the possible intervention of the system. Just like
functional ones, the viral model is parametric and allows the re�nement of the replication mech-
anism and the payload. Particular re�nements are provided for companion viruses and Rootkits.
Rootkits, being reactive and non-terminating, are hardly covered by functional models. They con-
stitute an interesting and concrete indicator of our model expressiveness over existing ones.

Chapter 10 explores the construction of protections over the process-based model in response
to Objective 2.2. The conservation of the fundamental results about detection and prevention is
�rst checked. Detection remains undecidable. However, it has been observed that dynamic name
generation strongly impacts detection. We actually proved that detection becomes decidable in
the fragment of the join-calculus without name generation. After expressing malware propagation
as an illegitimate �ow of information towards the system, prevention remains only achievable by
resource isolation. However, it has also been observed that name scoping strongly impacts preven-
tion. Prevention solutions can thus be designed on access tokens with restricted scope. In addition,
existing techniques of behavioral detection have been expressed within the model: detection au-
tomata but also behavioral blocking and tainting expressed as typing mechanisms. Because they
are interaction-based, these techniques could not be formalized within functional models.

Chapter 11 concludes the algebraic part, recalling the contributions and proposing perspectives.

Chapter 12 �nally concludes the whole thesis by comparing the advances of the two approaches.
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T
he principle of behavioral detection is illustrated in this chapter with a presentation
of existing techniques. In Section 2.1, the need of behavioral detection is �rst explained

by its advantages over current scanning techniques. Focusing on detection by suspicious models,
Section 2.2 describes the common architecture and shared properties of behavioral detectors. This
common architecture can support di�erent detection techniques which are described in details in
Section 2.3. In fact, this section goes beyond a simple state of the art. Published in [137, 192], it
provides a complete taxonomy for behavioral detectors, built on a parallel with program testing.
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In Section 2.4, existing behavioral detectors, both research prototypes and commercial tools, are
then classi�ed as elements of this taxonomy. Section 2.5 �nally draws a synthesis of this survey.

2.1 Why behavioral detection may supersede scanning

Historically, detection by scanning, also referred to as appearance or form-based detection, has
been the �rst technique used to �ght malware. It still remains at the heart of current antivirus
products. In practice, scanning techniques search systems (�les, registry, memory) for suspicious
byte patterns, these patterns being referenced in a dedicated base of signatures. This provides
undeniable operational advantages. Simple algorithms of pattern matching are deployed, their
complexity being optimized and well controlled. In addition, the signature patterns exhibit very low
false positive rates with a precise identi�cation of the threat. Consequently, important constraints
weight on these. A scanning signature is purely syntactic. It must exhibit discriminating properties,
combined with non-incriminating properties for legitimate programs [94, p.147]. A given signature
thus precisely identi�es a malware instance, as shown in Figure 2.1. However, scanning techniques
are de facto limited to the detection of known malware and their trivial variants.

bagle.E 8162∧8166∧8170∧8173∧8175∧8180∧8181∧8187∧8189
bagle.J 7256∧7257∧7258∧7259∧7278∧7279∧7280∧7281
bagle.N 14567∧14574∧14575∧14576∧14577∧14581∧14585∧14586∧14587∧14588

Figure 2.1 - Examples of scanning signatures. Each is speci�c to a variant
of the Bagle worm [95]. The indexes correspond to the bytes making up the pattern.

Behavioral detection, also referred to as function-based detection, still relies on signatures. Yet,
the behavioral signatures are no longer simple byte patterns but complex meta-structures carrying
dynamic aspects and a semantic interpretation. These meta-structures are built from observable
events or instructions, ordered in time and sharing a semantic equivalence, for example a same
e�ect on the memory or the operating system. The scope of the signature may di�er to cover either
the whole execution or independent parts of it, corresponding respectively to the global behavior
of malware as in Figure 2.2 or individual malicious behaviors.

Netsky GetDriveType;{GetLocalTime;}+f=FindFirstFile;

{InternetGetConnectedState;}+{lseek(f);fread(f);}∗f=FindNextFile; ...

Figure 2.2 - Example of behavioral signature. The global behavior of
Netsky variants is represented as a sequence of calls with generic parameters [47].

Programs with distinct syntaxes can basically have an identical behavior. This behavior can
eventually be captured by a single complex signature. As a consequence, a behavioral signature
no longer identi�es a single piece of malware but speci�c functionalities shared by a common class
of malware. Behavioral detection is thus more generic and more resilient to modi�cations than
detection by scanning. The important drawback is that precise identi�cation of a piece of malware
is no longer immediate. This can become problematic when choosing the relevant countermeasure.
Nevertheless, behavioral detection should succeed where scanning must undeniably fail because it
could solve two major problems encountered by the antiviral community.

2.1.1 The signature extraction problem

Scanning actually proves itself completely overwhelmed by the pace at which viral attacks appear
and evolve. An important bottleneck has quickly appeared in the processes of signature generation
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and distribution. Following the discovery of new malware, signature generation is often a process
requiring a manual code analysis that is extremely time consuming. This process is multiplied
by the thousand of malware released every day. Once the signatures are generated, they must
be distributed to the protected systems. In the best case, the distribution process is automated
but, in other cases, this update is manually triggered by users, sometimes days later. Even if the
worm epidemics are no longer the main threat, everybody remembers past attacks such as Sapphire
where more than 90% of the vulnerable machines had been infected in less than 10 minutes [180].
Attacks and protection do not act on the same time scale. Another side e�ect impacting the
distribution process is the alarmingly growing size of the signature bases. Older signatures are
regularly removed for optimization, leaving the system once again vulnerable.

Even if the generation and distribution processes coud be speeded up, scanning signatures
can still be easily bypassed by creating new variants of an existing malware strain. The required
modi�cations are not considerable; they simply need to be performed on the bytes included in
the signature pattern. The numerous variants of the Bagle e-mail worm referenced by malware
observatories illustrate this phenomenon [5]. In a few months, several variants have been released
by simple modi�cation of the mail subject or the addition of a backdoor. Considering more recent
developments, the server-side polymorphic malware Storm Worm constituted a major concern
during the RSA Security Conference in 2007 [31]. Its writers were producing beforehand vast
quantities of variants which were delivered in massive bursts. Each burst contained several short-
lived variants, leaving no time to develop signatures for all of them. In the long term, experts are
not able to cope with such proliferation. An explanation to this phenomenon can be found in formal
works led by E. Filiol. These works underline the ease with which signatures may be extracted from
antivirus scanners by a simple black box analysis [95]. Remaining overly simple because of weak
signature schemes, this extraction eventually eases the process of generating undetected variants.

Contrary to scanning signatures, a single behavioral signature, because of its generic features
surpassing the simple synatx, is supposed to detect a majority of the variants built around func-
tionality code blocks coming from a common malware strain. Thanks to the increased signature
coverage, the number of malware to analyze would be reduced, allowing experts to prioritize their
work: a hierarchy focusing uppermost on new innovative strains. In repercussion, the bases storing
behavioral signatures should be of less consequent size and the signature distribution less frequent.
Regular updates remain nevertheless necessary for behavioral signatures, contrary to what certain
marketing speeches claim.

2.1.2 Resilience to automatic mutations

The previous part considered manual evolution of malware. What happens when these evolutions
become automatic mutations along the propagation of malware? Historically, the �rst signi�cant
generation of mutation engines is born with polymorphism [99, p.140][222, p.252]. Polymorphic
malware encrypt their entire code in order to conceal themselves from any potential signature. A
simple variation of the encryption key totally modi�es their byte sequences. A decryption routine
is then required to recover the original code and execute it. It was quickly discovered that simple
emulation could thwart encryption, making the original code available.

Searching for signatures has become far more complex with metamorphism. The malware is not
simply encrypted; its whole body su�ers transformations a�ecting the form of its code while pre-
serving its overall functioning [99, p.148][222, p.269]. With self-containment in mind, it shall prove
useful to present now the most frequent metamorphic techniques as references for the remaining
of the dissertation. Let us consider the most advanced metamorphic engines like MetaPHOR [84].
The mutation process always begins with disassembling the malware code. The disassembled
code is transformed using obfuscation techniques working at the assembly level, before being re-
assembled. At each mutation step, the applied transformations are randomly chosen to introduce
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non-determinism in the process. These transformations correspond to rewriting techniques of dif-
ferent natures, either modifying the data �ow: registers and variables reassignment (Figure 2.3),
equivalent instructions substitution (Figure 2.4) and garbage insertion (Figure 2.5), or modifying
the control �ow: code permutations (Figure 2.6) and construction of opaque predicates (Fig-
ure 2.7). Theoretically, perfect obfuscation is impossible to achieve [41]. Nevertheless, reversing
the ad-hoc transformations presented here is su�ciently costly to hinder detection. More advanced
transformations with proven security have also been recently designed by researchers [44, 46, 53].

1.mov eax, 0 =⇒ 1.mov ebx, 0

2.push eax | 2.push ebx

3.call function | 3.call function

Figure 2.3 - Reassignment. All regis-
ter references are replaced in the code block.

1.mov eax, 0 =⇒ 1.xor eax, eax

2.push eax | 2.push eax

3.call function | 3.call function

Figure 2.4 - Substitution. Substituted
instructions have equivalent e�ects on memory.

1.mov eax, 0 =⇒ 1.mov eax, 0

2.push eax | nop

3.call function | 2.push eax

| add eax, 0

| xor ebx, 0

| 3.call function

Figure 2.5 - Garbage Insertion. In-
serted code does not a�ect memory, registers.

1.mov eax, 0 =⇒ jmp lb1

2.push eax | 2.lb2:push eax

3.call function | jmp lb3

| 1.lb1:mov eax, 0

| jmp lb2

| 3.lb3:call function

Figure 2.6 - Code Permutations.
Instructions are executed in the original order.

1.mov eax, 0 =⇒ mov ebx, 0

2.push eax | comp ebx, 0

3.call function | je lb1

| mov eax, 1

| add eax, FFh

| 1.lb1:mov eax, 0

| 2. push eax

| 3. call function

Figure 2.7 - Opaque Predicate. The value of the predicate is predictable; the
branch containing the original code is always executed leaving the second branch dead.

Two fundamental results demonstrate that mutating malware cannot be detected by syntactic-
level detection techniques. In [220], D. Spinellis has shown that the detection of mutating size-
bounded viruses by signature is NP-Complete. Metamorphic viruses, whose size is unbounded,
are even harder to detect. In [98], E. Filiol has formalized a metamorphic virus as a grammar
describing the original code, coupled with a rewriting system generating new grammars describing
the mutated variants. He actually showed that well chosen rewriting rules could lead to the
undecidability of detection. These two fundamental results are stated in the Theorems 1 and 2.
However, the mentioned mutation techniques only modify the malware syntax; they are not likely
to modify its semantic, at least for the known cases. In other words, mutated variants of a malware
instance always access the system services and resources in an identical way. Behavioral approaches
should consequently o�er a better resilience to syntactic mutations.

Theorem 1 By reduction to the SAT problem, the detection of size-bound polymorphic viruses by
scanning is NP-Complete [220].

Theorem 2 Let us consider a metamorphic malware described by a grammar G. Metamorphic
variants are described by grammars G′ obtained by applying a rewriting system R to G. Semi-Thue
rewriting systems exist for which the detection of metamorphic variants is undecidable [98].
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The resilience of behavioral detection may no longer be true with the possible apparition of
functional mutations described more thoroughly in Chapter 5 [140]. Contrary to existing ones,
these advanced mutation techniques do not modify only the syntax but also the semantic of the
code. The behavioral detection of the resulting mutated variants will be addressed in a new theorem
that will be the pending of the Theorems 1 and 2 for syntactic detection.

2.2 Generic description of a behavioral detector

The previous section emphasized some of the advantages of behavioral detection over syntactic
approaches. These advantages are mainly due to the higher level of interpretation required by
behavioral approaches, which eventually impacts the detector construction. Behavioral detectors
share a hierarchical design which re�ects their common need for an abstraction mechanism to
process raw data into generic features. Before presenting this design, the scope of the behavioral
detector within a global information system must be clearly delimited. Starting from De�nition 1
of the introduction, a behavioral detector identi�es the di�erent actions of a program through its
interactions with the system resources. Based on its knowledge of malware, the detector must be
able to decide whether these actions betray a malicious activity or not. Information about system
use is mainly available in the local host environment; behavioral detectors are thus implemented
as local agents. How malware are, in the �rst place, introduced inside the system is not the main
focus of the detector. In practice, malware can either be automatically introduced through a
vulnerability, which is the concern of intrusion detection, or manually introduced by negligence of
the user. Still, the behavioral detector can locally identify attempts to install, damage, propagate
or introduce new malware from within the system. Generally speaking, antiviral detectors act as a
last local barrier of protection when previous barriers have been successfully bypassed by malware
(�rewalls, intrusion detection and prevention systems...). Now that the scope is clearly established,
the common elements and properties of behavioral detectors can now be introduced.

2.2.1 System architecture and functioning

Globally, behavioral detectors are built according to a hierarchical architecture where the level
of interpretation of the processed data increases along the hierarchy. Their minimal architecture
integrates four main components, responsible for di�erent tasks. The component articulation is
schematically represented in Figure 2.8. The detection process itself follows three sequential tasks:

(1) A �rst component is responsible for data collection. Dynamic capture and static extraction are
considered indi�erently since the intended actions of a program can be observed by both collection
methods. The dynamic method only collects the actions e�ectively performed whereas the syntactic
method collects all potential actions. In practice, raw data can be collected from di�erent sources
such as the local host for personal computers or honeypot hosts deployed in strategic points for
bigger infrastructures such as company networks [167][192, chpt.3].

(2) Since behavioral detectors work at a higher interpretation level than simple scanners, a second
component is required for the analysis and the interpretation of the collected data. This component
extracts the important characteristics of the collected data and interprets them according to its
perception of the system. The extracted characteristics are �nally formatted into an intermediate
representation and fed into the last part of the detection process.

(3) The last component embeds a matching algorithm to compare the intermediate representation
to the behavior signatures. As a result, the program is labeled as malicious or benign.

A preparatory step is obviously required prior to detection. The behavioral signatures must be
generated beforehand in order to feed the base of behaviors:
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Figure 2.8 - Functional Design of Behavioral Detectors. This de-
composition brings into light the articulation between the signature generation and the
detection process. With respect to detection, each one of the sequential tasks making
up the process, interprets data to a higher level, until their �nal assessment.

(4) An initial task is required for the generation of the behavioral signatures. As for detection,
the signature generation relies on common properties that are extracted by analyzing a pool of
known malware. The extracted signatures are stored in a dedicated database feeding the matching
algorithm. Contrary to the other tasks, the signature generation may not always be automated
and thus implemented as a software component. In any case, a dedicated process is required, may
it be organizational, requiring the manual intervention of human analysts.

2.2.2 Properties of behavioral detectors

Because of their common architecture, behavioral detectors also share a set of common properties.
These properties must be thoroughly de�ned since they constitute the fundamental basis for de-
tector assessment which will be covered in Chapter 6. The coming taxonomy will show that the
di�erent behavioral detection techniques satisfy these properties to various degrees.

Completeness and Accuracy: Completeness and accuracy together guarantee the coverage of
the detector [62, 144]. A system which exhibits a high rate of false negatives is said incomplete
because it fails to detect too many malware. These failures may be explained either by
incomplete behavior signatures or by uncollected data. On the opposite, accuracy determines
the system tendency to false positives. Accuracy is strongly impacted by the soundness of
the chosen signatures and the relevance of the collected data. With respect to coverage, two
other properties are indirectly involved:

- Adaptability: When a system is deemed inaccurate or incomplete, modi�cations must
often be performed on the behavioral signatures. Adaptability expresses the ease of update
of the chosen behavior model.

- Resilience: Malware often introduce bias inside the collected data in order to blur any
similitude with the behavior models. Obfuscation and mimicry attacks are respectively static
and dynamic techniques, e�ective against the matching process. The behavior model should
resist such attempts in order to maintain its coverage.

E�ciency: E�ciency is often reduced to performance by measuring the resource consumption
introduced by the detector in its environment. This consumption is undoubtedly worth con-
sidering since the overload it introduces explains the belated interest in behavioral detection.
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Notation Description
L Decision in logarithmic time using a deterministic algorithm
P Decision in polynomial time using a deterministic algorithm
NP Decision in polynomial time using a non-deterministic algorithm
PSpace Decision in polynomial space using a deterministic algorithm
EXPTime Decision in exponential time using a deterministic algorithm

Table 2.1 - Classes of complexities. The table references, by increasing order,
the most common classes of time and space complexities for algorithms [190]. In terms
of algorithm sets, the following inclusions hold: L⊆ P ⊆ NP ⊆ PSpace ⊆ EXPTime.

For several years, computing power, memory space and bandwidth have been insu�cient to
support the deployment of such complex techniques. Performance may vary according to
various factors such as the data collection mechanism, the deployment of the detector on
personal computers or dedicated honeypots. However, e�ciency should not be restricted
to performance only. More critically, the computational complexity of the detection algo-
rithm constitutes the ultimate boundary to its e�ciency. The main classes of complexity are
recalled in Table 2.1. In case of approximate methods, reducing the precision may reduce
complexity accordingly. Additional dynamic properties are also introduced by the fact that
the malware may be active during the detection process:

- Timeliness: Timeliness checks whether the detection decision is reached before the dam-
ages caused by running malware become irreversible.

- Fault-tolerance: Fault-tolerance assesses the capability of the behavioral detector to
withstand external perturbations. Malware often deploy anti-analysis techniques such as
anti-disassembly but they may also launch intentional attacks against the detector. If the
detector presents vulnerabilities, these attacks are made even easier for malware [247].

- Unobtrusiveness: On the opposite, the behavioral detector must not introduce pertur-
bations in the malware execution. Unobtrusiveness guarantees that the observed behavior is
not altered by the detector. The virtual environments used for malware analysis constitute
a counter-example. Because they do not completely simulate reality, they may be detected
by malware which stop their execution to avoid the collection of important information.

2.3 Taxonomy of behavioral detectors

To our knowledge, the coming taxonomy of behavioral detectors was the �rst covering the subject
and was published in [137, 192]. We have built this taxonomy on a parallel between behavioral
detection and program testing. The detection process is divided between two axes corresponding
to simulation-based veri�cation and formal veri�cation. In Section 2.2, the important components
have been identi�ed inside the architecture of behavioral detectors. As a matter of fact, this division
into components structures the coming taxonomy. The di�erent detectors have then been classi�ed
according to the di�erent tasks of the detection process. The overall taxonomy is represented in
Figure 2.9; its di�erent elements are described throughout the Sections 2.3.2 and 2.3.3 . To simplify
reading, the elements are grouped by thematic pairs: data collection grouped with interpretation,
and behavioral models grouped with matching algorithms. A third transversal axis is �nally
introduced in Section 2.3.4 to address the behavioral model generation.

The introduction chapter distinguished behavioral detectors relying on legitimate models from
those relying on suspicious models. Since it remains the main focus of the thesis, only detection
of suspicious behaviors is considered in the coming taxonomy. However, detection relying on
legitimate behaviors is brie�y presented in Section 2.3.1 on speci�cation-based detection [192].
This section constitutes a short overview to see how this approach articulates with the others.

17



CHAPT 2. TAXONOMY OF BEHAVIORAL DETECTORS: A STATE OF THE ART

Figure 2.9 - Taxonomy of Behavioral Detectors. The classi�cation is
globally divided into two axes corresponding to simulation-based veri�cation (see Sec-
tion 2.3.2) and formal veri�cation (see Section 2.3.3). The veri�cation by the matching
algorithm is directly impacted by data collection: dynamic or static. The behavioral
model generation is introduced as an additional transversal axis (see Section 2.3.4).

2.3.1 Speci�cation-based veri�cation of legitimate behaviors

Even if detection of suspicious behaviors remains our main concern, detection founded on legitimate
models can obviously be deployed in the context of malware. For this reason, a short overview
is at least given, containing su�cient references to the literature for the interested reader. The
problem with this approach is that it is extremely di�cult to de�ne generic behavioral models
for the numerous classes of existing applications. A behavioral model, called the speci�cation, is
thus speci�cally crafted for each critical application that requires protection. Built beforehand, it
speci�es the invariant properties and the authorized states during the execution. The application
is then delivered coupled with the obtained speci�cation. During execution, the application is
dynamically monitored to guarantee its compliance with the delivered speci�cation.

By comparing the real execution with the expected healthy behavior, speci�cation-based detec-
tion is particularly adapted to protect applications against code-injection attacks. Vulnerabilities,
such as bu�er or heap over�ows, can be used to redirect the control �ow towards an injected ma-
licious code. The triggered malicious behavior is automatically detected as long as the injected
code is neither a part or a mimicry of the original speci�cation [75, 232]. To protect applica-
tions against such attacks, the speci�cation of the legitimate behavior covers important activity
indicators such as the stack activity [88, 89, 115], or the sequences of emitted system calls, also
called call graphs [106, 115, 217, 231]. This speci�cation is frequently built by a static analysis
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of the application requiring the construction of the control-�ow graph; it may also be built using
machine learning techniques [184, 250]. To support the speci�cations, an application monitor must
be integrated in the system architecture in order to dynamically verify the compliance of the ac-
tivity. The dynamic veri�cation of the speci�cations is mainly addressed by automata. Without
giving much details since detection based on automata will be addressed further on, legitimate
behavioral speci�cations sometimes require stochastic extensions such as Markov processes instead
of deterministic automata [176, 184, 250].

2.3.2 Simulation-based veri�cation of suspicious behavior

Referring to program testing, the class of detectors based on simulation-based veri�cation covers
all black-box procedures deployed for dynamic analysis [77]. This kind of veri�cation thus requires
a dedicated simulation environment to collect the sequence of discrete events intervening along the
current execution path. These events are ordered, interpreted and formatted before being �nally
compared to the behavioral signatures. The various comparison methods are described just after
the collection and interpretation process.

2.3.2.1 Data collection and interpretation: Dynamic monitoring

Detecting malware during their execution requires information observable from an external agent.
Historically, the interception of interrupts was, on older operating systems, the �rst source of infor-
mation about resource accesses. This technique has been progressively replaced by the interception
of system calls with the apparition of 32-bit operating systems. In order to comply with the C2
criteria from the Orange Book [189], system calls have become a mandatory passing point to access
kernel services and objects from the user space. Because they can not theoretically be bypassed,
system calls have become a reliable source of information. These calls must not be considered alone
but attached to the context in which the calls are emitted. As illustrated in the Figure 2.10, the
parameters, the identi�er of the calling program as well as its privilege level are useful information
to re�ne the interpretation. In [184], D. Mutz et al. argued quite rightly that any system call is,
by nature, legitimate; only the context and the parameters betray a malicious purpose.

#ZwReadFile#�������������������������������������-#
Process: Id = 2884 "Word.exe" - Privilege Lv = user

Time: 16/01/2007 - 1:53:34:536

Parameters: hFile = C:\document.doc:0x24E6B0
lpBuffer = 0x13E67C

nNumberOfBytesToRead = 10

nByteOffset = 0

#������������������������������������������������-#

Figure 2.10 - Extract from a Trace of System Calls. The whole trace
is made up of a list of system calls with various attached information. The process
identi�er is important to �lter the system calls from the targeted process.

The nature of the collected data is not the only factor to consider for classi�cation. In their work
on intrusion detection based on system calls [236], S. Forrest et al. underline the importance of the
interpretation and the representation of the collected data. These two processes strongly in�uence
the analysis and the detection. Sequential representations are prevalent but other representations
like frequency specters could be considered [182]. The collection mechanisms are equally important
because they may impact di�erent properties of the detector such as completeness, performance
or unobtrusiveness. The principal monitoring techniques are detailed below:

19



CHAPT 2. TAXONOMY OF BEHAVIORAL DETECTORS: A STATE OF THE ART

Real-time capture: The execution of malware is directly monitored in their environment without
restrictions. Real-time capture is often criticized because malevolent actions are e�ectively
executed. Timeliness is thus of utmost importance before the point of no return of the
infection is reached. The interception of system calls in real-time is mainly achieved by
API hooking, a bivalent technique often used by rootkit writers as well [129]. The overload
generated by the interception and the call interpretation may be perceptible by the user.
Yet, it remains less signi�cant than for the other capture techniques.

Real-time with action recording: Action recording is an adaptation of real-time capture where
the actions taken by the monitored malware are recorded in association with the intermediate
states of the environment [228, 233]. This trade-o� bene�ts from the advantages of real-time
monitoring while preserving a possibility to restore the environment in a healthy state as soon
as a threat is detected. The quantity and the format of the stored information are important
parameters to control the size of the records. This countermeasure remains possible as long
as the restoration mechanism and the records are not compromised.

Sandboxes: Monitored programs are �rst run in a sandbox where their execution is isolated in
a con�ned space [3, 7]. This technique, �rst popularized by JAVA, constrains the execution
in an escape-proof memory space with low privileges and limited accesses to services. The
external observer bene�ts from a total access to the memory space and a step-by-step control
over the execution. Sandboxes thus o�er better observation facilities than real-time capture.
On the other hand, they consume signi�cant resources by introducing an intermediate layer
between the program and its environment. To reduce the overload, only suspicious code
portions of programs are monitored. According to the activity observed in the sandbox, the
programs deemed legitimate can resume their normal execution without hindrance. Unfortu-
nately, sandboxes can easily be detected since they only provide a restricted set of services.
Di�erent techniques usually deployed against debugging can successfully detect sandboxes:
for example checking the execution time or moving code inside error handling structures.
Once the sandbox is detected, malware can adapt their execution to look benign. If the
privileges and service accesses are not properly restrained, malware can even escape through
open interfaces of the sandbox.

Virtual Machines: Virtual Machines (VM) can emulate a whole environment with, a priori, a re-
duced risk of detection. In e�ect, the host environment controls every access to the hardware
from the unaware virtualized system. In the case of purely software virtual machines, system
calls can be intercepted at the level of the emulated processor by recognizing the INT 2E

and SYSENTER instructions. Data collection and interpretation can be performed both before
entering and after returning from the system call, without leaving any trace for the virtual
environment that can carry on its execution [43]. Compared to sandboxes, virtual machines
can emulate any �ctive resource, either hardware (network connections) or software (mail
or peer-to-peer clients). These resources are often used malevolently by malware either to
propagate or collect valuable information. Thanks to virtualization, these interactions can
be observed without risks for the host. However, virtual machines require large amount of
resources, preventing their use for operational detection, except with restricted virtualization
support (�le system, registry). Virtual machines are mainly used by experts and researchers
for analysis and classi�cation. Like sandboxes, they can also be detected by the observed pro-
gram, but no escaping technique has been reported yet [91, 207]. Besides, virtual machines,
in particular those supporting hardware-based virtualization, may be used by malware to
bypass monitors by running at a lower level than the operating system [83, 208].

The chosen monitoring technique must be adapted to the desired purpose. Virtualization
should prevail in the case of laboratory analysis, whereas real-time capture is more adequate for
operational detection. Independently from the chosen technique, dynamic monitoring globally
exhibit the same strengths and weaknesses.
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Strengths: Dynamic monitoring proves resilient to most mutations techniques, like polymorphism
and metamorphism. These mutations are fundamentally based on code syntax and thus
do not modify the accesses made to resources through the system calls. Executed inside
similar environments, the di�erent versions issued from a common mutating strain eventually
provide, if not always the exact same event trace, at least very similar traces where identical
call subsequences can be found.

Limitations: Current monitoring techniques based on the interception of system calls are still
unperfect. Certain behaviors such as code encryption do not use system services for obvious
stealth reasons. The consequence is that malware may rede�ne certain system primitives.
They may even embed their own servers for the support of SMTP or FTP exchanges. An-
other problematic phenomenon is the migration of malware towards the system kernel, in
order to acquire privileges equal to antivirus products. Thanks to these privileges, complex
stealth techniques become possible: malware can interact directly with the hardware and the
system objects without necessarily passing through the monitored system calls [99, p.188].
A conceivable solution would be to acquire data from more privileged sources.
Other limitations exist, which are not related to system calls but to intrinsic properties of
dynamic monitoring. In e�ect, dynamic monitoring, by nature, only captures the current
path during execution. This execution path could be biased since non deterministic behav-
iors may be either randomly executed or conditioned by external stimuli and observations:
sandbox and virtual machine detection for example.

Decision Action Target

Deny Write System process memory

Deny Write Run registry key

Deny Write Win.ini file

Deny Terminate Antiviral process

Deny Connect Black listed address

... ... ...

Figure 2.11 - Expert System Rules.
A rule always speci�es the nature of the ac-
tion (reading, writing, opening, terminating),
the target of the action along with the associ-
ated decision (permission, refusal). According
to the security policy which may be open or
closed, the actions for which no rule is de�ned
may be allowed or denied by default.

Figure 2.12 - Rules Enforcement.
For each system call, the related rules are con-
sulted. According to the relevant rule, the sys-
tem yields the control to the originally called
function or sends either a refusal or a killing
noti�cation to the calling process.

2.3.2.2 Matching algorithms and models: Expert systems

Expert systems rely on a set of case-based rules modeling the experience and the expertise of
an analyst confronted to a particular situation [79]. Rules are de�ned for each known suspicious
attempt to access the system facilities. A few simpli�ed rules are given in Figure 2.11. The actions
taken by the observed program, such as system calls, are dynamically captured and confronted
to the related rules. The target of the action and the privilege level of the caller are important
factors because they often draw the distinction between a legitimate action and a malicious one.
Rule-matching algorithms have an acceptable class of complexity for operational deployment since
they are equivalent to pattern matching algorithms, remaining in class P.
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The decision whether an access is malicious or not must be preemptively taken. Attempts to
access a service are intercepted by a rule enforcement system such as the one in Figure 2.12. These
proactive systems can react before accesses are resolved, explaining why they are often referred
to as "behavioral blockers" [185]. Generally speaking, expert systems are prone to false positives
because it proves intricate to judge the legitimacy of individual actions without correlation.

2.3.2.3 Matching algorithms and models: Heuristic engines

Historically, heuristic engines were the �rst detectors analyzing the program functionalities to
detect malicious behaviors. Contrary to expert systems, the actions captured by these engines
are no longer considered separately but sequentially. Heuristic engines are fed with interruptions
or system calls, usually collected by a sandbox, along with preceding instructions de�ning their
parameters. Basically, heuristic engines are made up of three parts [211, 212]:

Terminate program Open File

1. MOV AX, ??4Ch 100. MOV AX, 023Dh

INT 21 ;B8??4CCD21 MOV DX, ????h

2. MOV AH, 4Ch INT 21 ;B8023DBA????CD21

INT 21 ;B44CCD21 101. MOV DX, ????h

3. MOV AH, 4Ch MOV AX, 023Dh

MOV AL, ??h INT 21 ;BA????B8023DCD21

INT 21 ;B44CB0??CD21

4. MOV AL, ??h

MOV AH, 4Ch

INT 21 ;B0??B44CCD21

Figure 2.13 - Atomic Behaviors. Excerpted from the Bloodhound engine [25],
the entries illustrate the association between instruction sequences and atomic actions.

F = Suspicious file access R = Suspicious code relocation

N = Wrong name extension A = Suspicious memory allocation

# = Deciphering routine L = Trapping the loading of software

E = Flexible entry-point D = Direct write access to the hard drive

M = Memory resident code T = Invalid timestamp

G = Garbage instructions Z = Search routine for EXE/COM files

B = Back to entry-point K = Unusual stack structure

O = Overwriting or moving programs in memory

Figure 2.14 - Behavior Base. This example is extracted from the base of the
TBScan engine [227]. Each behavior is associated to a �ag carrying a semantic value.

Association mechanism: The association mechanism labels the di�erent atomic behaviors of
malware. An atomic behavior corresponds to a functional interpretation of one or several
instructions as shown in Figure 2.13. In practice, two labeling techniques exist. Weight-based
association uses quantitative values, mainly obtained by experimentation, in order to express
the action severity. Flag-based association uses semantic symbols to express a corresponding
functionality [227, 254]. Figure 2.14 presents a typical example of �ag-based association
where atomic actions eventually corresponds to real instructions sequences.

Rule database: The rule database de�nes the detection criterion. In the case of weight-based
systems, there is a unique detection rule consisting in a threshold above which the accu-
mulation of malicious behaviors betrays a malicious activity. Otherwise, the detection rules
consist in �ag sequences. These sequences are combined together into detection trees as
shown in Figure 2.15.
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Detection strategy: The detection strategy is speci�c to heuristics; it determines the progression
within the detection rules. In the case of a weight-based association, the strategy corresponds
to the accumulation function used to correlate the collected weights. Otherwise, the strategy
determines the tree exploration algorithm. As shown in Figure 2.15, several types of algo-
rithms exist, with a strong impact on the result of the detection: greedy algorithms with
no possible back-step, genetic, taboo or simulated annealing algorithms with conditioned
back-steps [116]. The choice of the strategy is critical since it provides, in reasonable time,
approaching but still satisfactory solutions to NP-Complete problems [99, p.67].

Figure 2.15 - Detection Rules and Strategies. The detection tree describes
�ve rules corresponding to viruses detected by TBScan [227]. (a) The �rst strategy is
a greedy algorithm where the �rst valid path is always taken with no possibility to go
back. Detection of Backfont fails, but another strategy with backtracking could lead
to detection. (b) A backtracking mechanism, storing explored nodes, is integrated to
taboo algorithms. Back-steps are allowed for authorized branches (other branches are
taboo). In this second strategy, irrelevant behaviors are ignored to detect Jerusalem.

2.3.2.4 Matching algorithms and models: State machines

Similarly to heuristic engines, state machines correlate the collected system calls into sequential
models. The malicious behaviors are described as automata where transitions correspond to the
observed calls. Formally, an automaton is usually de�ned as a �ve-tuple <S,Σ, T, s0, F > [131],
where S denotes the states of the automaton, Σ the set of input symbols and T the transition
function responsible for the progression according to the inputs and intermediate states. s0 and F
correspond to particular states of the automaton, called the starting and the �nal states. Starting
from this de�nition, the behavior automaton is built according to the following principle [59]:

• the automaton states S correspond to internal states of the malware along their execution,

• the set of input symbols Σ is de�ned upon the collected data, mainly system calls,

• the transition function T describes the symbol sequences known as suspicious,

• the initial state s0 corresponds to the beginning of the analysis,

• the set of accepting states F triggers the detection of a suspicious behavior.
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From an initial state, the automaton progresses step-by-step by evaluating the elements from
the sequence of collected data. During this progression, if the automaton reaches an accepting
state, a malicious behavior has been discovered. If it reaches an error state or the end of the
data sequence without being in an accepting state, only behaviors considered legitimate have been
captured. Figure 2.16 gives an example of automaton detecting the �le infection mechanism [59]. In
state machines, the matching algorithm is equivalent to verifying whether a given word is accepted
by an automaton, which is basically a parsing problem. In fact, Deterministic Finite Automata
(DFA) are mostly used for behavioral detection because the complexity of the word acceptance
remains in P [131]. But, P. Beaucamps et al. argue in [47] that malware are reactive systems.
Call traces are thus in�nite words over a �nite alphabet. These words are detected by specici�c
automata called Büchi automata, the detection problem becoming in NLOGSPACE.

Figure 2.16 - Automaton Describing File Infection. Two types of �le
infection are described. The lower branch depicts "append" infections where the viral
code is copied at the end of the �le and the entry-point is redirected. The upper
branch depicts "prepend" infections, destructive or not: either the original code is
saved between s′2 and s′3 or the automaton jumps directly to infection in s′4.

Recent articles enrich these automata with annotations to increase the link between the collected
calls. In [181], J. Morales et al. �lter reading and writing calls to dynamically build self-replication
automata. These automata are annoted with the data sources in order to follow the data �ow
along the successive calls. In [175], L. Martignoni et al. describe malicious behaviors thanks to
imbricated automata. Low-level automata recognize atomic actions as sub-sequences of system
calls. These actions are then correlated by automata of higher level using annotations to check
that actions are related and refer to the same objects.

2.3.3 Formal veri�cation of suspicious behavior

Behavioral detection is traditionally associated to dynamic execution and thus to simulation-based
veri�cation. However, since malware actions are originally written down in the code, malicious
behaviors can also be discovered through static analysis. Contrary to simulation-based detection,
formal veri�cation is more recent and covers white box approaches, where the detector can combi-
natorially explore the di�erent execution paths [77]. In the context of malware detection, formal
veri�cation consists in verifying that a program abstraction satis�es a malicious formal speci�-
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cation. This problem of bisimulation can be addressed by di�erent matching algorithms whose
complexity may quickly become prohibitory for an operational deployment.

2.3.3.1 Data collection and interpretation: Static extraction

Static extraction provides a richer and more complete set of information about potential actions
than dynamic monitoring which is bound to collect observable actions only. The main challenge is
to obtain, from the binary code, a program abstraction where the semantic level of interpretation
conveys the intended actions. Consequently, data extraction is quite complex and requires several
processing steps to get an intermediate representation of the program.

Technically, static extraction uses the traditional techniques of reverse engineering, namely,
disassembly, construction of the Control Flow Graphs (CFG) and Data Flow Graphs (DFG).
The whole procedure is described in more details in Figure 2.17. The process receives in input
the original binary code (either as a local �le from the system or a �le rebuilt from di�erent
payloads collected by honeypots). The process mainly outputs graph-based representations which
are predominantly used since they bring into light the di�erent execution paths of the program. In
certain cases, the instructions and values stored in the nodes of the graphs can even be interpreted
according to a more generic semantic.

Figure 2.17 - Incremental Steps of Static Extraction. This scheme
describes the di�erent processing stages applied to the program in order to extract the
intermediate representation: unpacking when required, disassembly and interpretation.

In the simplest cases, existing tools can automatically execute the extraction process. However,
additional human interventions are often required to bypass the software protection techniques
which can skew the result [147]. For example, automatic disassembly can be thwarted by the
introduction of fake instructions that hinder code alignment. Generally speaking, static extraction
is also very sensitive to code modi�cations and in particular to the obfuscation techniques used by
metamorphic engines [71]. Complex techniques are required to bypass or reverse these software
protections. Unfortunately, automation is extremely di�cult [159]. In fact, an increasing number
of malware are protected by automatic packers, like UPX, deploying such protections. Unpacking
becomes a challenging problem in static analysis, requiring increasingly complex techniques [143].
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Globally, static extraction exhibits strengths and weaknesses that can be rigorously evaluated
because of the formal foundations behind it:

Strengths: The main advantage of static extraction lies in the completeness of the collected data.
In e�ect, all execution paths are enumeratively available. Since malware are not running
during the capture, they can not adapt their execution or deploy proactive defense.

Limitations: Static extraction remains possible as long as disassembly can be performed, which is
a quite strong hypothesis because of the protection techniques aforementioned. The resistance
of static analyzers to obfuscation transformations is a critical question which begins to be
addressed by theoretical works from M. D. Preda et al. [201]. More fundamentally, predicting
the behavior of a program from its simple description is equivalent to the "halting problem".
Unfortunately this problem has been proven undecidable by A. Turing in 1936. Still, under
certain conditions, su�cient information can be extracted.

By comparing the properties of static extraction with those of dynamic monitoring, it becomes
obvious that these two capture methods are complementary.

2.3.3.2 Matching algorithms and models: Annoted graph isomorphism

Detection by isomorphism of annoted graphs requires the Control Flow Graphs (CFG) to be
successfully extracted. A behavior template, or behavioral speci�cation, is speci�ed by a graph
structure using an annotation mechanism. In practice, the instructions stored in the nodes of the
graph are often replaced by an associated label, o�ering a higher level of abstraction than simple
assembly code. The annotation procedure may follow two approaches: either the instructions are
translated into an intermediate representation carrying a semantic value [64, 201] or instructions are
reduced to their basic class of operation (arithmetic, logic, function call...) [55, 157]. Figure 2.18.(a)
provides an example of behavior template, with its graph and its associated semantic labels made
up of symbolic instructions, variables and constants.

Detection is achieved by checking that a program satis�es a given template. A template is
satis�ed if a subgraph can be found in the extracted CFG of the program, which is isomorphic
with the template graph. The localization of the CFG subgraph in stand-alone malware may be
easy to determine but it proves much more complex for program infectors since it requires �nding
out the insertion point �rst. From the isomorphism algorithm, nodes of the extracted CFG are as-
sociated with those of the template as pictured in Figure 2.18.(b). Compared to traditional graph
isomorphism, an additional constraint steps in the algorithm since a sensible correspondence must
be possible between the node labels of the compared graphs. The node association eventually de-
termines the equivalences between the symbolic elements (variables, constants) and the real values
(registers, memory locations). The preservation of these values along the graphs may optionally
be checked, from their a�ectation until their use [64].

From a theoretical perspective, subgraph isomorphism on its own is NP-Complete. However,
optimizations are possible. In e�ect, CFG nodes have a bounded number of successors, which
decreases the graph connexity: typically one or two, except in the case of indirect jumps and
function returns. In [52], G. Bonfante et al. take advantage of this property to transform CFGs
into terms with pointers for back and cross edges. The isomorphism algorithm is then replaced,
with a greater e�ciency, by a parsing tree automaton. Besides, isomorphism remains very sensitive
to mutation techniques and in particular to modi�cations impacting the CFG: code permutations,
dead code insertions or opaque predicates. These transformations can partially be addressed by
optimization and normalization techniques developed for compilers [52, 55, 56, 197]. The objective
is to obtain a canonical and minimal form for malware, where most mutation e�ects are reversed.

26



2.3. Taxonomy of behavioral detectors

Figure 2.18 - Graph Isomorphism with Semantic Equivalence. Quoted
from [64], the template (a) represents a generic encryption routine, XORing code be-
tween two addresses. During veri�cation, each node from the instance (b) is associated
to its equivalent node in the template. By correspondence, the instance satis�es the
template. In addition, the variable preservation can be checked. In the present case,
the value a�ected to eax at node 1 must be equal to the value in ecx used at node 5.

2.3.3.3 Matching algorithms and models: Equivalence by reduction

In equivalence by reduction, M. Webster et al. introduce a detection process relying on an algebraic
approach [237, 238, 239, 241]. The algorithm progresses by deduction using logical equivalence at
each reasoning step. At the end of the algorithm, the equivalence must be proven between the
abstraction of the tested program and a malicious speci�cation. Prior to detection, the malicious
speci�cations must be written down using an algebraic framework as shown in Figure 2.19.

1. s(0) :::: myName := getSelfName ;

2. nfh := newFileHandle ;

3. counter := 0 ;

4. do{ line := getLine(myName,counter) ;

5. writeToFile(line,nfh) ;

6. counter := s(counter) ;

7. eof }

8. while (not(line == label end)) ;

9. label end ;

10. eof

Figure 2.19 - Algebraic Specification of a Virus. Simpli�ed extract from
[237, 238], this speci�cation describes a duplicating virus inside the OBJ framework.

To feed the algorithm, the program is transformed from the original code into an algebraic
form: commonly a formal speci�cation of the processor instruction set which attempts to erase
di�erences between equivalent functionalities. A single algebraic expression will stand for several
equivalent instructions such as the mov operations using di�erent registers for example. The pro-
gram abstraction is then simpli�ed by reduction using rewriting rules preserving some equivalence
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and semi-equivalence properties. Basically, equivalent expressions have an identical e�ect on the
whole memory whereas semi-equivalent ones only preserve speci�c variables and locations. The
�nal purpose is to reduce the number of syntactic variants for metamorphic viruses. Examples of
rewriting rules are given in Figure 2.20.

1. eq execS NOP in EVL /\/\ FL = EVL /\/\ FL.

2. eq execS do SL1 while (T) in EVL /\/\ FL = execSL SL1 ;;

while(T) do SL1 ;

eof in EVL /\/\ FL.

Figure 2.20 - Rewriting Rules Reversing Metamorphism. These two
rules from [237] are written using the OBJ formalism. The �rst rule states that NOP
operations have no impact on the variables from EVL. NOP operations, inserted during
mutations, are thus removed by reduction. The second rule seems more complex but
simply states that do{_} while(_) structures are equivalent to while(_) do{_}.

The program, in its reduced algebraic form, is run inside an interpreter to evaluate the result
of its execution on di�erent variables or memory locations such as registers or the stack. Malicious
speci�cations, expressed in the same algebra are interpreted in similar conditions. Detection �nally
veri�es the equivalence in context by comparison of their execution results. Unfortunately, this
equivalence has a complexity equivalent to the halting problem, explaining that this technique is
only deployed on limited code samples.

2.3.3.4 Matching algorithms and models: Model checkers

In model checking, a behavioral signature is de�ned by a temporal logic formula, introducing
dynamic aspects in �rst-order logic [48, 219]. In this temporal logic, usual quanti�ers are replaced
by path quanti�ers combined with temporal operators. A detailed example of their usage is given
in Figure 2.21. The model checking algorithm takes as input a control �ow graph as well as one or
several logic formulae and sends back all the intermediate states in the di�erent execution paths
satisfying these formulae. Checking algorithms are strongly recursive since they try to explore
enumeratively all the possible execution paths. As a matter of fact, symbolic temporal model
checkers exist but prove to be PSpace-Complete [213]. More information can be found in the
corresponding literature [67].

C1 : ∃rEF (mov(r, 0)
∧EF (push(r)
∧EF (call(GetModuleHandle))))

C2 : ∃rEF (mov(r, 0)
∧AX(push(r)
∧AX(call(GetModuleHandle))))

Figure 2.21 - Temporal Logic Formulae for Self-Reference Access.
Under Windows, the self-reference can be accessed by calling GetModuleHandle with
a null value. In the formulae, A and E are path quanti�ers whereas X and F are
temporal operators. The combination EF (p) states that an execution path exists
where an undetermined future state satis�es the predicate p. C1 thus checks whether a
path exists, where 0 is a�ected to a register r that is pushed on the stack before the call.
These operations need not to be consecutive. Replacing EF by AX in C2 compels the
register a�ectation and the following call to be immediate and this, in every possible
path. π1 and π2 are two illustrative execution paths satisfying respectively C1 and C2.
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In the context of malware detection, the registers, free variables and constants manipulated by
the instructions are referenced in the logic by generic values [149]. Thanks to this abstraction, the
checking algorithm can address mutations by reassignment. During the veri�cation, the algorithm
links the generic values with real registers and variables and stores this association all along the
explored execution paths. In addition, the temporal operators used to explore the di�erent paths
can e�ciently thwart mutations that use garbage code insertion and code permutation.

2.3.4 Behavioral model generation

Several behavioral models have been described in sections 2.3.2 and 2.3.3 without mentioning how
these signatures were generated. This section is dedicated to the third transversal axis of the
taxonomy, the signature generation process.

2.3.4.1 Manual signature generation

Because of its reliability, manual signature generation remains the principal method of creation of
behavioral signatures, even though it is time consuming. Two main sources of knowledge are used
to feed the generation process. In most cases, an expert with signi�cant experience de�nes generic
and opaque behavioral models that are interoperable between the di�erent customer machines. In
certain systems such as behavioral blockers, this responsibility is passed on to the users. Users
are free to de�ne their own policy, more adapted to their own system since the software con�g-
uration can be taken into account. However, users must be educated to understand the possible
repercussions of their choices. This is not always true for the owners of personal computers.

Figure 2.22 - Learning Process. Knowledge is extracted from a learning pool
and integrated to the rule database. The obtained rules are evaluated by the classi�er
to be kept or removed. The process is iterated until stabilization of the rule set.

2.3.4.2 Automatic learning: data mining and classi�ers

Automatic generation of behavioral signatures is a mandatory requirement to overcome the short-
comings of syntactic signatures. Up until now, learning processes have mainly been applied to
behavioral models used in simulation-based detection. This is due to the fact that the manipu-
lated structures in a behavioral context are far more complex and thus harder to learn, in particular
for formal models which consider multiple execution paths. The learning process generates classi-
�cation rules built using data mining techniques. Regardless of the target classi�er, the learning
procedure remains the same as the one shown in Figure 2.22. The system is �rst confronted to
a learning pool constituted of large sets of malware and legitimate samples, already labeled as
malicious or benign. During the training period, the classi�er crawls this sample repository to
extract the common properties speci�c to the considered classes. The size of the pool must be
well chosen and su�ciently important to avoid bias. Like any learning process, the generation of
behavioral signatures remains very sensitive to noise injection in the training pool. Some e�ective
attacks have already been published against similar worm signature generators [196].

29



CHAPT 2. TAXONOMY OF BEHAVIORAL DETECTORS: A STATE OF THE ART

The extraction of the common properties of the malicious behaviors present in the pool relies
on three major paradigms. These paradigms are brie�y described below, with relevant references:

Rules induction: The belonging conditions for the di�erent classes of behavior are explicitly
speci�ed. These conditions are formulated as rules which can be either Boolean expression
as pictured in Figure 2.23 or as decision trees [155]. For each sample received by the classi�er,
certain characteristic data are integrated or removed in the condition in order to preserve
the class consistency [165, 215, 235].

Mail worm ::= Call.Connect() ∧ Call.Send()

∧ (¬ Call.Receive())

∧ String.HELLO ∧ String.MAILString.RCPT

Figure 2.23 - Boolean Rule for the E-mail Worm Class. The following
rule determines the characteristics in terms of system calls and strings, common to mail
worms. The main di�erence with legitimate mail clients lies in the fact that worms do
not try to receive data since they do not wait for any acknowledgment or response.

Bayesian statistics: The belonging conditions are no longer explicitly speci�ed but expressed as
the statistical repartition of common characteristics. This approach is deployed in classi�ers
such as Bayesian networks. For each considered characteristic, measurements are made on
the probability of �nding it in the di�erent classes from the learning pool [155, 215, 235].
Figure 2.24 describes examples using system calls and strings as characteristics. Ultimately,
only the most discriminating characteristics are kept. The important criterion is thus the
minimal overlap between the di�erent classes. The ideal case would obviously be when a
characteristic exists with a probability of 100% in a unique class and is absent of any other.

P(OpenFile|Benign) = 95% P(OpenFile|File infector) = 100%

P(GetModuleHandle|Benign) = 20% P(GetModuleHandle|File infector) = 70%

P("*.exe"|Benign) = 10% P("*.exe"|File infector) = 90%

Figure 2.24 - Statistics for File Infectors. These examples are not the
result of real measures. However, they illustrate the prevalence of certain character-
istics. File opening is widely used by both benign and infector programs. It is thus
insu�cient to decide of its malevolent nature. On the contrary, accessing the handle
of the current module to copy this image in a target is more signi�cant of an infection.

Clustering: Clustering relies on prede�ned cases. During the learning procedure, average pro�les
are built for each class of malware. Classi�cation is then achieved by measuring the distance
between these pro�les and the tested programs [164]. The program is classi�ed according to
the pro�le with which it exhibits a minimal distance. Note that the notion of distance and
its measurement method may vary from a system to another. In fact, these factors have the
strongest impact on the classi�cation accuracy. In the example from Figure 2.25, the distance
is calculated in function of the modi�cations necessary to pass from a system call sequence
to another. Each modi�cation has an associated cost which depends on the nature of the
modi�cation. In general, an insertion costs more than a replacement but their costs may
vary according to the modi�ed event. In practice, costs are adjusted by experimentations in
order to increase the classi�cation rate.
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Operation Pro�le Capture Cost
Insert RegWriteKey 1,5
* WriteFile WriteFile 0
Delete CreateProcess 0,7
* RegWriteKey RegWriteKey 0
Replace RegWriteKey RegReadKey 0,1
Replace Send Receive 2,0
Distance 4,3

Figure 2.25 - Distance between Traces. Two call sequences from a pro�le
and a capture are compared. Costs are associated to the di�erent operations required
to pass from one to another. The �nal distance is obtained by additioning these costs.

2.4 Panorama of existing behavioral detectors

As an illustration, we have identi�ed several behavioral detectors and classi�ed them according
to the taxonomy proposed in Section 2.3. The results of this survey are given in Table 2.2,
completed with practical information: the detectors usage, their privileged targets or their running
environment. These detectors are separated into two parts: the �rst part covers the research
prototypes whereas the second part covers some commercial products. The table is built according
to the information made available by the di�erent editors, which is sometimes very limited.

This survey brings into light the main trends in commercial systems; most of them are based
either on heuristic algorithms coupled with sandboxing, or on expert systems deployed in real-
time. These trends can be explained by the fact that recent research prototypes still require too
much resources or do not exhibit su�ciently low error rates, in particular with respect to false
positives. These prototypes remain mainly developed by researchers and analysts for their own
usage. Their large scale deployment is bound to coming optimizations or increases in the available
resources. This is particularly true for static analysis which is currently used only for analysis
and signature extraction but not for detection. A second observation, that was also visible in the
research community, is the convergence of the behavior-based antiviral products with Host-based
Intrusion Prevention Systems (HIPS). It becomes less and less obvious to draw a clear demarcation
line between the two. This is not really surprising since virology and intrusion detection are tightly
connected security domains.

2.5 Resulting observations and considerations

Inside the malware community, the domain of behavioral detection shows an increasing activity
both in commercial products and research. But contrary to intrusion detection where the literature
is abounding, this taxonomy dedicated to behavior-based malware detection is the �rst of its kind.
A striking multitude of behavioral detectors have been identi�ed, these detectors relying on het-
erogeneous techniques without consistency in the vocabulary and designations. This is particularly
true for commercial products where the behavioral terms have clearly become a marketing argu-
ment. The taxonomy tries to cover all these techniques without any a priori, except a common
principle: the identi�cation of the malware functionalities. Parallelly, it also tries to introduce
common conceptions and a consistent vocabulary.

A clear distinction emerges between simulation-based veri�cation and formal veri�cation, these
detection approaches being directly linked to dynamic and static modes. These modes are however
complementary since they exhibit opposite strengths and weaknesses. Several researchers have
already proposed to combine them in order to take advantage of their respective assets. Dynamic
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Table 2.2 - Classification of Existing Behavioral Detectors. Used
abbreviations for the capture conditions: RT = Real-Time / SB = SandBox / VM =
Virtual Machine / * = Actions recording. Used abbreviations for the system usage:
Det. = Detection / Class. = Classi�cation.
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2.5. Resulting observations and considerations

analysis can delimit a reduced perimeter where a static analysis would be worth deploying. In [150],
E. Kirda et al. take advantage of this principle to detect spyware parasiting web browsers. The
dynamic phase is used to localize the processing routines associated to the di�erent web events.
A static analysis is then locally deployed to detect any malicious activity inside these routines.
Generally speaking, a static analysis could be deployed whenever a branching instruction is reached
in order to explore the alternative execution paths that will not be executed.

The e�cient combination of dynamic and static modes requires a common behavioral model
for reference. This model could then be re�ned according to the class of detector considered,
while remaining compatible with others. A multiple-path model, such as those used in formal-
based detection, could be simpli�ed to consider only the most signi�cant path in simulation-
based detection. Semantic elements of the model would remain untouched. Unfortunately, such
a model is still missing. The heterogeneity of the behavioral detection techniques is a major
obstacle to de�nition of such a model. The taxonomy presented in this chapter was a �rst step to
clearly identify the di�erent requirements constraining the construction of this model: multiple-
path constraints for formal approaches and, keeping suit with the thesis statement, interaction
support through system calls for simulation-based approaches. The remaining of the dissertation
is thus going to address the de�nition of a satisfying uni�ed model, following two approaches: a
�rst approach starting from operational observations to de�ne a grammatical model, e�cient for
detection, and a second approach starting from theory to de�ne a process-based model, expressive
enough to cover behavioral detection techniques.
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Chapter 3
An abstract malicious

behavioral language

Un homme qui ne connaît que les choses
est un homme sans idées. C'est dans le
langage que se trouvent les idées.

Eléments de philosophie

Alain - 1916
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R
eferring to intrusion detection, an article from 2005 introduced a semantic conveying
the intrinsic properties of vulnerabilities rather than the exploits themselves [54]. Only

semantics can guarantee a satisfying protection against existing eploits while covering their possible
variations and evolutions. Following the same principle, this chapter introduces a uni�ed language
to describe the di�erent malicious behaviors observed in current malware. The expressiveness
of the language has been designed to describe the generic principle of behaviors rather than the
multiple technical means to achieve them. Reaching this level of genericity requires the abstraction
from the platform and the programming language in which malware have been coded. In addition
to the independence from implementation, the provided language must avoid any speci�city with
a class of detection methods. It must remain, by minimal re�nements, compatible with most of
the di�erent detection methods introduced in the previous chapter, both static and dynamic.
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De�nitions of behavioral languages have already been proposed. In 2002, M. Schmall already
de�ned in his Ph.D. dissertation a behavioral meta-language called MetaMS [211]. Based on XML,
MetaMS describes the main functionalities of malicious programs and stores them in a platform-
independent format. It relies on a high-level of abstraction and has been speci�cally crafted
for heuristic methods of detection. Even though this language partially satis�es the constraints
de�ned above, some important formal properties are left unde�ned: soundness, completeness,
expressiveness, automated translation. These formal properties are necessary to guarantee the
possible adaptation of the language to the newly released variants and strains of malware. On
the opposite, in 2005, M. Christodorescu et al. de�ned a Turing-Complete language to specify
templates of malicious behaviors [64]. This completeness provides the language with a framework
su�ciently theoretical to establish formal proofs, with particular applications to the detection of
mutated versions of malware. However, the language proves to be too close to assembly; it is
ultimately missing support for interactions with the operating system and other applications.

Motivated by these observations, we have de�ned a new language called the Abstract Malicious
Behavioral Language (AMBL). Its syntax was originally published in [139] before being enriched
with semantic attributes and rules in [138, 140, 194]. To overcome the drawbacks from other
behavioral languages, the AMBL combines the advantages of the previous two approaches. Like
MetaMS, the language supports interactions in a platform-independent way. In addition, the lan-
guage is established on attribute-grammars, a well-known theoretical formalism o�ering reasoning
facilities [152]. Section 3.1 �rst presents the language speci�cation. Section 3.2 then illustrates its
principles with descriptions of signi�cant malicious behaviors.

3.1 Speci�cation of an interaction-based grammar

Abstract speci�cation of the malicious behaviors relies on formal grammars, and more speci�cally
attribute grammars presented in Section 3.1.1. Formal grammars were chosen because they provide
easy understanding and manipulation, while remaining formal enough for proofs and automated
analysis. Malicious behaviors are constituted of basic operations whose possible combinations are
described by syntactic rules. These syntactic rules are presented in Section 3.1.2. Provided by
attribute-grammars, additional semantic rules control the data �ow between the elements involved
in these operations. They also associate these elements with a purpose in the malware lifecycle:
installation, communication, execution. These semantic rules are presented in Section 3.1.3.

3.1.1 Theory of attribute grammars

From a theoretical perspective, Attribute Grammars (AG) are constructed on the basis of Context-
Free Grammars (CFG) as described by De�nition 2 [131]. The particularity of an Attribute Gram-
mar lies in the additional semantic attributes and rules enriching the grammar basis as speci�ed
by De�nition 3 [152, 153][245, Chpt.10]. Each symbol is associated with a �nite, possibly empty,
set of semantic attributes. The domains of values of these attributes are constrained by semantic
rules constituting an equation system. The attributes are divided between two classes according
to the way they carry the semantic information along the production rules: synthesized attributes
are evaluated and passed up from deeper terminals and non-terminals while inherited attributes
are passed down from upper non-terminals.

De�nition 2 A context-free grammar G is a quadruplet <V,Σ, S, P> where:
- V is the �nite set of non-terminal symbols also called variables,
- Σ is the �nite set or alphabet of terminal symbols forming the language,
- S ∈ V is the start symbol,
- P is the set of production rules of the form V → {V ∪ Σ}∗.
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De�nition 3 An attribute grammar GA is a quadruplet <G,Att,D,E> where:
- G is originally a context-free grammar <V,Σ, S, P>,
- A set of attributes Att(X) is assigned to each symbol X ∈ {V ∪ Σ}. This set is divided between
synthesized and inherited attributes: Att(X) = Syn(X)] Inh(X). The global sets of attributes are
built by union: Her = ∪X∈VHer(X), Syn = ∪X∈{V ∪Σ}Syn(X) and Att = Syn ] Inh,
- Each attribute α ∈ Att is de�ned over a domain of value Dα and D = ∪α∈AttDα,
- E is a set of semantic rules such as for any production rule π ∈ P of the form Y0 → Y1...Yn, and
∀α ∈ Syn(Y0) ∪1≤i≤n Her(Yi), there is exactly one rule of the form Yi.α = f(Y1.α1...Yn.αn).

In practice, using this grammatical formalism, each start symbol begins the description of a
new malicious behavior. The terminal symbols of the grammar correspond to the basic operations
making up the behavior while the production rules describe their di�erent combinations to achieve
the behavior. The additional semantic rules express constraints weighting on the values and objects
involved in the basic operations.

3.1.2 Syntax speci�cation: support of interactions

A generic programming language is required to describe malicious behaviors: the Abstract Mali-
cious Behavior Language (AMBL) has been developed for this purpose. By design, the AMBL
focuses on the description of the behavior's �nal purpose rather than the technical solutions used
to achieve it. This high level language can then be declined into more concrete instantiations by
re�nement. Its inner principles are object-oriented as described by the encapsulation of Figure 3.1.
The object orientation has been chosen because, malware being resilient and adaptable by nature,
interactions with their environment constitute key features of their behaviors. This orientation is
supported by the CFG specifying the syntax, whose elements are made explicit below.

Figure 3.1 - Malware Object-Oriented Encapsulation. The internal
mechanisms and attributes are encapsulated inside the malware object which uses
dedicated interfaces to communicate with the external environment and its objects.

operations M = {¬,&,∨,∧,⊕, <,≤,=,≥, >,+,−,×,÷,≡, <<,>>, :=, goto, stop}
interactions I = {open, create, close, delete, execute, send, receive}
objects O = {object}
structures S = {while, if, then, else, ||,←,→, ; , (, ), [, ], {, }}
alphabet Σ =M ∪ I ∪ O ∪ S

Figure 3.2 - Alphabet of the AMBL. The alphabet Σ is constituted of di�erent
classes of symbols, in particular for the internal operations, interactions and objects.

The alphabet Σ of the AMBL, given in Figure 3.2, de�nes a set of atomic actions and structure
markers. To satisfy the object orientation, the alphabet is divided between the internal mecha-
nisms and the interfaces used to interact with external objects. Internal mechanisms M gather
the operations performed by malware without requiring external interventions, assuming that the
processed data is available. Internal mechanisms are either arithmetic or control-related opera-
tions. Actually, the real improvement brought by the AMBL is its interaction extension I. Other
languages, like in [64], are based on an imperative core which does not include interactions such
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as accesses to external services and resources. The AMBL natively supports a set of di�erent
interactions to interface with external objects. Two di�erent types of interactions are considered:
commands (open, create, close, delete, execute) and data transmissions (send, receive). These
basic operations and interactions �nally abstract concrete implementation elements: instructions,
calls to Application Programming Interfaces (API) or to the system, as well as their arguments.

The set of production rules P of the AMBL, given in Figure 3.3, combines these symbols. The
start symbol S =<Behavior> starts the description of a behavior as a sequence of structures
(rules (1) and (2)). A structure is a non-terminal symbol corresponding either to a basic block of
actions, a conditional, a loop or several sequences in concurrency (rules (3) and (4)). A basic block
�nally contains a set of consecutive terms which eventually correspond to the atomic operations
and interactions (rules (5) and (6)). The atomic operations are represented by the construction of
unary, binary operators and a�ectations (rules (7) to (9)). The atomic interactions are represented
by the construction of commands and data transmissions (rules (10) to (12)).

(1) <Behavior> ::= <Sequence>
(2) <Sequence> ::= <Structure><Sequence> | <Structure>
(3) <Structure> ::= <Block>

| if(<Expression>)then{
<Sequence>

}else{
<Sequence>

}
| if(<Term>)then{

<Sequence>
}
| while(<Term>){

<Sequence>
}
| [<Sequence>‖<Concurrent>]

(4) <Concurrent> ::= <Sequence>‖<Concurrent> | <Sequence>
(5) <Block> ::= <Term>;<Block> | <Term>;
(6) <Term> ::= object | [<Term>] | <Operation> | <Interaction>
(7) <Operation> ::= object := (<Term>) | [<Term>] := (<Term>)

| <Op1> (<Term>) | <Op2> (<Term>,<Term>)
| goto <Term> | stop

(8) <Op1> ::= ¬ |&
(9) <Op2> ::= ∨| ∧ | ⊕ | < | ≤ | = | ≥ | > |+ | − | × | ÷ | ≡ | << | >>
(10) <Interaction> ::= <Control> object | <I/O>
(11) <Control> ::= open | create | close | delete | execute
(12) <I/O> ::= receive object← object | receive [<Term>]← object

| send <Term>→ object

Figure 3.3 - Set of production rules of the AMBL. The rules of P
describe the construction of atomic internal operations and external interactions. These
are combined into more complex blocks and structures to consitute a whole behavior.

To complete the de�nition of a programming language, an operational semantics is also required
to describe the symbolic execution of the AMBL. The evaluation of arithmetic and control-related
expressions is quite similar to any other programming language. But dynamic operators must
also be de�ned to resolve interactions and concurrency at each computational step. With respect
to interactions, a synchronous resolution has been chosen. With respect to concurrent actions,
a random sequencing has been chosen to maintain their atomicity. The operational semantics
is described in greater details in Appendix A. The internal operations guarantee the Turing
completeness of the language, as stated in Proposition 1. Note that Turing-equivalent languages
are the richest languages known to be sound and complete within functional paradigms. Within
interactive paradigms, the language is no longer complete as stated by Proposition 2 and illustrated
by Figure 3.4. Nevertheless, a partial completeness can be guaranteed empirically showing that
the language is su�ciently expressive to capture the types of interaction used by malware.
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3.1. Speci�cation of an interaction-based grammar

Proposition 1 The Abstract Malicious Behavioral Language is Turing-complete.

Proof.
An obvious proof can be given by describing a Turing Machine in the AMBL. �

Proposition 2 Within interactive paradigms, the AMBL is incomplete.

Proof.
Soundness of the AMBL with respect to interactions is quite intuitive considering the fact that
the concept of object-oriented modeling is directly inspired from the reality. On the opposite,
interactive systems have an inherent incompleteness [243]. Dynamically generated streams can be
mathematically modeled by the set of in�nite sequences which can not be diagonalized. Similarly
to the Godël incompleteness result for the integers, any domain whose set of true assertions can
not be diagonalized, can not be complete. Moreover, the results of interactions are not necessarily
strings: in case of code rewriting, the interaction can be seen as function passing. �

Figure 3.4 - Hierarchy of languages expressiveness. Similarly to the
computational hierarchy established by N. Chomsky, a language hierarchy in terms of
expressive power may be established inside the paradigm of interactions.

3.1.3 Semantic speci�cation: managing environment objects

In this section, we introduce the semantic attributes and rules enriching the syntax of the Abstract
Malicious Behavioral Language. These semantic enhancements have been used to satisfy three
main purposes: �rstly, identifying internal and external objects, secondly, enforcing a type system
for these objects and, thirdly, characterizing these objects with additional information.

Object binding: Object binding identi�es the di�erent instances of objects and variables, and
guarantees they are consistently used. Binding is achieved by assigning speci�c attributes
called identi�ers to the terminal symbols representing these objects:

Identi�ers ∗.objId are de�ned over integers to establish a numbering: DobjId = N.
For any production rule of the form Y0 → Y1...Yn, binding rules are constructed as sim-
ple identi�ers equalities Yi.objId = Yk.objId. Identi�ers are either synthesized or inherited:
∗.objId ∈ {Syn ∪Her} such as if Yi.objId ∈ Syn then, for any k > i, Yk.objId ∈ Her.
By de�nition, identi�ers are unique in order to cope with the multiple references used by
systems to point on a same object. Used for binding, identi�ers increase the accuracy of the
language. They distinguish possible false positives where consecutive operations could seem
suspicious but are in fact unrelated because they involve distinct variables and objects. To
express that two operations refer to a same object, the semantic rules constrain the equality
of their identi�ers in their relative branches of derivation. Identi�ers are synthesized within
the leftmost branches, corresponding to the �rst object apparition, to be inherited within
the branches on the right where the object might be reused. In the context of interactions,
object binding constrains the data-�ow along the data transmissions between objects, through
intermediate variables. The data �ow is critical in behaviors such as duplication where the
malicious code is transferred from the self-reference to a target object.
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Object typing: Type attributes are also assigned to objects. Types are chosen according to the
potential use of objects to which they are attached. They are critical to understand speci�c
malicious purposes such as booting objects in the case of residency, or communicating objects
in the case of propagation. A description of the di�erent considered types is given below:

Types ∗.objType are de�ned over a set of speci�cally crafted classes of objects: DobjType =
{var, obj_perm, obj_temp, obj_com, obj_boot, this, obj_exe, env_var, obj_sec}. Types
are enforced in the production rules by parent symbols, in particular the start symbol S, to be
inherited at their children symbols X ∈ V : X.objType ∈ Her.

With regards to the provided type system, objects are typed according to their potential use
in the malware lifecycle. Basically, objects are divided into three main classes, constituting
a partitioning of the environment in terms of visibility and persistency:

• The �rst class of objects gathers the internal variables and constants (var) used by
the malware for its internal operations.

• The second class gathers the external permanent objects (obj_perm) which remain
persistent after a complete reboot of the system (e.g. �les, directories, registry keys).

• The third class is complementary to the second and gathers the external temporary
objects (obj_temp) existing only for a �nite time, as long as the system remains active
(e.g. processes, synchronization objects).

Particular objects respond to more speci�c needs observed in malware. Re�ned types are
thus de�ned as subclasses, inheriting from the previous two classes of external objects:

• A �rst permanent subclass gathers communicating objects (obj_com). These ob-
jects constitute communication channels to remote locations or systems. The de�nition
of a communicating object is very broad. Network connections are the most obvious
example but transit locations must also be considered: network drives, intranet or
peer-to-peer shared directories, removable devices.

• A second permanent subclass gathers boot objects (obj_boot). These objects provide
the malware facilities to automatically execute. Con�guration �les for the operating
system or the master boot record are typical means for malware to be registered in the
boot sequence. Automatic execution is also possible at runtime by overwriting entries
in the global system call table, or by overwriting the import tables and entry points in
executables. Such locations are also considered as boot objects.

• The de�nition of a self-reference (this) proves itself as useful as in object program-
ming. It inherits from both permanent and temporary objects since it can refer either
to the static drive image of the malware object or its associated process in memory.

• Additional re�nements can still be brought to enrich the typing system. Executable
objects (obj_exe) constitute a fourth subclass inheriting from the temporary objects.
Process and threads are appealing targets for corruption by malware, in order to gain
new privileges for example. Environment variables (env_var) can be gathered in a
speci�c class re�ning permanent objects. These variables are useful when attempting to
�ngerprint a platform or to detect dynamic analysis: the processor name, for example,
can betray the execution within certain virtual machines. Security related objects
(obj_sec) can �nally be introduced in an hybrid class inheriting both from environment
variables and executables. These objects play a critival role in the system protection;
they may be used by malware for proactive defense. Antiviral processes for example
may be terminated. Registry keys storing the security con�guration of web browsers
and peer-to-peer clients may be modi�ed to weaken the security policy.
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Figure 3.5 - Hasse Diagram of the object type poset. The partial order
is de�ned according to the inclusions of the di�erent subsets, being represented by the
di�erent edges of the diagram (e.g. obj_perm ≤ obj_boot). In fact, the set inclusions
correspond to a specialization of objects according to their use in the malware lifecycle.

When enforcing the typing system, the more speci�c class always prevails on the generic one.
As such, Figure 3.5 de�nes a partial order on types according to their subset inclusion. As a
matter of fact, the set inclusions correspond to a specialization of objects. This specialization
is made clearer in Section 4.1.2 where type a�ectation is addressed.

Object characterization: Additional characterization of the objects can be achieved through
additional attributes. Di�erent useful attributes have been de�ned to stores the nature, the
location, the status and the possible accesses of objects:

The nature of objects ∗.objNat is de�ned over a set of classes re�ecting elements of the
operating system: DobjNat = {variable, constant, file, folder, drive, registry key, network
socket, mail}. The location of objects ∗.objLoc is de�ned over paths within the operating
system: DobjLoc = Strings. The status of objects ∗.objStat is either created or existing
whether these objects were created by malware or not: DobjStat = {created, existing}. The
accesses to objects ∗.objAcc are de�ned over a set of permissions: DobjAcc = {Read, ε} ×
{Write, ε}×{Execute, ε}. All these attributes are synthesized: ∗.objNat ∈ Syn, ∗.objLoc ∈
Syn, ∗.objStat ∈ Syn and ∗.objAcc ∈ Syn.

As stated by Proposition 3, the constraints we have speci�ed over the attributes of the AMBL
guarantee that its generative attribute grammar is well-formed, or non-circular. In other words,
an evaluation order can be established for these attributes because no derivation tree generated by
the grammar will exhibit cyclic dependency.

Proposition 3 The Abstract Malicious Behavioral Language is well formed.

Proof.
Considering the attribute de�nitions, a �rst assertion is the independence of their �ows, in partic-
ular identi�ers and types which constitute the most signi�cant information. In terms of proofs, it
means that each class of attribute can be addressed separately.

The case of the ∗.objNat, ∗.objLoc, ∗.objStat and ∗.objAcc attributes is straightforward be-
cause they are purely synthesized. They pass up the semantic information recovered from object
leaves to the starting behavior node. Conversely, ∗.objType attributes are �rst valued in upper
nodes before being purely inherited in children nodes. The type �ow is acyclic as illustrated in the
example of derivation tree given in Figure 3.6.

The case of ∗.objId attributes is more complex because identi�ers are partly synthesized and
inherited. However, the constraint stating that if Yi.objId ∈ Syn then ∀k > i, Yk.objId ∈ Her,
stipulates that identi�ers are synthesized once in the leftmost branches, and inherited afterwards.
This constraint guarantees the abscence of cyclic dependency. As illustrated in Figure 3.6, the
identi�er �ow is a curve starting from leftmost object leaves, passing up by the start symbol, and
down to the righter object leaves. �
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Figure 3.6 - Example of derivation tree. The following derivation appertains
to theAMBL and represents the modi�cation of a variable by addition, followed by
its storage in a permanent object. Following a descending �ow, types are inherited
from the block declaration to enforce operations over variables and transmissions to
permanent objects. The variable identi�er is �rst synthesized in the a�ectation of
the leftmost branch. An ascending �ow transports the information to the block node.
From there, the identi�er is inherited in the transmission of the rightmost branch.

3.2 Grammatical descriptions of signi�cant behaviors

Use of the Abstract Malicious Behavioral Language (AMBL) is best illustrated by providing descrip-
tions of signi�cant malware behaviors. Since theoretical completeness can not be proven according
to Proposition 2, these descriptions will provide an experimental assessment of the language ex-
presiveness. Section 3.2.1 �rst presents the procedure of description generation, starting from the
analysis of signi�cant malware. Sections 3.2.2 to 3.2.7 then present the generated descriptions as
sub-grammars contained within the generative AMBL language.

3.2.1 Identi�cation of malicious behaviors from malware

The term of behavior may be understood at several levels whether the modeling is addressed from
a global or a local perspective. The global perspective encompasses the whole malware execution.
Here we have chosen the local perspective by focusing on individual behaviors which constitute
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the common functionality blocks shared by malware. These individual behaviors are either related
to the malware installation within the system: duplication, propagation, residency, or related to
its attack payload: execution proxy, stealth, spam activity, data theft. Their identi�cation is not
immediate; an analysis is required to extract the part of the global malware activity, related to
these behaviors. In practice, the identi�cation has been conducted over a pool of twenty represen-
tative malware from di�erent families: viruses, worms, Trojans. To guarantee the relevance of the
samples, the chosen malware have all been taken "in the wild" from the top statistics of previous
years, plus a few interesting "zoo" examples. Consequently, these malware mainly appertain to
proli�c strains, at the origin of numerous variants or at the basis of new evolved strains. This �rst
pool has been willingly restricted to leave a wide range of variants and strains for experimentations,
and show that a strong behavioral similarity exists between malware.

Propagation to other systems

V/FI

Lewor Copy on removable devices
Copy on connected network drives

V/EmW

Bagle Massmailing with the virus as attached �le
Chir Massmailing with the virus as attached �le

Copy on connected network drives
Feebs Massmailing with the virus as attached �le

Copy in directories whose name evoked shared folders through P2P
Loveletter Massmailing with the virus as attached �le

Using IRC channels
Magistr Massmailing with the virus as attached �le
MyDoom Massmailing with the virus as attached �le

Copy in the KaZaA default shared directory
Sober Massmailing with the virus as attached �le

V/P2PW

Supova Copy in the Windows media folder and share it by con�guring KaZaA
Automatic sending to the MSN Messenger contact list

Winur Copy in a new hidden directory and con�gure known P2P clients to share it
Copy on a �oppy disk if present

W

Slammer Transmission by UDP packet with a �xed port to a random IP address
CodeRed Transmission by TCP/IP packets on port 80

Table 3.1 - Implementations of propagation. Acroyms for malware classes:
Virus (V), File Infector (FI), Worm (W), E-mail Worm (EmW), Peer-to-Peer Worm
(P2PW). The table is a synthesis of the di�erent methods of propagation employed by
malware. The common principle we observe in all samples is the transmission of the
content of the self-reference (malware code) through a carrier (mail or shared �le).

The most prevalent behaviors have been identi�ed by manual analsysis, allowing us to bring
into light their common principle along the way. Since di�erent techniques may lead to the same
result, the implementations of the identi�ed behaviors have also been studied inside the di�erent
malware. For this, several sources were used. Global information was partly available on obser-
vatory websites [5], but was often insu�cient to understand the implementation aspects behind.
For the most famous samples, more detailed analyses were available, containing the necessary in-
formation [90, 92, 93, 204]. For the remaining cases, the missing information was recovered by
code disassembly. The collected information has been synthesized in Appendix B with a short
extract in Table 3.1. These results have highlighted common principles for the di�erent behaviors,
in spite of di�erences in their implementation. The behavioral descriptions have been built on
top of these results, in order to successfully cover all the implementations observed in the pool.
The experimentations led in Chapter 4, will con�rm that some of these descriptions can relevantly
cover a larger pool of malware whereas others are not totally relevant.
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The generation of the descriptions raises the question of the possible translation between the
implementation and the language. The complete automation of translation is in fact a prerequisite
to detection. In Appendix B, a preliminary parallel is drawn between the atomic operations of the
language and their concrete implementation. Manual translation is brie�y explained by comparing
the source code of a known piece of malware to a behavior description. Automated translation is
�nally addressed along detection at the beginning of Chapter 4.

3.2.2 Replication mechanisms

Self-replication is the key mechanism for viruses and worms. The principle of replication has been
split according to four modes whose descriptions are now given.

1) Duplication: Duplication is achieved by copying the malware code from the self-reference to
a permanent object. Simple duplication requires no existing target to host the code; it may be
created. The behavior is described by syntactic production rules (grey) and their related semantic
rules (white). These rules constitute a subgrammar, generating a sublanguage included in the
generative AMBL. The syntactic productions correspond to the di�erent duplication techniques
supported: single-block read/write operations but also interleaved read/write operations described
by production rule (vi) and direct copy described by production rule (vii) where no intermedi-
ate variable intervenes. These productions also support permutations with possible reordering of
the operations according to their dependencies. Moving to semantic rules, they guarantee the
data-�ow between the read and write interactions by constraining them to refer to the same vari-
able (Binding rules associated to production rule (i): <Duplication>.varId=<Read>.varId and
<Write>.varId=<Duplication>.varId). They also guarantee the malicious intent of the behavior:
the open and read interactions must refer to the self-reference to distinguish real duplications (Typ-
ing rule associated to production rule (i): <Duplication>.srcType= this). Any other source than
the self-reference, that is to say the running program, would result in a simple �le copy. Mutations
may also occur during duplication; these mechanisms are described in Section 3.2.6.

(i) <Duplication> ::= <Create><Open><Read><Mutation><Write>
| <Open><Create><Read><Mutation><Write>
| <Open><Read><Create><Mutation><Write>

{ <Duplication>.srcId = <Open>.objId
<Read>.objId = <Duplication>.srcId
<Duplication>.targId = <Create>.objId
<Write>.objId = <Duplication>.targId
<Duplication>.varId = <Read>.varId
<Write>.varId = <Duplication>.varId
<Duplication>.srcType = this
<Open>.objType = <Duplication>.srcType
<Read>.objType = <Duplication>.srcType
<Duplication>.targType = obj_perm
<Create>.objType = <Duplication>.targType
<Write>.objType = <Duplication>.targType }

| <Open><Create><InterleavedRW>
| <Create><Open><InterleavedRW>

{ <InterleavedRW>.obj1Id = <Duplication>.srcId
<InterleavedRW>.obj2Id = <Duplication>.targId
<InterleavedRW>.obj1Type = <Duplication>.srcType
<InterleavedRW>.obj2Type = <Duplication>.targType }

| <DirectCopy>
{ <Duplication>.srcId = <DirectCopy>.obj1Id
<Duplication>.targId = <DirectCopy>.obj2Id
<Duplication>.srcType = this
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<DirectCopy>.obj1Type = <Duplication>.srcType
<Duplication>.targType = obj_perm
<DirectCopy>.obj2Type = <Duplication>.targType }
(ii) <Create> ::= create object;
{ <Create>.objId = object.objId
object.objType = <Create>.objType }
(iii) <Open> ::= open object;
{ <Open>.objId = object.objId
object.objType = <Open>.objType }
(iv) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object2.objId = <Read>.objId
object1.objType = var
object2.objType = <Read>.objType }
(v) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object2.objId = <Write>.objId
object1.objType = var
object2.objType = <Write>.objType }
(vi) <InterleavedRW> ::= while(receive object1← object2; ){

send object3→ object4;
}

{ object2.objId = <InterleavedRW>.obj1Id
object4.objId = <InterleavedRW>.obj2Id
object3.objId = object1.objId
object1.objType = var
object3.objType = var
object2.objType = <InterleavedRW>.obj1Type
object4.objType = <InterleavedRW>.obj2Type }
(vii) <DirectCopy> ::= send object1→ object2;
{ <DirectCopy>.obj1Id = object1.objId
<DirectCopy>.obj2Id = object2.objId
object1.objType = <DirectCopy>.obj1Type
object2.objType = <DirectCopy>.obj2Type }

2) Infection: Contrary to duplication, infection requires an existing entity to host the viral code.
As a consequence, the �rst phase of the replication always consists in crawling the system to look
for a potential target. This crawling process is described by production rule (ii). The infection
condition is modeled by a speci�c variable, a marker guaranteeing the validity of the target. For
example, the marker could indicate whether the target complies to a particular format or not. It
could also indicate the absence of previous infections using a "magic constant". The remaining of
the behavior is similar to duplication, starting from production rule (iii) to (vi). The description
supports both append and prepend modes of infections, either destructive or not thanks to the
potential code relocation in production rule (iv). The information �ow is also monitored during
the optional recopy of the original code of the target.

(i) <Infection> ::= <Search><Open><Relocate><Read><Mutation><Write>
| <Search><Open><Read><Relocate><Mutation><Write>
| <Read><Search><Open><Relocate><Mutation><Write>

{ <Infection>.srcId = <Read>.objId
<Infection>.targId = <Search>.objId
<Open>.objId = <Infection>.targId
<Relocate>.objId = <Infection>.targId
<Write>.objId = <Infection>.targId
<Infection>.markId = <Search>.varId
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<Infection>.varId = <Read>.varId
<Write>.varId = <Infection>.varId
<Infection>.srcType = this
<Read>.objType = <Infection>.srcType
<Infection>.targType = obj_perm
<Search>.objType = <Infection>.targType
<Open>.objType = <Infection>.targType
<Relocate>.objtype = <Infection>.targType
<Write>.objType = <Infection>.targType
<Infection>.markType = var
<Search>.varType = <Infection>.markType }
(ii) <Search> ::= while(¬(= (object1, object2))){

open object3;
receive object4← object5;
}

{ object2.objId = <Search>.varId
object3.objId = <Search>.objId
object4.objId = object1.objId
object5.objId = object3.objId
object1.objType = var
object2.objType = <Search>.varType
object3.objType = <Search>.objType
object4.objType = object1.objType
object5.objType = object3.objType }
(iii) <Open> ::= open object;
{ object.objId = <Open>.objId
object.objType = <Open>.objType }
(iv) <Relocate> ::= receive object1← object2;

send object3→ object4;
| ε

{ object2.objId = <Relocate>.objId
object3.objId = object1.objId
object4.objId = object2.objId
object1.objType = var
object2.objType = <Relocate>.objType
object3.objType = object1.objType
object4.objType = object2.objType }
(v) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object2.objId = <Read>.objId
object1.objType = var
object2.objType = <Read>.objType }
(vi) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object2.objId = <Write>.objId
object1.objType = var
object2.objType = <Write>.objType }

3) Propagation: Propagation di�ers from duplication because it involves a di�erent target object:
the data is copied from the self-reference to a communicating object. Consequently, propagation
shows some syntactic similarities with duplication except the inclusion of a potential format pro-
cess. This process is described by the production rules (v) and (vi), responsible for the addition
of a new header to the data before its encoding. The main di�erence with duplication thus lies
in the semantic rules. Illustrating the importance of typing, the permanent type of the target
object is �rst replaced by the communicating type (Typing rule associated to production rule (i):
<Propagation>.targType= obj_com). A communicating object can either be a network connec-
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tion, a mail or a �le shared over peer-to-peer folders and network drives. The second modi�cation
speci�es, by a disjunction of semantic equations, that the source of propagation can be either the
self-reference or a duplication target (Typing and binding rule associated to production rule (i):
<Propagation>.srcType= this or <Propagation>.srcId=<Duplication>.targId).

(i) <Propagation> ::= <Open><Read><Mutation><Transmit>
| <Read><Open><Mutation><Transmit>

{ <Propagation>.srcId = <Read>.objId
<Propagation>.targId = <Open>.objId
<Transmit>.objId = <Propagation>.targId
<Propagation>.varId = <Read>.varId
<Transmit>.varId = <Propagation>.varId
(<Propagation>.srcTp= this) ∨ (<Propagation>.srcId = <Duplication>.targId)
<Read>.objType = <Propagation>.srcType
<Propagation>.targType = obj_com
<Open>.objType = <Propagation>.targType
<Transmit>.objType = <Propagation>.targType }
(ii) <Open> ::= open object;
{ <Open>.objId = object.objId
object.objType = <Open>.objType }
(iii) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object2.objId = <Read>.objId
object1.objType = var
object2.objType = <Read>.objType }
(iv) <Transmit> ::= <Format><Write>
{ <Format>.var1Id = <Transmit>.varId
<Write>.varId = <Format>.var2Id }

| <Write>
{ <Write>.varId = <Transmit>.varId }

(v) <Format> ::= object1 := &(object2);
[object3] := object4;
object5 := +(object6, object7);
<Encode>
[object8] := object9;

{ <Format>.var2Id = object2.objId
<Format>.headerId = object4.objId
object3.objId = object1.objId
object5.objId = object3.objId
object6.objId = object3.objId
<Encode>.var1Id = <Format>.var1Id
object8.objId = object3.objId
object9.objId = <Encode>.var2Id
object1.objType = var
object2.objType = var
object3.objType = object1.objType
object4.objType = var
object5.objType = object3.objType
object6.objType = object3.objType
object7.objType = var
object8.objType = object3.objType }
(vi) <Encode> ::= object1 := <Op2> (object2, object3);

| ε
{ <Encode>.var2Id = object1.objId
object2.objId = <Encode>.var1Id
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object1.objType = var
object2.objType = <Encode>.var1Type
object3.objType = var }
(vii) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object2.objId = <Write>.objId
object1.objType = var
object2.objType = <Write>.objType }

4) Code injection: Code injection consists in writing some executable code inside the memory of
an executing programs. This code may be a part of the own code of the malware or an embedded
library. The principle is thus similar to the other replication mechanism with yet a di�erent target
type (Typing rule associated to production rule (i): <Injection>.targType= obj_exe).

(i) <Injection> ::= <Open><Read><Write>
| <Read><Open><Write>

{ <Injection>.srcId = <Read>.objId
<Injection>.targId = <Open>.objId
<Write>.objId = <Injection>.targId
<Injection>.varId = <Read>.varId
<Write>.varId = <Injection>.varId
<Injection>.srcType = this
<Read>.objType = <Injection>.srcType
<Injection>.targType = obj_exe
<Open>.objType = <Injection>.targType
<Write>.objType = <Injection>.targType }
(ii) <Open> ::= open object;
{ <Open>.objId = object.objId
object.objType = <Open>.objType }
(iii) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object2.objId = <Read>.objId
object1.objType = var
object2.objType = <Read>.objType }
(v) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object2.objId = <Write>.objId
object1.objType = var
object2.objType = <Write>.objType }

3.2.3 Residency

Residency enables malware to trigger their execution automatically. It is achieved by writing their
reference in a boot object (Typing rule associated to production rule (i): <Residency>.targType=

obj_boot). The nature of the boot object eventually determines the nature of the reference. A run
registry key requires the malware path in the �le system whereas import tables or entry points
requires its address in memory.

(i) <Residency> ::= send object1→ object2;
{ <Residency>.refId = object1.objId
<Residency>.targId = object2.objId
<Residency>.refType = var
object1.objType = <Residency>.refType
<Residency>.targType = obj_boot
object2.objType = <Residency>.tarType }
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3.2.4 Overinfection and activity tests

1) Overinfection test: The overinfection test detects whether any instance of the malware is
present on the system or not. The detection is done by checking the existence of a permanent
infection marker. This test can be achieved through at least three di�erent conditionals described
by the production rules (ii) to (iv). In the case of �le infection, the overinfection test is already
integrated in the routine searching for an healthy target. It does not need to be rede�ned here.

(vi) <Overinfection> ::= <Test1> | <Test2> | <Test3>
{ <Overinfection>.markId = <Test1>.objId
<Overinfection>.markId = <Test2>.objId

<Overinfection>.markId = <Test3>.objId
<Overinfection>.markType = obj_perm
<Test1>.objType = <Overinfection>.markType
<Test2>.objType = <Overinfection>.markType
<Test3>.objType = <Overinfection>.markType }
(ii) <Test1> ::= if(create object1)then{

stop;
}

{ <Test1>.objId = object1.objId
object1.objType = <Test1>.objType }
(iii) <Test2> ::= if(open object1)then{

stop;
}else{
create object2;
}

{ <Test2>.objId = object1.objId
object2.objId = object1.objId
object1.objType = <Test2>.objType
object2.objType = object1.objType }
(iv) <Test3> ::= if(¬(open object1))then{

create object2;
}else{
stop;
}

{ <Test3>.objId = object1.objId
object2.objId = object1.objId
object1.objType = <Test3>.objType
object2.objType = object1.objType }

2) Activity test: The activity test is the dynamic pending of the static overinfection test. The
activity test detects whether an instance of the malware is already running in memory or not,
which proves particularly useful for worms whose code is never written on any permanent storage.
This execution is betrayed by the existence of a given temporary object. The principle is �nally
identical to the overinfection tests. Consequently, their descriptions are also identical except for
the semantic rule related to the marker type (<Activity>.markType= obj_temp).

3.2.5 Execution proxy

Once malware are installed within the system (in most cases after successful replication and resi-
dency), they often provide di�erent services to the attacker. Trojans typically o�ers the capability
of execution proxy. On reception of an execution request, the malware implementing this be-
havior are able to receive a program from a remote location, to store it on the local disk, and
to �nally launch its execution. Inside the behavioral language, the program is thus read from
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a communicating object to be stored in a permanent object. Similarly to the previous behavior
descriptions, the content of the code is followed through the di�erent semantic rules. In addition
to variable coherence, the semantic rules also guarantee that the object being executed is the same
object as the one where the code has been stored (Binding rules associated to production rule (i):
<ExecutionProxy>.objId=<Create>.targId and <Execute>.objId=<ExecutionProxy>.targId).

(i) <ExecutionProxy> ::= <Create><Open><Read><Write><Execute>
| <Open><Create><Read><Write><Execute>

{ <ExecutionProxy>.srcId = <Open>.objId
<Read>.objId = <ExecutionProxy>.srcId
<ExecutionProxy>.targId = <Create>.objId
<Write>.objId = <ExecutionProxy>.targId
<Execute>.objId = <ExecutionProxy>.targId
<ExecutionProxy>.varId = <Read>.varId
<Write>.varId = <ExecutionProxy>.varId
<ExecutionProxy>.srcType = obj_com
<Open>.objType = <ExecutionProxy>.srcType
<Read>.objType = <ExecutionProxy>.srcType
<ExecutionProxy>.targType = obj_perm
<Create>.objType = <ExecutionProxy>.targType
<Write>.objType = <ExecutionProxy>.targType
<Execute>.objType = <ExecutionProxy>.targType }

| <Open><Create><InterleavedRW><Execute>
| <Create><Open><InterleavedRW><Execute>

{ <InterleavedRW>.obj1Id = <ExecutionProxy>.srcId
<InterleavedRW>.obj2Id = <ExecutionProxy>.targId
<InterleavedRW>.obj1Type = <ExecutionProxy>.srcType
<InterleavedRW>.obj2Type = <ExecutionProxy>.targType }
(ii) <Create> ::= create object;
{ <Create>.objId = object.objId
object.objType = <Create>.objType }
(iii) <Open> ::= open object;
{ <Open>.objId = object.objId
object.objType = <Open>.objType }
(iv) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object2.objId = <Read>.objId
object1.objType = var
object2.objType = <Read>.objType }
(v) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object2.objId = <Write>.objId
object1.objType = var
object2.objType = <Write>.objType }
(vi) <InterleavedRW> ::= while(receive object1← object2; ){

send object3→ object4;
}

{ object3.objId = object1.objId
object2.objId = <InterleavedRW>.obj1Id
object4.objId = <InterleavedRW>.obj2Id
object1.objType = var
object3.objType = var
object2.objType = <InterleavedRW>.obj1Type
object4.objType = <InterleavedRW>.obj2Type }
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(vii) <Execute> ::= execute object;
{ object.objId = <Execute>.objId
object.objType = <Execute>.objType }

3.2.6 Mutation techniques

Mutation mechanisms have been mentioned so far, but not formally de�ned. We now �ll this gap.
Mutations can be divided into two types of engine: polymorphic and metamorphic engines as pre-
sented in Chapter 2. According to production rule (i), they can be applied either independently or
jointly. The related semantic rules are used to follow the information �ow along the mutation pro-
cess. The �rst variable corresponds to the code in input and the second one to the mutated output.

(i) <Mutation> ::= <Polymorphism><Metamorphism>
{ <Mutation>.var2Id = <Metamorphism>.var2Id
<Polymorphism>.var1Id = <Mutation>.var1Id
<Metamorphism>.var1Id = <Polymorphism>.var2Id
<Mutation>.var2Type = var
<Polymorphism>.var1Type = <Mutation>.var1Type
<Metamorphism>.var1Type = <Polymorphism>.var2Type }

| <Polymorphism>
{ <Mutation>.var2Id = <Polymorphism>.var2Id
<Polymorphism>.var1Id = <Mutation>.var1Id
<Mutation>.var2Type = var
<Polymorphism>.var1Type = <Mutation>.var1Type }

| <Metamorphism>
{ <Mutation>.var2Id = <Metamorphism>.var2Id
<Metamorphism>.var1Id = <Mutation>.var1Id
<Mutation>.var2Type = var
<Metamorphism>.var1Type = <Mutation>.var1Type }

| ε
{ <Mutation>.var2Id = <Mutation>.var1Id
<Mutation>.var2Type = <Mutation>.var1Type }

1) Polymorphism: Polymorphism is historically the �rst type of mutation technique and thus
the simpler. As a matter of fact, code encryption remains the most prevalent technique of polymor-
phism. The code constituting the body of malware is encrypted during replication. Fortunately,
most of the actual encryption functions used by malware writers are simple binary operations. A
typical example is the XOR encryption applied with a constant key value. The behavioral descrip-
tion provided below covers these encryption techniques. The description is in fact an extended
version of the behavior template described in [64]. In particular, chaining and key variation have
been introduced through production rules (iii) and (iv) because they were encountered in some of
the analyzed malware. In addition, certain algorithms such as in PRIDE (Pseudo-Random Index
DEcryption [85]) have complex or random memory accesses instead of sequential ones in order
to delude emulators. Production rule (v) con�gures the progression in memory of the encryption
algorithm during the process.

(i) <Polymorphism> ::= object1 := &(object2);
while(< (object3, object4)){
<Ciphering>
<KeyV ariation>
<Next>
}
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{ <Polymorphism>.var2Id = object2.objId
<Polymorphism>.locId = object1.objId
<Polymorphism>.keyId = <Ciphering>.var2Id
object2.objId = <Polymorphism>.var1Id
object3.objId = object1.objId
<Ciphering>.varId = <Polymorphism>.locId
<KeyV ariation>.varId = <Polymorphism>.keyId
<Next>.varId = <Polymorphism>.locId
<Polymorphism>.var2Type = var
<Polymorphism>.locType = var
<Polymorphism>.keyType = var
object1.objType = var
object2.objType = var
object3.objType = object1.objType
object4.objType = var }
(ii) <Ciphering> ::= <Chaining>

[object1] := <Op2> ([object2], object3)
{ <Ciphering>.var2Id = object3.objId
<Chaining>.varId = <Ciphering>.var1Id
object1.objId = <Ciphering>.var1Id
object2.objId = object1.objId
object1.objType = var }
(iii) <Chaining> ::= [object1] := <Op2> ([object2], [−(object3, 1)]);

| ε
{ object1.objId = <Chaining>.varId
object2.objId = object1.objId
object3.objId = object1.objId
object1.objType = var }
(iv) <KeyV ariation> ::= object1 := <Op2> (object2, object3);

| ε
{ object1.objId = <KeyV ariation>.varId
object2.objId = object1.objId
object1.objType = var
object3.objType = var }
(v) <Next> ::= object1 := <Op2> (object2, object3);

| ε
{ object1.objId = <Next>.varId
object2.objId = <Next>.varId
object1.objType = var
object3.objType = var }

The associated decryption routine has the same structure as the mutation process since encryp-
tion and decryption algorithms are built on reversible operations. The decryption routine may be
built from encryption either by varying the key or replacing the arithmetic operations implied. The
main di�erence �nally relies on an additional jump for the transfer of control to the malicious code.

(i) <DecryptRoutine> ::= <Polymorphism>
goto object1;

{ <DecryptRoutine>.locId = <Polymorphism>.locId
object1.objId = <DecryptRoutine>.locId }

2) Metamorphism: Metamorphic transformations, event if they are more complex, can still be
formalized within a model based on formal grammars. In [98, 99], E. Filiol has de�ned meta-
morphism as a rewriting system transforming a grammar into an other one. Our model reuses
this de�nition establishing rewriting rules for our grammar. Metamorphic engines use four main
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types of techniques: reordering, register reassignment, garbage insertion and substitution with
equivalent instructions. This last technique is partially addressed at the semantic level and thus
shall not be described formally. In particular, in our formalization, the use of di�erent system ser-
vices with varying parameters can be reduced to their basic interpretation as interactions bringing
equivalences into light.

The �rst technique is garbage insertion. Existing works already de�ne the insertion of dead
code as a grammar production rule [202]. This model considers only the insertion of nop equiva-
lent instructions. In our model, we extend the notion of garbage code to any sequence that once
inserted does not modify any variable or interaction history of the original code. In order to de�ne
our rewriting rule, let us de�ne a sequence S generated by our framework. Let s1, ..., sn be any
possible partition of S into n subsequences. Such a partition is always possible as soon as the
sequence is not made up of a single command or a single structure.

(i) s1...sn ⇒R <Garbage> s1 <Garbage> ... <Garbage> sn <Garbage>
(ii) <Garbage> ::= <Sequence>
{ ∀objectS ∈ S, ∀objectL ∈ L(<Sequence>), objectL.objId 6= objectS .objId }

We use the same notation in order to de�ne code reordering. The sequence is once again par-
titioned and then recombined according to any possible permutation of the subsequence si...sj .
Jump are then introduced in order to maintain the correct control �ow.

(i) s1...sn ⇒R goto object1; si−1; goto objecti; ...; s1; goto object2; ...; sn

As we are working at a semantic level, the problem of register reassignment is already addressed
using generic variables. But, once again, the notion of register reassignment can be extended to
the more generic principle of object reassignment. Let us denote the substitution S[object′/object]
as the rewriting of the sequence S where all occurrences of objects sharing the same identi�er
object.objId are replaced by the identi�er object′.objId.

(i) S ⇒R Vnew := (Vold);
S[Vold/Vnew]

3.2.7 Other anti-antiviral techniques

1) Stealth: Mutations constituted passive techniques of defense against scanning. Stealth is an
other passive technique of protection, more adapted to dynamic monitoring. A malware is said
stealthy with regards to its environment if no reference is made to it in the information structures
controlled by the system. In grammatical terms, it could be translated by the following result:
{object.objType = env_var} ∩ {object.objType = this} = �. For example, no reference to the
malware should be clearly visible in the �le system tables or the process list. Most of these environ-
ment structures are accessed thanks to services, so the references to malware should be deleted at
this level. In order to achieve this, we de�ne ways for a malware to be stealthy relatively to services
and in particular system calls by replacing them with altered functions. There are two basic cases.
Either the malware is referenced within the call parameters, or it is referenced within the returned
values. These references can be replaced by benign data respectively through pre-processing, as
in production rule (ii), or post-processing, as in production rule (iii). The reference can be an
explicit value but also a value contained inside a complex structure, requiring analysis of all entries.
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(i) <StealthFuntion> ::= <Preprocessing>
<SysCall>
<Postprocessing>

{ <StealthFuntion>.paramId = <Preprocessing>.var1Id
<StealthFuntion>.retId = <Postprocessing>.var1Id
<StealthFuntion>.refId = <Preprocessing>.var2Id
<SysCall>.var1Id = <StealthFuntion>.paramId
<Postprocessing>.var1Id = <SysCall>.var2Id
<StealthFuntion>.paramType = var
<StealthFuntion>.retType = var
<StealthFuntion>.refType = var }
(ii) <Preprocessing> ::= if(= (object1, object2))then{

object3 := object4;
}

{ <Preprocessing>.var1Id = object1.objId
<Preprocessing>.var2Id = object2.objId
object3.objId = object1.objId
object2.objType = var
object4.objType = var }

| ε
(iii) <Postprocessing> ::= if(= (object1, object2))then{

object3 := object4;
}

{ object1.objId = <Postprocessing>.var1Id
object2.objId = <Postprocessing>.var2Id
object3.objId = object1.objId
object4.objType = var }

| object1 := object2;
while(< (object3, object4)){
if(= (object5, object6))then{
object7 := object8;
}
object9 := +(object10, 1);
}

{ object2.objId = <Postprocessing>.var1Id
object3.objId = object1.objId
object5.objId = object1.objId
object6.objId = <Postprocessing>.var2Id
object7.objId = object1.objId
object9.objId = object1.objId
object10.objId = object1.objId
object1.objType = var
object4.objType = var
object8.objType = var }

| ε

2) Proactive defense: In addition to passive techniques of defense, malware also have at their
disposal active techniques. Basically, malware often try to delete security �les or terminate an-
tivirus processes in order to execute freely.

(i) <ProactiveDefense> ::= delete object1
{ <ProactiveDefense>.targId = object1.objId
<ProactiveDefense>.targType = obj_sec
object1.objType = <ProactiveDefense>.targType }
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An other form of proactive protection is the modi�cation of the security policy. Most programs,
even the operating system store this information in policy objects like registry keys or con�guration
�les. For malware, the objective is to replace the current con�guration by the weakest possible one.

(i) <Policy> ::= open object1;
send object2→ object3;

{ <Policy>.targId = object1.objId
object3.objId = object1.objId
<Policy>.targType = obj_sec
object1.objType = <Policy>.targType
object2.objType = var }

These two techniques are quite aggressive and are consequently monitored by antivirus prod-
ucts and host-based intrusion detection systems. There are more subtle ways to avoid detection,
such as preventing the capture of any information betraying the malicious activity. During analy-
sis, malaware are often primarily run in an emulated environment. Such a virtual system can be
detected because it does not entirely match up real ones. The redpill technique is based on this
kind of comparison by reading the CPU structure thanks to the cpuid instruction [207]. When
�nding a virtual environment, malware can execute a legitimate sequence or simply stop.

(i) <DetectEmulator> ::= receive object1← object2;
if(= (object3, object4))then{
stop;
}else{
<Sequence>
}

{ object3.objId = object1.objId
object1.objType = var
object2.objType = env_var
object4.objType = var }

3.3 Model assessment and use cases

Along this chapter, we have introduced a behavioral model based on formal grammars. Similar
models, based either on and/or graphs [175], or on dynamically built graphs [181], have been
proposed, but the choice of a grammatical formalism was motivated by the solid foundations it
o�ers and the numerous results existing on the subject, allowing us to bene�t from past experiences.
In particular, attribute grammars have provided a mean to express the set of operations making
up behaviors, but also their combination and linking through attributes, without requiring any
adaptation of the formalism itself. Contrary to the previously mentioned articles, the classes of
attributes are richer and precisely de�ned. A second reason for choosing a grammatical formalism
lies in its facilities in terms of manipulation and understanding that ease any model update or
evolution. Formal grammars thus constituted a judicious basis for further extensions.

In response to the �rst objective of the thesis, the Abstract Malicious Behavioral Language
(AMBL) has been designed to convey the generic principles of behaviors which are �nally inde-
pendent from the technical details of the implementation such as the con�guration of the platform
or the programming language in which malware are developed. The language natively supports a
set generic interactions for the manipulation of environment objects, which were until now lacking
in formal behavioral language [64]. The formal properties of the language have also been stud-
ied (operational semantics, Turing-completeness, interactive incompleteness, well-formed attribute
grammar) contrary to languages purely built on experimentation [211].
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Figure 3.7 - Cycle between implementation and theoretical models.

Within the AMBL, several malicious behaviors have been described. With respect to [181]
which only describes duplication or [64, 175, 211] which only provide a restricted set of behaviors,
this chapter describes a richer set of behaviors related to the installation of the malware but also
to its attack payload. These descriptions constitute a �rst evidence of the expressiveness of the
AMBL. However, these descriptions have been established by manual analysis of a limited pool
of malware. Their viability must be guaranteed by checking their adequacy with a larger pool
of test. Additional manual analysis is obviously not a satisfying solution. Another way to check
their adequacy is to implement these descriptions inside a behavioral detector. The coverage of
the detector should provide a pertinent assessment of the language soundness by verifying that
malware are actually detected and not legitimate programs, as well as its completeness by verifying
the number of misssed malware. The advantage is that the grammatical model is compatible with
di�erent detection techniques. By restricting the behavioral descriptions to the interactive core
of the language, these descriptions can become signatures for simulation-based detection. Parsing
can then be deployed, either o�-line or in real-time, over the system calls collected during dynamic
monitoring. Reintroducing the internal operations and structures, these descriptions can become
templates for static analysis. For example, these descriptions could be translated into temporal
logic formulae for model checking.

Before implementing a detector, a translation mechanism is still required. This problem is
brie�y evoked inside this chapter but the process is not automated yet. As stated in the thesis
objectives, the translation must operate in both ways: from the implementation to the model and
back. As shown in Figure 3.7, the translation into the behavioral language can be addressed along
detection. Translation interprets the collected data in order to ease the �nal comparison with the
behavioral descriptions. This side of the translation is addressed by Chapter 4, covering detection.
The reverse translation from the model into potential implementations is addressed in Chapter 5
by speci�cation of mutation techniques at the behavioral level.

58



Chapter 4
Behavioral detection by
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B
ehavioral detection should theoretically be able to detect, if not innovative malware, at
least unknown malware reusing variations of known techniques. However, most of the current

behavioral detectors rely on speci�c characteristics, allowing evasion through simple modi�cations
at the functional level. In the previous chapter, a generative grammar for the Abstract Malicious
Behavioral Language has been provided to model malicious behaviors, describing their generic
principle rather than their technical implementations. This chapter shows the usage of behavioral
signatures declared in the AMBL to build e�cient and resilient parsing automata for detection.
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In a detection context, deterministic �nite automata are attractive because their linear com-
plexity remains acceptable for operational deployment. Already in 1995, [59] used automata to
describe the alternative sequences of operations making up malicious behaviors. Detection was
then restricted to behaviors described by classes of grammars insensitive to the context. Since
then, a focus on data �ow has led to the apparition of tainting techniques to detect malicious uses
of data [187]. After signi�cant successes, control of the data �ow is now broadly used, in intru-
sion detection [49] or malware behavior extraction [65]. The data-�ow being context-sensitive, it
requires more evolved automata, such as pushdown automata, to be handled. In practice, the au-
tomata embed the sequences of system calls constituting respectively attacks and behaviors. The
data �ow is then captured by analysis of the parameters collected along the system calls. Follow-
ing this principle, [181] focuses on self-reproduction as the discriminating behavior for detection
whereas [175] focuses on bots behaviors. The approach of behavioral detection that we present
in this chapter also combines automata and data �ow control. But, according to the declarative
approach of [199], behavior signatures are �rst declared within the AMBL instead of being directly
embedded into automata like the previously mentioned articles.

Starting from the declared signatures, parsing automata are built for behavioral detection by
syntax checking and semantic evaluation. The AMBL semantic attributes, speci�ed for binding
and typing, increase the linking between the operations making up the behaviors. In reference
to intrusion scenarios [74, 188], these attributes eventually constitute two sets referred to as pre-
requisites and consequences, evaluated at every step of the automata. Through prerequisites and
consequences, unrelated operations are precisely identi�ed, similarly to the event �lters formal-
ized in [200]. Unlike traditional parsing, �ltered symbols must be dropped to keep on with the
detection. An other di�erence with traditional parsing is that detection searches in a single pass
for multiple instances of a same behavior, some possibly incomplete. Just like in [200], derivation
duplication is used to handle these multiple instances without risk of missing one.

Figure 4.1 - Configuration and detection processes. On the right, the
detection process is described with its two layers for abstraction and detection. On the
left, the con�guration process describes the prerequisites of the respective layers.

In input to parsing, collection mechanisms supply raw data and abstraction is needed to trans-
late the observed traces into the behavioral language. [175] addresses by a layered architecture
the semantic gap existing between the system call traces, understandable by OS specialists, and
high-level behaviors. The present approach also introduces an abstraction layer for translation into
the AMBL, in order to get detached from the speci�cities of the platform and the programming
language. Figure 4.1 introduces the layered approach, with a �rst speci�c abstraction layer and
a generic interoperable detection layer, based on parsing automata. Upstream, the generation of
the grammatical behavior descriptions, the language abstraction or the identi�cation of the critical
system objects; all these operations require an initial con�guration step as described in Figure 4.1.
More precisely, critical system objects are elements of the applicative environment with potential
misuse by malware; fortunately they often remain enumerable in standard environments. As for
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the description generation, contrary to other detection methods which require the analysis of all
samples, it mainly focuses on innovative malware. Innovative malware refer to unknown mal-
ware introducing new forms of malicious behaviors. In fact, these are scarce among the numerous
variants of known malware regularly released.

This chapter covers the successive layers of the process as published in [138]. Section 4.1 starts
with the abstraction layer and automated translation. Section 4.2 then de�nes the detection layer
in terms of parsing automata, allowing their formal assessment. In particular, we have been able to
identify the classes of attribute-grammars acceptable for signature detection in a single pass, but
also to assess the detection complexity in various cases. Since detection only provides information
about independent behaviors, Section 4.3 addresses behavior correlation over the parsing results, in
order to merge this information and pro�le malware into families. Implementation of the di�erent
layers is covered in Section 4.4 in order to provide in Section 4.5 a second operational assessment
in terms of coverage and performance. Section 4.6 �nally discusses the possible application of this
method, originally designed for stand-alone malware, to web-based malware.

4.1 Translation into the abstract language

In input to behavioral detection, a collection mechanism statically or dynamically captures traces
of actions. The level at which it is running directly in�uences the completeness and the nature of
the available data, varying from instructions to system calls along with their parameters. These
traces remain speci�c to a given platform and to the language in which the malware instance has
been coded (native, interpreted or macro code). A �rst translation layer is thus required to abstract
the collected data into the behavioral language from Chapter 3. Translation of basic instructions,
either arithmetic (e.g. move, addition, subtraction) or control related (e.g. conditional, jump),
into operations of the behavioral language is an obvious mapping which does not require further
explanation. However, translation of the system calls and their parameters into interactions and
objects from the language turns out to be more complex. Section 4.1.1 �rst describes call translation
by mapping. Section 4.1.2 then describes parameter translation by decision trees.

4.1.1 Translating calls to Application Programming Interfaces

For programs to access any service or resource from its environment, the Application Programming
Interfaces (API) constitute a mandatory point enforcing the security and consistency of these
accesses [189]. System calls constitute a particular subset of API calls where native code accesses
services from the operating system; still, the �rst notation will prevail to remain generic. For each
programming language the set of available API can be classi�ed into distinct interaction operations.
This set of interfaces being �nite and supposedly stable, the translation can be de�ned as a direct
mapping over the language interaction symbols, guaranteeing the completeness of the process.

The mapping de�nition is part of the detector con�guration, under the responsibility of pro-
gramming language specialists. Table 4.1 provides a mapping for API fromWindows and VBScript.
The table integrates native system calls located in the Ntdll [8]. Focusing on open interactions,
they eventually correspond to di�erent API according to the nature of the manipulated object.
Opening a �le, for example, is achieved using either NtOpenFile in Windows C code, or GetFile
and OpenTextFile in VBScript. However, the interface name, on its own, is not always su�cient
to determine the interaction symbol. Let us take another example. Network devices and �les use
common APIs; the distinction being made on the path parameter (e.g. \device\Afd\Endpoint).
Network sending and receiving operations then depends on the control code transmitted to the
device with NtDeviceIoControlFile (e.g. IOCTL_AFD_RECV, IOCTL_AFD_SEND). When required,
constant parameters can thus constitute additional inputs of the mapping:

(1) {API name} × ({Constant parameters} ∪ {ε})→ {Interaction class}.
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Table 4.1 - Mapping APIs to Interaction Classes. The table maps the
di�erent Windows Native and VBScript APIs to the interaction classes in the left
column. The table is re�ned according to the nature of the manipulated objects.
Elements of the mapping (API names and parameters) are highlighted in bold font.

4.1.2 Translation of API call parameters by interpretation

In addition to lifting the ambiguities about interaction classes, call parameters are also critical to
identify and apprehend the various objects involved. Interpretation identi�es and follows objects
through their di�erent aliases and references. Interpretation also apprehends objects by discovering
their potential malicious purpose, this purpose being �nally conveyed by the typing system of the
behavioral language. Parameters interpretation constitutes the second level of abstraction from
the platform and language begun with the translation of the API.

Due to their multiple natures, parameters can not be translated by a simple mapping, as
previously done in Section 4.1.1. Decision trees are more adaptive tools and are thus better suited
to interpret parameters according to their representation: integers, addresses and handles, and
�nally strings as described on next page. The construction of the decision trees is also part of the
detector con�guration, under the responsibility of operating system specialists.

Integers: Integer attributes are mainly constants speci�c to an associated API. They mainly
condition the mapping to an interaction class. The hard-coded comparison realized during
the API mapping is su�cient to detect the main important constants.
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Figure 4.2 - Address interpretation. Within the global memory space, crit-
ical structures of the operating system may be localized at �xed addresses. Inside the
memory space of processes, additional locations must be considered according to the
speci�cations of the executable format (PE under Windows, ELF under Linux ).

Addresses and Handles: Addresses and handles are system references used by native code (in
scripts, variables are simply referred by their name); they thus enable the identi�cation of
objects appearing in the trace. They are particularly useful to follow the data �ow between
these objects. Intermediate variables in memory are identi�ed by their address av and poten-
tial size sv. Every address a such as av ≤ a ≤ av +sv will refer to the same variable. Speci�c
addresses have important properties and may be re�ned by typing. To interpret these ad-
dresses, a decision tree hierarchically partitions the address space, as shown in Figure 4.2.
The address space is divided between the user and kernel space over 0x7FFFFFFF. Inside the
kernel space, particular address ranges correspond to tables storing system call or interrupt
locations. Inside the user space, the address space of running processes is divided between
the code image, stack and heap. The code image contains, among others, the entry point of
the process, as well as its import table (IAT) storing the imported API.

Figure 4.3 - String interpretation. The path is progressively analyzed. The
root may point to connected drives. The intermediate folders may point to transit
locations. Con�guration �les may �nally be recognized through the object name.

Strings: String parameters contain the richest information about objects. Most of these pa-
rameters are made up of printable characters often corresponding to paths. Paths satisfy
a hierarchical structure where every element conveys a precise signi�cation: from the root
element identifying drives, devices and the registry, passing by the intermediate directories
providing object localization, until the real name of the object. The hierarchical structure of
paths is well adapted for the progressive analysis of decision trees. The decision tree described
in Figure 4.3 provides an example of string interpretation in a Windows con�guration.
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The construction of the decision trees requires a precise identi�cation of the critical resources
of a system. We propose a methodology, reproducible to various systems, proceeding by consid-
eration of the successive system layers: hardware layer, operating system layer and applicative
layer. For each layer, a scope is de�ned encompassing the signi�cant components involved in any
potentially malicious activity. Within this scope, the resources involved either in the installation,
the con�guration or the use of these components must be analyzed for potential misuse:

Hardware layer: We have chosen to restrict the scope of the hardware layer to the di�erent
interfaces open to external locations from where malware could propagate or leak information:
network devices, cd-rom, usb ports. We have considered that input interfaces o�er less
possibility of harm, except data interception. With respect to usage, drivers are key resources
used to command these interfaces (e.g. \device\Afd\Endpoint for network). With respect
to con�guration, con�guration �les are critical because they impact the interfaces through
their starting (e.g. autorun.inf for amovible devices) or their connection (e.g. host �le for
IP resolution). These two categories of resources must be integrated to the tree construction.

Operating system layer: The con�guration of the operating system is critical but unfortunately
spread in various locations (e.g. �les, registry, structures in memory). The scope of the anal-
ysis is proportionally broadened. In practice, the critical resources are often well identi�ed
by the security experts, including the boot sequence or the intermediate structures used to
access the services and resources provided by the system (e.g. �le system, process table,
interruption vector, system call table). The tree construction must eventually integrate the
results of the existing experience in OS security.

Applicative layer: It is obviously impossible to consider all existing applications. There exist
millions of commercial applications, without even taking into account those developed by
individuals. Taking into account malware propagation and interoperability constraints, the
scope of the analysis is restricted to connected and widely deployed applications (e.g. web
browsers, mail clients, peer-to-peer clients, messengers, IRC clients). Again, are considered
the related resources involved in the communication (connections, transit locations) as well
as in the con�guration of the application (starting procedure).

The identi�cation of the critical resources potentially used by malware is a manual, yet nec-
essary, con�guration step. It however proves less cumbersome than analyzing the thousands of
malware samples discovered every day, for the following reasons. First, the critical resources of a
given platform are often known and limited; they can thus be methodologically enumerated as pre-
viously presented. Once these resources pinpointed, their name and location can then be retrieved
in a partially automated way. For example, connected drives can be automatically listed using
the �le system to discover amovible and network drives. Peer-to-peer clients can be identi�ed by
searching the registry for installation keys. These keys also store the list of shared folders that can
be recovered automatically. Still this method is only semi-automated in the sense that you need a
certain knowledge about applications to generate the listing procedure. Eventually, full automation
of the parameter interpretation may be very hard to achieve. In [158], an attempt was made to
fully automate parameter analysis for anomaly-based intrusion detection. The interpretation relied
on deviations from a legitimate model based on string length, character distribution and structural
inference. These factors are signi�cant for intrusions which mostly use misformatted parameters
to in�ltrate through vulnerabilities. It may prove less e�cient with malware since they can use
legitimate parameters, at least in appearance. Moreover, the real purpose of these parameters
would still be unexplained; an additional analysis would be required for type a�ectation. Thus,
interpretation by decision trees with automated con�guration seems a good trade o� between full
automation and a-priori manual analysis.
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4.2 Detection by parsing automata

In a grammatical model, detecting malicious behaviors is reduced to parsing their descriptions.
According to Proposition 3 from previous chapter, the AMBL is well-formed, thus guaranteeing
a possible order for semantic attribute valuation. However, in a detection context, this property
is insu�cient. Deployed in real-time, the detector is confronted to a continuous �ow of data
forbidding the decoupling of syntactic parsing from semantic evaluation into consecutive processes.
Syntactic parsing and semantic evaluation must thus be achieved in a single-pass. To satisfy
this constraint, attribute grammars must either be LL and L-attributed grammars, or LR and
S-attributed grammars [245, Chpt.10]. By de�nition, LL-grammars are parsed from Left to right
in order to construct Leftmost derivations whereas LR-grammars construct Rightmost derivations.
As speci�ed in De�nition 4, L-attribute grammars only allow attribute dependency from left to
right in the production rules. S-attributed grammars speci�ed in De�nition 5 are included within
L-attributed grammars and only authorize synthesized attributes. With respect to syntax, LR-
parsers can handle a larger class of grammars than LL-parser. However, the AMBL has very simple
syntactic rules. Sematic evaluation will thus constitute our main choice criteria. By de�nition of
the language, typing attributes are inherited. LR-parsers using a bottom-up approach will thus
be missing the typing information inherited from parent nodes. LL-parsers have thus been chosen
because of their capacity to handle larger classes of semantic attributes. We therefore constrain
the description generation within the AMBL to LL and L-attributed subgrammars.

De�nition 4 In an L-attributed grammar, attribute dependencies on the right-hand sides of pro-
ductions are only allowed from left to right positions. An attributed grammar G is L-attributed if
for every π ∈ P and Yi.α = f(..., Yj .β, ...) with α ∈ Inh and β ∈ Syn, we have i < j.

De�nition 5 An attributed grammar G is S-attributed if every of its attribute is synthesized.

De�nition 6 A LL-parser A is an extended pushdown automaton that can be built as a ten-tuple
<Q,Σ, D,Γp,Γs, δ, q0, Zp,0, Zs,0, F > where:
- Q is the �nite set of states, and F ⊂ Q is the subset of accepting states,
- Σ is the alphabet of input symbols and D is the set of values for attributes,
- Γp / Γs are the parsing / semantic stack alphabets,
- q0 ∈ Q is the initial state and Zp,0 / Zs,0 are the stacks start symbols,
- δ is the transition function de�ning the production rules and semantic routines,
of the form: Q× ({Σ ∪ ε}, D∗)× (Γp,Γs)→ Q× ({Γp ∪ ε},Γs).

From the behavioral descriptions, the LL-parsers for detection are constructed as pushdown
automata, enhanced with attribute evaluation in order to recognize their synatx and semantic
[245, Chpt.10]. To build the detector, several behaviors are monitored in parallel, each one parsed
by a dedicated automaton as represented in Figure 4.4. According to De�nition 6, these automata
are capable of building, from top to down, the annotated leftmost-derivation trees by using two
di�erent stacks for syntactic symbols and semantic attributes. However, the construction of these
automata di�ers from traditional parsing, thus explaining that we did not use parser generators
such as ANTLR [191]. In fact, each automaton Ak, associated to the kth behavior, parses at
the same time several instances of the behavior, storing its progress in independent derivations.
These derivations correspond to triples made up of the current state qk and the content of the
parsing and semantic stacks, Γpk and Γsk. Through the abstraction layer, sequences of events ei
are collected and translated into input symbols and semantic values of the recognized language.
The parsing automata, deployed in parallel, are fed with all these events and progress along their
derivations. These events may appertain to any behavioral instance, so all the derivations handled
by a given automaton are independently updated. When an irrelevant input is read (an interleaved
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operation inside the behavior for example), this input is ignored instead of causing an error state
in a derivation. When an ambiguous input is read (a seemingly relevant operation that does not
eventually help to the behavior completion), the derivation is duplicated to handle new instances.
Individual parsers and the global procedure are respectively de�ned in Algorithms 1 and 2. The
handling of irrelevant events and ambiguous events are respectively described in greater details in
Sections 4.2.1 and 4.2.2. The resulting parsing complexity is �nally addressed in Section 4.2.3.

Figure 4.4 - Detection by parallel automata. The n automata corre-
spond to the di�erent monitored behaviors. Each automaton handles several parallel
derivations with independent states and stacks in order to handle ambiguities.

Algorithm 1 A.ll-parse(e,Q,Γp,Γs).
1: if e, Q, Γp, Γs match a transition T ∈ δA then
2: if e introduces a possible ambiguity then
3: duplicate state and stack triple (Q,Γp,Γs). {Start new parallel derivation}
4: end if
5: compute transition T to update (Q,Γp,Γs).
6: if Q is an accepting state Q ∈ FA then
7: alert "malicious behavior detected".
8: else
9: ignore e.
10: end if
11: end if

Algorithm 2 BehaviorDetection(e1,...,et).

Require: events ei are couples of symbol and semantic values: ({Σ ∪ ε}, D∗).
1: for all collected events ei do
2: for all the automata Ak such as 1 ≤ k ≤ n do {Detection of n behaviors}
3: m = number of derivations.
4: for all state and stack triples (Qk,j ,Γpk,j ,Γsk,j) such as 1 ≤ j ≤ m do
5: Ak.ll-parse(ei,Qk,j ,Γpk,j ,Γsk,j).
6: end for
7: end for
8: end for

4.2.1 Semantic prerequisites and consequences

The present detection method can be related to scenario recognition in intrusion detection. An
intrusion scenario is de�ned as a sequence of dependent attacks [74, 188]. For each attack to
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occur, a set of prerequisites or preconditions must be satis�ed. Once the attack completed, new
consequences are introduced, also called postconditions. In [36], isolated alerts are correlated
into scenarii by parsing attribute-grammars annotated with semantic rules to guarantee the �ow
between related alerts. Similarly, a malicious behavior is a sequence where each operation prepares
for the next one. In a formalization by attribute grammars, the sequence order is ensured by
the syntax whereas prerequisites and consequences are ensured by semantic rules of the form
Yi.α = f(Y1.α1...Yn.αn) according to De�nition 3.

Checking prerequisites: Prerequisites are de�ned by speci�c semantic rules where the left-side
attributes of the equations are attached to terminal symbols (Yi ∈ Σ). During parsing,
semantic values are collected along input symbols. These values are compared to values
computed using inherited and already synthesized attributes. This comparison corresponds
to the matching step performed on the semantic stack Γs during transitions from δ. Symbols
failing to satisfy the prerequisites are simply ignored instead of raising errors [200].

Evaluating consequences: When the left-side attribute is attached to a non-terminal (Yi ∈V )
and all right-side attributes are valued, the attribute is evaluated. During the transitions
from δ, the evaluation corresponds to the reduction step where the computed value is pushed
on the semantic stack Γs. Once computed, the consequences can impact next transitions by
being integrated to their prerequisites.

4.2.2 Ambiguity support

All events are fed to the behavior automata. However, some of them may be unrelated to the
behavior or unuseful to its completion. Unrelated events do not match any transition and are
simply dropped. This is insu�cient for unuseful events raising ambiguities: they may be related
to the behavior but parsing them makes the derivation fail unpredictably. Let us take an explicit
example for duplication. After opening the self-reference, two �les are consecutively created. If
duplication is achieved between the self-reference and the �rst �le, parsing succeeds. If duplication
is achieved with the second one, parsing fails because the automaton has progressed beyond the
state of accepting a second creation. Similar ambiguities may be observed along the variable
a�ectations which alter the data-�ow.

The algorithm should thus be able to manage the di�erent objects and variables combinations.
Ambiguities are handled by the detection algorithm using derivation duplicates. This solution
guarantees that no behavior instance can be missed as proven by the completeness proof in [200].
Before transition reduction, if the operation is potentially ambiguous, the current derivation is
copied in a new triple containing the current state and the parsing and semantic stacks. This
solution handles the combinations of events without backtracking. To come back and forth in the
derivation trees would have proved too cumbersome for real-time detection. To avoid an explosion
in the number of derivations, derivations, as soon as they become useless, may be destroyed as it
will be presented in Section 4.4.3 on implementation.

4.2.3 Time and space complexity

LL-parsing is linear in function of the number of symbols [122]. Parallelism and ambiguities
increase the complexity of the detection algorithm. Let us consider calls to the parsing procedure
as the reference operation. This procedure is decomposed in three steps: matching, reduction and
accept (two comparisons and a computation). In the worst case scenario, all events are related to
the behavior automata and all these events introduce ambiguities. In the best case scenario, no
ambiguity is raised. Resulting complexities are given in Proposition 4.
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Proposition 4 In the worst case, behavioral detection using attributed automata has a time com-
plexity in ϑ(k(2n−1)) and a space complexity in ϑ(k2n(2s)) where k is the number of automata, n
is the number of input symbol and s is the maximum stack size. In the best case, time complexity
drops to linear time ϑ(kn) and space complexity becomes independent of the inputs ϑ(k2s).

The worst case complexity is important but it quickly drops as the number of ambiguous
events decreases. The experimentations in Section 4.5.5 show that the ratio of ambiguous events is
limited and the algorithm o�ers satisfactory performances. Based on this ratio, a new assessment
of the average practical complexity is provided. Besides, these experimentations also show that an
important ratio of ambiguous events are already a sign of malicious activity.

Proof.
In a best case scenario, the number of derivation for each automaton remains constant. Consid-
ering the worst case scenario, all events are potentially ambiguous for all the current derivations.
Technically, ambiguities multiply by two the number of derivations at each iteration of the main
loop. Consequently, each automaton handles 2i−1 di�erent derivations at the ith iteration. The
time complexity is then equivalent to the number of calls to the parsing procedure:

(1) k + 2k + ...+ 2n−1k = k(1 + 2 + ...+ 2n−1) = k(2n − 1)

The maximum number of derivations is reached after the last iteration. In the worst case, all
automata manage 2n parallel derivations. Each derivation is stored in two stacks of size s. This
moment thus coincides with the maximum memory occupation:

(2) k2n(2s). �

4.3 Pro�ling the main classes of malware

In the previous sections, a behavioral approach for detection has been provided. Strictly speak-
ing, this approach does not detect malware, but o�ers a �ner-grained approach by detecting the
independent malicious behaviors encountered inside these malware. A complete detection scheme,
as presented in De�nition 7, requires a third layer, above translation and individual detection,
for behavior correlation. The interest of correlation is twofold. It �rst reduces the risks of false
positives. The experimentations coming in Section 4.5.3 show that some behaviors are more dis-
criminating than others. Correlation is a way to give these signi�cant behaviors a greater weight
in the detection process. In addition, correlation can also be used to associate individual behaviors
with a family the malware instance belongs to.

De�nition 7 A behavioral detection scheme is the pair {B, φc} where B is a set of behavior sig-

natures de�ned as Boolean variables and φc : F|B|2 → Fn is a Boolean correlation function for
detection, Fn being the n-ary �eld indexing legitimate programs and malware families [95, 103].

Resulting of detection by automata, the Boolean variables corresponding to the monitored be-
haviors B are resolved. These variables may express the simple behavior presence (example (1)).
However, since the detection automata provide richer information than behaviors alone, these vari-
ables can also convey more meaningful expressions. Additional information can be recovered from
the derivation trees built by the automata during parsing. For example, a duplication derivation
tree distinguishes the possible data �ows, between direct transfer, single read/write or interleaved
reads/writes (example (2)). Through the semantic annotations of the tree, information about the
duplication target can also be recovered such as its name or its status: existing or created by the
malware (example (3)). All this information constitutes additional Boolean variables that can be
fed into the correlation process, to increase its deduction capability.
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(1) Xβ =
{

1 if β has been identified
0 otherwise

(2) Xβ,m =
{

1 if β has been identified using method m
0 otherwise

(3) Xβ,o,s =
{

1 if β manipulates object o with status s
0 otherwise

A way to �nally build the correlation function φc is to establish, according to the common
properties of their behaviors, pro�les for the generic classes of malware. These pro�les can be
speci�ed by belonging conditions, using all the behavioral information at our disposal. In Figure
4.5, we have put forward pro�les for di�erent kinds of Viruses, Trojans and Worms, their belonging
conditions expressed as Boolean statements.

Pro�le for the Virus class:

duplication.number ≥ 1
duplication.target.status ∈ {existing}
File overwriter subclass:

duplication.flow ∈ {transfer}
File infector subclass:

duplication.flow ∈ {single read/write,
interleaved read/write}

Pro�le for the Trojan class:

duplication.number ≥ 1
executionproxy.number ≥ 1

Pro�le for the Net Worm class:

propagation.number ≥ 1
propagation.interface ∈ {network}

Pro�le for the Mail Worm class:

duplication.number ≥ 1
propagation.number ≥ 1
propagation.interface ∈ {mail}

Pro�le for the P2P Worm class:

duplication.number ≥ 1
propagation.number ≥ 1
propagation.interface ∈ {file, folder}

Pro�le for the Drive Worm class:

duplication.number ≥ 1
propagation.number ≥ 1
propagation.interface ∈ {drive}
Amovible drive subclass:

residency.target.name ∈ {autorun.inf}
Generic drive subclass:

residency.target.name 6∈ {autorun.inf}

Pro�le for the IRC Worm class:

duplication.number ≥ 1
∨ propagation.number ≥ 1
residency.number ≥ 1
residency.target.name ∈ {mirc.ini,

script.ini}

Figure 4.5 - Generic Malware Profiles. The pro�les are mainly built on the
presence of speci�c behaviors inside malware, but additional parameters, corresponding
to derivation-related and semantic information, re�ne the belonging conditions.

4.4 Prototype implementation

As a proof of concept, a prototype of behavioral detector has been designed, satisfying the formal-
ization of the previous sections. We have developed a �rst version of the prototype, which includes
the two aforementioned layers: a speci�c data collection and abstraction layer and a generic de-
tection layer [138]. The second version has been enhanced with an additional layer for behavior
correlation by pro�les. The overall architecture is described in Figure 4.6. For the abstraction layer,
dedicated components capture the features of di�erent languages whereas a common object classi-
�er apprehend the platform-speci�c elements of the environement. In order to cover di�erent use
cases, components have been designed for two di�erent languages: a native language through the
traces of PE Executables and an interpreted language with Visual Basic Script. Above abstraction,
the detection layer deploys parallel automata parsing the interpreted traces independently from
their original source. The behavioral information extracted by the automata are �nally correlated
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by the last layer in order to classify malicious codes. The di�erent elements of the architecture are
described in the next sub-sections.

Figure 4.6 - Multi-layered architecture of the detector. The detector
prototype is constituted of three stacked layers, making-up the global detection process.
Each layer handles more generic and synthetic data, starting from the collected raw
traces, passing by detected behaviors, to the above malware classi�cation.

4.4.1 Analyzer of process traces

Process traces provide useful information about the system activity of an executable. Whatever
the considered operating system, di�erent dynamic tools exist to capture these traces of system
calls. The prototype deploys a free tool called NtTrace which has been chosen for its capacity to
collect Windows Native Calls, their arguments as well as their returned values [9].

1) Collection environment: Contrary to static analysis, the main point with dynamic collection
mechanisms, either real-time or emulation based, is that most behaviors are conditioned by external
objects and events, such as available target for infection or listening servers for network propagation.
The con�guration of the collection environment is thus critical. For trace collection, the virtual
environment from Figure 4.7 has been installed over Qemu [11] using a drive image underWindows
XP. In order to increase the mechanism coverage and collect conditioned behaviors, useful services
and resources were con�gured or installed: system time, Internet Service Provider accounts, mail
and peer-to-peer clients, potential targets (executables, pictures, music, web pages). To create a
more realistic network con�guration, emulations of DNS and SMTP servers have been deployed
outside the virtual machine. These servers are not used to directly collect data but their presence
is mandatory to establishing network connections and exchanges. They constitute the only way to
capture the associated trace, containing the network activity at the system call level. Additional
servers for IRC (Unreal) and FTP (FileZilla) have been deployed in a second step to observe any
botnet activity for the related samples. NtTrace is �nally run inside the virtual operating system,
outputting system call traces as text �les.
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Figure 4.7 - Collection environment for Windows API calls. For an
optimal coverage, the virtual environment is con�gured for the maximum similitude
with the con�guration of a personal computer, considering an average user.

2) Trace analysis: On top of the collection tool, we have developed an analyzer for line by line
translation of the collected traces. It directly implements the results from Section 4.1 for API call
translation and parameter interpretation. Referenced APIs are directly classi�ed over the di�erent
interaction categories according to Table 4.1, whereas unreferenced APIs are simply ignored until
their integration in a future version. Sequences of identical calls as well as sequences of two
combined calls are detected during the analysis and formatted into loops in order to compress the
resulting abstract trace.

if(!strncasecmp(OPENF1,line,10)){ //NtOpenFile(@[handle], ..., filename, ...)

//Parsing arguments

args = strchr(line,'('); args++;

objtoken1 = strtok(args,",");

token = strtok(NULL,",");

filename = strtok(NULL,",[]");

token = strtok(objtoken1," []");

token = strtok(NULL," []"); sscanf(token,"%X",&handle1);

//Updating object base

objind = isKnownObject(types,filename,0);

if(objind==UNKNOWN) objind = addNewObject(types,filename,OBJ_FILE);

if(handle1) addObjectHandle(types,objind,handle1);

*obj1 = objind; //Object parameter

return OP_OPEN; //Recognized command

}

Figure 4.8 - Recognition of opening interactions. In input, line is
read from the process trace. If NtOpenFile is recognized, its arguments are parsed to
manage objects. A look up determines if the object is existing in the base or must be
created. A correspondence is then established with the returned handle value.

In addition to interactions, the analyzer must be able to manage objects through identi�cation
and typing. In order to enforce typing on the call parameters, an object classi�er, embedding
decision trees such as the ones described in Figures 4.2 and 4.3, has been speci�cally designed for
a Windows con�guration. The identi�cation of objects is more complex. Looking speci�cally at
creation and opening interactions, their resolution establishes a correspondence between the names
of the involved objects and their references, either addresses or handles. The correspondence is
stored in a dedicated object base which is looked up during the analysis of the following calls.
The code sample from Figure 4.8 illustrates the management of object correspondences inside the
prototype. Conversely, deleting and closing interactions destroy correspondences for the remainder
of the analysis. Names and identi�ers must be unlinked since references could be reused for
a di�erent object. The identi�cation of variables in reading interactions is a last point worth
mentioning. The manipulated variables do not simply replaced each other like handles; they may
overlap. Let us consider a �rst variable de�ned by an address a1 and a size s1. Any reading
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interaction storing its result at the address a2 such as a1 < a2 < a1 + s1 creates a second variable
and reduces the size of the �rst variable to a2 − a1 like in the code sample from Figure 4.9.

if(!strncasecmp(READF1,line,10)){ //NtReadFile(@[handle], ..., buffer, size, offset)

//Parsing arguments

args = strchr(line,'('); args++;

token = strtok(args,","); sscanf(token,"%X",&handle2);

token = strtok(NULL,","); ... //Skip the four next parameters

token = strtok(NULL,", "); sscanf(token,"%X",&ptr1);

token = strtok(NULL,", "); sscanf(token,"%X",&size);

objtoken1 = strtok(NULL,",)");

token = strtok(objtoken1,"[]");

token = strtok(NULL,"[]"); sscanf(token,"%X",&offset);

//Updating object base

objind2 = isKnownObject(types,NULL,handle2);

if(objind2==UNKNOWN) return 0;

objind1 = UNKNOWN;

for(i=0; i<types->nbobj; i++){

address = getObjectAddress(types,i);

space = getObjectSize(types,i);

if(address==ptr1){

if(!objind1) objind1 = i; //Reuse known variable

}else if(ptr1>add && ptr1<(add+addsize)){

diff = ptr1-address-1; //Restraining variable size

setObjectSize(types,i,diff);

}

}

if(!objind1){ //Creating second variable

objind1 = addNewObject(types,NULL,VAR);

setObjectAddress(types,objind1,ptr1);

}

setObjectSize(types,objind1,size);

*obj1 = objind1; *obj2 = objind2; //Object parameters

return OP_READ; //Recognized command

}

Figure 4.9 - Recognition of reading interactions. The basic functioning
is identical than for opening interactions except for variable management. If the ma-
nipulated variable is unknown, a new one is simply created using the given address and
size. In case of overlapping, an overwriting variable is created; original variables are
maintained but their size is reduced to respect the boundary of the created variable.

4.4.2 Analyzer of Visual Basic Scripts

No collection tool similar to NtTrace is available for VBScript. A dedicated collection tool has
thus been developed, embedding the abstraction layer directly. VBScript being an interpreted
language, its static analysis was easier to consider than for native code, because of the visibility of
the source code and its integrated safety properties: no direct code rewriting during execution and
no arbitrary transfer of the control �ow [174]. Relying on these advantages, we have conceived the
VBScript Analyzer as a partial interpreter using static analysis for path exploration. The analyzer
is divided into three parts: a static part recovering the script structure and normalizing its code, a
second dynamic part exploring the di�erent execution paths and collecting signi�cant events, and
the object classi�er. The di�erent parts of the analyzer are shortly described in this section; a
more detailed speci�cation is given in Appendix C.

1) Static analyzer: The static analysis heavily relies on the syntactic speci�cations of the VB-
Script language [19]. The script is �rst parsed to localize the main, the local functions and pro-
cedures, as well as to retrieve their signature. Its structure is then parsed by blocks to recover
information about the declared variables and the instantiated managers (�le system, shell, network,
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mail). In addition to information collection, the static analyzer also deploys code normalization.
Code normalization removes several syntactic shortcuts provided by VBScript but most critically
thwarts obfuscation and encryption. By normalization, the current version of the analyzer can han-
dle certain categories of obfuscation such as integer encoding, string splitting or string encryption.
Code normalization is detailed in Appendix C.

2) Dynamic interpreter: A partial script interpreter has been de�ned to explore the di�erent
execution paths. This interpreter has a partial capability, only in the sense that the script code
is not really executed but only signi�cant operations and dependencies are collected. To support
path exploration, the analyzer handles conditional structures, loop structures, and calls to local
functions and procedures. Inside these di�erent code blocks, each line is processed to retrieve the
monitored API calls manipulating �les, registry keys, network connections or mails. Monitored
calls are interpreted by mapping according to the Table 4.1 from Section 4.1. Variable a�ectations,
greatly impacting the data-�ow, are thereby also monitored. With respect to the call arguments
and the a�ected values, a second level of analysis is deployed to process these expressions. In order
to control the data-�ow, object references and aliases must be followed up through the processing
of expressions, and in particular at some key operations:

• Local function and procedure calls - linking signature names with the passed arguments,

• Monitored API calls - creating new objects or updating their type and references,

• A�ectations - linking variables with a�ected values,

• Calls to execute - evaluating expressions as code.

3) Object classi�er: The previous object classi�er has been reused as shown in the architecture
of Figure 4.6. However, scripts being mainly based on character strings, the address classi�er is
unused. In addition, extensions to the string classi�er have been implemented to best �t the script
particularities, with new constants for the self-reference for example ("Wscript.ScriptName",
"Wscript.ScriptFullName").

4.4.3 Detection automata

The real implementation of the detection automata complies with the algorithm presented in
Section 4.2. The current version we have developed supports �ve di�erent automata detecting re-
spectively duplication, propagation, residency, overinfection and execution proxy behaviors [138].
As shown in the code sample from Figure 4.10, the production rules from the grammatical be-
havior descriptions have been directly coded as state transitions inside the automata. Semantic
prerequisites have been integrated as tests conditioning these transitions whereas consequences
are computed when resolving them. In input, the automata are fed with the traces of abstracted
events, obtained by the analyzers. Notice that both analyzers format their traces in a same binary
format for interoperability. For each behavior detected along parsing, a new entry is written down
in a behavior report. In order to enrich the behavioral reports, the object databases containing all
semantic values related to traces are also loaded. In output, the global report is �nally formatted
in an XML format satisfying the Data Type De�nition presented in Figure 4.11.

With respect to the original algorithm, two enhancements have been brought to increase its
performance. A �rst mechanism avoids duplicate derivations. Coexisting identical derivations
arti�cially increase the number of algorithm iterations without identifying other behaviors than the
ones already detected. The second enhancement is related to the close and delete interactions. In
order to decrease the number of iterations, useless derivations where no interaction occurs between
the opening/creation and the closing/deletion of a same object are destroyed. These mechanisms
have proved helpful in maintaining the number of parallel derivations at a manageable level.
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void updateDuplicationAutomata(unsigned long ul_Operation,

long l_Arg1id, int i_Arg1type, long l_Arg2id, int i_Arg2type){
switch(ul_Operation){
case OP_OPEN:

parseDupOpen(l_Arg1id, i_Arg1type);

break;

...

}
}

void parseDupOpen(long l_Argid, int i_Arg1type){
for(i=0; i<duplication.nbderivation; i++){

struct PARSED_AUTOMATON * aut;

aut = &duplication.derivations[i]; //Selects ith derivation

curstate = getCurrentState(aut); //Recovers derivation state

getCurrentAttributes(aut,t_curids,t_curtypes); //Recovers derivation semantic stack

switch(curstate){
case q1:

if(i_Argtype==TYPE_THIS){ //Checks semantic rules

startDerivation(&duplication, q1,

t_curids,t_curtypes); //Duplicate derivation (ambiguity)

t_curids[1] = l_Argid; //Computes semantic values

t_curtypes[1] = i_Argtype;

addNode(aut,q2,t_curids,t_curtypes); //Progression towards next node

}
break;

...

}
}

}

Figure 4.10 - Transitions of the duplication automaton. As input, the
automaton receives the abstracted events decomposed as operations and arguments.
All parallel derivations are confronted to these operations and progress according to
their current state q and their semantic stack stored in t_curids and t_curtypes.

4.4.4 Malware pro�ler

Above the detection automata, a malware pro�ler has been implemented in order to assess the
pro�les de�ned in Section 4.3. The behavioral reports generated by the automata contain the
required information and are parsed using an open-source library for XML parsing called Expat
[4]. According to the recovered information, the pro�ler associates the related malware to one or
several generic classes. The pro�le report generated in output is also provided in an XML format
satisfying the Data Type De�nition presented in Figure 4.12.

4.5 Experimentation and discussions

Experimentations have been led to assess the prototype in operational conditions. For this, a
pool of samples has been gathered, divided into two categories: Portable Executables and Visual
Basic Scripts. Each category contains about 200 malware and 50 legitimate samples, split up in
families according to the repartition from Figure 4.13. Malware have been mainly downloaded
from repositories [10, 21], whereas legitimate samples have been selected from an healthy system
installation, with a priority to samples whose behavior presents some similarities with malware.
The di�erent samples have been transmitted to their respective analyzers, before submitting the
resulting abstracted logs to the detection automata.
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<?xml version="1.0"?>

<!DOCTYPE Behaviors [

<!ELEMENT Behaviors (Duplication|Propagation|Residency|Overinfection|ExecutionProxy)*>

<!ELEMENT Duplication (sequence,flow,source,target,transit?)>

<!ELEMENT Propagation (sequence,flow,source,interface,transit?)>

<!ELEMENT Residency (sequence,value,target)>

<!ELEMENT Overinfection (sequence,conditional,marker)>

<!ELEMENT ExecutionProxy (sequence,flow,source,target,transit?)>

<!ELEMENT sequence EMPTY>

<!ATTLIST sequence number ID #REQUIRED>

<!ELEMENT flow EMPTY>

<!ATTLIST flow method (transfer|single-block|interleaved) #REQUIRED>

<!ELEMENT conditionnal EMPTY>

<!ATTLIST conditionnal method (straight|inverse) #REQUIRED>

<!ELEMENT source EMPTY>

<!ATTLIST source id CDATA #REQUIRED>

<!ATTLIST source name CDATA #REQUIRED>

<!ATTLIST source nature (none|file|folder|drive|registry|network|mail) #REQUIRED>

<!ELEMENT target EMPTY>

<!ATTLIST target id CDATA #REQUIRED>

<!ATTLIST target nature (none|file|folder|drive|registry|network|mail) #REQUIRED>

<!ATTLIST target status (created|existing) #REQUIRED>

<!ELEMENT interface EMPTY>

<!ATTLIST interface id CDATA #REQUIRED>

<!ATTLIST interface name CDATA #REQUIRED>

<!ATTLIST interface nature (none|file|folder|drive|network|mail) #REQUIRED>

<!ELEMENT transit EMPTY>

<!ATTLIST transit id CDATA #REQUIRED>

<!ATTLIST transit nature (none|variable) #REQUIRED>

<!ELEMENT value EMPTY>

<!ATTLIST value id CDATA #REQUIRED>

<!ATTLIST value nature (none|file|folder|drive|registry|network|mail|variable) #REQUIRED>

<!ELEMENT marker EMPTY>

<!ATTLIST marker id CDATA #REQUIRED>

<!ATTLIST marker name CDATA #REQUIRED>

<!ATTLIST marker nature (none|file|folder|drive|registry) #REQUIRED>

]>

Figure 4.11 - DTD of the Behavioral Report. In addition to behaviors,
the report stores information about the deployed method or the involved objects, these
information being recovered respectively from the derivation and the object database.

<?xml version="1.0"?>

<!DOCTYPE Profile [

<!ELEMENT Profile (Category)*>

<!ELEMENT Category EMPTY>

<!ATTLIST Category class CDATA #REQUIRED>

<!ATTLIST Category subclass CDATA #IMPLIED>

]>

Figure 4.12 - DTD of Profile Report. The report can contain several entries
since malware can satisfy the belonging conditions of di�erent classes and subclasses.

4.5.1 Coverage

The experimentation has provided signi�cant results with a detection rate of 52% for PE Executa-
bles and up to 90% for VB Scripts. The detection rates by behaviors are described in Tables 4.2
and 4.3. Duplication is indeed the most signi�cant malicious behavior. However the additional
behaviors, and in particular residency, helps to detect additional malware where duplication is
missed. False positives are almost inexistent, as shown in Tables 4.4 and 4.5. The only false pos-
itive, observed for residency, can be easily explained: the given script is a malware cleaner which
reinitializes the Internet Explorer start page after infection.
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Figure 4.13 - Repartition of the Test Pool. The pool contains various
types of malware among which are some of the most known: Agobot, MySoom, Sober,
Sobig, etc. The pool also contains various samples whose behaviors show similarities
with malware: Outlook for the mail activity, Azureus for �le transmission, etc.

Some false negative spikes, superior to 80%, can be localized in the PE results from Table
4.2: the low duplication detection rate for PE Viruses and the propagation detection rates for Net
and Mail Worms are explained by limitations in the collection mechanisms. The impact of the
collection mechanism on detection is assessed in Section 4.5.2. Comparing VB Scripts and PE
Traces, the false negative rates are lower for the scripts. The VBScript Analyzer works statically
with path exploration; its coverage is thus more complete. The explanation of the remaining
false negatives is twofold: the encryption of the whole malware body which is not supported yet
and the cohabitation in a same web page of JavaScript and VBScript code which makes the
syntactic analysis fail. Reversing code encryption can be handled similarly to string encryption,
by localization of the decryption routine and calling it on-demand. Cohabitation of scripting
languages can be addressed by a localization mechanism, parsing the tags of web pages to extract
those containing VBScript code.

Globally, the observed detection rates for duplication are consistent with the results previously
obtained in existing works [181]. The real enhancements from this work are twofolds: the parallel
detection of additional behaviors described in the same language (propagation, residency and
overinfection), and the possibility to feed detection with traces from other sources such as those
coming from the script analyzer. With regards to [55], the execution proxy behavior has been
transposed for testing the compliance with their model. The samples tested in common were mostly
detected likewise; the exceptions are also explained by limitations in the collection mechanism.

4.5.2 Limitations in trace collection

A signi�cant part of the missed behaviors, or false negatives, are due to limitations existing in the
collection coverage. However, thanks to the layer-based approach, collection and abstraction can
be improved for a given platform or language without modifying the upper detection layer.

1) Dynamic analysis (PE Traces): Due to the dynamic nature of the collection, the �rst
reason for detection failure is a problem related to the con�guration of the simulated environment.
The simulation must appear as real as possible in order to satisfy the execution conditions of
the malware, in particular for triggered actions. The software con�guration of the simulated
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Behaviors EmW P2PW V NtW Trj Global

Duplication 41(68,33%) 31(77,5%) 15(18,29%) 8(53,33%) 10(38,46%) 47,09%

direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
single read/write 41(68,33%) 30(75%) 14(17,07%) 8(53,33%) 10(38,46%) 46,19%
interleaved r/w 9(15%) 3(7,5%) 3(3,66%) 3(0,2%) 0(0%) 8,07%

Propagation 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,11%

direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
single read/write 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,11%
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Residency 36(60%) 22(55%) 5(60,98%) 6(40%) 12(46,15%) 36,32%

Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Execution Proxy 0(0%) 0(0%) 0(0%) 0(0%) 4(15,38%) 1,79%

Global detection 43(71,67%) 33(82,50%) 16(19,51%) 8(53,33%) 16(61,54%) 52,02%

Table 4.2 - PE Malware detection. EmW=Email Worms, P2PW=Peer-to-
Peer Worms, V=Viruses, NtW=Net Worms, Trj=Trojans.

Behaviors EmW FdW IrcW P2PW V Gen Global

Encrypted strings 1/51 0/4 1/26 0/30 3/61 10/30 15/202
Encrypted body 4/51 0/4 0/26 1/30 2/61 0/30 7/202
String encryption 1(100%) 0 0 0(0%) 2(66,67%) 10(100%) 86,67%

Duplication 43(84,31%) 4(100%) 20(76,96%) 22(73,33%) 44(72,13%) 30(100%) 80,70%

direct copy 41(80,39%) 4(100%) 20(76,96%) 22(73,33%) 25(40,98%) 30(100%) 70,30%
single read/write 8(15,69%) 0(0%) 4(15,38%) 3(10%) 21(34,43%) 0(0%) 17,82%
interleaved r/w 1(1,96%) 0(0%) 0(0%) 0(0%) 8(13,11%) 0(0%) 4,46%

Propagation 33(64,71%) 3(75%) 5(19,23%) 25(83,33%) 5(8,20%) 30(100%) 49,99%

direct copy 33(64,71%) 3(75%) 4(15,38%) 25(83,33%) 3(4,92%) 30(100%) 48,52%
single read/write 3(5,88%) 0(0%) 2(7,69%) 1(3,33%) 2(3,28%) 0(0%) 3,96%
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Residency 32(62,75%) 4(100%) 20(76,92%) 18(60,00%) 20(32,79%) 30(100%) 61,39%

Overinfection test 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%

conditional 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Execution proxy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 46(90,20%) 4(100%) 25(96,15%) 27(90,00%) 50(81,97%) 30(100%) 90,09%

Table 4.3 - VBS Malware detection. EmW=Email Worms, FdW=Flash
Drive Worms, IrcW= IRC Worms, P2PW=Peer-to-Peer Worms, V=Viruses,
Gen=Generators variants.

Behaviors PE PE PE PE PE PE
ComE MM O� Sec SysU Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Execution proxy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Table 4.4 - PE Legitimate Samples Detection. Com=Communication
and Exchange Applications, MM=Multimedia Applications, O�=O�ce Applications,
Sec=Security Tools, SysU=System and Utilities.

Behaviors VBS VBS VBS VBS VBS VBS VBS
EmM InfC Enc DfE MwC RegR Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 1(12,50%) 0(0%) 1,67%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Execution proxy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 0(0%) 0(0%) 0(0%) 0(0%) 1(12,5%) 0(0%) 1,67%

Table 4.5 - VBS Legitimate Samples Detection. EmM=Email Man-
agers, InfC= Information Collectors, Enc=Encoders, DfE=Disk and File Explorers,
MwC=Malware Cleaners, RegR=Registry Repairs.
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environment constitutes a �rst di�culty. 64,6% of the tested PE Viruses (53/82) did not execute
properly in the simulated environment: invalid PE �les, access violations or unhandled exceptions.
These failures may be explained by the detection of virtualization or anti-debug techniques crafted
to thwart dynamic analysis.

The con�guration of the simulated network constitutes a second problem. For example, the
propagation of Mail Worms is conditioned by the network con�guration. 75% of the PE Mail
Worms (45/60) did not show any SMTP activity because they could not reach any server. In
certain worms, the address of the server was hard coded making the redirection by the DNS
server useless. Certain worms were also unable to retrieve from the environment the address of a
registered mail server. Likewise, Net Worms propagate through vulnerabilities only if a vulnerable
target is reachable. The absence of potential targets explains that 93,33% of them did not propagate
(14/15). They contented themselves with scanning di�erent ranges of IPs. The problem is even
worse with the bot samples from the Trojan pool. In order to observe the di�erent behaviors,
the bots must receive the right commands through an IRC channel which is often protected by a
password. In order to con�gure this password as well as the URL of the reachable IRC server, six
bots were produced from customized code sources, recompiled speci�cally for the collect platform
[13]. 66% of the behaviors of execution proxy were detected in these bots (4/6). On the opposite,
for the other bots whose binary only was available (3/3), only duplication was observed because
no command was sent. Generally speaking, all actions conditioned by the con�guration of the
simulated environment are di�cult to observe: a potential solution could be forced branching.

Beyond the con�guration problem, the level of the trace collection can also explain the detection
failure. With a high-level collection mechanism, like NtTrace running in user space, visibility
over the performed actions and the data �ow is reduced. All �ow-sensitive behaviors such as
duplication can be missed because of breakdowns in this data �ow. Such breakdowns can �nd
their origin sometimes in non monitored system calls and for the most part in the intervention of
intermediate bu�ers where all operations are executed in memory. These bu�ers are often used in
code mutation (polymorphism, metamorphism). 12,20% of the viruses duplications (10/82) were
missed because of a data �ow breakdown. The problem is identical with mail propagation: 8,33%
of the propagations (5/60) were missed for Mail Worms because of an intermediate bu�er used for
Base64 encoding. These problems do not come from the behavioral descriptions but from NtTrace
which does not capture any information about operations in memory. More complete collection
tools, either collecting instructions [58] or deploying tainting techniques [134, 198], could avoid
these breakdowns in the data �ow. Tainting, in particular, uses a shadow memory to store taint
information about the sensitive data manipulated. Taints are then propagated at the instruction
level whenever the result of the computation depends on data already tainted.

2) Static analysis (VB Scripts): In the VBScript Analyzer, the static analysis of the source
code enables branching exploration and observation of the data �ow. Their implementation com-
pensates for the drawbacks that were encountered with NtTrace. The greater coverage of the
Analyzer eventually results in better detection rates.

However, contrary to the stable set of system calls, the VBS language o�ers numerous services
to monitor. The same operation can be achieved using di�erent managers or interfacing with
di�erent Microsoft applications. The actual version of the analyzer should monitor additional
features to increase its coverage: accesses to Messenger services or the support of the Windows
Management Instrumentation (WMI). For example, listing connected drives for propagation is
currently supported by the analyzer but this same list could be recovered using WMI by querying
the LogicalDisk entries from the Win32_ComputerSystem object. The support of the WMI is
required to detect Drive Worms using this technique.

Moreover, like any other static analysis, script analysis is hindered by encryption and obfusca-
tion techniques. The current version of the analyzer, speci�ed in Appendix C, partially handles
these techniques. Generally speaking, static analysis of scripts is easier because no prior disassem-
bly is required and some security locks ease the analysis: no dynamic code rewriting, no dynam-
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ically resolved jumps. However, inserting an intermediate interpretation layer can reintroduce all
obfuscation techniques possible in low level languages (C language, Assembly) [174].

4.5.3 Behavior relevance

The previous section deals with problems related to data collection, but the behavioral model itself
must be assessed. The relevance of each behavior must be individually assessed by checking the
coverage of its grammatical model. It then becomes possible to extrapolate possible correlations
between the di�erent behaviors, by attaching a greater weight to the most relevant behaviors.

Duplication, propagation and residency are obviously characteristic to malware. However, only
duplication and propagation are discriminating enough for detection. On the contrary, residency
has exhibited false positives during the experimentations. Its behavioral model could be re�ned
by introducing a constraint on the value written to the booting object: the value should refer to
the program itself or to one of its duplicated versions. This modi�cation could help avoiding the
observed false positives. Anyhow, residency is still likely to occur in legitimate cases, during instal-
lation of programs or drivers. For example, antivirus products use the same hooking techniques
to monitor system calls than malware use for stealth. False positives can also be found for the
behavior of execution proxy, even if it is not observed in the tested legitimate samples. Obviously,
remote installers deploy the exact same technique; and this is con�rmed in [55]. Consequently,
bivalent behaviors, used both by legitimate and malicious programs, can not really be considered
as false positives. Their behavioral model can be maintained; the distinction of malicious intents
must eventually be addressed by correlation with other behaviors, purely malicious. For example,
the pro�ler correlates the behavior of execution proxy with duplication to detect Trojans.

On the other hand, the behavioral model for overinfection tests is not completely relevant.
The weak detection rates are explained by a description that is overly speci�c. The conditional
structure on which the behavioral model is built constitute a �rst restriction because it is not
captured by dynamic monitoring. The collected traces of system call do not contain information
about conditional jumps and their alternative paths. In addition, stopping is always triggered in
case of overinfection, which is not always true. A benign behavior could be deployed instead. A
potential solution to these restrictions could be a generalization of the model. For example, the
conditional could be removed and replaced by consecutive open and create commands. However,
it would increase the risk of confusion with error handling in legitimate programs. Maintaining
this behavior may �nally be arguable.

4.5.4 Pro�les adequacy

To study the adequacy of our pro�les, the experimentations have been pursued by submitting the
output of the detection automata to the pro�ler. In addition, this study is also a mean to measure
the impact of the individual behaviors on classi�cation. Obviously, classifying legitimate programs
into malware families shows little interest. Legitimate results are thus put aside. Similarly, cor-
relation when no behavior is detected makes little sense. These results are also removed from the
study. The pro�ler results are �nally presented in confusion matrices where they are compared
with their original malware family. Since they may be errors in the repositories from which samples
were downloaded, a reclassi�cation has been manually realized before the comparison.

The best results of coverage were obtained with the VBS Scripts samples, consequently the
classi�cation of the malware is likely to be more precise. The results obtained with the pro�ler are
synthesized in the confusion matrix from Table 4.6. The matrix takes into consideration the fact
that a given malware instance can simultaneously satis�es several pro�les. Globally, the results
are quite satisfying with an accuracy of 70% on average, except for viruses where it drops to 18%.
The problem is that viruses in VBS are not really viruses in the sense of programs infecting a host
application, but simply duplicating programs.
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Drive Worm Email Worm Irc Worm P2P Worm Virus
DWG 1/4(25,00%) 2/77(02,60%) 1/29(03,45%) 3/27(11,11%) 4/44(09,09%)
DWA 3/4(75,00%) (00,00%) (00,00%) (00,00%) (00,00%)
EMW (00,00%) 42/77(54,54%) 1/29(03,45%) (00,00%) (00,00%)
EMW+DWG (00,00%) 13/77(16,88%) (00,00%) 1/27(03,70%) (00,00%)
EMW+IRW (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+DWG+VFI (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+IRW+PPW (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+IRW+VFI (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+IRW+PPW+VFI (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
IRW (00,00%) (00,00%) 12/29(41,38%) (00,00%) (00,00%)
IRW+DWG (00,00%) (00,00%) 2/29(06,89%) (00,00%) (00,00%)
IRW+PPW (00,00%) 1/77(01,30%) 1/29(03,45%) (00,00%) (00,00%)
IRW+DWG+PPW (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
PPW (00,00%) (00,00%) (00,00%) 15/27(55,56%) (00,00%)
PPW+DWG (00,00%) (00,00%) (00,00%) 1/27(03,70%) (00,00%)
PPW+IRW (00,00%) (00,00%) (00,00%) 1/27(03,70%) (00,00%)
VFI (00,00%) (00,00%) (00,00%) (00,00%) 8/44(18,18%)
VFO (00,00%) (00,00%) (00,00%) 1/27(03,70%) (00,00%)
GM (00,00%) 13/77(16,88%) 12/29(41,38%) 5/27(18,53%) 32/44(72,73%)

Table 4.6 - VBS Malware classification. This confusion matrix is built
with the columns indexed with the real malware classes and the lines indexed by the
output of the pro�ler. The generic malware correspond to samples with no attributed
class. Labels: DWG = DriveWorm (generic), DWA = DriveWorm (amovible), EMW
= Email Worm, IRW = Irc Worm, PPW = Peer-to-Peer Worm, VFI = Virus (�le
infector), VFO = Virus (�le overwriter), GM = Generic Malware.

Part of the remaining confusions are mainly due to the fact that some duplications were missed.
For example, some Mail Worms and Peer-to-Peer Worms were classi�ed as generic malware in spite
of their propagation; only because they did not duplicate as required by their pro�les. Similarly,
residency was found in almost all Irc Worms; but only 51% were correctly classi�ed because no
duplication nor propagation was detected. However, since residency is the behavior the most prone
to false positives; residency alone can not be su�cient to de�ne a pro�le for Irc Worms.

Email Worm Net Worm P2P Worm Trojan Virus
EMW (00,00%) (00,00%) (00,00%) (00,00%) (00,00%)
NW (00,00%) 1/8(12,50%) (00,00%) (00,00%) (00,00%)
NW+VFI 2/43(04,65%) (00,00%) (00,00%) (00,00%) (00,00%)
NW+PPW+VFI 1/43(02,33%) (00,00%) (00,00%) (00,00%) (00,00%)
PPW 2/43(04,65%) (00,00%) 18/34(52,94%) (00,00%) (00,00%)
T (00,00%) (00,00%) (00,00%) 4/16(25,00%) (00,00%)
VFI 7/43(16,28%) 2/8(25,00%) (00,00%) (00,00%) 2/15(13,33%)
VFI+PPW (00,00%) (00,00%) (00,00%) (00,00%) 1/15(06,67%)
VFO (00,00%) (00,00%) (00,00%) (00,00%) (00,00%)
GM 31/43(72,09%) 5/8(62,50%) 16/34(47,06%) 8/16(75,00%) 12/15(80,00%)

Table 4.7 - PE Malware classification. This confusion matrix is built with
the columns indexed with the real malware classes and the lines indexed by the output
of the pro�ler. The generic malware correspond to samples with no attributed class.
Labels: EMW = Email Worm, NW = Network Worm, PPW = Peer-to-Peer Worm, T
= Trojan, VFI = Virus (infector), VFO = Virus (overwriter), GM = Generic Malware.

The results are less precise for PE Executables, as shown by the confusion matrix in Table 4.7.
This loss of precision is mainly explained by the missed behaviors. In particular, an important
number of propagations were missed, explaining signi�cant confusions in the classi�cation of the
di�erent Worms. An other important remark on propagation is that no precise information about
the network communications, such as the port or the protocol, was available inside the traces of
system calls. Consequently, no distinction could be done between Net Worms and Mail Worms.
The accuracy of the Trojan classi�cation is also low. We have only considered for detection the
behavior of execution proxy, whereas the Trojans can also o�er other services such as Spam relay or
stealth techniques. The Trojan pro�le is thus incomplete and would require additional behavioral
signatures for these services.
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NtTrace Data reduction from PE traces to logs
Analyzer Total size: 351,32Mo Average: 1,32Mo/Trace

Reduced logs: 11,85Mo Reduction ratio: 29

Execution speed
Single core M 1,4GHz Dual core 2,6GHz
1,48 s/trace 0,34 s/trace

VB Script Data reduction from VB scripts to logs
Analyzer Total size: 1842Ko Average: 7Ko/Script

Reduced logs: 298Ko Reduction ratio: 6

Execution speed
Single core M 1,4GHz Dual core 2,6GHz
0,042 s/script 0,016 s/script
+0,50 s/encrypted line +0,21 s/encrypted line

Detection Execution speed
Automata Single core M 1,4GHz Dual core 2,6GHz

NT: 0,44 s/log NT: 0,14 s/log
VBS: 0,002 s/log VBS: <0,001 s/log

Table 4.8 - Prototype performances. The time and space performances are
described components by components for mono-core and multi-core con�gurations.

4.5.5 Performance

Table 4.8 provides the measured performance for the di�erent components of the prototype. Start-
ing with the abstraction layer, the analysis of PE Traces is the most time consuming task. This
is not surprising since the analyzer uses numerous string comparisons which could be partially
avoided by replacing the o�-line analysis by real-time collection and translation. By hooking the
system calls, the translation becomes immediate. As for the VBScript Analyzer, it o�ers satisfying
performances. Optimized, it could be deployed on mail servers to analyze joint pieces for example.

The performance of the detection automata are also satisfying compared with the worst case
complexity found in Proposition 4. The detection speed remains far below the order of a half second
in more than 90% of the cases; the remaining 10% were all malware. In real-time conditions, it
would correspond to a charge of 50.000 system calls/second. The prototype implementation has
also revealed that the maximum required space for the derivation stacks was very low: 7 and 3
elements are the respective maximal sizes reached by the syntactic and semantic stacks (2s < 10
in Proposition 4). In addition to speed, the number of raised ambiguities has also been measured
leading to the establishment of an operational complexity stated in Proposition 5.

Proposition 5 In the average case, behavioral detection using attributed automata has an opera-

tional time complexity in ϑ(kα(n
2+n
2 )) and space complexity in ϑ(kαn(2s)), where k is the number

of automata, n is the number of input symbol and α the ambiguity ratio.

Proof.
If ne denotes the number of events and na the number of ambiguity, in the worst case, we would
have na = 2ne . By experience, we obtain:

na << 2ne and na << n2
e and na ≈ αne

Let us consider a regular distribution of these ambiguities, meaning that α derivations are started
at each iteration.

(1) kα+ 2kα+ ...+ nkα = kα(1 + 2 + ...+ n) = kα(n
2+n
2 ) �

The approximation of Proposition 5 provides an operational complexity more worth considering.
Moreover, this algorithm can easily be parallelized for optimization in a multi-core architecture.
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Figure 4.14 - Ambiguity ratios (α)
for the PE samples.

Figure 4.15 - Ambiguity ratios (α)
for the VB scripts.

Figures 4.14 and 4.15 provide graphs of the collected α ratios. From these graphs, it can be
observed that above a certain threshold, an important ambiguity ratio α is already a
sign of malicious activity.

4.6 Extensions to address web-based threats

Implementation has validated the coverage and the e�ciency of the detection method. Yet, its
adaptability remains to be covered. Originally, our behavioral model has been speci�cally crafted
to detect stand-alone malware. Looking at nowadays trends in security, web-based threats have
become predominant and thus constitute a perfect candidate to explore the extension of the be-
havioral formalism. With the multiplication of web services, web browsers have begun to process
more and more information, personal, professional and even �nancial. Conjugated with portability,
the availability of communication facilities and sensitive data has made of web-browsers an attack
vector worth considering. This trend is corroborated by various alarming reports. For the previous
year, one of these reports stated that 70% out of 100 known sites hosted malicious code and the
phenomenon was getting worse with an increase of 46% in the number of malicious sites from 2008
to 2009 [32]. For a better understanding of the phenomenon, this section begins with a short state-
of-the-art on related web-based attacks. Explanation are then given on how the formalism can be
adapted to address web-based attacks. Along the adaptations, we will bring out some common
principles between standalone and web-based malware [136].

4.6.1 Overview of web-based attacks

Before presenting web-based attacks themselves, the execution context and its enforced protec-
tions must be clearly stated. The execution context is centered around the web-browser whose
computation resources are dedicated to dynamic content generation, enriching the user experience.
The dynamic computations are introduced inside web pages by embedding scripting codes from
various languages, VBScript or JavaScript for example. Since the web-browser processes data from
di�erent locations, either local or from remote sites, isolation is important to restrict any illicit
access. A security policy called the Same-Origin Policy (SOP) has been speci�ed and enforced in-
side browsers for this purpose [205]. This policy states that a given script can only access resources
sharing the same origin, this origin being de�ned as a triple containing the port, the domain and
the protocol of the hosting page. For example, this policy forbids scripts from a remote website to
access local contents or to access contents from other domains.

Unfortunately, experience has shown that the Same-Origin Policy could be bypassed. Accord-
ing to a survey from 2008, implementation �aws are still the �rst source of bypasses [32]. But more
critically, the SOP is also vulnerable to conceptual �aws allowing potential bypasses [214]. Several
conceptual �aws are already well identi�ed, such as Cross-Site Scripting (XSS), Cross-Site Request
Forgery (XSRF) or Cross-Site Tracing (XST) vulnerabilities. In the malware context, this section

82



4.6. Extensions to address web-based threats

focuses on XSS vulnerabilities and related attacks [27, 86]. Their underlying principle is to force
a website to display a malicious script which is loaded and executed inside the browser with the
site privileges. XSS attacks are divided between persistent and non-persistent attacks whether the
script is permanently stored on the web site or punctually injected through a crafted request, as
respectively explained in Figures 4.16 and 4.17. Although they were long considered as minor, XSS
attacks o�er, through their diverted accesses, useful facilities for reconnaissance and information
leakage. The example of Figure 4.18 presents a simple malicious script to recover website cookies
through a XSS hole. As a matter of fact, XSS vulnerabilities constitute perfect starting point to
elaborate much more complex attacks such as XSS worms [121] or drive-by download techniques
leading to the download and execution of standalone malware.

Figure 4.16 - Persistent XSS. The ma-
licious script is permanently stored on the
website through di�erent means such as ad-
vertisements, widgets or user contributions in
community sites, comments or forums.

Figure 4.17 - Non-persistent XSS.
For the crafted link, a target site is found
which builds its response page using the sub-
mitted parameters, typically a search engine.
The user is �nally trapped to click on it.

<script>

c = document.cookie;

document.location = "http://www.remoteattacker.com/cookie.cgi?" + c;

</script>

Figure 4.18 - XSS attack against privacy. The present code is executed
with the website privilege, either because it was persistently stored on it or echoed by
a crafted link. The script can thus access the related cookie without contradicting the
Same Origin Policy. The recovered cookie can then be sent to a remote attacker.

The purpose of the present work is not to address the prevention of XSS attacks. Di�erent
server-side solutions can be deployed, such as content tagging to follow the use of untrusted input
when building responses, or content �ltering to strip JavaScript from the data submitted by users.
Coming back to behavioral detection, the real purpose is the client-side study of the malicious
behaviors built around web-based vulnerabilities. Starting from the behavioral model designed
during the thesis, the adaptation of the detection automata is a way to highlight some similarities
or di�erences between standalone and web-based malware. The question could be raised whether
the propagation of XSS Worms is similar in principle to the propagation of standard Worms,
or whether drive-by download techniques may be compared to the behavior of execution proxy.
However the comparison is not immediate and extensions may be required for adaptation to the
web-based approach.

4.6.2 Extensions of the behavioral model

By de�nition the behavioral model abstracts the speci�cities of the programming language and
the platform con�guration. In terms of programming language, web-based scripting languages do
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not introduce speci�c commands or new ways to interact. Consequently, the support of web-based
languages do not impact the behavioral model but collection and interpretation which are addressed
in Section 4.6.3. On the contrary, platform con�guration adopts a di�erent perspective, centered
around the web-browser. As previously said, the web-browsers process personal, professional and
�nancial data which constitute interesting resources for malware writers. Those critical resources
may be integrated in the behavioral model by re�nement of the type system. The new type system
supports a new class of objects called private objects (obj_priv ⊂ obj_perm). Must be typed
as private any resource whose disclosure reveals information about the user privacy or information
about the browser, useful in building attacks [229]. A few examples are given in Table 4.9.

Usage Resources
Reconnaissance information browser version, current URLs, domains...
User private information cookies, history...

Table 4.9 - Browser critical resources. The table gathers some important
resources of the browser, which should be typed as private to �ght against disclosure.

In addition, some behaviors may be more speci�c to web-based malware than stand-alone
malware. The behavioral model can also be extended by de�ning new behaviors descriptions
which bene�ts from the extensions already performed at the language level. For example, the
de�nition of the private objects enables the description of a related behavior denoted information
leakage. A grammatical description is given below which covers among other the example of XSS
attack given in Figure 4.18.

(i) <InformationLeak> ::= <Read><Send>
{ <InformationLeak>.srcId = <Read>.objId
<InformationLeak>.targId = <Write>.objId
<InformationLeak>.varId = <Read>.varId
<Write>.varId = <InformationLeak>.varId
<InformationLeak>.srcType = obj_priv
<InformationLeak>.targType = obj_com
<Read>.objType = <InformationLeak>.srcType
<Write>.objType = <InformationLeak>.targType }
(ii) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object2.objId = <Read>.objId
object1.objType = var
object2.objType = <Read>.objType }
(iii) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object2.objId = <Write>.objId
object1.objType = var
object2.objType = <Write>.objType }

4.6.3 Trace collection for JavaScript

Basically, web browsers embed, natively or by extension, interpreters o�ering the support of di�er-
ent scripting languages such as Visual Basic Script (VBS), JavaScript (JS), Hypertext Preprocessor
(PHP) or ActionScript being speci�c to Adobe Flash. In order to experiment the behavioral ap-
proach over web-based attacks, it was su�cient to restrict the study to a single scripting language.
JavaScript was chosen because it is the language o�ering the best portability; it is supported by
the majority of the browsers as well as di�erent media contents such as PDF document [29] or
QuickTime movies [30].
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In addition, JavaScript o�ers a rich set of facilities. The core of the language satis�es the
ECMAScript standard which only covers basic operations such as basic interactions with the user
or the manipulation of mathematical expressions, strings and regular expressions [26]. But the
real richness of JavaScript comes from the additional extensions which constitute open interfaces
for the interpreter to communicate with the outside through dedicated handlers. As shown in
Figure 4.19, these extensions provide various facilities such as means to manipulate web-pages,
local �les, or to communicate with servers. Accesses to extensions thus constitute an interesting
source of information about a script activity.

Figure 4.19 - Existing JavaScript Extensions. ADO = ActiveX Data Ob-
jects, AJAX = Asynchronous JavaScript and XML, ASP = Active Server Page, DOM
= Document Object Model, XPCOM = Cross-Platform Component Object Model.

The nature of the collected data is now identi�ed, but remains the question of the collection
method. With respect to JavaScript analysis, di�erent approaches have already been considered
mainly using dynamic monitoring. The preference for the dynamic approaches was originally
motivated by deobfuscation. Several tools have been developed to reverse obfuscation by hooking
operations such as eval or document.write, which allow the execution of dynamically constructed
strings as in Figure 4.20. The main di�erences between these tools lie in the way hooks are set
either directly inside the interpreter [87, 186, 124], or above at the browser level [61]. As a matter
of fact, hooking is not restricted to deobfuscation and the mechanism can be extended to collect
complete traces containing all signi�cant operations and events from the script. These traces can
eventually be confronted to known signatures of web-based attacks [123]. These signatures can
be expressed as automata just like behavioral detector for stand-alone malware. In other words,
it implicitly means that traces of JavaScript operations may be used for behavioral detection of
web-based malware just like traces of system calls for stand-alone malware. A collector o�ering
a good coverage of the di�erent extensions was thus the main requirement in order to assess the
possible adaptation of the grammatical approach developed in this chapter.

After a short survey, [226] was found to be the closest collection tool to what we need. However,
the complete trace of the accesses to the di�erent extensions referenced in Figure 4.19 was not
available. In addition, the fact that some extensions may be browser-speci�c introduces portability
issues which can only be solved by a browser-independent collection tool. These observations have
motivated the development of a new interpreter-based collection tool, excluding any possibility of
hooking at the browser level. However the developments were not started from scratch. To avoid
recreating what is already available, we have thus started our developments from Ca�eineMonkey
[87], an open-source deobfuscator based on the interpreter SpiderMonkey from Mozilla [14]. In
its original version, Ca�eineMonkey already o�ers hooking services and a partial support of the
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Figure 4.20 - Obfuscated Trojan in JavaScript. The obfuscated sample
above comes from an existing Trojan called Psime. The malicious code is dynamically
built as a string denoted str. The string containing the code is written down in the
web page and executed on loading. By hooking the DOM operation document.write

the string is already evaluated, allowing the recovery of the whole code shown below.

Document Object Model (DOM) allowing the manipulation of web pages. Di�erent operations are
hooked either to deobfuscate the script or to collect statistics about its activity (created objects,
method calls). The enhancements we have brought to the tool are twofolds [136]. We have �rst
increased the number of supported extensions. We have then integrated a tainting mechanism to
track information inside the interpreter.

1) Extensions support: In practice, the collection tool has kept the original architecture from
SpiderMonkey and Ca�eineMonkey. The collector is fed with a script and three distinct outputs
are generated storing respectively the intermediate deobfuscated scripts, the collected operations
and the statistics. Deobfuscated scripts are submitted to the collector recursively, until all dynam-
ically generated code is recovered in depth. In terms of implementation, as shown in Figure 4.21,
the interpreter is programed in C and compiled as a library providing the basic services of the
JavaScript core; communication with the library is then addressed by a shell module. The real
enhancement brought by the collection tool is the support of extensions which require virtualized
handlers. Inside the JavaScript language, the extensions introduce new classes of objects and spec-
ify their prototypes. Each additional class of object and its handler is implemented in a dedicated
module which is plugged to the interpreter library. This module de�nes the di�erent attributes
and methods of the object, their name as well as their internal representations. Plugging is then
done by reserving keywords of the language inside the original library and associating them to the
right constructors. A detailed method to implement these modules is described in the �rst part of
Appendix D. Several extensions has been integrated accordingly, such as ActiveX, Cross-Platform
Component Object Model (XPCOM) or Asynchronous JavaScript and XML (AJAX). Supported
objects, attributes and methods is referenced in the second part of Appendix D.
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Figure 4.21 - Architecture of the JavaScript Collector. The JsShell
module and the JsAPI library come from SpiderMonkey. Ca�eineMonkey introduces
hooking and the support of the DOM extension. In the current version, the collector
increases the number of additional extension modules. The output is separated in
distinct �les for deobfuscated scripts, collected operations and statistics. Deobfuscated
scripts are automatically resubmitted to the collector while they are non empty.

2) Tainting: In Section 4.5.2, the impact of the data-�ow on detection has been clearly observed.
This problem should be addressed by the collection tool since dynamic collectors are especially
sensitive to �ow breaks. Tainting is a possible technique to dynamically monitor the data-�ow;
it has already been used to detect propagation of sensitive data to remote places through XSS
�aws [229]. Following a similar principle, we have integrated to the tool a tainting mechanism
for strings, most of the values manipulated by JavaScript being of this type. Tainting is not only
applied to sensitive data, either related to the user's privacy or to the browser's security, but
also to all data resulting from accesses to extension. The tainting labels are built using a source
identi�er and a type. Identi�ers are already provided by the interpreter for internal referencing,
whereas types are provided by the type system of the behavioral language (original types from
Section 3.1.3 combined with the browser-speci�c types from Section 4.6.2). The labels are then
directly propagated along the string manipulations. String reductions (substr, charAt, split,
slice...) implicitly propagate the label through the building of dependent strings. Concatenations
or modi�cations of the string content (+, escape, toLowerCase, replace, encode...) propagate
the label through the building of new strings. Indirect propagation through control structures and
loops has not been considered [229]. The labels are �nally logged along the collected operations
every time a tainted data is manipulated. An important remark concerns the empty string. Since
extensions are virtualized the values returned by the handlers may not contain the value expected
by a malware sample to pursue its execution. Unsuccessful tests on strings result in empty strings
which �nally points to a constant inside the interpreter. The solution adopted in the collector is to
build fake non-empty strings whenever an empty string is obtained by testing a tainted string. This
way the execution will carry on with the conditioned behavior and the label will be propagated.

4.6.4 First experimentations

Thanks to the collection tool described in the previous section, we have conducted some �rst
experimentations to study the possible application of the provided behavioral descriptions to web-
based threats [136]. Unfortunately, very few samples were available to run those tests. The results,
even limited, were nonetheless conclusive. As a matter of fact, no modi�cation was required on the
behavioral models to detect popular web-based behaviors, as it will be shown through two relevant
examples.
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The Psyme Trojan constitutes a �rst example of malware instantiating drive-by download
attacks. The script has been run inside the collector and the resulting trace is given in Figure 4.22.
By drawing a parallel with the behavior of execution proxy previously de�ned, the di�erent steps of
the attack satisfy the model. The code of a remote malware is recovered through a communicating
object, here the response of an XmlHttpRequest object. The code is followed up by tainting until it
is written down inside a newly created �le which is then executed. Consequently, after translation
of the trace inside the behavioral language, this drive-by download attack is successfully recognized
by the behavioral automata without requiring any modi�cation.

Figure 4.22 - Execution trace of the Psyme Trojan with tainting.
(1) Opening AJAX communication using the XmlHttpRequest object. (2) Opening a
data stream. (3) Reading tainted response from the request object. (4) Writing tainted
data into stream where type = 3 (communication data) and source = 36AA90 (request
identi�er). (5) Saving stream into a �le. (6) Executing the �le.

Figure 4.23 - Execution trace of SpaceHero Worm with tainting.
(1) Opening the current web pages and reading the code. (2) Handling of the AJAX
communications and the callbacks by the collector. (3) Opening a new communication
using an XmlHttpRequest object. (4) Writing a request containing tainted data where
type = F (self-reference) and source = 36B9A0 (current page identi�er).
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The SpaceHero Worm constitutes a second example where propagation is supported by AJAX
and transparent communication. The script has been run inside the collector and the resulting trace
is given in Figure 4.23. Once again, by drawing a parallel with the description of the propagation
behavior, the di�erent steps of the attack satisfy the model. The script �rst accesses the current
web-page to recover its own code. This is basically the access to the self-reference. The script then
starts a communication with the server. The di�erent exchanges are automated thanks to callback
functions supported by the XmlHttpRequest object [136]. The simulation of these exchanges and
the handling of the callbacks is managed by the virtualized extension of the collector as described
in Appendix D. One of these callback functions is responsible for propagation, sending a request
containing the worm code inside its parameters. Just like in the previous example, the worm
code is followed up during the process by tainting. This �nally leads to the conclusion that XSS
propagation is similar in principle to the standard propagation. Globally, even though additional
experimentations would be required, these �rst results complement the assessment of the detection
method by proving the adaptability of the language and the automata to a web-based context.

4.7 Viability of the detection method

Through this chapter, we have introduced a method of behavioral detection relying on parsing.
Addressing formalization, implementation and experimentations, the chapter covers most of the
important properties of behavioral detectors introduced in Chapter 2: completeness, accuracy,
e�ciency both in terms of performance and complexity. The last experimentations on JavaScript
also bring some �rst information with regards to the adaptability of the method. Additional tests
on JavaScript are obviously necessary to complete the coverage results but additional malware
would be required. A potential solution is interfacing with a web crawler to collect scripts and
extract malicious ones [87, 193]. However, most of the malicious scripts that can be found remain
simple exploits and no complex malware. An other perspective now is to explore other use cases of
the behavioral model, considering reverse translation from the model towards the implementation.
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Chapter 5
Automatic mutations at

the behavioral level

A la manière des Métamorphoses d'Ovide,
une chauve-souris pourrait être considérée
comme une souris qui, poursuivie par une
autre trop libidineuse, pria les dieux d'avoir
des ailes; ailes qui lui furent accordées.

Le miroir de l'âme

Georg Christoph Lichtenberg - 1997
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B
ehavioral detection, and other new generations of detection techniques, have gained re-
cent interest because they may o�er alternatives to the predicted overwhelming of detection

by signature scanning. Unfortunately, for each detection technique put forward, the attackers have
developed dedicated countermeasures. When polymorphism and metamorphism have been devel-
oped against scanning, similarly, functional polymorphism could be a third generation of mutation
mechanism speci�cally designed to address behavioral detection. In e�ect, behavioral detection
relies on the identi�cation of malicious functionalities exhibited by malware: replication, propaga-
tion, residency... Each one of these functionalities can be implemented through di�erent technical
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solutions. Some degrees of freedom are thus left for possible functional mutations without un-
dermining the originally intended purpose. This chapter addresses the formalization of functional
mutations through a grammatical approach as published in [140]. Section 5.1 �rst presents the
main improvements of function-based mutations over form-based ones. Section 5.2 then formalizes
these mutations using the theory of compilers. In addition to formalization, a proof of concept is
given in Section 5.3 with the prototyping of a whole mutation engine.

5.1 From form-based to function-based mutations

At the present time, polymorphism and metamorphism constitute the two major advances in auto-
matic code mutation. Often based on obfuscation techniques, these mutations at the syntactic level
either locally modify the instructions or globally modify the code structure and its possible execu-
tion paths. An overview of these form-based mutations has previously been given at the beginning
of Chapter 2. In practice, among these mutations, the substitution of equivalent instructions is
undoubtedly the metamorphic technique the most di�cult to thwart for current detectors [201].
Sequences of equivalent instructions may have di�erent purposes but their combined execution
has the same global e�ect on the memory. The complexity of their detection is mainly due to
the fact that they do not only alter the program syntax but, to a lesser extent, also its semantic.
For example, they may result in di�erent values for variables unused further on; they may even
introduce intermediate states along the sequence where all variables are temporally di�erent.

Considering interactions, even the substitution of equivalent instructions does not modify a
priori the �nal interaction scheme in terms of accesses to the system services and resources. Using
behavioral detection, the mutated variants should theoretically remain detected because of iden-
tical access sequences. To address behavioral detection, functional mutations should thus modify
the whole functionality of malware both in terms of computations and interactions. Referring once
again to Chapter 2 and the failure of scanning, such functional modi�cations have already been
used to avoid detection: modi�cation, substitution, addition or removal of functionality blocks are
common practices. Except for major evolutions, it is commonly acknowledged that most malware
writers do not start their work from scratch, a proof being the important works on malware phy-
logeny [118, 146]. However, up until now, the generation of new variants from an original strain
mostly remains manual. Only partial attempts of automation have been achieved with the devel-
opment of virus construction kits. Di�erent engines can be cited from which the most popular
ones are probably the Virus Construction Lab (VCL), the Phalcon/Skism Mass-Produced Code
Generator (PS-MPC) and the Phalcon/Skism's G2 Virus Generator (G2) [22, 23]. Still, the sup-
plied customization options remain quite limited at the functional level: choice between appending,
overwriting or companion infection, choice between encryption or plain code. Between two vari-
ants generated according to similar options, the di�erentiation is in fact still achieved through
metamorphic modi�cations. No real functional variation is deployed for a given functionality. A
signi�cant step is still required before reaching automatic mutations at the functional level.

In some ways, the mimicry attacks, designed to thwart host-based intrusion detection, are
related to functional mutations [75, 232]. The principle of mimicry attacks is based on test sim-
ulability [104]; a payload is forged containing a complete �xed attack hidden within a sequence
of system calls imitating a legitimate application. By imitation, the forged payloads can bypass
anomaly-based detectors while keeping the same e�ect on the system as the original attack. The
principle is similar to garbage insertion in metamorphic engines. However, with respect to mal-
ware detection, most behavioral approaches are based on malicious signatures similar to those
used by misuse-based intrusion detectors. Functional mutations will thus be slightly di�erent from
mimicry attacks. Instead of including interleaved blank operations inside our code, mutations will
be achieved by enumerating, both in terms of computations and interactions, the possible solu-
tions to achieve a same malicious functionality. To overcome the simple instruction level of the
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existing mutation techniques, the real challenge is to express the equivalence of these functionali-
ties in terms of purpose. To reach this level of interpretation, the manipulations must necessarily
be performed at a semantic level, working on more complex structures than simple instructions.
Basically, a functionality is the combination of basic instructions but also di�erent system calls
and parameters. Two functionalities can be said equivalent if their executions impact similarly
the behavior of the host system and no longer, if they simply exhibit the same e�ect on mem-
ory. For example, under a Windows operating system, the automatic start a program during the
boot sequence can be achieved either by modifying the right registry keys or con�guration �les.
Those two modi�cations have di�erent e�ects on memory but eventually the same consequence.
According to this guideline, we introduce in this chapter the concept of functional polymorphism
by providing a theoretical formalization as well as a proof of automated feasibility. The semantic
equivalence between the instantiated functionalities will be expressed by formal grammars, o�ering
an additional usage for the grammatical framework presented in Chapter 3.

5.2 Compiler theory applied to polymorphism

Basically, the purpose of a functional polymorphic engine is to translate the �nal purpose of a be-
havior into executable code. This behavior description is often conveyed by a speci�cally designed
language, guaranteeing that every mutated form consistently performs the intended task. Conse-
quently, the engine functioning is similar to the one of a compiler as formalized in Section 5.2.1.
Yet, the speci�city of this engine is that several successive executions must result in strongly dif-
ferent variants, thus introducing the concept of non-deterministic compiler. In e�ect, to avoid
behavioral detection, malware must modify the way that functionalities are instantiated at each
execution, through di�erent computations and interaction schemes. The resulting characteristics
of the mutations are addressed in Sections 5.2.2 and 5.2.3, from both the perspectives of attackers
and defenders. Before entering the core of the formalization, let us recalled the important concepts
and de�nitions. At the basis of compilation are programming languages and thus formal grammars.
The de�nitions of context-free grammars and attribute grammars are already given respectively in
De�nition 2 and De�nition 3 from Chapter 3. Complements can be found in reference books and
the literature about automata, context-free and attribute grammars [131, 152, 153][245, Chpt.10].

The languages generated by context-free grammars can basically be evaluated by pushdown
automata. In compilation, these automata are used for building the derivation tree according
to the syntax of the source. In the case of attribute grammars, a pushdown automaton is still
mandatory to parse the syntax but an additional attribute evaluator is required to evaluate the
associated semantic rules. The De�nition 6 of a pushdown automaton, presented in Chapter 4 on
detection, already supports attribute evaluation. The attribute evaluation may be solved by two
kinds of methods: topological sorting or recursive functions [37]. Let us focus on the topological
sorting approach whose description is given in Algorithm 3 below.

Algorithm 3 Attribute evaluation by topological sorting.

Require: An attribute grammar GA and a derivation tree T of GA
Require: An initial valuation for the terminal symbols v : SynΣ → D
Ensure: Let V arT be the set of attributes of T and ET be its attribute equation system
1: Let V ar := V arT \ SynΣ.
2: while V ar 6= ∅ do
3: Choose x ∈ V ar such as x = f(x1, ..., xn) ∈ Et and ∀i, xi 6∈ V ar.
4: v(x) := f(v(x1), ..., v(xn)).
5: V ar := V ar \ {x}.
6: end while
7: return v : V arT → V .
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Let us consider the most uncluttered vision of a compiler that does not include intermediate
representations or optimization. Only two steps are left: veri�cation of the source code, responsible
for the construction of the attributed derivation trees and translation responsible for generating
the executable code. This vision of compilers is represented in Figure 5.1. Relying on previous
de�nitions, a generic description of a compiler is provided in De�nition 8.

Figure 5.1 - Generic view of a simplified compiler. This is the simplest
decomposition of a compiler. Lexical analysis, the use of intermediate languages and
optimization techniques have been willingly ignored for the sake of simplicity.

De�nition 8 A compiler C is a is a quintuplet <GS , I, AGS , VGS , RT > where:
- GS =<G,D,E> is the attribute grammar of the source code, originally based on the context-free
grammar G =<V,Σ, S, P >,
- I is the alphabet of instructions describing the targeted machine,
- AGS is the pushdown automaton achieving veri�cation. AGS accepts the syntax of the source
grammar GS and produces the derivation trees T ,
- VGS is the attribute evaluator based on topological sorting. VGS is used during the veri�cation,
in complement to the automaton, in order to annotate the trees T with attribute values from D,
- RT ⊆ {(Σ × D)∗ × I∗} is a rewriting system (also called semi-Thue system) translating the
annotated tree nodes of the form (Σ×D) into executable code over the instruction set I.

5.2.1 Functional polymorphism formalization

The required background about compiler theory being introduced, we can now move to the new
formalism. It is important to keep in mind that functional polymorphism works at a semantic
level, just like compilers do. The �nal purpose of each behavior, in other words its semantic
interpretation, must be expressed in an attribute grammar. The abstract behavioral language
provided by the thesis will obviously be considered, but right now the formalization should be
independent from the considered grammar. Regardless, a behavior is always implemented by
several means corresponding to the di�erent possible semantically attributed derivation trees.

Figure 5.2 - Generic view of a functional polymorphic engine. With
regards to the generic compiler, the main di�erence lies in the substitution of the
veri�cation process by a derivation process which only needs a start symbol in input.

The mutation engine will thus work di�erently from compilers. Reusing the notations from
De�nition 8, a compiler, given in input a source code ω ∈ Σ∗, �rst veri�es its syntax and its
semantic. The automaton AGS accepts the source code if and only if δ̂(q0, ω) ∈ F . Given an initial
attribute valuation for terminals v, the evaluator VGS of the compiler tries to build a complete
valuation satisfying the equation system. In case of success, the source code is then translated

94



5.2. Compiler theory applied to polymorphism

according to the rewriting system RT : (ω, v) ∗=⇒RT ω′ with ω′ ∈ I∗. Whereas, the purpose of
the mutation engine is to keep the original functionality through divers instantiations. The engine
thus takes in input a start symbol S from the behavior grammar G. Instead of veri�cation, the
engine achieves a derivation of the grammar: S

∗→GS ω with ω ∈ T ∗. This derivation tree is
attributed by generation of a new valuation satisfying the equation system of GS . The rest of
the translation process is then identical to compilers. For comparison, the vision of the functional
polymorphic engine is illustrated in Figure 5.2. Veri�cation is no longer required since by automated
construction, the code is obviously syntactically and semantically correct.

During derivation several derivation trees may syntactically be possible. Derivation will thus be
embedded in a probabilistic automaton that will replace the deterministic one used for veri�cation.
For a short example, let us de�ne the following grammar (on the left) and its associated derivation
probabilistic automaton (on the right):

< V > → XY | Z
< X > → a
< Y > → b | c
< Z > → d | e | f

Algorithm 4 Attribute generation by recursive topological sorting.

Require: An attribute grammar GA and a derivation tree T of GA
Require: An empty initial valuation
Ensure: Let V arT be the set of attributes of T and ET be its attribute equation system
1: if V arT = ∅ then
2: return true (v is the generated attribute valuation).
3: end if
4: Choose x ∈ V arT such as x has the minimum dependency

i.e. the minimal number of semantic rules: min(card({π|x ∈ V arπ})).
5: V arT := V arT \ {x}.
6: Solve the sub-system ETx of equations from ET containing x,
x is then reduced to a solution domain Ds ⊂ Dx.

7: while Ds 6= ∅ do
8: Choose randomly s ∈ Ds.
9: v(x) := s.
10: if Recursive call of the algorithm then
11: return true (v is the generated attribute valuation).
12: else
13: Ds := Ds \ s.
14: end if
15: end while
16: return false.

With regards to semantic veri�cation, the equation system for attribute evaluation can hardly be
modi�ed without loosing the grammar coherence. However, the initial valuation for the terminals
of the grammar leaves some degrees of freedom. Resulting of Algorithm 3, several initial valuations
may satisfy the system of semantic equations. The mutation engine can randomly choose between
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these semantic valuations to multiply the number of variants provided by syntactic modi�cations.
Eventually, attribute generation is critical for the coming translation, since attribute values are
used for selecting the right rewriting rule amongst the di�erent ones associated to a same terminal.
We thus de�ne a procedure for random attribute generation in Algorithm 4. Using a topological
approach, the algorithm is the pending of Algorithm 3 and recursively explores the space of possible
solutions as a decision tree with backtracking facilities.

Algorithm 4 solves independently the di�erent subs-systems of equations following the increas-
ing dependency. In e�ect, attributes are selected following the increasing number of semantic
rules they are involved in. At each step, the set of possible values for the selected attribute is
reduced. If such a decision makes successive steps unfruitful, the algorithm allows backtracking
and explores a new branch. On the one hand, backtracking guarantees the success of the algorithm
whenever solutions exist. On the other hand, proceeding by a brute-force approach, backtracking
also introduces drawbacks in terms of performance.

Additional optimizations could surely be found; the choice of minimum dependency was only
one of them. However, in the present case, the probability of success in reasonable time is quite
high. Firstly, because the set of values for attributes are bound and made up of discrete values.
Secondly, because the semantic equations often remain quite basic, linear equations most of the
time. Coming back to our main concern, these new de�nitions �nally lead to the formalization of
a functional polymorphic engine as given in De�nition 9. Relying on this de�nition, the coming
sections address the characteristics of the functional mutation both from the attacker and the
defender perspectives.

De�nition 9 A functional polymorphic engine M is a quintuplet <GS , I, AGS , VGS , RT > where:
- GS =<G,D,E> is the attribute grammar of the source code, originally based on the context-free
grammar G =<V,Σ, S, P >,
- I is the alphabet of instructions describing the targeted machine,
- AGS is the probabilistic �nite automaton deriving the start symbol S into random syntactic deriva-
tion trees T according to GS,
- VGS is the attribute generator determining a random initial valuation for the terminals satisfying
the equation system of T ,
- RT ⊆ {(Σ × D)∗ × I∗} is a rewriting system (also called semi-Thue system) translating the
annotated tree nodes of the form (Σ×D) into executable code over the instruction set I.

5.2.2 Mutation characteristics: mutation entropy

From the attacker perspective, it may be important to theoretically assess the e�ectiveness of
the functional polymorphic engine, that is to say to assess the quantity of potential modi�cations
introduced by the engine. Information entropy, introduced by C.E. Shannon in [218], provides this
information. In the present context, we can use it to measure the uncertainty associated with the
mutation process. An explicit parallel can be made with this theory as follows. The mutation engine
is modeled as a communication channel receiving data from a source: the embedded description
of the considered malware, and transmitting this data to a recipient: the �nal executable built in
the process memory. During the transmission, the engine introduces noise through the mutations.

According to De�nition 9, two points of the channel create uncertainty: the random derivation
and the choice of the attribute valuation. In order to establish the mutation entropy stated in
Proposition 6, three speci�c parameters have been considered for a reasoning on an average case:

• The average depth d of a grammar which is the average number of production rules to apply
during derivation in order to reach a �nal word. It is equivalent to the average number of
intermediate states required by the probabilistic automaton before reaching an accepting one.
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• The average number n of alternative options for a production rule. It is equivalent to the
average number of successors for any state of the automaton.

• The average number s of possible initial valuations given a derivation tree T . It is possible
to bound this value in best and worst cases. The worst case in terms of entropy is reached
when the attribute equation system accepts a single initial valuation as solution. On the
contrary, the best case is reached when all the attributes of the terminal symbols from
the tree T are independent and all valuations become solution. Using the notations from
the de�nitions, then the initial value of an attribute α ∈ synΣ can be any value from the
domain Dα. The number of potential initial valuations is bound by the following inequality:
1 ≤ s ≤ Πα∈V arT∩SynΣcard(Dα).

Proposition 6 By considering uniformly distributed random choices, the average entropy is given
by: H(mutation) = d× log2(n) + log2(s).

Proof.
Let us begin by calculating the probability associated to the syntactic derivation of a word ω

which is obtained by the path of state πω = e1...ed. In a probabilistic automaton, the probability
of selecting a given state among the possible successors is only dependent of the current one like
in a �rst-order Markovian process:

P (ω) = P (e0)Πd
i=1P (ei|ei−1)

The starting state e0 is mandatory which gives us:

P (e0) = 1
By reasoning on an average basis, we know that for any ω derived from G, d states are reached.
At each step, n options are available:

P (ei+1|ei) = 1
n

P (ω) = ( 1
n )d

Given the derivation ω, the engine chose randomly a possible initial valuation v with equivalent
probability:

P (v|ω) = 1
s

Which leads us to this result:

P (ω, v) = P (ω)P (v|ω) = 1
snd

By a similar reasoning we can calculate the average number of possible attributed derivation trees:

card(L(G)) = snd

The entropy of the derivation is thus given by:

H(mutation) = −Σ(ω,v)∈L(G)P (ω, v)log2(P (ω, v))
= −card(L(G))P (ω, v)log2(P (ω, v))
= −snd( 1

snd
)(log2(( 1

snd
)))

= d(log2(n)) + log2(s)

�

This result is based on speci�c hypothesizes but it gives, if not precise, a pertinent assessment
of the mutation e�ectiveness, o�ering possibilities of interpretation. In fact, d and n are syntactic
factors settled by the considered behavior grammar. This grammar is designed to convey the
minimal expression of the �nal functionality, while o�ering the best coverage. Consequently, once
de�ned, it cannot be the subject of easy extensions. On the other hand,the semantic factor s
remains a malleable degree of liberty which enables a logarithmic increase of the mutation entropy.
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Several semantic parameters can impact the value of s: the number of attributes for each symbol,
the range of their possible values, and the number of dependencies between them. This observation
is quite important since the number of equivalent rewriting rules for a terminal symbol is directly
proportional to the possible values taken by its attributes. The impact of semantic on entropy
justi�es the statement made in the previous section that functional polymorphism goes beyond the
simple syntactic level.

5.2.3 Mutation characteristics: detection complexity

If mutation entropy was interesting from the perspective of the attacker, detection complexity is
more relevant from the defender's perspective. Let us now focus solely on behavioral detection
and more particularly on the complexity of the behavioral detection for functional polymorphic
malware of �nite size. Most actual behavioral detector rely on prede�ned behavior signatures.
Recalling the taxonomy from Chapter 2, behavioral detectors can be divided into two classes:
dynamic simulation-based detectors relying on sequences of observable events (e.g. system call
traces) and static formal veri�er relying on instruction meta-structures (e.g. graphs, temporal
logic formula). According to [95, 103], these two types of signature may be expressed as Boolean
formula as follows. Considering an observable event i (resp. an instruction) and a position j in
the sequence (resp. the structure), let us de�ne the Boolean variable:

1) Xi,j =
{

1 if i is present at the position j
0 otherwise

These Boolean variables are combined into a single formula representing a whole sequence or meta-
structure. Some events (resp. instructions) may be interchangeable at a given position. A sequence
(resp. a structure) is then a Boolean formula in its conjunctive normal form (CNF):

2) Xsk = Xi1,1 ∧ (Xi2,2 ∨Xi′2,2
∨ ...) ∧ ... ∧ (Xin,n ∨ ...)

A given behavior can �nally be instantiated through various equivalent sequences (resp. structures).
A behavior signature β is thus modeled by a disjunction of formulae:

3) Xβ = Xs1 ∧Xs2 ∧ ... ∧Xsn

The global behavioral detection scheme is given by a Boolean correlation function φc over the v
di�erent behaviors referenced in the database:

4) βM = φc(Xβ1 , ..., Xβv ) with φc : F|B|2 → Fn
The obtained detection scheme satis�es the mathematical model established in [95, 103], which is
recalled in the De�nition 7 from Chapter 4. In the present case, the correlation function is de�ned
over the set of behavioral variables to the binary �eld where 0 indexes legitimate programs and
1 detected malware. According to this model, a parallel can be drawn with the Boolean model
used by D. Spinellis to study the impact of syntactic polymorphism on signature scanning [220].
Likewise, the behavioral detection problem can be reduced to a satis�ability problem leading to
the complexity result stated in Theorem 3.

Theorem 3 Behavioral detection of functional polymorphic malware with �nite size is a NP-
complete problem.

Proof.
Let D be a behavioral detector and let us assume that it can reliably determine in P-time

whether a program exhibit or not a mutated form of a given behavior B. We will now use D
for determining the satis�ability of N-terms Boolean formulae. According to previous works, a
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behavior can be described by its signature, itself conveyed by a Boolean formula S. Using S, we
can create a virus archetype A as a triple (c, s, f) where:

• c is an evolving integer used to generate a new interpretation of the formula S,

• s is a Boolean value indicating if S has been satis�ed,

• f is a duplication function. f simulates functional polymorphism by computing a new value
c, indirectly creating a new interpretation for S. f �nally updates s with this interpretation.

For D to detect whether a given virus is a mutated version of a known functional polymorphic
strain, it must then determine if S will ever be satis�ed. In the case of functional polymorphic
engines, we have seen that S is a disjunction of CNF formulae modelling the sequences of events or
meta-structures of instructions. The detector D should then be able to solve the SAT problem for
at least one clause of the disjunction. By reduction, the detection problem is equivalent to solving
the SAT problem which has been proven NP-complete [190]. �

5.3 Implementation of a prototype engine

After formalization, this section now addresses the technical feasibility of functional mutations
with the development of a functional polymorphic engine called the FHM Engine, standing for
Functional High-level Mutations Engine. According to the formalization, functional polymorphism
requires two levels of description to achieve the mutations. A �rst high-level description language is
required to describe the functioning of the code and guarantee its preservation along the mutations.
In the current speci�cations, the FHM Engine relies on the behavioral language whose syntax and
semantic are speci�ed in Chapter 3. A second low-level description corresponding to the set of
instructions is then required for the generated executable code. The FHM Engine relies on blocks of
assembly instructions. Inside the engine, the mutations are performed on the high-level description
to be re�ected on the generated low-level descriptions. The whole architecture of the engine and
the articulations between the two levels of descriptions are described in the coming sections.

5.3.1 Engine architecture and project

The functional polymorphism engine is divided between two components respectively responsible
for the random derivation and the translation as pictured in Figure 5.2. Each of these components
is then divided between di�erent modules whose generic features are described below. The over-
all architecture of the prototype and the junction of the di�erent modules is described in Figure 5.3.

Figure 5.3 - Architecture of the FHM Engine. This schematic description
of the architecture reveals the connexions between the modules of the prototype.
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Behavior expanser: The behavior expanser is part of the derivation component. This module
embeds the syntactic rules of the behavior language inside a probabilistic automaton in order
to build a random derivation tree. During derivation, it calls on the semantic generator
services to annotate the tree with attribute values.

Semantic generator: This generator is responsible for creating a valuation of the semantic at-
tributes associated to the di�erent production rules. The generator embeds the semantic
equations to guarantee the coherence of the valuation.

Code builder: The code builder is the entry point of the translation component. This module
reads the derivation tree and its semantic annotations in order to build the corresponding
executable code. It uses the basic building blocks supplied by the instruction set in order to
build the malware body, these blocks being updated according to the semantic attributes.

Instruction set: The instruction set de�nes the meta-structures of instructions corresponding to
basic generic operations: arithmetic operations, control related operations, parameter passing
and returns of system calls.

The engine prototype has been implemented in C and the basic building blocks for code gen-
eration are written in assembly encoded into hexadecimal. The current version of the engine only
supports Windows because the generated code uses speci�c Windows APIs. It currently supports
four di�erent behaviors used in Peer-to-Peer/Mail Worms: duplication, propagation, residency
and overinfection test whose speci�cations are given in Chapter 3. The global size of the compiled
code is about 40 KBytes and uses less than thirty basic building blocks, from 4 to 80 bytes in
size. Starting from these blocks, the engine is able to build hundreds of basic derivations only
by modifying the syntax and the types of the semantic objects. The number of variants is even
greater and reach thousands if we consider the di�erences in terms of object location or attributes.

The engine must be fed with a global template of the malware. The template is the leading
thread of random derivation; its purpose is to determine the articulation of the di�erent behaviors
inside the malware body. The start symbols of the behavior grammars are used as basic blocks
for its construction. The template is written in a format similar to XML where the start symbols
constitute the markups. The example for the generic Peer-to-Peer/Mail Worm is provided in Fig-
ure 5.4, with additional tags to customize the behaviors. According to the template, the expanser
will generate a syntactic derivation tree satisfying the behavior grammars. This derivation tree is
then fed into the code builder to build the executable code. The implementation of the di�erent
modules involved in these two processes are described in the coming sections.

<Overinfection>
<marker= "marker_name"\ >

< \Overinfection>
<Duplication>

<target= "target_name"\ >
< \Duplication>
<Residency>
< \Residency>
<Propagation>

<carrier= "lure_name"\ >
< \Propagation>
<Payload>
< \Payload>

Figure 5.4 - Structure of a Peer-to-Peer/Mail Worm. This template
describes the articulation between the worm behaviors. Using dedicated tags, certain
behavior parameters can be speci�ed, such as the name of the duplication target.
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5.3.2 Implementation: syntactic expansion

The �rst level of mutation is achieved by a random derivation of the grammar syntax. Derivation
is performed by the behavior expanser which replaces the usual parser employed in compilers for
veri�cation. The structure of its source code is quite similar to the one of a grammar parser.
However, instead of choosing the following production rules according to the current symbol un-
der the parsing head, the expanser randomly selects the production rules between the available
options at each step. Upstream, an entry function dispatches the successive derivations starting
from the start symbols recovered inside the markups of the template. From a start symbol, the
expanser generates a valid derivation tree inside the possibility space, by random application of
the production rules.

In fact, each production rule corresponds to a given expansion function in the source code.
Expansion functions may be of two types, either intermediate or terminal. In Figure 5.5, an
extract is given for the intermediate expansion function corresponding to the duplication start
symbol; duplication being speci�ed in Section 3.2.2 from Chapter 3. The function �rst generates
identi�ers for a new variable to store the viral code during transit, as well as for a new object
being the target of the duplication. The next production rule is chosen using a random generator;
the control of the derivation is then transmitted to the expansion function corresponding to this
rule. The generated variable and object identi�ers are then propagated along the intermediate
expansion functions through parameters.

int DuplicationExpand(FILE * pf_Template){
unsigned long ul_Var = VARIABLE|i_VariableCnt;

unsigned long ul_Clone = OBJ_FILE|i_ObjectCnt;

pf_Derivation = fopen("TempDerivation","wb");

int ui_Which = RandomGenerator(5);

switch(ui_Which){
case 1:

CreationExpand(pf_Derivation,pf_Template,ul_Clone);

OpeningExpand(...);

ReadingExpand(...);

WritingExpand(...);

break;

...

case 5:

OpeningExpand(...);

TransferExpand(...);

break;

}
i_VariableCnt++;

i_ObjectCnt++;

}

Figure 5.5 - Expansion function for duplication. This expansion function
corresponds to a start symbol. It begins by creating unique identi�ers for the objects
and variables involved in the behavior. A production rule is randomly chosen among the
alternative ones and the control is transmitted to the associated expansion functions.

The intermediate derivation functions are responsible for carrying on the derivation. When
terminal symbols are reached, a terminal expansion function is called. The terminal function
actually writes the lexical units in a speci�c �le storing the derivation tree. In Figure 5.6, a second
related extract is given for the expansion function responsible for the creation of the duplication
target. As illustrated by the extract, when an object identi�er is reached, the real object is
initialized by calling the semantic generator which will be addressed in the next section.
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void CreationExpand(FILE * pf_Derivation, FILE * pf_Template, unsigned long ul_Obj1){
unsigned long ul_Unit;

//Expanding the rule

ul_Unit = COM_CREA;

fwrite(&ul_Unit,1,4,pf_Derivation);

fwrite(&ul_Obj1,1,4,pf_Derivation);

//Creating permanent object

CreateObject(ul_Obj1, pf_Template, 1, 0);

//Resume expanding the rule

ul_Unit = L_END;

fwrite(&ul_Unit,1,4,pf_Derivation);

}

Figure 5.6 - Expansion function for object creation. This expansion
function corresponds to terminal symbols. The produced symbols are written down
in the derivation �le where the tree is built. Whenever an object identi�er is reached
during derivation, the semantic generator is then called for the attribute valuation.

5.3.3 Implementation: semantic expansion

The second level of mutation is achieved by the semantic generator through the generation of se-
mantic attributes satisfying the attribute equation system. These attributes annotate the deriva-
tion tree resulting from the syntactic expansion. They are particularly important since they may
impact the choice of the rewriting rule for the translation of a given terminal symbol. It is easy
to understand that several primitives are at our disposal to translate a given grammar unit. For
example, object creation can be performed by di�erent system calls depending on its type and its
nature, whether the object is a �le or a registry key. By a�ecting a type and the right attributes
to an object, the set of possible translation rules is reduced to a singleton. According to Chap-
ter 3, attributes are constrained by semantic rules which are used for object binding, typing and
characterization. In the prototype, these di�erent purposes have been integrated as follows:

Object binding: Binding is not subject to mutation since it is constrained by our behavior gram-
mar. Object binding is done by a�ecting identi�er attributes to permanent objects. These
identi�ers are generated once and for all at the beginning of derivation. For this, the engine
uses the unique identi�ers generated by the starting expansion functions previously presented.

Object typing: The second step in annotation is performed by associating types to the di�erent
objects. The engine supports four main types: the permanent objects, the communicating
objects, the boot objects and the self-reference. These types are re�ned according to the
object nature, mainly �le pointers, �le handles, registry key handles and sockets. In our
polymorphic context, type and nature a�ectation is performed randomly between a range of
coherent values. Types are �nally stored besides the identi�er by a simple OR operation.

Object characterization: This last step, present in the language description but absent in sim-
ple compilation, has been speci�cally added. Characterization randomly a�ects additional
characteristics to object. These characteristics are used as parameters to update the instruc-
tions blocks. These characteristics are stored in tables of object entries like the one described
in Figure 5.7. Similar tables are de�ned for variables as in Figure 5.8 without requiring the
same number of attributes. Accesses to the table entries are indexed by the identi�ers, entry
0 being reserved to the self-reference which is a unique object. To remove the type stored
along the identi�er, a simple AND operation is performed with a speci�c mask. Inside the
tables, each entry provides several pieces of information:
- Access characterization constrains the permitted �ow as unilateral or bilateral, whether
reading or writing modes are authorized. It is particularly important in cases like the self-
reference since running programs can only be accessed in reading mode.
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- Localization determines the location of objects inside the system. It can be a simple path
for a �le, an IP address and a port for a socket, or a subtree for registry keys.
- Speci�c attributes can de�ne additional properties. These properties may vary according
to the object type and subtype. A �le, for example, can be hidden, compressed, encrypted
or tagged as OS related according to the facilities o�ered by the �le system.

struct OBJ_ENTRY pst_ObjList[TABLESIZE];

struct OBJ_ENTRY{
unsigned long ulIdentifier;

unsigned long pObjectHandle;

char pcName[MAX_PATH];

char pcLocation[MAX_PATH];

unsigned int uiType;

char pcAccess[4];

unsigned long ulAttribute;

};

Figure 5.7 - Object semantic structures. This structure stores the di�erent
semantic annotations generated for objects, in order to build the executable code.

struct VAR_ENTRY pst_VarList[TABLESIZE];

struct VAR_ENTRY{
unsigned long id;

unsigned long size;

unsigned long value; //Pointer to a buffer[size]

};

Figure 5.8 - Variable structures. This structure stores the memory location
of the di�erent variables as well as their size in memory for code generation.

5.3.4 Implementation: code generation

Code generation is triggered every time an annotated derivation tree has been successfully built. As
shown in Figure 5.9, the generated code is built in a newly allocated memory space with execution
rights. A global pointer allows the navigation inside the allocated space and code generation is
then achieved by copying the right instruction blocks at the location given by this pointer.

pv_AllocatedSpace = VirtualAlloc(NULL,600,MEM_COMMIT,PAGE_EXECUTE_READWRITE);

pv_CurrentPosition = pv_AllocatedSpace;

// Code generation

...

// Transfers control to the generated code

__asm{
jmp pv_AllocatedSpace

};

Figure 5.9 - Executable memory allocation. Executable memory is �rst
allocated and its address is stored before de�ning a new pointer for navigation. Once
the generation completed, the program jumps to the address of the allocated memory.
The control is transfered to the malware variant and the actual execution begins.

Instruction blocks must be de�ned for each basic action associated to a terminal symbol of the
derivation tree. The number of required instruction blocks is even greater since several blocks may
correspond to a single terminal symbol when objects are involved. The choice between equivalent
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blocks is determined by the types and natures of these objects. The extract from Figure 5.10 de-
scribes an example of object creation for the registry key nature. Equivalent creation blocks have
been de�ned similarly for �le pointers and �le handles. Inside the source code, these blocks are
written as tables of hexadecimals corresponding to assembly code. In order to be updated with the
semantic properties, the instructions requiring addresses, either for objects, variables, function call
or jumps, are reserved with 1-bit values. About thirty blocks have been provided inside the engine
for operations on object (creation, opening, data sending and receiving), for space allocation or for
conditional jumps.

static unsigned char InstOpenObjPerm3[34] = {
0x68, 0xFF, 0xFF, 0xFF, 0xFF, // push @KeyHandle

0x68, 0x3F, 0x00, 0x0F, 0x00, // push F003F (All Accesses)

0x6A, 0x00, // push 0

0x68, 0xFF, 0xFF, 0xFF, 0xFF, // push @KeyName

0x68, 0xFF, 0xFF, 0xFF, 0xFF, // push [@KeyLocation]

0xFF, 0x15, 0xFF, 0xFF, 0xFF, 0xFF, // call ds:ImportTable[60] ;RegOpenKeyExA

0x3E, 0xA1, 0xFF, 0xFF, 0xFF, 0xFF, // mov eax, [@KeyHandle]

}

Figure 5.10 - Creation of a permanent object: registry key. This in-
struction block de�nes, in hexadecimal, the assembly code required to create a registry
key. Some space is reserved for addresses which are resolved later on.

An important point must be raised with respect to variables and objects. During normal com-
pilation, the addresses are usually resolved during the linking process. But dynamic construction
of the code in memory introduces addressing problems because of a reversed situation with respect
to usual compilation. In e�ect, the address of the generated code is no longer �xed in memory but
unpredictable, whereas variable and object addresses are referenced in static tables as those from
the Figure 5.7 and 5.8. The generated code must thus be partially relocatable.

int BuildOpenObjPermInstructions(unsigned long ul_ObjUnit){
unsigned long address; int i_Res;

switch(pst_ObjList[ul_ObjUnit& ID_ONLY].type){
...

case 3:

memcpy(pv_CurrentPosition,InstOpenObjPerm3,34);

// Writing address of the handle

address = (long)&(pst_ObjList[ul_ObjUnit&ID_ONLY].p_obj);

memcpy((void *)((long)pv_CurrentPosition+1),&address,4);

memcpy((void *)((long)pv_CurrentPosition+30),&address,4);

//Writing address of the object name

address = (long)&(pst_ObjList[ul_ObjUnit&ID_ONLY].name);

memcpy((void *)((long)pv_CurrentPosition+13),&address,4);

//Writing address of the key location

address = *((long*)pst_ObjList[ul_ObjUnit&ID_ONLY].access);

memcpy((void *)((long)pv_CurrentPosition+18),&address,4);

//Writing import table address for RegCreateKeyExA

address = (long) &ImportTable[72];

memcpy((void *)((long)pv_CurrentPosition+24),&address,4);

((long)pv_CurrentPosition)+=34;

return 34;

}
return 0;

}

Figure 5.11 - Patching instructions. The building function copies the related
instruction block in executable memory. Instructions are then patched with the ad-
dresses recovered from the di�erent static tables and the indexes passed in parameters.
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To address the localization problem, objects and variables are accessed through an additional
layer of indirection. Looking back at the example in Figure 5.10, this indirection is concretely in-
troduced by replacing the original instruction push KeyLocation by the indirect instruction push

[@KeyLocation]. A particular exception is constituted by strings that are already addresses. Still
in the example, push @KeyLocation can be used without requiring dereferencement. A linking
process is �nally integrated to code generation in order to solve the multiple addresses introduced
by the indirection and the import of Windows APIs. Inside the source code, building functions
are responsible for patching the instruction blocks with the right addresses, recovered respectively
from the variables, objects and import tables. A building function is shown in Figure 5.11.

5.4 Potential use cases

In this chapter, the concept of automated functional mutations has been introduced, both from
the theoretical and the operational perspectives. Functional polymorphic engines, as they were
de�ned, are simply the automation of what most malware writers actually do, that is to say, to
take a known strain and slightly modify their functionalities to avoid detection. This work did not
intend to make their task easier. In practice, an important amount of work remains to be achieved
before o�ensive malware can be obtained from the engine. The fact is that these developments
were motivated by their possible applications for security researchers and experts.

5.4.1 Use case in software protection

It is not really surprising that, the techniques for software protection and the techniques used in
malware to mutate and thwart analysis, are strongly linked. The purpose is basically the same.
Malware writers often use these techniques to slow down the analysis process which is led by
experts in order to extract a signature or information to identify the threat. The only di�erence
lies in the time available to analyze the code between a hacker and an expert overwhelmed by
thousands of variants.

With respect to software protection, functional polymorphism provides interesting features.
The non-determinism introduced in the dynamic code generation plays against the analyst to
clearly understand the code functioning. In fact, the level of protection o�ered by the engine is
theoretically proven by the provided results on entropy and detection complexity. In practice, the
implications of functional polymorphism are twofold:

Static analysis: Functional polymorphism satis�es an important principle in anti-tampering pro-
tection that is the dependence between the control �ow and the data �ow [234]. The Control
Flow Graph (CFG) of the executed code is only written down during execution and its
construction directly depends on the randomly chosen annotated derivation tree. As a con-
sequence, even by running an emulator, a hacker can only recover a single instance of the
generated code among the potential variants. Besides, trying to address the analysis of the
engine itself, the hacker will be confronted to an important amount of alternative execu-
tion paths in the derivation and translation modules. The number of branching is actually
proportional to the entropy previously calculated.

Dynamic analysis: Once again, the code is only written during execution and it weights heavily
on dynamic analysis and the location breakpoints. Independently of the execution level of
the debugger (ring 0 or ring 3), the hacker does not know exactly where the code will be built
in memory until the allocation. Moreover, the code will be di�erent from an execution to
an other, meaning that the predicted location of the breakpoint may correspond to a wrong
address, possibly unaligned with the assembly code.
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Limitations: In practice, the main drawback of functional polymorphism is the introduction of an
original overload, explained by the code generation. Consequently, functional polymorphic
generation should be restricted to limited critical portions of code, but su�ciently important
to o�er enough possible variations.
With respect to the security guarantees, the security of the polymorphism relies on the
di�culty to establish a correspondence between the original point of the derivation (the
start symbol) and the purpose of the generated code. This correspondence is hard to tell
because of the numerous intermediate functions implicated in derivation. However, some
analysis techniques such as forced branching could help to establish this correspondence.
Just like any other software protection technique, functional polymorphism has its weaknesses
and should be combined with complementary anti-tampering techniques, such as dynamic
integrity checking [132] or anti-debug techniques.

5.4.2 Use case in the assessment of antiviral products

The assessment of antiviral products has always been a tricky problem. In [103], a �rst method-
ology has been provided to assess behavioral detectors by confronting them to unknown malware
generated from known strains. Originally, tested variants were manually generated beforehand. On
the contrary, functional polymorphic engines can simulate the automated generation of unknown
malware using known malicious techniques. These engines thus perfectly �t in such procedures as
it will be shown in the next chapter.

A similar problem is the assessment of malware phylogenies. Assessing the construction of a
phylogenetic tree requires beforehand knowledge of the real heredity between the di�erent malware
samples. Once again, the generation of a whole malware family is required. Current assessment
procedures generate the families from available codes sources, using compilation directives to acti-
vate/deactivate functionality blocks in the generated variants [125]. The variant generation could
thus bene�t from a richer and more complete automation, brought by functional polymorphism.
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A
ntivirus products are important software security components and should be thus be eval-
uated according to standard requirements. Although dedicated organizations, like the Anti-

Malware Testing Standards Organization (AMTSO1), start to establish an assessment standard;
most of the current assessment procedures simply confront detectors to known malware thereby
solely assessing the coverage of detection by scanning [15, 18]. As a matter of fact, assessing an-
tiviral products is still an open problem o�ering interesting research perspectives. In 2006, a more
complete evaluation procedure has been put forward relying on Common Criteria (CC) and the
available Protection Pro�les (PP) [142]. The interest was to include, in the scope of the assess-
ment, con�guration-related and organizational aspects such as the reactivity of the product editor.
Speci�c evaluation procedures have additionally been provided to address more technical issues
such as the signature resistance to mutations and manual modi�cations [63, 95] or the e�ciency
of remediation [195]. With respect to behavioral detectors, the procedure of assessment becomes
even more problematic since it must address the detector e�ciency against unknown threats.

Since reverse engineering is not an option and is illegal in most countries, there is no other
evaluation approach than black-box analysis. Functional mutations perfectly �t in a black-box
context; they can address the coverage of behavioral detectors by enumeration of behavioral vari-
ants achieving the same functionalities through di�erent instantiations. The methodology was
originally introduced in [103] with a manual simulation of mutations which was quite prohibitive.
Thanks to the results from the previous chapter, the procedure has been revised in Section 6.1
with a fully automated generation process as published in [140]. The evaluation procedure has

1http://www.amtso.org/
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been operationally deployed for real product assessment in the context of di�erent publications
and contracts [33, 100, 102]. To guarantee the reproducibility of the tests, the platform we have
used is described in Section 6.2 and parts of the obtained results are recalled in Section 6.3.

6.1 Assessment methodology

Modern antivirus products often combine signature scanning with other detection techniques. Most
of these products now support resident protections where on access scanning is often followed by
behavioral detection during execution. The �rst prerequisite of the method is thus to decouple the
two detection methods, otherwise scanning would hinder the evaluation by acting preemptively and
stopping the execution of the behavioral engine before any action. In most cases, there is no simple
facilities supplied such as a case to tick in order to independently deactivate the engines. The only
way round is to make sure that all test inputs of the black-box procedure are not referenced in
the database containing the binary signatures. One could object that thwarting the procedure
may be very easy by establishing such a signature for the functional polymorphic engine, its core
being invariant. However, this engine has not been developed to become an operational tool to
create viable attacks. This prototype has been implemented for research and testing purposes.
The application of syntactic mutation techniques to the core of the engine could obviously address
the problem.

The provided methodology is in fact a generalization for behavioral detectors of the method-
ology used for scanning by E. Filiol in [95]. By adopting a black-box approach, the only degree of
freedom left to the procedure lies in a variation of the tested samples. Instead of varying binary
patterns and recording whether the product successfully detects the sample, malicious behaviors
are individually modi�ed to check whether the product still detects the behavioral variant or not.
Unfortunately, because behaviors are constituted of complete function blocks, behavioral modi�-
cations are much more complex to produce. Since behavioral detection is working dynamically,
all the resulting variants must be viable for execution while o�ering consistent functionalities. Up
until now, the variant generation was only manual starting from known malware whose source code
was available [103]. As a consequence, the coverage of the tests was limited. And this is where
functional polymorphism o�ers interesting services. In e�ect, functional polymorphic engines con-
vey a generic semantic model and translate it towards random instantiations. The perspective of
detection is the reversed principle: the behavioral detector collects a given execution trace, inter-
prets it, and compares it to the behavioral signatures contained in its database. The problems of
completeness and accuracy are often observed in these signatures. The adoption of the attacker's
point of view eases the automated enumeration of the signi�cant behavioral variants to check for
the coverage of the signatures. By construction, the engines guarantee that all generated vari-
ants are viable malware, o�ering consistent functionalities. Functional polymorphic engines thus
constitute valuable tools to generate the required inputs for the test procedure, just like meta-
morphic mutations can be used to assess the resilience of signature-based detection [63]. Since
functional polymorphic engines mutate behaviors individually, the analysis of the results identi-
�es their detected implementations among the potential ones. Interpreting these results in terms
of satis�ability enables the reconstruction of a Boolean formulae corresponding to the detection
scheme introduced in De�nition 7 from Chapter 5.

6.2 Requirements for the test platform

The test procedure starts with the development of the prototype and, using on-demand scan, the
veri�cation that no syntactic signature exists for it. A platform is then required to observe the
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execution of the malware variants in an environment protected by the antivirus product to be
tested. For this, we have chosen to use a virtual machine for two reasons: the �rst is to prevent
any infection of the real machine to occur, and the second is the capability to reset the platform
into a clean state in case the malware variants are not detected. The global architecture of the
test platform is represented in Figure 6.1 and described in details below:

Guest Machine: Qemu [11] emulates the virtual environment. Windows XP SP2 has then been
installed and con�gured as a personal computer: additional services usually hijacked by
malware have been installed such as a mail client and a peer-to-peer client. In addition, an
ISP account has been con�gured with di�erent account information like the associated SMTP
server for example. Once the installation achieved, the disk image has been duplicated into
clean copies, to receive the di�erent antivirus products and the polymorphic engine itself.
From there, the tests consist in executing several times the engine and recording the reaction
of the antivirus product. Most of the time this reaction is not written down in a log but
displayed as a screen alert requiring human supervision. These tests are conducted inside
the virtual machine running in snapshot mode to restart it after each infection.

Host Machine: A tap has been installed between the host machine and the guest machine in
order to establish a virtual network communication between them. In parallel of the guest
machine, a fake SMTP server is running on the host, listening on port 25, dumping the
received SMTP packets and responding with the correct acknowledgements. The host �le of
the guest OS had been previously rewritten in order to route all the tra�c of the di�erent
servers towards the tap.

Figure 6.1 - Evaluation platform. The di�erent resources and services running
on the platform are pictured, either on the host or inside the guest operating system.

6.3 Assessment deployment

The test platform is fully operational and has been deployed to assess di�erent antivirus products
whose results are given in the coming subsections. Please keep in mind that the results are not
given for a survey of the antivirus market but only to validate the procedure [33, 100, 102]. We
intended to propose an e�cient evaluation methodology that should help anyone who is charge of
evaluate and deploy security products. The intention is not to uselessly criticize one or more prod-
ucts but to recover, from the evaluation results, interesting information to measure the coverage of
the behavioral engine but also to understand the detection scheme, in other words, the instantiated
detection technique behind. Note that this information is never provided by the antivirus vendors,
in any documentation. In several cases, the evaluation procedure has permitted to successfully dis-
tinguish di�erent techniques of behavioral detection such as behavioral blockers, heuristic engines
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or state automata [137]. Three products were selected to be presented here, because their results
illustrate cases where this detection scheme has been recovered. The results concerning the other
tested products have been moved to Appendix E.

6.3.1 Evaluation results for Product A

Product A (2008)1

Editor: X
Number of executions Detection rate (%):

Real-time �le system protection
500 71 Probably unknown new Heur_PE virus (14%)

Table 6.1 - Detection results for Product A. Product is con�gured to
run resident protection with activated detection of potentially unwanted applications.

According to the results shown in Table 6.1, Product A2 seems to use heuristics for behavior
monitoring as the labels of the detected variants suggest. These variants are all detected through
their attempts to replicate. By crossing these results with the properties of these variants, the only
common point they share is their derivation from a speci�c production rule: duplication based
on direct transfer. This particular derivation is translated using the CopyFile API call to copy
the malicious code. The other duplication attempts using the standard ReadFile and WriteFile

primitives are not detected. This interpretation does not seem inconsistent with our result: on
average 20% of the variants should be derived from the direct transfer rule and 14% were detected
in practice, independently from the location of the duplication target.

6.3.2 Evaluation results for Product B

Product B (2008)1

Editor: X
Number Non Generic Generic
of executions labelled P2PWorm∗ Trojan∗∗ Total
500 Blocking run 98(19, 6%) 11(2, 2%) 26(5, 2%) 135(27%)

registering
Non 300(60%) 42(8, 4%) 23(4, 6%) 365(73%)
blocked

398(79, 6%) 53(10, 6%) 49(9, 8%) 500(100%)
Total

Table 6.2 - Detection results for Product B. Descriptions: (∗) "attempt-
ing to copy towards a network resource" - (∗∗) "registering its copy on the system"

Product B1, whose results are given in the Table 6.2, combines two di�erent methods of be-
havioral detection: behavioral blocking for registry monitoring and global activity monitoring.
Behavioral blocking is preemptive and thus the �rst engine to detect the di�erent variants. The
tests have resulted in 27% of detection which, after veri�cation, covers all the variants registering
themselves under a run registry key. This detection rate is consistent with the probability of
one in three to choose this method of residency. If all attempts have been detected, however, no
correlation is done with other actions of the engine, or with the other detection method either. The
�nal decision is left to the user. To follow the process, we have by default accepted the operation
in order to keep on with the detection process.

2Products have been anonymized because the terms concerning black-box evaluation in the license contracts are
often unclear. The product is not to be used in automatic, semi-automatic or manual tools designed to create virus
signatures, or virus detectors.
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The second detection pass relies on activity monitoring and appears to be independent from
the behavioral blocker and its decisions. The monitoring engine correlates a certain number of
actions (�le creations, �le or registry modi�cations...) to support its decision. Two generic threats
are detected but with a relatively low rate according to the results of the Table 6.2: generic P2P
Worms and generic Trojans with about 10% each. No common patterns could be found to help
understanding the detection scheme supporting the decision. In addition, contrary to P2P shared
directories, no monitoring seems to be deployed over mail activity in order to detect its suspicious
use for propagation, even for those labeled as Trojans.

6.3.3 Evaluation results for Product C

Product C (2008)1

Editor: X
Monitored behaviors
βd="copy an executable �le to a sensitive area"
βp="copy to an area of your computer that shares �les with others"
βm="connect Internet in a suspicious manner to send out mail"
βl="copy to multiple locations"
βr="attempt to register itself in your Windows system startup"
Number of executions Detected behaviors Detection rate
500 {} 44(8, 8%)

{βm} 80(16%)
{βd, βl} 16(3, 2%)
{βp, βl} 140(28%)
{βm, βl} 16(3, 2%)
{βm, βr} 32(6, 4%)
{βd, βp, βl} 68(13, 6%)
{βd, βm, βl} 20(4%)
{βp, βl, βr} 48(9, 6%)
{βd, βp, βl, βr} 28(5, 6%)
{βd, βm, βl, βr} 8(1, 6%)

Table 6.3 - Detection results for Product C. No con�guration required.

Product C1 also relies on action monitoring but contrary to product B which searches for a
global generic behavior (P2P-Worms, Viruses, Trojans...), Product C looks for individual �ne-
grained suspicious behaviors as described in Table 6.3. For each detected behavior, the user is
warned and asked for a decision: by default we have accepted all operations in order to continue
the detection process. For this reason, the results have been gathered according to the di�erent
behavior combinations. In practice, no correlation is done between these behaviors which would
help to identify generic threats in case of repeated erroneous decisions from the user.

At �rst glance, the results are quite promising with an excellent coverage. Only duplication
seems to be problematic (28% of detection for βd whereas it is present in 100% of the variants).
This can be explained by the fact that only sensitive areas are monitored, that is to say the system
directories. A second explanation, which is also valid for propagation through P2P shared directo-
ries, is that copy attempts are detected through calls to CopyFile. As in the case of Product A, the
use of di�erent read and write primitives, for example those provided by C libraries and not those
provided by Windows, can bypass the detection. On the other hand, every attempt to propagate
through mail has been detected without exception. With regards to residency, all attempts to
register under a run registry key have also been detected but none of the other techniques.

This product o�ers the best coverage, even though the ideal case would be the detection of the
four behaviors at every execution (Mail variants: {βd, βm, βl, βr} and P2P variants: {βd, βp, βl, βr}).
Some additional tests, run in the next section, will be interesting to check that these good results
do not result in an exacerbated false positive rate.
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6.3.4 Evaluation of the behavioral automata

It would be inappropriate to evaluate di�erent products, without evaluating the behavioral detec-
tion automata introduced in the Chapter 4. The results of the evaluation are given in Table 6.4.
In comparison with the tested products, the provided detection rates are promising. However, the
importance of these results should be mitigated because of a bias in the procedure. In e�ect, the
behavioral automata and the functional polymorphic engine work on the exact same behavioral
descriptions, meaning that the result of the detection is only a matter of data collection. This
observation is con�rmed by the fact that undetected propagations are all mail-based, where the
data �ow is lost during base64 encoding.

Behavioral Automata (2009)
Editor: ESIEA/Orange Labs
Monitored behaviors
βd="duplication (direct copy, single read/wite, interleaved read/wite)"
βp="propagation (direct copy, single read/wite, interleaved read/wite)"
βr="residency"
βo="overinfection test"
Executions Behaviors Detection rate
30 βd 100%(27%/40%/33%)

βp 57%(00%/57%/00%)
βr 100%
βo 0%

Table 6.4 - Detection results for the Behavioral Automata. The
evaluation has been run o�ine by analyzing collected traces of API calls. The only
behaviors considered were those implemented inside the mutation engine.

6.3.5 Evolution in behavioral detection

These test results denote an evolution in tested products from the �rst evaluation we had conducted
three years ago [103]. In the former evaluation, we had come to the conclusion that either behavioral
detection was unused by antivirus products or behavioral detection was severely hindered by its
correlation with signature scanning. This situation no longer seems to be common practice. The
tests have shown a real deployment of behavioral detection even if some progress needs to be
achieved with regards to the behavioral signatures and models.

Another global observation put forward by this test procedure is the diversity, from a product to
another, in the deployed techniques of behavioral detection. No single detection solution has really
superseded the others. This observation is also relevant with regards to the behavioral models:
the behavioral models can be either global by de�ning generic classes of malware, or �ne-grained
with individual behavior descriptions (duplication, residency, mail propagation, P2P propagation).
This can be explained by the fact that behavioral detection is still a recent and active research
�eld producing new results every year.

Globally, �ner-grained behavior models exhibit the best results; however like we said previously,
these results must be confronted with the resulting false positive rates. To complement the proce-
dure, we have selected a set of programs whose activity could raise some suspicions and submitted
them to the tested products. A list of these programs as well as the obtained results are gathered
in Table 6.5. A �rst observation is that individual behavior models su�er from greater rates of
false positives (βfp1 , βfp4 , βfp6) as a drawback of their good detection rate. To cope with these
false positives, Product C seems to use white-listing as a solution for known legitimate programs
(βfp6). This white-list being established according to the executable names, it can obviously be
easily bypassed. On the contrary, the number of false positives is almost null for the products
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using global behavioral models. In fact, the raised alerts are no real false positives. For example,
KaZaA is well known to contain an incalculable number of bundled Spyware and Adware (βfp7).
During the installation of antiviral products, the deployed monitoring techniques are identical to
the hooking and stealth techniques used in malware (βfp2 , βfp3 , βfp4). The main point with global
approaches, in addition to their low detection rates, is their naive approach of detection which
often proves too generic in application. They hinder legitimate usages as much as malicious ones:
radically blocking SMTP port is a trivial example (βfp5).

Program Use Context Product A Product B Product C
Explorer Run βfp1
Patch DNS(KB945553) Install
AV product Install βfp2 ,βfp3 βfp4
O�ce XP Install

Run
Telnet Run βfp5
mIRC Install

Run βfp6
Skype Install

Run
FtpExpert3 Install

Run
KaZaA Install βfp7 βfp7

Run
False positives
βfp1="attempting execution of instructions from an unauthorized area"

(launching executables from the explorer in miniature view)
βfp2="suspicious driver installation to get overall access to the system"
βfp3="invader attempting to insert in winlogon"
βfp4="modi�y the way your computer communicate with the Internet"
βfp5="some useful ports are completely blocked (ex. SMTP 25)"
βfp6="potentially unwanted application that may exhibit malware characteristics,

mirc.exe: known as not a virus"
βfp7="alerts concerning various Spyware and Adware"

Table 6.5 - Assessment of the false positive rates. See Tables 6.1, 6.2
and 6.3 for comparison with the observed detection rates of the Products A, B and C.
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Chapter 7
Assessment of the

semantic model and enhancements

T
hroughout Part I, we have explored the formalization of malicious behaviors by the use
of formal grammars. A behavioral model is always a conceptual representation of reality,

it must thus satisfy a certain number of requirements to guarantee its validity: solid theoretical
foundations, a su�cient coverage of real cases and a possible mechanism for translation into the
model. The following contributions answer to these requirements by establishing the important
properties of our behavioral model:

Behavioral Model: According to the notion of behavior put forward in introduction, the for-
malization introduces interactions as a strong foundation of the behavioral language. This
constitutes a �rst achievement compared to existing models which either remain speci�c to
a set of API calls [211] or only cover machine instructions [64]. This property makes the
language adapted both to static and dynamic modeling: to static modeling because of its
coverage of instructions and multiple-path structures, to dynamic modeling because of its
generic support of interactions and concurrency. In addition, the handling of environment
objects is introduced in the language by the semantic rules provided by attribute-grammars.
These rules are particularly useful for the identi�cation of these objects and the understanding
of their purpose in the malware life cycle. To this purpose, a typing mechanism is deployed,
supporting di�erent classes of objects with possible re�nements. The obtained behavioral
language is �nally more uni�ed than the behavioral models presented in the state of the art.

Behavioral Signatures: Individual descriptions of several typical malicious behaviors are spec-
i�ed in the behavioral language: replication, propagation, residency, Trojan services. As
in [175, 181], these descriptions are manually built from the analysis of relevant malware
samples. However, the provided descriptions encompass a larger set of behaviors, not re-
stricted to replication [181] or botnet behaviors [175]. The expressiveness o�ered by the
behavioral language enables by common descriptions the coverage of several types of threats.
This coverage has given us the opportunity to bring into light the existing similarities between
the behaviors of the di�erent malware families, either stand-alone or web-based.

Model Translation: Automated translation between implementation and the behavioral lan-
guage is formalized. At the implementation level, information about programs activity is
connveyed by instructions, API calls and parameters; these are translated into the model
using mappings and decision trees. In order to cover both directions, reverse translation is
also covered using compilation techniques.
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Model Adaptability: To support additional threats, the model coverage can be easily increased
by the speci�cation of new behavioral signatures which can introduce new kinds of objects
in the typing system. The adaptability is eventually re�ected in translation which does not
require any modi�cation of the language itself. Translation supports di�erent native and
scripting programming languages, running on di�erent platforms, whereas existing detectors
are often crafted for a particular target [175, 181, 211].

Behavioral Detection: In the context of detection, behavioral automata are formalized as push-
down automata parsing the provided behavioral descriptions. The detection method reintro-
duces the notion of prerequisites and consequences from intrusion detection [74], in order to
�lter irrelevant inputs from parsing [200]. To handle multiple behavior instances in parallel,
it reuses a solution introduced in [200], using derivation duplication to avoid heavy back-
tracking. The clear formalization of the method has given us the opportunity of studying
the resulting complexity which was missing in [175, 181]. Since backtracking is reduced to
its minimum, the method can eventually be deployed either for o�-line or real-time analysis.
Notice that the behavioral descriptions could also be employed by other detection techniques,
even those based on static analysis such as model checking. A transformation of the grammar
rules into temporal logic formulae would be required.

Behavioral Mutations: Behavioral mutations modify program computations and interactions
while globally preserving a consistent behavior at each execution. These mutations supersede
existing techniques by reaching a semantic level where the others remain purely syntactic,
working at the instruction level [84]. These are based on reverse translation from the behav-
ioral descriptions to executable code. Their usage is bivalent, either for malware to protect
themselves from behavioral detection or, for security researchers to assess antivirus products.

In conclusion, the di�erent objectives stated in introduction seem satis�ed by the grammar-
based formalization. Nevertheless, several limitations have been encountered in this approach, some
solvable, some not. The formalization for example, even if it relies on the well known foundations
of formal grammar, is still limited in terms of theoretical reasoning. The di�erent experimentations
led on the behavioral language have also stressed its dependence on implementation-related infor-
mation; translation requires beforehand complete data, in particular in the context of detection.
These limitations are made explicit in the following key points:

1) Theoretical reasoning: The grammatical formalization provides an insu�cient theoretical
model. For example, no proof of coverage can be established for the di�erent behavioral de-
scriptions related to replication whereas the functional de�nition of self-reproduction provided
by theoretical models is complete by construction. In other words, the level of abstraction
reached is still insu�cient for the establishment of security proofs as in cryptography.

2) Signature generation: The number of behavioral descriptions provided is still limited. De-
scriptions for additional malicious behaviors can obviously be speci�ed, still, their generation
remains manual, requiring time-consuming analysis. Existing results in grammar learning
have not been explored to address the problem.

3) Collection coverage: Most of the encountered problems in detection are linked to the insu�-
cient coverage of the collection mechanism above which is deployed translation. For example,
the simple collect of system calls at the kernel level is often insu�cient to follow the data-�ow
in memory. It is also missing higher-level activity concerning above API calls. In fact, these
problems are related to the level at which the mechanism is running within the system.

4) Collection con�guration: The con�guration of the environment indirectly impacts the cov-
erage of the collection mechanism. This limitation is thus linked to the previous one. In
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particular, the experimentations show the importance and the di�culty to recreate a real
network topology. A complex infrastructure must be established where the analysts must
often know beforehand which servers are required and how they must be con�gured.

Within the grammatical formalization, some of the stated limitations can still be addressed in
future works, either by using other facilities o�ered by the theoretical foundations of grammars, or
by improving the implementation of the di�erent prototypes. However, others of these limitations
can not be addressed without moving to other theoretical foundations. The following key points
present perspectives of response to the corresponding limitations:

1) Theoretical reasoning: Since the behavioral model has reached its abstraction limit, a higher
level can only be reached by the use of an adapted computational foundation. In response to
the behavior requirements, this foundation should natively support interactive computations.

2) Signature generation: The behavioral model can be enriched by several means, either by
specifying new behavioral descriptions, or by integrating new programming languages. A
possible perspective is to continue the experimentations started with JavaScript. To increase
the test pool, interfacing with a crawler would be an interesting solution. An other perspective
is to explore the automatic generation of behavioral signatures in the behavioral language.
In [65], M. Christodorescu et al. automatically generate speci�cations of malicious behaviors
by di�erential analysis between call graphs of sane programs and their infected form. Taking
inspiration from their work, the method could be adapted to build a grammatical description
of the infected form and identify individual malicious behavior within.

3) Collection coverage: Problems of collection coverage are not inherent to the behavioral lan-
guage and thus requires technical solutions. For example, tainting has been proposed to cope
with data-�ow breaks. In fact, data �ows can only be monitored at the processor level. How-
ever, tainting and process-based techniques are hardly deployable at the end host because
of performance. In [154], C. Kolbitsch et al. get round the problem by capturing the data
processing made between system calls as �xed functions. Data �ow is followed at runtime
by checking that dependent arguments are function of previous arguments. The technique
is e�cient for malware variants who share common code and thus common data process-
ing. Although it is promising, it would require adaptation to be transposed to our behavioral
model. Since behavioral descriptions are not restricted to a given set of variants, the function
modeling the data �ow between two arguments can not be unique.

4) Collection con�guration: The con�guration of the collection environment is quite complex
and requires important infrastructure. The solution could lie in tools for automated learning
of protocols, in order to interface them with the collector and directly simulate network ex-
changes. For example, tools like SGNET increase the interaction capabilities of honeypots
to download malware samples [166]. In [177], P Milani Comparetti et al. introduce Prospex
to learn stateful protocols and present in their talk an interesting use case on learning the
command protocol for botnets. Additional experimentations could be conducted with this
type of tool in order to increase the coverage of data collection.

This intermediate conclusion ends the grammatical formalization. In response to the limitations
in terms of theoretical reasoning, a second part of this thesis now addresses the exploration of other
computational foundations for the modeling of malware. Next part starts from existing models
of viruses self-reproduction, all based on recursive functions, and studies their possible adaptation
to introduce interactions. It then explore more dedicated formalism with the possible modeling of
malware within process algebras.
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Les théories ont causé plus d'expériences
que les expériences n'ont causé de
théories.

Carnets

J. Joubert - 1754-1824

Contents
8.1 Models in abstract virology and their shortcomings . . . . . . . . . . . . . . . 121

8.1.1 Self-replication in functional formalisms . . . . . . . . . . . . . . . . . 122
8.1.2 Known limitations in Turing-equivalent formalisms . . . . . . . . . . . 123

8.2 Evolution towards interactive models . . . . . . . . . . . . . . . . . . . . . . . 124
8.2.1 Theory of Interactive Machines . . . . . . . . . . . . . . . . . . . . . . 124
8.2.2 Abstract models for new classes of viruses . . . . . . . . . . . . . . . . 126
8.2.3 Impact of interactions on the detection complexity . . . . . . . . . . . 129

8.3 Limits of the adaptation and formalization perspectives . . . . . . . . . . . . . 132

A
multitude of behavioral detectors have been built on practical experimentation. The
survey from Chapter 2 concludes that these detectors use, not only an inconsistent vocabu-

lary, but more importantly inconsistent technical solutions. A plausible root cause for this incon-
sistency is the fundamental lack of a uni�ed theory for behavioral approaches. The present chapter
draws in Section 8.1 a �rst state of the art of existing models in abstract virology and identi�es
the required adaptations to support behavioral approaches. Motivated by the importance of in-
teractions in behaviors, Section 8.2 then propose di�erent contributions to integrate interaction
support to these models models, giving us the opportunity to introduce interaction-based models
of viruses and their impact on the detection complexity as studied in [139].

8.1 Models in abstract virology and their shortcomings

Surprisingly, few formal models have actually been published in abstract virology. Most of the
research led on malware remains oriented towards operational issues. Since the release of the
original concepts in the eighties, only a dozen publications can be found. Yet, the fundamental
results on detection and prevention feasibility follow from these theoretical works. Since they have
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not been introduced in Chapter 2, this chapter begins with a condensed state of the art of existing
models in abstract virology. For the readers wanting to delve deeper into the subject, references
are given for each model and a detailed survey is given in [94]. This state of the art is also the
occasion to identify what shortcomings these models exhibit with respect to operational malware.

8.1.1 Self-replication in functional formalisms

All existing models in virology share a common foundation which is the notion of self-replication,
characteristic of viruses. Work on self-replication had begun long before the notion of computer
virus appeared. Already in [230], J. von Neumann had formalized the notion of machine self-
replication inspired from biological replication. He had established ways to build self-replicating
cellular automata where cellular con�gurations iteratively rebuild themselves at each transition.

The notion of computer virus really appeared in the eighties with the seminal work from F.
Cohen [68]. He actually provided the �rst formal de�nition of a computer virus based on the Turing
Machine formalism [224]. A Turing Machine consists of a head and a tape containing symbols from
a �nite alphabet. The machine progression is de�ned by a transition function which, taking as
input the machine state and the symbol read from the tape, computes a new tape symbol, a new
head position and a new machine state. Using this machine description, De�nition 10 recalls the
original virus model established by Cohen. thanks to his model, he proved, by reduction to the
halting problem, the most fundamental result in virology which is the undecidability of detection.

De�nition 10 According to Cohen [68], a symbol sequence is a virus wrt. a Turing Machine if,
as a consequence of its execution, a possibly evolved copy of itself is written further on the tape.

Two years later, Cohen's thesis supervisor, L. Adleman came up with a more abstract formal-
ization [35]. He transposed the virus model from a Turing Machine perspective, which is by nature
linked to physical computers, to the more abstract theory of recursive functions [203]. This trans-
position was an undeniable proof that the self-replication capacity is intrinsic to computability
formalisms. In this theory, recursive functions are denoted by integers using a Godël numbering.
The notation φp(x) then corresponds to the computation of the function p over the arguments x.
L. Adleman de�ned a virus as a particular function v associating to each program encoded by an
integer p, an infected form v(p) exhibiting one of the following capabilities:
(1) Injuring where a malicious task is run instead of the intended one,
(2) Infecting where a malicious task is run once the intended one has halted,
(3) Imitating where only the intended program is run for stealth reasons.
In Adleman's model, recalled in De�nition 11, the infection process is more precisely de�ned by
the explicit presence of the replication target. In addition, a program classi�cation is provided
with a distinction between benign, Epeian, disseminating and malicious programs, according to
the capabilities they exhibit. The undecidability of the detection is maintained within the model
as stated by Theorem 4. Curiously, after these important results, abstract virology did not bene�t
from any increase of interest. Years later only, Z. Zuo and M. Zhou extended this formalization to
introduce the mutation process and additional aspects such as residency or stealth [252, 253].

De�nition 11 According to Adleman [35], a total recursive function v is a virus wrt. a Gödel
numbering of the partial recursive functions {φi} if and only if for all possible input x either:

(1) (∀p, q ∈ N) φv(p)(x) = φv(q)(x),
(2) (∀p ∈ N) φv(p)(x) = v(φp(x)),
(3) (∀p ∈ N) φv(p)(x) = φp(x).

Theorem 4 For all Gödel numbering of the partial recursive functions {φi}:
V = {i |φi is a virus} is Π2-complete.
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Recently, G. Bonfante et al. have provided a virus model based on the existence of �xed points
which not only matches up with the previous models but also o�ers greater �exibility [50, 51, 145].
A virus is built as the solution of a �xed point equation. The existence of a solution is then a direct
consequence of Kleene's result on recursion, recalled by Theorem 5 [203, Chpt.11]. Contrary to L.
Adleman's model, the virus is no longer considered as a function but as a program, making the
notions of programming environment and program specialization available. Curiously, the link be-
tween self-replication and Kleene's recursion theorem had historically been discovered by J. Kraus,
even before the �rst results from F. Cohen. Unfortunately, these works have remained unknown
to the general public until their recent translation [156]. Through their works, G. Bonfante et al.
have updated this approach with a new model given in De�nition 12. The de�nition introduces
a speci�c propagation function β to model the infection vector. This propagation function can
be speci�ed to represent di�erent propagation techniques such as cloning and crushing viruses,
or concatenating ecto-symbiosis. The detection complexity provided by L. Adleman still holds in
their model, as illustrated in Theorem 6.

Theorem 5 - Recursion Theorem Let us consider a semi-computable function f , a program p
exists such that for all parameters x of the computation domain:

ϕp(x) = f(p, x), reformulated by H. Rogers as: ϕp(x) = ϕf(p)(x).

De�nition 12 According to Klaus [156] and Bonfante, Kaczmarek, Marion [50], a virus v is a
program which, for all values of p and x over the computation domain D, satis�es the equation
ϕv(p, x) = ϕβ(v,p)(x) where β denotes the propagation function.

Theorem 6 Given a recursive propagation function β, the viral set Vβ is Π2. Some functions β
exist for which Vβ becomes Π2-complete.

Even if their potential modeling capabilities di�er, the three previous models eventually rely
on common foundations: functional computability, the recursion theorem of Kleene and self-
reproduction theory. But according to the Church-Turing thesis [203, Chpt.1.6], the formalisms
on which they rely share the same expressive power.

Thesis 1 - Church-Turing Thesis Every algorithm (terminating procedure) can be computed by
an equivalent Turing machine, recursive function, or function de�ned in the λ-calculus.

8.1.2 Known limitations in Turing-equivalent formalisms

Current virus models provide several fundamental results. They e�ectively capture self-replication
and its underlying concepts such as the propagation method or the mutation process. More im-
portantly, they all agree on the detection undecidability. But, as stated in the previous section,
all these models eventually rely on Turing-equivalent formalisms. P. Wegner rightly underlines the
fact that, if Turing Machines are su�cient to model closed systems wholly determined by their
input, they fail to model open systems [243]. The function inputs are frozen and computation
becomes impossible to dynamically in�uence from outside. These missing dynamic capabilities
naturally limit the possible model extensions to cover interaction-sensitive malware:

Interactions: Interactions may be seen as means to dynamically import and export data with the
external world during computation. These means are missing in original Turing Machines.
In [97, 99], E. Filiol states that even k-Turing Machines using multiple tapes can not fully
apprehend dynamic interactions since these machines are limited by a quadratic enhancement
in the complexity of the computed algorithms. The set of possible interaction histories exceeds
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this limit; in fact, this set can not be diagonalized and thus remains undecidable (see proof
for Proposition 2 on page 41).
Unfortunately, interactions are critical with respect to malware. In reality, the behavior
of malware is not always deterministic. The performed malicious tasks may be entirely
determined by dynamic stimuli or observations of their environment. Emulation detection,
triggering through user actions, random execution are typical examples.

Concurrency: The limitations appearing for interactions obviously impact concurrency likewise.
In [178], R. Milner explains why Turing Machines, and more generally sequential formalisms,
are no longer su�cient to model concurrent processes. This conclusion is con�rmed by re-
lated results from Z. Manna and A. Pnueli showing that non-terminating reactive processes,
such as operating systems, cannot be captured either [173]. In fact, non-termination is often
used by concurrent processes in order to maintain their collaboration. In functional virus
models, self-replication is the outcome of the computation. Consequently, non-termination
is not supported just like interactions and concurrency.
Malware, being highly adaptable by nature, often use the system in a complex way in order
to misappropriate its facilities to their own bene�t. These misappropriations require concur-
rency, for example with the �le system for replication or with mail/peer-to-peer clients for
propagation. Concurrency can also be seen within the scope of malware themselves: k-ary
malware introduced by E. Filiol distribute their code over several concurrent components
[97, 99]. In addition to being adaptable, malware are also resilient and often rely on non-
termination. They may stay active in memory either to multiply replications or to react to
any attempt of detection or deletion.

8.2 Evolution towards interactive models

The previous section has shown that the notions of interaction and concurrency are missing from
functional virus models, while they are commonly employed by malware. Besides, the thesis
hypotheses consider interactions with the environment as the core of the behavior concept. A
satisfying theoretical behavioral model thus requires the introduction of interactions.

As a matter of fact, functional models consider one program at a time. However, the architecture
of existing systems is often based on a main Operating System in which several programs are run.
In [168, 169], F. Leitold de�nes a virus model based on a di�erent formalism called Random
Access Stored Program Machine with Attached Background Storage (RASPM with ABS). Even
if the expressiveness of this formalism remains equivalent to Turing Machines, it o�ers a clear
distinction between the OS and the programs stored on di�erent tapes. A �rst level of interaction
is reached with the possible observation of how programs a�ect each others. However, RASPMs
fundamentally remain sequential machines. The dynamic features used in parallelism, such as
synchronization or inter-program communication, are lacking and are only introduced with Parallel
Random Access Machines (PRAM).

The remainder of this chapter constitutes a di�erent attempt we made to characterize inter-
action. Interactive Machines are constructed by introducing oracles inside functional models of
viruses [139]. These oracles characterizes the properties of the dynamic interactions: involved
adversaries, transmitted data, transmission directions, synchronization.

8.2.1 Theory of Interactive Machines

The shortcomings of the Turing Machines with respect to interactive computations are not really
new; even A. Turing himself was aware of certain gaps in his theory [225]. Several alternative ex-
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tensions of Turing Machines have been put forward since to cover these gaps. Interaction Machines
are one of them. In [244], P. Wegner de�nes an interaction machine as a Turing Machine with
dynamic input and output facilities. This statement is recalled by De�nition 13.

De�nition 13 According to Wegner [244], Interaction Machines (IMs) extend Turing Machine
(TMs) by adding dynamic input/output (read/write) actions. Interaction Machines may have
single or multiple input streams, synchronous or asynchronous communications, and di�erences
along many other dimensions, but all Interaction Machines are open systems that express dynamic
external behaviors beyond that computable by algorithms.

Proposition 7 An Interaction Machine has the same expressive power as a Turing Machine with
oracles and/or in�nite input [242].

According to the Proposition 7 from [242], Interaction Machines have an expressive power
comparable to Turing Machines with oracles. Leaving aside the in�nite input, an Oracle Machine
also denoted O-Machine possesses one or several oracles represented as immediate responses stored
on additional bands without size constraints [40, Chpt.24]. A description of an Oracle Machine
is given below in De�nition 14. The main interest is that an oracle can hypothetically solve
problems of any complexity class, even undecidable ones such as computing interaction history sets.
With respect to non-termination, unbounded input tapes would have been required to model the
in�nite computations of reactive processes [223]. However, the possibility to use the computability
foundations on which the coming results are based would have been lost. As a consequence,
concurrent programs and the functioning of the operating system are hidden behind oracles whereas
non-terminating reactive viruses can still not be modeled.

De�nition 14 An Oracle Machine is a Turing Machine connected to an oracle Θ through an
additional tape. The Turing machine writes on this tape its inputs for the oracle and signals its
request thanks to a particular state q?. In a single step, the oracle computes its function as a black
box, writes its output to the tape and signals the result is ready by a second state qr [40].

Inside Interaction Machines, the executed program is placed into an open environment with
possible adversaries. An adversary is basically any object able to interact with the given program:
concurrent programs, the operating system, network connections, hardware devices with comput-
ing facilities and so on. The behavior of any concurrent adversary can then be modeled using the
following reduction. According to the adversary's internal mechanism, the result of the interaction
between an object O and an adversary A, denoted IAO , is function of three main factors: (1) the
transmitted data, (2) the interaction history built as a string by concatenation of the data previ-
ously sent and received, and (3) time.

IAO (transmitted data, time, interaction history) = data received

No assumption is made about the nature of the exchanged data. This data can be simple values,
implying that IAO will be a �rst-order function. But this data can also be functions, considering
transmission of executable code for example, and IAO will consequently have a higher order.

The oracle acts as a black box to simplify the computation. Time and dynamic aspects, hard
to capture in Turing Machines, are hidden behind the oracle. Basically, the arguments taken in
input by the oracle are reduced to the data sent by an object O to trigger the interaction with an
adversary A. The output of the oracle still represents the returned data.

ΘA
O(data transmitted) = data received

In unilateral interactions, either the input or the output can be null. To simplify the notations in
the coming de�nitions, the string describing the whole interaction history between the object O
and an adversary A will be denoted: ΘA

O(.).
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8.2.2 Abstract models for new classes of viruses

To maintain compatibility, new classes of viruses are de�ned starting from existing models. They
are expanded using oracles to introduce the interactions intervening during the computation. By
this method, two new classes of viruses are provided: interactive viruses and distributed viruses.

8.2.2.1 Interactive viruses

In [252, 253], Z. Zuo et al. introduce a class of implicit viruses whose execution result depends on
di�erent conditions. This class has been generalized later on by G. Bonfante et al. in [50]. In-
teractive viruses introduced in De�nition 15 are built by re�nement. Basically, interactive viruses
perform several actions depending on conditions, not only on their arguments but also on their
interactions with adversaries. In fact, these interactions are not bound to conditions. They may
appear as parameters in the computed actions but more importantly, they may also appear as
parameters of the propagation function β. This last statement is not without consequence for
detection because it means that viruses can be built whose propagation depends on inter-
actions. This is validated by virus construction in the proof of Propositions 8 and 9.

De�nition 15 Let C1, ..., Ck be k semi-computable disjoint subsets of a computation domain D,
let Θ1

v, ...,Θ
n
v be the n oracles associated to n adversaries and let V1,1, ..., Vn,k be a set of semi-

computable functions. An interactive virus v is de�ned such that, for all p and x:

ϕv(p, x) =

 V1,1(v, p, x,Θ1
v(.)) if (p, x,Θ1

v(.)) ∈ C1

...
Vn,k(v, p, x,Θn

v (.)) if (p, x,Θn
v (.)) ∈ Ck.

Proposition 8 An interactive virus v satisfying De�nition 15 exists.

Proposition 9 A propagation function β depending on interactions may be built.

Proof.
The proof is similar to the one developed for the implicit virus by G. Bonfante et al. [50],

except that it relies on relativized computability [203]. Let us consider a set V containing the
programs satisfying De�nition 15 and a set A containing possible adversaries. We can de�ne on
V ×A a function f as follows: f(v, a) = Θa

v(.) if the oracle Θa
v(.) is de�ned and f(v, a) ↑ otherwise1.

The set I of known interaction schemes is built as: I = {Θa
v(.) | v ∈ V, a ∈ A,Θa

v(.) ↓}. f is said
I-semi-computable because f becomes semi-computable as soon as we can compute elements of I.
Let us consider now the case of an interactive virus with a single adversary a (the result can be
extended easily to n adversaries). Two functions F ′ and F can be de�ned such as:

F ′(y, p, i, x) =

 V1(y, p, x, i)) if (p, x, i) ∈ C1

...
Vk(y, p, x, i) if (p, x, i) ∈ Ck.

F (y, p, x) = F ′(y, p, f(y, a), x) if f(y, a) ↓, otherwise F (y, p, x) ↑.

F being I-semi-computable, by application of the relativized recursion theorem, we obtain a
program v satisfying ϕIv(p, x) = F (v, p, x). Let e be a program computing F and e′ a program com-
puting F ′. Two propagation functions β1(v, p) = S(e, v, p) and β2(v, p, f(v)) = S(e′, v, p, f(v, a))
can then be considered, where S is the specialization function.

1According to the standard notation: f is de�ned at x will be denoted f(x) ↓ whereas f is unde�ned (divergent)
at x will be denoted f(x) ↑.
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ϕIβ1(v,p)(x) = ϕIS(e,v,p)(x)
= ϕIe(v, p, x) by the relativized s-m-n theorem
= F (v, p, x)
= ϕIv(p, x).

Similarly:

ϕIβ2(v,p,f(v,a))(x) = ϕIS(e′,v,p,f(v))(x)
= ϕIe′(v, p, f(v), x) by the relativized s-m-n theorem
= F ′(v, p, f(v), x)
= F (v, p, x)
= ϕIv(p, x).

The second construction is a proof that the result of interactions can also be parameters of the
propagation function. �

Example 1 The contradictory virus was introduced by Cohen to illustrate the detection unde-
cidability [69]. Let us assume that the procedure D determining if a program is a virus is an
interaction. We thus can describe the contradictory virus as follows:

ϕv(p, x) =
{
ϕp(x) if ΘD

v (.) ∈ true
ϕβ(v,p)(x) if ΘD

v (.) ∈ false

Example 2 Botnets can be built as interactive viruses where the conditions Ck symbolize the
di�erent types of supported requests (DDos, Spam relay, Remote execution). Let us consider a
remote command channel r represented by the oracle Θr. The oracle result is a couple of the form
(c, p) where c is the request type and p the additional parameters (each component can be accessed
separately using the projections π1 and π2). A de�nition for a botnet could be:

ϕv(p, x) =


ϕβ(v,p)(x) if π1(Θr

v(.)) ∈ install
ϕq(p, x) if π1(Θr

v(.)) ∈ exec with q = π2(Θr
v(.))

ϕmailer(m) if π1(Θr
v(.)) ∈ relay with m = π2(Θr

v(.))
<ϕconnect(t), ..., ϕconnect(t)> if π1(Θr

v(.)) ∈ denial with t = π2(Θr
v(.))

8.2.2.2 Distributed viruses

We follow the same method to de�ne distributed viruses. Distributed viruses are made up of two or
more programs executing in parallel while interacting dynamically. In fact, P. Wegner suggests in
[244] that distributivity can be seen as the interactive composition of several concurrent processes.
In other words, distributivity over two processes can be reduced to the following decomposition:

Behavior(P |Q) = Behavior(P ) +Behavior(Q) + Interaction(P,Q).

For the purpose of this de�nition, a new notation ϕp|q is introduced to refer to the parallel compu-
tation of two programs p and q. According to the decomposition above, a �rst model for distributed
virus over two components is given in De�nition 16.

De�nition 16 Let Θw
v and Θv

w be the oracles re�ecting the interactions of two programs v and w.
Programs v and w are components of a distributed virus v|w if there is a combination function f ,
semi computable, such as:

ϕv|w(p, x, y) = f(ϕv(p, x,Θw
v (.)), ϕw(p, y,Θv

w(.))).

Proposition 10 Components v and w of a distributed virus satisfying De�nition 16 exist.

127



CHAPT 8. ADAPTATION OF EXISTING MODELS IN ABSTRACT VIROLOGY

Proof.
Just as in the previous proof, let us consider a program set V . A function h is de�ned on

V × V as follows: h(p, a) = Θa
p(.) if the oracle Θa

p(.) is de�ned and h(p, a) ↑ otherwise. The set I
of known interaction schemes is then built as: I = {Θa

p(.) | p ∈ V, a ∈ V \ {p},Θa
p(.) ↓}. h is said

I-semi-computable because h becomes semi-computable as soon as we can compute elements of I.
Let us now consider a semi-computable function f and let us de�ne three functions F1, F2, and F0

such as:

F1 and F2 are semi-computable functions of the form N4 → N,

F0(y, z, p, x) =
{
f(F1(y, p, x, h(y, z)), F2(z, p, x, h(z, y)) if h(z, y) ↓ ∧ h(z, y) ↓
F0(y, z, p, x) ↑ otherwise.

F being the composition of I-semi-computable functions is I-semi-computable. Let us now in-
troduce the encoding of tuples of integers into integers, denoted by <...>. The encoding is reversed
by the projection functions πn to recover the nth element. A new function F is built as follows:

F (y, p, x) = F0(π1(y), π2(y), p, x) if F0(π1(y), π2(y), p, x) ↓, otherwise F (y, p, x) ↑.

By application of the relativized recursion theorem, we obtain a program denoted v|w satis-
fying ϕIv|w(p, x) = F (v|w, p, x). The program v|w is decomposed by projection into two integers

representing programs denoted v and w such as v|w =<v,w>. Let e be a program computing
F . A �rst propagation function β0 is de�ned as β0(v, p) = S(e, v, p) where S is the specialization
function. This function is re�ned in a second propagation function β(v, w, p) = β0(<v,w>, p).

ϕIβ(v,w,p)(x) = ϕIβ0(<v,w>,p)(x)
= ϕIβ0(v|w,p)(x)
= ϕIS(e,v|w,p)(x)
= ϕIe(v|w, p, x) by the relativized s-m-n theorem
= F (v|w, p, x)
= ϕIv|w(p, x).

A program v|w may thus be constructed as a virus, but the link with the behaviors of v and w
must still be explicited:

ϕIv|w(p, x) = F (v|w, p, x)
= F0(π1(v|w), π2(v|w), p, x)
= F0(v, w, p, x)
= f(F1(v, p, x, h(v, w)), F2(w, p, x, h(w, v))

By application of the relativized recursion theorem:
v can be built satisfying ϕIv(p, x,Θ

w
v (.)) = F1(v, p, x, h(v, w)),

w can be built satisfying ϕIw(p, x,Θv
w(.)) = F1(w, p, x, h(w, v)). �

A de�nition of distributed viruses has been given over two components. Let us now extend
the model to distributed viruses over n components. Before going any further, it will prove useful
to make a parallel with E. Filiol's work on k-ary malware [97, 99]. According to his de�nition,
k-ary codes are made up of several �les which can be either active (executables) or inert (data
repositories). By convention, active components are denoted vi and inert ones dj . As stated by E.
Filiol, component interactions can be seen as graphs where the vertices symbolize the components
and the edges symbolize interactions between the connected extremities. In other words, if two
components vi and vj interact, the edge (vi, vj) is included in the edge set of the interaction graph.
Figure 8.1 contains a graph example connecting the di�erent components of a distributed code.
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Figure 8.1 - Distributed Virus over Nine Components. This graph of
interaction is given as an example of complex distribution. By searching for biconnected
subgraphs, the scope of interactions can be reduced to condensed graphs.

Still in [97, 99], a clear distinction is made between two classes of k-ary codes. The �rst class I
gathers the sequential k-ary codes whose components are executed consecutively, fed by the results
of the previous executions. By choice, sequential codes were not considered as really concurrent, but
rather as composed codes. Referring to function composition, composed codes denoted v ·w satisfy
the following equation: ϕv·w(p, x) = ϕv(ϕw(p, x)). On the opposite, the second class II gathers the
parallel k-ary codes whose components dynamically interact, introducing real concurrency. This
class of codes is typically the notion of distributed virus, De�nition 17 tries to cover.

De�nition 17 Let G be an interaction graph whose edge set EG contains n active components vi
and m inert components dj. ΘV

vi(.) corresponds to the concatenation of all the interaction histories
between vi and its connected active components: Θvj

vi (.) where {vj |(vi, vj) ∈ EG}. ΘV
vi(.) is de�ned

respectively for connected inert components. The components of the graph G constitute a distributed
virus if a semi-computable functions g exists, satisfying the system:

ϕG(p, x) = g(ϕv1(p, x,ΘV
v1

(.),ΘD
v1

(.)), ..., ϕvn(p, x,ΘV
vn(.),ΘD

vn(.)))

The de�nition implies that the complexity of the combination dramatically increases with the
number of components. A potential solution to simplify the approach would be to partitioning.
The original graph can be partitioned into biconnected subgraphs in order to pinpoint the articu-
lation vertices. The complexity of the interaction graph could be split between the subgraphs as
shown in Figure 8.1. Therefore, instead of a massive combination function, a system of n+ 1 more
simple equations is obtained, where n is the number of biconnected subgraphs. The additional
equation is responsible for the combination of the di�erent subgraphs. In other words, the idea is
to study interactions locally before the scope is enlarged.

8.2.3 Impact of interactions on the detection complexity

The previous section illustrates classes of viruses where interactions greatly impact computations.
This is particularly true for cases where these interactions intervene in the propagation function.
The distinction between a virus and a healthy program depends whether the right interactions occur
or not. Consequently, the introduction of interactions is not without consequence on detection.
Beforehand, the study of the intrinsic complexity of interaction resolution is necessary to measure
their impact on detection.
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8.2.3.1 Classes of interaction and their time complexity

The resolution of interactions heavily depends on the involved entities. By identifying di�erent
classes of interactions, a time complexity can be associated to the oracles modeling them. Three
main classes of interaction have been identi�ed by increasing complexity:

(Class I1) Interactions with inert objects: This class covers the interactions with inert ob-
jects, having no internal mechanisms. Data �les, registry entries, storage memories, in other
words, accesses to any data repositories are members of this class. Because of the absence
of internal mechanisms, these interactions are always initiated by the observed program. In
this case, the complexity is proportional to the size of the requested data and is thus linear.

Proposition 11 The complexity of interactions with inert objects is in P.

(Class I2) Interactions with active objects through interfaces: This class covers the inter-
actions with active objects whose access to their internal mechanisms is constrained by well-
de�ned interaction interfaces. Accesses to kernel objects inside an operating system, typically
synchronization objects, are members of this class. These interactions remain initiated by the
observed program. Even synchronisation with a remote signal can not be achieved without
an explicit request from the program.

Proposition 12 The complexity of interactions with active objects through de�ned interfaces
is NP-Complete.

Proof.
Active objects with interfaces have limited internal mechanisms. They are able to process a
given input only if it complies with their interface de�nition. The interface de�nition is a set
of constraints applied to interface inputs, which may be described by Context-Free Grammar
(CFG). The objects thus become pushdown automata recognizing the language described by
the CFG. Let us de�ne these automata as 7-tuples <Q,Σ, Γ ,δ,q0,Z0,F>:

• Q is the �nite set of states corresponding to the values combinations taken by the
internal attributes of the object,

• Σ is the alphabet of input symbols corresponding to the range of values authorized by
the interface. Likewise, Γ is the stack alphabet which can overlap with Σ,

• δ is the transition function modeling the internal mechanism of the object,

• q0 ∈ Q is the initial state taken and Z0 ∈ Γ the stack initialization,

• F ⊂ Q is the set of accepting states corresponding to the di�erent returned values,
including errors, resulting from the interaction.

Resolving the interactions is achieved by determining which accepting state is reached by
the automaton. The interaction complexity is thus equivalent to the accepting problem of a
word over a language described by a CFG. This problem is known to be NP-Complete [131].
Nevertheless, in some particular cases the grammar can be proven regular. The problem
becomes P-hard since it can be solved by a deterministic �nite automaton. �

Example 3 Let us consider network communications as a practical example from I2. Even
if the resulting value of the interaction seems unpredictable, partly because the remote system
is out of our control, the interaction remain constrained by a protocol de�ning the structure
of the exchanged data packets. IP packets, for example, can be described by means of context-
free grammars [6]. On reception, these packets are interpreted by a dedicated parser using its
own internal stack.
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(Class I3) Unconstrained interactions with adversaries: This last class covers the uncon-
strained interactions with any active objects, including human interventions. Contrary to
the interactions from the previous classes, these interactions are not necessarily requested
by the observed program. In fact, unconstrained interactions are an important source of
non-determinism during the computation.

Proposition 13 The complexity of unconstrained interactions is Undecidable.

Proof.
Let P be the observed program, and Q a concurrent program. P uses a value (data or
instruction indi�erently) stored in a memory space M, without being aware that Q can
modify it. M is left unmodi�ed by Q during its execution. At termination, Q writes a di�erent
value in M. Guessing which value will be used by P can only be achieved by determining
the termination of Q. The complexity of such interactions is thus equivalent to the halting
problem which is by nature undecidable. Going back to the parallel with formal grammars,
unconstrained interactions can reliably be described by Turing-complete languages. �

Example 4 Let us consider a practical example of unconstrained interactions with concur-
rent processes rewriting shared memory locations: Rootkits. In e�ect, Rootkits dynamically
modify the global table storing the system API addresses. Once loaded, they have repercus-
sions on the behavior of any program using system services.

The complexity of interactions is not only determined by their nature but also by their combi-
nation. Their complexity is multiplied by a factor depending on the structure and the perimeter
of the observed system. The case of interactive viruses considers only one to one interactions with
the target of the observation. The factor is then directly proportional to the number of adversaries.
The complexity of the oracle with respect to the interaction class is thus multiplied by a linear
factor n. The case of distributed viruses considers multiple interactions between the adversaries.
The complexity increases polynomially with the complexity of the interaction graph. The worst
case is reached whenever the distributed virus is built on a complete graph which can not be di-
vided into biconnected subgraphs. The complexity is then multiplied by a factor (n × (n − 1))/2
corresponding to the maximum possible connexions. In both cases the increase induced by the
combining factor is polynomial.

8.2.3.2 Impact of the interactions on detection

The extension of existing models by the introduction of interactions increases the detection com-
plexity, which was previously bound by Turing Machine expressiveness. Indeed, a perfect detector
should resolve all possible interactions to guarantee that a program may not become a virus ac-
cording to the adversaries in presence. For comparison, it must be recalled that, according to the
original model from G. Bonfante et al. [50], the set of viruses for a given propagation function is
Π2. With the support of the interactions, two new viruses set are built:

• Vβ,i = {v | v is an interactive virus propagating through β},

• Vβ,d = {(v, w) | v|w is a distributed virus propagating through β}.

Proposition 14 The set of interactive viruses Vβ,i (resp. distributed viruses Vβ,d) for a given
propagation function β is at least Σ3.
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Proof.
Proof is given for distribution over two components but can be generalized to any arbitrary

n. The proof for the set of interactive viruses is almost identical and is not detailed. Focusing
on distributed viruses, let us consider the globally possible interaction schemes as a set I. From
the detector perspective, detection is only possible if the set of possible interaction schemes can
be explored. Let us consider the reductive hypothesis that I is computably enumerable in order to
express a lower bound for the detection complexity.

Let q be a program computing the distributed propagation function f from the de�nition. The
set of distributed viruses over two components is then given by:

∃Θw
v (.),Θv

w(.)∀x, y, p ∃y1, ..., y8



[I is a computably enumerable set] ∧
[Θw
v (.) ∈ I ∧Θv

w(.) ∈ I] ∧
(p, x,Θw

v (.)) = y1 ∧ (p, y,Θv
w(.)) = y2 ∧

(p, x, y) = y3 ∧ ϕv(y1) = y4 ∧
ϕw(y2) = y5 ∧ (y4, y5) = y6 ∧
ϕq(y6) = y7 ∧ ϕv,w(y3) = y7

We know that Θw
v (.) ∈ I and Θv

w(.) ∈ I are Σ1 predicates whose complexity is added to the set
complexity which was originally Π2, thus Vd is Σ3. �

8.3 Limits of the adaptation and formalization perspectives

This chapter has addressed the support of interactions inside virus models, always with the be-
havioral perspective in mind. By looking at current information systems, interactions have clearly
become predominant; and malware have evolved accordingly. Without denying the important ben-
e�ts and results brought by functional virus models [35, 50, 68], the point has been made that
interactive computations are hardly supported. A solution based on oracles to model interactions
is a �rst step to expend this support and o�ers additional results in terms of model and complexity.
Nevertheless, the interaction mechanisms remain hidden behind black-boxes. These oracles must
undoubtedly be re�ned for a better understanding. In [45] for example, P. Beaucamps partially
explicit the notion of k-ary or distributed viruses by considering execution time slots. Oracles are
replaced by shared variables between the di�erent programs. These variables may be seen as a
form of interaction history storing the state of the shared environment as well as the instruction
indexes and program states for the next execution slots.

However, even by re�nement of the oracles, extensions of these models are bound by the expres-
siveness of the functional formalisms. Another perspective is thus necessary to provide a satisfying
foundation for behavioral models. The alternative we have chosen is to move towards dedicated
formalisms supporting interactive computations natively. Starting from the experience of previous
models, either existing or provided by the oracle extension, the next chapters address a new virus
model based on process algebras.
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Chapter 9
Viral models based on

process algebras
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P
rocess calculi are widespread in the modeling of biological systems, either cellular-based
or molecular-based [57, 160]. Computer virology is a domain where numerous parallels are

drawn between infectious diseases and malware [238]. A question can be naturally raised: are
process calculi also adapted to computer virology?

As shown in the previous chapter, interactions with the execution environment, concurrency
and non-termination are important computation functionalities for malware. In e�ect, malware,
being resilient and adaptive by nature, intensively use these functionalities to survive and infect new
systems. The theoretical models previously presented focus all on the self-replication notion, which
is de�ned in functional terms [35, 50, 68]. Unfortunately, these models rely on Turing-equivalent
formalisms, hardly supporting interactive computations. With the apparition of interaction-based
viral techniques, new models have thus been introduced to cope with this limitation, but loosing
any uni�ed approach in the way. K-ary malware introduce concurrency with a distribution of the
malicious code over several executing parts. In [97], a model based on Boolean functions is provided
to capture their evolving interdependency over time. Stealthy malware such as Rootkits introduce
reactive non-terminating techniques. Di�erent models have been provided to cover stealth based
either on graph theory [82] or steganography [96].

The introduction of oracles to model interactions inside functional models does not fully solve
the problem. Process algebras model the computer notion of process, that is to say an executing
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entity, mobile and communicating inside a context [179]. By evolving towards these algebras,
which are dedicated to interactions, a uni�ed model for malware could be de�ned to support
these innovative techniques. In response, Section 9.1 �rst presents the requirements weighting
on the choice of the algebra whereas Section 9.2 presents the chosen algebra: the Join-Calculus.
Section 9.3 introduces the malware model we have built in [141]. The model still provides reasoning
and proof facilities because it relies on an established theoretical formalism. It also o�ers a greater
expressiveness in terms of interactions while being closer to the current vision of computer systems.
Section 9.4 proves the previous statement by modeling interactive-based behaviors, hardly covered
by functional models [35, 50, 68]. But this is not the only bene�t. Process algebras increase the
visibility over computations and information �ows. As a consequence, the identi�cation of potential
detection methods and control points become easier as it will be seen in the next chapter.

9.1 Requirements for an adapted process algebra

Self-replication is at the heart of computer virology; it is the common denominator between all
viruses and worms variants. As underlined by M. Kaczmarek in his thesis [145], self-replication
is strongly linked to the concept of recursion which can be found in the di�erent computation
models. By referring to the λ-calculus introduced by Church [66], the notion of self-replication is
also included inside the formalism. The idea was then to use an existing encoding to translate the
model from the λ-calculus towards process algebras, and in particular the π-calculus [179, Chpt.8].
Unfortunately, even if the λ-calculus admits some �xed points, very few articles are available on
its self-replicating expressions. According to De�nition 18, self-replicating expressions bring into
light the two components, identi�ed by J. von Neuman to be necessary for self-replication: a self-
reference and a replication mechanism [230]. To our knowledge, one of the only articles addressing
self-replication is [163] from J. Larkin et al. Inside, they de�ne particular λ-expressions which
self-replicate while executing an additional function after replication. This work is particularly
interesting in the context of a virus where the control �ow is transfered towards the �nal payload
after infection.

De�nition 18 A self-replicating expression in the λ-calculus is an expression which β-reduces to
itself. Such an expression is often constituted of two lambda terms: a term of the application type,
denoted r and corresponding to the reproduction mechanism, and a second term, denoted s and

corresponding to the self-reference. These two terms satisfy the following reduction: r · s β−→∗ r · s.

Example 5 A typical self-replicating expression is (λx.xx)(λx.xx) where r = s
def= λx.xx.

Unfortunately, encoding a self-replicating expression inside the π-calculus is not as obvious as
expected. As a consequence, we have decided to explore the other available process calculi. To
maintain a coherence with functional models, the main requirement was for the calculus to provide
functional and interactive aspects. After study, the Join-Calculus was found adequate for building
the malware model [107, 109]. The calculus de�nes a functional core which is speci�ed starting
from the ML language. In addition, it provides a way to abstract processes through de�nitions.
This abstraction will be convenient in coming sections to de�ne the notion of self-reference.

9.2 Introduction to the Join-Calculus

This introduction guarantees self-containment but the reader is invited to refer to the relative
literature for additional information [107, 109]. At the basis of the join-calculus, an in�nite set N
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of names x, y, z... is de�ned. Names are combined into vectors using the notation −→x equivalent to
x0, ..., xn. Names constitute the basic blocks for message emissions of the form x<v> where x is
called the channel and v the transmitted message. Given in Figure 9.1, the syntax of the join-
calculus de�nes three elements to handle message passing: processes (P ) being the communicating
entities, de�nitions (D) describing the system evolution resulting of the interprocess communica-
tions, and the join-patterns (J) de�ning the channels and messages involved in communication
[107, pp.57-60]. For ease of modeling, syntactic facilities have been introduced through the sup-
port of expressions (E) [107, pp.91-92]. The core of the join-calculus is asynchronous but these
additional facilities provide synchronous channels necessary to concurrent functional languages,
in particular for function calls which are by nature synchronous. These facilities can eventually
be encoded into the minimal core of the join-calculus, the function calls being encoded using the
Continuation-Passing Style (CPS). For synchronization, the encoding speci�es a message protocol
whose equations are given in Figure 9.2.

P ::= v<E1; ...;En> asynchronous message
| def D in P local de�nition
| P | P parallel composition
| 0 null process
| E;P sequence
| let x1, ..., xm = E in P expression computation
| return E1, ..., En to x synchronous return

E ::= v(E1; ...;En) synchronous call
| def D in E local de�nition
| E;E sequence
| let x1, ..., xm = E in E synchronous call

D ::= J . P reaction rule
| D ∧D conjunction
| > null de�nition

J ::= x<y1, ..., yn> message pattern
| x(y1, ..., yn) call pattern
| J | J join of patterns

Figure 9.1 - Enriched syntax for the Join-Calculus. The syntax speci�es
the asynchronous core of the calculus, enriched with additional expressions to support
synchronous calls. When a join is de�ned it may be either asynchronous or synchronous.

f(−→x ) = f <−→x , κf > where κf is a fresh channel
return E1, ..., En to f = κf <E1, ..., En>

p<E1, ..., En> = let v1 = E1 in ... let vn = En in p<v1, ..., vn>
when at least one Ei is not a variable

let v = u in P = P{u/v}
let −→x = f(

−→
E ) in P = def κf <

−→x > . P in f <
−→
E , κf >

let −→x = def D in E in P = def D in let −→x = E in P
let −→x = let −→y = F in E in P = let −→y = F in let −→x = E in P

let = run P in Q = P | Q

Figure 9.2 - Continuation-Passing Style encoding (CPS). The encoding
translates synchronous expressions into asynchronous communications from the core,
by dynamically generating a fresh channel for the values returned by the call.

Based on the syntax, names are divided between di�erent sets: 1) the channels de�ned through
a join de�nition (dv), 2) the names received by a join-pattern (rv), 3) the free names (fv) and
conversely bound names (bv) of a process. Their inductive construction can be found in [107, p.47].

In addition to the syntax, operational semantics are required to complete the computational
model. These semantics are de�ned by Re�exive Chemical Abstract Machines (RCHAM), speci�ed
by the rules of Figure 9.3 [107, pp.56-62]. In particular, the reduction rule makes the system evolve
after resolution of message emissions. A reduction only occurs if emitted messages satisfy the join-
pattern of an existing de�nition:

def x<−→z > . P in x<−→y >−→ P{−→y /−→z } where {−→y /−→z } is the name substitution.
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STR-JOIN ` P1 | P2 
 ` P1;P2

STR-NULL ` 0 
 `
STR-AND D1 ∧D2 ` 
 D1, D2 `
STR-NODEF T ` 
 `
STR-DEF ` def D in P 
 Dσdv ` Pσdv
RED J . P ` Jσrv −→ J . P ` Pσrv

Substitution conditions:

-STR-DEF: σdv substitutes de�ned channels
from dv[D] using freshly generated, distinct
names.
-RED: σrv substitutes transmitted messages
to parameters from rv[J ].

Figure 9.3 - Join-Calculus operational semantics. The following rules
describe the progression of the chemical machine associated to the process. Rules
are functioning in both directions as suggested by the double arrow; only reduction,
corresponding to the consumption of a message, may not be reversed.

C[ . ]S ::= [ . ]S evaluation contexts
| P | C[ . ]S
| C[ . ]S | P
| def D in C[ . ]S

Figure 9.4 - Syntax rules for the building of evaluation contexts.
Evaluation contexts are processes with a reserved 'hole', located outside of any de�ni-
tion, in order to receive an other process. Holes are sorted with a set S of captured
names which are not alpha converted when a process is placed inside the context.

For observation, the processes of the join-calculus may be imbricated inside evaluation contexts
which are basically processes de�ned with holes. These contexts, whose syntax is given in Fig-
ure 9.4, de�ne a set of captured names S. When a process is placed inside this context, its bound
names are preserved if captured; otherwise, they are alpha-converted.

9.3 Modeling distributed self-replication

Considering autonomous self-replication, the concepts necessary to self-replication are explicitly
de�ned in the di�erent models. In De�nition 12, the replication mechanism is de�ned through the
propagation function β such as, for a virus v and any replication target p, ϕv(p, x) = ϕβ(v,p)(x).
The self-reference is denoted by the variable v which is both considered, repsectively on the left
and the right side of the equation, as an executed program and a parameter for the propagation
function. As stated by M. Webster's classi�cation [238, 240], self-replicating systems (e.g. viruses)
do not necessarily contain their own self-reference access or their own replication mechanism. They
may rely on external services for these fundamental elements. Let us consider a bash virus [94,
Chpt.7]; replication is achieved using the self-reference $0 and commands provided by the language
such as cp. Therefore, the advantages o�ered by process algebras become undeniable: exchanges
between the process and their environment, possible distribution of the computations.

Starting from the self-reference notion, the functional expression of self-replication is required;
so it is for process modeling. To reference themselves, programs are built in the model as process
abstractions i.e. de�nitions with a single pattern as entry point: Dp = def p(−→arg) . P where
P is de�ned in function of the arguments −→arg. The program execution is therefore a process

instantiating the abstraction: Ep = def Dp in p(
−→
val). This hypothesis will be kept for

all the chapter as well as coming ones even if it is not explicitly recalled. Based on
this hypothesis, De�nition 19 describes self-replication as the emission of this de�nition, or an
equivalent, on an external channel, this channel being the target of the replication. Notice that all
replicating programs do not achieve iteratively reproducible replications and thus do not necessarily
constitute viruses as we will see later on. This �rst de�nition of self-replication is generic and covers

136



9.3. Modeling distributed self-replication

several types of replicating codes, even mutating codes or codes reconstructed from environment
pieces. To ease the remaining of this chapter and coming ones, we will mainly focus on syntactic
duplication given in De�nition 20. Syntactic duplication is a particular case of self-replication
where the replication identically reproduces the code.

De�nition 19 A program is self-replicating over an external channel c if it can be expressed as
a join-calculus de�nition capable to access or reconstruct itself before propagating on c (i.e. to
extrude itself beyond its scope). The statement is translated as follows: def s(c,−→x ) . P where
P −→∗ Q[def s′(−→x ) . P ′ in R[c(s′)]] and P ′ ≈ P . s denotes the self-reference, s′ the equivalent
program whereas R speci�es the replication mechanism over the channel c.

De�nition 20 Syntactic duplication is a particular case of self-replication where the replication
identically reproduces the code as follows: def s(c,−→x ) . P where P −→∗ R[c(s)].

9.3.1 Modeling the environment

Before speaking of any distribution of self-replication, the execution environment in which processes
evolve must be thoroughly de�ned. Process contexts, already presented in Figure 9.4, are useful
tools to de�ne execution environments. Let us consider that all execution environments share an
identical global structure that can be speci�ed using process contexts. Generally speaking, an
operating system, just like any other execution environment, provides services, typically system
calls, and resources such as memory space, �les, registry. A system context denoted Csys[.]S∪R is
thus built on service and resource bricks, formalized by channel de�nitions:

Services: The set of available services S can be modeled by de�nitions with a behavior which is
similar to execution servers waiting for queries. The services themselves are represented by func-
tions conveyed by the variable fsv. When a service is called, fsv is computed over the arguments
and the result is sent back.

• def Ssv(−→arg) . return fsv(−→arg) in ....

Resources: The set of resources R provides storage facilities accessible to processes. Resources
can be modeled by parametric processes storing information inside internal channels. Resources
can be either static providing reading and writing accesses (data �les) or executable triggered on
command (executable �les).

• Let us consider c, cnew, c0 being simple variables:
def Rstat(c0) .

def (write(cnew)|content<c>) . (return to write|content<cnew>)

∧ (read()|content<c>) . (return c to read|content<c>)

in content<c0>|return read, write to Rstat in ...
• Let us consider f , fnew, f0 being functions:
def Rexec(f0) .

def (write(fnew)|content<f>) . (return to write|content<fnew>)

∧ (read()|content<f>) . (return f to read|content<f>)

∧ (exec(−→arg)|content<f>) . (return f(−→arg) to exec|content<f>)

in content<f0>|return read, write, exec to Rexec in ...

A system context, split between services and resources, is compliant with the nowadays vision
of computer, or more generically, with most execution environments. A process alone cannot be
infectious; it is viral only if the necessary services and resources to replicate are provided by the
system as well as a potential external target. Considering this vision, the notion of virus can now
be de�ned relatively to a system context by construction of the viral sets [70].
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9.3.2 Construction of the viral sets

Replication being formalized by extrusion of the process de�nition on an external channel, a process
alone can not be infectious without access to the necessary services and resources. To observe
these exchanges, the labeled transition system open-RCHAM will be used to make explicit the
interactions with an abstract environment, in particular intrusions and extrusions [109, pp.45-47].
Abstract environments are speci�ed by a set of de�nitions and their de�ned name: here the services
and resources. De�nition 21 speci�es open chemical solutions as open processes, in the context of
a given abstract environment. The chemical rules for these solutions are given in Figure 9.5, by
de�ning families of transitions between them.

De�nition 21 Open chemical solutions are triples (D,S,A), written D `S A, where D is a mul-
tiset of de�nitions, S is a subset of the names de�ned in D, and A is a multiset of open processes
with disjoint sets of extruded names that are not de�ned in D.

STR-NULL `S 0 
 `
STR-PAR `S P1 | P2 
 `S P1.P2

STR-TOP > `S 
 `S
STR-AND D1 ∧D2 `S 
 D1, D2 `S
STR-DEF `S defS′ D in P 
 Dσdv `S]S′ Pσdv
REACT J . P `S Jσrv −→ J . P `S Pσrv
EXT `S x<−→y >

S′x<−→y>−−−−−→ `S∪S′
INT `S∪{x}

x<−→y>−−−−→ `S∪{x} x<−→y >

Side conditions on the reacting solution S = (D `S A):
-in STR-DEF, σdv substitutes distinct fresh names for dv(D) \ S′;
-in REACT, σrv substitutes names for rv(J);
-in EXT, the name x is free, and S′ = {−→y } ∩ (dv(D) \ S);
-in INT, the names −→y are either free, or fresh, or extruded.

Figure 9.5 - Open RCHAM chemical rules. S constitutes the interface of
an open solution S; it consists of two disjoint sets of free and extruded names. Rule
REACT is unchanged from operational semantics. Rule EXT enables the emission of
messages to the environment on free names; these messages may export de�ned names
previously unknown to the environment. Rule INT enables the intrusion of messages
on exported names. Rule STR-DEF performs the bookkeeping of exported names.

Using this transition system, viruses can be de�ned according to the principle of viable repli-
cation. Viable replication guarantees that replicated intsances are still capable of self-replication.
This principle was already present in the self-reproducing cellular automata from J. von Neuman
where cellular con�gurations iteratively rebuild themselves at each transition [230]. The programs
satisfying viable self-replication constitute the viral sets [70]. De�nition 22 rede�nes viral sets rela-
tively to an environment conditioning the consumption of replicated de�nitions and the activation
of intermediate infected forms. The sets are built by iteration starting with an original infection
where the virus infects a �rst resource, followed by successive infections from resource to resource:

- Original replication: During the �rst execution of the program p, denoted by the process P ,
p is replicated over a writing channel to a resource w. This channel is consumed by the abstract
environment E to evolve towards a new state through the predicate:

∃w,E `S P
{p}w<p>−−−−−→ E′ `S∪{p} P ′.

- Successive replications: The successive iterations of the replications are triggered by activa-
tion of the intermediate infected resources. If P (i) corresponds to the execution of the ith infected
form, then, the following predicate should hold:

∃w,E(i) `S P (i) {p}w<p>−−−−−→ E(i+1) `S∪{p} P (i+1).
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De�nition 22 Let us consider a system de�ning services S and resources R. Its set of de�ned
names N is divided between services Sv, resource accesses in reading mode Rd, writing mode or
creation Wr, and execution mode Xc such as N = Sv∪Rd∪Wr∪Xc. The current state of resources
is represented by ΠR. The viral set Ev can be recursively constructed as follows:

Ev(Csys[.]N ) = {V |∃−→w ⊂Wr, −→x ⊂ Xc and n > 1 such as

S∧R `N V |ΠR
µ1;{v}w0<v>;µ2−−−−−−−−−−−→ S∧R`N∪{v}V ′|R0|ΠR

and for all 1 ≤ i < n,

S∧R `N Ri|ΠR
xi<
−→a>;µ1;{v}wi+1<v>;µ2−−−−−−−−−−−−−−−−→S∧R `N∪{v} V ′|Ri+1|ΠR}

The vector −→w constitutes writing accesses to infected resources.
The vector −→x is responsible for the activations of intermediate infected resources.

9.3.3 Distributed virus replication

9.3.3.1 Environment re�nement for replication

Considering self-replication, several services and resources must be de�ned because they may be
externalized by the virus [240]: access to the self-reference, replication mechanisms. Replication
targets are necessarily external. The structure of services and resources, globally de�ned in the
system context from Section 9.3.1, must thus be re�ned to support these features. The re�ned
de�nitions are given below with relevant examples from current operating systems in Table 9.1:

Self-reference access: Today's operating systems all handle a list of executing processes for
scheduling, with a speci�c pointer on the active process. A service is often provided to access
this list and in particular the pointed active process which denotes the self-reference. In order
to maintain this list, executions must be launched through a dedicated service.

• Dproc
def
= procexec(p,

−−→args) . sysupdt(p).return p(
−−→args) to procexec

• Dref
def
= (sysupdt(rnew)|current<rcur>) . current<rnew>

∧ (sysref ()|current<rcur>) . (current<rcur>|return rcur to sysref )

Self-reference access must be considered as a service even if it uses an internal resource. A
solution is to publish sysref and procexec in S (from Csys[.]S∪R). Any process placed in the
context will have no direct access to the internal channel current storing the reference. From
the process perspective, the two provided channels will be similar to services.

Replication mechanism: The replication mechanism is a function r which copies data from
an input channel towards and output channel. The function r has been deliberately left
parametric for the model to remain generic. However r is strongly constrained to forward
the input data towards the output channel after an inde�nite number of transformations.

• Drep
def
= sysrep(in, out) . return r(in, out) to sysrep.

Replication targets: A pool of executable resources constitute the replications targets. These
resources are preexisting (infection) or dynamically created (duplication). Their de�nition,
denoted Dtarg further on, is identical to the one of executable resources from Section 9.3.1.

A system with n resources can now be de�ned as an evaluation context. This context being
enough generic with regards to existing systems, we will consider this system context all along this
section for the di�erent de�nitions and proofs:

Csys[ . ]S∪R
def
= def Dproc ∧Dref ∧Drep ∧Dtarg in

let sr1, sw1, se1, ..., srn, swn, sen = Rtarg(f1), ..., Rtarg(fn) in (current<null> | [ . ])
with S={procexe, sysref , sysrep} and R={Rtarg,−→sr,−→sw,−→se}.
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Services provided by well-known operating systems
Channels Linux APIs Windows APIs
procexec fork( ), exec( ) CreateProcess( )
sysref getpid( ), readlink( ) GetCurrentProcess( ), GetModuleFileName( )
sysrep send�le( ) CopyFile( )
−→sr,−→sw,−→se fread( ), fwrite( )... ReadFile( ), WriteFile( )...

Table 9.1 - Parallel between channels and equivalent OS services
and resource accesses. Table covering Linux and Windows operating systems.

9.3.3.2 Classes of self-replicating viruses

Using this re�ned system context, the four classes of self-replicating viruses from M. Webster [240]
can be de�ned in this process-based model. These four classes exhibit the important components
required for autonomous replication: an access to the self-reference and a replication mechanism
that will be denoted by the function r. With regards to the concept of self-replication from
De�nition 19, the virus case is particular since the replication target is no longer passed as a
parameter but chosen by an internal research routine. The behavior of this routine will be denoted
by the function t. The two functions r and t have been willingly left parameterizable.

Through parametrization, several types of replication can be supported, for example:

(1) overwriting infections:
def r(v, sw) . sw(v),

(2) append infections (respectively prepend infections):
def r(v, sw, sr) . (let p = sr() in def p1(−→arg) . v().p(−→arg) in sw(p1)),

(3) companion infections:
described later on because they require the description of the whole �le system.

Through parametrization, three main schemes of successive replications can be supported:

(1) hard-coded targets:
a prede�ned �le path for example, meaning the returned target will always be the same channel,
def t() . return n to t,

(2) dynamically created targets:
a resource created by the routine using the facilities of the system,
def t() . let sr, sw, se = R(empty) in return sw to t,

(3) dynamically discovered targets:
a target discovered by crawling into the system for vulnerable resources (e.g. directory exploration).

The target search must be integrated in the virus de�nition, in addition to the self-reference
access and the replication mechanism. Based on this parametric approach and the model of the
system context provided in Section 9.3.3.1, De�nition 23 divides viruses into four main classes,
according to the exported elements. Examples of viruses from Class I and IV are given in Figures 9.6
and 9.6. According to Proposition 15, these four classes achieve viable self-replication.

De�nition 23 Let V be a viral process. Let R and S be the de�nition of sub-processes responsible
for the self-reference access and and the replication mechanism. A de�nition T is responsible for
seeking the target of the infection and a process P is introduced for the post-infection payload:

• R def
= locrep(in, out) . return r(in, out) to locrep

where r is a constrained, parametric function de�ning the replication mechanism (see 9.3.3.1).

• S def
= locref () . return v to locref .

• T def
= loctarg() . return t() to loctarg

where t is a parametric function de�ning the target research.

• P is any process modeling a payload.
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Four classes of viruses can be de�ned using these primitives and system services:

• (Class I) V is totally autonomous:

VI
def
= defv v(−→x ) . (defv S ∧R ∧ T in locrep(locref (), loctarg()).P ) in procexec(v,

−→a )

• (Class II) V uses an external replication mechanism provided by the system:

VII
def
= defv v(−→x ) . (defv S ∧ T in sysrep(locref (), loctarg()).P ) in procexec(v,

−→a )

• (Class III) V uses external access to the self-reference:

VIII
def
= defv v(−→x ) . (def R ∧ T in locrep(sysref (), loctarg()).P ) in procexec(v,

−→a )

• (Class IV) V uses only external services:

VIV
def
= defv v(−→x ) . (def T in sysrep(sysref (), loctarg()).P ) in procexec(v,

−→a )

Figure 9.6 - Class I virus in VBS. The local self-reference locref is repre-
sented by the code variable. The writing access to the resource is represented by the
file.write operation. The replication mechanism locrep is considered local because
code is locally read and formatted. Considering existing malware, the SpaceHero worm
works similarly. A variable contains the worm code, embedded in a DIV tag; the repli-
cation mechanism then propagates it using the Send method of an XMLHTTPRequest.

Figure 9.7 - Class IV virus in VBS. The system access to the self-reference
sysref is represented by the constant Wscript.ScriptFullName. The system replica-
tion mechanism sysrep is hidden behind the �le system method CopyFile, this API
being responsible for all the read/write operations. Considering existing malware, the
LoveLetter worm works on the exact same principle for its installation.

Proposition 15 If the system context Csys[ . ]S∪R provides the necessary services and valid targets,
the virus classes I, II, III and IV achieve viable self-replication i.e. these four classes are included
in the system viral set Ev(Csys[ . ]S∪R).

Proof.
Let us consider a re�ned system context as in Section 9.3.3.1 and a simple case of parametrization
for the replication mechanism r and the target research t. More complex parametrization would
not modify the core of the proof.

def r(x,w) . w(x)

def t() . return swi to t at the i
th iteration.

Let us consider the third class of virus knowing that an identical approach can provide proofs for
the remaining classes. Let us de�ne the following notations:

DVIII
def
= v() . (def R ∧ T in locrep(sysref (), loctarg());P ).

DRk
def
= (swk(fnew)|contentk<f>) . (contentk<fnew>)

∧ (srk()|contentk<f>) . (contentk<f>|return f to srk)

∧ (sek(−→arg)|contentk<f>) . (contentk<f>|return procexec(f,−→arg) to sek).

To prove viable replication, it must be proven that the viral function v initially infect a resource, but
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also that an execution request reproduces the infection towards a second resource. Next iterations
can be reduced to this last case:

Proof of initial infection: ` Csys[VIII ]S∪R

 (str-def+str-and)

Dproc, Dref , Drep, Dtarg `
let sr1, sw1, se1, ..., srn, swn, sen = Rtarg(f1), ..., Rtarg(fn) in (current<null> | VIII)
−→ (react+str-def+str-and)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn `
content1<f1> | Πni=2contenti<fi> | current<null> |defv DVIII in procexec(v,

−→a )
−→ (str-def)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII `{v}
content1<f1> | Πni=2contenti<fi> | current<null> | procexec(v,

−→a )
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII `{v}
content1<f1> | Πni=2contenti<fi> | current<null> | sysupdt(v).v(−→a )
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII `{v}
content1<f1> | Πni=2contenti<fi> | current<v> | v(−→a )
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII `{v}
content1<f1>|Πni=2contenti<fi>|current<v>|defR ∧ T in locrep(sysref (), loctarg()).P

 (str-def+str-and)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T `{v}
content1<f1> | Πni=2contenti<fi> | current<v> | locrep(sysref (), loctarg()).P
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T `{v}
content1<f1> | Πni=2contenti<fi> | current<v> | locrep(v, loctarg()).P
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T `{v}
content1<f1> | Πni=2contenti<fi> | current<v> | locrep(v, sw1).P
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T `{v}
content1<f1> | Πni=2contenti<fi> | current<v> | sw1(v).P
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T `{v}
content1<v> | Πni=2contenti<fi> | current<v> | P

Proof of successive infections: Once the initial replication is achieved, the second replication
is activated from the current state thanks to an execution request se1(−→a1).

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T `{v}
content1<v> | content2<f2> | Πni=3contenti<fi> | current<v> | se1(−→a1)
−→ (react)

Dproc, Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T `{v}
content1<v> | content2<f2> | Πni=3contenti<fi> | current<v> | procexec(v,

−→a1)

From there the reduction is identical to the previous one except for the call to loctarg which is
reduced to sw2 and no longer sw1.
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Dref , Drep, Dtarg , DR1 , ..., DRn , DVIII , R, T,R
′, T ′ `{v}

content1<v> | content2<v> | Πni=3contenti<fi> | current<v> | P �

9.3.4 Distributed worm propagation

The propagation mechanism for worms is similar to virus replication. The di�erence lies in the
scope of the extrusion: the abstract de�nition of the worm is no longer extruded to a local resource
through a writing channel, but to a remote system context. This topology can be de�ned as
contexts imbricated on two levels. A �rst context representing the local system, similar to the
one from Section 9.3.3, is included into a global architectural context containing parallel remote
systems and communications facilities between them (a computer network topology for example):

Local context: Let us de�ne a new propagation service in the local context. The principle of the
propagation service is similar to replication meaning that the propagation function p replaces the
function r in terms of notation. This new local context can be simpli�ed by removing the resource
de�nitions used to store the replicated code:

Dprop
def
= sysprop(in, out) . return p(in, out) to sysprop

Clsys
def
= def Dproc ∧Dref ∧Dprop

in (current<null> | [ . ])

Remote context: The remote context must provide communication facilities between the di�erent
systems. The ComChannel de�nition enables the generation of two-way communication channels.
Processing of the data transmitted by the local context is delegated to the remote parallel contexts
running inside the global architecture. In order to simplify the model, the de�nition below only
considers a single process Prsys modeling the remote system but several systems can run in parallel.
In addition, the resources and services from Prsys can also be re�ned:

Prsys
def
= let d=rcv() in Pprocessing

Cgarch
def
= def ComChannel() .

def send<m>|receive() . return m to receive in

return send, receive in let sd, rcv=ComChannel()

in [Prsys | [ . ] ]

De�nition 24 Let W be a worm able to propagate to remote system using P , S et T , the de�ni-
tions of three sub-processes respectively responsible for propagation (pending of the replication for
viruses), access to the self-reference and the research of a potential target:

• P def
= locprop(in, out) . return p(in, out) to locprop

• S def
= locref () . return w to locref

• T def
= loctarg() . return t() to loctarg

Four classes of worms can be de�ned using these primitives and the system services:

• (Class I) W is totally autonomous:

WI
def
= def w(−→x ) . (def S ∧ P ∧ T in locprop(locref (), loctarg()).P

′) in procexec(w,
−→a )

• (Class II) W uses an external propagation mechanism provided by the system:

WII
def
= def w(−→x ) . (def S ∧ T in sysprop(locref (), loctarg()).P

′) in procexec(w,
−→a )

• (Class III) W uses an external access to the self-reference provided by the system:

WIII
def
= def w(−→x ) . (def P ∧ T in locprop(sysref (), loctarg()).P

′) in procexec(w,
−→a )

• (Class IV) W uses only external services:

WIV
def
= def w(−→x ) . (def T in sysprop(sysref (), loctarg()).P

′) in procexec(w,
−→a )
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The four classes of worms satisfy viable replication just like viruses do. The main di�erence
comes from the extrusion of the w de�nition which is no longer bound to the local system but can
be extended to the remote context.

Example 6 Just like replication, the propagation function can be re�ned to handle more complex
cases. The simplest case remains the simple propagation by copy:

Dprop
def
= def p(in, out) . out<in>

For more complex cases such as Email-worms, intermediate functions can be introduced with their
counterparts in the remote system to reverse the processing:

Dprop
def
= def p(in, out) . out<concat(SMTPheader, base64(in))>

Prsys
def
= let d = rcv() in base64decode(body(d))

The research routine t() can be de�ned accordingly to parse the address books of mail clients.

9.4 Modeling complex malicious behaviors

Modeling complex behaviors shows the interest of the parametric approach. This section gives
examples of behavior re�nements both for the replication mechanism and the attack payload.
Section 9.4.1 �rst re�nes the replication function r to support companion viruses. Section 9.4.2
then re�nes the payload process P to support Rootkits.

9.4.1 Companion viruses

Companion viruses are a particular case of the parametric de�nition of the Section 9.3.3. Their
speci�city lies in their replication mechanism: instead of overwriting or modifying the content of
the resource targeted by the infection, the virus replaces this resource from the system perspective.
Companion viruses can be divided between two classes whether the replacement is achieved (a)
by diverting the �le system naming mechanism or (b) by diverting the hierarchy of execution [94,
Chpt.8]. The replication function is consequently more complex and requires three steps:

1-a) Renaming or relocation the target of the infection.

1-b) Modi�cation of the system hierarchy of execution.

2) Creation of a new resource under the target name.

3) Copy of the viral code in the replacing resource.

Modeling the �le system: In order to model a companion virus, it becomes necessary to
introduce a re�ned model for the �le system. The purpose of the �le system is to associate a
resource name (a system path) with a location and access channels (reading, writing, execution).
The principle is thus compatible with our model of executable resources. A �le system is thus
introduced into the system context in order to maintain a list of 4-tuples associated to the di�erent
�les. Let us give a �rst de�nition of a �le entry as well as its access and update methods:

EFS
def
= E(ninit, srinit, swinit, seinit) .

def ninit(c, p) |entry<sr, sw, se> .

(if [c = dl] then 0 else

if [c = mv] then E(p, sr, sw, se) else

if [c = ex] then se(p) | entry<sr, sw, se> else

if [c = rd] then p(sr()) | entry<sr, sw, se> else

if [c = wr] then sw(p) | entry<sr, sw, se>)

in entry<srinit, swinit, seinit>
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The �le system provides di�erent commands to manage entries. The di�erent commands take
the �le name in input, and the �le system is responsible for executing them on the right resource:

- read to read from a given �le,
- write to write to a given �le,
- execute to execute a given �le,
- new to create new �les,
- delete to delete existing �les,
- move to modify the name of the �le.

Notice that modifying the name only corresponds to a renaming operation whereas modifying the
complete path is a relocation.

Those commands of the �le system are modeled as de�nitions whereas the entries of the �le
system constitute a set of parallel processes. A �le system de�nition is given below where the
executing parallel processes correspond to the already existing �les referred by the name vector −→n :

MFS
def
= def EFS in

def new(nnew) . E(nnew, Rexec(null))

∧ delete(ndel) . ndel(dl, null)

∧ move(nold, nnew) . nold(mv, nnew)

∧ execute(nexe, arg) . nexe(ex, arg)

∧ read(nrd,buffer, arg) . nrd(rd, buffer)

∧ write(nwr, data) . nwr(wr, data)

in Πni∈−→n (def ni(c, p) |entryi<sr, sw, se> .

(if [c = dl] then 0 else

if [c = mv] then E(p, sr, sw, se) else

if [c = ex] then se(p) | entryi<sr, sw, se> else

if [c = rd] then p(sr()) | entryi<sr, sw, se> else

if [c = wr] then sw(p) | entryi<sr, sw, se>) in entryi<sri, swi, sei>)

Modeling the hierarchy of execution: The hierarchy of execution may vary from an operating
system to an other. This introduces portability issues explaining that companion viruses gaining
preemptiveness by modifying this hierarchy are not very common [94, Chpt.8]. The most common
cases are companion viruses modifying the path variable in a Unix environment. Another outdated
example concerns the DOS architecture where executable �les with .com extensions are preemptive
on those with .exe extensions. In fact, the hierarchy of execution relies on a shorter designation
of programs (path or extension missing). These short designations are completed according to the
hierarchy of execution. Let us �rst de�ne a concatenation operator over names denoted n1 ·n2 and
a projection operator πn to recover the nth concatenated element. A process of completion must
then be de�ned which is parametric over a list of complements (�le path or extension), ordered by
increasing preemptiveness:

HEX
def
=

complete(sn) | complist<c0, ..., cn> .

let ln0, ..., lnn = sn · c0, ..., sn · cn in
(if [ln0∈dv] then return ln0 | complist<c0, ..., cn>
else if [ln1∈dv] then return ln1 | complist<c0, ..., cn>
else if ...

else if [lnn∈dv] then return lnn | complist<c0, ..., cn>)

∧ (preempt(c) | complist<c0, ..., cn> . complist<c, c0, ..., cn−1>

The execution command from the �le system must be modi�ed adequately to try name comple-
tion when the name of the program launched in execution is unknown from the system. In other
words when the program name is not in the set of de�ned names.
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MFS
def
= def EFS ∧HEX in

def new(nnew) . E(nnew, Rexec(null))

...

∧ execute(nexe, arg) .

if [nexec∈dv] then nexe(ex, arg)

else execute(complete(nexec), arg)

Re�ning replication for companion viruses: From the De�nition 23, the two classes of com-
panion viruses can be obtained by re�ning the replication function r. Using this de�nition of a �le
system, a �rst companion virus V diverting the �le naming mechanism can be de�ned as follows:

def r(v, ntarg) .

move(ntarg, ncopy);new(ntarg);write(ntarg, v) in ...

The second class of companion viruses relies on the �le system re�nement to support the
execution hierarchy. Let us consider the target of the replication as a concatenated name lntarg =
sntarg · ext. The preemptive companion virus can be de�ned as follows:

def r(v, lntarg, ext) .

preempt(extnew);new(π1(lntarg) · extnew);write(π1(lntarg) · extnew, v) in ...

Companion Virus for Mac-0 Executables ([101],2007)
Platform: Mac OS X
Type: Companion virus based on the directory structure of Mac-0 executables
Processes Implementation
MFS MacOS X �le system with the Mac-0 executable structure in repositories:

hierarchical tree and meta-information �les.
EFS Info.plist describing the executable structure and the location of its elements.
Channels Implementation
ntarg The CFBundledExecutable �eld from Info.plist which denotes the real targeted executable.
move The cp command from the console.
create, write The two commands are not detached and realized by a single call to the command cp.

Table 9.2 - Parallel with a Companion Virus for MacOS X. Companion
virus based on �le naming. Replacement is enabled by the Mac-0 executable structure.

vcomp_ex_v1 ([94, Chpt.8],2005)
Platform: Unix
Type: Companion virus modifying environment variables for preemptiveness
Processes Implementation
MFS Unix �le system.
EFS Inode entries for the existing �les.
HEX The PATH environment variable.
Channels Implementation
ntarg An absolute �le name composed of the short �le name and its path.
preempt The command export PATH = NEW_PATH : PATH.
create, write The standard �le API fopen and fwrite.

Table 9.3 - Parallel with a Companion Virus for Unix. Companion virus
based on execution hierarchy. Replacement is enabled by the environment variables.

Model validation: Assessing the model relevance with respect to existing companion viruses is
necessary to its validation. A parallel has thus been drawn between the channes and processes,
and their real implementation. A recent MacOS X virus circumventing the �le naming mechanism
has �rst been taken from [101] and transcribed in Table 9.2. The same transcription has been done
in Table 9.3 for a Unix companion virus, diverting the execution hierarchy [94].
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9.4.2 Stealth techniques inside Rootkits

Focusing on self-replication, examples of re�nement have been provided for the replication and the
target research functions. This section now illustrates the expressiveness of the join-calculus by
describing stealth techniques. Even if stealth is not malicious on its own, it becomes a powerful
tool for attackers when deployed in Rookits. Few formal works have been led on Rootkit modeling
[82, 96, 252]; it thus constitutes an interesting concrete case for model application.

Rootkit behaviors can be de�ned in the parametric model by re�nement of the payload process
which had not been detailed yet. Let us consider a Rootkit, loaded from a piece of malware, whose
main functionality is hooking. The de�nition of viruses resident relatively to a system call, from Z.
Zuo and M. Zhou [252], is the closest result to our approach. Unfortunately, the recursive functions
they use are not really adapted to model reactive, persistent (non-terminating) programs such as
Rootkits. The join-calculus, supporting these characteristics, should o�er far more �exibility.

Figure 9.8 - Suckit communications. The di�erent level are communication
are described with the command channel (C&C) as well as the internal channel from
the user space towards the kernel providing di�erent stealth services [135, 216].

Services provided by the Rootkit: basically, Rootkits provide a set of services to attackers,
available through a command channel. Let the processes S1, ..., Sn denote these services. A public
channel com is provided to the attacker, often through the network, based on various protocols
such as IRC or P2P [120]. This channel supports n several types of requests represented by a
vector −→c = c1...cn. The names ci themselves correspond to internal command channels, which, in
the case of Rootkits, are often communication channels from user space where the client part is
running, towards the services running in kernel space. Based on a client-server architecture, a proxy
service relays the commands received on the public channels towards the internal channels. An
example of Rootkit architecture is pictured in Figure 9.8 where public and internal communication
channels can be observed. A public communication channel com must �rst be de�ned between the
attacker A and the Rootkit Rkit:

Pcom
def
= def com() . (def send <−→m> | receive() . return −→m to receive in return send, receive to com)

in let sd, rcv = com() in (A | Rkit)

Through the public channel, the Rootkit publishes the list of supported commands and launches
the proxy service waiting for requests from the attacker:

Pproxy
def
= let c, arg = rcv() in c(arg)

Rkit
def
= def c1() . (S1 | Pproxy) ∧ ... ∧ cn(arg) . (Sn | Pproxy) in sd<−→c >.Pproxy
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In parallel, the attacker receives the available commands for the di�erent services on the public
channel. The obtained list is stored in a vector −→s . He can then activate any service by sending a
request containing the corresponding command:

A
def
= let −→s = rcv() in sd<s1, arg1>.sd<s2, arg2>...

Loading the Rootkit: the rootkit is often stored in the malware body as an internal component.
It must thus be extruded and loaded either conventionally through the driver manager or through a
diverted mean. In both cases a speci�c loading process is required. Let us consider the conventional
process by de�ning a driver manager loading the driver de�nition and launching its execution:

Dmdriv
def
= load(d) . d<>

In order to be accessible inside the malware, the Rootkit must be abstracted. Abstraction intro-
duces an entry point which eases the loading:

M
def
= (...); def r<> . Rkit in load<r> |M ′

def Dmdriv in M −→∗ def Gdr in M ′|Rkit

System call hooking: at last, the hooking mechanism must be modeled just like resident viruses
in [252]. A new entity of the system must be de�ned: the system call table which is considered as
a resource. This entity publishes the list of available system calls on-demand. This list is modeled
by a vector of channel −→sc which can only be modi�ed by the kernel through a privileged write
access. This privileged access is provided by the hook channel which from the malware perspective
is private: only the publish channel is returned at table creation:

Dtsc
def
= Tsc(

−−→
tinit) . def (publish() | table<−→t >) . (return

−→
t to publish | table<−→t >)

∧ (hook(
−−→
tnew) | table<−→t >) . (table<

−−→
tnew>) in table<

−−→
tinit> | return publish to Tsc

To access this privileged channel, the Rootkit uses the system services in a misappropriated
way and in particular services of memory allocation. Allocation services can be used to modify
the page protection of a memory space (Kmalloc under Linux [216] and IoAllocateMdl under
Windows [129]). In practice, allocation services take as input a base address b and a size s and
return the result of the allocation. The hook channel is only leaked if the base address is equal to
the address of the system call table scbase. In any other case a simple access is returned:

Dalloc
def
= alloc(b, s) . if [b=scbase] then return hook else return access

Hooking enables the de�nition of false system calls Rfsc1, ..., Rfscm responsible, for example, for
hiding �les or processes by �ltering the result of original system calls. The false calls are registered

in a new table as a vector of m entries
−→
fsc = fsc1...fscm containing their referring names:

Dfsc
def
= fsc1(−→arg) . Rfsc1 ∧ ... ∧ fscm(−→arg) . Rfscm

Rkit
def
= def Dfsc in let scspace = alloc(scbase, scsize) in scspace(

−→
fsc)

The system evolves along the following derivation where the leak of the privileged write channel
is observed from the allocation mechanism:

def Dtsc ∧Dalloc in let pub = Tsc(
−→sc) in Rkit −→ ∗
def Dtsc ∧Dalloc ∧Dfsc in table<

−→
fsc>

Model validation: The relevance of the model must once again be validated by comparison to
existing Rootkits. A parallel has thus been drawn in Tables 9.4, 9.6 and 9.5 between processes and
de�nitions, and their real implementation in di�erent Windows and Unix Rootkits.
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Agony (Sources available on the net by Intox7, 2006)
Platform: Windows - Type: kernel space, system call hooking
Processes Implementation
M agony.exe, installing the rootkit from user space before transmitting commands.
Rkit agony.sys, kernel module embedded as a resource in agony.exe.

Once loaded, it contains the di�erent services Sn.
Pproxy agony.exe transmits the keyboard input to the driver.
Dmdriv Windows Driver Manager called SCM (ServiceControlManager).
Dtsc SSDT (SystemServiceDescriptor Table) storing addresses of Windows system calls.
Dalloc Memory allocation services.
Rsc hooked versions of the system calls de�ned in the kernel module:

ZwQuerySystemInformationHook, ZwQueryDirectoryF ileHook...
Channels Implementation
com(sd, rcv) Keyboard interface with the console application Agony.exe.
−→c DeviceIOControl, a Windows system call used to communicate with drivers.
load Call to CreateService followed by StartService.
alloc MmCreateMdl now replaced by IoAllocateMdl.
hook Writing operation to the space newly allocated.
publish sysenter instruction switching between user and kernel space according to the SSDT.
−→
fsc Adresses in memory of the new system calls de�ned in the kernel module.

Table 9.4 - Parallel with a Windows Kernel Rootkit: Agony. Agony
is the pending of SuckIt. All the implemented techniques can be found in [129].

SuckIt ([216, 135],2001)
Platform: Linux - Type: kernel space, system call hooking
Processes Implementation
M sk, executable responsible for the rootkit installation from user space.
Rkit core, kernel module embedded in sk to be loaded, contains the provided services Sn.
Pproxy backdoor, autonomous thread waiting for network requests.
Dmdriv internal module of sk responsible for allocating kernel memory, for writing the core

module and for resolving the addresses normally addressed by insmod.
Dtsc Linux system call table.
Dalloc memory device /dev/kmem.
Rsc hooked versions of the system calls fork, open, read, kill, ...
Channels Implementation
com(sd, rcv) established socket between the attacker and the backdoor thread.
−→c hooked version of olduname system call allowing communication between the

backdoor thread and the kernel module core to transmit the di�erent commands.
load calls to internal functions of Dmdriv .
alloc kmalloc.
hook write function called with the address returned by kmalloc.
publish sysenter switching between user and kernel space according to the system call table.
−→
fsc calls to hooked functions through the replaced system call table.

Table 9.5 - Parallel with a Linux Kernel Rootkit: SuckIt. The
elements described in this table may be observed in the architecture from Figure 9.8.

9.5 Model assessment and use cases

Along this chapter, a malware model based on process algebras and more particularly the join-
calculus has been introduced. This model extends functional models [35, 50, 68] by introducing
interactions, concurrency and non-termination which are intensively used by current malware.
Thanks to this support, the central notion of self-replication has been modeled distributively with
the possible externalization of the self-reference access and the replication mechanism. To maintain
the �exibility of the generic propagation function in [50], the replication mechanism is also conveyed
by a parametric function. This parametrization of replication as well as the payload process have
enabled the re�nement of more complex behaviors such as companion viruses and Rookits which
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AgoBot ([133], �rst version in 2002)
Platform: Windows, Type: user space, hooking not supported
Processes Implementation
M Agobot, originally a P2P worm, propagation through vulnerabilities support in prior versions.
Rkit CBot, C++ object de�ning the di�erent services Sn as well as their handlers.
Pproxy CIrc, C++ object reponsible for IRC communications with the attacker.
Gdr CInstaller, C++ object responsible for code copy and system registering (registry key).
Channels Implementation
com(sd, rcv) IRC communication established through the network.
−→c call to the method HandleCommand from the object CBot
load calls to the methods CopyToSysDir and RegSartAdd from the object CInstaller

Table 9.6 - Parallel with a Windows User Rootkit: Agobot. Agobot
is running only in the user space. Consequently, it does not deploy any hooking tech-
niques, explaining that related processes and de�nitions are missing in the table.

prove problematic to represent in functional paradigms. To illustate the validity of the model, the
initial virus de�nitions are formally proven, and their re�nements are all illustrated with concrete
cases of operational malware.

The �nal objective behind this model is to provide a framework relying on solid foundations for
theoretical reasoning. To guarantee this solidity, the compliance with existing results on malware
detection and prevention must �rst be established. Behavioral detection methods with proven
security can then be established. Those points are covered by the coming chapter.
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Chapter 10
Theoretical protections

against malware
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T
he real interest of providing a process-based model is undoubtedly the establishment of
detection and prevention methods with proven security. The purpose of this chapter is �rst

to study the conservation of existing results from virology within the new model presented in
Chapter 9, in particular with respect to the undecidability of detection [70] and the isolation for
prevention [69]. We will show in Sections 10.1 and 10.2 that these results are maintained, while
o�ering a precise identi�cation of the intrinsic properties of algebras impacting the problems:
dynamic name generation for detection and name scoping for prevention as explicited in [141].

Beyond these results, the main interest of process algebras are the new perspectives of the-
oretical protection they may o�er. As already said, process algebras increase the visibility over
computations and information �ows. The second purpose of this chapter is thus to propose al-
ternative solutions of protection, based on interactions and information �ows which could not be
formalized inside functional models. Sections 10.3 and 10.4 show that several of these alternatives
are generalizations of behavioral detection techniques presented in previous chapters, which can
eventually be formalized inside the uni�ed process-based model.

10.1 System resilience and replication detection

Since the formal work from Cohen, it is well established that virus detection is an undecidable
problem [70]. To study the decidability of the problem within the process-based model, let us
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consider an algorithm taking as input a system context Csys[ . ]S∪R and a process P abstracted by
the de�nition p. The algorithm returns true if P is able to self-replicate inside the context. Algo-
rithm 5 describes such an exhaustive procedure, that can be used either for detecting replication
capabilities or assessing the context resilience to a viral class. Its purpose respectively changes
whether the context or the process varies:

Detection: Detection of replicating malware can be addressed by identifying replication attempts
of various processes in the protected system. This system is represented by a �xed evaluation
context in input.

Resilience: System resilience to a viral class is addressed by identifying replication attempts
of a class instance in various system contexts. The viral class is de�ned through a �xed
self-replicating process in input.

Algorithm 5 Replication detection.

Require: P abstracted by p and Csys[.]S∪R exporting services S and resources R
1: Edone ← �, Enext ← �, C ← Csys[P ]S∪R
2: repeat

3: Esucc ← {C′|C
τ−→ C′}

4: if ∃C′ reached by a join pattern x<p> with x ∈ R or x 6∈ (dv(P ) ∪ S ∪R) then
5: return system is vulnerable to the replication of P
6: end if

7: Esucc ← Esucc\ {Cd∈Esucc|∃Ct∈Edone.Cd ≡ Ct}
8: Enext ← Enext ∪ Esucc, Edone ← Edone ∪ {C}
9: if in�nite reaction on a join without new potential transitions then
10: break

11: end if

12: Choose a new C ∈ Enext
13: until Enext ← �
14: return system is not vulnerable to the replication of P

Algorithm 5 uses a brute-force approach for state exploration. As a matter of fact, it was
not designed for operational deployment but to study the decidability of the detection problem.
Without surprise, detection remains undecidable according to Proposition 16. However, according
to Proposition 17, the problem can become decidable by restricting name generation. In other
words, if both the process and the context are de�ned in the fragment of the join-calculus without
name generation, meaning no nested de�nitions, the detection problem remains decidable up to a
complexity factor. But this restriction is not without impact on the system context. Forbidding
name generation induces a �xed number of resources without possibility to dynamically create new
ones. But most importantly, without name generation, synchronous communication is no longer
possible according to the CPS encoding from Figure 9.2. In particular, system services can no
longer generate fresh names to return their computed values. Unique and �xed return channels
must be speci�ed instead, with risks of concurrency for their consumption.

Proposition 16 Detection of self-replication in the Join-Calculus is undecidable.

Proposition 17 Detection of self-replication in the Join-Calculus becomes decidable whenever the
system context and the process are de�ned in the fragment without name generation.

Proof.
In algorithm 5, the set of states Esucc reached after a reduction is �nite because only internal

transitions τ are allowed. Internal transitions in join-calculus are �nite state branching [162]. The
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decidability thus depends on the bounded number of iterations: �nite number of states potentially
reached and in�nite loop detection. To prove decidability, detection is reduced to the coverability
problem in Petri nets.

Let us consider the fragment of the join-calculus without name generation i.e. no nested
de�nitions of the form def J . (def J ′ . P ′ in P ) in Q. This fragment can be encoded in the
asynchronous π-calculus without external choices (+ operator). Let us consider a similar encoding
to [108] except that the replication operator has been replaced by recursive equations for consistency
with the remainder of the proof:

[[Q|R]]j = [[Q]]j | [[R]]j
[[x<v>]]j = x̄v

[[def x<u> | y<v> .Q in R]]j =

{
A = x(u).y(v).([[Q]]j | A)
A | [[R]]j

}
Name generation being excluded and the process being considered in a close context, the scope

restriction ν is absent from the encoding. We will now reuse the approach from [38] to reduce the
problem. Using the provided encoding, the process inside its context is encoded in the asynchronous
π-calculus, resulting in a system of parametric equations satisfying a normalized form [38].

This system is then encoded into equations from the Calculus of Communicating Systems
(CCS). CCS is parameterless, however, without name generation, channel σ and transmitted
value a can be combined in a single channel <σ, a>. The encoding reintroduces external choices
to handle the combined channels. Just like in [38], the obtained equation system thus contains a
set of parallel processes guarded by these channels. The only di�erences lie in the multiple join
patterns in Join-Calculus which results in multiple channels guarding those processes:

Ai = Σ <σ, a> . <σ′, a′> .(Π <σ, a> | Π Aj)

In this equation system, replication is detected by the potential activation of a guarded processes Ai
by a channel <σ, p> with σ∈R and p is the abstraction of P . This is a typical control reachability
problem in CCS. As proven in [38], control reachability can be reduced to a coverability problem
in Petri nets. Although it is time and space consuming, decidable algorithms exist to compute
coverability [151] and detect tokens in the σp places (abstraction p emitted on σ). �

10.2 Policies to prevent malware propagation

According to the previous section, self-replication detection is decidable only under certain assump-
tions, which prove restrictive for the system. In addition to these constraints, the fact that detec-
tion is reactive and not proactive encourages the research of alternative solutions to �ght malware.
Proactive approaches must absolutely be considered to prevent malware propagation. A potential
solution is the control of the information �ow within the systems to protect. This control is a
critical issue for security that enables among other things the detection of intrusions [81, 128, 251].
Adopting the malware perspective, Section 10.2.1 �rst describes malware propagation as an ille-
gal information �ow that violates the property of integrity of the system. Corroborating existing
results from previous theoretical works [69], the section also proves that complete isolation is the
only perfect mean to contain this propagation. Section 10.2.2 then suggests di�erent approximate
solutions for malware containment.

10.2.1 Non-infection property and isolation

A di�erent approach to �ght back the threat brought by malware is to reason in terms of information
�ow as initiated by F. Cohen in [69]. Active research works address the con�dentiality issue by
controlling illicit data �ows between processes of di�erent security levels [117, 126, 209]. One of the
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main result is the formalization of the non-interference property which speci�es that the behavior
of a low-level process must not be in�uenced by an upper-level process.

Similarly, self-replication in malware can be compared to an illicit information �ow of the
viral code towards the system. Let us state the hypothesis that, contrary to malware, legitimate
programs should not interfere with other processes implicitly through the system. This issue issue
refers to integrity, and non-interference must be adapted accordingly. In De�nition 25, we introduce
a new property called non-infection in reference to the original property of non-interference.

De�nition 25 Let us consider a process P placed inside a system context considered stable (i.e.
reactions by intrusions only). The property of Non-Infection is satis�ed if the system evolves
along the reaction Csys[P ] −→∗ C ′sys[P ′], and for any non-infecting process T the equivalence
Csys[T ] ≈ C ′sys[T ] is true. The strength of the property is determined by the equivalence considered.

The non-infection property guarantees the integrity of the system context. With regards to
this property, the consequent question is to know what are the mandatory constraints for a system
context to satisfy non-infection. Proposition 18 states that there exist systems preventing repli-
cation through resource isolation. This proposition in fact corresponds to a generalization of the
network partitioning principle advocated by F. Cohen to �ght virus propagation [69].

Proposition 18 In a system context made up of services and resources, the non-infection property
can only be guaranteed by a strong isolation of the resources, the isolation forbidding all transitions

Csys[ . ]
x(−→y )−−−→ C ′sys[ . ] where x is a writing channel towards a resource.

Proof.
Let us consider a system context made up of services and resources of the form: Csys = def DS ∧
DR in R | [ . ] as de�ned in Section 9.3.1 from Chapter 9. By hypothesis, the context is stable
and only reacts to intrusions from the process placed inside. The isolation requirement is proven
by showing that writing access to a resource, either direct or indirect, must be forbidden. Let us
enumerate the possible intrusion cases:

I. Intrusion towards a resource: J ∈ DR with J = x1(−→y1)|...|xn(−→yn) . R′

def DS ∧DR\{J} ∧ J in R0|x1(−→z1).R1|...|xm(−→zm).Rm|[ . ]
xm+1(−−−−→zm+1)|...|xn(−→zn)

−−−−−−−−−−−−−−−−−−−−−−→
def DS ∧DR in R0|R1|...|Rm|R′[−→y /−→z ]|[ . ].

This can be simpli�ed since in our model the xi are only used to store the resource content meaning
that Ri = 0 for 1≤ i ≤m. From there, there are three sub-cases for this transition.

1) Reading from the resource: R′ ≡ x1(−→y1)|...|xm(−→ym) |return −→y1, ...,−→ym to xm+1.
Once the return consumed, the system recovers its initial state; the non-infection property is
satis�ed.

2) Writing to the resource: R′ ≡ x1(−−−→ym+1)|...|xm(−→yn)|return to xm+1.
Once the return consumed, the original values yi with 1≤ i≤m are substituted by values yj with
m+ 1≤j≤n. The system may not recover its original state before the intrusion: the non-infection
property may not be satis�ed.

3) Executing the resource: equivalent to intrusion towards a service II).

II. Intrusion towards a service: J ∈ DS with J = x1(−→y1)|...|xn(−→yn) . S

def DS \ {J} ∧ J ∧DR in R | [ . ]
x1(−→z1)|...|xn(−→zn)−−−−−−−−−−−−−−−−−−→

def DS ∧DR in S[−→y /−→z ] | R′ | [ . ]
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S is of the form return f(−→z1 , ...,
−→zn) to x1 which reduces to the null process when the return is

consumed. The system modi�cation thus depends on the nature of the function f . Once again,
there are three sub-cases.

1) De�nition of f accessing no resource or only through a reading channel: this case is identical
to case I.1) and the non-infection property is satis�ed.

2) De�nition of f using a writing or creation channel for resources: this case is identical to case
I.2) and the non-infection property may not be satis�ed.

3) De�nition of f accessing resources in execution: in this case, the solution depends on the content
of the resource. The test is applied recursively to this content until reaching cases II.1) or II.2). �

10.2.2 Policies to restrict infection scope

Non-infection is impossible to guarantee in practice. Complete isolation can obviously not be
deployed in systems without loosing most of their use [69]. In fact, the hypothesis stated in
Section 10.2.1 about legitimate programs is not always true in real cases. To maintain the utility
of the system, solutions restricting the resource accesses case-by-case, can still contain malware by
con�ning the scope of the propagation.

An access authority deploys such restriction by blocking unauthorized accesses to the resources
and services of a system. A solution based on access tokens can be considered, either for spatial
restriction (only programs and resources sharing the same token can access each others) or for
time (each token is valid a �xed number of executions). [248] speci�es access authorities as two
components taken up in De�nition 26: a Policy Decision Point (PDP) which can be seen as the
token distribution mechanism and a Policy Enforcement Point (PEP) which checks the token
validity and thus must not be bypassed.

De�nition 26 An access authority is constituted of (1) a distribution process DT delivering se-

curity tokens, (2) a control mechanism embedded in the system providing interfaces
−−→
chk for token

checking. Control is securely enforced (i.e. can not be bypassed) if the system deprived of the
distribution process DT satis�es the non-infection property.

Example 7 Let T be a security token, non-forgeable i.e. if unknown, the token can not be rebuilt.
T must thus not be exported by the system context: Csys[.]S∪R∪−−→chk with T 6∈ S∪R. Controls can be
enforced at the resources and services level using the interface chk to compare the token in entry
with the security token T :

• def Ssv(t,−→arg) .

if chk(t, T ) then return fsv(−→arg) else 0 in ...

• def Rexec(f0) .

def (write(t, fnew)|content<f>) .

if chk(t, T ) then (return to write|content<fnew>) else content<f>

∧ (read(t)|content<f>) .

if chk(t, T ) then (return f to read|content<f>) else content<f>

∧ (exec(t,−→arg)|content<f>) .

if chk(t, T ) then (return f(−→arg) to exec|content<f>) else content<f>

in content<f0>|return read, write, exec to Rexec in ...

If security tokens are not forgeable and no distribution mechanism is responsible for their ex-
trusion, the process placed in the context will not be able to access any service and resource.
Mechanisms of access control de�nitely help to contain malware propagation. In fact, complete
access control mechanisms are already deployed in two well known security models for Java [119]
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and .Net [112]. In both models, the managed code is run in a isolated runtime environment with
a controlled access to resources. A parallel between the two models is given in the Table 10.1.
Considering malware, access control models are already used to restrict their propagation by re-
straining the number of services and resources available to untrusted codes. For example, the
Same Origin Policy (SOP) forbid accesses to local resources, to remote codes running inside a
web-browser [206]. The problem in actual system is that those controls are restricted to managed
languages and not to native code. Extending access controls to native code could �ght malware
propagation with a proven security expressed in this process-based framework.

Model Java framework .NET framework
Token distribution Secure class loader of the Policy resolution of the Common
(process DT ) Java Virtual Machine (JVM) Language Runtime (CLR)
Input for distribution Evidences (certi�cate, origin) Evidences (certi�cate, origin)
Output (token T ) Permission domain Permission set
Access control Security Manager calling the Access Code Access Security (CAS)
(interface chk) Controller using Checkpermission() enforced by the CLR

Table 10.1 - Access control inside managed languages. The given table
references the di�erent elements enforcing access control inside Java and .Net.

10.3 Detection by behavior automata

Detection by automata has already been presented in Chapter 2. In a few words, behavioral
automata recognize malicious sequences of observable actions executed by malware, until reaching
a �nal state signaling detection. With respect to the discussion on detection from Section 10.1, this
technique of detection is no longer generic but signature-based. On the other hand, this technique
is no longer restricted to replication capabilities. Let us now consider that the observed malware
instance is a process. Its observable actions can be interpreted as the emissions of messages that
constitute traces in the join-calculus. The behavioral automata can �nally be transformed into
observation contexts capturing the exact same traces.

In order to formalize behavioral automata inside the process-based model, we have seen that
they must by transformed into observation contexts. Starting from the previous de�nition, an
automaton is built as a �ve-tuple <S,Σ, T, s0, F >. Let us now introduce a procedure of transfor-
mation to generate the equivalent observation context of the form CObs[ . ] = def J in O | [ . ].
1) Let us �rst de�ne a set of name Ns corresponding to the di�erent state of the automata. For
each state si ∈ S, an equivalent name qi will be generated in Ns. Among these state, some partic-
ular ones must be de�ned. The starting state s0 will be denoted by the name q0. This particular
name will be used to build the starting process of the observation context O = q0 <>. In addition
for each �nal state qi ∈ F , an equivalent name qfi is also de�ned.

2) The set Σ contains the alphabet of the di�erent atomic actions monitored by the observer. This
alphabet will be translated as a second set of name Nm. Each action µi ∈ Σ will be denoted by a
message mi ∈ Nm.
3) An additional process I is de�ned to be executed whenever a malware is detected. This process
may be responsible for raising an alert or triggering a countermeasure.
4) The sequences of malicious actions are �nally de�ned as transitions of the form S × Σ → S.
These transitions will now be transformed as join de�nitions. The set of de�nition is �rst initialized
as empty J = ⊥. For each transition, si × µj → sk, the set of de�nitions is enriched as follows:
J = J ∧ (qi<> | mj<> . qk<>). In addition, �nal transitions are de�ned to execute the process
of reaction. For all si ∈ F , J = J ∧ (qfi<> . I).
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The translation is quite obvious. However, thanks to the formalization provided in this chap-
ter, additional results may be obtained with regards to stealth. Within the process-based model,
De�nition 27 establishes the notion of stealth relatively to an observer. This de�nition is a gener-
alization of the notion of stealth relatively to system calls from [252]. A given observer monitors
a �xed number of atomic actions. Obviously, a malware instance can be built speci�cally to be
stealthy for this observer. Evading detection may be achieved either by accessing system calls
outside the set of the monitored ones, by replacing the observer hooks and �ltering the monitored
system call, or by accessing services at a lower level such as in hardware-assisted virtual machine
rootkits [83, 208].

However, persistent malware, such as viruses, necessarily access and modify legitimate re-
sources. As stated by Proposition 19, absolute stealth is impossible to achieve and it is always
possible to de�ne an observer that will capture the modi�cations brought to the system, at least
the time malware deploy their stealth protections. A malware instance being absolutely stealthy
would respect the property of non-infection and would consequently have minor capabilities. For
persistent malware such as viruses, absolute stealth is thus impossible. A parallel can be drawn
with E. Filiol's result showing that it is not possible to introduce a stealthy malicious code without
modifying signi�cantly the distribution for an estimator [96].

De�nition 27 Let us de�ne stealth relatively to an observer. The de�nition of the observer de-
termines the set of monitored atomic actions. A malware M is said stealthy with respect to an
observer Obs if and only : CObs[M ] 6→∗ I.

Proposition 19 Absolute stealth for malware is impossible to achieve with regards to all observers.

Proof.
Let us prove Proposition 19 by contradiction. M is a process modeling a malware instance capable
of absolute stealth. The following statement is thus true:

∀Cobs[ . ]S∪R, Cobs[M ]S∪R 6→∗ I

Among all these possible observation contexts, a given context exists such as it monitors all
write accesses to resources:

∀w ∈ R, Cobs[w<a>]S∪R →∗ I

For M to be stealthy with respect to this particular observation context, we would observe the
barb impossibility M 6⇓w. In other words, M would respect the non-infection property, which is in
contradiction with its malware nature. �

10.4 Prevention by typing

Type systems have been studied for a great range of programming languages, process algebras in-
cluded. By combining information �ow speci�c and standard type theory, some security properties
may be enforced in the language. With respect to malware, the considered property is typically
integrity. The underlying principle is to prevent suspicious or risky process from altering the exe-
cution of legitimate programs. Typing thus constitutes a second mean to formalize the principle of
prevention by space restriction introduced in Section 10.2.2. The typing system should consider at
least two levels of security to separate risky and legitimate processes. M. Kaczmarek has started
in his thesis to explore this approach inside functional models of viruses [145]. Since the presence
of concurrency and non-determinism may generate new types of information �ows, the purpose of
this section is to explore the application of typing to the provided process-based model. The use

157



CHAPT 10. THEORETICAL PROTECTIONS AGAINST MALWARE

of typing system in order to guarantee that processes respect some security properties has already
been studied formally. As a matter of fact, establishing proofs for these systems is complex, in
particular when considering complex features such as polymorphism or type reduction supported
by the join-calculus [110]. For this reason, a whole type system will not be built from scratch.
This section rather considers the results established in [72] to �nd interesting research perspectives
in the context of malware prevention.

10.4.1 Non-infection between security levels

To build the typing mechanism, let us �rst de�ne a lattice to describe the possible security levels.
It must provide at least two bounding security levels corresponding to the legitimate level and the
untrusted level which may introduce risk: (SL,≤,u,t, leg, risk) with risk ≤ leg. An example of
security lattice built on certi�cation is given in Figure 10.1. A typing environment, often denoted
Γ, is then built to map the names constituting the process to a security level from the lattice. The
typing is often constrained by construction rules; the presentation of such rules is not particularly
signi�cant here since they may vary according to the supported feature, but an example can be
found in [73], which is notably reused in [72]. Let us now introduce the following notations. Γ  P
denotes a well-typed process P with respect to the typing environment Γ. Similarly, Γ σ P
denotes a process being well-typed when executed with the security clearance, or security level σ.

Figure 10.1 - Security lattice built by certification. The following
lattice speci�es four levels of certi�cation bound by the upper sytem certi�cate (leg)
and the lower absence of certi�cate (risk). The partial order between the certi�cates,
corresponding to their relative trust, is given by the Hasse diagram. This order respects
the prevalence of the kernel applications over user ones.

By the use of security levels, the original property of non-infection can be weakened. According
to De�nition 28, the restricted property of non-infection does not imply a complete isolation
between all processes but only between legitimate and risky processes. In particular, this weaker
property allows the modi�cations of legitimate resources between them. The property of restricted
non-infection can �nally be guaranteed by various typing mechanisms.

De�nition 28 Let us consider a process Γ σ P with a security level risk ≤ σ < leg, placed inside
a system context considered stable, with the highest security level Γ leg Csys[ . ]. The property of
Restricted Non-Infection is satis�ed if the system evolves along the reaction Csys[P ] −→∗ C ′sys[P ′],
and for any non-infecting process Γ ρ T with σ < ρ, the equivalence Csys[T ] ≈ C ′sys[T ] is true.
The strength of the property is determined by the equivalence considered.
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10.4.2 Resource typing: behavioral blocking

In this subsection, the notion of resource is more generic than the one introduced in the modeling
of the environment from the previous chapter. Here the notion of resources encompasses all the
process channels de�ned inside join patterns. Using a �rst typing mechanism, these resources or
in other words the de�ned channels are labeled with security levels indicating the minimum level
required for a process to interact with it [126, 127]. The label is introduced at the syntax level as
pictured by the adaptation of the join syntax in Figure 10.2.

J ::= x<T : y1, ..., yn> message pattern
| J | J join of patterns

Figure 10.2 - Syntax adaptation to resource typing.

Let us now denote by σ[[P ]] a process P running with security clearance σ. The access to a given
resource is only allowed to process running with a security clearance equal or higher to the one
expected. In other words, the de�nition will only cature message from these authorized process.
Technically, this security is enforced by modifying the operational semantics for type checking as
the example in Figure 10.3 illustrates.

J : ρ . P ` σ[[C[Jσrv]]] −→ J : ρ . P ` σ[[C[Pσrv]]] only if ρ ≤ σ.

Figure 10.3 - Semantics adaptation to resource typing.

This protection of the resources is particularly useful for malware using external resources. On
access protection of the resources can eventually be related to behavioral blocking presented in
Chapter 2. Typing resources is in fact a way to formalize this technique in a theoretical model
based on processes. Coming back to the virus classes of De�nition 23 from the previous chapter,
this technique may be used to forbid to untrusted process the access to the necessary resources to
replicate, that is to say the self-reference and the replication mechanism.

10.4.3 Information �ow typing: taint analysis

Here, the principle di�ers from the previous mechanism since the security labels are no longer
attributed to resources but to exchanged messages. The security label attributed to the exchanged
data is also called the taint. Through taint analysis, it becomes possible to monitor the �ows and
dependencies of tainted data by following their labels within the system. This typing mechanism
is obviously a formalization inside the process-based model of the tainting techniques deployed
in the operational analysis of malware [134, 198]. Contrary to the previous mechanism, the join
syntax is no longer modi�ed. The message emission is modi�ed inside the process syntax instead,
as speci�ed in Figure 10.4.

P ::= ρ : v<u1; ...;un> asynchronous message
| ...

Figure 10.4 - Syntax adaptation to information flow typing.

Within a given process, a function denoted α • P propagates the taint [72]. Such a function is
presented in Figure 10.5. Note that the function only propagates the taint to messages which are not
guarded by join-patterns. An additional transformation must also be introduced to the operational
semantics to propagate the taint as in Figure 10.6. The transformed reduction rule is appended
to the function de�nition below. Notice that, the taint is also propagated for dependencies due to
non-deterministic choice between multiple patterns. A parallel can be drawn with indirect taint
propagation which taints all data within the scope of a control structure testing tainted data.

159



CHAPT 10. THEORETICAL PROTECTIONS AGAINST MALWARE

α • 0 = 0
α • (P |Q) = (α • P ) | (α •Q)

α • (β : v<u1; ...;un>) = (α t β) : v<u1; ...;un>
α • v<u1; ...;un> = α : v<u1; ...;un>
α • (def D in P ) = def D in α • P

Figure 10.5 - Function for taint propagation.

D[J . P ] ` C[α • Jσrv] → D[J . P ] ` C[α • Pσrv]

Figure 10.6 - Semantics adaptation for taint propagation.

Using taint propagation, it becomes possible to detect tainted message captured by particular
join. Critical resources may be also labeled with a security level just as in the previous section.
The success of the the reduction will now depend on the message taint and no longer the process
security clearance. Notice that, globally, it is still possible to de�ne the security clearance of a
process as the lowest security level of all messages it may emit. Once again the reduction rule of
the operational semantics must be transformed as pictured in Figure 10.7. This solution, being
message-based, is thus �ner grained. It still can be used to forbid the self-replication of untrusted
processes as it is presented in Example 8.

[J : β . P ] ` C[α • Jσrv] −→ D[J : β . P ] ` C[α • Pσrv] only if β ≤ α.

Figure 10.7 - Semantics adaptation for information flow typing. The
reduction rule preserves the required adaptation for taint propagation from Figure 10.6.

Example 8 Let us consider the system modeling introduced in Section 9.3, and more particularly
the system re�nements and virus classes introduced in Section 9.3.3. A tainted source must �rst be
de�ned; here the self-reference is tainted as risky since it constitutes the origin of the replication:

Csys[ . ]S∪R
def
= C′[[ . ] | risk : current<ref>].

Any �ow from the self-reference to the replication mechanism must be forbidden. The de�nition of
the system replication is thus modi�ed to accept only legitimate messages:

Drep
def
= leg : sysrep(in, out) . return r(in, out) to sysrep.

By application of the operational semantics, class IV viruses raise typing errors:

` Csys[VIV ]S∪R
−→∗ (react+str-def+str-and)

Dref , Drep, D
′ ` risk : current<v> | sysrep(sysref (), loctarg())

= (propagation)

Dref , Drep, D
′ ` risk • current<v> | sysrep(sysref (), loctarg())

−→ (react)

Dref , Drep, D
′ ` risk • sysrep(v, loctarg())

−→∗ (react)

Dref , Drep, D
′ ` Error on sysrep because risk < leg
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10.5 Advances brought by the process model

Through this chapter, we have studied the theoretical protections o�ered by the process-based
model against malware. The preservation of fundamental results has been checked �rst, to guar-
antee that the new model does not result in a loss of expressiveness. The undecidability of the
detection and prevention by isolation have been successfully redemonstrated. They have even
been extended by identifying system constructions where detection and prevention become fea-
sible. Still, these constructions are too prohibitive, justifying the exploration of other detection
and prevention methods. In fact, no operational detection method, radically new, has been dis-
covered. However, we have been able to formalize several behavioral detection techniques, already
existing. Through their formalization, their resilience has been theoretically evaluated: detection
by automata with proven resilience to stealth, access control with a delimited propagation scope.
We hope that these �rst results will encourage future works, in particular for the typing approach
which seems promising with regards to these �rst explorations.
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Chapter 11
Assessment of the

algebraic model and enhancements

T
hroughout Part II, we have explored the formalization of malicious behaviors by the use of
process algebras. Considering the behavior de�nition from introduction, the key advantage

of these algebras is to introduce the notion of interactive computation within malware theoretical
models. Based on process foundations, the following contributions have been proposed:

Model expressiveness: Process algebras provide the support of interactions, concurrency and
non-termination. Process-based models are thus closer to our current perception of infor-
mation systems than functional paradigms which are limited to close systems. The malware
model we propose is expressed within the join-calculus and is thus process-based. It relies
on the calculus facilities to provide a distributed de�nition of self-replication and a system-
dependent construction of the viral sets. This constitutes a �rst achievement compared to
existing models based on functional paradigms [35, 50, 68], which only de�ne autonomous
replication without any possible explicit intervention of the execution environment.

Model parametrization: The malware model o�ers parametrization support with a possible
re�nement of the replication technique and the malicious payload. Through parametrization,
some malicious techniques such as stealth and companion viruses, which were not supported
by previous models, even parametric ones [50], are now integrated. The modeling of these
techniques requires the re�nement of the system context in consequence, in order to introduce
the involved services and resources.

Results conservation: To verify the conservation of the fundamental results, the problems of
detection and prevention have �rst been rede�ned within the model. In particular, prevention
of malware propagation has been formalized through the notion of non-infection, the pending
of non-interference adapted to integrity issues. The model does not o�er miracle solutions for
detection which remains undecidable, consistently with existing results. Likewise, prevention
remains only possible by perfect isolation, consistently with the existing network partitioning
principle, but with a system granularity based at the resource level. These results were
expected and prove the compatibility of our model with existing ones [69, 70].

Results extension: Nevertheless, approximative solutions for detection and prevention can be
now formalized within the model. Because the calculus facilities impacting these problems
have been identi�ed: name generation for detection and name scoping for prevention, system
constructions have been found where they could be solved. Detection becomes decidable

163



CHAPT 11. ASSESSMENT OF THE ALGEBRAIC MODEL AND ENHANCEMENTS

within the fragment of the join-calculus without name generation. Malware containment
can be guaranteed by spatial or temporal restriction of the malware executions, either by
embedded system controls based on access tokens, or by typing mechanisms based on secu-
rity clearances. In addition, several of the behavioral detection techniques introduced at the
beginning of this thesis were successfully formalized. Through their formalization, we have
been able to theoretically assess their resilience and their limits.

In conclusion, the di�erent objectives stated in introduction seem satis�ed by the process-
based formalization. The model introduces interactive-based viruses and enables the description
of complex behaviors that are encountered in the wild, ant that are no longer necessarily centered
around self-replication. It provides enough theoretical foundations to deploy formal reasoning on
various detection and prevention methods. However, the model is still limited and imperfect as
stated by the following points:

1) Name bivalence: The proposed notion of self-replication admits possible false-positives be-
cause of a name bivalence in the join-calculus. A process is abstracted by a de�nition whose
de�ned name can represent either the code itself or a simple pointer. Interpreting process
abstractions as simple pointers, a process transmitting its pointer outside of its scope will
be tagged as self-replicating. Only viable replication restrains the possible false-positives by
restricting viruses to processes capable of iterative self-replication.

2) Constructive replication beyond syntax: The de�nition of self-replication provided by the
model covers di�erent types of replication just like the original viral models [68], even repli-
cation by reconstruction or mutation. However, up to our current advances, it only provides
explicit constructions for viruses capable of syntactic duplication where processes achieve
replication from their own description. This limitation eventually corresponds to a more
generic problem. In fact, the model remains too close to the syntax level, which is contrary
to the philosophy of process algebras where we try to get detach from syntax to think in
terms of semantic equivalence.

3) Focus on replication: Self-replication still remains the core of the current model whereas, in
reality, we observe more and more malware that do not replicate anymore. Take the example
of botnets which are often installed through a vulnerability (e.g. drive-by download) and do
not propagate. Globally, it would be interesting to describe additional malicious behaviors
and to try to understand how they compromise both the con�dentiality and the integrity
of the system. It would ease the identi�cation of the calculus capabilities allowing such be-
haviors, just like it has been done with self-replication. This work has already been started
by explaining how Rootkits breach the system integrity by channel usurpation. Additional
e�orts must be deployed in this sense.

Some of the stated imperfections can be addressed in future works, with a greater knowledge of
process algebras. The next points present perspectives of response to the corresponding problems:

1) Name bivalence: The ambiguity encountered in abstraction between code and pointers could
be solved by modeling replication as the transmission of the process itself. This would require
leaving the join-calculus to move towards higher-order process algebras such as the higher-
order π-calculus [210]. However, this domain is quite recent and highly theoretical to be
easily apprehended. An other perspective is to move the focus on mobility. Switching to
the distributed join-calculus [107], a notion of location is explicitly introduced for running
processes. Malware propagation could then be seen as the spreading of the viral process over
the available locations of the system.
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2) Constructive replication beyond syntax: Constructive replication corresponds to the repli-
cation of a de�nition equivalent to the original one. In order to reach the expected semantic
level, observational equivalences must be considered instead of syntactic equivalences. Con-
structive replication eventually impacts the problems of detection and prevention. In partic-
ular, detection is no longer a simple problem of state exploration, but additionally introduces
bissimulation tests for every propagated de�nitions. Just like state exploration, bissimulation
is also strongly impacted by dynamic name generation, nested de�nitions and recursion [76].
However, since mutation and reconstruction both rely on de�nition nesting for building the
propagated version, we can no longer consider a restricted fragment of the join-calculus.

3) Focus on replication: As previously said, the �rst requirement remains to increase the num-
ber of covered malicious behaviors beyond self-replication. The idea is to relate these behav-
iors to integrity and con�dentiality issues, these issues being impacted by speci�c calculus
capabilities. Still, a major concern raised by C. Fournet is that the join-calculus is open
by construction. Any message passing is allowed as long as the name scoping allows it. It
may not prove the right formalism to design built-in protections and controls. A �rst per-
spective is thus to pursue the works started on typing mechanisms to enrich the formalism.
Another alternative would be to move towards security dedicated algebras. For example, the
spi-calculus has been used for years in the veri�cation of cryptographic protocols [34, 246],
and might be adapted to the malware issue.

This second intermediate conclusion ends the process-based formalization. Throughout this
second approach, the gap between theoretical and operational malware research has been reduced.
Bridges have even been successfully deployed for several techniques of behavioral detection, thus
ful�lling the statement of this thesis.

165



CHAPT 11. ASSESSMENT OF THE ALGEBRAIC MODEL AND ENHANCEMENTS

166



Chapter 12
Conclusion

La pendule, sonnant minuit,
Ironiquement nous engage
A nous rappeler quel usage
Nous fîmes du jour qui s'enfuit...

L'Examen de Minuit, Les Fleurs du Mal

C. Baudelaire - 1857

Throughout this thesis, we have been seeking to bridge theoretical and operational research
on malware. The notion of malicious behavior, and in particular self-replication, is explored as
the common foundation to establish this connection. The idea is to provide a reference behavioral
model enabling direct operational applications while preserving the proof capabilities of theoretical
foundations. According to the notion of behavior we have established in introduction, the model
has �rst to support interactive computations in order to introduce the execution environment and
the possible distribution of the malicious agents. Secondly, the perception of the environment has
to be oriented according to the perspective of malware, meaning that the model should bring into
light the purpose of the environment inside the malware life cycle.

12.1 Contributions

To develop the thesis statement, our proposal is twofold. We have �rst explored a grammati-
cal approach based on attribute-grammars for behavior modeling. In response to Objective 1.1, a
language called the Abstract Malicious Behavioral Language (AMBL) is introduced, supporting na-
tively a �rst level of interactions and concurrency through its syntax and its operational semantics.
Thanks to the semantic rules enriching attribute-grammars, the objects of the execution environ-
ment are handled by identi�cation and typing. Identi�cation is mainly deployed to constrain the
data-�ow between the involved objects whereas typing is critical for the interpretation of their use.
Consequently, the semantic level o�ered by the AMBL enables the description of the behaviors
principle rather than their implementation. The fact that the language combines functional and
interactive capabilities also guarantees its adaptability to static and dynamic approaches whereas
existing models are often restricted to one single approach [64, 211]. In response to Objective 1.2,
several descriptions are provided within the AMBL for common malicious behaviors. These de-
scriptions are designed to cover individual behaviors instead of describing the whole behavior of
malware instances. Consequently, no description has to be rede�ned for speci�c malware strains.
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The expressiveness of the language has allowed us to provide a larger set of behavior descriptions
than existing works [175, 181].

Di�erent usages have been suggested for these descriptions. In response to Objective 1.3, a be-
havioral detector relying on parsing automata has �rst been developed to recognize the behavioral
descriptions previously speci�ed. The detection automata di�er from traditional parsing by their
capability to resist irrelevant inputs and handle multiple behavioral instances. Irrelevant inputs
are �ltered by the semantic rules describing two sets of prerequisites and consequences, similarly
to intrusion scenarios [74]. To avoid backtracking, multiple instances are handled by derivation
duplicates as proposed in [200]. After experimentation, the speci�ed behavioral descriptions have
exhibited a satisfactory coverage as proven by the detector detection rates. In addition, the descrip-
tions seem su�ciently adaptable to cover other types of threats as illustrated by the preliminary
study led on web-based threat. The construction of the detector has �nally constituted the occa-
sion to address translation from implementation towards the behavioral language as required in
Objective 1.4. At the opposite, a third generation of mutation engine has been designed for trans-
formation at the behavioral level. The engine addresses the reverse translation from the language
towards implementation, thus completing Objective 1.4. The mutation engine supersedes existing
syntactic-based mutations by reaching a semantic level. Its development was motivated by research
purpose and in particular the establishment of an evaluation procedure for behavioral detectors in
response to Objective 1.5. The ful�llment of the di�erent objectives eventually constitutes a good
indicator of the �exibility and the expressiveness of the AMBL.

We have then explored a process-based approach. Starting from existing function-based models
in abstract virology [35, 50, 68], we have built a second model around the original notion of
self-replication. The model is expressed inside process algebras, and more particularly the join-
calculus, in response to Objective 2.1. Compared to existing de�nitions, the new de�nition for self-
replication can be distributed over the system, allowing the formalization of the virus a�ordance
classes from [240]. From there, viral sets are built, containing all processes capable of iterative
self-replication. Consistently with [50], the model remains parametric with a possible re�nement
of the replication mechanism and the payload. In order to show the gain of expressiveness, other
behaviors than replication are expressed through parametrization, such as Rootkits stealth or
companion virus which could not be covered by the functional models.

According to the provided model, we have studied the compliance with the fundamental results
concerning detection and prevention. Without surprise, the undecidability of the detection [70] and
the prevention by isolation still holds [69]. However, in response to Objective 2.2, we have been able
to identify the algebra facilities impacting these results, allowing us to �nd approximate solutions.
Dynamic name generation strongly impacts detection meaning that detection within the fragment
of the join-calculus without name generation becomes decidable. Name scoping strongly impacts
prevention, meaning that solutions based on access tokens with restricted scope can contain the
malware propagation. We have also been able to formalize some behavioral detection techniques
within the model such as detection automata but also behavioral blocking and tainting using
typing mechanisms. Globally, the process-based approach is still less advanced than the previous
one. Some de�ciencies can still be found in the representation of self-replication at the basis of the
model. Our de�nition is still too broad and may encompass some false positive cases. However, we
believe that this de�nition could be re�ned and most of the results built above could be adapted
accordingly. This work constitutes a �rst attempt of formalization of malware by process algebra
that can lead to interesting continuations.

12.2 Perspectives

As a conclusion of this thesis, the bridge between operational and theoretical research is still in-
complete and the reference behavioral model still remains to be de�ned. Nonetheless, at some
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12.2. Perspectives

points the two research domains were linked using the process-based approach. The perspectives
opened by process algebras constitute a �rst axis of enhancement and future work. The re�ne-
ment of the self-replication remains the main point to address, which could probably be solved in
collaboration with specialists of the domain. Firstly, the choice of the join-calculus can be ques-
tioned and other algebras must be explored: higher-order calculi for process passing could ease
the de�nition of self-replication, distributed calculi with explicit locations could ease the study of
malware propagation and secure calculi with built-in protections and controls could ease the de-
sign of detection and prevention solutions. Secondly, the process-based model remains too close to
the syntactic level, which is con�icting with the philosophy of process algebras mainly addressing
semantic equivalence. It probably explains why we are still missing constructions for replication by
reconstruction or mutation. All these limitations and perspectives are described in greater details
in the intermediate conclusion from Chapter 11. Still, once the model corrected, the possibilities
o�ered by typing mechanisms seem really promising.

Concerning the grammatical approach, some opportunities of local enhancements have also
been identi�ed in the intermediate conclusion from Chapter 7. They have not been addressed
within this thesis because they would have constituted a whole thesis subject on their own. The
�rst opportunity lies in the generation of the behavioral descriptions. Beyond manual generation,
automated generation of new behavioral descriptions is a problem worth considering. How, by
comparing the global behaviors of di�erent malware, can we identify the blocks corresponding to a
common functionality? How can we automatically synthesize into a single description these func-
tionalities which can be instantiated through di�erent technical solutions? The second problem
is the actual expressiveness of the language and its coverage with regards to recent trends. Can
behavioral descriptions be also provided for more technically advanced behaviors such as kernel
and hardware-assisted virtual machine rootkits? This question is in fact related to a second oppor-
tunity of enhancement, corresponding to data collection above which behavioral detection relies.
Experimentations have shown that detection was highly dependent on the collection completeness.
A �rst problem is the con�guration of the collection tool and its environment. In particular, im-
portant e�orts must be deployed both for the collection of the information �ow in memory, using
tainting for example, and for the reconstruction of the required network con�guration, using pro-
tocol learning for example. To address the advanced kernel-based behaviors previously mentioned,
a second problem encountered by data collection is the integration of new sources of data, other
than simple API calls. It will quickly become mandatory to interface behavioral detectors with new
technologies, such as hypervisors and their hypercalls, to monitor the activity at the kernel level
of the hosts [83, 161, 183]. All these perspectives for future works constitute possible extensions,
either at the implementation or at the formalization level, of the grammatical framework.

To �nally conclude, we think that the behavioral approach constitutes a promising alternative to
scanning techniques since it o�ers a better resilience to the increasing number of malware released.
However, the currently deployed techniques are still not su�ciently mature. This thesis is a way to
encourage new works on behavior formalization as a solution to reach a better maturity for these
techniques.
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Appendix A
Operational semantics

for the behavioral language

W
ith respect to programming languages, an operational semantics is required to spec-
ify the resulting execution of a program. The semantics transforms the program into se-

quences of computational steps which may be evaluated. Inside the Abstract Malicious Behavioral
Language, the operational semantics requires important data structures, not only to evaluate the
usual computational operations, but also to handle the interactions between the di�erent objects.
As a matter of fact, the evaluation of the purely computational expressions from the grammar is
quite similar to any other programming language and shall not be described here. The reader can
refer to the semantic described by G. Bonfante et al. in [51] for complementary information.

The operational semantics described in this appendix mainly focuses on the handling of in-
teractions considering synchronous communications. Let us de�ne the required structures for a
con�guration of n concurrent objects. A �rst array σ = σ1...σn is de�ned to store the immediate
results during the evaluation of the di�erent objects executions. A second array V = V1...Vn is
required to store the values manipulated by these objects. At last, to model the exchanges between
the objects two matrices of size n× n must be de�ned:

• A matrix L symbolizing the links between objects. A link exists between the ith object and
the jth object if Lij = 1.

• A matrix D of lists storing the values transmitted between the objects. No bound is applied
to the lists contained in the matrix.

The operational semantics introduces the following notations. Let [x/y] denote the usual substi-
tution of y by x and the operator · denote the concatenation of two lists. The operational semantics
is de�ned in Figure A.1, by a set of evaluation functions εi where i refers to the ith object of the
system. The four-tuple <σ, V, L,D> represents the system con�guration, shared by all evaluation
functions. Concurrency between objects is introduced in rule (1) where the operator || denotes
the parallel evaluation of their functions. In order to maintain the atomicity of interactions and
operations, and thus guarantee the consistency of the system con�guration, a non-deterministic
choice is resolved at each evaluation iteration to know which function is evaluated �rst. The rules
(2) and (3) manage open and close commands by creating and destroying links in the matrix L.
Rule (4) starts the execution of a new object by starting the parallel evaluation of its associated
function. The rules (4) and (5) manage data transmissions between objects. The matrix D stores
the transmitted value until its consumption by a conccurent object. Notice that transmissions can
only occur if a link is existing between objects in the matrix L.
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• Concurrency:

(1) εic1; p1
|| εjc2; p2

(<σ, V, L,D>) =


εip1
|| εjc2; p2

(εic1;(<σ, V, L,D>)) with a probability of 50%

εic1; p1
|| εjp2

(εjc2;(<σ, V, L,D>)) with a probability of 50%

• Link creation and destruction:

(2) εiopen oj ;(<σ, V, L,D>) =
{
<σ[σi/1], V, L[Lij/1], D> if Lij = 0
<σ[σi/0], V, L,D> otherwise

(3) εiclose oj ;(<σ, V, L,D>) =
{
<σ[σi/1], V, L[Lij/0], D> if Lij = 1
<σ[σi/0], V, L,D> otherwise

• Object execution:
(4) εiexecute oj ; p1

(<σ, V, L,D>) = εip1
|| εjp2

(<σ, V, L,D>)

• Data transmission and reception:

(5) εisend v→oj (<σ, V, L,D>) =
{
<σ[σi/1], V, L,D[Dij/Dij · [v]> if Lij = 1
<σ[σi/0], V, L,D> otherwise

(6) εireceive v←oj (<σ, V, L,D>) =

 <σ[σi/1], V [v/v′], L,D[Dji/T ]> if Lij = 1 and
Dji = [v] · T

<σ[σi/0], V, L,D> otherwise

Figure A.1 - Operational semantics for the interactive core. These
AMBL semantics describe the evaluation of interactions between concurrent objets.
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Appendix B
Analyzing malware

behaviors in the wild

T
his appendix presents a synthesis of the preliminary survey used for the generation of the
original descriptions of malicious behaviors [139]. This survey has been led on a pool con-

taining twenty representative samples from di�erent classes of malware. The sample selection, as
well as the chosen sources of information, have already been discussed in Chapter 3, Section 3.2.1.
Section B.1 lists the prevalent behaviors that have been identi�ed in complement to Section 3.2.1.
The generic descriptions have been built by �nding the common principles between their di�erent
implementations. Section B.2 presents a preliminary study about the potential translation between
implementations and the behavioral descriptions written in the language.

B.1 Behaviors identi�cation

Replication

V/FI

Flip Infection of COM and executable �les during execution
Lewor Prepend infection of an executable �le
Rile Prepend infection of an executable �le with original code relocation
Zelly Infection in new sections of the PE �le

or merging the program in a unique section and infection

V/EmW

Bagle Copy of the running virus in the system directory
Chir Copy of the running virus in the system directory

Copy in a �le associated to a web page adding the necessary script to be launched by the page
Feebs Copy of the running virus in the system directory
Loveletter Copy of the running virus in the system directory as several executables or web pages

Replace every picture �le on the hard drive or others with speci�c extensions
Magistr Infection of the last section in the executables of the Windows directory
MyDoom Copy of the running virus in the system directory
Sober Copy of the running virus in the system directory as several executables or mails
Zellome Copy of the running virus in the system directory with destruction of the original �le

V/P2PW

Supova Copy of the running virus in the system directory
Winur Copy of the running virus in the root directory

Table B.1 - Identified behaviors during survey (Table 1st part).
Acroyms for malware classes: Virus (V), File Infector (FI), Worm (W), E-mail Worm
(EmW), Peer-to-Peer Worm (P2PW), Trojan (T), Rootkit (R).
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Propagation to other systems

V/FI

Lewor Copy on removable device with the creation of an autorun �le
Copy on network drives and attempt to run as a remote task thanks to NetBIOS

V/EmW

Bagle Massmailing with the virus as attached �le
Chir Massmailing with the virus as attached �le

Copy on network drives
Feebs Massmailing with the virus as attached �le

Copy in directories whose name evoked shared folders through P2P
Loveletter Massmailing with the virus as attached �le

Using IRC channels
Magistr Massmailing with the virus as attached �le
MyDoom Massmailing with the virus as attached �le

Copy in the KaZaA default shared directory
Sober Massmailing with the virus as attached �le

V/P2PW
Supova Copy in the Windows media directory and con�gure it as shared through KaZaA

Automatic sending to the MSN Messenger contact list
Winur Copy in a new hidden directory con�gured as shared by default for several P2P clients

Copy on a �oppy disk if present

W

Slammer Transmission by packets over UDP with a �x port number to an random IP address
CodeRed Transmission by packets over TCP/IP on port 80

Polymorphism and metamorphism

V/FI

Zelly Ciphering of the virus body according to a random quadratic function
Mutation of the decryptor by the random generation of combined arithmetic expressions

Magistr Ciphering the injected code by simple XOR with a shifting key value
Metaphor Ciphering using the pseudo-random index decryption

Garbage insertion, replacement by equivalent instructions and code permutation
V/EmW
MyDoom Simple permutations of the strings

Ciphering the embedded code by simple XOR with a shifting key value
Zellome Ciphering of the virus body according to a random quadratic function

Mutation of the decryptor by the random generation of combined arithmetic expressions

Residency

V/FI

Flip Altering the Master Boot Record end the boot sector
Zelly Redirection of the program entry point towards the new sections

or interception of a particular function call of the import table in case of section merging

V/EmW

Bagle Writing the virus whole path and name in a Windows run registry key
Chir Writing the virus whole path and name in a Windows run registry key
Feebs Registering by the manager as a service executed during at the system loading
Loveletter Writing the virus whole path and name in a Windows run registry key
Magistr Writing the virus whole path and name in a Windows run registry key

Writing the virus path in the �le win.ini
Registering the address of the viral code in the import table of the infected program

MyDoom Writing the virus whole path and name in a Windows run registry key
Sober Writing the virus whole path and name in a Windows run registry key
Zellome Writing the virus whole path and name in a Windows run registry key

Registering the virus as the debug program used by the Windows taskmanager

V/P2PW

Supova Writing the virus whole path and name in a Windows run registry key
Winur Writing the virus whole path and name in a Windows run registry key

T

Puper Writing the virus path in the run registry key associated to the Windows explorer policy

Table B.2 - Identified behaviors during survey (Table 2nd part).
Acroyms for malware classes: Virus (V), File Infector (FI), Worm (W), E-mail Worm
(EmW), Peer-to-Peer Worm (P2PW), Trojan (T), Rootkit (R).
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Overinfection test

V/EmW

Bagle Test the presence of a particular registry key
Magistr Test the presence of constant values in PE �le headers
MyDoom Test the presence of a particular registry key

W

CodeRed Test the presence of a particular �le under a precise path

Test of activity in memory

V/EmW

Bagle Test the presence of a particular mutex
MyDoom Test the presence of a particular mutex

Proactive defense

V/FI

Lewor Terminating process whose names are characteristic of antiviruses or protection software

V/EmW

Bagle Terminating process whose name are characteristic of antiviruses or protection software
Sober Terminating process whose name are characteristic of antiviruses or protection software

V/P2PW

Winur Deactivating the KaZaA automatic analysis and protections through registry keys

T

Puper Separated instances of the malware mutually monitoring their respective execution

Stealth and anti-analysis measures

V/EmW

Bagle Rede�ning its own SMTP message builder
Chir Rede�ning its own SMTP message builder
Feebs Hide its registry keys and �les by intercepting system calls in the memory space of processes

Rede�ning its own SMTP message builder
Magistr Execution of the original legitimate code until a hooked function is called to gain control

Antidebugging by injection of structures for error handling
MyDoom Rede�ning its own DNS cache

Rede�ning its own SMTP message builder

R

Vanti Hide its process and �les by intercepting system calls from the system service sescriptor table

T

Puper Hide its registry keys by intercepting system calls

Table B.3 - Identified behaviors during survey (Table 3rd part).
Acroyms for malware classes: Virus (V), File Infector (FI), Worm (W), E-mail Worm
(EmW), Peer-to-Peer Worm (P2PW), Trojan (T), Rootkit (R).

B.2 From instantiation to abstract description

Let us now focus on the translation approach that has been used during the di�erent analyses.
How can some instruction blocks be interpreted into grammar units. Let us consider a practical
example with the propagation behavior which is quite complete. Propagation can be implemented
through di�erent technical solutions which remain nonetheless quite similar as the information of
the Table B.2 con�rm.

To move closer to instantiation, let us chose a speci�c example with the e-mail worm MyDoom
and illustrate the translation into the AMBL with quotes from its source code. The same principle
of association will stand for the translation of other samples. Let us remind brie�y the generative
rule of the description before unrolling the consecutive productions:
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(i) <Propagation> ::= <Open><Read><Mutation><Transmit>
| <Read><Open><Mutation><Transmit>

{ <Propagation>.srcId = <Read>.objId
(<Propagation>.srcTp= this) ∨ (<Propagation>.srcId = <Duplication>.targId)
<Propagation>.targId = <Open>.objId
<Propagation>.targType = obj_com
<Open>.objType = <Propagation>.targType
<Read>.objType = <Propagation>.srcType
<Transmit>.objId = <Propagation>.targId
<Transmit>.objType = <Propagation>.targType
<Transmit>.varId = <Read>.varId }

This rule does not contain any �nal unit, so no association can be done with the source. How-
ever, notice that the communicating type of the object to be opened is inherited from the target
type attribute (<Open>.objType = <Propagation>.targType = obj_com). Let us now move forward
to this opening rule.

(ii) <Open> ::= open object;
{ <Open>.objId = object.objId
object.objType = <Open>.objType }

/* Open socket */

struct hostent *h = gethostbyname(hostname);

struct sockaddr_in addr = *(h->h_addr_list[0]);

sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

connect(sock, addr, sizeof(struct sockaddr_in));

A call to the socket function can be directly associated to an open symbol within the behavioral
language, and more precisely the opening of a communicating object, thus directly determining
the object.objType attribute consistently with the inherited value <Open>.objType. However, this
function alone may not provide all the required information. Combined with the connect call,
precious information can be recovered from the addr structure about the kind of socket created.
This semantic information can be assigned to additional semantic attributes such as location at-
tributes (object.objLoc storing the IP address). Similarly, the communicating object could have
been a shared directory. However, an interpretation would have been required to recognizes a
peer-to-peer related folder in the path given as parameters to the CreateFile.

(iii) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object1.objType = var
object2.objId = <Read>.objId
object2.objType = <Read>.objType }

/* Open currently executing file */

GetModuleFileName(NULL, selfpath, MAX_PATH);

HANDLE hFile = CreateFile(selfpath, GENERIC_READ,

FILE_SHARE_READ|FILE_SHARE_WRITE, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

/* Reading file content in buffer */

DWORD dwSize = GetFileSize(hFile, &dwUp);

ReadFile(hFile, pBufferCode, dwSize, &dwRead, NULL);

Moving to the reading rule, a preliminary call to CreateFile can be directly mapped to a
create symbol. It also determines the created �le object type as permanent. Once again, the call
to GetModuleHandle enables the analysis of the parameters passed to CreateFile. This second

196



B.2. From instantiation to abstract description

call makes the distinction between the opening of a simple permanent object and the access to
the self-reference, thus allowing the re�nement of object1.objType to this. The resulting reference
hFile of these calls will then be followed using a unique identi�er object1.objId, for its identi�cation
in next operations. The ReadFile call is �nally mapped to a read symbol involving the created
object. Notice that the previous attribute assignements satify the constraints on the inherited
source type attribute (object2.objType = <Read>.objType = <Propagation>.srcType = this). The
code recovered from the self-reference is then stored inside the pBufferCode bu�er for transmis-
sion. A second unique identi�er object2.Id is assigned to the bu�er object, typed as a variable.

(iv) <Transmit> ::= <Format><Write>
{ <Format>.var1Id = <Transmit>.varId
<Write>.varId = <Format>.var2Id }

In the case of Mail Worms, the transmission can not be achieved directly without preliminary
phase of formatting. Since the SMTP protocol can only carry printable characters, the code of the
worm must thus be transformed. It would not have been the case for example in basic worms like
Slammer who send their code like raw data.

(v) <Format> ::= object1 := &(object2);
[object3] := object4;
object5 := +(object6, object7);
<Encode>
[object8] := object9;

{ <Format>.var2Id = object2.objId
<Format>.headerId = object4.objId
object1.objType = var
object2.objType = var
object3.objId = object1.objId
object3.objType = object1.objType
object4.objType = var
object5.objId = object3.objId
object5.objType = object3.objType
object6.objId = object3.objId
object6.objType = object3.objType
object7.objType = var
<Encode>.var1Id = <Format>.var1Id
object8.objId = object3.objId
object8.objType = object3.objType
object9.objId = <Encode>.var2Id }

/* Concatenate header */

char header[] = "From: myadresse@domaine.ext\r\n
To: target adresse@domaine.ext\r\n
Subject mail subject\r\nDate\r\n
MIME-Version\r\nContent-Type: multipart/mixed\r\n";

lstrcat(pFormatted, header);

/* Base64 encoding */

msg_b64enc(pBufferCode);

/* Concatenate code */

lstrcat(pFormatted, pBufferCode);

The concatenated header is a constant which is directly determined by the exchange protocol.
In this particular case, the constant is a SMTP header prede�ned in a table of characters. In addi-
tion to the header, in order to comply with the SMTP protocol, an encoding step must transform
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attached �les into data encoded using a 64 base. Here the binary operations <Op2> correspond to
table lookups, logic and and shifting operations. Just as speci�ed by the semantic rules, the format-
ted data are built using in input the bu�er storing the worm code recovered from the self-reference.

(vi) <Encode> ::= object1 := <Op2> (object2, object3);
| ε

{ <Encode>.var2Id = object1.objId
object1.objType = var
object2.objId = <Encode>.var1Id
object2.objType = <Encode>.var1Type
object3.objType = var }

/* Base 64 table */

BYTE alpha[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz0123456789+/";

/* Base 64 encoding */

q[0] = alpha[t[0] >> 2];

q[1] = alpha[((t[0] & 03) << 4) | (t[1] >> 4)];

q[2] = alpha[((t[1] & 017) << 2) | (t[2] >> 6)];

q[3] = alpha[t[2] & 077];

The translation of the �nal data transmission is quite trivial. The send call is mapped to a
send symbol. The coherency of the behavior is guaranteed by the parameters of the call which
corresponds to the previously opened socket and the bu�er storing the formatted data.

(vii) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object1.objType = var
object2.objId = <Write>.objId
object2.objType = <Write>.objType }

/* Sending information */

send(sock, pFormatted, lstrlen(pFormatted), 0);
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Static analyzer of Visual

Basic Scripts

W
ith regards to Visual Basic Script (denoted VBS in the remaining of this appendix),
no collection tool such as NtTrace for PE Executables was available. Unfortunately, VBS is

proprietary explaining that the few existing parsers and interpreters remain commercial. We have
thus developed a complete collection mechanism to directly embed the abstraction layer, which was
not feasible in a commercial product [138]. By developing only a partial interpreter with restricted
code execution, we have been able to increase the performance of the instrumentation.

VBS being an interpreted and thus a high-level language, its analysis is simpler than native code
because of the visibility of the source code but also because of some integrated safety properties: no
direct code rewriting during execution and no arbitrary transfer of the control �ow [174]. For these
reasons, path exploration becomes conceivable. To do so, we have divided the analyzer in three
parts: (1) a �rst static part collecting di�erent information on the script structure and normalizing
the code to �ght obfuscation, (2) a second dynamic part exploring the di�erent execution paths
and collecting signi�cant events, and (3) the third part is the object classi�er which has been
integrated in order to type the event-related objects.

The whole analyzer has been coded in C using Microsoft Visual C++ 2005. The project has
been split in di�erent modules with a direct correspondence with the three parts mentioned above.
The articulation between the di�erent modules in the source code is described in the Figure C.1.
The references of the main functions and structures provided by the di�erent modules will be given
at the end of the related sections. Once compiled, the analyzer supports two modes: a textual
mode for human analysts and a binary mode for further automated analysis.

C.1 Static analysis module

The purpose of the initial static analysis is to map a comprehensive hierarchical structure on the
script code. This hierarchical structure is important to identify the di�erent execution paths along
the script. As a matter of fact, the static analysis heavily depends on the syntactic speci�cations of
the VBS language [19]. Thanks to the static analysis, the structure is enriched to store information
about the declared variable, the created managers and the normalized code. The enriched structure
is stored in the analyzer according to the scheme of the Figure C.2.
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Figure C.1 - Project architecture of the VBS analyzer. This archi-
tecture clearly represents the articulation between the syntactic parser recovering the
hierarchical structure of the script and the dynamic interpreter exploring paths.

Figure C.2 - Structure of a VBScript file. The structure stores important
information about the script, such as functions and procedures or the instantiated
managers. The structure also stores the normalized code to ease path exploration.

C.1.1 Functions, Procedures and Main localization

Functions and procedures constitute the main articulation of the script in delimited blocks. Un-
folding the related syntactic rules, the script �le is quickly parsed to localize the local functions and
procedures. For examples, functions are delimited by two speci�c markers: "Function" and "End

Function". In addition to localization, the signatures of the functions and procedures are also re-
trieved with the names of their arguments. The Main procedure is �nally recovered by deduction.
The Main is the �rst portion of code reached which is outside of any function or procedure. The
localization of these di�erent elements is achieved by calling the localizeFuncAndProc function
of the module (see References in C.1.4).

C.1.2 Declarations recovery

Inside this global structure, the di�erent delimited blocks are then analyzed line by line to col-
lect important declaration. Direct declarations of variables and constants are recovered from lines
beginning with the keywords "Dim" and "Const". A special case of declaration is the creation
of managers. Manager creation is achieved using the static script methods "CreateObject" or
"ActiveXObject". In the context of malware analysis, several important managers must be iden-
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ti�ed thoroughly:

1) �le system managers ("Scripting.FileSystemObject"),
2) shell managers ("WScript.Shell"),
3) network managers ("WScript.Network"),
4) mail managers ("CDO", "Outlook.Application").

Additional managers, such as the Windows Messenger manager could also be considered. However,
identifying them is not always an easy task since most malware try to hide their access to these
managers. For this reason, the references to these managers are followed through the di�erent
declarations and a�ectations to avoid any loss. If a creation occurs where the name of the manager
is unknown, its reference is stored in a speci�c list. During dynamic interpretation, if an unknown
manager is used in conjunction of an API call, the type of the manager is learned and the manager
structure is updated. During analysis, declared managers are extracted at each line by calling the
extractManagers function of the module (see References in C.1.4).

C.1.3 Code normalization

Declaration lines as well as comment lines are tagged to speed up the process by avoiding any
double analysis; other lines are normalized and stored in the script structure. The �rst step of
code normalization is to remove the numerous syntactic shortcuts provided by VBS. The single-line
concatenated instructions using ":" are dispatched on independent lines. The "With" structure
applied to a given object is reversed by concatenating this object in head of the lines starting
with a method access. This normalization is deployed in the analyzeMain, parseFunction and
parseProcedure functions of the module (see References in C.1.4).

Normalization is also critical to thwart obfuscation. Current obfuscation techniques consist in
splitting the di�erent strings in several substrings; characters may then be encoded into integers
using the "Chr" primitive. Normalization process is described in the Figure C.3 on a portion of
obfuscated code, extracted from a VBSWG worm variant. It reverses obfuscation by decoding the
integers into characters (i−ii) and concatenating consecutive substrings into a single one (ii−iii).
The whole process is applied to each line by calling the normalizeLine function (see References
in C.1.4). Obfuscation is also achieved in some scripts by string encryption. String encryption
techniques in VBS remain quite basic since the algorithm must work from the set of printable
characters to the exact same set for the ciphered text. This explains that most algorithms are
simply permutation-based. During the static analysis, the decryption routine is localized and
copied in a script �le through the detectStringCiphering function. The decryption routine is
localized by detecting any call to a local function when a string was expected as argument, in
particular during manager creation. Along the analysis, when an encrypted string is reached,
the decryption script is called on-demand using the decipherString function relaying the right
parameters, that is to say the encrypted string and optionally the key (see References in C.1.4).

(i) execute "set QI5N1=T2V93." & Chr(65) & Chr(116) & Chr(116) & Chr(97) & Chr(99) & Chr(104) &

Chr(109) & Chr(101) & Chr(110) & Chr(116) & Chr(115)

(ii) execute "set QI5N1=T2V93." & "A" & "t" & "t" & "a" & "c" & "h" & "m" & "e" & "n" & "t" & "s"

(iii) execute "set QI5N1=T2V93.Attachments"

Figure C.3 - Reversing obfuscation. This example is extracted from worm
generator variant. Integer are �rst decoded into characters. The resulting characters
are then rebuilt as a unique string before resolving the execute call.
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C.1.4 Structure and function references
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C.2 Dynamic interpreter module

A partial script interpreter has been de�ned to explore the di�erent execution paths. The previous
static analysis is important to identify the di�erent code blocks in the script which constitute
di�erent execution paths. Notice that the interpreter is only partial in the sense that the script
code is not really executed but only signi�cant operations and dependencies are collected. Here
again, the static analysis eases the interpretation process thanks to the normalized form of the
code as well as the collected information such as the managers.

C.2.1 Path exploration

Starting from the Main, the code is normally processed line by line calling the function processLines
(see References in C.2.3). However, calls to local procedures and functions as well as control
structures can interrupt this linear progression. The calls to local procedures and functions are
addressed by saving the current line position and jumping inside their code, but, with a particular
restriction: recursive calls have been blocked to avoid any stack over�ow. Both recursive calls and
mutual recursive calls involving multiple functions and procedures are detected by managing call
�ags indicating if they are already being executed.

Control structures are also handled by the interpreter to explore the di�erent alternative
paths. The interpreter detects the numerous syntaxes for conditional structures : "If Then

Else", "Switch", and loop structures: "While", "For", "For each". Each code block of the
structure is interpreted and its collected operations stored in the trace as alternative sequences.
The processConditional and processLoop functions are responsible for processing the di�erent
blocks before returning to the normal linear analysis (see References in C.2.3).

C.2.2 Operations and dependencies collection

Each script line is �rst processed to retrieve the di�erent monitored API calls manipulating �les,
registry keys, network connections or mails. The monitored calls are classi�ed by the function
monitorSytemCalls according to Table 4.1 (see References in C.2.3). Variable a�ectations also
have an important impact on the data-�ow and are thereby monitored. All these operations require
a second level of analysis to process the expressions used as arguments or values for a�ectations.
The global articulation between the di�erent levels of processing, as schematically described in
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Figure C.4 - Articulation of the processing levels. The levels of process-
ing are hierarchical. The global line is �rst processed to detect calls or a�ectations. The
expressions used as values or arguments are then processed. In the case of conditionals
or loops, processing is followed on inner lines, keeping track of the structure.

Figure C.4, is directly linked to the script structure in code blocks chained according to the con-
trol �ow. The order in which the di�erent operations are processed is important because of the
dependencies: calls to local functions and procedures require the system calls imbricated inside
their arguments to be resolved before jumping inside their code, and similarly, a�ectations require
their values to be resolved whether they depend on system or local calls.

With regards to the expression processing achieved by the processExpression function, the
resolution is immediate in case of a value made up by a single element (see References in C.2.3).
However, it becomes more complicated with concatenated values ("&"): the di�erent elements of
the expressions are analyzed and only the element with the greater type is kept as reference (see
Figure 3.5 for the type poset). This selection is used to decrease the number of data to monitor while
focusing on more signi�cant elements. Imbricated calls may also be encountered inside expressions
under two forms: either (1) res = call1(arg1).call2(arg2) or (2) res = call1(call2(arg2), arg1). In
these particular cases, a new intermediate object is created to store the result of the call. Using this
newly created object, a new line is then built before to be processed like any other: respectively
(1) int = call1(arg1) / res = int.call2(arg2) and (2) int = call2(arg2) / res = call1(int, arg1).
The intermediate object preserves the data-�ow during the analysis. Generally speaking the data-
�ow is really important and the di�erent references and aliases for objects must be followed up
through the processing of expressions, and in particular at key operations:

Monitored API call: The API is �rst classi�ed according to the operation classes but the API
name also indicates the natures of the involved objects. After an API call, the references
are updated for these objects as well as their type. In case of a new object, it is typed for
the �rst time using the object classi�er, otherwise; its type is re�ned according to its newly
discovered nature.

Local function/procedure call: Before jumping inside a function or a procedure, the referring
names of the arguments must be added as references for the objects passed as parameters.
These names are actually recovered from the static analysis of the signature. Once the whole
code executed, the added references must be removed to prepare for a next call. In addition,
in the case of functions, the returned value must be associated to the result variable. In VBS,
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the return value is stored under an object named liked the function. Once this value stored,
the function name must be removed from the object reference.

A�ectation: When an a�ectation occurs, the a�ected value is �rst processed as an expression
and the references of the a�ected object must be updated with the result. String process-
ing is also very common in VBS ("Mid, Left, Right, LTrim, RTrim, UCase, LCase,

Replace..."): string manipulations have been treated as a special case of a�ectation to
avoid any loss of the data �ow.

Call to execute: The following expression must be evaluated before to be written down in a
newly created line for processing.

C.2.3 Structure and function references
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C.3 Object classi�er module

In theory, the same object classi�er could be reused in the di�erent abstraction components as
pictured by the Figure 4.6. However, VBS is a language mainly based on character strings. Conse-
quently, the classi�er part dedicated to addresses is actually unused. In addition, extensions to the
classi�er part dedicated to strings can e re�ne to best �t the script particularities. In �rst place, im-
portant constants speci�c to VBS have been added, and in particular the "Wscript.ScriptName"
and "ScriptFullName" self-references. With regards to scripts, they may also be launched di�er-
ently from executables o�ering new way to start automatically. For this reason, boot objects have
been re�ned such as the Start page registry entry from Internet Explorer and con�guration �les
such as script.ini for in case of IRC worms targeting the mIRC client.

An important precision must be brought with regards to classi�cation: as already said, the
nature of an object may a�ect typing. According to the poset from the Figure 3.5, a variable can
not be typed as the self-reference. This consideration is helpful to avoid false positives where a
variable containing the name of the script is written down in a log or error �le, which is a common
practice in scripts.
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Dynamic collector of

JavaScript events

W
ith regards to JavaScript, several analysis tools were available by download or directly
online such as Wepawet [226]. However, the information recovered from these sources are

often already synthesized. In addition, several of the existing tools o�ers only a partial coverage
of the required extensions. To cope with this limitation, a new collector has thus been developed
extending an already existing tool called Ca�eineMonkey [87]. This tool was originally used for
deobfuscation by hooking key execution operations in the script interpreter SpiderMonkey [14].
Working at the interpreter level, it o�ers the advantage to be independent of any browser, meaning
that it can potentially support any extension independently of its portability. On the other hand,
the counterpart is that virtualized handlers must be developed for each additional extension. The
other interest of developing an interpreter-based collector is the opportunity to monitor the internal
data-�ow. Tainting techniques, that we have seen were missing in dynamic collection tools such as
NtTrace, can thus be integrated.

This appendix complements the presentation of the collector made in Chapter 4. It focuses
more particularly on the technical implementation of virtualized handlers for additional extensions
[136]. It explains in details the modi�cation performed over the original C code of SpiderMonkey.

D.1 Prototyping object classes to support new extensions

New extensions obviously require speci�c handlers. JavaScript being object-based, these handlers
are referenced inside the language as new classes of object. The �rst step is thus to create new
source �les for each additional class. A class is then de�ned by two sets of associated attributes
and methods. These attributes and methods are declared inside structures storing their reserved
keywords as well as their di�erent properties such as the authorized accesses for attributes or
the number of parameters for methods. For example, the support of AJAX has been implemented
through a new class de�ning the XmlHttpRequest object. Its structures for attributes and methods
are pictured in Figure D.1 and next examples will be continuations. As a matter of fact, declaring
attributes is insu�cient since no real memory space is reserved inside the interpreter to handle
them. As shown by the same �gure, a third structure may be de�ned to declare internal variables
which will correspond to these attributes. Here, only two internal variables are declared because
the other attributes have no real importance in the context of trace collection.
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static JSPropertySpec ajxmlhttpreq_properties[] = {

{ "onreadystatechange", XHR_ONREADYSTATECHANGE, JSPROP_EXPORTED },

{ "readyState", XHR_READYSTATE, JSPROP_READONLY | JSPROP_EXPORTED },

..., { 0 },

}

static JSFunctionSpec ajxmlhttpreq_methods[] = {

{ "getResponseHeader", ajxmlhttpreq_getResponseHeader, 1, 0, 0 },

{ "send", ajxmlhttpreq_send, 1, 0, 0 },

..., { NULL, NULL, 0, 0, 0 },

}

typedef struct AJRequest{

jsval callback;

jsval state

...

}

Figure D.1 - XMLHttpRequest object. The two �rst tables represent the
reserved keywords for the di�erent object attributes and methods whereas the last
table corresponds to the internal representation of the object inside the interpreter.

static JSBool request_setProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp){

jsval xhrval = OBJECT_TO_JSVAL(obj);

AJRequest* ajReq = JS_GetInstancePrivate(cx, obj, &ajxmlhttpreq_class, NULL);

switch(JSVAL_TO_INT(id)){

case XHR_ONREADYSTATECHANGE:

//Storing callback function inside internal representation

ajReq->callback = *vp;

//Logging setting access

fprintf(fLog, "xhr:%08X.onreadystatechange = fun:%08X\n", xhrval, *vp);

break;

...

}

return JS_TRUE;

}

static JSBool request_getProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp){

jsval xhrval = OBJECT_TO_JSVAL(obj);

AJRequest* ajReq = JS_GetInstancePrivate(cx, obj, &ajxmlhttpreq_class, NULL);

switch(JSVAL_TO_INT(id)){

case XHR_READYSTATE:

//Returning attribute internal value

*vp = ajReq->state;

//Logging getting access

fprintf(fLog, "var:%08X = xhr:%08X.readystate\n", *vp, xhrval);

break;

...

}

return JS_TRUE;

Figure D.2 - XMLHttpRequest attribute callbacks. For each class of
object, two generic callback methods are de�ned for getting and setting attributes.

These structures constitute the skeleton of the class prototype. Internally, the interpreter works
by registering callback methods to handle the di�erent object accesses. For example, two generic
callback methods are registered for reading and writing accesses to attributes. The identi�er of
the accessed attribute is passed in parameter, allowing the method to apply the right treatment.
For example, the Figure D.2 shows how the state of the request can be updated by modifying the
internal variables accordingly. In addition to these two generic methods for attributes, individual
functions are also associated to each declared method. The Figure D.3 presents the function
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associated to the send method. The function �rst records the method call inside the trace. It
then simulates a response from the server by modifying the state of the request object and by
automatically calling the callback routine. Notice that this example explains why these attributes
were declared as internal variables whereas the other were not.

static JSBool ajxmlhttpreq_send(JSContext *cx, JSObject *obj,

uintN argc, jsval *argv, jsval *rval){

jsval retval, xhrval = OBJECT_TO_JSVAL(obj);

AJRequest* ajReq = JS_GetInstancePrivate(cx, obj, &ajxmlhttpreq_class, NULL);

JSString* str; const char* strbytes;

JSFunction* callback;

//Logging method access

str = js_ValueToString(cx, argv[0]);

strbytes = JS_GetStringBytes(str);

fprintf(fLog, "xhr:%08X.send(var:%08X:\"%s\")\n", xhrval, argv[0], strbytes);

//Simulate the reception of a response

ajReq->state = INT_TO_JSVAL(4);

callback = JS_ValueToFunction(cx,ajReq->callback);

JS_CallFunction(cx, obj, callback, 0, NULL, &retval);

ajReq->state = INT_TO_JSVAL(0);

return JS_TRUE;

}

Figure D.3 - XMLHttpRequest method callbacks. Individual callbacks
are then de�ned for each declared method. Notice that for virtualization, the send
method simulates the reception of a response, thus increasing the collection coverage.

static JClass ajxmlhttpreq_class = {

"XmlHttpRequestObject",

JSCLASS_HAS_PRIVATE,

JS_PropertyStub, JS_PropertyStub, request_getProperty, request_setProperty,

JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub, JSCLASS_NO_OPTIONAL_MEMBERS

};

extern JSObject * js_NewXmlHttpRequestObject(JSContext *cx, JSObject *parent){

JSObject* xhr;

AJRequest* ajReq;

//Creating object using class template

xhr = JS_DefineObject(cx, parent, "XmlHttpRequest", &ajxmlhttpreq_class, NULL, 0);

//Setting attributes and methods callback

JS_DefineProperties(cx, xhr, ajxmlhttpreq_properties);

JS_DefineFunctions(cx, xhr, ajxmlhttpreq_methods);

//Allocating space for internal representation

ajReq = JS_malloc(cx, sizeof(*ajReq));

ajReq->state = INT_TO_JSVAL(0);

JS_SetPrivate(cx, xhr, ajReq);

return JS_TRUE;

}

extern JSObject * js_InitXmlHttpRequestClass(JSContext *cx, JSObject *obj){

fprintf(fStat, "CONTROL: XmlHttpRequest\n");
return js_NewXmlHttpRequestObject(cx, obj);

}

Figure D.4 - XMLHttpRequest class prototype and constructor. A
class structure is �rst de�ned. The constructor is then responsible for registering the
additional attributes and methods as well as the callback methods behind.

Just like in any object-based language, a constructor must be de�ned for each object class.
Since JavaScript is prototype-based, a class initializer is also required. These two functions are
responsible in particular for registering the structures and callback methods associated to the
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di�erent class attributes and methods. The Figure D.4 describes the implementation of these two
functions for the request object.

//jsatom.h: declaration of a new object type

struct JSAtomState {

...

JSAtom *xhrobjAtom;

}

//jsatom.c: declaration of a reserved string of the language

const char js_xhrobj_str[] = "XMLHttpRequest";

JSBool js_InitPinnedAtoms(JSContext *cx, JSAtomState *state){

...

FROB(xhrobjAtom, js_xhrobj_str);

...

}

//jsapi.c: associate typed atom with class initializer inside the library entry

static struct {

JSObjectOp init;

size_t atomOffset;

} standard_class_atoms[] = {

...

{ js_InitXmlHttpRequestClass, ATOM_OFFSET(xhrobj) },

{ NULL, 0 }

}

Figure D.5 - Declaring XmlHTTPRequest atoms in the interpreter.
A new type is created for the requests among the atoms of the language. The class
initializers are �nally associated to these typed atoms.

The previous operations de�ne the implementation of the necessary classes as well as the exten-
sion handlers behind. These classes must now be introduced inside the language supported by the
interpreter. This is done by de�ning a new type for the atoms of the language. The name of the
class is reserved as a keyword, to be recognized in association with the operator new. Whenever
this construction is encountered in a script, the associated class initializer is called automatically.
As a matter of fact, the interpreter is de�ned as a library providing external APIs to the shell part.
Some modi�cations must thus be performed inside the module responsible for the management
of the atoms of the language. As described in Figure D.5, the modi�cations are to be proceeded
inside the �le module and its associated header. They only consist in reserving the right keywords
and registering the associated class initializers.

D.2 References of supported extensions
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Additional product

evaluations

E.1 Evaluation results for Product D

Product D (2008)
Editor: X
Number of executions Detection rate (%): Detection rate (%):

Resident protection Mail protection
500 0(0%) 0(0%)

Table E.1 - Detection results for Product D.

According to the results shown in Table E.1, no monitoring of the actions taken by the malware
must be done in this version of Product D. However the editor announced a few months ago, the
addition of a new engine to traditional signature scan and heuristic analysis, this engine speci�cally
designed to detect unknown malware. No more information is given on its functioning, we can only
assume it is not based on behavioral models because the behaviors embedded in our mutation engine
are inspired from common malware and are thus basically well known by analysts. It is simply
the way they are deployed and combined which di�ers. If behavioral detection was integrated, the
standard behaviors among the hundreds of executions should at least have been recognized.

E.2 Evaluation results for Product E

Product E (2009)
Editor: X
Procedure Detection rate (%):
On-demand scanning 0(0%)

Table E.2 - Detection results for Product E.

In its original version, Product E is a simple command-line antivirus. No behavioral detection is
supported; in fact even on-access scanning is not supported either. On access scanning is provided
by additional open source modules. Considering Product E, the test procedure was thus reduced
to the scanning on-demand of the engine. As pictured in Table E.2, the result was negative even
with generic signatures including wildcards.
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Product E has been portated to Windows with by the support of a second open-source project.
The Window version can be combined with an open-source watchdog module monitoring the
activity of processes with regards to other processes, the �le system, the registry or the networks
connections. For each monitored action, the user is warned and asked for a decision: by default we
have accepted all operations in order to continue the detection process (for this reason, the results
have been gathered according to the di�erent behavior combinations). In addition, module can be
con�gured to deploy on-access scanning with Product E. A new series of tests has been deployed
on this new con�guration.

Resident Module (2006) combined with Product E (2009)
Editor: Open-source
Monitored actions
βm="writing to mytmanager.exe in a system directory"
βi="writing to win.ini or system.ini in a system directory"
βr="writin to a run regsitry key"
Number of executions Detected actions Detection rate
500 {} 6(1, 2%)

{βm} 74(14, 8%)
{βi} 139(27, 8%)
{βr} 38(7, 6%)
{βm, βi} 131(26, 2%)
{βm, βr} 112(22, 4%)

Table E.3 - Detection results for Product E and Module.

The results given in Table E.3 show a good coverage at �rst sight, but these results are deceptive.
As a matter of fact, the number of false positives is enormous. After interpretation of these results,
we can observe that any write attempt to a �le in a system directory raises an alert. Outside the
context of duplication, this operation may be benign, during software installations for example.
If duplication is achieved in an other location, such as the variants duplicating in the temporary
directory, the engine is no longer detected. A reason for these numerous false positives and the
easiness of bypass, is that no interpretation and correlation is made between the isolated actions.
The resident module is in fact a simple access control whose decision �nally relies on the user:
accept, feign or deny.

However, the number of false positives can be reduced by �ltering on the name of the call-
ing process and the various action arguments. Con�guration of the �lters is manual by regular
expressions. Considering the default con�guration, it still requires a lot of enhancements. For
information, before the complete loading of Windows, between 3 and 5 alerts are already raised.

If not con�gured properly, the module has a very strong impact on the system performance.
Sometimes, it slows down the system until the failing of the monitored process. It occurred several
time with the engine. In fact, several users have also reported some instabilities leading to blue-
screen. A last but important aspect is that the mdoule is only supported until Windows XP SP2.
The pack SP3 and Vista versions forbid hooking techniques on which the module is based. The
development is thus no longer supported.

E.3 Evaluation results for Product F

According to the results shown in Table E.4, the product fails to detect any of the malicious
behaviors of the engine (duplication, propagation, residency, overinfection), in spite of the advanced
protection which monitors the activity of processes. An exception for mail propagation. No alert
is raised by Norton but the propagation is blocked by a reset request sent to the SMTP server
before the complete packet exchange.
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Product F (2009)
Editor: X
Number of executions Non-detected Reseted mail connexion
500 322(64, 4%) 178(35, 6%)

Table E.4 - Detection results for Product F.

E.4 Evaluation results for Product G

Product G (2009)
Editor: X
Number of Non Non-authorized modi�cation Non-authorized modi�cation
executions detected of a starting element of win.ini con�guration

in the registry
500 295(59, 0%) 270(34, 0%) 35(7, 0%)

Table E.5 - Detection results for Product G. The product is con�gured
with Antivirus and Spyware protection activated, as well as function monitoring.

According to the results shown in Table E.5, behavioral protection is mainly achieved by mon-
itoring the con�guration �les and the registry keys involved in the boot sequence: win.ini and
the run registry keys. On the other hand, no detection occurs for the other malicious behaviors
such as duplication or propagation. In addition, the accesses to these starting �les and keys seem
�ltered. For example, when the value registered in the key did not contain the .exe extension, no
alarm was raised. Other �lters may be deployed since several operations on run registry keys and
win.ini were missed, without �nding any clear distinct characteristic for these misses.

A second aspect with regards to the product is the timeliness of the detection. The alert are
sometimes raised several seconds after the monitored modi�cations have been achieved. Sometimes
the tested polymorphic engine had even already �nished its execution. Even if the product restores
the previous �le or registry con�guration, the damage is already done. For example, propagation
was never contained.

Product H (2009)
Editor: X
Monitored actions
β1="HIPS/FileMod-001."
β4="HIPS/FileMod-004."
β2="HIPS/RegMod-002."
β14="HIPS/RegMod-014."
Number of executions Detected actions Detection rate
500 {} 422(84, 4%)

{β1, β4} 15(03, 0%)
{β2, β14} 61(12, 2%)
{β1, β4, β2, β14} 2(00, 4%)

Table E.6 - Detection results for Product H. The product is con�gured
with on-access control activated for read/write, behavioral analysis with HIPS acti-
vated to detect all suspicious behaviors. FileMod-001: a �le has attempted to perform
a suspicious move or copy on the computers �le system. This usually involves copying
itself to a sensitive or protected location - FileMod-004: attempt has been made to
write a suspicious-looking �le to a sensitive or protected location - RegMod-002: a
program has attempted to modify the registry of the computer in order for it to run on
system startup - RegMod-014: a suspicious-looking program has attempted to modify
the registry of the computer in order for it to run on system startup.
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E.5 Evaluation results for Product H

According to the results shown in Table E.6, behavioral detection is achieved by a HIPS module
monitoring the Windows directories as well as the run registry keys. A whole list of the monitored
behaviors can be found on the product website.

With respect to �le related alerts, they are all raised when duplication is achieved in a Windows
directory which is protected by the HIPS. It means that duplication is achievable anywhere else.
In addition, an alert is raised only when duplication is achieved by calling the CopyFile service.
Any other duplication method is missed, explaining the low detection rate (3,4%). Run registry
key are more rigorously monitored, however modi�cations were missed and their detection rate
should be about 30% and 12%. At last, with respect to propagation, no alert was raised at all.
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Résumé:
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Cette thèse s'intéresse à la modélisation des comportements malicieux au sein des codes malveillants,
communément appelés malware. Les travaux de thèse s'articulent selon deux directions, l'une opérationnelle,
l'autre théorique. L'objectif à terme est de combiner ces deux approches a�n d'élaborer des méthodes
de détection comportementales couvrant la majorité des malwares existants, tout en o�rant des garanties
formelles de sécurité contre ceux susceptibles d'apparaître.

La première approche opérationnelle introduit un langage comportemental abstrait, décorrélé des aspects
liés à l'implémentation tels que les langages de programmation ou les environnements d'exécution. Le langage
en lui-même repose sur le formalisme des grammaires attribuées permettant d'exprimer la sémantique des
comportements. A l'intérieur du langage, plusieurs descriptions de comportements malicieux sont spéci�ées
a�n de construire une méthode de détection basée sur le parsing. Cette méthode supporte une architecture
multi-couche composée de modules d'abstraction et d'automates génériques. Sa mise en ÷uvre a montré
des résultats prometteurs en termes de couverture, allant de 51% pour les exécutables jusqu'à 91% pour les
scripts. Sur la base de ce même langage, des techniques de mutation comportementale allant au delà de
celles existantes sont également formalisées à l'aide de techniques de compilation. Ces mutations se révèlent
un outil intéressant dans le cadre de l'évaluation de produits antivirus.

La seconde approche théorique introduit un nouveau modèle viral formel, non plus basé sur les paradigmes
fonctionnels, mais sur les algèbres de processus. Ce nouveau modèle permet la description distribuée de
l'auto-réplication ainsi que d'autres comportements plus complexes, basés sur les interactions. Il supporte
la redémonstration de résultats fondamentaux tels que l'indécidabilité de la détection et la prévention par
isolation. En outre, le modèle supporte la formalisation de plusieurs techniques existantes de détection
comportementale, permettant ainsi d'évaluer formellement leur résistance.

Abstract:

Keywords:
Malware, Behavioral Models, Detection, Mutation, Attribute-Grammars, Process Algebras

This thesis is devoted to the modeling of malicious behaviors inside malevolent codes, commonly called
malware. The thesis work follows two directions, one operational, one theoretical. The objective is to
eventually combine these two approaches in order to elaborate detection methods covering most of existing
malware, while o�ering formal security guarantees against appearing ones.

The �rst operational approach introduces an abstract behavioral language, independent from implemen-
tation aspects such as programming languages or execution environments. The language itself relies on the
attribute-grammar formalism, capable of expressing the behavior semantics. Within the language, several
behavior descriptions are speci�ed in order to build a detection method based on parsing. The method
supports a multi-layered architecture constituted of abstraction modules and generic automata. Its deploy-
ment has shown satisfying results in terms of coverage, ranging from 51% for malicious executables to 91%
for scripts. On the basis of the same language, some techniques of behavioral mutation going further than
existing ones have been formalized using compilation techniques. These mutations have proved themselves
interesting tools in the context of antiviral product evaluation.

The second theoretical approach introduces a formal viral model, no longer based on functional paradigms,
but on process algebras. This new model enables the distributed description of self-replication as well as
other more complex behaviors based on interactions. It supports the redemonstration of fundamental re-
sults such as the detection undecidability or the prevention by isolation. Moreover, the model supports the
formalization of several existing techniques of behavioral detection, thus allowing the formal evaluation of
their resilience.


