
OpenOffice Security and Viral Risk
Eric Filiol and Jean-Paul Fizaine

French Army Signals Academy (ESAT)
Virology and Cryptology Lab

efiliol@esat.terre.defense.gouv.fr

Documents malware essentially exist for Microsoft Office: the sadly known macro-viruses which still
represent a numeric nuisance nowadays. The recent evolution of office suite towards free software – thus
providing a high compatibility with existing office software – makes very necessary to determine and
evaluate the exact level of risk of the OpenOffice suite with respect to document malware, This paper present
an up to date evaluation of its security (release 2.2.x) based on the results established during the summer
2006. Worrying security weaknesses have been identified since. They may still be used by malware to spread
through innocuous-looking documents by exploiting the feeling of trust based on encryption and digital
signature. However, this study clearly shows the interest of open software with respect to security
evaluation.
Finally this paper will discuss the pro and cons of both open and proprietary solutions, on a purely technical
basis, as far as security is concerned. There is no such thing as perfect solution. There lies all the complexity
of doing computer security.

1.- Introduction
Since two years, the OpenOffice suite is positioning as an open and free alternative solution to the existing
commercial counterparts. Equipped with a lot of sophisticated functionalities, it now represents a credible
solution of high quality for users. Since version 2.x.x, a rich evolution enables to have an ergonomics
environment at user's disposal. Several development environments are available as well as dedicated tools
that greatly enhance the overall functional quality. But the existence of such environment and capabilities
raises the problem of the OpenOffice security with respect to malware. The existence of macros, as in
Microsoft Office, strongly suggests that the malware hazard is not negligible at all.

From June 2005 to July 2006, a deep study of OpenOffice environment has been conducted (release 2.0.2
and 2.0.3 under Linux, Mac OS X and Windows) in the Virology and Cryptology lab at the French Army
Signals Academy. A first synthesis of the results has been published in [4] in July 2006. This study has been
technically validated by some proof-of-concept codes. But most of the most worrying results were only
evoked in [4] and have been published in French only in September 2006 [7]. This paper presents those very
last technical results, for the first time in English. They have been updated since on t he last OpenOffice
release (2.2.x). At the time of publication of [4] a lot of stupid comments have been made about this study, It
is the occasion to dispassionately take stock of OpenOffice security and to enable anyone to check on a
reproducible basis what can be claimed and what cannot.

The aspects presented here essentially refer to macro security and to the OpenDocument format with respect
to encryption and digital signature built-in capabilities. They represent in their own most of the OpenOffice
security issues we have identified. The proof-of-concept codes will not be presented. They are useless to the
understanding of the present paper. Due to lack of space, we have limited the number of technical details
(file dumps in particular). However, they are all available upon request for IT security professionals only.

Aside ours [4], there are only a few studies about OpenOffice security, regardless of the problem of software
flaws. Let us mention the main ones:

• in 2003, Rautiainen [5] has presented a short analysis of macros with respect to OpenOffice versions
1.x;

• in june 2006, Kaspersky claimed to have detected the first OpenOffice virus, called a StarDust. But
no technical evidence enables to support this claim. Later, OpenOffice denied the self-reproducing
nature of the malware;

• in may 2007, a multiplatform OpenOffice virus, called BadBunny has appeared. This malware
seems to be a direct illustration of the risk pointed out by our own work, last year, in particular with
respect to some advanced programming languages: Python, Js and Ruby.

mailto:efiliol@esat.terre.defense.gouv.fr

• in June 2007, a deep, comparative study on the security of both OpenXML and OpenDocument
formats has been published by P. Lagadec [6]. This study is somehow a sequel of [4] with respect to
the viral hazard and information leakage in documents.

Apart from the search for software flaws, the security analysis quite never considers the functional
evaluation, in other words the core algorithmic choices, nor the formal analysis: flow matrix, state matrix,
protocol analysis... This is unfortunately true both for open and proprietary software.

2.- OpenDocument Format Structure

Due to lack of space, we will not recall the structure of the OpenDocument format (ODF for short). For a
detailed presentation on this format, the reader will refer to [4]. Let us just precise that an OpenOffice
document is in fact a simple compressed ZIP archive. It is thus possible to decompress it and to access and
manipulate all the different document components (data, meta-data, macros...) very easily. Our study has
been conducted for ODF documents under Linux, Windows and Mac OS. For sake of clarity (use of
command lines) and without loss of generality, we give here the results for the Linux part.
 2.1 Unprotected document
Among all these component, the most important one, in terms of security issues is undoubtly the
manifest.xml file located in the META-INF directory of the ZIP archive. This file totally describes the
document ODF structure and all the data which are essentially relevant to the different security
functionalities: macros, encryption, digital signature.... The other files are:

• content.xml file: this file is present in every OO document and simply contain the visible part of the
document;

• the meta.xml file contains all the document meta-information (author's data, access data...);
• the styles.xml file contains the document formatting option;
• the setting.xml file contains all the document configuration data (window size, printing

parameters...).
Whenever one or more macros are used, a new directory is created as shown hereafter:

./Basic:
total 8
drwxr-x-rx 4 lrv lrv 138 Mar 2 01:47 Standard
-rw-r--r-- 1 lrv lrv 338 Mar 2 00:38 script-lc.xml
./Basic/Standard:
total 16
-rw-r--r-- 1 lrv lrv 350 Mar 2 00:38 script-lb.xml
-rw-r--r-- 1 lrv lrv 2049 Mar 2 00:38 a_macro.xml
./META-INF:
total 8
-rw-r--r-- 1 lrv lrv 1465 Mar 2 00:38 manifest.xml

This directory called Basic (without loss of generality we will consider macros written in the default
scripting language OOBasic) and contains all the macros file tree of the document. In addition, the
manifext.xml file has been modified accordingly to record the macros and their data (access path in
particular).

<manifest:file-entry manifest:media-type="text/xml"
 manifest:full-path="Basic/Standard/a_macro.xml"/>
<manifest:file-entry manifest:media-type="text/xml"
 manifest:full-path="Basic/Standard/script-lb.xml"/>
<manifest:file-entry manifest:media-type=""
 manifest:full-path="Basic/Standard/"/>
<manifest:file-entry manifest:media-type="text/xml"
 manifest:full-path="Basic/script-lc.xml"/>

There exists a lot of possible scripting language to develop OpenOffice macros: OOBasic, JS, Python,
Ruby....Whatever maybe the language used, the general management scheme remains the same. Moreover,
what has been presented for a single macro still holds for complete libraries of macros [4].

2.2 Encrypted document.

Whenever a user applies a document password, the document is encrypted. Let us consider a macro
containing a single macro. All encryption technical data are included as properties within XML tags.
The encryption algorithm is Blowfish in CFB mode, the keys are derived from the PBKDF2 key
management protocol while the hashing algorithm is SHA1.

 As an ODF file is in fact a ZIP archive, it is necessary to define which files in the archive are
 encrypted or not. To see where the encryption takes place, let us compare the manifest.xml file
 of the reference_file_encrypt.odt (encrypted) file and the reference_file.odt (unencrypted) file
 respectively. Here follows the dump (excerpt) of the diff command between the two files:

< <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="content.xml"/>
< <manifest:file-entry manifest:media-type="text/xml" manifest:full- path="Basic/Standard/HelloWord.xml"/>
< <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/Standard/script-lb.xml"/>

> <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="content.xml" manifest:size="2626">
> <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="ITmRG2GO+QEChZSdWuHnELeNmoU=">
> <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-vector="UnteGYIbs8Q="/>
> <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="A1jwblqPdaNcWUpdgOF9Kg=="/>
> </manifest:encryption-data>
> </manifest:file-entry>
> <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/Standard/HelloWord.xml"
manifest:size="339">
> <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="zCCMsJxNl78Fzcpe/CnNEHgo4Bs=">
> <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="auXTuBEHXHQ="/>
> <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="l/McRciiGElm7EIyxQDvRQ=="/>
> </manifest:encryption-data>
> </manifest:file-entry>
> <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/Standard/script-lb.xml"
manifest:size="350">
> <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="kL8H/WhawMbDZeY47uBLZGY30qQ=">
> <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-vector="5Y8OYH/JTkc="/>
> <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="UIv7yfLKliAq8yN5ukoI3g=="/>
> </manifest:encryption-data>
> </manifest:file-entry>

All the archive files are encrypted, except the manifest.xml file. This is a very surprising point since all the
attacks presented here have been made possible by simply editing and modifying this particular file.

2.3 Digitally signed document.

Using digital signature requires getting a certificate. OpenOffice relies on external components for that
purpose. We will not focus on how to import those certificates (see the OpenOffice Inline Help). Let us just
precise that we used X509 certificates for our attacks. Let us mention that the ODF specifications [3] does
not explicit the use of digital signature. We thus had to analyse how signature applies. For that purpose, let
us consider an encrypted OpenOffice document containing a macro called ref_mac_enc_sig.odt.

Due to lack of space, we will just give the most relevant data. Other detailed data will be provided on
request.

ZZR:~/Research/Analysis/OpenOffice.org/Work/Attaque_odf_190507/Struct_study lrv$ unzip
ref_macro_enc_sig.odt -d ref_macro_enc_sig_ext
Archive: ref_macro_enc_sig.odt
 extracting: ref_macro_enc_sig_ext/mimetype
 creating: ref_macro_enc_sig_ext/Configurations2/statusbar/
 extracting: ref_macro_enc_sig_ext/Configurations2/accelerator/current.xml
 creating: ref_macro_enc_sig_ext/Configurations2/floater/
 creating: ref_macro_enc_sig_ext/Configurations2/popupmenu/
 creating: ref_macro_enc_sig_ext/Configurations2/progressbar/
 creating: ref_macro_enc_sig_ext/Configurations2/menubar/
 creating: ref_macro_enc_sig_ext/Configurations2/toolbar/
 creating: ref_macro_enc_sig_ext/Configurations2/images/Bitmaps/
 inflating: ref_macro_enc_sig_ext/META-INF/macrosignatures.xml
 inflating: ref_macro_enc_sig_ext/META-INF/documentsignatures.xml
 extracting: ref_macro_enc_sig_ext/content.xml
 extracting: ref_macro_enc_sig_ext/Basic/Standard/HelloWord.xml
 extracting: ref_macro_enc_sig_ext/Basic/Standard/script-lb.xml
 extracting: ref_macro_enc_sig_ext/Basic/script-lc.xml
 extracting: ref_macro_enc_sig_ext/styles.xml
 inflating: ref_macro_enc_sig_ext/meta.xml
 extracting: ref_macro_enc_sig_ext/Thumbnails/thumbnail.png
 extracting: ref_macro_enc_sig_ext/settings.xml
 inflating: ref_macro_enc_sig_ext/META-INF/manifest.xml
ZZR:~/Research/Analysis/OpenOffice.org/Work/Attaque_odf_190507/Struct_study lrv$

We can easily notice that two new files have been added into the archive:

META-INF/macrosignatures.xml and META-INF/documentsignatures.xml. The manifest.xml file contains the
relevant data for those two files:

 <manifest:file-entry manifest:media-type="" manifest:full-path="META-INF/macrosignatures.xml"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="META-INF/documentsignatures.xml"/>
..................

Those two new files are not encrypted. This point is very essential to fully understand the attack mechanisms
of encrypted documents. The document.xml file contains the detailed data that are required during the
signature process itself (not given here). Every file in the archive is not signed while macros signature are
declared within the macrosignatures.xml file. To be more precise, the digital signature is applied to any file
containing or relating to macros [1, 2]

3.- A formal approach of OpenOffice digital signature
OpenOffice.org's security is based on two essential mechanisms: password based-encryption and digital
signature. Both aim at preventing an illegitimate use or manipulation of a document, in the particular context
of document malware, any weakness with respect to any of these mechanisms could be exploited in a
dramatically powerful way to fool the user's trust in both cryptographic protection.

Since there exist a lot of way of using encryption and signature to protect an OpenOffice document,
we are going to use a formal graph-based approach to describe them all. Every node in our graph describes a
user's action. A given path in our graph will just describe a sequence of such actions to encrypt and/or signed
a document. This approach is very powerful at detecting security flaws, in other words the cases where the
mechanisms are supposed to have been successfully applied while in reality they are not (the document is not
encrypted or not signed contrary to the user's intent).

Our graph-based formalization aims at identifying weaknesses in the signature process, in particular with
respect to the macros. To summarize, we are going to show that signature of document visible content and
signature of the macros are mutually exclusive: we cannot signed them at the same time. Using technical

examples, we will prove in the subsequent sections that it constitutes a serious design flaw that can be
efficiently exploited by malware.

Every node describes a possible status for the document:

• D: modified document,
• MD: modified document with macro,
• ED: saved document,
• EMD: saved document with macro,
• SED: document is signed and saved,
• MSD: document with a macro added AFTER the document has been signed,
• EMSD: document with a macro added AFTER the document has been signed but

 BEFORE the document is saved,
• SEMD: signed and saved document with a macro.

Nodes are connected by possibly labeled directed arc. The label describes a user's command/action applied to
the document:

• add M: add a macro,
• save: save document,
• sig 1: sign through File → Digital Signatures... menus,
• sig 2: sign through Tools → Macros → Digital Signature...,
• sig 3: sign through the second bottom right box in the OpenOffice GUI.

The corresponding graph is depicted in Figure 1.

 Figure 1.-OpenOffice Signature Graph

In Figure 1, we notice that the graph is divided into two connected component. A first sub-graph is made up
of nodes {MD, EMD, SEMD} while the second one contains nodes {ED, SED, MSD, EMSD}. This
supposes two different possible uses of digital signature that can be applied at any time in the life of the
document. However, our experiments have proved that it may be quite different indeed. Let us explain why.

When considering signature AND encryption at the same time, our approach remains essentially the same.
The set of nodes is generalized as follows:

• D: modified document,
• MD: modified document with macro,
• (SE)MD: encrypted and saved document with macro,
• S(SE)MD: signed, encrypted and saved document with a macro,
• (SE)D: encrypted and signed document,
• M(E)D: a macro is added to an encrypted and saved document,

• SM(E)D: a macro is added to an encrypted, saved and finally signed document,
• S(SE)D: modified document which has been saved, encrypted and signed,
• MS(E)D: a macro is added to an encrypted and signed document,
• EMS(E)D: signed then encrypted document with macro.

We thus obtain the graph depicted in Figure 2. It is very powerful at identifying potential misuses of digital
signature in OpenOffice. Such misuses could be potentially by malware as we will show it in the next
sections. Two classes of design flaws have been identified. The first class deals with the lack of OpenOffice
built-in document integrity management. The second class refers to problems that may occur when macros
and/or document are signed. We will not discuss the critical of trust macros. They are presented in [4].

Figure 2.-OpenOffice Encryption and Signature Graph.

4.- Security issues in OpenOffice encryption and signature

The main problems do not lie in the cryptographic tools themselves but on their implementation and their
management. The main consequence is that a malware could be able to identify some interesting blocs of
instructions and thus adapt itself to the target document. This is particularly worrying with respect to macros
which constitute execution points that can be subverted by a malware, despite the apparent use of digital
signature.

In this section, we are going to consider some cases where it is possible for a malware to bypass digital
signature or to exploit misuse of it. All these experiments have been successfully carried without causing any
integrity violation alert while preserving the document usability.

Let us first mention that the use of digital signature can be identified within the archive in two ways:

• an additional file, denoted documentsignatures.xml is created in the META-INF directory of the
archive,

• an entry is added into the META-INF/manifest.xml file:

 <manifest:file-entry manifest:media-type="" manifest:full-path="META INF/documentsignatures.xml"/>

4.1.- First case: signed OpenOffice document with an unsigned macro
Let us first create a signed document with a macro. Contrary to the user's belief, the macro itself is not
signed. As a consequence (see next sections), a malware can modify a macro without triggering any integrity

violation alert while abusing the user's security feeling with respect to digital signature.

The listing of the archive clearly shows that there is a signature which is applied to the document only but to
the macro. The META-INF/documentsignatures.xml does not refer to any macro signature.

ZZR:~/Research/Analysis/OpenOffice.org/work/Attaque_odf_190507 lrv$ unzip doc.odt -d doc_dir
Archive: doc.odt
 extracting: doc_dir/mimetype
 creating: doc_dir/Configurations2/statusbar/
 inflating: doc_dir/Configurations2/accelerator/current.xml
 creating: doc_dir/Configurations2/floater/
 creating: doc_dir/Configurations2/popupmenu/
 creating: doc_dir/Configurations2/progressbar/
 creating: doc_dir/Configurations2/menubar/
 creating: doc_dir/Configurations2/toolbar/
 creating: doc_dir/Configurations2/images/Bitmaps/
 inflating: doc_dir/META-INF/documentsignatures.xml
 inflating: doc_dir/content.xml
 inflating: doc_dir/Basic/Standard/Hello.xml
 inflating: doc_dir/Basic/Standard/script-lb.xml
 inflating: doc_dir/Basic/script-lc.xml
 inflating: doc_dir/styles.xml
 inflating: doc_dir/meta.xml
 inflating: doc_dir/Thumbnails/thumbnail.png
 inflating: doc_dir/settings.xml
 inflating: doc_dir/META-INF/manifest.xml

 4.2.- Second case: signed OpenOffice document with a signed macro
In this second case, the signature is applied independently to the visible part of the document and to the
macro itself. When is it possible to apply the signature to both of them simultaneously? The only solution is
to successively follow path sig2 AND paths sig1 OR sig3 in the graph of Figure 2.

To illustrate this, let us first sign the macro:

ZZR:~/Research/Analysis/OpenOffice.org/work/Attaque_odf_190507/App_dsig_doc_macro lrv$ unzip
doc1.odt -d doc1_dir
Archive: doc1.odt
 extracting: doc1_dir/mimetype
 creating: doc1_dir/Configurations2/statusbar/
 inflating: doc1_dir/Configurations2/accelerator/current.xml
 creating: doc1_dir/Configurations2/floater/
 creating: doc1_dir/Configurations2/popupmenu/
 creating: doc1_dir/Configurations2/progressbar/
 creating: doc1_dir/Configurations2/menubar/
 creating: doc1_dir/Configurations2/toolbar/
 creating: doc1_dir/Configurations2/images/Bitmaps/
 inflating: doc1_dir/META-INF/macrosignatures.xml
 inflating: doc1_dir/content.xml
 inflating: doc1_dir/Basic/Standard/Hello.xml
 inflating: doc1_dir/Basic/Standard/script-lb.xml
 inflating: doc1_dir/Basic/script-lc.xml
 inflating: doc1_dir/styles.xml
 inflating: doc1_dir/meta.xml
 inflating: doc1_dir/Thumbnails/thumbnail.png
 inflating: doc1_dir/settings.xml
 inflating: doc1_dir/META-INF/manifest.xml

Only the macro is signed. Let us then sign the document content itself. The listing clearly shows two
different signature files:

ZZR:~/Research/Analysis/OpenOffice.org/work/Attaque_odf_190507/App_dsig_doc_macro lrv$ unzip
doc1.odt -d doc1_dir
Archive: doc1.odt
 extracting: doc1_dir/mimetype
 creating: doc1_dir/Configurations2/statusbar/
 inflating: doc1_dir/Configurations2/accelerator/current.xml
 creating: doc1_dir/Configurations2/floater/
 creating: doc1_dir/Configurations2/popupmenu/
 creating: doc1_dir/Configurations2/progressbar/
 creating: doc1_dir/Configurations2/menubar/
 creating: doc1_dir/Configurations2/toolbar/
 creating: doc1_dir/Configurations2/images/Bitmaps/
 inflating: doc1_dir/META-INF/macrosignatures.xml
 inflating: doc1_dir/META-INF/documentsignatures.xml
 inflating: doc1_dir/content.xml
 inflating: doc1_dir/Basic/Standard/Hello.xml
 inflating: doc1_dir/Basic/Standard/script-lb.xml
 inflating: doc1_dir/Basic/script-lc.xml
 inflating: doc1_dir/styles.xml
 inflating: doc1_dir/meta.xml
 inflating: doc1_dir/Thumbnails/thumbnail.png
 inflating: doc1_dir/settings.xml
 inflating: doc1_dir/META-INF/manifest.xml

A deeper analysis clearly shows that the two signatures files have not been created at the time:

ZZR:~/Research/Analysis/OpenOffice.org/work/Attaque_odf_190507/App_dsig_doc_macro/doc1_dir2/MET
A-INF lrv$ ls -l *
-rw-r--r-- 1 lrv lrv 5875 Jul 12 14:45 documentsignatures.xml
-rw-r--r-- 1 lrv lrv 5657 Jul 12 14:30 macrosignatures.xml
-rw-r--r-- 1 lrv lrv 2602 Jul 12 14:45 manifest.xml

All this constitutes a critical design weakness since the user must be aware of the fact that a specific
signature process must applied to sign OpenOffice macros. The main consequence is that most of the time
it is possible to modify (infect) macros without violating the document's integrity.

5.- Attacking ODF: a formalization
ODF is based on the XML technology. All the information is contained within XML tags, thus giving a
semantic value to the information. All the XML tags are then organized within a tree that makes the
extraction of the information far easier. These structures enable to formalize ODF in a very powerful way by
means of automata and language theories. For sake of clarity we will not present our whole formalization
work. The reader can refer to our technical report [8].

In order to identify all possible attacks that can be operated by malware against an OpenOffice document by
exploiting integrity and/or signature management flaws, we have applied a formal model based on a graph-
theoretic approach again. The graph is defined as follows:

• Each node represents the document status at time instant t, before any action is applied to it.
• Each arc models the different possible attacks that can be performed once a given action (command)

has been applied.
• The node surrounding area defined a given features for the document.
• An action is applied to a node feature and thus defines which attack has been performed:

• Add: add a property or a macro to the document,
• Modify: modify a document property or component,

• Cipher: the document is encrypted by using OpenOffice built-in tools,
• Decipher: the encrypted document is deciphered by using OpenOffice built-in tools.

We thus obtain the attack graph depicted in Figure 3. It just describes things at the lowest level. It is possible
to combine different document status to exhaustively describe all possible attack at every possible level.

6.- Security issues in OpenOffice integrity management
All our experiments [4, 7, 8] and real case analyses have proved that it is indeed possible to infect an
OpenOffice document very easily. Moreover this can be performed without triggering any alert or even
arleting the user of the presence of macros (use of trust macros) [4]. The most critical point lies in the fact
that all these attacks are possible despite the fact that all security measures have been applied (encryption,
signature...). Since the work presented in [4, 7], all these conceptual flaws still exist in the 2.2.x releases.

In the present section, we are going to present some of the most critical classes of attacks. All of the attacks
presented in [7] for OpenOffice 2.0.x are still efficient for the 2.2.0 release. That is why we will just recall
some of them and just add new ones with respect to the digital signature. They have been identified very
recently.

All the attacks lie on the modification of the following files in ODF archives.

• content.xml,
• META-INF/manifest.xml,
• Basic/script-lc.xml,
• Basic/<library_name>.xml or Standard.xml
• Basic/<library_name>/script-lb.xml,
• Basic/<library_name>/<macro_name>.xml.

 6.1- Modifying an encrypted document with macro
Let us consider an encrypted document whose macro is encrypted as well. We are going to show how to
replace the encrypted macro with a malicious, unencrypted one. When the user opens and deciphers (by
inputing his password), no alert will be issued but the malicious macro will be ran. Let us first give the
structure of this document before any modification. Once again it is contained in the META-
INF/manifest.xml file. Parts of the file related to the encryption are in red color except those referring to the
macro encryption, which are in blue color.

<?xml version="1.0" encoding="UTF-8"?>
<manifest:manifest xmlns:manifest="urn:oasis:names:tc:opendocument:xmlns:manifest:1.0">
 <manifest:file-entry manifest:media-type="application/vnd.oasis.opendocument.text" manifest:full-
path="/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/statusbar/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/accelerator/current.xml"
manifest:size="0">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="aIk0hF8iBJyxRmiDLvoz1FATtrk=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="Aft5D8rS4Tc="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="7+uA1gcyifrwus8NAJ4P0g=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/accelerator/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/floater/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/popupmenu/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/progressbar/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/menubar/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/toolbar/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/images/Bitmaps/"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Configurations2/images/"/>
 <manifest:file-entry manifest:media-type="application/vnd.sun.xml.ui.configuration" manifest:full-
path="Configurations2/"/>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="content.xml"
manifest:size="2654">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="cLjeVcn0HUvWH6AksJUt9B+/m80=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="88UAHW9S7AA="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="l4mR5N16lc15CM2i1+thdg=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-
path="Basic/Standard/Mess_to_user.xml" manifest:size="347">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="Ak30lrpgYdX/q3qq4qjtJYfW3WQ=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="vu7rTd3OYWU="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="KIeIhkKFlu0+C4eL1E7EwQ=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
<manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/Standard/script-lb.xml"
manifest:size="353">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"

manifest:checksum="4FmXs2oOBSk6bWqLsvUFMrnp/ik=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="yki90zxcSVU="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="th0bGueB7lHhnzbeYGgvyA=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Basic/Standard/"/>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/script-lc.xml"
manifest:size="338">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="EClic6byHiSVEsuYf5VZ85y2C5A=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="fa/vxhT25c0="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="dmJtqGXRW+sO+o8vU/GbiQ=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Basic/"/>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="styles.xml"
manifest:size="8315">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="qgwehDuLTFNDAo7TKMExjmID9tY=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="8dWw8yHo5aU="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="KTXWF5oelquuWtzKsibnTg=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="meta.xml"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Thumbnails/thumbnail.png"
manifest:size="4252">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="oJf7JAjmPn/7q76QPXSxjNdN8RM=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="ezfIUx0E/2A="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="D5J8wBvv1c4YAQlOvek6EA=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Thumbnails/"/>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="settings.xml"
manifest:size="7477">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="XBWgGb0E8QJocGNDRgAluLWQ0yI=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="Rjtsrax4yr4="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="R2OqHLfNJBy9S6be6+/F9Q=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
</manifest:manifest>

Now let us modify the document in order to insert a malicious macro while bypassing the encryption.
Here follows the extract of the META-INF/manifest.xml file which refers to the component to be modified.

<manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/Standard/Mess_to_user.xml"
manifest:size="347">
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="Ak30lrpgYdX/q3qq4qjtJYfW3WQ=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="vu7rTd3OYWU="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="KIeIhkKFlu0+C4eL1E7EwQ=="/>
 </manifest:encryption-data>
 </manifest:file-entry>

The content of the encrypted macro then here follows:

y~}I_^K<97>ý÷\^E^YÐ"¨\¨¯^Q<99><9c>´^Ytgñû^Si;!<85>^Aý^T,<84>AN±ÌÙ£^EÏ^P<8d>òì\^egU<97>
^Se±(WÞ°^LrÒøk[x#EËEE<92>\'EÙÙ\'elZ\^aÎzK\`A<95><8e>*×<91>^CÔÁS}ebä~<93>|M%^ä-
*ºÖIW^Kb{^S¬j5^U<98><99>.^Z÷³<98><8d>¯<99>@<91>Ifæ%õ<85>ö\^A\^A<82>ò¢<9c>L¾<8c>R
Ë Ï§Î´ûB~øtrËGJ^?L,Cw½^T^X\`eÝ<8f>õ<96> #l^NG<8e><85>;Æ<94>Ù:ñùj
õ^H¡<9e>^A¥}Ä'RVm.^Zñ<81>r}^@¯<85>^@¦ü»äÁ^\Ì^[^@<98>'þ0<8e>+G
 \`A<92>0Ë{õNg<89>³ ¥&Dðý

Let us now replace this encrypted macro with a malicious, unencrypted macro. In a first step, we have to
modify the META-INF/manifest.xml file accordingly.

<manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/Standard/Mess_to_user.xml"
manifest:size="347"/>

We have just removed all references to encryption. Now we just have to replace the encrypted macros itself
with the malicious one whose code here follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE script:module PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "module.dtd">
<script:module xmlns:script="http://openoffice.org/2000/script" script:name="mess_to_user"
script:language="StarBasic">REM ***** BASIC *****

Sub Main
msgbox(" I am a malicious macro... hey hey, I have just infected your document...")
End Sub
</script:module>

No alert will be issued at the document opening and the malicious macro will operate. In case of a trust
macro, the presence of the macro would even not be noticed to the user, thus increasing the infectious power
of the macro.

 6.2.- Modifying a signed document without macro.

Let us now consider a digitally signed document without any macro. The digital signature is applied
according to the path sig1 or sig2 in the graph presented in Figure 1. In the present case, we are going to
bypass the digital signature to insert a malicious macro. This is possible since in this situation, the
document's content only is signed. For that purpose, let us just remove the information which relates to the
signature, in the META-INF/manifest.xml file:

 <manifest:file-entry manifest:media-type="" manifest:full-path="META-INF/documentsignatures.xml"/>

Then we remove the META-INF/documentsignatures.xml file in the archive. When the user opens the
document no integrity violation alert is triggered. However, the bottom icon in OpenOffice GUI, which
indicates that the document is signed has disappeared. This could alert the recipient user.
The second step of the infection consists in keeping the signature but to insert a malicious macro into the

document. Let us consider the following macro:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE script:module PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "
module.dtd">
<script:module xmlns:script="http://openoffice.org/2000/script" script:name="mes
s_to_user" script:language="StarBasic">REM ***** BASIC *****

Sub Main
msgbox("I am a malicious macro... hey hey, I have just infected your document..."
;)
End Sub
</script:module>

The last step consists in adding the information relating to the existence of this macro into the
META-INF/manifest.xml file.

 <manifest:file-entry manifest:media-type="text/xml" manifest:full-
path="Basic/Standard/Mess_to_user.xml"/>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/Standard/script-lb.xml"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Basic/Standard/"/>
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-path="Basic/script-lc.xml"/>
 <manifest:file-entry manifest:media-type="" manifest:full-path="Basic/"/>

The signature's icon is still present in the OpenOffice GUI. No alert will be triggered, the user has been
successfully fooled and the macro will operate.

 6.3.- Modifying a signed document with signed or unsigned macro.

In this third class of attacks, let us consider a document with macro where both the document's content and
the macro have been signed. In a similar way as presented before, the infection consist in bypassing the
signature by modifying all the relevant information, that is to say, to remove the following data in the
META-INF/manifest.xml:

 <manifest:file-entry manifest:media-type="" manifest:full-path="META-INF/macrosignatures.xml"/>
Then we just have to remove the macrosignatures.xml file from the archive. Now we are back to the
previous case of a signed document with unsigned macros. According to this case, we have to modify the
data located between the <script:module xmlns:script="http://openoffice.org/2000/script"
script:name="hello" script:language="StarBasic"> tag and the </script:module> tag.

The original macro:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE script:module PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "module.dtd">
<script:module xmlns:script="http://openoffice.org/2000/script" script:name="hello"
script:language="StarBasic">REM ***** BASIC *****

Sub Main
MsgBox("Hello World")
End Sub
</script:module>

has been modified as follows:

 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE script:module PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "module.dtd">
<script:module xmlns:script="http://openoffice.org/2000/script" script:name="hello"
script:language="StarBasic">REM ***** BASIC *****

Sub Main
MsgBox("Hello Mr User, your macro has just have been hacked :)")
End Sub
</script:module>

Once again, when the document is subsequently opened, no alert at all is triggered. It is thus very easy to
infect a document while keeping the digital signature referring to the document's content only, thus fooling
the user's feeling of security provided by digital signature.

 6.4.- Modifying an encrypted and signed document with macro.

In this last case, the document is first signed (including the macro) and then encrypted. This should be
considered as the most secure way to protect an OpenOffice document, thus preventing any document
infection. It is unfortunately not the case. Let us show how to bypass both the encryption and the digital
signature. In the META-INF/manifest.xml file, let us first remove the following parts which relate to the
macro encryption and signature:

 <manifest:file-entry manifest:media-type="" manifest:full-path="META-INF/macrosignatures.xml"/>
...............
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="YcgygyDHQ1NUCAB80HA5Z4C24No=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="QcCMCISZu+8="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="RDdsU3RxAIqYmBhfgviwug=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
...............
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="AVJqugo0F2xvU9KaiKcanc17mgE=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="e/nOQd+LvKY="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="Z2YgG2pkbAekJZ4AVvaLyg=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
...............
 <manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="EClic6byHiSVEsuYf5VZ85y2C5A=">
 <manifest:algorithm manifest:algorithm-name="Blowfish CFB" manifest:initialisation-
vector="flO0sxd0s4w="/>
 <manifest:key-derivation manifest:key-derivation-name="PBKDF2" manifest:iteration-count="1024"
manifest:salt="+F5uK/4ALZuR2Q1Kl1uD0Q=="/>
 </manifest:encryption-data>
 </manifest:file-entry>
..................

Then, let us remove the META-INF/macrosignatures.xml file from the archive. Finally we replace the
encrypted macros:

/<9a>Îd<9d>gÍäëmBðÿa}<93>^A8çèîQâtä^W÷ 4¬<81>ßSÿ3^Vþ^QE^E)0lo^UY<81>ªeÄ^P§'(søòú^C^[X^
TQÁÜ¸^LVö½^Uc²oÚÉÿ^P<9a>^_XÜ^QT"b^]nôó°^L1à^?Ê^Yð^KQÏ"0^TnC>IÑSx¡¹^Q<9a>Ø´^G^@¸t<91
>^^^[<95>íó^CÂ÷ï^Oû<97>^S®^KWV<92> <87>¯^U
´¦<81>òøÍ§ÿ<91>¾^C<9f>Z^\õ÷Ôúâ^_³|w\.*£^YÔ^K^@°ÀvÚ}và<82><8a>Ãô·^YkeÍâï^ö¦ÿÆ(<83>Íð
æÀ|X3¬=þþd@^R'ú^Q©ç<88>^Lc^H^E<8c>Ì^Nì<8d>ÜÞ

with a malicious (unencrypted) one:

 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE script:module PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "module.dtd">
<script:module xmlns:script="http://openoffice.org/2000/script" script:name="hello"
script:language="StarBasic">REM ***** BASIC *****

Sub Main
MsgBox("Hello Mr User, your macro has just have been hacked :)")
End Sub
</script:module>

At the document opening, strictly no alert is triggered despite the fact that the document's signature is still
present. The malicious macro has been executed successfully.

A less brutal approach would consist in removing the encryption data relating to the
Basic/Standard/<macro_name>.xml file only. But for that purpose, it is required to exactly know the
structure of the library.

 6.5.- Other classes of attacks
Many other attacks can be performed despite the use of encryption and/or digital signature:

• adding external files into the archive: theft of documents from an OpenOffice (malicious) document,
• using complex macro libraries: all the previous work extends to complete libraries. It is just possible

to perform very complex malicious attacks.
•

7.- Conclusion

The in-depth analysis of OpenOffice security has exhibited design flaws that make viral attacks very easy
and powerful, by fooling the user's feeling of security provided by both encryption and digital signature.
These techniques are badly managed and thus can be simply bypassed by using a simple text editor.

All relevant data have been provided to the OpenOffice developers and we hope that they will very soon
issue a new, secure release that will correct all these weaknesses. But OpenOffice's design philosophy must
be deeply changed in order to better manage the integrity of OpenOffice documents – the most critical issue
underlying all the OpenOffice weaknesses. The question is: is it possible to really offer security while being
totally open? Since the attacker also has access to the whole security specifications, he has total control on
the security mechanisms, unless they are not public or a secret parameter is used – a key – and efficiently
managed. In this context, the odds are in the proprietary software's favours.

We strongly advise OpenOffice users to protect their document by external encryption and digital signature
(e.g. PGP). At the present time, it is the only possible solution. On the AV software's side, antivirus should
warn of the presence of any macro in OpenOffice document and of the fact that the document is signed but
not the macros. They also could issue an alert whenever an encrypted document contains unencrypted
macros. It is sure that AV products have to play an essential role in the context of OpenOffice security.

References
[1] W3C, Spécification signature W3C, http://www.w3.org/Signature/

[2] XML http://www.xml.com/pub/a/2001/08/08/xmldsig.html and http://www.w3.org/TR/xmldsig-
core/

[3] Open Oasis, OpenDocument Specifications v1.1, http://www.oasis-open.org/specs/

[4] De Drézigué, D., Fizaine, J.-P. and Hansma, N. (2006), In-depth Analysis of the Viral Threats
 with OpenOffice.org Documents, Journal in Computer Virology, (2)-3, 2006.

[5] Rautiainen, S. (2003), OpenOffice Security. Virus Bulletin, september.

[6] Lagadec, P. (2006), OpenOffice/OpenDocument and MS Open XML Security. In PACSEC 2006
 Conference, http://pacsec.jp/psj06archive.html

[7] Filiol, E. and Fizaine, J.-P. (2006), Le risque viral sous OpenOffice 2.0.x, MISC – Le journal de la
 sécurité informatique, vol. 27. http://www.miscmag.com

[8] Filiol, E and Fizaine, J.-P. (2007), Security Analysis of the ODF Security: a Formal Approach,
 ESAT Technical Report 2007-21.

http://www.w3.org/Signature/
http://www.xml.com/pub/a/2001/08/08/xmldsig.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.oasis-open.org/specs/index.php
http://pacsec.jp/psj06archive.html
http://www.miscmag.com/

