Detection and Operational Cryptanalysis of Weakly

Implemented, Weak or Trapped Encryption Systems
A Step-by-Step Tutorial - Part Il

Eric Filiol, filiol@esiea.fr

ESIEA - Laval

Operational Cryptology and Virology Lab (C + V)©
http://www.esiea-recherche.eu/

oire de
ot > i y"o
5 Cosaire
N

H2HC 2010 - Sao Paulo & Cancun

i
<,
°O

E. Filiol (Esiea - (C' + V)© lab)

%
%
%
s
a
8
K

pas pitate ¥

&
©5d0 23

H2HC

Hackers to Hackers Conference 2010
Sao Paulo - Cancun

H2HC 2010

1/33

filiol@esiea.fr
http://www.esiea-recherche.eu/

Introduction

Outline

@ Introduction

E. Filiol (Esiea - (C' + V)© H2HC 2010 2 /33

Introduction

Introduction : what the next step ?

We have seen (part | of the tutorial) how
o weakly implemented
o weak (at the mathematical design level)
e or trapped encryption systems

can be detected and cryptanalyzed!

What about practical cases?

Is it possible to detect this only during limited period of time?
e The cryptographic design looks secure on the paper only!
e Concept of Dynamic Encryption Trapdoor

@ What can be the impact of the overall computer security on the
cryptographic security ?

@ Presentation of the Open source cryptanalysis library Mediggo -

Practice.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010

Introduction

Introduction

@ Without loss of generality, the examples and real cases presented here
have been simplified for sake of clarity and to fit to the limited
duration of the tutorial

e Realistic cases involve more mathematics that you are ready to accept
(and you really need).

o Cases coming from satellite communications, encrypted malware,
encryption software...

o Everything presented here is

o Either inspired by real cases during the last 60 years
o Or are the results of current research in our lab.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 4 /33

Introduction

Aim of Part Il

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010

Learn on practical cryptanalysis

Be able to detect any weak encrypted trafficor files.
Be able to break it without effort.

Present the Megiddo cryptanalysis library

Practice !

Introduction

Summary of the talk - Part Il

Introduction © Conclusion
Static Weakness and

Trapdoors
@ Introduction
@ Weakly Implemented
Ciphers
@ Trapped Stream Ciphers
e Dynamic Cryptographic
Trapdoors
@ Introduction
@ Malware-based Dynamic
Trapdoors
e The Megiddo Library
@ Introduction
@ Detection
@ Modeling the Plaintext
@ Decryption Step

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010

Static Weakness and Trapdoors

Outline

9 Static Weakness and Trapdoors
@ Introduction
@ Weakly Implemented Ciphers
@ Trapped Stream Ciphers

E. Filiol (Esiea - (C' + V)© lab) H2HC 2010

H2HC 2010

7/33

Static Weakness and Trapdoors
.

Introduction

Introduction

@ Despite many encryption systems are public, still many products
(hardware and/or software) embed

o Public algorithms but weakly (intendly or not) implemented
o Proprietary algorithms which are either weak in their design and/or
have implementation trapdoors.
@ The issue is : how to detect this situation without performing
time-consuming, illegal reverse-engineering ?
@ Without loss of generality we will focus on stream ciphers

o Still widely used (satellite communications, telecommunications,
governmental use, encryption of binaries...).
o lllustrating with block ciphers would require more mathematics !

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 8 /33

Static Weakness and Trapdoors
[1}

Weakly Implemented Ciphers

Example | : Malware Encryption

@ Drawn from a real case.
@ The malware author uses a N-byte truly random sequence repeatedly

combined to the binary to protect it (Vernam cipher) where is itself
random in the range [64,256] (in bytes)

I BN

Header N bytes N bytes N bytes N bytes

H2HC 2010 H2HC 2010 9 /33

E. Filiol (Esiea - (C' + V)© lab)

Static Weakness and Trapdoors
oe

Weakly Implemented Ciphers

Example | : Malware Encryption (2)

Trying all the N-subsequence is impossible (about 22°6 possibilities).
The solution is :

@ Try all possible lengths N of code chunks (linear complexity in the size
of the binary code).

@ For each value of N, split the code into N-byte chunks.

© Compute the coincidence indices between chunks of code.

For the correct value of N, we have a statistical pick and the different
chunks of code behave like parallel encrypted texts.

Decryption is then easy.

See detection in the pratice part of this tutorial.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 10 / 33

Static Weakness and Trapdoors
©0000

Trapped Stream Ciphers

Stream Cipher Generic Scheme

Let us consider a generic stream cipher scheme (most of the existing
stream ciphers can be more or less transformed in this generic scheme).

l Reg 2 }—> f
s_t
Reg 3 }—»

@ Two critical components (in which to hide trapdoors) :

o The Linear Feedback Shift Registers (LFSR).
e The Boolean combining function.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 11 /33

Static Weakness and Trapdoors
0@000

Trapped Stream Ciphers

LFSR Trapdoor

Feedback Outplt

Dll‘1|0‘1‘0|0‘0|1|1‘1|1|0|0|1‘1

Vs

Used to produce statistically good random sequence of bits.
Use of a characterictic polynomial P(x) to compute the feedback.
o P(x)=2%®2° a3 P a? @1 in the example.

The degree of the polynomial is also the length of the LFSR.

A LFSR generates periodic sequence by naturei (must start with the
non-zero state).

@ In a cryptographic context, the key is the initial state.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 12 /33

Static Weakness and Trapdoors
00®00

Trapped Stream Ciphers

LFSR Trapdoor (2)

@ If the characterictic polynomial P(x) is primitive then the sequence
produced is ultimately periodic and has length 2™ — 1.

o P(z)=23®x®1is primitive.
@ Otherwise the period length is (far) less than 2" — 1.
o P(z)=23® 2> ®x®1is not primitive.

@ Another constraint : all LFSR lengths must be co-prime (relatively
prime).

@ Whenever those two properties are not fullfilled (primitive AND
co-prime polynomials) then the system can have shorter output
sequences.

e The system comes back to the initial state quicker than expected.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 13 /33

Static Weakness and Trapdoors
000®0

Trapped Stream Ciphers

LFSR Trapdoor (3)

@ First trap : use non primitive polynomial.
e The LFSR will produce short periodic cycles.

@ Second trap : use non co-prime LFSR length.

@ Combining the two traps is better.

@ Just calibrate things in such a way that there exist short cycles for
every LFSR (since polynomials are not primitive) whose respective
length is not co-prime.

e The system will produce short periodic cycles.
@ The system will produce parallel encrypted texts with a frequency you
can play on.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 14 / 33

Static Weakness and Trapdoors
ooooe

Trapped Stream Ciphers

Boolean Function Trapdoor

@ Here we use the fact that any encryption system use

o A base key (changed every day, week, month...) K.
o A message key (changed for every encrypted text) K,,.

Example drawn from a real case during the 80-90s.

A Boolean function f is defined on [and hence has 2" variables.
o f(x) = Zung a,z" where a,, € Fy and z € F3.

How to trap the Boolean function?
@ Use a message key K, of size 2!
© Xor it by half to the Boolean function truth table
([0,2n=1 — 1], 21, 27)).
@ Produce partial parallel encrypted texts (according to a
K ,,-dependent decimation of the ciphertext).

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 15 / 33

Dynamic Cryptographic Trapdoors

Outline

e Dynamic Cryptographic Trapdoors
@ Introduction
@ Malware-based Dynamic Trapdoors

E. Filiol (Esiea - (C' + V)© H2HC 2010 16 / 33

Dynamic Cryptographic Trapdoors
°

Introduction

Introduction

@ Here we consider a strong cryptosystem (AES, TrueCrypt,
GPG/PGP...).
@ However the security at the operating level is not perfect.
@ What is it possible to do with a simple malware ?
e Of course it can eavesdrop/wiretap the key and send it outside.
@ What about computers with no network connection or whenever key
wiretapping is no longer possible ?
@ The solution is
e Modify the cryptographic environment on-the-fly.
e Modify the crypto-system on-the-fly in memory only.
e The “static (mathematical) security” remains unquestioned !

@ Just create dynamically periods of time during which the encryption
system is weak.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 17 / 33

Dynamic Cryptographic Trapdoors
©0000

Malware-based Dynamic Trapdoors

Program Interaction Control

@ Here we exploit the fact that very often, the message key K, is built
from data provided by external programs.

o Message counter, message key, session key...
o Initialization vectors for block ciphers.
o Integer nonces.
@ Most of the time the resources involved are in the Windows API.
e They provide random data required by the encryption application to
generate message keys and Vs
@ You then just have to hook the API function involved.

@ Same approach for other equivalent resources (key infrastructure,
network-based key management...).

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 18 / 33

Dynamic Cryptographic Trapdoors
0®000

Malware-based Dynamic Trapdoors

Hooking the CryptGenRandom function

@ Drawn from a real case.

@ A malicious DLL is injected in some (suitable) processes. This DLL
hooks the CryptGenRandom function (included in Microsoft’s
Cryptographic Application Programming Interface).

CryptGenRandom function

BOOL WINAPI CryptGenRandom(
__in HCRYPTPROV hProv,

__in DWORD dwLen,

__inout BYTE x*pbBuffer

)

@ A timing function checks whether we are in the time window given as
parameter sTime (12,00, 14, 00)[...]. will hook the CryptGenRandom
function between noon and 2pm only.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 19 / 33

Dynamic Cryptographic Trapdoors
00®00

Malware-based Dynamic Trapdoors

Hooking the CryptGenRandom function (2)

@ The integer (random data) returned by CryptGenRandom is modified
by the function HookedCryptGenRandom.

e They provide random data required by the encryption application to
generate message keys and Vs

@ You then just have to hook the API function involved.

@ Same approach for other equivalent resources (key infrastructure,
network-based key management...).

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 20 /33

Dynamic Cryptographic Trapdoors
000®0

Malware-based Dynamic Trapdoors

Hooking the CryptGenRandom function (3)

Generate fixed message key 021212121212121212

HookedCryptGenRandom function

BOOL WINAPI HookedCryptGenRandom (HCRYPTPROV hProv, DWORD
dwlLen, BYTE *pbBuffer)

static BOOL send12 = O ; BOOL isOK; DWORD i ;

sendl12 = 1;

isOK = HookFreeCryptGenRandom(hProv, dwLen, pbBuffer) ;
if ((send12) && (isOK))

for(i = 0; i < dwLen; i++) pbBuffer[i] = 0x12;

return isOK ;

Let us have a look into the code...

E. Filiol (Esiea - (C' + V)© lab) H2HC 2010 H2HC 2010 21 /33

Dynamic Cryptographic Trapdoors
ooo0e

Malware-based Dynamic Trapdoors

Memory Attack Only

@ The idea here consists in scanning for active encryption system in
memory and modifying their mathematical design on-the-fly only.

@ Volatile modification which does not affect the application on the

disk.

Our Implementation to attack AES

e scanKernelModules function to look for AES' sboxes signature.
e patchModule function to modify (weaken) those Sboxes.

Let us have a look into the code...

You can do many other things
o Switch mode of operation (e.g. CBC to OFB).
e Modify internal message key or IV generation
@ ... no limit but your imagination !

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010

22 /33

The Megiddo Library

Outline

@ The Megiddo Library
@ Introduction
Detection
Modeling the Plaintext
Decryption Step
More Stuff

E. Filiol (Esiea - (C' + V)© lab) H2HC 2010 H2HC 2010 23 /33

The Megiddo Library
°

Introduction

Introduction : The Megiddo Library

Wegx{d&ﬁa

@ Open source cryptanalysis library in C
@ At the present time
o Detection and cryptanalysis of weakly implemented or trapped systems
@ To come
o Automatic detection of statistical biases in cryptographic algorithms.
e Specific cryptanalysis tools.
@ More to come later...
@ Source code and samples available on

http://code.google.com/p/mediggo/

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 24 /33

http://code.google.com/p/mediggo/

The Megiddo Library
®00

Detection

Detection step

@ What the issue?

e Among thousands of encrypted texts, how to detect the weak subsets
(parallel ciphertexts) ?

e As for a single encrypted file how to detect the existence of parallel
parts ?

@ As a general principle, compute the coincidence indices
@ For the first problem, use file detect.c

o
e Apply the equivalence relationship to find subsets.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 25 /33

The Megiddo Library
oeo

Detection

Detection step (2)

Solution for Ciphertexts2 directory

cry35.txt - cry34.txt - Coincidence Index = 0.6760
cry35.txt - cry33.txt - Coincidence Index = 0.6667
cry35.txt - cry32.txt - Coincidence Index = 0.6711
cry35.txt - cry3l.txt - Coincidence Index = 0.6755
cry34.txt - cry33.txt - Coincidence Index = 0.6762
cry34.txt - cry32.txt - Coincidence Index = 0.6700
cry34.txt - cry3l.txt - Coincidence Index = 0.6738
cry33.txt - cry32.txt - Coincidence Index = 0.6780
cry33.txt - cry3l.txt - Coincidence Index = 0.6811
cry32.txt - cry3l.txt - Coincidence Index = 0.6713

Here ciphertexts cry31.txt, cry32.txt, cry33.txt, cry34.txt,
cry35.txt define a parallel subset.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 26 / 33

The Megiddo Library
ocoe

Detection

Detection step : single encrypted file

@ To solve the second problem, use file detect_singlefile.c

o If the size of the chunks is N = n (refer to slide Example | : Malware
Encryption) then you also get a statistical peak for values n, 2n, 3n....

Solution for cryptfilel

n = 134 - Coincidence Index 0.5236
n = 268 - Coincidence Index = 0.5229
n = 402 - Coincidence Index = 0.5221
n = 536 Coincidence Index = 0.5197

2010 - Coincidence Index = 0.5152

s .
I

n = 2144 - Coincidence Index = 0.5154
n = 2680 - Coincidence Index = 0.5152

@ Here the solution is n = 134 (bytes).

. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010

The Megiddo Library
°

Modeling the Plaintext

Build a corpus

@ The aim is to have a statistical model of the plaintext language (at
the Chomsky's sense).

@ Hence the approach is the same both natural languages (class 1) and
programming languages (class 2).

@ Extendable to any other class of grammar/language.

@ Use file create_corpus.c

o
@ Optimal values : 4-grams over a 96-character alphabet

@ Sample corpus provided in the library covers most of the Western
languages.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 28 /33

The Megiddo Library
°

Decryption Step

Cryptanalysis step

@ On each weak encrypted texts subset, we launch the cryptanalysis
@ Use file decrypt_para.c
e ./decrypt_para <corpus> <sequence_file> <cryptol> <crypto 2>...
@ You obtain the pseudo-running sequence. You must use it now to
decipher each ciphertext :

o Use file decipher.c
e decipher ciphertext_file pseudo-random sequence_file plaintext_file

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 29 /33

The Megiddo Library
°

More Stuff

More stuff

o Utility texte_extract.c

o Extract encrypted data in MS Word and MS Excel document (up to
Office 2003)

@ Then you can proceed as previously

@ You will find the technical paper and a few other slides (including the
present ones) in the archive.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 30/ 33

Conclusion

Outline

© Conclusion

E. Filiol (Esiea - (C' + V)© H2HC 2010 31/33

Conclusion

Conclusion

o Cryptographic strength and security cannot be defined in a static way
way only

@ The implementation and the way of use are critical parts of that
security.

@ Environmental security can reduce the cryptographic security
dramatically.

@ Dynamic, time-limited (or time-dependant) are likely to be the future
of cryptographic attacks...

o ... if it is not already the case.

@ Enjoy cryptanalysis and stay tuned to further developments in
Megiddo

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 32/33

Conclusion

Questions

@ Many thanks for your attention.
@ Questions ...

@ ... and Answers.

E. Filiol (Esiea - (C + V)© lab) H2HC 2010 H2HC 2010 33 /33

	Introduction
	Static Weakness and Trapdoors
	Introduction
	Weakly Implemented Ciphers
	Trapped Stream Ciphers

	Dynamic Cryptographic Trapdoors
	Introduction
	Malware-based Dynamic Trapdoors

	The Megiddo Library
	Introduction
	Detection
	Modeling the Plaintext
	Decryption Step
	More Stuff

	Conclusion

