
Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Detection and Operational Cryptanalysis of Weakly
Implemented, Weak or Trapped Encryption Systems

A Step-by-Step Tutorial - Part II

Eric Filiol, filiol@esiea.fr

ESIEA - Laval
Operational Cryptology and Virology Lab (C + V)O

http://www.esiea-recherche.eu/

H2HC 2010 - Sao Paulo & Cancun

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 1 / 33

filiol@esiea.fr
http://www.esiea-recherche.eu/

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Outline

1 Introduction

2 Static Weakness and Trapdoors
Introduction
Weakly Implemented Ciphers
Trapped Stream Ciphers

3 Dynamic Cryptographic Trapdoors
Introduction
Malware-based Dynamic Trapdoors

4 The Megiddo Library
Introduction
Detection
Modeling the Plaintext
Decryption Step
More Stuff

5 Conclusion

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 2 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Introduction : what the next step ?

We have seen (part I of the tutorial) how

weakly implemented
weak (at the mathematical design level)
or trapped encryption systems

can be detected and cryptanalyzed !

What about practical cases ?

Is it possible to detect this only during limited period of time ?

The cryptographic design looks secure on the paper only !
Concept of Dynamic Encryption Trapdoor

What can be the impact of the overall computer security on the
cryptographic security ?

Presentation of the Open source cryptanalysis library Mediggo -
Practice.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 3 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Introduction

Without loss of generality, the examples and real cases presented here
have been simplified for sake of clarity and to fit to the limited
duration of the tutorial

Realistic cases involve more mathematics that you are ready to accept
(and you really need).
Cases coming from satellite communications, encrypted malware,
encryption software...

Everything presented here is

Either inspired by real cases during the last 60 years
Or are the results of current research in our lab.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 4 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Aim of Part II

Learn on practical cryptanalysis

Be able to detect any weak encrypted trafficor files.

Be able to break it without effort.

Present the Megiddo cryptanalysis library

Practice !

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 5 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Summary of the talk - Part II

1 Introduction
2 Static Weakness and

Trapdoors
Introduction
Weakly Implemented
Ciphers
Trapped Stream Ciphers

3 Dynamic Cryptographic
Trapdoors

Introduction
Malware-based Dynamic
Trapdoors

4 The Megiddo Library
Introduction
Detection
Modeling the Plaintext
Decryption Step
More Stuff

5 Conclusion

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 6 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Outline

1 Introduction

2 Static Weakness and Trapdoors
Introduction
Weakly Implemented Ciphers
Trapped Stream Ciphers

3 Dynamic Cryptographic Trapdoors
Introduction
Malware-based Dynamic Trapdoors

4 The Megiddo Library
Introduction
Detection
Modeling the Plaintext
Decryption Step
More Stuff

5 Conclusion

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 7 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Introduction

Introduction

Despite many encryption systems are public, still many products
(hardware and/or software) embed

Public algorithms but weakly (intendly or not) implemented
Proprietary algorithms which are either weak in their design and/or
have implementation trapdoors.

The issue is : how to detect this situation without performing
time-consuming, illegal reverse-engineering ?

Without loss of generality we will focus on stream ciphers

Still widely used (satellite communications, telecommunications,
governmental use, encryption of binaries...).
Illustrating with block ciphers would require more mathematics !

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 8 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Weakly Implemented Ciphers

Example I : Malware Encryption

Drawn from a real case.
The malware author uses a N -byte truly random sequence repeatedly
combined to the binary to protect it (Vernam cipher) where is itself
random in the range [64, 256] (in bytes)

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 9 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Weakly Implemented Ciphers

Example I : Malware Encryption (2)

Trying all the N -subsequence is impossible (about 2256 possibilities).

The solution is :
1 Try all possible lengths N of code chunks (linear complexity in the size

of the binary code).
2 For each value of N , split the code into N -byte chunks.
3 Compute the coincidence indices between chunks of code.

For the correct value of N , we have a statistical pick and the different
chunks of code behave like parallel encrypted texts.

Decryption is then easy.

See detection in the pratice part of this tutorial.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 10 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Trapped Stream Ciphers

Stream Cipher Generic Scheme

Let us consider a generic stream cipher scheme (most of the existing
stream ciphers can be more or less transformed in this generic scheme).

Reg 1

Reg 2

Reg 3

f

s_t

Two critical components (in which to hide trapdoors) :

The Linear Feedback Shift Registers (LFSR).
The Boolean combining function.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 11 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Trapped Stream Ciphers

LFSR Trapdoor

Used to produce statistically good random sequence of bits.

Use of a characterictic polynomial P (x) to compute the feedback.

P (x) = x16 ⊕ x5 ⊕ x3 ⊕ x2 ⊕ 1 in the example.

The degree of the polynomial is also the length of the LFSR.

A LFSR generates periodic sequence by naturei (must start with the
non-zero state).

In a cryptographic context, the key is the initial state.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 12 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Trapped Stream Ciphers

LFSR Trapdoor (2)

If the characterictic polynomial P (x) is primitive then the sequence
produced is ultimately periodic and has length 2n − 1.

P (x) = x3 ⊕ x⊕ 1 is primitive.

Otherwise the period length is (far) less than 2n − 1.

P (x) = x3 ⊕ x2 ⊕ x⊕ 1 is not primitive.

Another constraint : all LFSR lengths must be co-prime (relatively
prime).

Whenever those two properties are not fullfilled (primitive AND
co-prime polynomials) then the system can have shorter output
sequences.

The system comes back to the initial state quicker than expected.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 13 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Trapped Stream Ciphers

LFSR Trapdoor (3)

First trap : use non primitive polynomial.

The LFSR will produce short periodic cycles.

Second trap : use non co-prime LFSR length.

Combining the two traps is better.

Just calibrate things in such a way that there exist short cycles for
every LFSR (since polynomials are not primitive) whose respective
length is not co-prime.

The system will produce short periodic cycles.

The system will produce parallel encrypted texts with a frequency you
can play on.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 14 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Trapped Stream Ciphers

Boolean Function Trapdoor

Here we use the fact that any encryption system use

A base key (changed every day, week, month...) K.
A message key (changed for every encrypted text) Km.

Example drawn from a real case during the 80-90s.

A Boolean function f is defined on Fn
2 and hence has 2n variables.

f(x) =
∑

u∈Fn
2

auxu where au ∈ F2 and x ∈ Fn
2 .

How to trap the Boolean function ?
1 Use a message key Km of size 2n−1

2 Xor it by half to the Boolean function truth table
([0, 2n−1 − 1], [2n−1, 2n]).

Produce partial parallel encrypted texts (according to a
Km-dependent decimation of the ciphertext).

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 15 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Outline

1 Introduction

2 Static Weakness and Trapdoors
Introduction
Weakly Implemented Ciphers
Trapped Stream Ciphers

3 Dynamic Cryptographic Trapdoors
Introduction
Malware-based Dynamic Trapdoors

4 The Megiddo Library
Introduction
Detection
Modeling the Plaintext
Decryption Step
More Stuff

5 Conclusion

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 16 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Introduction

Introduction

Here we consider a strong cryptosystem (AES, TrueCrypt,
GPG/PGP...).

However the security at the operating level is not perfect.

What is it possible to do with a simple malware ?

Of course it can eavesdrop/wiretap the key and send it outside.

What about computers with no network connection or whenever key
wiretapping is no longer possible ?

The solution is

Modify the cryptographic environment on-the-fly.
Modify the crypto-system on-the-fly in memory only.

The “static (mathematical) security” remains unquestioned !

Just create dynamically periods of time during which the encryption
system is weak.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 17 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Malware-based Dynamic Trapdoors

Program Interaction Control

Here we exploit the fact that very often, the message key Km is built
from data provided by external programs.

Message counter, message key, session key...
Initialization vectors for block ciphers.
Integer nonces.

Most of the time the resources involved are in the Windows API.

They provide random data required by the encryption application to
generate message keys and IVs

You then just have to hook the API function involved.

Same approach for other equivalent resources (key infrastructure,
network-based key management...).

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 18 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Malware-based Dynamic Trapdoors

Hooking the CryptGenRandom function

Drawn from a real case.

A malicious dll is injected in some (suitable) processes. This dll
hooks the CryptGenRandom function (included in Microsoft’s
Cryptographic Application Programming Interface).

CryptGenRandom function

BOOL WINAPI CryptGenRandom(
in HCRYPTPROV hProv,
in DWORD dwLen,
inout BYTE *pbBuffer

) ;

A timing function checks whether we are in the time window given as
parameter sT ime(12, 00, 14, 00)[...]. will hook the CryptGenRandom
function between noon and 2pm only.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 19 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Malware-based Dynamic Trapdoors

Hooking the CryptGenRandom function (2)

The integer (random data) returned by CryptGenRandom is modified
by the function HookedCryptGenRandom.

They provide random data required by the encryption application to
generate message keys and IVs

You then just have to hook the API function involved.

Same approach for other equivalent resources (key infrastructure,
network-based key management...).

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 20 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Malware-based Dynamic Trapdoors

Hooking the CryptGenRandom function (3)

Generate fixed message key 0x1212121212121212

HookedCryptGenRandom function

BOOL WINAPI HookedCryptGenRandom(HCRYPTPROV hProv, DWORD
dwLen, BYTE *pbBuffer)

static BOOL send12 = 0 ; BOOL isOK ; DWORD i ;
send12 =̂ 1 ;
isOK = HookFreeCryptGenRandom(hProv, dwLen, pbBuffer) ;
if((send12) && (isOK))
for(i = 0 ; i < dwLen ; i++) pbBuffer[i] = 0x12 ;
return isOK ;

Let us have a look into the code...

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 21 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Malware-based Dynamic Trapdoors

Memory Attack Only

The idea here consists in scanning for active encryption system in
memory and modifying their mathematical design on-the-fly only.

Volatile modification which does not affect the application on the
disk.

Our Implementation to attack AES

scanKernelModules function to look for AES’ sboxes signature.
patchModule function to modify (weaken) those Sboxes.

Let us have a look into the code...

You can do many other things

Switch mode of operation (e.g. CBC to OFB).
Modify internal message key or IV generation
... no limit but your imagination !

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 22 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Outline

1 Introduction

2 Static Weakness and Trapdoors
Introduction
Weakly Implemented Ciphers
Trapped Stream Ciphers

3 Dynamic Cryptographic Trapdoors
Introduction
Malware-based Dynamic Trapdoors

4 The Megiddo Library
Introduction
Detection
Modeling the Plaintext
Decryption Step
More Stuff

5 Conclusion

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 23 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Introduction

Introduction : The Megiddo Library

Open source cryptanalysis library in C

At the present time

Detection and cryptanalysis of weakly implemented or trapped systems

To come

Automatic detection of statistical biases in cryptographic algorithms.
Specific cryptanalysis tools.

More to come later...

Source code and samples available on
http://code.google.com/p/mediggo/

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 24 / 33

http://code.google.com/p/mediggo/

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Detection

Detection step

What the issue ?

Among thousands of encrypted texts, how to detect the weak subsets
(parallel ciphertexts) ?
As for a single encrypted file how to detect the existence of parallel
parts ?

As a general principle, compute the coincidence indices

For the first problem, use file detect.c
./detect <ciphertext dirname> <outputfile>
Apply the equivalence relationship to find subsets.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 25 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Detection

Detection step (2)

Solution for Ciphertexts2 directory

cry35.txt - cry34.txt - Coincidence Index = 0.6760
cry35.txt - cry33.txt - Coincidence Index = 0.6667
cry35.txt - cry32.txt - Coincidence Index = 0.6711
cry35.txt - cry31.txt - Coincidence Index = 0.6755
cry34.txt - cry33.txt - Coincidence Index = 0.6762
cry34.txt - cry32.txt - Coincidence Index = 0.6700
cry34.txt - cry31.txt - Coincidence Index = 0.6738
cry33.txt - cry32.txt - Coincidence Index = 0.6780
cry33.txt - cry31.txt - Coincidence Index = 0.6811
cry32.txt - cry31.txt - Coincidence Index = 0.6713

Here ciphertexts cry31.txt, cry32.txt, cry33.txt, cry34.txt,
cry35.txt define a parallel subset.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 26 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Detection

Detection step : single encrypted file

To solve the second problem, use file detect singlefile.c
./detect singlefile <ciphertext file>

If the size of the chunks is N = n (refer to slide Example I : Malware
Encryption) then you also get a statistical peak for values n, 2n, 3n....

Solution for cryptfile1

n = 134 - Coincidence Index = 0.5236
n = 268 - Coincidence Index = 0.5229
n = 402 - Coincidence Index = 0.5221
n = 536 - Coincidence Index = 0.5197
....
n = 2010 - Coincidence Index = 0.5152
n = 2144 - Coincidence Index = 0.5154
n = 2680 - Coincidence Index = 0.5152

Here the solution is n = 134 (bytes).

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 27 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Modeling the Plaintext

Build a corpus

The aim is to have a statistical model of the plaintext language (at
the Chomsky’s sense).

Hence the approach is the same both natural languages (class 1) and
programming languages (class 2).

Extendable to any other class of grammar/language.

Use file create corpus.c
./create corpus <ref text dirname> <corpus output file>

Optimal values : 4-grams over a 96-character alphabet

Sample corpus provided in the library covers most of the Western
languages.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 28 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Decryption Step

Cryptanalysis step

On each weak encrypted texts subset, we launch the cryptanalysis

Use file decrypt para.c
./decrypt para <corpus> <sequence file> <crypto1> <crypto 2>...

You obtain the pseudo-running sequence. You must use it now to
decipher each ciphertext :

Use file decipher.c
decipher ciphertext file pseudo-random sequence file plaintext file

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 29 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

More Stuff

More stuff

Utility texte extract.c
Extract encrypted data in MS Word and MS Excel document (up to
Office 2003)

Then you can proceed as previously

You will find the technical paper and a few other slides (including the
present ones) in the archive.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 30 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Outline

1 Introduction

2 Static Weakness and Trapdoors
Introduction
Weakly Implemented Ciphers
Trapped Stream Ciphers

3 Dynamic Cryptographic Trapdoors
Introduction
Malware-based Dynamic Trapdoors

4 The Megiddo Library
Introduction
Detection
Modeling the Plaintext
Decryption Step
More Stuff

5 Conclusion

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 31 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Conclusion

Cryptographic strength and security cannot be defined in a static way
way only

The implementation and the way of use are critical parts of that
security.

Environmental security can reduce the cryptographic security
dramatically.

Dynamic, time-limited (or time-dependant) are likely to be the future
of cryptographic attacks...

... if it is not already the case.

Enjoy cryptanalysis and stay tuned to further developments in
Megiddo

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 32 / 33

Introduction Static Weakness and Trapdoors Dynamic Cryptographic Trapdoors The Megiddo Library Conclusion

Questions

Many thanks for your attention.

Questions ...

... and Answers.

E. Filiol (Esiea - (C + V)O lab) H2HC 2010 H2HC 2010 33 / 33

	Introduction
	Static Weakness and Trapdoors
	Introduction
	Weakly Implemented Ciphers
	Trapped Stream Ciphers

	Dynamic Cryptographic Trapdoors
	Introduction
	Malware-based Dynamic Trapdoors

	The Megiddo Library
	Introduction
	Detection
	Modeling the Plaintext
	Decryption Step
	More Stuff

	Conclusion

