
Formal Model Proposal

for (Malware) Program Stealth

Éric Filiol⋆

Army Signals Academy
Virology and Cryptology Laboratory,

Rennes (France)
eric.filiol@esat.terre.defense.gouv.fr

Abstract. Recent advances in stealth techniques have dramatically in-
creased the malware hazard. More recently, virtualisation-based rootkits
like SubVirt or BluePill have strongly challenged the classical capabili-
ties of malware detection. In this paper, we formalize stealth and rootkits
technologies in a far different way that those typically considered, that is
to say as a more or less complex set of hooking and kernel subversions. By
comparing stealth or rootkits to steganographic techniques, we propose
a new information theoretic-based formalisation that enables to define
the problem of stealth detection in a more powerful and high level way
than the existing ones. Consequently, it yields new perspectives of what
detection of stealth really is and how to address the relevant problem on
a practical basis. In particular, this modelling gives clues and potential
practical approaches to detect the most recent rootkit techniques like
SubVirt or BluePill.

Keywords: Stealth, Virtualisation, Steganography, Information theory, Mal-
ware, BluePill, SubVirt, Rootkits, Detection.

1 Introduction

As soon as malware writer has begun to produce malware, they tried to make
them more or less invisible for the user and later, with the evergrowing antiviral
detection capabilities, with respect to the antivirus. Hiding in fake corrupted
cluster, hooking interruption or APIs... have been very soon considered for the
general purpose of stealth. Present malware still use these classical techniques
and will do. And contrary to recent claims [19, 20], the game never really changed
and stealth approaches fundamentally remain the same. Even the term of rootkit
is nothing but an extension of stealth and could be itself defined as a more or
less complex set of stealth techniques.

However, for most IT security professionals, recent advances in stealth – and
particularly virtualization-based stealth [19] – seem to represent an important

⋆ Also Associate Senior Professor at ESIEA - Laval filiol@esiea.fr

and significant step and consequently strongly challenge the word of classical
security. What about the computer security gloomy future forecast by some
recent claims? Fortunately not even if – as it has been previously the case,
for example with respect to polymorphism – existing protection and detection
techniques are bound to evolve.

Another key misperception comes from the fact that the concept of stealth
is frequently misunderstoood with that of malware. Stealth must should be seen
only as a set of techniques whose aim is to protect a file or a process against
detection in the broadest sense. The file or process to be hidden are not neces-
sarily malicious ones. The best example is probably the Sony Rootkit, even if
we can consider this approach as a rather trivial and unefficient one. But other
cases are bound to emerge.

All this misperception comes from the fact that there does not exist any
universal definition – independant of the operating system, the software or the
hardware – of what stealth really is. The only existing formalisation attempt [22]
considers a subclass of stealth only. As far as stealth classification is concerned,
the Rutkowska’s recent attempt [20] has completely mistaken the different con-
cepts behind stealth while totally neglecting the computability and complexity
issues.

In this paper we propose such a universal model for stealth based on infor-
mation theory and steganography. Let us precisely define the latter concept

Definition 1 (Steganography and steganalysis) The steganography is the set
of techniques which not only enable the security of the information – COM-
SEC (COMmunication SECurity) aspect – but also and above all the security of
the (information) tranmission channel – TRANSEC (TRANSmission SECurity)
aspect. The steganalysis is the set of detection techniques whose purposes is to
detect the use of steganography and to access the hidden information.

This definition gives an obvious parallel between stealth and steganography: the
COMSEC aspect is related to the malware itself (its code and its actions) while
the TRANSEC aspect relates to the malware execution and interactions with the
target system. It becomes thus interesting to develop this parallel in the context
of information theory and statistics in order to completely model stealth. This is
the central topic of this paper. This approach moreover enables to show that if
malware detection is a general undecidable problem [3, 4], there is no such things
as total malware weapons or total invisibility for programs.

The paper is organized as follows. Section 2 presents the our formal model for
stealth while Section 3 deals with the formalisation of stealth detection. In order
to illustrate and give clues on how detection should evolve to manage the most
sophisticated techniques, Section 4 presents some practical aspects of detection
before concluding in Section 5.

We will not recall the different existing stealth techniques whether classical
or very recent like virtualisation-based ones. The reader will refer to [4, Chap.
7] or [8, 14, 19, 20].

2 Formal Model of Stealth

2.1 Previous Works

There is only one known attempt of formalisation with respect to program
stealth. It has been introduced by Zuo and Zhou (2004) by means of recursive
functions.

Let Ω be an enumerable set whose elements describes either a program or a
data. Let be σ : Ω → N ∪ ⊥ a total recursive function which describes a formal
abstraction of a computer system resources (executable programs, operating
system, system calls, clock, memory, disks...). If we have σ(x) = ⊥ then the
function σ is undefined with respect to x (hence the function is indeed total).
Let us denote a function whose value at n is y and which is the identity function
for the other values, by the symbol σ[y/n]. For conciseness purposes, we will use
the expression σ[v(nσ)] instead of expressions like σ[v(σ(n))/n], which means
the value in σ corresponding to name n has been performed an operation v in
it.

Definition 2 (Stealth virus) (Zuo & Zhou, 2004) Let v be a total recursive
function and S a recursive function denoting a system call. Then the pair (v, S)
is a stealth virus with respect to S if there exists a recursive function h such
that, for all i,

φv(i)(σ) =







D(σ), if T (σ)
φi(σ[v(S(σ)σ), h(Sσ)]), if I(σ)
φi(σ), otherwise

and

φh(S)(x) =

{

φS(y), if x = v(y)
φS(x), otherwise

where the recursive predicates T (σ), I(σ) represent the payload trigger condition
and the infection condition, respectively. The recursive function S(σ) is called
the selection function.

Whenever T (σ) is true, then the payload (D(σ)) is executed. If predicate I(σ) is
true, then the virus selects a target program to infect by means of the selection
function S(σ), infects it and then execute the host program. But a stealth virus
will additionally modify or use some system calls or resources in such a way that
whenever the system or the user are checking whether an infection occured or
not (whatever may be the detection technique used), no infection is detected at
all while indeed there is one (even if the antivirus in place used to detect it if no
stealth were used).

2.2 Modelling Stealth: Steganography and Information Theory

As presented within the introduction, steganography ains at hiding the existence
of a transmission channel. Now, the concept of stealth as usually perceived in

computer virology, essentially consists in hiding into a computer system – we will
compare it to the transmission channel – both data (program code as an exam-
ple) and actions directly or undirectly related to the data (during the program
execution). According to our parallel, those data and actions will be compared
to the message to be hidden.

That first parallel immediately enables to define the camouflage techniques
as the subclass of trivial stealth techniques which can be assimilated as the
steganography applied to “non active” data – a program code in a non execution
context – while the true stealth will be defined as the steganography applied
“active data”: the code/data must be hidden during either their own execution
(process hiding) or the system operation to detect them (e.g. file hiding).

There exist several attempt at formalizing steganography. While Hopper,
Langford and von Ahn [9] have based theirs on complexity theory, Cachin [1]
has considered information theory as a formalisation tool. We will use this second
approach to develop our parallel between steganography and program stealth.

Let us first recall the main concepts underlying steganography and let us
draw our parallel further.

– a covertext C is an innocent looking data in which a secret message M may
be hidden. A covertext with an embedded hidden (secret) information M is
called a stegotext denoted S. In our context, C corresponds to the computer
system files, data structures and processes that may be used by a (malware
or not) program to hide its own code, data and actions;

– the hiding process is performed by means of a key-dependant or not hiding
algorithm. Existing stealth techniques generally do not consider any key.
However, for generalisation purposes, a key K can be considered as part of
the program data;

– the adversary of the communication tries first to guess whether there is some
stegotext S within a given population of covertexts – this is equivalent to the
classical antiviral detection problem – and secondly to access the message
M – this can be compared to the antiviral eradication problem. The general
approach is to consider statistical models PC and PS which describe the
populations C and S of the covertexts and the stegotexts respectively.

The last item clearly shows that stealth detection may be modelled as a statistical
testing problem as presented in [5]. We develop this in Section 3.

From a theoretical point of view, a steganography system (or stegosystem for
short) can be redefined as follows (from [1]) by considering the theory developped
in [5].

Definition 3 (Steganography system) Let PC and PS be distributions on a set
C of covertexts C and on a set S of stegotexts S respectively. A stegosystem
is a triplet of probabilistic polynomial-time algorithms (SK, SD, SE) with the
following properties.

– The key generation algorithm SK takes as input the security parameter n
and outputs a bit string K (the stegokey).

– The steganographic embedding algorithm SE takes as input the security pa-
rameter n, a covertext C, the key K and a message M ∈ {0, 1}l to be hidden.
It outputs an element S of S. The algorithm may access both distributions
PC and PS .

– The steganographic extraction algorithm SD takes as input the security pa-
rameter n, the key K and an element U from C ∪ S. It will output either a
message M ∈ {0, 1}l or the special symbol ? when either an extraction error
occurs or when no message is embedded in U .

For all key K output by SK and for all M ∈ {0, 1}l, the probability

P [SE(n, K, SD(n, K, M) 6= M] (stegosystem reliability)

must be negligible in n

From that definition, the parallel between steganography and stealth becomes
obvious. Of course this parallel is a broad generalisation of what are or may be
all stealth techniques: most of the existing (detectable) stealth mechanism do
not use any key K yet (and thus no algorithm SK). They do not use proba-
bilistic algorithm yet as well. The main interest of our model is to clearly show
that existing stealth techniques just still represent a trivial subset of all possible
stealth techniques. As a consequence, we can forecast and identify more sophisti-
cated techniques which will appear in the future and thus pro-actively consider
the defense. On the extreme, the combination of purely steganographic tech-
niques with classical stealth techniques will be inevitably considered by malware
writers.

The other interest of our model lies in the fact that detecting the existence
of a secret communication channel at least (the TRANSEC aspect) enables the
defender to react and protect even if it remains impossible to access the embed-
ded message (the COMSEC aspect). While in a communication context, we can
at least jam or cut off the channel, in an antiviral protection context we may at
least quarantine the system.

From our model, let us now address the problem of stealth security, that is
to say the ability to more or less resist detection.

2.3 Security of Stealth

This of course the most important property to be realized1. By considering
the taxonomy presented in [1] and the detection formal model in [5], we can
formalize the concept of security as far as stealth techniques in the broadest
sense, are concerned.

1 Two other desirable properties could be also considered: robustness and capacity.
Robustness could be defined as the ability to resist to system modification. A coding
theory approach enables to formalize this property Capacity describes the amount
of information that can be embedded into a given system. Information theory can
be then again used. Both properties have been addressed in [6].

Let us denote DSys the distribution of all possible files, structures and pro-
cesses of a system that can be used as covertext and DStealth the distribution of
files, structures and processes that have been effectively used with respect to a
given stealth technique. By denoting PQ(x) as the probability of x with respect
to the distribution Q, we have:

Definition 4 A stealth sustem is said to to ǫ-secure against a passive attack if
and only if2

D(PDSys||PDStealth) =
∑

x∈Q

PDSys(x) log

(

PDSys(x)

PDStealth(x)

)

≤ ǫ.

where Q denotes the space of possible measurements. If ǫ = 0 then the stealth
system is said to be perfectly secure.

In other words, the security of a stealth system can be defined as the relative
entropy D(PDSys||PDStealth) between the two distributions DSys and DStealth.

We have ǫ = 0 whenever DSys and DStealth are identical.
Let us precise that our woorking context is that of passive attacks, that is

to say when the detection analysis does not modify the system being analysed.
That corresponds to the traditional case of antiviral detection. But if we consider
“active” analysis – the detection modifies the distribution DSys and eventually
the distribution DStealth as well –, we have to consider such a system modifica-
tion Y . The previous definition forces to no longer take the probabilities PQ but
the conditional probabilities PQ|Y . But the model essentially remains the same.

Definition 4 just proposes a theoretical model for stealth in its broadest
sense. But it does not tell how to practically measure or even characterize a
signficant distribution between the two distributions. It is worth mentioning that
the distribution DStealth will be a priori unknown while defining the distribution
DSys may be very complex (see Section 3). As far as practical detection is
concerned, the essential interest of Definition 4 lies in the capability to directly
apply theoretical and practical results/techniques presented in [4, 5].

When again considering the taxonomy introduced by C. Cachin [2] and when
transposing it to stealth techniques, the latter can be organised according the
three following classes, which are defined with respect to their capability to
remain more or less undetected.

– Unconditionnally secure stealth. Then we have ǫ = 0. These techniques may
be compared to Shannon’s perfect secrecy [4, Chap. 7]. This implies that de-
tection is not possible even with unbounded time and computing resources.
It seems very unlikely that classical stealth techniques would ever belong to
this class without using some kind of cryptography and/or classical steganog-
raphy. This remains an open problem. However by comparing unconditional
security with undecidable computability, the concept of testing simulability
as defined in [4, 5] gives clues of how stealth techniques belonging to this
class, could be designed;

2 The notation log() in this paper refers to the base 2 logarithms.

– Statistically secure stealth. The adversary is an arbitrary unbounded algo-
rithm (time and computing) and has a negligible advantage3 ǫ = O(1

n
).

– Computationnally secure stealth. The adversary is an arbitrarily probabilis-
tic, polynomial-time algorithm and has a negligible advantage ǫ = O(1

n
).

– Unsecure stealth. The adversary is a deterministic polynomial time algo-
rithm. Moreover ǫ does no longer depend on n. It could be somehow consid-
ered as a trivial subset of the previous class.

Existing stealth techniques – including rootkits and virtualisation-based tech-
niques like SubVirt [14] or BluePill [19] – belong to the last class (Unsecure
stealth). The lack of security for all these techniques comme from the fact that
system modification for stealth purposes are such that only the knowledge of
the distribution DSys is required for the detection. In other words, as soon as
there exist an estimator for which the system distribution significantly differs
from DSys, we can infer that there is something wrong and that some stealth is
likely to be used.

As far as BluePill-like techniques are concerned, they are likely to belong to
the class of unsecure stealth, contrary to the claim of their author [19]. It is very
likely that some estimator exists in order to detect any such techniques (e.g.
when modifying PageFile files). Moreover behaviour based detection could be
trigger when the program precisely switches into a stealth state. Some detection
aspect of BluePill techniques will be addressed in Section 4.

Lastly, the absence of cryptographic techniques directly determines the unse-
curity of stealth according to the Kerckhoffs cryptographic law that states that
no system security can rely on the system secrecy alone [11]. That is why system
modifications (during the boot sequence as an example) could be hidden in the
future by using secret keys and security parameters in order to consider stealth
techniques in “less insecure” classes.

3 Formalisation of Stealth Detection Techniques

3.1 Previous Works

As far as stealth detection is concerned, there is only one known (theoretical)

results (Zuo & Zhou, 2004). If we denote Ds the set of stealth viruses and Dfixed
s

the set of stealth viruses sharing the same kernel4.

Theorem 1 The set D
fixed
s is Π2-complete while the set Ds is Σ3-complete.

This results refers to the class of computationnally secure stealth only. It clearly
shows that detecting such stealth programs has a huge complexity that is far
beyond the detection complexity of most other malware. The use of stealth for

3 That is precisely the utility of the security parameter n to make in such a way that
limn→∞ ǫ = 0.

4 The kernel of a virus is the set of the functions/predicates T (σ), I(σ), D(σ) and
S(σ).

anti-antiviral purposes is finally an efficient strategy for a malware writer, if
and only if stealth belongs to suitable classes and is, of course, efficiently im-
plemented. On the defense side, on the contrary, being aware of those principles
is an unquestionable requirement when having system protection in charge. In
both side, it is important to stress on the fact that if total detection is impossi-
ble (Cohen, 1986; Filiol & Josse, 2007), total stealth is also an impossibility. So
there is a least one good news.

3.2 Antiviral Detection and Statistical Testing

As shown in [5], all existing antiviral detection techniques can be modelled as
a statistical testing. Any detection process consists in deciding whether an in-
fection has occured (hypothesis H1 or alternative hypothesis) or not (hypothesis
H0 or null hypothesis). Both hypotheses are described by their respective distri-
bution (in the context of stealth, DStealth and DSys respectively). i

The main basic tool to build a test is the estimator, denoted E. Its observed
value computed on a given sample is denoted e. According to the hypotheses of
the testing, E has a different probabilistic law. So by comparing the value E = e
with that of a decision threshold T , we keep or reject H0. This threshold in fact
partitions the set of possible values for E in two disjoint sets of R, denoted A
(acceptance region) and A = R\A (rejection region).

It is worth mentioning that the choice of estimators is generally a priori
dictated by DSys (detection of unknown viral or stealth techniques) unless some
a posteriori knowledge on the techniques can be used (detection of already known
techniques).

But any decision is marred with two kind of errors summarized in Table 1.

Decision H0 true H1 true

Keep H0 1 − α β

Reject H0 α 1 − β

Table 1. Probabilities of Error Attached to Statistical Testings

In other words, we have:

– the type I error α given by:

α = P [E ∈ A|H0 true] = P [e > S|H0 true],

and in an antiviral detection context, if the null hypothesis describes the
fact that no infection occurred, the type I error represents the false positive
probability.

– the type II error β given by:

β = P [E ∈ A|H1 true] = P [e < S|H1 true],

In an antiviral context, it corresponds to the non-detection probability (if
H0 is the non infection hypothesis).

−10 −5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 H0 →

← H1

Decision threshold

α
β

Fig. 1. Statistical Model of Antiviral Detection

These two different errors are described in Figure 1. It is essential to point
out the fact that these two error risks are opposite to one from the other [5].
Moreover, in most practical testings, the type I error is privileged. Thus we have
to know the law of the null hypothesis. On the contrary, the law of the alternative
hypothesis is generally unknown (we cannot forecast which viral techniques has
been used). That implies that determining the exact value of β is most of the
time impossible.

To end with statistical testing, it is essential to stress on the fact that error
risks α and β are, by definition never equal to zero, except if the H0 and H1

probabilistic law domains (density functions) are disjoint. But in the latter case,
it becomes obvious that deciding is easy and that no testing is required at all.
The different cases of detection are discussed in [5].

3.3 Formalisation of Stealth Detection

From our model given in Section 2 and from Section 3.2, we can now formally
address the problem the stealth detection. For that purpose, we will consider
the concept of binary relative entropy between two distributions (namely DSys
and DStealth). It is may be defined by the following equality

∆(α, β) = α log

(

α

1 + β

)

+ (1 − α) log

(

1 − α

β

)

.

This equality is established by using the Neyman-Pearson lemma [15, page 65].
A equivalent approach can be found in [4, 5]. The concept of binary relative
entropy enables then to use results presented in [1] and to transpose it to stealth
detection.

Theorem 2 In stealth system that is ǫ-secure against passive detection, the non
detection probability β and the false positive probability α satisfy

∆(α, β) ≤ ǫ.

If the distributions DSys and DStealth are equal then ∆(α, β) = 0 and the stealth
system belongs to the class of unconditionnally secure stealth. The reader will not
that our present formalisation directly refers to the class of statistically secure
stealth. All the problem in detecting stealth lies in finding at least a suitable
estimator for which distributions DSys and DStealth differs up to the error risks.
We will consider this aspect in Section 4.

3.4 A New Definition of Stealth

The previous formalisation enables now to give a more suitable, general definition
of stealth by considering the powerful concept of testing simulability. Beyond the
intrinsic risk of wrong decisions during antiviral detection, there exist a much
worse situation: when the attacker (e.g. the malware writer) use the detection
techniques against the defender (the antivirus). As soon as the first one knows
which tools are used by the second, he is able to perform what we call statistical
testing simulability.

Let us give a definition for this concept introduced in [4, 5].

Definition 5 Simulating a statistical testing consists for an adversary, to in-
troduce, in a given population P, a statistical bias that cannot be detected by an
analyst by means of this testing.

There exist two different kinds of simulability:

– the first one does not depend on the testings (and their parameters) the
defender usually considers. It is called strong testing simulability. In a stealth
detection context, strong simulability exist when the malware writer, who
has identified any of the techniques used by one or more antivirus, designs
new stealth techniques that cannot be detected with respect to the target
antivirus;

– on the contrary, the second one does depend on those testings that the attack-
ers aims at simulating. It is called weak testing simulability. Bringing weak
simulability into play is somehow tricky. It requires to get a deep knowledge
of the testings to be simulated. The central approach consists in introducing
a new property P ′ in such a way that the estimator E in use remain in the
acceptance region of the testing (generally that of the null hypothesis). Let
us recall that during the decision step, the tester checks whether E < S

or not. Thus weak simulability consists in changing the value S − E while
keeping it positive. For that purpose, we use the intrinsic properties of the
relevant sampling distribution.

A number of practical examples of testing simulability have been presented in
[4]. Moreover, this concept enabled to give a statistical equivalent to the Cohen’s
undecidability result of antiviral detection [3].

The interest of testing simulability lies on the fact that stealth can be defined
as the capacity of defeating detection and remaining undetected by using testing
simulability. In other words, stealth consists in simulating the distribution DSys.
A strong consequence is that if such non detection successfully occurs (up to
the statistical risks) it is only possible with respect to a given testing and a
given estimator. But it is intuitively impossible to design stealth techniques in
order to simulate all possible testing and taking the infinite set E of all possible
estimators E. Current research aims at proving this claim on a mathematical
basis. In particular, if some “secret” detection was used, it would be impossible
for the malware writer to simulate it.

As a conjecture, we may suppose that the class of unconditionnally secure
stealth techniques can be defined with respect to known detection techniques
only. This means that absolute stealth does not exist at all. In other words, it is
impossible to introduce stealth into a system without significantly modifying the
distribution DSys for some estimators. All the antivirus expert’s work consists
in finding an efficient enough estimator.

4 Practical Aspects of Stealth Detection

These aspects essentially rely on the ability to find some efficient enough esti-
mator in order to discriminate the distribution DSys against the distribution
DStealth. In this last section, we will illustrate this aspect with a few practical
example of estimators. As a preliminary, it is essential to keep in mind that
the concept of statistical estimator must be taken in the broadest sense: it is
the result of any function computed on a sample drawn from a system under
analysis. Consequently, it can relates either to sequence-based aspects (from a
simple character string to complex, dynamic bytes structures), behaviour-based
aspects or system activities.

4.1 Detection from Inside the System

Many differentr techniques have been proposed by antivirus researchers in order
to detect stealthy programs from inside a corrupted system. In particular, some
of the most recent techniques are dedicated to discriminate instructions executed
within a virtual environment against those executed in a physical system. Due
to the lack of space, we will not list them but the reader will refer to the study
performed in our lab [10] for a detailed survey of these techniques.

In order to illustrate our model on a practical basis, let us detail how the
Patch Finder rootkit detection [18] operates. This techniques monitors API

hooks. In this particular case, the estimator E is the average number of CPU
instructions executed during the invocation of several API functions. On a clean
system and for a given system call s, let us assume that E = ms (mean value
for the distribution DSys) while on a corrupted system, we will have E = m′

s

(mean value for the distribution DStealth). If the function s has been hooked, it
is expected that ms < m′

s.

But recent advances of stealth techniques make use of virtual machine like
in SubVirt [14] or of thin hypervisor like in BluePill [19]. Then the problem of
detection becomes far more complex since the detection technique may be sub-
verted and manipulated by the stealth mechanisms which modify the estimator
value in such a way that we decide the distribution DSys as the valid one. This
is the reason why we have proposed in Section 3.4 a new definition for stealth
based on testing simulability. This comes from the fact that as soon as an esti-
mator is known to be efficient at detecting a given stealth technique, malware
writer adapt by simulating the testing. In this context, the recent evolution of
virtalization capabilities make detection far more complex.

Let us now consider the technique developped by Cédric Lauradoux [12, 13].
His seminal work is based on the Popek and Goldberg [16, 7] formalisation work
of virtualization and on the improvement given by Robin and Irvine [17]. Two
of the most essential properties required for an efficient hypervisor are given
hereafter.

Property 1 A process which is executed under the control of an hypervisor must
behave similarly as if this process would be directly executed in a physical envi-
ronment.

Property 2 (Case of hardware-based virtualization [17]) There must a way to
automatically signal the VMM when a VM attempts to execute a sensitive in-
struction. It must also be possible for the VMM to simulate the effect of the
instruction. Sensitive instructions include:

– instructions that attempt to change or reference the mode of the VM or the
state of the machine;

– instructions that read or change sensitive registers and/or memory locations
such as a clock register and interrupt registers;

– instructions that reference the storage protection system, memory system, or
address relocation system. This class includes instructions that would allow
the VM to accee any location not in its virtual memory;

– all I/O instructions

As far as Property 1 is concerned, there exists an exception: the execution time.
This comes from the fact that an hypervisor has to perform virtualization-specific
operations would not exist in a physical system. Moreover, the hypervisor has
to manage the interrupts caused by the execution of sensitive instructions (e.g.
instructions that affects the behaviour of the physical machine) within virtual
machines [12].

Property 2 may also be violated. Interrupt mechanisms in x86 architecture
are not efficient enough to systematically verify this property. As an example,
a set of 17 instructions x86 (including SGDT and SIDT instructions) [17] are
violating it. This demonstrates that the x86 architecture is not well-adapted to
implement virtualization.

From all that, a test based on the violation of Property 1 has been proposed
by C. Lauradoux [12] improving a technique a technique initially proposed by
Rutkowski [21]. The core principle relies on the fact that the execution time
of some particular operations on virtual machines significantly differs from the
execution time with respect to physical machines. Let us consider the following
program

X = (float *) &pageX[offsetX];

Y = (float *) &pageY[offsetY];

time = HardClock();

memcpy(X, Y, 512);

time = HardClock() - time;

Figure 2 presents the execution patterns obtained on PowerPC (G3 and G4)
processors and with the PearPC emulator (wich emulates the PowerPC instruc-
tion set). When measuring the access time to array elements, we can observe
periodic anomalies to the different processor cache memories. Our estimator E
thus maybe the number of such anomalies. Whenever an emulator is active, E
will be closer to zero than when instructions are executed on a physical machine.
Thus to detect an active emulator, we can stress a suitable component of the
micro-architecture and measure the processor response times.

C. Lauradoux has developped [12, 13] other more sophisticated techniques to
detect every kind of virtual machines. The approach essentially remains the same
and all the work aims at finding some efficient estimator. In particular, he has
extensively analysed the execution times of a loop according to the different pos-
sible scheduling policies under Linux (sched other, sched fifo, sched rr.

4.2 Detection from Outside the System

Any of the detection methods used from inside a system corrupted by stealth
program is bound to fail by simply manipulating the estimator and its environ-
ment (e.g. the system clock) and by simulating the associate testing.

The only possible detection approach is consequently to detect from aouside
the system in order to have a distribution DSys that cannot be simulated by
the stealth program since it can simply be not accessed by it. For that purpose,
whatever may be the external estimator, the distribution DSys will be measured
on a clean different system. As for corrupted systems, they will be marred with
a distribution DStealth.

Methods under current development in our laboratory [10] consist in consider-
ing instructions I whose average execution time in a physical machine (accessing

Fig. 2. Comparison of execution anomaly periods between an emulator and a physical
system

the hardware) is T . Property 1 being violated in the corrupted system, execution
time T ′ will always be such that T ′ = T + δ > T . Indeed, any stealth action
(manipulation) is bound to introduce a delay. Moreover the time reference being
external, the stealth program cannot manipulate it.

Of course, the delay δ is generally small enough to forbid any significant
decision. The solution is then to consider N executions of I, for N being large
enough. Thus the distribution DSys will have a mean value of N.T while that of
DStealth will be of N.(T + δ). The value N.δ for suitable N will be large enough
to provide a significant decision rule.

5 Conclusion and Future Works

In this paper, we have proposed an efficient information theoretic-based formal
model for stealth program based on similarities with steganographic techniques.
Our formalisation enables to exhaustively identify all the possible stealth tech-
niques. At the present time, all the known stealth mechanism used by detected
malware belong to the most simpliest classes.

We have also derived a statictical model for stealth detection and the main
conclusion is that unconditionnally secure stealth is likely to exist only with
respect to given detection estimators, when considering testing simulability.

Whether unconditionnally secure stealth whatever may be the detection esti-
mators considered is still an open problem.

Stealth is often considered as a malevolent techniques. However, it could
be used for beneficial applications. In an opposite view, stealth could provide
a powerful security environment for computer sustem to hide active security
mechanisms to the attackers. Current research in connection with the DCNS
aims at using stealth technologies to embed counter-measure-like protection of
critical computer systems in Navy Combat environments in order to prevent
computer attacks: the attacker must not detect the presence of security element
and thus stealth technologies precisely aims at that purpose.

References

1. Cachin C. (1998), An Information-theoretic Model for Steganography, Information

and Computation, vol. 192, pp. 41–56.
2. Cachin C. (2005), Digital Steganography. In: Encyclopedia of Cryptography and

Security, Springer Verlag.
3. Cohen F. (1986), Computer viruses, Ph. D thesis, University of Southern California,

January 1986.
4. Filiol E. (2007), Techniques virales avancées, Collection IRIS, Springer Verlag

France. An English translation is pending and will be in print in Fall 2007.
5. Filiol E. and Josse, S. (2007), A Statistical Model for Viral Detection Undecid-

ability. Journal in Computer Virology, EICAR’07 Special Issue, V. Broucek ed., 3
(2).

6. Filiol E. (2007), Formalisation of Robustness and Capacity of Stealth Techniques.
Technical Report 2007-V8.

7. Goldberg R. P. (1974), Survey of Virtual Machine Research. IEEE Computer, 7,
pp. 34–45.

8. Hoglund G. et Butler J. (2006), Rootkits: Subverting the Windows Kernel, Addison
Wesley, ISBN 0-321-29431-9.

9. Hopper N. J., Langford J. and van Ahn (2002), Provably Secure Steganography.
In: Advances in Cryptology - CRYPTO’02, LNCS 2442, pp. 77-92, Springer.

10. Josse S. (2007), Rootkit Detection from Outside the Matrix. Journal in Computer

Virology, EICAR’07 Special Issue, V. Broucek ed., 3 (2).
11. Kerckhoffs A. (1883), La cryptologie militaire, Louis BAUDOIN éditeur, Paris.
12. Lauradoux C. (2007), Conception et synthèse en cryptologie symétrique. Thèse de

doctorat (PhD Thesis), Ecole Polytechnique, Palaiseau, juin 2007.
13. Lauradoux C. (2007), Detecting Virtual Rootkits with Covert Channel. Journal in

Computer Virology, to appear.
14. King S. T., Chen P. M., Wang Y.-M., Verbowski C., Wang H. J. et Lorch (2006),

SubVirt: Implementing Malware With Virtual Machines, Université du Michigan
et Microsoft Research, http://www.eecs.umich.edu/Rio/papers/king06.pdf

15. Lehman E. L. (1959), Testing Statistical Hypotheses, Wiley, New York.
16. Popek G. J. and Goldberg R. P. (1974), Formal Requirements for Virtualizable

Third Generation Architectures. Communications of the ACM, 17 (7), pp. 412–
421.

17. Robin J. S. and Irvine C. E. (2000), Analysis of the Intel Pentium’s Ability to Sup-
port a Secure Virtual Machine Monitor. Proceedings of the 9th USENIX Security

Symposium.

18. Rutkowska, J. (2005), System Virginity Verifier, Defining the Roadmap for Mal-
ware Detection on Windows System. Hack In The Box Security Conference,
September 28-29th, Kuala Lumpur, Malaysia.

19. Rutkowska J. (2006), Subverting Vista Kernel for Fun and Profit, SysCan’06 Con-

ference, July 21st, Singapore. Available at http://invisiblethings.org/papers

20. Rutkowska J. (2006), Introducing Stealth Malware Taxonomy, Version 1.01, http:
//invisiblethings.org/papers.

21. Rutkowski J. (2002), Execution Path Analysis: Finding Kernel Based Rootkits.
http://www.phrack.org/archives/59/p59-0x13

22. Zuo Z. and Zhou M. (2004), Some further theoretical results about computer
viruses, The Computer Journal, Vol. 47, No. 6.

